gdb: remove TYPE_NOSIGN
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * This appears in a type's flags word if it is a stub type (e.g.,
220 if someone referenced a type that wasn't defined in a source file
221 via (struct sir_not_appearing_in_this_film *)). */
222
223 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
224
225 /* * The target type of this type is a stub type, and this type needs
226 to be updated if it gets un-stubbed in check_typedef. Used for
227 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
228 based on the TYPE_LENGTH of the target type. Also, set for
229 TYPE_CODE_TYPEDEF. */
230
231 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
232
233 /* * This is a function type which appears to have a prototype. We
234 need this for function calls in order to tell us if it's necessary
235 to coerce the args, or to just do the standard conversions. This
236 is used with a short field. */
237
238 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
239
240 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
241 to functions. */
242
243 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
244
245 /* * Identify a vector type. Gcc is handling this by adding an extra
246 attribute to the array type. We slurp that in as a new flag of a
247 type. This is used only in dwarf2read.c. */
248 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
249
250 /* * The debugging formats (especially STABS) do not contain enough
251 information to represent all Ada types---especially those whose
252 size depends on dynamic quantities. Therefore, the GNAT Ada
253 compiler includes extra information in the form of additional type
254 definitions connected by naming conventions. This flag indicates
255 that the type is an ordinary (unencoded) GDB type that has been
256 created from the necessary run-time information, and does not need
257 further interpretation. Optionally marks ordinary, fixed-size GDB
258 type. */
259
260 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
261
262 /* * This debug target supports TYPE_STUB(t). In the unsupported case
263 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
264 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
265 guessed the TYPE_STUB(t) value (see dwarfread.c). */
266
267 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
268
269 /* * Not textual. By default, GDB treats all single byte integers as
270 characters (or elements of strings) unless this flag is set. */
271
272 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
273
274 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
275 address is returned by this function call. TYPE_TARGET_TYPE
276 determines the final returned function type to be presented to
277 user. */
278
279 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
280
281 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
282 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
283 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
284
285 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
286 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
287 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
288
289 /* * True if this type was declared using the "class" keyword. This is
290 only valid for C++ structure and enum types. If false, a structure
291 was declared as a "struct"; if true it was declared "class". For
292 enum types, this is true when "enum class" or "enum struct" was
293 used to declare the type.. */
294
295 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
296
297 /* * True if this type is a "flag" enum. A flag enum is one where all
298 the values are pairwise disjoint when "and"ed together. This
299 affects how enum values are printed. */
300
301 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
302
303 /* * Constant type. If this is set, the corresponding type has a
304 const modifier. */
305
306 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
307
308 /* * Volatile type. If this is set, the corresponding type has a
309 volatile modifier. */
310
311 #define TYPE_VOLATILE(t) \
312 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
313
314 /* * Restrict type. If this is set, the corresponding type has a
315 restrict modifier. */
316
317 #define TYPE_RESTRICT(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
319
320 /* * Atomic type. If this is set, the corresponding type has an
321 _Atomic modifier. */
322
323 #define TYPE_ATOMIC(t) \
324 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
325
326 /* * True if this type represents either an lvalue or lvalue reference type. */
327
328 #define TYPE_IS_REFERENCE(t) \
329 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
330
331 /* * True if this type is allocatable. */
332 #define TYPE_IS_ALLOCATABLE(t) \
333 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
334
335 /* * True if this type has variant parts. */
336 #define TYPE_HAS_VARIANT_PARTS(t) \
337 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
338
339 /* * True if this type has a dynamic length. */
340 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
341 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
342
343 /* * Instruction-space delimited type. This is for Harvard architectures
344 which have separate instruction and data address spaces (and perhaps
345 others).
346
347 GDB usually defines a flat address space that is a superset of the
348 architecture's two (or more) address spaces, but this is an extension
349 of the architecture's model.
350
351 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
352 resides in instruction memory, even if its address (in the extended
353 flat address space) does not reflect this.
354
355 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
356 corresponding type resides in the data memory space, even if
357 this is not indicated by its (flat address space) address.
358
359 If neither flag is set, the default space for functions / methods
360 is instruction space, and for data objects is data memory. */
361
362 #define TYPE_CODE_SPACE(t) \
363 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
364
365 #define TYPE_DATA_SPACE(t) \
366 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
367
368 /* * Address class flags. Some environments provide for pointers
369 whose size is different from that of a normal pointer or address
370 types where the bits are interpreted differently than normal
371 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
372 target specific ways to represent these different types of address
373 classes. */
374
375 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
376 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
377 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
378 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
379 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
380 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
381 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
382 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
383
384 /* * Information about a single discriminant. */
385
386 struct discriminant_range
387 {
388 /* * The range of values for the variant. This is an inclusive
389 range. */
390 ULONGEST low, high;
391
392 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
393 is true if this should be an unsigned comparison; false for
394 signed. */
395 bool contains (ULONGEST value, bool is_unsigned) const
396 {
397 if (is_unsigned)
398 return value >= low && value <= high;
399 LONGEST valuel = (LONGEST) value;
400 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
401 }
402 };
403
404 struct variant_part;
405
406 /* * A single variant. A variant has a list of discriminant values.
407 When the discriminator matches one of these, the variant is
408 enabled. Each variant controls zero or more fields; and may also
409 control other variant parts as well. This struct corresponds to
410 DW_TAG_variant in DWARF. */
411
412 struct variant : allocate_on_obstack
413 {
414 /* * The discriminant ranges for this variant. */
415 gdb::array_view<discriminant_range> discriminants;
416
417 /* * The fields controlled by this variant. This is inclusive on
418 the low end and exclusive on the high end. A variant may not
419 control any fields, in which case the two values will be equal.
420 These are indexes into the type's array of fields. */
421 int first_field;
422 int last_field;
423
424 /* * Variant parts controlled by this variant. */
425 gdb::array_view<variant_part> parts;
426
427 /* * Return true if this is the default variant. The default
428 variant can be recognized because it has no associated
429 discriminants. */
430 bool is_default () const
431 {
432 return discriminants.empty ();
433 }
434
435 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
436 if this should be an unsigned comparison; false for signed. */
437 bool matches (ULONGEST value, bool is_unsigned) const;
438 };
439
440 /* * A variant part. Each variant part has an optional discriminant
441 and holds an array of variants. This struct corresponds to
442 DW_TAG_variant_part in DWARF. */
443
444 struct variant_part : allocate_on_obstack
445 {
446 /* * The index of the discriminant field in the outer type. This is
447 an index into the type's array of fields. If this is -1, there
448 is no discriminant, and only the default variant can be
449 considered to be selected. */
450 int discriminant_index;
451
452 /* * True if this discriminant is unsigned; false if signed. This
453 comes from the type of the discriminant. */
454 bool is_unsigned;
455
456 /* * The variants that are controlled by this variant part. Note
457 that these will always be sorted by field number. */
458 gdb::array_view<variant> variants;
459 };
460
461
462 enum dynamic_prop_kind
463 {
464 PROP_UNDEFINED, /* Not defined. */
465 PROP_CONST, /* Constant. */
466 PROP_ADDR_OFFSET, /* Address offset. */
467 PROP_LOCEXPR, /* Location expression. */
468 PROP_LOCLIST, /* Location list. */
469 PROP_VARIANT_PARTS, /* Variant parts. */
470 PROP_TYPE, /* Type. */
471 };
472
473 union dynamic_prop_data
474 {
475 /* Storage for constant property. */
476
477 LONGEST const_val;
478
479 /* Storage for dynamic property. */
480
481 void *baton;
482
483 /* Storage of variant parts for a type. A type with variant parts
484 has all its fields "linearized" -- stored in a single field
485 array, just as if they had all been declared that way. The
486 variant parts are attached via a dynamic property, and then are
487 used to control which fields end up in the final type during
488 dynamic type resolution. */
489
490 const gdb::array_view<variant_part> *variant_parts;
491
492 /* Once a variant type is resolved, we may want to be able to go
493 from the resolved type to the original type. In this case we
494 rewrite the property's kind and set this field. */
495
496 struct type *original_type;
497 };
498
499 /* * Used to store a dynamic property. */
500
501 struct dynamic_prop
502 {
503 dynamic_prop_kind kind () const
504 {
505 return m_kind;
506 }
507
508 void set_undefined ()
509 {
510 m_kind = PROP_UNDEFINED;
511 }
512
513 LONGEST const_val () const
514 {
515 gdb_assert (m_kind == PROP_CONST);
516
517 return m_data.const_val;
518 }
519
520 void set_const_val (LONGEST const_val)
521 {
522 m_kind = PROP_CONST;
523 m_data.const_val = const_val;
524 }
525
526 void *baton () const
527 {
528 gdb_assert (m_kind == PROP_LOCEXPR
529 || m_kind == PROP_LOCLIST
530 || m_kind == PROP_ADDR_OFFSET);
531
532 return m_data.baton;
533 }
534
535 void set_locexpr (void *baton)
536 {
537 m_kind = PROP_LOCEXPR;
538 m_data.baton = baton;
539 }
540
541 void set_loclist (void *baton)
542 {
543 m_kind = PROP_LOCLIST;
544 m_data.baton = baton;
545 }
546
547 void set_addr_offset (void *baton)
548 {
549 m_kind = PROP_ADDR_OFFSET;
550 m_data.baton = baton;
551 }
552
553 const gdb::array_view<variant_part> *variant_parts () const
554 {
555 gdb_assert (m_kind == PROP_VARIANT_PARTS);
556
557 return m_data.variant_parts;
558 }
559
560 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
561 {
562 m_kind = PROP_VARIANT_PARTS;
563 m_data.variant_parts = variant_parts;
564 }
565
566 struct type *original_type () const
567 {
568 gdb_assert (m_kind == PROP_TYPE);
569
570 return m_data.original_type;
571 }
572
573 void set_original_type (struct type *original_type)
574 {
575 m_kind = PROP_TYPE;
576 m_data.original_type = original_type;
577 }
578
579 /* Determine which field of the union dynamic_prop.data is used. */
580 enum dynamic_prop_kind m_kind;
581
582 /* Storage for dynamic or static value. */
583 union dynamic_prop_data m_data;
584 };
585
586 /* Compare two dynamic_prop objects for equality. dynamic_prop
587 instances are equal iff they have the same type and storage. */
588 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
589
590 /* Compare two dynamic_prop objects for inequality. */
591 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
592 {
593 return !(l == r);
594 }
595
596 /* * Define a type's dynamic property node kind. */
597 enum dynamic_prop_node_kind
598 {
599 /* A property providing a type's data location.
600 Evaluating this field yields to the location of an object's data. */
601 DYN_PROP_DATA_LOCATION,
602
603 /* A property representing DW_AT_allocated. The presence of this attribute
604 indicates that the object of the type can be allocated/deallocated. */
605 DYN_PROP_ALLOCATED,
606
607 /* A property representing DW_AT_associated. The presence of this attribute
608 indicated that the object of the type can be associated. */
609 DYN_PROP_ASSOCIATED,
610
611 /* A property providing an array's byte stride. */
612 DYN_PROP_BYTE_STRIDE,
613
614 /* A property holding variant parts. */
615 DYN_PROP_VARIANT_PARTS,
616
617 /* A property holding the size of the type. */
618 DYN_PROP_BYTE_SIZE,
619 };
620
621 /* * List for dynamic type attributes. */
622 struct dynamic_prop_list
623 {
624 /* The kind of dynamic prop in this node. */
625 enum dynamic_prop_node_kind prop_kind;
626
627 /* The dynamic property itself. */
628 struct dynamic_prop prop;
629
630 /* A pointer to the next dynamic property. */
631 struct dynamic_prop_list *next;
632 };
633
634 /* * Determine which field of the union main_type.fields[x].loc is
635 used. */
636
637 enum field_loc_kind
638 {
639 FIELD_LOC_KIND_BITPOS, /**< bitpos */
640 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
641 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
642 FIELD_LOC_KIND_PHYSNAME, /**< physname */
643 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
644 };
645
646 /* * A discriminant to determine which field in the
647 main_type.type_specific union is being used, if any.
648
649 For types such as TYPE_CODE_FLT, the use of this
650 discriminant is really redundant, as we know from the type code
651 which field is going to be used. As such, it would be possible to
652 reduce the size of this enum in order to save a bit or two for
653 other fields of struct main_type. But, since we still have extra
654 room , and for the sake of clarity and consistency, we treat all fields
655 of the union the same way. */
656
657 enum type_specific_kind
658 {
659 TYPE_SPECIFIC_NONE,
660 TYPE_SPECIFIC_CPLUS_STUFF,
661 TYPE_SPECIFIC_GNAT_STUFF,
662 TYPE_SPECIFIC_FLOATFORMAT,
663 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
664 TYPE_SPECIFIC_FUNC,
665 TYPE_SPECIFIC_SELF_TYPE
666 };
667
668 union type_owner
669 {
670 struct objfile *objfile;
671 struct gdbarch *gdbarch;
672 };
673
674 union field_location
675 {
676 /* * Position of this field, counting in bits from start of
677 containing structure. For big-endian targets, it is the bit
678 offset to the MSB. For little-endian targets, it is the bit
679 offset to the LSB. */
680
681 LONGEST bitpos;
682
683 /* * Enum value. */
684 LONGEST enumval;
685
686 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
687 physaddr is the location (in the target) of the static
688 field. Otherwise, physname is the mangled label of the
689 static field. */
690
691 CORE_ADDR physaddr;
692 const char *physname;
693
694 /* * The field location can be computed by evaluating the
695 following DWARF block. Its DATA is allocated on
696 objfile_obstack - no CU load is needed to access it. */
697
698 struct dwarf2_locexpr_baton *dwarf_block;
699 };
700
701 struct field
702 {
703 struct type *type () const
704 {
705 return this->m_type;
706 }
707
708 void set_type (struct type *type)
709 {
710 this->m_type = type;
711 }
712
713 union field_location loc;
714
715 /* * For a function or member type, this is 1 if the argument is
716 marked artificial. Artificial arguments should not be shown
717 to the user. For TYPE_CODE_RANGE it is set if the specific
718 bound is not defined. */
719
720 unsigned int artificial : 1;
721
722 /* * Discriminant for union field_location. */
723
724 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
725
726 /* * Size of this field, in bits, or zero if not packed.
727 If non-zero in an array type, indicates the element size in
728 bits (used only in Ada at the moment).
729 For an unpacked field, the field's type's length
730 says how many bytes the field occupies. */
731
732 unsigned int bitsize : 28;
733
734 /* * In a struct or union type, type of this field.
735 - In a function or member type, type of this argument.
736 - In an array type, the domain-type of the array. */
737
738 struct type *m_type;
739
740 /* * Name of field, value or argument.
741 NULL for range bounds, array domains, and member function
742 arguments. */
743
744 const char *name;
745 };
746
747 struct range_bounds
748 {
749 ULONGEST bit_stride () const
750 {
751 if (this->flag_is_byte_stride)
752 return this->stride.const_val () * 8;
753 else
754 return this->stride.const_val ();
755 }
756
757 /* * Low bound of range. */
758
759 struct dynamic_prop low;
760
761 /* * High bound of range. */
762
763 struct dynamic_prop high;
764
765 /* The stride value for this range. This can be stored in bits or bytes
766 based on the value of BYTE_STRIDE_P. It is optional to have a stride
767 value, if this range has no stride value defined then this will be set
768 to the constant zero. */
769
770 struct dynamic_prop stride;
771
772 /* * The bias. Sometimes a range value is biased before storage.
773 The bias is added to the stored bits to form the true value. */
774
775 LONGEST bias;
776
777 /* True if HIGH range bound contains the number of elements in the
778 subrange. This affects how the final high bound is computed. */
779
780 unsigned int flag_upper_bound_is_count : 1;
781
782 /* True if LOW or/and HIGH are resolved into a static bound from
783 a dynamic one. */
784
785 unsigned int flag_bound_evaluated : 1;
786
787 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
788
789 unsigned int flag_is_byte_stride : 1;
790 };
791
792 /* Compare two range_bounds objects for equality. Simply does
793 memberwise comparison. */
794 extern bool operator== (const range_bounds &l, const range_bounds &r);
795
796 /* Compare two range_bounds objects for inequality. */
797 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
798 {
799 return !(l == r);
800 }
801
802 union type_specific
803 {
804 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
805 point to cplus_struct_default, a default static instance of a
806 struct cplus_struct_type. */
807
808 struct cplus_struct_type *cplus_stuff;
809
810 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
811 provides additional information. */
812
813 struct gnat_aux_type *gnat_stuff;
814
815 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
816 floatformat object that describes the floating-point value
817 that resides within the type. */
818
819 const struct floatformat *floatformat;
820
821 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
822
823 struct func_type *func_stuff;
824
825 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
826 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
827 is a member of. */
828
829 struct type *self_type;
830 };
831
832 /* * Main structure representing a type in GDB.
833
834 This structure is space-critical. Its layout has been tweaked to
835 reduce the space used. */
836
837 struct main_type
838 {
839 /* * Code for kind of type. */
840
841 ENUM_BITFIELD(type_code) code : 8;
842
843 /* * Flags about this type. These fields appear at this location
844 because they packs nicely here. See the TYPE_* macros for
845 documentation about these fields. */
846
847 unsigned int m_flag_unsigned : 1;
848 unsigned int m_flag_nosign : 1;
849 unsigned int flag_stub : 1;
850 unsigned int flag_target_stub : 1;
851 unsigned int flag_prototyped : 1;
852 unsigned int flag_varargs : 1;
853 unsigned int flag_vector : 1;
854 unsigned int flag_stub_supported : 1;
855 unsigned int flag_gnu_ifunc : 1;
856 unsigned int flag_fixed_instance : 1;
857 unsigned int flag_objfile_owned : 1;
858 unsigned int flag_endianity_not_default : 1;
859
860 /* * True if this type was declared with "class" rather than
861 "struct". */
862
863 unsigned int flag_declared_class : 1;
864
865 /* * True if this is an enum type with disjoint values. This
866 affects how the enum is printed. */
867
868 unsigned int flag_flag_enum : 1;
869
870 /* * A discriminant telling us which field of the type_specific
871 union is being used for this type, if any. */
872
873 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
874
875 /* * Number of fields described for this type. This field appears
876 at this location because it packs nicely here. */
877
878 short nfields;
879
880 /* * Name of this type, or NULL if none.
881
882 This is used for printing only. For looking up a name, look for
883 a symbol in the VAR_DOMAIN. This is generally allocated in the
884 objfile's obstack. However coffread.c uses malloc. */
885
886 const char *name;
887
888 /* * Every type is now associated with a particular objfile, and the
889 type is allocated on the objfile_obstack for that objfile. One
890 problem however, is that there are times when gdb allocates new
891 types while it is not in the process of reading symbols from a
892 particular objfile. Fortunately, these happen when the type
893 being created is a derived type of an existing type, such as in
894 lookup_pointer_type(). So we can just allocate the new type
895 using the same objfile as the existing type, but to do this we
896 need a backpointer to the objfile from the existing type. Yes
897 this is somewhat ugly, but without major overhaul of the internal
898 type system, it can't be avoided for now. */
899
900 union type_owner owner;
901
902 /* * For a pointer type, describes the type of object pointed to.
903 - For an array type, describes the type of the elements.
904 - For a function or method type, describes the type of the return value.
905 - For a range type, describes the type of the full range.
906 - For a complex type, describes the type of each coordinate.
907 - For a special record or union type encoding a dynamic-sized type
908 in GNAT, a memoized pointer to a corresponding static version of
909 the type.
910 - Unused otherwise. */
911
912 struct type *target_type;
913
914 /* * For structure and union types, a description of each field.
915 For set and pascal array types, there is one "field",
916 whose type is the domain type of the set or array.
917 For range types, there are two "fields",
918 the minimum and maximum values (both inclusive).
919 For enum types, each possible value is described by one "field".
920 For a function or method type, a "field" for each parameter.
921 For C++ classes, there is one field for each base class (if it is
922 a derived class) plus one field for each class data member. Member
923 functions are recorded elsewhere.
924
925 Using a pointer to a separate array of fields
926 allows all types to have the same size, which is useful
927 because we can allocate the space for a type before
928 we know what to put in it. */
929
930 union
931 {
932 struct field *fields;
933
934 /* * Union member used for range types. */
935
936 struct range_bounds *bounds;
937
938 /* If this is a scalar type, then this is its corresponding
939 complex type. */
940 struct type *complex_type;
941
942 } flds_bnds;
943
944 /* * Slot to point to additional language-specific fields of this
945 type. */
946
947 union type_specific type_specific;
948
949 /* * Contains all dynamic type properties. */
950 struct dynamic_prop_list *dyn_prop_list;
951 };
952
953 /* * Number of bits allocated for alignment. */
954
955 #define TYPE_ALIGN_BITS 8
956
957 /* * A ``struct type'' describes a particular instance of a type, with
958 some particular qualification. */
959
960 struct type
961 {
962 /* Get the type code of this type.
963
964 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
965 type, you need to do `check_typedef (type)->code ()`. */
966 type_code code () const
967 {
968 return this->main_type->code;
969 }
970
971 /* Set the type code of this type. */
972 void set_code (type_code code)
973 {
974 this->main_type->code = code;
975 }
976
977 /* Get the name of this type. */
978 const char *name () const
979 {
980 return this->main_type->name;
981 }
982
983 /* Set the name of this type. */
984 void set_name (const char *name)
985 {
986 this->main_type->name = name;
987 }
988
989 /* Get the number of fields of this type. */
990 int num_fields () const
991 {
992 return this->main_type->nfields;
993 }
994
995 /* Set the number of fields of this type. */
996 void set_num_fields (int num_fields)
997 {
998 this->main_type->nfields = num_fields;
999 }
1000
1001 /* Get the fields array of this type. */
1002 struct field *fields () const
1003 {
1004 return this->main_type->flds_bnds.fields;
1005 }
1006
1007 /* Get the field at index IDX. */
1008 struct field &field (int idx) const
1009 {
1010 return this->fields ()[idx];
1011 }
1012
1013 /* Set the fields array of this type. */
1014 void set_fields (struct field *fields)
1015 {
1016 this->main_type->flds_bnds.fields = fields;
1017 }
1018
1019 type *index_type () const
1020 {
1021 return this->field (0).type ();
1022 }
1023
1024 void set_index_type (type *index_type)
1025 {
1026 this->field (0).set_type (index_type);
1027 }
1028
1029 /* Get the bounds bounds of this type. The type must be a range type. */
1030 range_bounds *bounds () const
1031 {
1032 switch (this->code ())
1033 {
1034 case TYPE_CODE_RANGE:
1035 return this->main_type->flds_bnds.bounds;
1036
1037 case TYPE_CODE_ARRAY:
1038 case TYPE_CODE_STRING:
1039 return this->index_type ()->bounds ();
1040
1041 default:
1042 gdb_assert_not_reached
1043 ("type::bounds called on type with invalid code");
1044 }
1045 }
1046
1047 /* Set the bounds of this type. The type must be a range type. */
1048 void set_bounds (range_bounds *bounds)
1049 {
1050 gdb_assert (this->code () == TYPE_CODE_RANGE);
1051
1052 this->main_type->flds_bnds.bounds = bounds;
1053 }
1054
1055 ULONGEST bit_stride () const
1056 {
1057 return this->bounds ()->bit_stride ();
1058 }
1059
1060 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1061 the type is signed (unless TYPE_NOSIGN is set). */
1062
1063 bool is_unsigned () const
1064 {
1065 return this->main_type->m_flag_unsigned;
1066 }
1067
1068 void set_is_unsigned (bool is_unsigned)
1069 {
1070 this->main_type->m_flag_unsigned = is_unsigned;
1071 }
1072
1073 /* No sign for this type. In C++, "char", "signed char", and
1074 "unsigned char" are distinct types; so we need an extra flag to
1075 indicate the absence of a sign! */
1076
1077 bool has_no_signedness () const
1078 {
1079 return this->main_type->m_flag_nosign;
1080 }
1081
1082 void set_has_no_signedness (bool has_no_signedness)
1083 {
1084 this->main_type->m_flag_nosign = has_no_signedness;
1085 }
1086
1087 /* * Return the dynamic property of the requested KIND from this type's
1088 list of dynamic properties. */
1089 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1090
1091 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1092 property to this type.
1093
1094 This function assumes that this type is objfile-owned. */
1095 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1096
1097 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1098 void remove_dyn_prop (dynamic_prop_node_kind kind);
1099
1100 /* * Type that is a pointer to this type.
1101 NULL if no such pointer-to type is known yet.
1102 The debugger may add the address of such a type
1103 if it has to construct one later. */
1104
1105 struct type *pointer_type;
1106
1107 /* * C++: also need a reference type. */
1108
1109 struct type *reference_type;
1110
1111 /* * A C++ rvalue reference type added in C++11. */
1112
1113 struct type *rvalue_reference_type;
1114
1115 /* * Variant chain. This points to a type that differs from this
1116 one only in qualifiers and length. Currently, the possible
1117 qualifiers are const, volatile, code-space, data-space, and
1118 address class. The length may differ only when one of the
1119 address class flags are set. The variants are linked in a
1120 circular ring and share MAIN_TYPE. */
1121
1122 struct type *chain;
1123
1124 /* * The alignment for this type. Zero means that the alignment was
1125 not specified in the debug info. Note that this is stored in a
1126 funny way: as the log base 2 (plus 1) of the alignment; so a
1127 value of 1 means the alignment is 1, and a value of 9 means the
1128 alignment is 256. */
1129
1130 unsigned align_log2 : TYPE_ALIGN_BITS;
1131
1132 /* * Flags specific to this instance of the type, indicating where
1133 on the ring we are.
1134
1135 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1136 binary or-ed with the target type, with a special case for
1137 address class and space class. For example if this typedef does
1138 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1139 instance flags are completely inherited from the target type. No
1140 qualifiers can be cleared by the typedef. See also
1141 check_typedef. */
1142 unsigned instance_flags : 9;
1143
1144 /* * Length of storage for a value of this type. The value is the
1145 expression in host bytes of what sizeof(type) would return. This
1146 size includes padding. For example, an i386 extended-precision
1147 floating point value really only occupies ten bytes, but most
1148 ABI's declare its size to be 12 bytes, to preserve alignment.
1149 A `struct type' representing such a floating-point type would
1150 have a `length' value of 12, even though the last two bytes are
1151 unused.
1152
1153 Since this field is expressed in host bytes, its value is appropriate
1154 to pass to memcpy and such (it is assumed that GDB itself always runs
1155 on an 8-bits addressable architecture). However, when using it for
1156 target address arithmetic (e.g. adding it to a target address), the
1157 type_length_units function should be used in order to get the length
1158 expressed in target addressable memory units. */
1159
1160 ULONGEST length;
1161
1162 /* * Core type, shared by a group of qualified types. */
1163
1164 struct main_type *main_type;
1165 };
1166
1167 struct fn_fieldlist
1168 {
1169
1170 /* * The overloaded name.
1171 This is generally allocated in the objfile's obstack.
1172 However stabsread.c sometimes uses malloc. */
1173
1174 const char *name;
1175
1176 /* * The number of methods with this name. */
1177
1178 int length;
1179
1180 /* * The list of methods. */
1181
1182 struct fn_field *fn_fields;
1183 };
1184
1185
1186
1187 struct fn_field
1188 {
1189 /* * If is_stub is clear, this is the mangled name which we can look
1190 up to find the address of the method (FIXME: it would be cleaner
1191 to have a pointer to the struct symbol here instead).
1192
1193 If is_stub is set, this is the portion of the mangled name which
1194 specifies the arguments. For example, "ii", if there are two int
1195 arguments, or "" if there are no arguments. See gdb_mangle_name
1196 for the conversion from this format to the one used if is_stub is
1197 clear. */
1198
1199 const char *physname;
1200
1201 /* * The function type for the method.
1202
1203 (This comment used to say "The return value of the method", but
1204 that's wrong. The function type is expected here, i.e. something
1205 with TYPE_CODE_METHOD, and *not* the return-value type). */
1206
1207 struct type *type;
1208
1209 /* * For virtual functions. First baseclass that defines this
1210 virtual function. */
1211
1212 struct type *fcontext;
1213
1214 /* Attributes. */
1215
1216 unsigned int is_const:1;
1217 unsigned int is_volatile:1;
1218 unsigned int is_private:1;
1219 unsigned int is_protected:1;
1220 unsigned int is_artificial:1;
1221
1222 /* * A stub method only has some fields valid (but they are enough
1223 to reconstruct the rest of the fields). */
1224
1225 unsigned int is_stub:1;
1226
1227 /* * True if this function is a constructor, false otherwise. */
1228
1229 unsigned int is_constructor : 1;
1230
1231 /* * True if this function is deleted, false otherwise. */
1232
1233 unsigned int is_deleted : 1;
1234
1235 /* * DW_AT_defaulted attribute for this function. The value is one
1236 of the DW_DEFAULTED constants. */
1237
1238 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1239
1240 /* * Unused. */
1241
1242 unsigned int dummy:6;
1243
1244 /* * Index into that baseclass's virtual function table, minus 2;
1245 else if static: VOFFSET_STATIC; else: 0. */
1246
1247 unsigned int voffset:16;
1248
1249 #define VOFFSET_STATIC 1
1250
1251 };
1252
1253 struct decl_field
1254 {
1255 /* * Unqualified name to be prefixed by owning class qualified
1256 name. */
1257
1258 const char *name;
1259
1260 /* * Type this typedef named NAME represents. */
1261
1262 struct type *type;
1263
1264 /* * True if this field was declared protected, false otherwise. */
1265 unsigned int is_protected : 1;
1266
1267 /* * True if this field was declared private, false otherwise. */
1268 unsigned int is_private : 1;
1269 };
1270
1271 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1272 TYPE_CODE_UNION nodes. */
1273
1274 struct cplus_struct_type
1275 {
1276 /* * Number of base classes this type derives from. The
1277 baseclasses are stored in the first N_BASECLASSES fields
1278 (i.e. the `fields' field of the struct type). The only fields
1279 of struct field that are used are: type, name, loc.bitpos. */
1280
1281 short n_baseclasses;
1282
1283 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1284 All access to this field must be through TYPE_VPTR_FIELDNO as one
1285 thing it does is check whether the field has been initialized.
1286 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1287 which for portability reasons doesn't initialize this field.
1288 TYPE_VPTR_FIELDNO returns -1 for this case.
1289
1290 If -1, we were unable to find the virtual function table pointer in
1291 initial symbol reading, and get_vptr_fieldno should be called to find
1292 it if possible. get_vptr_fieldno will update this field if possible.
1293 Otherwise the value is left at -1.
1294
1295 Unused if this type does not have virtual functions. */
1296
1297 short vptr_fieldno;
1298
1299 /* * Number of methods with unique names. All overloaded methods
1300 with the same name count only once. */
1301
1302 short nfn_fields;
1303
1304 /* * Number of template arguments. */
1305
1306 unsigned short n_template_arguments;
1307
1308 /* * One if this struct is a dynamic class, as defined by the
1309 Itanium C++ ABI: if it requires a virtual table pointer,
1310 because it or any of its base classes have one or more virtual
1311 member functions or virtual base classes. Minus one if not
1312 dynamic. Zero if not yet computed. */
1313
1314 int is_dynamic : 2;
1315
1316 /* * The calling convention for this type, fetched from the
1317 DW_AT_calling_convention attribute. The value is one of the
1318 DW_CC constants. */
1319
1320 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1321
1322 /* * The base class which defined the virtual function table pointer. */
1323
1324 struct type *vptr_basetype;
1325
1326 /* * For derived classes, the number of base classes is given by
1327 n_baseclasses and virtual_field_bits is a bit vector containing
1328 one bit per base class. If the base class is virtual, the
1329 corresponding bit will be set.
1330 I.E, given:
1331
1332 class A{};
1333 class B{};
1334 class C : public B, public virtual A {};
1335
1336 B is a baseclass of C; A is a virtual baseclass for C.
1337 This is a C++ 2.0 language feature. */
1338
1339 B_TYPE *virtual_field_bits;
1340
1341 /* * For classes with private fields, the number of fields is
1342 given by nfields and private_field_bits is a bit vector
1343 containing one bit per field.
1344
1345 If the field is private, the corresponding bit will be set. */
1346
1347 B_TYPE *private_field_bits;
1348
1349 /* * For classes with protected fields, the number of fields is
1350 given by nfields and protected_field_bits is a bit vector
1351 containing one bit per field.
1352
1353 If the field is private, the corresponding bit will be set. */
1354
1355 B_TYPE *protected_field_bits;
1356
1357 /* * For classes with fields to be ignored, either this is
1358 optimized out or this field has length 0. */
1359
1360 B_TYPE *ignore_field_bits;
1361
1362 /* * For classes, structures, and unions, a description of each
1363 field, which consists of an overloaded name, followed by the
1364 types of arguments that the method expects, and then the name
1365 after it has been renamed to make it distinct.
1366
1367 fn_fieldlists points to an array of nfn_fields of these. */
1368
1369 struct fn_fieldlist *fn_fieldlists;
1370
1371 /* * typedefs defined inside this class. typedef_field points to
1372 an array of typedef_field_count elements. */
1373
1374 struct decl_field *typedef_field;
1375
1376 unsigned typedef_field_count;
1377
1378 /* * The nested types defined by this type. nested_types points to
1379 an array of nested_types_count elements. */
1380
1381 struct decl_field *nested_types;
1382
1383 unsigned nested_types_count;
1384
1385 /* * The template arguments. This is an array with
1386 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1387 classes. */
1388
1389 struct symbol **template_arguments;
1390 };
1391
1392 /* * Struct used to store conversion rankings. */
1393
1394 struct rank
1395 {
1396 short rank;
1397
1398 /* * When two conversions are of the same type and therefore have
1399 the same rank, subrank is used to differentiate the two.
1400
1401 Eg: Two derived-class-pointer to base-class-pointer conversions
1402 would both have base pointer conversion rank, but the
1403 conversion with the shorter distance to the ancestor is
1404 preferable. 'subrank' would be used to reflect that. */
1405
1406 short subrank;
1407 };
1408
1409 /* * Used for ranking a function for overload resolution. */
1410
1411 typedef std::vector<rank> badness_vector;
1412
1413 /* * GNAT Ada-specific information for various Ada types. */
1414
1415 struct gnat_aux_type
1416 {
1417 /* * Parallel type used to encode information about dynamic types
1418 used in Ada (such as variant records, variable-size array,
1419 etc). */
1420 struct type* descriptive_type;
1421 };
1422
1423 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1424
1425 struct func_type
1426 {
1427 /* * The calling convention for targets supporting multiple ABIs.
1428 Right now this is only fetched from the Dwarf-2
1429 DW_AT_calling_convention attribute. The value is one of the
1430 DW_CC constants. */
1431
1432 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1433
1434 /* * Whether this function normally returns to its caller. It is
1435 set from the DW_AT_noreturn attribute if set on the
1436 DW_TAG_subprogram. */
1437
1438 unsigned int is_noreturn : 1;
1439
1440 /* * Only those DW_TAG_call_site's in this function that have
1441 DW_AT_call_tail_call set are linked in this list. Function
1442 without its tail call list complete
1443 (DW_AT_call_all_tail_calls or its superset
1444 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1445 DW_TAG_call_site's exist in such function. */
1446
1447 struct call_site *tail_call_list;
1448
1449 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1450 contains the method. */
1451
1452 struct type *self_type;
1453 };
1454
1455 /* struct call_site_parameter can be referenced in callees by several ways. */
1456
1457 enum call_site_parameter_kind
1458 {
1459 /* * Use field call_site_parameter.u.dwarf_reg. */
1460 CALL_SITE_PARAMETER_DWARF_REG,
1461
1462 /* * Use field call_site_parameter.u.fb_offset. */
1463 CALL_SITE_PARAMETER_FB_OFFSET,
1464
1465 /* * Use field call_site_parameter.u.param_offset. */
1466 CALL_SITE_PARAMETER_PARAM_OFFSET
1467 };
1468
1469 struct call_site_target
1470 {
1471 union field_location loc;
1472
1473 /* * Discriminant for union field_location. */
1474
1475 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1476 };
1477
1478 union call_site_parameter_u
1479 {
1480 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1481 as DWARF register number, for register passed
1482 parameters. */
1483
1484 int dwarf_reg;
1485
1486 /* * Offset from the callee's frame base, for stack passed
1487 parameters. This equals offset from the caller's stack
1488 pointer. */
1489
1490 CORE_ADDR fb_offset;
1491
1492 /* * Offset relative to the start of this PER_CU to
1493 DW_TAG_formal_parameter which is referenced by both
1494 caller and the callee. */
1495
1496 cu_offset param_cu_off;
1497 };
1498
1499 struct call_site_parameter
1500 {
1501 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1502
1503 union call_site_parameter_u u;
1504
1505 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1506
1507 const gdb_byte *value;
1508 size_t value_size;
1509
1510 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1511 It may be NULL if not provided by DWARF. */
1512
1513 const gdb_byte *data_value;
1514 size_t data_value_size;
1515 };
1516
1517 /* * A place where a function gets called from, represented by
1518 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1519
1520 struct call_site
1521 {
1522 /* * Address of the first instruction after this call. It must be
1523 the first field as we overload core_addr_hash and core_addr_eq
1524 for it. */
1525
1526 CORE_ADDR pc;
1527
1528 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1529
1530 struct call_site *tail_call_next;
1531
1532 /* * Describe DW_AT_call_target. Missing attribute uses
1533 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1534
1535 struct call_site_target target;
1536
1537 /* * Size of the PARAMETER array. */
1538
1539 unsigned parameter_count;
1540
1541 /* * CU of the function where the call is located. It gets used
1542 for DWARF blocks execution in the parameter array below. */
1543
1544 dwarf2_per_cu_data *per_cu;
1545
1546 /* objfile of the function where the call is located. */
1547
1548 dwarf2_per_objfile *per_objfile;
1549
1550 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1551
1552 struct call_site_parameter parameter[1];
1553 };
1554
1555 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1556 static structure. */
1557
1558 extern const struct cplus_struct_type cplus_struct_default;
1559
1560 extern void allocate_cplus_struct_type (struct type *);
1561
1562 #define INIT_CPLUS_SPECIFIC(type) \
1563 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1564 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1565 &cplus_struct_default)
1566
1567 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1568
1569 #define HAVE_CPLUS_STRUCT(type) \
1570 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1571 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1572
1573 #define INIT_NONE_SPECIFIC(type) \
1574 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1575 TYPE_MAIN_TYPE (type)->type_specific = {})
1576
1577 extern const struct gnat_aux_type gnat_aux_default;
1578
1579 extern void allocate_gnat_aux_type (struct type *);
1580
1581 #define INIT_GNAT_SPECIFIC(type) \
1582 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1583 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1584 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1585 /* * A macro that returns non-zero if the type-specific data should be
1586 read as "gnat-stuff". */
1587 #define HAVE_GNAT_AUX_INFO(type) \
1588 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1589
1590 /* * True if TYPE is known to be an Ada type of some kind. */
1591 #define ADA_TYPE_P(type) \
1592 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1593 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1594 && TYPE_FIXED_INSTANCE (type)))
1595
1596 #define INIT_FUNC_SPECIFIC(type) \
1597 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1598 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1599 TYPE_ZALLOC (type, \
1600 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1601
1602 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1603 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1604 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1605 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1606 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1607 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1608 #define TYPE_CHAIN(thistype) (thistype)->chain
1609 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1610 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1611 so you only have to call check_typedef once. Since allocate_value
1612 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1613 #define TYPE_LENGTH(thistype) (thistype)->length
1614
1615 /* * Return the alignment of the type in target addressable memory
1616 units, or 0 if no alignment was specified. */
1617 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1618
1619 /* * Return the alignment of the type in target addressable memory
1620 units, or 0 if no alignment was specified. */
1621 extern unsigned type_raw_align (struct type *);
1622
1623 /* * Return the alignment of the type in target addressable memory
1624 units. Return 0 if the alignment cannot be determined; but note
1625 that this makes an effort to compute the alignment even it it was
1626 not specified in the debug info. */
1627 extern unsigned type_align (struct type *);
1628
1629 /* * Set the alignment of the type. The alignment must be a power of
1630 2. Returns false if the given value does not fit in the available
1631 space in struct type. */
1632 extern bool set_type_align (struct type *, ULONGEST);
1633
1634 /* Property accessors for the type data location. */
1635 #define TYPE_DATA_LOCATION(thistype) \
1636 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1637 #define TYPE_DATA_LOCATION_BATON(thistype) \
1638 TYPE_DATA_LOCATION (thistype)->data.baton
1639 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1640 (TYPE_DATA_LOCATION (thistype)->const_val ())
1641 #define TYPE_DATA_LOCATION_KIND(thistype) \
1642 (TYPE_DATA_LOCATION (thistype)->kind ())
1643 #define TYPE_DYNAMIC_LENGTH(thistype) \
1644 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1645
1646 /* Property accessors for the type allocated/associated. */
1647 #define TYPE_ALLOCATED_PROP(thistype) \
1648 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1649 #define TYPE_ASSOCIATED_PROP(thistype) \
1650 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1651
1652 /* C++ */
1653
1654 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1655 /* Do not call this, use TYPE_SELF_TYPE. */
1656 extern struct type *internal_type_self_type (struct type *);
1657 extern void set_type_self_type (struct type *, struct type *);
1658
1659 extern int internal_type_vptr_fieldno (struct type *);
1660 extern void set_type_vptr_fieldno (struct type *, int);
1661 extern struct type *internal_type_vptr_basetype (struct type *);
1662 extern void set_type_vptr_basetype (struct type *, struct type *);
1663 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1664 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1665
1666 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1667 #define TYPE_SPECIFIC_FIELD(thistype) \
1668 TYPE_MAIN_TYPE(thistype)->type_specific_field
1669 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1670 where we're trying to print an Ada array using the C language.
1671 In that case, there is no "cplus_stuff", but the C language assumes
1672 that there is. What we do, in that case, is pretend that there is
1673 an implicit one which is the default cplus stuff. */
1674 #define TYPE_CPLUS_SPECIFIC(thistype) \
1675 (!HAVE_CPLUS_STRUCT(thistype) \
1676 ? (struct cplus_struct_type*)&cplus_struct_default \
1677 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1678 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1679 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1680 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1681 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1682 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1683 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1684 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1685 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1686 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1687 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1688 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1689 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1690 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1691 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1692 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1693 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1694
1695 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1696 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1697 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1698
1699 #define FIELD_NAME(thisfld) ((thisfld).name)
1700 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1701 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1702 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1703 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1704 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1705 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1706 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1707 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1708 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1709 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1710 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1711 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1712 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1713 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1714 #define SET_FIELD_PHYSNAME(thisfld, name) \
1715 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1716 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1717 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1718 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1719 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1720 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1721 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1722 FIELD_DWARF_BLOCK (thisfld) = (addr))
1723 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1724 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1725
1726 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1727 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1728 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1729 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1730 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1731 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1732 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1733 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1734 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1735 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1736
1737 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1738 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1739 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1740 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1741 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1742 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1743 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1744 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1745 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1746 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1747 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1748 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1749 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1750 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1751 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1752 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1753 #define TYPE_FIELD_PRIVATE(thistype, n) \
1754 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1755 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1756 #define TYPE_FIELD_PROTECTED(thistype, n) \
1757 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1758 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1759 #define TYPE_FIELD_IGNORE(thistype, n) \
1760 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1761 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1762 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1763 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1764 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1765
1766 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1767 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1768 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1769 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1770 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1771
1772 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1773 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1774 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1775 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1776 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1777 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1778
1779 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1780 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1781 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1782 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1783 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1784 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1785 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1786 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1787 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1788 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1789 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1790 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1791 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1792 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1793 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1794 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1795 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1796
1797 /* Accessors for typedefs defined by a class. */
1798 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1799 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1800 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1801 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1802 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1803 TYPE_TYPEDEF_FIELD (thistype, n).name
1804 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1805 TYPE_TYPEDEF_FIELD (thistype, n).type
1806 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1807 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1808 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1809 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1810 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1811 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1812
1813 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1814 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1815 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1816 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1817 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1818 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1819 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1820 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1821 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1822 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1823 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1824 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1825 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1826 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1827
1828 #define TYPE_IS_OPAQUE(thistype) \
1829 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1830 || ((thistype)->code () == TYPE_CODE_UNION)) \
1831 && ((thistype)->num_fields () == 0) \
1832 && (!HAVE_CPLUS_STRUCT (thistype) \
1833 || TYPE_NFN_FIELDS (thistype) == 0) \
1834 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1835
1836 /* * A helper macro that returns the name of a type or "unnamed type"
1837 if the type has no name. */
1838
1839 #define TYPE_SAFE_NAME(type) \
1840 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1841
1842 /* * A helper macro that returns the name of an error type. If the
1843 type has a name, it is used; otherwise, a default is used. */
1844
1845 #define TYPE_ERROR_NAME(type) \
1846 (type->name () ? type->name () : _("<error type>"))
1847
1848 /* Given TYPE, return its floatformat. */
1849 const struct floatformat *floatformat_from_type (const struct type *type);
1850
1851 struct builtin_type
1852 {
1853 /* Integral types. */
1854
1855 /* Implicit size/sign (based on the architecture's ABI). */
1856 struct type *builtin_void;
1857 struct type *builtin_char;
1858 struct type *builtin_short;
1859 struct type *builtin_int;
1860 struct type *builtin_long;
1861 struct type *builtin_signed_char;
1862 struct type *builtin_unsigned_char;
1863 struct type *builtin_unsigned_short;
1864 struct type *builtin_unsigned_int;
1865 struct type *builtin_unsigned_long;
1866 struct type *builtin_bfloat16;
1867 struct type *builtin_half;
1868 struct type *builtin_float;
1869 struct type *builtin_double;
1870 struct type *builtin_long_double;
1871 struct type *builtin_complex;
1872 struct type *builtin_double_complex;
1873 struct type *builtin_string;
1874 struct type *builtin_bool;
1875 struct type *builtin_long_long;
1876 struct type *builtin_unsigned_long_long;
1877 struct type *builtin_decfloat;
1878 struct type *builtin_decdouble;
1879 struct type *builtin_declong;
1880
1881 /* "True" character types.
1882 We use these for the '/c' print format, because c_char is just a
1883 one-byte integral type, which languages less laid back than C
1884 will print as ... well, a one-byte integral type. */
1885 struct type *builtin_true_char;
1886 struct type *builtin_true_unsigned_char;
1887
1888 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1889 is for when an architecture needs to describe a register that has
1890 no size. */
1891 struct type *builtin_int0;
1892 struct type *builtin_int8;
1893 struct type *builtin_uint8;
1894 struct type *builtin_int16;
1895 struct type *builtin_uint16;
1896 struct type *builtin_int24;
1897 struct type *builtin_uint24;
1898 struct type *builtin_int32;
1899 struct type *builtin_uint32;
1900 struct type *builtin_int64;
1901 struct type *builtin_uint64;
1902 struct type *builtin_int128;
1903 struct type *builtin_uint128;
1904
1905 /* Wide character types. */
1906 struct type *builtin_char16;
1907 struct type *builtin_char32;
1908 struct type *builtin_wchar;
1909
1910 /* Pointer types. */
1911
1912 /* * `pointer to data' type. Some target platforms use an implicitly
1913 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1914 struct type *builtin_data_ptr;
1915
1916 /* * `pointer to function (returning void)' type. Harvard
1917 architectures mean that ABI function and code pointers are not
1918 interconvertible. Similarly, since ANSI, C standards have
1919 explicitly said that pointers to functions and pointers to data
1920 are not interconvertible --- that is, you can't cast a function
1921 pointer to void * and back, and expect to get the same value.
1922 However, all function pointer types are interconvertible, so void
1923 (*) () can server as a generic function pointer. */
1924
1925 struct type *builtin_func_ptr;
1926
1927 /* * `function returning pointer to function (returning void)' type.
1928 The final void return type is not significant for it. */
1929
1930 struct type *builtin_func_func;
1931
1932 /* Special-purpose types. */
1933
1934 /* * This type is used to represent a GDB internal function. */
1935
1936 struct type *internal_fn;
1937
1938 /* * This type is used to represent an xmethod. */
1939 struct type *xmethod;
1940 };
1941
1942 /* * Return the type table for the specified architecture. */
1943
1944 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1945
1946 /* * Per-objfile types used by symbol readers. */
1947
1948 struct objfile_type
1949 {
1950 /* Basic types based on the objfile architecture. */
1951 struct type *builtin_void;
1952 struct type *builtin_char;
1953 struct type *builtin_short;
1954 struct type *builtin_int;
1955 struct type *builtin_long;
1956 struct type *builtin_long_long;
1957 struct type *builtin_signed_char;
1958 struct type *builtin_unsigned_char;
1959 struct type *builtin_unsigned_short;
1960 struct type *builtin_unsigned_int;
1961 struct type *builtin_unsigned_long;
1962 struct type *builtin_unsigned_long_long;
1963 struct type *builtin_half;
1964 struct type *builtin_float;
1965 struct type *builtin_double;
1966 struct type *builtin_long_double;
1967
1968 /* * This type is used to represent symbol addresses. */
1969 struct type *builtin_core_addr;
1970
1971 /* * This type represents a type that was unrecognized in symbol
1972 read-in. */
1973 struct type *builtin_error;
1974
1975 /* * Types used for symbols with no debug information. */
1976 struct type *nodebug_text_symbol;
1977 struct type *nodebug_text_gnu_ifunc_symbol;
1978 struct type *nodebug_got_plt_symbol;
1979 struct type *nodebug_data_symbol;
1980 struct type *nodebug_unknown_symbol;
1981 struct type *nodebug_tls_symbol;
1982 };
1983
1984 /* * Return the type table for the specified objfile. */
1985
1986 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1987
1988 /* Explicit floating-point formats. See "floatformat.h". */
1989 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1990 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1991 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1992 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1993 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1994 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1995 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1996 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1997 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1998 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1999 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2000 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2001 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2002
2003 /* Allocate space for storing data associated with a particular
2004 type. We ensure that the space is allocated using the same
2005 mechanism that was used to allocate the space for the type
2006 structure itself. I.e. if the type is on an objfile's
2007 objfile_obstack, then the space for data associated with that type
2008 will also be allocated on the objfile_obstack. If the type is
2009 associated with a gdbarch, then the space for data associated with that
2010 type will also be allocated on the gdbarch_obstack.
2011
2012 If a type is not associated with neither an objfile or a gdbarch then
2013 you should not use this macro to allocate space for data, instead you
2014 should call xmalloc directly, and ensure the memory is correctly freed
2015 when it is no longer needed. */
2016
2017 #define TYPE_ALLOC(t,size) \
2018 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2019 ? &TYPE_OBJFILE (t)->objfile_obstack \
2020 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2021 size))
2022
2023
2024 /* See comment on TYPE_ALLOC. */
2025
2026 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2027
2028 /* Use alloc_type to allocate a type owned by an objfile. Use
2029 alloc_type_arch to allocate a type owned by an architecture. Use
2030 alloc_type_copy to allocate a type with the same owner as a
2031 pre-existing template type, no matter whether objfile or
2032 gdbarch. */
2033 extern struct type *alloc_type (struct objfile *);
2034 extern struct type *alloc_type_arch (struct gdbarch *);
2035 extern struct type *alloc_type_copy (const struct type *);
2036
2037 /* * Return the type's architecture. For types owned by an
2038 architecture, that architecture is returned. For types owned by an
2039 objfile, that objfile's architecture is returned. */
2040
2041 extern struct gdbarch *get_type_arch (const struct type *);
2042
2043 /* * This returns the target type (or NULL) of TYPE, also skipping
2044 past typedefs. */
2045
2046 extern struct type *get_target_type (struct type *type);
2047
2048 /* Return the equivalent of TYPE_LENGTH, but in number of target
2049 addressable memory units of the associated gdbarch instead of bytes. */
2050
2051 extern unsigned int type_length_units (struct type *type);
2052
2053 /* * Helper function to construct objfile-owned types. */
2054
2055 extern struct type *init_type (struct objfile *, enum type_code, int,
2056 const char *);
2057 extern struct type *init_integer_type (struct objfile *, int, int,
2058 const char *);
2059 extern struct type *init_character_type (struct objfile *, int, int,
2060 const char *);
2061 extern struct type *init_boolean_type (struct objfile *, int, int,
2062 const char *);
2063 extern struct type *init_float_type (struct objfile *, int, const char *,
2064 const struct floatformat **,
2065 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2066 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2067 extern struct type *init_complex_type (const char *, struct type *);
2068 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2069 struct type *);
2070
2071 /* Helper functions to construct architecture-owned types. */
2072 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2073 const char *);
2074 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2075 const char *);
2076 extern struct type *arch_character_type (struct gdbarch *, int, int,
2077 const char *);
2078 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2079 const char *);
2080 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2081 const struct floatformat **);
2082 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2083 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2084 struct type *);
2085
2086 /* Helper functions to construct a struct or record type. An
2087 initially empty type is created using arch_composite_type().
2088 Fields are then added using append_composite_type_field*(). A union
2089 type has its size set to the largest field. A struct type has each
2090 field packed against the previous. */
2091
2092 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2093 const char *name, enum type_code code);
2094 extern void append_composite_type_field (struct type *t, const char *name,
2095 struct type *field);
2096 extern void append_composite_type_field_aligned (struct type *t,
2097 const char *name,
2098 struct type *field,
2099 int alignment);
2100 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2101 struct type *field);
2102
2103 /* Helper functions to construct a bit flags type. An initially empty
2104 type is created using arch_flag_type(). Flags are then added using
2105 append_flag_type_field() and append_flag_type_flag(). */
2106 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2107 const char *name, int bit);
2108 extern void append_flags_type_field (struct type *type,
2109 int start_bitpos, int nr_bits,
2110 struct type *field_type, const char *name);
2111 extern void append_flags_type_flag (struct type *type, int bitpos,
2112 const char *name);
2113
2114 extern void make_vector_type (struct type *array_type);
2115 extern struct type *init_vector_type (struct type *elt_type, int n);
2116
2117 extern struct type *lookup_reference_type (struct type *, enum type_code);
2118 extern struct type *lookup_lvalue_reference_type (struct type *);
2119 extern struct type *lookup_rvalue_reference_type (struct type *);
2120
2121
2122 extern struct type *make_reference_type (struct type *, struct type **,
2123 enum type_code);
2124
2125 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2126
2127 extern struct type *make_restrict_type (struct type *);
2128
2129 extern struct type *make_unqualified_type (struct type *);
2130
2131 extern struct type *make_atomic_type (struct type *);
2132
2133 extern void replace_type (struct type *, struct type *);
2134
2135 extern int address_space_name_to_int (struct gdbarch *, const char *);
2136
2137 extern const char *address_space_int_to_name (struct gdbarch *, int);
2138
2139 extern struct type *make_type_with_address_space (struct type *type,
2140 int space_identifier);
2141
2142 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2143
2144 extern struct type *lookup_methodptr_type (struct type *);
2145
2146 extern void smash_to_method_type (struct type *type, struct type *self_type,
2147 struct type *to_type, struct field *args,
2148 int nargs, int varargs);
2149
2150 extern void smash_to_memberptr_type (struct type *, struct type *,
2151 struct type *);
2152
2153 extern void smash_to_methodptr_type (struct type *, struct type *);
2154
2155 extern struct type *allocate_stub_method (struct type *);
2156
2157 extern const char *type_name_or_error (struct type *type);
2158
2159 struct struct_elt
2160 {
2161 /* The field of the element, or NULL if no element was found. */
2162 struct field *field;
2163
2164 /* The bit offset of the element in the parent structure. */
2165 LONGEST offset;
2166 };
2167
2168 /* Given a type TYPE, lookup the field and offset of the component named
2169 NAME.
2170
2171 TYPE can be either a struct or union, or a pointer or reference to
2172 a struct or union. If it is a pointer or reference, its target
2173 type is automatically used. Thus '.' and '->' are interchangable,
2174 as specified for the definitions of the expression element types
2175 STRUCTOP_STRUCT and STRUCTOP_PTR.
2176
2177 If NOERR is nonzero, the returned structure will have field set to
2178 NULL if there is no component named NAME.
2179
2180 If the component NAME is a field in an anonymous substructure of
2181 TYPE, the returned offset is a "global" offset relative to TYPE
2182 rather than an offset within the substructure. */
2183
2184 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2185
2186 /* Given a type TYPE, lookup the type of the component named NAME.
2187
2188 TYPE can be either a struct or union, or a pointer or reference to
2189 a struct or union. If it is a pointer or reference, its target
2190 type is automatically used. Thus '.' and '->' are interchangable,
2191 as specified for the definitions of the expression element types
2192 STRUCTOP_STRUCT and STRUCTOP_PTR.
2193
2194 If NOERR is nonzero, return NULL if there is no component named
2195 NAME. */
2196
2197 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2198
2199 extern struct type *make_pointer_type (struct type *, struct type **);
2200
2201 extern struct type *lookup_pointer_type (struct type *);
2202
2203 extern struct type *make_function_type (struct type *, struct type **);
2204
2205 extern struct type *lookup_function_type (struct type *);
2206
2207 extern struct type *lookup_function_type_with_arguments (struct type *,
2208 int,
2209 struct type **);
2210
2211 extern struct type *create_static_range_type (struct type *, struct type *,
2212 LONGEST, LONGEST);
2213
2214
2215 extern struct type *create_array_type_with_stride
2216 (struct type *, struct type *, struct type *,
2217 struct dynamic_prop *, unsigned int);
2218
2219 extern struct type *create_range_type (struct type *, struct type *,
2220 const struct dynamic_prop *,
2221 const struct dynamic_prop *,
2222 LONGEST);
2223
2224 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2225 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2226 stride. */
2227
2228 extern struct type * create_range_type_with_stride
2229 (struct type *result_type, struct type *index_type,
2230 const struct dynamic_prop *low_bound,
2231 const struct dynamic_prop *high_bound, LONGEST bias,
2232 const struct dynamic_prop *stride, bool byte_stride_p);
2233
2234 extern struct type *create_array_type (struct type *, struct type *,
2235 struct type *);
2236
2237 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2238
2239 extern struct type *create_string_type (struct type *, struct type *,
2240 struct type *);
2241 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2242
2243 extern struct type *create_set_type (struct type *, struct type *);
2244
2245 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2246 const char *);
2247
2248 extern struct type *lookup_signed_typename (const struct language_defn *,
2249 const char *);
2250
2251 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2252
2253 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2254
2255 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2256 ADDR specifies the location of the variable the type is bound to.
2257 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2258 static properties is returned. */
2259 extern struct type *resolve_dynamic_type
2260 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2261 CORE_ADDR addr);
2262
2263 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2264 extern int is_dynamic_type (struct type *type);
2265
2266 extern struct type *check_typedef (struct type *);
2267
2268 extern void check_stub_method_group (struct type *, int);
2269
2270 extern char *gdb_mangle_name (struct type *, int, int);
2271
2272 extern struct type *lookup_typename (const struct language_defn *,
2273 const char *, const struct block *, int);
2274
2275 extern struct type *lookup_template_type (const char *, struct type *,
2276 const struct block *);
2277
2278 extern int get_vptr_fieldno (struct type *, struct type **);
2279
2280 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2281
2282 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2283 LONGEST *high_bound);
2284
2285 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2286
2287 extern int class_types_same_p (const struct type *, const struct type *);
2288
2289 extern int is_ancestor (struct type *, struct type *);
2290
2291 extern int is_public_ancestor (struct type *, struct type *);
2292
2293 extern int is_unique_ancestor (struct type *, struct value *);
2294
2295 /* Overload resolution */
2296
2297 /* * Badness if parameter list length doesn't match arg list length. */
2298 extern const struct rank LENGTH_MISMATCH_BADNESS;
2299
2300 /* * Dummy badness value for nonexistent parameter positions. */
2301 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2302 /* * Badness if no conversion among types. */
2303 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2304
2305 /* * Badness of an exact match. */
2306 extern const struct rank EXACT_MATCH_BADNESS;
2307
2308 /* * Badness of integral promotion. */
2309 extern const struct rank INTEGER_PROMOTION_BADNESS;
2310 /* * Badness of floating promotion. */
2311 extern const struct rank FLOAT_PROMOTION_BADNESS;
2312 /* * Badness of converting a derived class pointer
2313 to a base class pointer. */
2314 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2315 /* * Badness of integral conversion. */
2316 extern const struct rank INTEGER_CONVERSION_BADNESS;
2317 /* * Badness of floating conversion. */
2318 extern const struct rank FLOAT_CONVERSION_BADNESS;
2319 /* * Badness of integer<->floating conversions. */
2320 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2321 /* * Badness of conversion of pointer to void pointer. */
2322 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2323 /* * Badness of conversion to boolean. */
2324 extern const struct rank BOOL_CONVERSION_BADNESS;
2325 /* * Badness of converting derived to base class. */
2326 extern const struct rank BASE_CONVERSION_BADNESS;
2327 /* * Badness of converting from non-reference to reference. Subrank
2328 is the type of reference conversion being done. */
2329 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2330 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2331 /* * Conversion to rvalue reference. */
2332 #define REFERENCE_CONVERSION_RVALUE 1
2333 /* * Conversion to const lvalue reference. */
2334 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2335
2336 /* * Badness of converting integer 0 to NULL pointer. */
2337 extern const struct rank NULL_POINTER_CONVERSION;
2338 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2339 being done. */
2340 extern const struct rank CV_CONVERSION_BADNESS;
2341 #define CV_CONVERSION_CONST 1
2342 #define CV_CONVERSION_VOLATILE 2
2343
2344 /* Non-standard conversions allowed by the debugger */
2345
2346 /* * Converting a pointer to an int is usually OK. */
2347 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2348
2349 /* * Badness of converting a (non-zero) integer constant
2350 to a pointer. */
2351 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2352
2353 extern struct rank sum_ranks (struct rank a, struct rank b);
2354 extern int compare_ranks (struct rank a, struct rank b);
2355
2356 extern int compare_badness (const badness_vector &,
2357 const badness_vector &);
2358
2359 extern badness_vector rank_function (gdb::array_view<type *> parms,
2360 gdb::array_view<value *> args);
2361
2362 extern struct rank rank_one_type (struct type *, struct type *,
2363 struct value *);
2364
2365 extern void recursive_dump_type (struct type *, int);
2366
2367 extern int field_is_static (struct field *);
2368
2369 /* printcmd.c */
2370
2371 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2372 const struct value_print_options *,
2373 int, struct ui_file *);
2374
2375 extern int can_dereference (struct type *);
2376
2377 extern int is_integral_type (struct type *);
2378
2379 extern int is_floating_type (struct type *);
2380
2381 extern int is_scalar_type (struct type *type);
2382
2383 extern int is_scalar_type_recursive (struct type *);
2384
2385 extern int class_or_union_p (const struct type *);
2386
2387 extern void maintenance_print_type (const char *, int);
2388
2389 extern htab_t create_copied_types_hash (struct objfile *objfile);
2390
2391 extern struct type *copy_type_recursive (struct objfile *objfile,
2392 struct type *type,
2393 htab_t copied_types);
2394
2395 extern struct type *copy_type (const struct type *type);
2396
2397 extern bool types_equal (struct type *, struct type *);
2398
2399 extern bool types_deeply_equal (struct type *, struct type *);
2400
2401 extern int type_not_allocated (const struct type *type);
2402
2403 extern int type_not_associated (const struct type *type);
2404
2405 /* * When the type includes explicit byte ordering, return that.
2406 Otherwise, the byte ordering from gdbarch_byte_order for
2407 get_type_arch is returned. */
2408
2409 extern enum bfd_endian type_byte_order (const struct type *type);
2410
2411 /* A flag to enable printing of debugging information of C++
2412 overloading. */
2413
2414 extern unsigned int overload_debug;
2415
2416 #endif /* GDBTYPES_H */