gdb: add type::is_prototyped / type::set_is_prototyped
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * This is a function type which appears to have a prototype. We
220 need this for function calls in order to tell us if it's necessary
221 to coerce the args, or to just do the standard conversions. This
222 is used with a short field. */
223
224 #define TYPE_PROTOTYPED(t) ((t)->is_prototyped ())
225
226 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
227 to functions. */
228
229 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
230
231 /* * Identify a vector type. Gcc is handling this by adding an extra
232 attribute to the array type. We slurp that in as a new flag of a
233 type. This is used only in dwarf2read.c. */
234 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
235
236 /* * The debugging formats (especially STABS) do not contain enough
237 information to represent all Ada types---especially those whose
238 size depends on dynamic quantities. Therefore, the GNAT Ada
239 compiler includes extra information in the form of additional type
240 definitions connected by naming conventions. This flag indicates
241 that the type is an ordinary (unencoded) GDB type that has been
242 created from the necessary run-time information, and does not need
243 further interpretation. Optionally marks ordinary, fixed-size GDB
244 type. */
245
246 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
247
248 /* * This debug target supports TYPE_STUB(t). In the unsupported case
249 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
250 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
251 guessed the TYPE_STUB(t) value (see dwarfread.c). */
252
253 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
254
255 /* * Not textual. By default, GDB treats all single byte integers as
256 characters (or elements of strings) unless this flag is set. */
257
258 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
259
260 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
261 address is returned by this function call. TYPE_TARGET_TYPE
262 determines the final returned function type to be presented to
263 user. */
264
265 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
266
267 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
268 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
269 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
270
271 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
272 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
273 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
274
275 /* * True if this type was declared using the "class" keyword. This is
276 only valid for C++ structure and enum types. If false, a structure
277 was declared as a "struct"; if true it was declared "class". For
278 enum types, this is true when "enum class" or "enum struct" was
279 used to declare the type.. */
280
281 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
282
283 /* * True if this type is a "flag" enum. A flag enum is one where all
284 the values are pairwise disjoint when "and"ed together. This
285 affects how enum values are printed. */
286
287 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
288
289 /* * Constant type. If this is set, the corresponding type has a
290 const modifier. */
291
292 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
293
294 /* * Volatile type. If this is set, the corresponding type has a
295 volatile modifier. */
296
297 #define TYPE_VOLATILE(t) \
298 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
299
300 /* * Restrict type. If this is set, the corresponding type has a
301 restrict modifier. */
302
303 #define TYPE_RESTRICT(t) \
304 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
305
306 /* * Atomic type. If this is set, the corresponding type has an
307 _Atomic modifier. */
308
309 #define TYPE_ATOMIC(t) \
310 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
311
312 /* * True if this type represents either an lvalue or lvalue reference type. */
313
314 #define TYPE_IS_REFERENCE(t) \
315 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
316
317 /* * True if this type is allocatable. */
318 #define TYPE_IS_ALLOCATABLE(t) \
319 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
320
321 /* * True if this type has variant parts. */
322 #define TYPE_HAS_VARIANT_PARTS(t) \
323 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
324
325 /* * True if this type has a dynamic length. */
326 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
327 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
328
329 /* * Instruction-space delimited type. This is for Harvard architectures
330 which have separate instruction and data address spaces (and perhaps
331 others).
332
333 GDB usually defines a flat address space that is a superset of the
334 architecture's two (or more) address spaces, but this is an extension
335 of the architecture's model.
336
337 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
338 resides in instruction memory, even if its address (in the extended
339 flat address space) does not reflect this.
340
341 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
342 corresponding type resides in the data memory space, even if
343 this is not indicated by its (flat address space) address.
344
345 If neither flag is set, the default space for functions / methods
346 is instruction space, and for data objects is data memory. */
347
348 #define TYPE_CODE_SPACE(t) \
349 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
350
351 #define TYPE_DATA_SPACE(t) \
352 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
353
354 /* * Address class flags. Some environments provide for pointers
355 whose size is different from that of a normal pointer or address
356 types where the bits are interpreted differently than normal
357 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
358 target specific ways to represent these different types of address
359 classes. */
360
361 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
362 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
363 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
364 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
365 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
366 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
367 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
368 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
369
370 /* * Information about a single discriminant. */
371
372 struct discriminant_range
373 {
374 /* * The range of values for the variant. This is an inclusive
375 range. */
376 ULONGEST low, high;
377
378 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
379 is true if this should be an unsigned comparison; false for
380 signed. */
381 bool contains (ULONGEST value, bool is_unsigned) const
382 {
383 if (is_unsigned)
384 return value >= low && value <= high;
385 LONGEST valuel = (LONGEST) value;
386 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
387 }
388 };
389
390 struct variant_part;
391
392 /* * A single variant. A variant has a list of discriminant values.
393 When the discriminator matches one of these, the variant is
394 enabled. Each variant controls zero or more fields; and may also
395 control other variant parts as well. This struct corresponds to
396 DW_TAG_variant in DWARF. */
397
398 struct variant : allocate_on_obstack
399 {
400 /* * The discriminant ranges for this variant. */
401 gdb::array_view<discriminant_range> discriminants;
402
403 /* * The fields controlled by this variant. This is inclusive on
404 the low end and exclusive on the high end. A variant may not
405 control any fields, in which case the two values will be equal.
406 These are indexes into the type's array of fields. */
407 int first_field;
408 int last_field;
409
410 /* * Variant parts controlled by this variant. */
411 gdb::array_view<variant_part> parts;
412
413 /* * Return true if this is the default variant. The default
414 variant can be recognized because it has no associated
415 discriminants. */
416 bool is_default () const
417 {
418 return discriminants.empty ();
419 }
420
421 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
422 if this should be an unsigned comparison; false for signed. */
423 bool matches (ULONGEST value, bool is_unsigned) const;
424 };
425
426 /* * A variant part. Each variant part has an optional discriminant
427 and holds an array of variants. This struct corresponds to
428 DW_TAG_variant_part in DWARF. */
429
430 struct variant_part : allocate_on_obstack
431 {
432 /* * The index of the discriminant field in the outer type. This is
433 an index into the type's array of fields. If this is -1, there
434 is no discriminant, and only the default variant can be
435 considered to be selected. */
436 int discriminant_index;
437
438 /* * True if this discriminant is unsigned; false if signed. This
439 comes from the type of the discriminant. */
440 bool is_unsigned;
441
442 /* * The variants that are controlled by this variant part. Note
443 that these will always be sorted by field number. */
444 gdb::array_view<variant> variants;
445 };
446
447
448 enum dynamic_prop_kind
449 {
450 PROP_UNDEFINED, /* Not defined. */
451 PROP_CONST, /* Constant. */
452 PROP_ADDR_OFFSET, /* Address offset. */
453 PROP_LOCEXPR, /* Location expression. */
454 PROP_LOCLIST, /* Location list. */
455 PROP_VARIANT_PARTS, /* Variant parts. */
456 PROP_TYPE, /* Type. */
457 };
458
459 union dynamic_prop_data
460 {
461 /* Storage for constant property. */
462
463 LONGEST const_val;
464
465 /* Storage for dynamic property. */
466
467 void *baton;
468
469 /* Storage of variant parts for a type. A type with variant parts
470 has all its fields "linearized" -- stored in a single field
471 array, just as if they had all been declared that way. The
472 variant parts are attached via a dynamic property, and then are
473 used to control which fields end up in the final type during
474 dynamic type resolution. */
475
476 const gdb::array_view<variant_part> *variant_parts;
477
478 /* Once a variant type is resolved, we may want to be able to go
479 from the resolved type to the original type. In this case we
480 rewrite the property's kind and set this field. */
481
482 struct type *original_type;
483 };
484
485 /* * Used to store a dynamic property. */
486
487 struct dynamic_prop
488 {
489 dynamic_prop_kind kind () const
490 {
491 return m_kind;
492 }
493
494 void set_undefined ()
495 {
496 m_kind = PROP_UNDEFINED;
497 }
498
499 LONGEST const_val () const
500 {
501 gdb_assert (m_kind == PROP_CONST);
502
503 return m_data.const_val;
504 }
505
506 void set_const_val (LONGEST const_val)
507 {
508 m_kind = PROP_CONST;
509 m_data.const_val = const_val;
510 }
511
512 void *baton () const
513 {
514 gdb_assert (m_kind == PROP_LOCEXPR
515 || m_kind == PROP_LOCLIST
516 || m_kind == PROP_ADDR_OFFSET);
517
518 return m_data.baton;
519 }
520
521 void set_locexpr (void *baton)
522 {
523 m_kind = PROP_LOCEXPR;
524 m_data.baton = baton;
525 }
526
527 void set_loclist (void *baton)
528 {
529 m_kind = PROP_LOCLIST;
530 m_data.baton = baton;
531 }
532
533 void set_addr_offset (void *baton)
534 {
535 m_kind = PROP_ADDR_OFFSET;
536 m_data.baton = baton;
537 }
538
539 const gdb::array_view<variant_part> *variant_parts () const
540 {
541 gdb_assert (m_kind == PROP_VARIANT_PARTS);
542
543 return m_data.variant_parts;
544 }
545
546 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
547 {
548 m_kind = PROP_VARIANT_PARTS;
549 m_data.variant_parts = variant_parts;
550 }
551
552 struct type *original_type () const
553 {
554 gdb_assert (m_kind == PROP_TYPE);
555
556 return m_data.original_type;
557 }
558
559 void set_original_type (struct type *original_type)
560 {
561 m_kind = PROP_TYPE;
562 m_data.original_type = original_type;
563 }
564
565 /* Determine which field of the union dynamic_prop.data is used. */
566 enum dynamic_prop_kind m_kind;
567
568 /* Storage for dynamic or static value. */
569 union dynamic_prop_data m_data;
570 };
571
572 /* Compare two dynamic_prop objects for equality. dynamic_prop
573 instances are equal iff they have the same type and storage. */
574 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
575
576 /* Compare two dynamic_prop objects for inequality. */
577 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
578 {
579 return !(l == r);
580 }
581
582 /* * Define a type's dynamic property node kind. */
583 enum dynamic_prop_node_kind
584 {
585 /* A property providing a type's data location.
586 Evaluating this field yields to the location of an object's data. */
587 DYN_PROP_DATA_LOCATION,
588
589 /* A property representing DW_AT_allocated. The presence of this attribute
590 indicates that the object of the type can be allocated/deallocated. */
591 DYN_PROP_ALLOCATED,
592
593 /* A property representing DW_AT_associated. The presence of this attribute
594 indicated that the object of the type can be associated. */
595 DYN_PROP_ASSOCIATED,
596
597 /* A property providing an array's byte stride. */
598 DYN_PROP_BYTE_STRIDE,
599
600 /* A property holding variant parts. */
601 DYN_PROP_VARIANT_PARTS,
602
603 /* A property holding the size of the type. */
604 DYN_PROP_BYTE_SIZE,
605 };
606
607 /* * List for dynamic type attributes. */
608 struct dynamic_prop_list
609 {
610 /* The kind of dynamic prop in this node. */
611 enum dynamic_prop_node_kind prop_kind;
612
613 /* The dynamic property itself. */
614 struct dynamic_prop prop;
615
616 /* A pointer to the next dynamic property. */
617 struct dynamic_prop_list *next;
618 };
619
620 /* * Determine which field of the union main_type.fields[x].loc is
621 used. */
622
623 enum field_loc_kind
624 {
625 FIELD_LOC_KIND_BITPOS, /**< bitpos */
626 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
627 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
628 FIELD_LOC_KIND_PHYSNAME, /**< physname */
629 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
630 };
631
632 /* * A discriminant to determine which field in the
633 main_type.type_specific union is being used, if any.
634
635 For types such as TYPE_CODE_FLT, the use of this
636 discriminant is really redundant, as we know from the type code
637 which field is going to be used. As such, it would be possible to
638 reduce the size of this enum in order to save a bit or two for
639 other fields of struct main_type. But, since we still have extra
640 room , and for the sake of clarity and consistency, we treat all fields
641 of the union the same way. */
642
643 enum type_specific_kind
644 {
645 TYPE_SPECIFIC_NONE,
646 TYPE_SPECIFIC_CPLUS_STUFF,
647 TYPE_SPECIFIC_GNAT_STUFF,
648 TYPE_SPECIFIC_FLOATFORMAT,
649 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
650 TYPE_SPECIFIC_FUNC,
651 TYPE_SPECIFIC_SELF_TYPE
652 };
653
654 union type_owner
655 {
656 struct objfile *objfile;
657 struct gdbarch *gdbarch;
658 };
659
660 union field_location
661 {
662 /* * Position of this field, counting in bits from start of
663 containing structure. For big-endian targets, it is the bit
664 offset to the MSB. For little-endian targets, it is the bit
665 offset to the LSB. */
666
667 LONGEST bitpos;
668
669 /* * Enum value. */
670 LONGEST enumval;
671
672 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
673 physaddr is the location (in the target) of the static
674 field. Otherwise, physname is the mangled label of the
675 static field. */
676
677 CORE_ADDR physaddr;
678 const char *physname;
679
680 /* * The field location can be computed by evaluating the
681 following DWARF block. Its DATA is allocated on
682 objfile_obstack - no CU load is needed to access it. */
683
684 struct dwarf2_locexpr_baton *dwarf_block;
685 };
686
687 struct field
688 {
689 struct type *type () const
690 {
691 return this->m_type;
692 }
693
694 void set_type (struct type *type)
695 {
696 this->m_type = type;
697 }
698
699 union field_location loc;
700
701 /* * For a function or member type, this is 1 if the argument is
702 marked artificial. Artificial arguments should not be shown
703 to the user. For TYPE_CODE_RANGE it is set if the specific
704 bound is not defined. */
705
706 unsigned int artificial : 1;
707
708 /* * Discriminant for union field_location. */
709
710 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
711
712 /* * Size of this field, in bits, or zero if not packed.
713 If non-zero in an array type, indicates the element size in
714 bits (used only in Ada at the moment).
715 For an unpacked field, the field's type's length
716 says how many bytes the field occupies. */
717
718 unsigned int bitsize : 28;
719
720 /* * In a struct or union type, type of this field.
721 - In a function or member type, type of this argument.
722 - In an array type, the domain-type of the array. */
723
724 struct type *m_type;
725
726 /* * Name of field, value or argument.
727 NULL for range bounds, array domains, and member function
728 arguments. */
729
730 const char *name;
731 };
732
733 struct range_bounds
734 {
735 ULONGEST bit_stride () const
736 {
737 if (this->flag_is_byte_stride)
738 return this->stride.const_val () * 8;
739 else
740 return this->stride.const_val ();
741 }
742
743 /* * Low bound of range. */
744
745 struct dynamic_prop low;
746
747 /* * High bound of range. */
748
749 struct dynamic_prop high;
750
751 /* The stride value for this range. This can be stored in bits or bytes
752 based on the value of BYTE_STRIDE_P. It is optional to have a stride
753 value, if this range has no stride value defined then this will be set
754 to the constant zero. */
755
756 struct dynamic_prop stride;
757
758 /* * The bias. Sometimes a range value is biased before storage.
759 The bias is added to the stored bits to form the true value. */
760
761 LONGEST bias;
762
763 /* True if HIGH range bound contains the number of elements in the
764 subrange. This affects how the final high bound is computed. */
765
766 unsigned int flag_upper_bound_is_count : 1;
767
768 /* True if LOW or/and HIGH are resolved into a static bound from
769 a dynamic one. */
770
771 unsigned int flag_bound_evaluated : 1;
772
773 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
774
775 unsigned int flag_is_byte_stride : 1;
776 };
777
778 /* Compare two range_bounds objects for equality. Simply does
779 memberwise comparison. */
780 extern bool operator== (const range_bounds &l, const range_bounds &r);
781
782 /* Compare two range_bounds objects for inequality. */
783 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
784 {
785 return !(l == r);
786 }
787
788 union type_specific
789 {
790 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
791 point to cplus_struct_default, a default static instance of a
792 struct cplus_struct_type. */
793
794 struct cplus_struct_type *cplus_stuff;
795
796 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
797 provides additional information. */
798
799 struct gnat_aux_type *gnat_stuff;
800
801 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
802 floatformat object that describes the floating-point value
803 that resides within the type. */
804
805 const struct floatformat *floatformat;
806
807 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
808
809 struct func_type *func_stuff;
810
811 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
812 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
813 is a member of. */
814
815 struct type *self_type;
816 };
817
818 /* * Main structure representing a type in GDB.
819
820 This structure is space-critical. Its layout has been tweaked to
821 reduce the space used. */
822
823 struct main_type
824 {
825 /* * Code for kind of type. */
826
827 ENUM_BITFIELD(type_code) code : 8;
828
829 /* * Flags about this type. These fields appear at this location
830 because they packs nicely here. See the TYPE_* macros for
831 documentation about these fields. */
832
833 unsigned int m_flag_unsigned : 1;
834 unsigned int m_flag_nosign : 1;
835 unsigned int m_flag_stub : 1;
836 unsigned int m_flag_target_stub : 1;
837 unsigned int m_flag_prototyped : 1;
838 unsigned int flag_varargs : 1;
839 unsigned int flag_vector : 1;
840 unsigned int flag_stub_supported : 1;
841 unsigned int flag_gnu_ifunc : 1;
842 unsigned int flag_fixed_instance : 1;
843 unsigned int flag_objfile_owned : 1;
844 unsigned int flag_endianity_not_default : 1;
845
846 /* * True if this type was declared with "class" rather than
847 "struct". */
848
849 unsigned int flag_declared_class : 1;
850
851 /* * True if this is an enum type with disjoint values. This
852 affects how the enum is printed. */
853
854 unsigned int flag_flag_enum : 1;
855
856 /* * A discriminant telling us which field of the type_specific
857 union is being used for this type, if any. */
858
859 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
860
861 /* * Number of fields described for this type. This field appears
862 at this location because it packs nicely here. */
863
864 short nfields;
865
866 /* * Name of this type, or NULL if none.
867
868 This is used for printing only. For looking up a name, look for
869 a symbol in the VAR_DOMAIN. This is generally allocated in the
870 objfile's obstack. However coffread.c uses malloc. */
871
872 const char *name;
873
874 /* * Every type is now associated with a particular objfile, and the
875 type is allocated on the objfile_obstack for that objfile. One
876 problem however, is that there are times when gdb allocates new
877 types while it is not in the process of reading symbols from a
878 particular objfile. Fortunately, these happen when the type
879 being created is a derived type of an existing type, such as in
880 lookup_pointer_type(). So we can just allocate the new type
881 using the same objfile as the existing type, but to do this we
882 need a backpointer to the objfile from the existing type. Yes
883 this is somewhat ugly, but without major overhaul of the internal
884 type system, it can't be avoided for now. */
885
886 union type_owner owner;
887
888 /* * For a pointer type, describes the type of object pointed to.
889 - For an array type, describes the type of the elements.
890 - For a function or method type, describes the type of the return value.
891 - For a range type, describes the type of the full range.
892 - For a complex type, describes the type of each coordinate.
893 - For a special record or union type encoding a dynamic-sized type
894 in GNAT, a memoized pointer to a corresponding static version of
895 the type.
896 - Unused otherwise. */
897
898 struct type *target_type;
899
900 /* * For structure and union types, a description of each field.
901 For set and pascal array types, there is one "field",
902 whose type is the domain type of the set or array.
903 For range types, there are two "fields",
904 the minimum and maximum values (both inclusive).
905 For enum types, each possible value is described by one "field".
906 For a function or method type, a "field" for each parameter.
907 For C++ classes, there is one field for each base class (if it is
908 a derived class) plus one field for each class data member. Member
909 functions are recorded elsewhere.
910
911 Using a pointer to a separate array of fields
912 allows all types to have the same size, which is useful
913 because we can allocate the space for a type before
914 we know what to put in it. */
915
916 union
917 {
918 struct field *fields;
919
920 /* * Union member used for range types. */
921
922 struct range_bounds *bounds;
923
924 /* If this is a scalar type, then this is its corresponding
925 complex type. */
926 struct type *complex_type;
927
928 } flds_bnds;
929
930 /* * Slot to point to additional language-specific fields of this
931 type. */
932
933 union type_specific type_specific;
934
935 /* * Contains all dynamic type properties. */
936 struct dynamic_prop_list *dyn_prop_list;
937 };
938
939 /* * Number of bits allocated for alignment. */
940
941 #define TYPE_ALIGN_BITS 8
942
943 /* * A ``struct type'' describes a particular instance of a type, with
944 some particular qualification. */
945
946 struct type
947 {
948 /* Get the type code of this type.
949
950 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
951 type, you need to do `check_typedef (type)->code ()`. */
952 type_code code () const
953 {
954 return this->main_type->code;
955 }
956
957 /* Set the type code of this type. */
958 void set_code (type_code code)
959 {
960 this->main_type->code = code;
961 }
962
963 /* Get the name of this type. */
964 const char *name () const
965 {
966 return this->main_type->name;
967 }
968
969 /* Set the name of this type. */
970 void set_name (const char *name)
971 {
972 this->main_type->name = name;
973 }
974
975 /* Get the number of fields of this type. */
976 int num_fields () const
977 {
978 return this->main_type->nfields;
979 }
980
981 /* Set the number of fields of this type. */
982 void set_num_fields (int num_fields)
983 {
984 this->main_type->nfields = num_fields;
985 }
986
987 /* Get the fields array of this type. */
988 struct field *fields () const
989 {
990 return this->main_type->flds_bnds.fields;
991 }
992
993 /* Get the field at index IDX. */
994 struct field &field (int idx) const
995 {
996 return this->fields ()[idx];
997 }
998
999 /* Set the fields array of this type. */
1000 void set_fields (struct field *fields)
1001 {
1002 this->main_type->flds_bnds.fields = fields;
1003 }
1004
1005 type *index_type () const
1006 {
1007 return this->field (0).type ();
1008 }
1009
1010 void set_index_type (type *index_type)
1011 {
1012 this->field (0).set_type (index_type);
1013 }
1014
1015 /* Get the bounds bounds of this type. The type must be a range type. */
1016 range_bounds *bounds () const
1017 {
1018 switch (this->code ())
1019 {
1020 case TYPE_CODE_RANGE:
1021 return this->main_type->flds_bnds.bounds;
1022
1023 case TYPE_CODE_ARRAY:
1024 case TYPE_CODE_STRING:
1025 return this->index_type ()->bounds ();
1026
1027 default:
1028 gdb_assert_not_reached
1029 ("type::bounds called on type with invalid code");
1030 }
1031 }
1032
1033 /* Set the bounds of this type. The type must be a range type. */
1034 void set_bounds (range_bounds *bounds)
1035 {
1036 gdb_assert (this->code () == TYPE_CODE_RANGE);
1037
1038 this->main_type->flds_bnds.bounds = bounds;
1039 }
1040
1041 ULONGEST bit_stride () const
1042 {
1043 return this->bounds ()->bit_stride ();
1044 }
1045
1046 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1047 the type is signed (unless TYPE_NOSIGN is set). */
1048
1049 bool is_unsigned () const
1050 {
1051 return this->main_type->m_flag_unsigned;
1052 }
1053
1054 void set_is_unsigned (bool is_unsigned)
1055 {
1056 this->main_type->m_flag_unsigned = is_unsigned;
1057 }
1058
1059 /* No sign for this type. In C++, "char", "signed char", and
1060 "unsigned char" are distinct types; so we need an extra flag to
1061 indicate the absence of a sign! */
1062
1063 bool has_no_signedness () const
1064 {
1065 return this->main_type->m_flag_nosign;
1066 }
1067
1068 void set_has_no_signedness (bool has_no_signedness)
1069 {
1070 this->main_type->m_flag_nosign = has_no_signedness;
1071 }
1072
1073 /* This appears in a type's flags word if it is a stub type (e.g.,
1074 if someone referenced a type that wasn't defined in a source file
1075 via (struct sir_not_appearing_in_this_film *)). */
1076
1077 bool is_stub () const
1078 {
1079 return this->main_type->m_flag_stub;
1080 }
1081
1082 void set_is_stub (bool is_stub)
1083 {
1084 this->main_type->m_flag_stub = is_stub;
1085 }
1086
1087 /* The target type of this type is a stub type, and this type needs
1088 to be updated if it gets un-stubbed in check_typedef. Used for
1089 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1090 based on the TYPE_LENGTH of the target type. Also, set for
1091 TYPE_CODE_TYPEDEF. */
1092
1093 bool target_is_stub () const
1094 {
1095 return this->main_type->m_flag_target_stub;
1096 }
1097
1098 void set_target_is_stub (bool target_is_stub)
1099 {
1100 this->main_type->m_flag_target_stub = target_is_stub;
1101 }
1102
1103 bool is_prototyped () const
1104 {
1105 return this->main_type->m_flag_prototyped;
1106 }
1107
1108 void set_is_prototyped (bool is_prototyped)
1109 {
1110 this->main_type->m_flag_prototyped = is_prototyped;
1111 }
1112
1113 /* * Return the dynamic property of the requested KIND from this type's
1114 list of dynamic properties. */
1115 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1116
1117 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1118 property to this type.
1119
1120 This function assumes that this type is objfile-owned. */
1121 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1122
1123 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1124 void remove_dyn_prop (dynamic_prop_node_kind kind);
1125
1126 /* * Type that is a pointer to this type.
1127 NULL if no such pointer-to type is known yet.
1128 The debugger may add the address of such a type
1129 if it has to construct one later. */
1130
1131 struct type *pointer_type;
1132
1133 /* * C++: also need a reference type. */
1134
1135 struct type *reference_type;
1136
1137 /* * A C++ rvalue reference type added in C++11. */
1138
1139 struct type *rvalue_reference_type;
1140
1141 /* * Variant chain. This points to a type that differs from this
1142 one only in qualifiers and length. Currently, the possible
1143 qualifiers are const, volatile, code-space, data-space, and
1144 address class. The length may differ only when one of the
1145 address class flags are set. The variants are linked in a
1146 circular ring and share MAIN_TYPE. */
1147
1148 struct type *chain;
1149
1150 /* * The alignment for this type. Zero means that the alignment was
1151 not specified in the debug info. Note that this is stored in a
1152 funny way: as the log base 2 (plus 1) of the alignment; so a
1153 value of 1 means the alignment is 1, and a value of 9 means the
1154 alignment is 256. */
1155
1156 unsigned align_log2 : TYPE_ALIGN_BITS;
1157
1158 /* * Flags specific to this instance of the type, indicating where
1159 on the ring we are.
1160
1161 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1162 binary or-ed with the target type, with a special case for
1163 address class and space class. For example if this typedef does
1164 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1165 instance flags are completely inherited from the target type. No
1166 qualifiers can be cleared by the typedef. See also
1167 check_typedef. */
1168 unsigned instance_flags : 9;
1169
1170 /* * Length of storage for a value of this type. The value is the
1171 expression in host bytes of what sizeof(type) would return. This
1172 size includes padding. For example, an i386 extended-precision
1173 floating point value really only occupies ten bytes, but most
1174 ABI's declare its size to be 12 bytes, to preserve alignment.
1175 A `struct type' representing such a floating-point type would
1176 have a `length' value of 12, even though the last two bytes are
1177 unused.
1178
1179 Since this field is expressed in host bytes, its value is appropriate
1180 to pass to memcpy and such (it is assumed that GDB itself always runs
1181 on an 8-bits addressable architecture). However, when using it for
1182 target address arithmetic (e.g. adding it to a target address), the
1183 type_length_units function should be used in order to get the length
1184 expressed in target addressable memory units. */
1185
1186 ULONGEST length;
1187
1188 /* * Core type, shared by a group of qualified types. */
1189
1190 struct main_type *main_type;
1191 };
1192
1193 struct fn_fieldlist
1194 {
1195
1196 /* * The overloaded name.
1197 This is generally allocated in the objfile's obstack.
1198 However stabsread.c sometimes uses malloc. */
1199
1200 const char *name;
1201
1202 /* * The number of methods with this name. */
1203
1204 int length;
1205
1206 /* * The list of methods. */
1207
1208 struct fn_field *fn_fields;
1209 };
1210
1211
1212
1213 struct fn_field
1214 {
1215 /* * If is_stub is clear, this is the mangled name which we can look
1216 up to find the address of the method (FIXME: it would be cleaner
1217 to have a pointer to the struct symbol here instead).
1218
1219 If is_stub is set, this is the portion of the mangled name which
1220 specifies the arguments. For example, "ii", if there are two int
1221 arguments, or "" if there are no arguments. See gdb_mangle_name
1222 for the conversion from this format to the one used if is_stub is
1223 clear. */
1224
1225 const char *physname;
1226
1227 /* * The function type for the method.
1228
1229 (This comment used to say "The return value of the method", but
1230 that's wrong. The function type is expected here, i.e. something
1231 with TYPE_CODE_METHOD, and *not* the return-value type). */
1232
1233 struct type *type;
1234
1235 /* * For virtual functions. First baseclass that defines this
1236 virtual function. */
1237
1238 struct type *fcontext;
1239
1240 /* Attributes. */
1241
1242 unsigned int is_const:1;
1243 unsigned int is_volatile:1;
1244 unsigned int is_private:1;
1245 unsigned int is_protected:1;
1246 unsigned int is_artificial:1;
1247
1248 /* * A stub method only has some fields valid (but they are enough
1249 to reconstruct the rest of the fields). */
1250
1251 unsigned int is_stub:1;
1252
1253 /* * True if this function is a constructor, false otherwise. */
1254
1255 unsigned int is_constructor : 1;
1256
1257 /* * True if this function is deleted, false otherwise. */
1258
1259 unsigned int is_deleted : 1;
1260
1261 /* * DW_AT_defaulted attribute for this function. The value is one
1262 of the DW_DEFAULTED constants. */
1263
1264 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1265
1266 /* * Unused. */
1267
1268 unsigned int dummy:6;
1269
1270 /* * Index into that baseclass's virtual function table, minus 2;
1271 else if static: VOFFSET_STATIC; else: 0. */
1272
1273 unsigned int voffset:16;
1274
1275 #define VOFFSET_STATIC 1
1276
1277 };
1278
1279 struct decl_field
1280 {
1281 /* * Unqualified name to be prefixed by owning class qualified
1282 name. */
1283
1284 const char *name;
1285
1286 /* * Type this typedef named NAME represents. */
1287
1288 struct type *type;
1289
1290 /* * True if this field was declared protected, false otherwise. */
1291 unsigned int is_protected : 1;
1292
1293 /* * True if this field was declared private, false otherwise. */
1294 unsigned int is_private : 1;
1295 };
1296
1297 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1298 TYPE_CODE_UNION nodes. */
1299
1300 struct cplus_struct_type
1301 {
1302 /* * Number of base classes this type derives from. The
1303 baseclasses are stored in the first N_BASECLASSES fields
1304 (i.e. the `fields' field of the struct type). The only fields
1305 of struct field that are used are: type, name, loc.bitpos. */
1306
1307 short n_baseclasses;
1308
1309 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1310 All access to this field must be through TYPE_VPTR_FIELDNO as one
1311 thing it does is check whether the field has been initialized.
1312 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1313 which for portability reasons doesn't initialize this field.
1314 TYPE_VPTR_FIELDNO returns -1 for this case.
1315
1316 If -1, we were unable to find the virtual function table pointer in
1317 initial symbol reading, and get_vptr_fieldno should be called to find
1318 it if possible. get_vptr_fieldno will update this field if possible.
1319 Otherwise the value is left at -1.
1320
1321 Unused if this type does not have virtual functions. */
1322
1323 short vptr_fieldno;
1324
1325 /* * Number of methods with unique names. All overloaded methods
1326 with the same name count only once. */
1327
1328 short nfn_fields;
1329
1330 /* * Number of template arguments. */
1331
1332 unsigned short n_template_arguments;
1333
1334 /* * One if this struct is a dynamic class, as defined by the
1335 Itanium C++ ABI: if it requires a virtual table pointer,
1336 because it or any of its base classes have one or more virtual
1337 member functions or virtual base classes. Minus one if not
1338 dynamic. Zero if not yet computed. */
1339
1340 int is_dynamic : 2;
1341
1342 /* * The calling convention for this type, fetched from the
1343 DW_AT_calling_convention attribute. The value is one of the
1344 DW_CC constants. */
1345
1346 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1347
1348 /* * The base class which defined the virtual function table pointer. */
1349
1350 struct type *vptr_basetype;
1351
1352 /* * For derived classes, the number of base classes is given by
1353 n_baseclasses and virtual_field_bits is a bit vector containing
1354 one bit per base class. If the base class is virtual, the
1355 corresponding bit will be set.
1356 I.E, given:
1357
1358 class A{};
1359 class B{};
1360 class C : public B, public virtual A {};
1361
1362 B is a baseclass of C; A is a virtual baseclass for C.
1363 This is a C++ 2.0 language feature. */
1364
1365 B_TYPE *virtual_field_bits;
1366
1367 /* * For classes with private fields, the number of fields is
1368 given by nfields and private_field_bits is a bit vector
1369 containing one bit per field.
1370
1371 If the field is private, the corresponding bit will be set. */
1372
1373 B_TYPE *private_field_bits;
1374
1375 /* * For classes with protected fields, the number of fields is
1376 given by nfields and protected_field_bits is a bit vector
1377 containing one bit per field.
1378
1379 If the field is private, the corresponding bit will be set. */
1380
1381 B_TYPE *protected_field_bits;
1382
1383 /* * For classes with fields to be ignored, either this is
1384 optimized out or this field has length 0. */
1385
1386 B_TYPE *ignore_field_bits;
1387
1388 /* * For classes, structures, and unions, a description of each
1389 field, which consists of an overloaded name, followed by the
1390 types of arguments that the method expects, and then the name
1391 after it has been renamed to make it distinct.
1392
1393 fn_fieldlists points to an array of nfn_fields of these. */
1394
1395 struct fn_fieldlist *fn_fieldlists;
1396
1397 /* * typedefs defined inside this class. typedef_field points to
1398 an array of typedef_field_count elements. */
1399
1400 struct decl_field *typedef_field;
1401
1402 unsigned typedef_field_count;
1403
1404 /* * The nested types defined by this type. nested_types points to
1405 an array of nested_types_count elements. */
1406
1407 struct decl_field *nested_types;
1408
1409 unsigned nested_types_count;
1410
1411 /* * The template arguments. This is an array with
1412 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1413 classes. */
1414
1415 struct symbol **template_arguments;
1416 };
1417
1418 /* * Struct used to store conversion rankings. */
1419
1420 struct rank
1421 {
1422 short rank;
1423
1424 /* * When two conversions are of the same type and therefore have
1425 the same rank, subrank is used to differentiate the two.
1426
1427 Eg: Two derived-class-pointer to base-class-pointer conversions
1428 would both have base pointer conversion rank, but the
1429 conversion with the shorter distance to the ancestor is
1430 preferable. 'subrank' would be used to reflect that. */
1431
1432 short subrank;
1433 };
1434
1435 /* * Used for ranking a function for overload resolution. */
1436
1437 typedef std::vector<rank> badness_vector;
1438
1439 /* * GNAT Ada-specific information for various Ada types. */
1440
1441 struct gnat_aux_type
1442 {
1443 /* * Parallel type used to encode information about dynamic types
1444 used in Ada (such as variant records, variable-size array,
1445 etc). */
1446 struct type* descriptive_type;
1447 };
1448
1449 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1450
1451 struct func_type
1452 {
1453 /* * The calling convention for targets supporting multiple ABIs.
1454 Right now this is only fetched from the Dwarf-2
1455 DW_AT_calling_convention attribute. The value is one of the
1456 DW_CC constants. */
1457
1458 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1459
1460 /* * Whether this function normally returns to its caller. It is
1461 set from the DW_AT_noreturn attribute if set on the
1462 DW_TAG_subprogram. */
1463
1464 unsigned int is_noreturn : 1;
1465
1466 /* * Only those DW_TAG_call_site's in this function that have
1467 DW_AT_call_tail_call set are linked in this list. Function
1468 without its tail call list complete
1469 (DW_AT_call_all_tail_calls or its superset
1470 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1471 DW_TAG_call_site's exist in such function. */
1472
1473 struct call_site *tail_call_list;
1474
1475 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1476 contains the method. */
1477
1478 struct type *self_type;
1479 };
1480
1481 /* struct call_site_parameter can be referenced in callees by several ways. */
1482
1483 enum call_site_parameter_kind
1484 {
1485 /* * Use field call_site_parameter.u.dwarf_reg. */
1486 CALL_SITE_PARAMETER_DWARF_REG,
1487
1488 /* * Use field call_site_parameter.u.fb_offset. */
1489 CALL_SITE_PARAMETER_FB_OFFSET,
1490
1491 /* * Use field call_site_parameter.u.param_offset. */
1492 CALL_SITE_PARAMETER_PARAM_OFFSET
1493 };
1494
1495 struct call_site_target
1496 {
1497 union field_location loc;
1498
1499 /* * Discriminant for union field_location. */
1500
1501 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1502 };
1503
1504 union call_site_parameter_u
1505 {
1506 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1507 as DWARF register number, for register passed
1508 parameters. */
1509
1510 int dwarf_reg;
1511
1512 /* * Offset from the callee's frame base, for stack passed
1513 parameters. This equals offset from the caller's stack
1514 pointer. */
1515
1516 CORE_ADDR fb_offset;
1517
1518 /* * Offset relative to the start of this PER_CU to
1519 DW_TAG_formal_parameter which is referenced by both
1520 caller and the callee. */
1521
1522 cu_offset param_cu_off;
1523 };
1524
1525 struct call_site_parameter
1526 {
1527 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1528
1529 union call_site_parameter_u u;
1530
1531 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1532
1533 const gdb_byte *value;
1534 size_t value_size;
1535
1536 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1537 It may be NULL if not provided by DWARF. */
1538
1539 const gdb_byte *data_value;
1540 size_t data_value_size;
1541 };
1542
1543 /* * A place where a function gets called from, represented by
1544 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1545
1546 struct call_site
1547 {
1548 /* * Address of the first instruction after this call. It must be
1549 the first field as we overload core_addr_hash and core_addr_eq
1550 for it. */
1551
1552 CORE_ADDR pc;
1553
1554 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1555
1556 struct call_site *tail_call_next;
1557
1558 /* * Describe DW_AT_call_target. Missing attribute uses
1559 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1560
1561 struct call_site_target target;
1562
1563 /* * Size of the PARAMETER array. */
1564
1565 unsigned parameter_count;
1566
1567 /* * CU of the function where the call is located. It gets used
1568 for DWARF blocks execution in the parameter array below. */
1569
1570 dwarf2_per_cu_data *per_cu;
1571
1572 /* objfile of the function where the call is located. */
1573
1574 dwarf2_per_objfile *per_objfile;
1575
1576 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1577
1578 struct call_site_parameter parameter[1];
1579 };
1580
1581 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1582 static structure. */
1583
1584 extern const struct cplus_struct_type cplus_struct_default;
1585
1586 extern void allocate_cplus_struct_type (struct type *);
1587
1588 #define INIT_CPLUS_SPECIFIC(type) \
1589 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1590 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1591 &cplus_struct_default)
1592
1593 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1594
1595 #define HAVE_CPLUS_STRUCT(type) \
1596 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1597 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1598
1599 #define INIT_NONE_SPECIFIC(type) \
1600 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1601 TYPE_MAIN_TYPE (type)->type_specific = {})
1602
1603 extern const struct gnat_aux_type gnat_aux_default;
1604
1605 extern void allocate_gnat_aux_type (struct type *);
1606
1607 #define INIT_GNAT_SPECIFIC(type) \
1608 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1609 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1610 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1611 /* * A macro that returns non-zero if the type-specific data should be
1612 read as "gnat-stuff". */
1613 #define HAVE_GNAT_AUX_INFO(type) \
1614 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1615
1616 /* * True if TYPE is known to be an Ada type of some kind. */
1617 #define ADA_TYPE_P(type) \
1618 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1619 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1620 && TYPE_FIXED_INSTANCE (type)))
1621
1622 #define INIT_FUNC_SPECIFIC(type) \
1623 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1624 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1625 TYPE_ZALLOC (type, \
1626 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1627
1628 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1629 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1630 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1631 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1632 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1633 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1634 #define TYPE_CHAIN(thistype) (thistype)->chain
1635 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1636 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1637 so you only have to call check_typedef once. Since allocate_value
1638 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1639 #define TYPE_LENGTH(thistype) (thistype)->length
1640
1641 /* * Return the alignment of the type in target addressable memory
1642 units, or 0 if no alignment was specified. */
1643 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1644
1645 /* * Return the alignment of the type in target addressable memory
1646 units, or 0 if no alignment was specified. */
1647 extern unsigned type_raw_align (struct type *);
1648
1649 /* * Return the alignment of the type in target addressable memory
1650 units. Return 0 if the alignment cannot be determined; but note
1651 that this makes an effort to compute the alignment even it it was
1652 not specified in the debug info. */
1653 extern unsigned type_align (struct type *);
1654
1655 /* * Set the alignment of the type. The alignment must be a power of
1656 2. Returns false if the given value does not fit in the available
1657 space in struct type. */
1658 extern bool set_type_align (struct type *, ULONGEST);
1659
1660 /* Property accessors for the type data location. */
1661 #define TYPE_DATA_LOCATION(thistype) \
1662 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1663 #define TYPE_DATA_LOCATION_BATON(thistype) \
1664 TYPE_DATA_LOCATION (thistype)->data.baton
1665 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1666 (TYPE_DATA_LOCATION (thistype)->const_val ())
1667 #define TYPE_DATA_LOCATION_KIND(thistype) \
1668 (TYPE_DATA_LOCATION (thistype)->kind ())
1669 #define TYPE_DYNAMIC_LENGTH(thistype) \
1670 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1671
1672 /* Property accessors for the type allocated/associated. */
1673 #define TYPE_ALLOCATED_PROP(thistype) \
1674 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1675 #define TYPE_ASSOCIATED_PROP(thistype) \
1676 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1677
1678 /* C++ */
1679
1680 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1681 /* Do not call this, use TYPE_SELF_TYPE. */
1682 extern struct type *internal_type_self_type (struct type *);
1683 extern void set_type_self_type (struct type *, struct type *);
1684
1685 extern int internal_type_vptr_fieldno (struct type *);
1686 extern void set_type_vptr_fieldno (struct type *, int);
1687 extern struct type *internal_type_vptr_basetype (struct type *);
1688 extern void set_type_vptr_basetype (struct type *, struct type *);
1689 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1690 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1691
1692 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1693 #define TYPE_SPECIFIC_FIELD(thistype) \
1694 TYPE_MAIN_TYPE(thistype)->type_specific_field
1695 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1696 where we're trying to print an Ada array using the C language.
1697 In that case, there is no "cplus_stuff", but the C language assumes
1698 that there is. What we do, in that case, is pretend that there is
1699 an implicit one which is the default cplus stuff. */
1700 #define TYPE_CPLUS_SPECIFIC(thistype) \
1701 (!HAVE_CPLUS_STRUCT(thistype) \
1702 ? (struct cplus_struct_type*)&cplus_struct_default \
1703 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1704 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1705 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1706 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1707 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1708 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1709 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1710 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1711 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1712 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1713 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1714 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1715 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1716 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1717 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1718 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1719 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1720
1721 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1722 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1723 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1724
1725 #define FIELD_NAME(thisfld) ((thisfld).name)
1726 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1727 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1728 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1729 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1730 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1731 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1732 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1733 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1734 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1735 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1736 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1737 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1738 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1739 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1740 #define SET_FIELD_PHYSNAME(thisfld, name) \
1741 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1742 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1743 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1744 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1745 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1746 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1747 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1748 FIELD_DWARF_BLOCK (thisfld) = (addr))
1749 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1750 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1751
1752 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1753 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1754 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1755 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1756 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1757 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1758 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1759 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1760 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1761 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1762
1763 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1764 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1765 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1766 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1767 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1768 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1769 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1770 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1771 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1772 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1773 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1774 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1775 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1776 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1777 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1778 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1779 #define TYPE_FIELD_PRIVATE(thistype, n) \
1780 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1781 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1782 #define TYPE_FIELD_PROTECTED(thistype, n) \
1783 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1784 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1785 #define TYPE_FIELD_IGNORE(thistype, n) \
1786 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1787 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1788 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1789 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1790 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1791
1792 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1793 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1794 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1795 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1796 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1797
1798 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1799 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1800 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1801 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1802 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1803 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1804
1805 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1806 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1807 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1808 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1809 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1810 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1811 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1812 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1813 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1814 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1815 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1816 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1817 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1818 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1819 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1820 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1821 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1822
1823 /* Accessors for typedefs defined by a class. */
1824 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1825 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1826 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1827 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1828 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1829 TYPE_TYPEDEF_FIELD (thistype, n).name
1830 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1831 TYPE_TYPEDEF_FIELD (thistype, n).type
1832 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1833 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1834 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1835 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1836 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1837 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1838
1839 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1840 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1841 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1842 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1843 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1844 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1845 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1846 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1847 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1849 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1850 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1851 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1852 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1853
1854 #define TYPE_IS_OPAQUE(thistype) \
1855 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1856 || ((thistype)->code () == TYPE_CODE_UNION)) \
1857 && ((thistype)->num_fields () == 0) \
1858 && (!HAVE_CPLUS_STRUCT (thistype) \
1859 || TYPE_NFN_FIELDS (thistype) == 0) \
1860 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1861
1862 /* * A helper macro that returns the name of a type or "unnamed type"
1863 if the type has no name. */
1864
1865 #define TYPE_SAFE_NAME(type) \
1866 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1867
1868 /* * A helper macro that returns the name of an error type. If the
1869 type has a name, it is used; otherwise, a default is used. */
1870
1871 #define TYPE_ERROR_NAME(type) \
1872 (type->name () ? type->name () : _("<error type>"))
1873
1874 /* Given TYPE, return its floatformat. */
1875 const struct floatformat *floatformat_from_type (const struct type *type);
1876
1877 struct builtin_type
1878 {
1879 /* Integral types. */
1880
1881 /* Implicit size/sign (based on the architecture's ABI). */
1882 struct type *builtin_void;
1883 struct type *builtin_char;
1884 struct type *builtin_short;
1885 struct type *builtin_int;
1886 struct type *builtin_long;
1887 struct type *builtin_signed_char;
1888 struct type *builtin_unsigned_char;
1889 struct type *builtin_unsigned_short;
1890 struct type *builtin_unsigned_int;
1891 struct type *builtin_unsigned_long;
1892 struct type *builtin_bfloat16;
1893 struct type *builtin_half;
1894 struct type *builtin_float;
1895 struct type *builtin_double;
1896 struct type *builtin_long_double;
1897 struct type *builtin_complex;
1898 struct type *builtin_double_complex;
1899 struct type *builtin_string;
1900 struct type *builtin_bool;
1901 struct type *builtin_long_long;
1902 struct type *builtin_unsigned_long_long;
1903 struct type *builtin_decfloat;
1904 struct type *builtin_decdouble;
1905 struct type *builtin_declong;
1906
1907 /* "True" character types.
1908 We use these for the '/c' print format, because c_char is just a
1909 one-byte integral type, which languages less laid back than C
1910 will print as ... well, a one-byte integral type. */
1911 struct type *builtin_true_char;
1912 struct type *builtin_true_unsigned_char;
1913
1914 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1915 is for when an architecture needs to describe a register that has
1916 no size. */
1917 struct type *builtin_int0;
1918 struct type *builtin_int8;
1919 struct type *builtin_uint8;
1920 struct type *builtin_int16;
1921 struct type *builtin_uint16;
1922 struct type *builtin_int24;
1923 struct type *builtin_uint24;
1924 struct type *builtin_int32;
1925 struct type *builtin_uint32;
1926 struct type *builtin_int64;
1927 struct type *builtin_uint64;
1928 struct type *builtin_int128;
1929 struct type *builtin_uint128;
1930
1931 /* Wide character types. */
1932 struct type *builtin_char16;
1933 struct type *builtin_char32;
1934 struct type *builtin_wchar;
1935
1936 /* Pointer types. */
1937
1938 /* * `pointer to data' type. Some target platforms use an implicitly
1939 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1940 struct type *builtin_data_ptr;
1941
1942 /* * `pointer to function (returning void)' type. Harvard
1943 architectures mean that ABI function and code pointers are not
1944 interconvertible. Similarly, since ANSI, C standards have
1945 explicitly said that pointers to functions and pointers to data
1946 are not interconvertible --- that is, you can't cast a function
1947 pointer to void * and back, and expect to get the same value.
1948 However, all function pointer types are interconvertible, so void
1949 (*) () can server as a generic function pointer. */
1950
1951 struct type *builtin_func_ptr;
1952
1953 /* * `function returning pointer to function (returning void)' type.
1954 The final void return type is not significant for it. */
1955
1956 struct type *builtin_func_func;
1957
1958 /* Special-purpose types. */
1959
1960 /* * This type is used to represent a GDB internal function. */
1961
1962 struct type *internal_fn;
1963
1964 /* * This type is used to represent an xmethod. */
1965 struct type *xmethod;
1966 };
1967
1968 /* * Return the type table for the specified architecture. */
1969
1970 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1971
1972 /* * Per-objfile types used by symbol readers. */
1973
1974 struct objfile_type
1975 {
1976 /* Basic types based on the objfile architecture. */
1977 struct type *builtin_void;
1978 struct type *builtin_char;
1979 struct type *builtin_short;
1980 struct type *builtin_int;
1981 struct type *builtin_long;
1982 struct type *builtin_long_long;
1983 struct type *builtin_signed_char;
1984 struct type *builtin_unsigned_char;
1985 struct type *builtin_unsigned_short;
1986 struct type *builtin_unsigned_int;
1987 struct type *builtin_unsigned_long;
1988 struct type *builtin_unsigned_long_long;
1989 struct type *builtin_half;
1990 struct type *builtin_float;
1991 struct type *builtin_double;
1992 struct type *builtin_long_double;
1993
1994 /* * This type is used to represent symbol addresses. */
1995 struct type *builtin_core_addr;
1996
1997 /* * This type represents a type that was unrecognized in symbol
1998 read-in. */
1999 struct type *builtin_error;
2000
2001 /* * Types used for symbols with no debug information. */
2002 struct type *nodebug_text_symbol;
2003 struct type *nodebug_text_gnu_ifunc_symbol;
2004 struct type *nodebug_got_plt_symbol;
2005 struct type *nodebug_data_symbol;
2006 struct type *nodebug_unknown_symbol;
2007 struct type *nodebug_tls_symbol;
2008 };
2009
2010 /* * Return the type table for the specified objfile. */
2011
2012 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2013
2014 /* Explicit floating-point formats. See "floatformat.h". */
2015 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2016 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2017 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2018 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2019 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2020 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2021 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2022 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2023 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2024 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2025 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2026 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2027 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2028
2029 /* Allocate space for storing data associated with a particular
2030 type. We ensure that the space is allocated using the same
2031 mechanism that was used to allocate the space for the type
2032 structure itself. I.e. if the type is on an objfile's
2033 objfile_obstack, then the space for data associated with that type
2034 will also be allocated on the objfile_obstack. If the type is
2035 associated with a gdbarch, then the space for data associated with that
2036 type will also be allocated on the gdbarch_obstack.
2037
2038 If a type is not associated with neither an objfile or a gdbarch then
2039 you should not use this macro to allocate space for data, instead you
2040 should call xmalloc directly, and ensure the memory is correctly freed
2041 when it is no longer needed. */
2042
2043 #define TYPE_ALLOC(t,size) \
2044 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2045 ? &TYPE_OBJFILE (t)->objfile_obstack \
2046 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2047 size))
2048
2049
2050 /* See comment on TYPE_ALLOC. */
2051
2052 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2053
2054 /* Use alloc_type to allocate a type owned by an objfile. Use
2055 alloc_type_arch to allocate a type owned by an architecture. Use
2056 alloc_type_copy to allocate a type with the same owner as a
2057 pre-existing template type, no matter whether objfile or
2058 gdbarch. */
2059 extern struct type *alloc_type (struct objfile *);
2060 extern struct type *alloc_type_arch (struct gdbarch *);
2061 extern struct type *alloc_type_copy (const struct type *);
2062
2063 /* * Return the type's architecture. For types owned by an
2064 architecture, that architecture is returned. For types owned by an
2065 objfile, that objfile's architecture is returned. */
2066
2067 extern struct gdbarch *get_type_arch (const struct type *);
2068
2069 /* * This returns the target type (or NULL) of TYPE, also skipping
2070 past typedefs. */
2071
2072 extern struct type *get_target_type (struct type *type);
2073
2074 /* Return the equivalent of TYPE_LENGTH, but in number of target
2075 addressable memory units of the associated gdbarch instead of bytes. */
2076
2077 extern unsigned int type_length_units (struct type *type);
2078
2079 /* * Helper function to construct objfile-owned types. */
2080
2081 extern struct type *init_type (struct objfile *, enum type_code, int,
2082 const char *);
2083 extern struct type *init_integer_type (struct objfile *, int, int,
2084 const char *);
2085 extern struct type *init_character_type (struct objfile *, int, int,
2086 const char *);
2087 extern struct type *init_boolean_type (struct objfile *, int, int,
2088 const char *);
2089 extern struct type *init_float_type (struct objfile *, int, const char *,
2090 const struct floatformat **,
2091 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2092 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2093 extern struct type *init_complex_type (const char *, struct type *);
2094 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2095 struct type *);
2096
2097 /* Helper functions to construct architecture-owned types. */
2098 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2099 const char *);
2100 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2101 const char *);
2102 extern struct type *arch_character_type (struct gdbarch *, int, int,
2103 const char *);
2104 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2105 const char *);
2106 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2107 const struct floatformat **);
2108 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2109 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2110 struct type *);
2111
2112 /* Helper functions to construct a struct or record type. An
2113 initially empty type is created using arch_composite_type().
2114 Fields are then added using append_composite_type_field*(). A union
2115 type has its size set to the largest field. A struct type has each
2116 field packed against the previous. */
2117
2118 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2119 const char *name, enum type_code code);
2120 extern void append_composite_type_field (struct type *t, const char *name,
2121 struct type *field);
2122 extern void append_composite_type_field_aligned (struct type *t,
2123 const char *name,
2124 struct type *field,
2125 int alignment);
2126 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2127 struct type *field);
2128
2129 /* Helper functions to construct a bit flags type. An initially empty
2130 type is created using arch_flag_type(). Flags are then added using
2131 append_flag_type_field() and append_flag_type_flag(). */
2132 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2133 const char *name, int bit);
2134 extern void append_flags_type_field (struct type *type,
2135 int start_bitpos, int nr_bits,
2136 struct type *field_type, const char *name);
2137 extern void append_flags_type_flag (struct type *type, int bitpos,
2138 const char *name);
2139
2140 extern void make_vector_type (struct type *array_type);
2141 extern struct type *init_vector_type (struct type *elt_type, int n);
2142
2143 extern struct type *lookup_reference_type (struct type *, enum type_code);
2144 extern struct type *lookup_lvalue_reference_type (struct type *);
2145 extern struct type *lookup_rvalue_reference_type (struct type *);
2146
2147
2148 extern struct type *make_reference_type (struct type *, struct type **,
2149 enum type_code);
2150
2151 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2152
2153 extern struct type *make_restrict_type (struct type *);
2154
2155 extern struct type *make_unqualified_type (struct type *);
2156
2157 extern struct type *make_atomic_type (struct type *);
2158
2159 extern void replace_type (struct type *, struct type *);
2160
2161 extern int address_space_name_to_int (struct gdbarch *, const char *);
2162
2163 extern const char *address_space_int_to_name (struct gdbarch *, int);
2164
2165 extern struct type *make_type_with_address_space (struct type *type,
2166 int space_identifier);
2167
2168 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2169
2170 extern struct type *lookup_methodptr_type (struct type *);
2171
2172 extern void smash_to_method_type (struct type *type, struct type *self_type,
2173 struct type *to_type, struct field *args,
2174 int nargs, int varargs);
2175
2176 extern void smash_to_memberptr_type (struct type *, struct type *,
2177 struct type *);
2178
2179 extern void smash_to_methodptr_type (struct type *, struct type *);
2180
2181 extern struct type *allocate_stub_method (struct type *);
2182
2183 extern const char *type_name_or_error (struct type *type);
2184
2185 struct struct_elt
2186 {
2187 /* The field of the element, or NULL if no element was found. */
2188 struct field *field;
2189
2190 /* The bit offset of the element in the parent structure. */
2191 LONGEST offset;
2192 };
2193
2194 /* Given a type TYPE, lookup the field and offset of the component named
2195 NAME.
2196
2197 TYPE can be either a struct or union, or a pointer or reference to
2198 a struct or union. If it is a pointer or reference, its target
2199 type is automatically used. Thus '.' and '->' are interchangable,
2200 as specified for the definitions of the expression element types
2201 STRUCTOP_STRUCT and STRUCTOP_PTR.
2202
2203 If NOERR is nonzero, the returned structure will have field set to
2204 NULL if there is no component named NAME.
2205
2206 If the component NAME is a field in an anonymous substructure of
2207 TYPE, the returned offset is a "global" offset relative to TYPE
2208 rather than an offset within the substructure. */
2209
2210 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2211
2212 /* Given a type TYPE, lookup the type of the component named NAME.
2213
2214 TYPE can be either a struct or union, or a pointer or reference to
2215 a struct or union. If it is a pointer or reference, its target
2216 type is automatically used. Thus '.' and '->' are interchangable,
2217 as specified for the definitions of the expression element types
2218 STRUCTOP_STRUCT and STRUCTOP_PTR.
2219
2220 If NOERR is nonzero, return NULL if there is no component named
2221 NAME. */
2222
2223 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2224
2225 extern struct type *make_pointer_type (struct type *, struct type **);
2226
2227 extern struct type *lookup_pointer_type (struct type *);
2228
2229 extern struct type *make_function_type (struct type *, struct type **);
2230
2231 extern struct type *lookup_function_type (struct type *);
2232
2233 extern struct type *lookup_function_type_with_arguments (struct type *,
2234 int,
2235 struct type **);
2236
2237 extern struct type *create_static_range_type (struct type *, struct type *,
2238 LONGEST, LONGEST);
2239
2240
2241 extern struct type *create_array_type_with_stride
2242 (struct type *, struct type *, struct type *,
2243 struct dynamic_prop *, unsigned int);
2244
2245 extern struct type *create_range_type (struct type *, struct type *,
2246 const struct dynamic_prop *,
2247 const struct dynamic_prop *,
2248 LONGEST);
2249
2250 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2251 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2252 stride. */
2253
2254 extern struct type * create_range_type_with_stride
2255 (struct type *result_type, struct type *index_type,
2256 const struct dynamic_prop *low_bound,
2257 const struct dynamic_prop *high_bound, LONGEST bias,
2258 const struct dynamic_prop *stride, bool byte_stride_p);
2259
2260 extern struct type *create_array_type (struct type *, struct type *,
2261 struct type *);
2262
2263 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2264
2265 extern struct type *create_string_type (struct type *, struct type *,
2266 struct type *);
2267 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2268
2269 extern struct type *create_set_type (struct type *, struct type *);
2270
2271 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2272 const char *);
2273
2274 extern struct type *lookup_signed_typename (const struct language_defn *,
2275 const char *);
2276
2277 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2278
2279 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2280
2281 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2282 ADDR specifies the location of the variable the type is bound to.
2283 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2284 static properties is returned. */
2285 extern struct type *resolve_dynamic_type
2286 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2287 CORE_ADDR addr);
2288
2289 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2290 extern int is_dynamic_type (struct type *type);
2291
2292 extern struct type *check_typedef (struct type *);
2293
2294 extern void check_stub_method_group (struct type *, int);
2295
2296 extern char *gdb_mangle_name (struct type *, int, int);
2297
2298 extern struct type *lookup_typename (const struct language_defn *,
2299 const char *, const struct block *, int);
2300
2301 extern struct type *lookup_template_type (const char *, struct type *,
2302 const struct block *);
2303
2304 extern int get_vptr_fieldno (struct type *, struct type **);
2305
2306 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2307
2308 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2309 LONGEST *high_bound);
2310
2311 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2312
2313 extern int class_types_same_p (const struct type *, const struct type *);
2314
2315 extern int is_ancestor (struct type *, struct type *);
2316
2317 extern int is_public_ancestor (struct type *, struct type *);
2318
2319 extern int is_unique_ancestor (struct type *, struct value *);
2320
2321 /* Overload resolution */
2322
2323 /* * Badness if parameter list length doesn't match arg list length. */
2324 extern const struct rank LENGTH_MISMATCH_BADNESS;
2325
2326 /* * Dummy badness value for nonexistent parameter positions. */
2327 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2328 /* * Badness if no conversion among types. */
2329 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2330
2331 /* * Badness of an exact match. */
2332 extern const struct rank EXACT_MATCH_BADNESS;
2333
2334 /* * Badness of integral promotion. */
2335 extern const struct rank INTEGER_PROMOTION_BADNESS;
2336 /* * Badness of floating promotion. */
2337 extern const struct rank FLOAT_PROMOTION_BADNESS;
2338 /* * Badness of converting a derived class pointer
2339 to a base class pointer. */
2340 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2341 /* * Badness of integral conversion. */
2342 extern const struct rank INTEGER_CONVERSION_BADNESS;
2343 /* * Badness of floating conversion. */
2344 extern const struct rank FLOAT_CONVERSION_BADNESS;
2345 /* * Badness of integer<->floating conversions. */
2346 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2347 /* * Badness of conversion of pointer to void pointer. */
2348 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2349 /* * Badness of conversion to boolean. */
2350 extern const struct rank BOOL_CONVERSION_BADNESS;
2351 /* * Badness of converting derived to base class. */
2352 extern const struct rank BASE_CONVERSION_BADNESS;
2353 /* * Badness of converting from non-reference to reference. Subrank
2354 is the type of reference conversion being done. */
2355 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2356 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2357 /* * Conversion to rvalue reference. */
2358 #define REFERENCE_CONVERSION_RVALUE 1
2359 /* * Conversion to const lvalue reference. */
2360 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2361
2362 /* * Badness of converting integer 0 to NULL pointer. */
2363 extern const struct rank NULL_POINTER_CONVERSION;
2364 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2365 being done. */
2366 extern const struct rank CV_CONVERSION_BADNESS;
2367 #define CV_CONVERSION_CONST 1
2368 #define CV_CONVERSION_VOLATILE 2
2369
2370 /* Non-standard conversions allowed by the debugger */
2371
2372 /* * Converting a pointer to an int is usually OK. */
2373 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2374
2375 /* * Badness of converting a (non-zero) integer constant
2376 to a pointer. */
2377 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2378
2379 extern struct rank sum_ranks (struct rank a, struct rank b);
2380 extern int compare_ranks (struct rank a, struct rank b);
2381
2382 extern int compare_badness (const badness_vector &,
2383 const badness_vector &);
2384
2385 extern badness_vector rank_function (gdb::array_view<type *> parms,
2386 gdb::array_view<value *> args);
2387
2388 extern struct rank rank_one_type (struct type *, struct type *,
2389 struct value *);
2390
2391 extern void recursive_dump_type (struct type *, int);
2392
2393 extern int field_is_static (struct field *);
2394
2395 /* printcmd.c */
2396
2397 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2398 const struct value_print_options *,
2399 int, struct ui_file *);
2400
2401 extern int can_dereference (struct type *);
2402
2403 extern int is_integral_type (struct type *);
2404
2405 extern int is_floating_type (struct type *);
2406
2407 extern int is_scalar_type (struct type *type);
2408
2409 extern int is_scalar_type_recursive (struct type *);
2410
2411 extern int class_or_union_p (const struct type *);
2412
2413 extern void maintenance_print_type (const char *, int);
2414
2415 extern htab_t create_copied_types_hash (struct objfile *objfile);
2416
2417 extern struct type *copy_type_recursive (struct objfile *objfile,
2418 struct type *type,
2419 htab_t copied_types);
2420
2421 extern struct type *copy_type (const struct type *type);
2422
2423 extern bool types_equal (struct type *, struct type *);
2424
2425 extern bool types_deeply_equal (struct type *, struct type *);
2426
2427 extern int type_not_allocated (const struct type *type);
2428
2429 extern int type_not_associated (const struct type *type);
2430
2431 /* * When the type includes explicit byte ordering, return that.
2432 Otherwise, the byte ordering from gdbarch_byte_order for
2433 get_type_arch is returned. */
2434
2435 extern enum bfd_endian type_byte_order (const struct type *type);
2436
2437 /* A flag to enable printing of debugging information of C++
2438 overloading. */
2439
2440 extern unsigned int overload_debug;
2441
2442 #endif /* GDBTYPES_H */