gdb: remove TYPE_OBJFILE_OWNED macro
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
224 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
225 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
226
227 #define TYPE_OBJFILE(t) ((t)->objfile ())
228
229 /* * True if this type was declared using the "class" keyword. This is
230 only valid for C++ structure and enum types. If false, a structure
231 was declared as a "struct"; if true it was declared "class". For
232 enum types, this is true when "enum class" or "enum struct" was
233 used to declare the type.. */
234
235 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
236
237 /* * True if this type is a "flag" enum. A flag enum is one where all
238 the values are pairwise disjoint when "and"ed together. This
239 affects how enum values are printed. */
240
241 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
242
243 /* * Constant type. If this is set, the corresponding type has a
244 const modifier. */
245
246 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
247
248 /* * Volatile type. If this is set, the corresponding type has a
249 volatile modifier. */
250
251 #define TYPE_VOLATILE(t) \
252 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
253
254 /* * Restrict type. If this is set, the corresponding type has a
255 restrict modifier. */
256
257 #define TYPE_RESTRICT(t) \
258 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
259
260 /* * Atomic type. If this is set, the corresponding type has an
261 _Atomic modifier. */
262
263 #define TYPE_ATOMIC(t) \
264 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
265
266 /* * True if this type represents either an lvalue or lvalue reference type. */
267
268 #define TYPE_IS_REFERENCE(t) \
269 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
270
271 /* * True if this type is allocatable. */
272 #define TYPE_IS_ALLOCATABLE(t) \
273 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
274
275 /* * True if this type has variant parts. */
276 #define TYPE_HAS_VARIANT_PARTS(t) \
277 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
278
279 /* * True if this type has a dynamic length. */
280 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
281 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
282
283 /* * Instruction-space delimited type. This is for Harvard architectures
284 which have separate instruction and data address spaces (and perhaps
285 others).
286
287 GDB usually defines a flat address space that is a superset of the
288 architecture's two (or more) address spaces, but this is an extension
289 of the architecture's model.
290
291 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
292 resides in instruction memory, even if its address (in the extended
293 flat address space) does not reflect this.
294
295 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
296 corresponding type resides in the data memory space, even if
297 this is not indicated by its (flat address space) address.
298
299 If neither flag is set, the default space for functions / methods
300 is instruction space, and for data objects is data memory. */
301
302 #define TYPE_CODE_SPACE(t) \
303 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
304
305 #define TYPE_DATA_SPACE(t) \
306 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
307
308 /* * Address class flags. Some environments provide for pointers
309 whose size is different from that of a normal pointer or address
310 types where the bits are interpreted differently than normal
311 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
312 target specific ways to represent these different types of address
313 classes. */
314
315 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
316 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
317 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
318 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
319 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
320 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
321 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
322 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
323
324 /* * Information about a single discriminant. */
325
326 struct discriminant_range
327 {
328 /* * The range of values for the variant. This is an inclusive
329 range. */
330 ULONGEST low, high;
331
332 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
333 is true if this should be an unsigned comparison; false for
334 signed. */
335 bool contains (ULONGEST value, bool is_unsigned) const
336 {
337 if (is_unsigned)
338 return value >= low && value <= high;
339 LONGEST valuel = (LONGEST) value;
340 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
341 }
342 };
343
344 struct variant_part;
345
346 /* * A single variant. A variant has a list of discriminant values.
347 When the discriminator matches one of these, the variant is
348 enabled. Each variant controls zero or more fields; and may also
349 control other variant parts as well. This struct corresponds to
350 DW_TAG_variant in DWARF. */
351
352 struct variant : allocate_on_obstack
353 {
354 /* * The discriminant ranges for this variant. */
355 gdb::array_view<discriminant_range> discriminants;
356
357 /* * The fields controlled by this variant. This is inclusive on
358 the low end and exclusive on the high end. A variant may not
359 control any fields, in which case the two values will be equal.
360 These are indexes into the type's array of fields. */
361 int first_field;
362 int last_field;
363
364 /* * Variant parts controlled by this variant. */
365 gdb::array_view<variant_part> parts;
366
367 /* * Return true if this is the default variant. The default
368 variant can be recognized because it has no associated
369 discriminants. */
370 bool is_default () const
371 {
372 return discriminants.empty ();
373 }
374
375 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
376 if this should be an unsigned comparison; false for signed. */
377 bool matches (ULONGEST value, bool is_unsigned) const;
378 };
379
380 /* * A variant part. Each variant part has an optional discriminant
381 and holds an array of variants. This struct corresponds to
382 DW_TAG_variant_part in DWARF. */
383
384 struct variant_part : allocate_on_obstack
385 {
386 /* * The index of the discriminant field in the outer type. This is
387 an index into the type's array of fields. If this is -1, there
388 is no discriminant, and only the default variant can be
389 considered to be selected. */
390 int discriminant_index;
391
392 /* * True if this discriminant is unsigned; false if signed. This
393 comes from the type of the discriminant. */
394 bool is_unsigned;
395
396 /* * The variants that are controlled by this variant part. Note
397 that these will always be sorted by field number. */
398 gdb::array_view<variant> variants;
399 };
400
401
402 enum dynamic_prop_kind
403 {
404 PROP_UNDEFINED, /* Not defined. */
405 PROP_CONST, /* Constant. */
406 PROP_ADDR_OFFSET, /* Address offset. */
407 PROP_LOCEXPR, /* Location expression. */
408 PROP_LOCLIST, /* Location list. */
409 PROP_VARIANT_PARTS, /* Variant parts. */
410 PROP_TYPE, /* Type. */
411 };
412
413 union dynamic_prop_data
414 {
415 /* Storage for constant property. */
416
417 LONGEST const_val;
418
419 /* Storage for dynamic property. */
420
421 void *baton;
422
423 /* Storage of variant parts for a type. A type with variant parts
424 has all its fields "linearized" -- stored in a single field
425 array, just as if they had all been declared that way. The
426 variant parts are attached via a dynamic property, and then are
427 used to control which fields end up in the final type during
428 dynamic type resolution. */
429
430 const gdb::array_view<variant_part> *variant_parts;
431
432 /* Once a variant type is resolved, we may want to be able to go
433 from the resolved type to the original type. In this case we
434 rewrite the property's kind and set this field. */
435
436 struct type *original_type;
437 };
438
439 /* * Used to store a dynamic property. */
440
441 struct dynamic_prop
442 {
443 dynamic_prop_kind kind () const
444 {
445 return m_kind;
446 }
447
448 void set_undefined ()
449 {
450 m_kind = PROP_UNDEFINED;
451 }
452
453 LONGEST const_val () const
454 {
455 gdb_assert (m_kind == PROP_CONST);
456
457 return m_data.const_val;
458 }
459
460 void set_const_val (LONGEST const_val)
461 {
462 m_kind = PROP_CONST;
463 m_data.const_val = const_val;
464 }
465
466 void *baton () const
467 {
468 gdb_assert (m_kind == PROP_LOCEXPR
469 || m_kind == PROP_LOCLIST
470 || m_kind == PROP_ADDR_OFFSET);
471
472 return m_data.baton;
473 }
474
475 void set_locexpr (void *baton)
476 {
477 m_kind = PROP_LOCEXPR;
478 m_data.baton = baton;
479 }
480
481 void set_loclist (void *baton)
482 {
483 m_kind = PROP_LOCLIST;
484 m_data.baton = baton;
485 }
486
487 void set_addr_offset (void *baton)
488 {
489 m_kind = PROP_ADDR_OFFSET;
490 m_data.baton = baton;
491 }
492
493 const gdb::array_view<variant_part> *variant_parts () const
494 {
495 gdb_assert (m_kind == PROP_VARIANT_PARTS);
496
497 return m_data.variant_parts;
498 }
499
500 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
501 {
502 m_kind = PROP_VARIANT_PARTS;
503 m_data.variant_parts = variant_parts;
504 }
505
506 struct type *original_type () const
507 {
508 gdb_assert (m_kind == PROP_TYPE);
509
510 return m_data.original_type;
511 }
512
513 void set_original_type (struct type *original_type)
514 {
515 m_kind = PROP_TYPE;
516 m_data.original_type = original_type;
517 }
518
519 /* Determine which field of the union dynamic_prop.data is used. */
520 enum dynamic_prop_kind m_kind;
521
522 /* Storage for dynamic or static value. */
523 union dynamic_prop_data m_data;
524 };
525
526 /* Compare two dynamic_prop objects for equality. dynamic_prop
527 instances are equal iff they have the same type and storage. */
528 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
529
530 /* Compare two dynamic_prop objects for inequality. */
531 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
532 {
533 return !(l == r);
534 }
535
536 /* * Define a type's dynamic property node kind. */
537 enum dynamic_prop_node_kind
538 {
539 /* A property providing a type's data location.
540 Evaluating this field yields to the location of an object's data. */
541 DYN_PROP_DATA_LOCATION,
542
543 /* A property representing DW_AT_allocated. The presence of this attribute
544 indicates that the object of the type can be allocated/deallocated. */
545 DYN_PROP_ALLOCATED,
546
547 /* A property representing DW_AT_associated. The presence of this attribute
548 indicated that the object of the type can be associated. */
549 DYN_PROP_ASSOCIATED,
550
551 /* A property providing an array's byte stride. */
552 DYN_PROP_BYTE_STRIDE,
553
554 /* A property holding variant parts. */
555 DYN_PROP_VARIANT_PARTS,
556
557 /* A property holding the size of the type. */
558 DYN_PROP_BYTE_SIZE,
559 };
560
561 /* * List for dynamic type attributes. */
562 struct dynamic_prop_list
563 {
564 /* The kind of dynamic prop in this node. */
565 enum dynamic_prop_node_kind prop_kind;
566
567 /* The dynamic property itself. */
568 struct dynamic_prop prop;
569
570 /* A pointer to the next dynamic property. */
571 struct dynamic_prop_list *next;
572 };
573
574 /* * Determine which field of the union main_type.fields[x].loc is
575 used. */
576
577 enum field_loc_kind
578 {
579 FIELD_LOC_KIND_BITPOS, /**< bitpos */
580 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
581 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
582 FIELD_LOC_KIND_PHYSNAME, /**< physname */
583 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
584 };
585
586 /* * A discriminant to determine which field in the
587 main_type.type_specific union is being used, if any.
588
589 For types such as TYPE_CODE_FLT, the use of this
590 discriminant is really redundant, as we know from the type code
591 which field is going to be used. As such, it would be possible to
592 reduce the size of this enum in order to save a bit or two for
593 other fields of struct main_type. But, since we still have extra
594 room , and for the sake of clarity and consistency, we treat all fields
595 of the union the same way. */
596
597 enum type_specific_kind
598 {
599 TYPE_SPECIFIC_NONE,
600 TYPE_SPECIFIC_CPLUS_STUFF,
601 TYPE_SPECIFIC_GNAT_STUFF,
602 TYPE_SPECIFIC_FLOATFORMAT,
603 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
604 TYPE_SPECIFIC_FUNC,
605 TYPE_SPECIFIC_SELF_TYPE,
606 TYPE_SPECIFIC_INT,
607 TYPE_SPECIFIC_FIXED_POINT,
608 };
609
610 union type_owner
611 {
612 struct objfile *objfile;
613 struct gdbarch *gdbarch;
614 };
615
616 union field_location
617 {
618 /* * Position of this field, counting in bits from start of
619 containing structure. For big-endian targets, it is the bit
620 offset to the MSB. For little-endian targets, it is the bit
621 offset to the LSB. */
622
623 LONGEST bitpos;
624
625 /* * Enum value. */
626 LONGEST enumval;
627
628 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
629 physaddr is the location (in the target) of the static
630 field. Otherwise, physname is the mangled label of the
631 static field. */
632
633 CORE_ADDR physaddr;
634 const char *physname;
635
636 /* * The field location can be computed by evaluating the
637 following DWARF block. Its DATA is allocated on
638 objfile_obstack - no CU load is needed to access it. */
639
640 struct dwarf2_locexpr_baton *dwarf_block;
641 };
642
643 struct field
644 {
645 struct type *type () const
646 {
647 return this->m_type;
648 }
649
650 void set_type (struct type *type)
651 {
652 this->m_type = type;
653 }
654
655 union field_location loc;
656
657 /* * For a function or member type, this is 1 if the argument is
658 marked artificial. Artificial arguments should not be shown
659 to the user. For TYPE_CODE_RANGE it is set if the specific
660 bound is not defined. */
661
662 unsigned int artificial : 1;
663
664 /* * Discriminant for union field_location. */
665
666 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
667
668 /* * Size of this field, in bits, or zero if not packed.
669 If non-zero in an array type, indicates the element size in
670 bits (used only in Ada at the moment).
671 For an unpacked field, the field's type's length
672 says how many bytes the field occupies. */
673
674 unsigned int bitsize : 28;
675
676 /* * In a struct or union type, type of this field.
677 - In a function or member type, type of this argument.
678 - In an array type, the domain-type of the array. */
679
680 struct type *m_type;
681
682 /* * Name of field, value or argument.
683 NULL for range bounds, array domains, and member function
684 arguments. */
685
686 const char *name;
687 };
688
689 struct range_bounds
690 {
691 ULONGEST bit_stride () const
692 {
693 if (this->flag_is_byte_stride)
694 return this->stride.const_val () * 8;
695 else
696 return this->stride.const_val ();
697 }
698
699 /* * Low bound of range. */
700
701 struct dynamic_prop low;
702
703 /* * High bound of range. */
704
705 struct dynamic_prop high;
706
707 /* The stride value for this range. This can be stored in bits or bytes
708 based on the value of BYTE_STRIDE_P. It is optional to have a stride
709 value, if this range has no stride value defined then this will be set
710 to the constant zero. */
711
712 struct dynamic_prop stride;
713
714 /* * The bias. Sometimes a range value is biased before storage.
715 The bias is added to the stored bits to form the true value. */
716
717 LONGEST bias;
718
719 /* True if HIGH range bound contains the number of elements in the
720 subrange. This affects how the final high bound is computed. */
721
722 unsigned int flag_upper_bound_is_count : 1;
723
724 /* True if LOW or/and HIGH are resolved into a static bound from
725 a dynamic one. */
726
727 unsigned int flag_bound_evaluated : 1;
728
729 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
730
731 unsigned int flag_is_byte_stride : 1;
732 };
733
734 /* Compare two range_bounds objects for equality. Simply does
735 memberwise comparison. */
736 extern bool operator== (const range_bounds &l, const range_bounds &r);
737
738 /* Compare two range_bounds objects for inequality. */
739 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
740 {
741 return !(l == r);
742 }
743
744 union type_specific
745 {
746 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
747 point to cplus_struct_default, a default static instance of a
748 struct cplus_struct_type. */
749
750 struct cplus_struct_type *cplus_stuff;
751
752 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
753 provides additional information. */
754
755 struct gnat_aux_type *gnat_stuff;
756
757 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
758 floatformat object that describes the floating-point value
759 that resides within the type. */
760
761 const struct floatformat *floatformat;
762
763 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
764
765 struct func_type *func_stuff;
766
767 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
768 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
769 is a member of. */
770
771 struct type *self_type;
772
773 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
774 values of that type. */
775 struct fixed_point_type_info *fixed_point_info;
776
777 /* * An integer-like scalar type may be stored in just part of its
778 enclosing storage bytes. This structure describes this
779 situation. */
780 struct
781 {
782 /* * The bit size of the integer. This can be 0. For integers
783 that fill their storage (the ordinary case), this field holds
784 the byte size times 8. */
785 unsigned short bit_size;
786 /* * The bit offset of the integer. This is ordinarily 0, and can
787 only be non-zero if the bit size is less than the storage
788 size. */
789 unsigned short bit_offset;
790 } int_stuff;
791 };
792
793 /* * Main structure representing a type in GDB.
794
795 This structure is space-critical. Its layout has been tweaked to
796 reduce the space used. */
797
798 struct main_type
799 {
800 /* * Code for kind of type. */
801
802 ENUM_BITFIELD(type_code) code : 8;
803
804 /* * Flags about this type. These fields appear at this location
805 because they packs nicely here. See the TYPE_* macros for
806 documentation about these fields. */
807
808 unsigned int m_flag_unsigned : 1;
809 unsigned int m_flag_nosign : 1;
810 unsigned int m_flag_stub : 1;
811 unsigned int m_flag_target_stub : 1;
812 unsigned int m_flag_prototyped : 1;
813 unsigned int m_flag_varargs : 1;
814 unsigned int m_flag_vector : 1;
815 unsigned int m_flag_stub_supported : 1;
816 unsigned int m_flag_gnu_ifunc : 1;
817 unsigned int m_flag_fixed_instance : 1;
818 unsigned int m_flag_objfile_owned : 1;
819 unsigned int m_flag_endianity_not_default : 1;
820
821 /* * True if this type was declared with "class" rather than
822 "struct". */
823
824 unsigned int flag_declared_class : 1;
825
826 /* * True if this is an enum type with disjoint values. This
827 affects how the enum is printed. */
828
829 unsigned int flag_flag_enum : 1;
830
831 /* * A discriminant telling us which field of the type_specific
832 union is being used for this type, if any. */
833
834 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
835
836 /* * Number of fields described for this type. This field appears
837 at this location because it packs nicely here. */
838
839 short nfields;
840
841 /* * Name of this type, or NULL if none.
842
843 This is used for printing only. For looking up a name, look for
844 a symbol in the VAR_DOMAIN. This is generally allocated in the
845 objfile's obstack. However coffread.c uses malloc. */
846
847 const char *name;
848
849 /* * Every type is now associated with a particular objfile, and the
850 type is allocated on the objfile_obstack for that objfile. One
851 problem however, is that there are times when gdb allocates new
852 types while it is not in the process of reading symbols from a
853 particular objfile. Fortunately, these happen when the type
854 being created is a derived type of an existing type, such as in
855 lookup_pointer_type(). So we can just allocate the new type
856 using the same objfile as the existing type, but to do this we
857 need a backpointer to the objfile from the existing type. Yes
858 this is somewhat ugly, but without major overhaul of the internal
859 type system, it can't be avoided for now. */
860
861 union type_owner m_owner;
862
863 /* * For a pointer type, describes the type of object pointed to.
864 - For an array type, describes the type of the elements.
865 - For a function or method type, describes the type of the return value.
866 - For a range type, describes the type of the full range.
867 - For a complex type, describes the type of each coordinate.
868 - For a special record or union type encoding a dynamic-sized type
869 in GNAT, a memoized pointer to a corresponding static version of
870 the type.
871 - Unused otherwise. */
872
873 struct type *target_type;
874
875 /* * For structure and union types, a description of each field.
876 For set and pascal array types, there is one "field",
877 whose type is the domain type of the set or array.
878 For range types, there are two "fields",
879 the minimum and maximum values (both inclusive).
880 For enum types, each possible value is described by one "field".
881 For a function or method type, a "field" for each parameter.
882 For C++ classes, there is one field for each base class (if it is
883 a derived class) plus one field for each class data member. Member
884 functions are recorded elsewhere.
885
886 Using a pointer to a separate array of fields
887 allows all types to have the same size, which is useful
888 because we can allocate the space for a type before
889 we know what to put in it. */
890
891 union
892 {
893 struct field *fields;
894
895 /* * Union member used for range types. */
896
897 struct range_bounds *bounds;
898
899 /* If this is a scalar type, then this is its corresponding
900 complex type. */
901 struct type *complex_type;
902
903 } flds_bnds;
904
905 /* * Slot to point to additional language-specific fields of this
906 type. */
907
908 union type_specific type_specific;
909
910 /* * Contains all dynamic type properties. */
911 struct dynamic_prop_list *dyn_prop_list;
912 };
913
914 /* * Number of bits allocated for alignment. */
915
916 #define TYPE_ALIGN_BITS 8
917
918 /* * A ``struct type'' describes a particular instance of a type, with
919 some particular qualification. */
920
921 struct type
922 {
923 /* Get the type code of this type.
924
925 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
926 type, you need to do `check_typedef (type)->code ()`. */
927 type_code code () const
928 {
929 return this->main_type->code;
930 }
931
932 /* Set the type code of this type. */
933 void set_code (type_code code)
934 {
935 this->main_type->code = code;
936 }
937
938 /* Get the name of this type. */
939 const char *name () const
940 {
941 return this->main_type->name;
942 }
943
944 /* Set the name of this type. */
945 void set_name (const char *name)
946 {
947 this->main_type->name = name;
948 }
949
950 /* Get the number of fields of this type. */
951 int num_fields () const
952 {
953 return this->main_type->nfields;
954 }
955
956 /* Set the number of fields of this type. */
957 void set_num_fields (int num_fields)
958 {
959 this->main_type->nfields = num_fields;
960 }
961
962 /* Get the fields array of this type. */
963 struct field *fields () const
964 {
965 return this->main_type->flds_bnds.fields;
966 }
967
968 /* Get the field at index IDX. */
969 struct field &field (int idx) const
970 {
971 return this->fields ()[idx];
972 }
973
974 /* Set the fields array of this type. */
975 void set_fields (struct field *fields)
976 {
977 this->main_type->flds_bnds.fields = fields;
978 }
979
980 type *index_type () const
981 {
982 return this->field (0).type ();
983 }
984
985 void set_index_type (type *index_type)
986 {
987 this->field (0).set_type (index_type);
988 }
989
990 /* Return the instance flags converted to the correct type. */
991 const type_instance_flags instance_flags () const
992 {
993 return (enum type_instance_flag_value) this->m_instance_flags;
994 }
995
996 /* Set the instance flags. */
997 void set_instance_flags (type_instance_flags flags)
998 {
999 this->m_instance_flags = flags;
1000 }
1001
1002 /* Get the bounds bounds of this type. The type must be a range type. */
1003 range_bounds *bounds () const
1004 {
1005 switch (this->code ())
1006 {
1007 case TYPE_CODE_RANGE:
1008 return this->main_type->flds_bnds.bounds;
1009
1010 case TYPE_CODE_ARRAY:
1011 case TYPE_CODE_STRING:
1012 return this->index_type ()->bounds ();
1013
1014 default:
1015 gdb_assert_not_reached
1016 ("type::bounds called on type with invalid code");
1017 }
1018 }
1019
1020 /* Set the bounds of this type. The type must be a range type. */
1021 void set_bounds (range_bounds *bounds)
1022 {
1023 gdb_assert (this->code () == TYPE_CODE_RANGE);
1024
1025 this->main_type->flds_bnds.bounds = bounds;
1026 }
1027
1028 ULONGEST bit_stride () const
1029 {
1030 return this->bounds ()->bit_stride ();
1031 }
1032
1033 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1034 the type is signed (unless TYPE_NOSIGN is set). */
1035
1036 bool is_unsigned () const
1037 {
1038 return this->main_type->m_flag_unsigned;
1039 }
1040
1041 void set_is_unsigned (bool is_unsigned)
1042 {
1043 this->main_type->m_flag_unsigned = is_unsigned;
1044 }
1045
1046 /* No sign for this type. In C++, "char", "signed char", and
1047 "unsigned char" are distinct types; so we need an extra flag to
1048 indicate the absence of a sign! */
1049
1050 bool has_no_signedness () const
1051 {
1052 return this->main_type->m_flag_nosign;
1053 }
1054
1055 void set_has_no_signedness (bool has_no_signedness)
1056 {
1057 this->main_type->m_flag_nosign = has_no_signedness;
1058 }
1059
1060 /* This appears in a type's flags word if it is a stub type (e.g.,
1061 if someone referenced a type that wasn't defined in a source file
1062 via (struct sir_not_appearing_in_this_film *)). */
1063
1064 bool is_stub () const
1065 {
1066 return this->main_type->m_flag_stub;
1067 }
1068
1069 void set_is_stub (bool is_stub)
1070 {
1071 this->main_type->m_flag_stub = is_stub;
1072 }
1073
1074 /* The target type of this type is a stub type, and this type needs
1075 to be updated if it gets un-stubbed in check_typedef. Used for
1076 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1077 based on the TYPE_LENGTH of the target type. Also, set for
1078 TYPE_CODE_TYPEDEF. */
1079
1080 bool target_is_stub () const
1081 {
1082 return this->main_type->m_flag_target_stub;
1083 }
1084
1085 void set_target_is_stub (bool target_is_stub)
1086 {
1087 this->main_type->m_flag_target_stub = target_is_stub;
1088 }
1089
1090 /* This is a function type which appears to have a prototype. We
1091 need this for function calls in order to tell us if it's necessary
1092 to coerce the args, or to just do the standard conversions. This
1093 is used with a short field. */
1094
1095 bool is_prototyped () const
1096 {
1097 return this->main_type->m_flag_prototyped;
1098 }
1099
1100 void set_is_prototyped (bool is_prototyped)
1101 {
1102 this->main_type->m_flag_prototyped = is_prototyped;
1103 }
1104
1105 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1106 to functions. */
1107
1108 bool has_varargs () const
1109 {
1110 return this->main_type->m_flag_varargs;
1111 }
1112
1113 void set_has_varargs (bool has_varargs)
1114 {
1115 this->main_type->m_flag_varargs = has_varargs;
1116 }
1117
1118 /* Identify a vector type. Gcc is handling this by adding an extra
1119 attribute to the array type. We slurp that in as a new flag of a
1120 type. This is used only in dwarf2read.c. */
1121
1122 bool is_vector () const
1123 {
1124 return this->main_type->m_flag_vector;
1125 }
1126
1127 void set_is_vector (bool is_vector)
1128 {
1129 this->main_type->m_flag_vector = is_vector;
1130 }
1131
1132 /* This debug target supports TYPE_STUB(t). In the unsupported case
1133 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1134 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1135 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1136
1137 bool stub_is_supported () const
1138 {
1139 return this->main_type->m_flag_stub_supported;
1140 }
1141
1142 void set_stub_is_supported (bool stub_is_supported)
1143 {
1144 this->main_type->m_flag_stub_supported = stub_is_supported;
1145 }
1146
1147 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1148 address is returned by this function call. TYPE_TARGET_TYPE
1149 determines the final returned function type to be presented to
1150 user. */
1151
1152 bool is_gnu_ifunc () const
1153 {
1154 return this->main_type->m_flag_gnu_ifunc;
1155 }
1156
1157 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1158 {
1159 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1160 }
1161
1162 /* The debugging formats (especially STABS) do not contain enough
1163 information to represent all Ada types---especially those whose
1164 size depends on dynamic quantities. Therefore, the GNAT Ada
1165 compiler includes extra information in the form of additional type
1166 definitions connected by naming conventions. This flag indicates
1167 that the type is an ordinary (unencoded) GDB type that has been
1168 created from the necessary run-time information, and does not need
1169 further interpretation. Optionally marks ordinary, fixed-size GDB
1170 type. */
1171
1172 bool is_fixed_instance () const
1173 {
1174 return this->main_type->m_flag_fixed_instance;
1175 }
1176
1177 void set_is_fixed_instance (bool is_fixed_instance)
1178 {
1179 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1180 }
1181
1182 /* A compiler may supply dwarf instrumentation that indicates the desired
1183 endian interpretation of the variable differs from the native endian
1184 representation. */
1185
1186 bool endianity_is_not_default () const
1187 {
1188 return this->main_type->m_flag_endianity_not_default;
1189 }
1190
1191 void set_endianity_is_not_default (bool endianity_is_not_default)
1192 {
1193 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1194 }
1195
1196 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1197 to this type's fixed_point_info. */
1198
1199 struct fixed_point_type_info &fixed_point_info () const
1200 {
1201 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1202 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1203
1204 return *this->main_type->type_specific.fixed_point_info;
1205 }
1206
1207 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1208 fixed_point_info to INFO. */
1209
1210 void set_fixed_point_info (struct fixed_point_type_info *info) const
1211 {
1212 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1213
1214 this->main_type->type_specific.fixed_point_info = info;
1215 }
1216
1217 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1218
1219 In other words, this returns the type after having peeled all
1220 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1221 The TYPE_CODE of the type returned is guaranteed to be
1222 a TYPE_CODE_FIXED_POINT. */
1223
1224 struct type *fixed_point_type_base_type ();
1225
1226 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1227 factor. */
1228
1229 const gdb_mpq &fixed_point_scaling_factor ();
1230
1231 /* * Return the dynamic property of the requested KIND from this type's
1232 list of dynamic properties. */
1233 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1234
1235 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1236 property to this type.
1237
1238 This function assumes that this type is objfile-owned. */
1239 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1240
1241 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1242 void remove_dyn_prop (dynamic_prop_node_kind kind);
1243
1244 /* Return true if this type is owned by an objfile. Return false if it is
1245 owned by an architecture. */
1246 bool is_objfile_owned () const
1247 {
1248 return this->main_type->m_flag_objfile_owned;
1249 }
1250
1251 /* Set the owner of the type to be OBJFILE. */
1252 void set_owner (objfile *objfile)
1253 {
1254 this->main_type->m_owner.objfile = objfile;
1255 this->main_type->m_flag_objfile_owned = true;
1256 }
1257
1258 /* Set the owner of the type to be ARCH. */
1259 void set_owner (gdbarch *arch)
1260 {
1261 this->main_type->m_owner.gdbarch = arch;
1262 this->main_type->m_flag_objfile_owned = false;
1263 }
1264
1265 /* Return the objfile owner of this type.
1266
1267 Return nullptr if this type is not objfile-owned. */
1268 struct objfile *objfile () const
1269 {
1270 if (!this->is_objfile_owned ())
1271 return nullptr;
1272
1273 return this->main_type->m_owner.objfile;
1274 }
1275
1276 /* Return the gdbarch owner of this type.
1277
1278 Return nullptr if this type is not gdbarch-owned. */
1279 gdbarch *arch () const
1280 {
1281 if (this->is_objfile_owned ())
1282 return nullptr;
1283
1284 return this->main_type->m_owner.gdbarch;
1285 }
1286
1287 /* * Return true if this is an integer type whose logical (bit) size
1288 differs from its storage size; false otherwise. Always return
1289 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1290 bool bit_size_differs_p () const
1291 {
1292 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1293 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1294 }
1295
1296 /* * Return the logical (bit) size for this integer type. Only
1297 valid for integer (TYPE_SPECIFIC_INT) types. */
1298 unsigned short bit_size () const
1299 {
1300 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1301 return main_type->type_specific.int_stuff.bit_size;
1302 }
1303
1304 /* * Return the bit offset for this integer type. Only valid for
1305 integer (TYPE_SPECIFIC_INT) types. */
1306 unsigned short bit_offset () const
1307 {
1308 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1309 return main_type->type_specific.int_stuff.bit_offset;
1310 }
1311
1312 /* * Type that is a pointer to this type.
1313 NULL if no such pointer-to type is known yet.
1314 The debugger may add the address of such a type
1315 if it has to construct one later. */
1316
1317 struct type *pointer_type;
1318
1319 /* * C++: also need a reference type. */
1320
1321 struct type *reference_type;
1322
1323 /* * A C++ rvalue reference type added in C++11. */
1324
1325 struct type *rvalue_reference_type;
1326
1327 /* * Variant chain. This points to a type that differs from this
1328 one only in qualifiers and length. Currently, the possible
1329 qualifiers are const, volatile, code-space, data-space, and
1330 address class. The length may differ only when one of the
1331 address class flags are set. The variants are linked in a
1332 circular ring and share MAIN_TYPE. */
1333
1334 struct type *chain;
1335
1336 /* * The alignment for this type. Zero means that the alignment was
1337 not specified in the debug info. Note that this is stored in a
1338 funny way: as the log base 2 (plus 1) of the alignment; so a
1339 value of 1 means the alignment is 1, and a value of 9 means the
1340 alignment is 256. */
1341
1342 unsigned align_log2 : TYPE_ALIGN_BITS;
1343
1344 /* * Flags specific to this instance of the type, indicating where
1345 on the ring we are.
1346
1347 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1348 binary or-ed with the target type, with a special case for
1349 address class and space class. For example if this typedef does
1350 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1351 instance flags are completely inherited from the target type. No
1352 qualifiers can be cleared by the typedef. See also
1353 check_typedef. */
1354 unsigned m_instance_flags : 9;
1355
1356 /* * Length of storage for a value of this type. The value is the
1357 expression in host bytes of what sizeof(type) would return. This
1358 size includes padding. For example, an i386 extended-precision
1359 floating point value really only occupies ten bytes, but most
1360 ABI's declare its size to be 12 bytes, to preserve alignment.
1361 A `struct type' representing such a floating-point type would
1362 have a `length' value of 12, even though the last two bytes are
1363 unused.
1364
1365 Since this field is expressed in host bytes, its value is appropriate
1366 to pass to memcpy and such (it is assumed that GDB itself always runs
1367 on an 8-bits addressable architecture). However, when using it for
1368 target address arithmetic (e.g. adding it to a target address), the
1369 type_length_units function should be used in order to get the length
1370 expressed in target addressable memory units. */
1371
1372 ULONGEST length;
1373
1374 /* * Core type, shared by a group of qualified types. */
1375
1376 struct main_type *main_type;
1377 };
1378
1379 struct fn_fieldlist
1380 {
1381
1382 /* * The overloaded name.
1383 This is generally allocated in the objfile's obstack.
1384 However stabsread.c sometimes uses malloc. */
1385
1386 const char *name;
1387
1388 /* * The number of methods with this name. */
1389
1390 int length;
1391
1392 /* * The list of methods. */
1393
1394 struct fn_field *fn_fields;
1395 };
1396
1397
1398
1399 struct fn_field
1400 {
1401 /* * If is_stub is clear, this is the mangled name which we can look
1402 up to find the address of the method (FIXME: it would be cleaner
1403 to have a pointer to the struct symbol here instead).
1404
1405 If is_stub is set, this is the portion of the mangled name which
1406 specifies the arguments. For example, "ii", if there are two int
1407 arguments, or "" if there are no arguments. See gdb_mangle_name
1408 for the conversion from this format to the one used if is_stub is
1409 clear. */
1410
1411 const char *physname;
1412
1413 /* * The function type for the method.
1414
1415 (This comment used to say "The return value of the method", but
1416 that's wrong. The function type is expected here, i.e. something
1417 with TYPE_CODE_METHOD, and *not* the return-value type). */
1418
1419 struct type *type;
1420
1421 /* * For virtual functions. First baseclass that defines this
1422 virtual function. */
1423
1424 struct type *fcontext;
1425
1426 /* Attributes. */
1427
1428 unsigned int is_const:1;
1429 unsigned int is_volatile:1;
1430 unsigned int is_private:1;
1431 unsigned int is_protected:1;
1432 unsigned int is_artificial:1;
1433
1434 /* * A stub method only has some fields valid (but they are enough
1435 to reconstruct the rest of the fields). */
1436
1437 unsigned int is_stub:1;
1438
1439 /* * True if this function is a constructor, false otherwise. */
1440
1441 unsigned int is_constructor : 1;
1442
1443 /* * True if this function is deleted, false otherwise. */
1444
1445 unsigned int is_deleted : 1;
1446
1447 /* * DW_AT_defaulted attribute for this function. The value is one
1448 of the DW_DEFAULTED constants. */
1449
1450 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1451
1452 /* * Unused. */
1453
1454 unsigned int dummy:6;
1455
1456 /* * Index into that baseclass's virtual function table, minus 2;
1457 else if static: VOFFSET_STATIC; else: 0. */
1458
1459 unsigned int voffset:16;
1460
1461 #define VOFFSET_STATIC 1
1462
1463 };
1464
1465 struct decl_field
1466 {
1467 /* * Unqualified name to be prefixed by owning class qualified
1468 name. */
1469
1470 const char *name;
1471
1472 /* * Type this typedef named NAME represents. */
1473
1474 struct type *type;
1475
1476 /* * True if this field was declared protected, false otherwise. */
1477 unsigned int is_protected : 1;
1478
1479 /* * True if this field was declared private, false otherwise. */
1480 unsigned int is_private : 1;
1481 };
1482
1483 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1484 TYPE_CODE_UNION nodes. */
1485
1486 struct cplus_struct_type
1487 {
1488 /* * Number of base classes this type derives from. The
1489 baseclasses are stored in the first N_BASECLASSES fields
1490 (i.e. the `fields' field of the struct type). The only fields
1491 of struct field that are used are: type, name, loc.bitpos. */
1492
1493 short n_baseclasses;
1494
1495 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1496 All access to this field must be through TYPE_VPTR_FIELDNO as one
1497 thing it does is check whether the field has been initialized.
1498 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1499 which for portability reasons doesn't initialize this field.
1500 TYPE_VPTR_FIELDNO returns -1 for this case.
1501
1502 If -1, we were unable to find the virtual function table pointer in
1503 initial symbol reading, and get_vptr_fieldno should be called to find
1504 it if possible. get_vptr_fieldno will update this field if possible.
1505 Otherwise the value is left at -1.
1506
1507 Unused if this type does not have virtual functions. */
1508
1509 short vptr_fieldno;
1510
1511 /* * Number of methods with unique names. All overloaded methods
1512 with the same name count only once. */
1513
1514 short nfn_fields;
1515
1516 /* * Number of template arguments. */
1517
1518 unsigned short n_template_arguments;
1519
1520 /* * One if this struct is a dynamic class, as defined by the
1521 Itanium C++ ABI: if it requires a virtual table pointer,
1522 because it or any of its base classes have one or more virtual
1523 member functions or virtual base classes. Minus one if not
1524 dynamic. Zero if not yet computed. */
1525
1526 int is_dynamic : 2;
1527
1528 /* * The calling convention for this type, fetched from the
1529 DW_AT_calling_convention attribute. The value is one of the
1530 DW_CC constants. */
1531
1532 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1533
1534 /* * The base class which defined the virtual function table pointer. */
1535
1536 struct type *vptr_basetype;
1537
1538 /* * For derived classes, the number of base classes is given by
1539 n_baseclasses and virtual_field_bits is a bit vector containing
1540 one bit per base class. If the base class is virtual, the
1541 corresponding bit will be set.
1542 I.E, given:
1543
1544 class A{};
1545 class B{};
1546 class C : public B, public virtual A {};
1547
1548 B is a baseclass of C; A is a virtual baseclass for C.
1549 This is a C++ 2.0 language feature. */
1550
1551 B_TYPE *virtual_field_bits;
1552
1553 /* * For classes with private fields, the number of fields is
1554 given by nfields and private_field_bits is a bit vector
1555 containing one bit per field.
1556
1557 If the field is private, the corresponding bit will be set. */
1558
1559 B_TYPE *private_field_bits;
1560
1561 /* * For classes with protected fields, the number of fields is
1562 given by nfields and protected_field_bits is a bit vector
1563 containing one bit per field.
1564
1565 If the field is private, the corresponding bit will be set. */
1566
1567 B_TYPE *protected_field_bits;
1568
1569 /* * For classes with fields to be ignored, either this is
1570 optimized out or this field has length 0. */
1571
1572 B_TYPE *ignore_field_bits;
1573
1574 /* * For classes, structures, and unions, a description of each
1575 field, which consists of an overloaded name, followed by the
1576 types of arguments that the method expects, and then the name
1577 after it has been renamed to make it distinct.
1578
1579 fn_fieldlists points to an array of nfn_fields of these. */
1580
1581 struct fn_fieldlist *fn_fieldlists;
1582
1583 /* * typedefs defined inside this class. typedef_field points to
1584 an array of typedef_field_count elements. */
1585
1586 struct decl_field *typedef_field;
1587
1588 unsigned typedef_field_count;
1589
1590 /* * The nested types defined by this type. nested_types points to
1591 an array of nested_types_count elements. */
1592
1593 struct decl_field *nested_types;
1594
1595 unsigned nested_types_count;
1596
1597 /* * The template arguments. This is an array with
1598 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1599 classes. */
1600
1601 struct symbol **template_arguments;
1602 };
1603
1604 /* * Struct used to store conversion rankings. */
1605
1606 struct rank
1607 {
1608 short rank;
1609
1610 /* * When two conversions are of the same type and therefore have
1611 the same rank, subrank is used to differentiate the two.
1612
1613 Eg: Two derived-class-pointer to base-class-pointer conversions
1614 would both have base pointer conversion rank, but the
1615 conversion with the shorter distance to the ancestor is
1616 preferable. 'subrank' would be used to reflect that. */
1617
1618 short subrank;
1619 };
1620
1621 /* * Used for ranking a function for overload resolution. */
1622
1623 typedef std::vector<rank> badness_vector;
1624
1625 /* * GNAT Ada-specific information for various Ada types. */
1626
1627 struct gnat_aux_type
1628 {
1629 /* * Parallel type used to encode information about dynamic types
1630 used in Ada (such as variant records, variable-size array,
1631 etc). */
1632 struct type* descriptive_type;
1633 };
1634
1635 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1636
1637 struct func_type
1638 {
1639 /* * The calling convention for targets supporting multiple ABIs.
1640 Right now this is only fetched from the Dwarf-2
1641 DW_AT_calling_convention attribute. The value is one of the
1642 DW_CC constants. */
1643
1644 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1645
1646 /* * Whether this function normally returns to its caller. It is
1647 set from the DW_AT_noreturn attribute if set on the
1648 DW_TAG_subprogram. */
1649
1650 unsigned int is_noreturn : 1;
1651
1652 /* * Only those DW_TAG_call_site's in this function that have
1653 DW_AT_call_tail_call set are linked in this list. Function
1654 without its tail call list complete
1655 (DW_AT_call_all_tail_calls or its superset
1656 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1657 DW_TAG_call_site's exist in such function. */
1658
1659 struct call_site *tail_call_list;
1660
1661 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1662 contains the method. */
1663
1664 struct type *self_type;
1665 };
1666
1667 /* struct call_site_parameter can be referenced in callees by several ways. */
1668
1669 enum call_site_parameter_kind
1670 {
1671 /* * Use field call_site_parameter.u.dwarf_reg. */
1672 CALL_SITE_PARAMETER_DWARF_REG,
1673
1674 /* * Use field call_site_parameter.u.fb_offset. */
1675 CALL_SITE_PARAMETER_FB_OFFSET,
1676
1677 /* * Use field call_site_parameter.u.param_offset. */
1678 CALL_SITE_PARAMETER_PARAM_OFFSET
1679 };
1680
1681 struct call_site_target
1682 {
1683 union field_location loc;
1684
1685 /* * Discriminant for union field_location. */
1686
1687 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1688 };
1689
1690 union call_site_parameter_u
1691 {
1692 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1693 as DWARF register number, for register passed
1694 parameters. */
1695
1696 int dwarf_reg;
1697
1698 /* * Offset from the callee's frame base, for stack passed
1699 parameters. This equals offset from the caller's stack
1700 pointer. */
1701
1702 CORE_ADDR fb_offset;
1703
1704 /* * Offset relative to the start of this PER_CU to
1705 DW_TAG_formal_parameter which is referenced by both
1706 caller and the callee. */
1707
1708 cu_offset param_cu_off;
1709 };
1710
1711 struct call_site_parameter
1712 {
1713 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1714
1715 union call_site_parameter_u u;
1716
1717 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1718
1719 const gdb_byte *value;
1720 size_t value_size;
1721
1722 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1723 It may be NULL if not provided by DWARF. */
1724
1725 const gdb_byte *data_value;
1726 size_t data_value_size;
1727 };
1728
1729 /* * A place where a function gets called from, represented by
1730 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1731
1732 struct call_site
1733 {
1734 /* * Address of the first instruction after this call. It must be
1735 the first field as we overload core_addr_hash and core_addr_eq
1736 for it. */
1737
1738 CORE_ADDR pc;
1739
1740 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1741
1742 struct call_site *tail_call_next;
1743
1744 /* * Describe DW_AT_call_target. Missing attribute uses
1745 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1746
1747 struct call_site_target target;
1748
1749 /* * Size of the PARAMETER array. */
1750
1751 unsigned parameter_count;
1752
1753 /* * CU of the function where the call is located. It gets used
1754 for DWARF blocks execution in the parameter array below. */
1755
1756 dwarf2_per_cu_data *per_cu;
1757
1758 /* objfile of the function where the call is located. */
1759
1760 dwarf2_per_objfile *per_objfile;
1761
1762 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1763
1764 struct call_site_parameter parameter[1];
1765 };
1766
1767 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1768
1769 struct fixed_point_type_info
1770 {
1771 /* The fixed point type's scaling factor. */
1772 gdb_mpq scaling_factor;
1773 };
1774
1775 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1776 static structure. */
1777
1778 extern const struct cplus_struct_type cplus_struct_default;
1779
1780 extern void allocate_cplus_struct_type (struct type *);
1781
1782 #define INIT_CPLUS_SPECIFIC(type) \
1783 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1784 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1785 &cplus_struct_default)
1786
1787 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1788
1789 #define HAVE_CPLUS_STRUCT(type) \
1790 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1791 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1792
1793 #define INIT_NONE_SPECIFIC(type) \
1794 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1795 TYPE_MAIN_TYPE (type)->type_specific = {})
1796
1797 extern const struct gnat_aux_type gnat_aux_default;
1798
1799 extern void allocate_gnat_aux_type (struct type *);
1800
1801 #define INIT_GNAT_SPECIFIC(type) \
1802 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1803 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1804 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1805 /* * A macro that returns non-zero if the type-specific data should be
1806 read as "gnat-stuff". */
1807 #define HAVE_GNAT_AUX_INFO(type) \
1808 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1809
1810 /* * True if TYPE is known to be an Ada type of some kind. */
1811 #define ADA_TYPE_P(type) \
1812 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1813 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1814 && (type)->is_fixed_instance ()))
1815
1816 #define INIT_FUNC_SPECIFIC(type) \
1817 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1818 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1819 TYPE_ZALLOC (type, \
1820 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1821
1822 /* "struct fixed_point_type_info" has a field that has a destructor.
1823 See allocate_fixed_point_type_info to understand how this is
1824 handled. */
1825 #define INIT_FIXED_POINT_SPECIFIC(type) \
1826 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1827 allocate_fixed_point_type_info (type))
1828
1829 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1830 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1831 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1832 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1833 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1834 #define TYPE_CHAIN(thistype) (thistype)->chain
1835 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1836 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1837 so you only have to call check_typedef once. Since allocate_value
1838 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1839 #define TYPE_LENGTH(thistype) (thistype)->length
1840
1841 /* * Return the alignment of the type in target addressable memory
1842 units, or 0 if no alignment was specified. */
1843 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1844
1845 /* * Return the alignment of the type in target addressable memory
1846 units, or 0 if no alignment was specified. */
1847 extern unsigned type_raw_align (struct type *);
1848
1849 /* * Return the alignment of the type in target addressable memory
1850 units. Return 0 if the alignment cannot be determined; but note
1851 that this makes an effort to compute the alignment even it it was
1852 not specified in the debug info. */
1853 extern unsigned type_align (struct type *);
1854
1855 /* * Set the alignment of the type. The alignment must be a power of
1856 2. Returns false if the given value does not fit in the available
1857 space in struct type. */
1858 extern bool set_type_align (struct type *, ULONGEST);
1859
1860 /* Property accessors for the type data location. */
1861 #define TYPE_DATA_LOCATION(thistype) \
1862 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1863 #define TYPE_DATA_LOCATION_BATON(thistype) \
1864 TYPE_DATA_LOCATION (thistype)->data.baton
1865 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1866 (TYPE_DATA_LOCATION (thistype)->const_val ())
1867 #define TYPE_DATA_LOCATION_KIND(thistype) \
1868 (TYPE_DATA_LOCATION (thistype)->kind ())
1869 #define TYPE_DYNAMIC_LENGTH(thistype) \
1870 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1871
1872 /* Property accessors for the type allocated/associated. */
1873 #define TYPE_ALLOCATED_PROP(thistype) \
1874 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1875 #define TYPE_ASSOCIATED_PROP(thistype) \
1876 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1877
1878 /* C++ */
1879
1880 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1881 /* Do not call this, use TYPE_SELF_TYPE. */
1882 extern struct type *internal_type_self_type (struct type *);
1883 extern void set_type_self_type (struct type *, struct type *);
1884
1885 extern int internal_type_vptr_fieldno (struct type *);
1886 extern void set_type_vptr_fieldno (struct type *, int);
1887 extern struct type *internal_type_vptr_basetype (struct type *);
1888 extern void set_type_vptr_basetype (struct type *, struct type *);
1889 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1890 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1891
1892 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1893 #define TYPE_SPECIFIC_FIELD(thistype) \
1894 TYPE_MAIN_TYPE(thistype)->type_specific_field
1895 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1896 where we're trying to print an Ada array using the C language.
1897 In that case, there is no "cplus_stuff", but the C language assumes
1898 that there is. What we do, in that case, is pretend that there is
1899 an implicit one which is the default cplus stuff. */
1900 #define TYPE_CPLUS_SPECIFIC(thistype) \
1901 (!HAVE_CPLUS_STRUCT(thistype) \
1902 ? (struct cplus_struct_type*)&cplus_struct_default \
1903 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1904 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1905 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1906 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1907 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1908 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1909 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1910 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1911 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1912 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1913 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1914 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1915 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1916 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1917 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1918 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1919 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1920
1921 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1922 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1923 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1924
1925 #define FIELD_NAME(thisfld) ((thisfld).name)
1926 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1927 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1928 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1929 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1930 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1931 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1932 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1933 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1934 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1935 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1936 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1937 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1938 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1939 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1940 #define SET_FIELD_PHYSNAME(thisfld, name) \
1941 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1942 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1943 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1944 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1945 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1946 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1947 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1948 FIELD_DWARF_BLOCK (thisfld) = (addr))
1949 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1950 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1951
1952 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1953 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1954 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1955 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1956 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1957 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1958 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1959 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1960 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1961 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1962
1963 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1964 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1965 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1966 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1967 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1968 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1969 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1970 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1971 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1972 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1973 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1974 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1975 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1976 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1977 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1978 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1979 #define TYPE_FIELD_PRIVATE(thistype, n) \
1980 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1981 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1982 #define TYPE_FIELD_PROTECTED(thistype, n) \
1983 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1984 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1985 #define TYPE_FIELD_IGNORE(thistype, n) \
1986 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1987 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1988 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1989 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1990 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1991
1992 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1993 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1994 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1995 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1996 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1997
1998 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1999 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2000 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2001 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2002 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2003 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2004
2005 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2006 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2007 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2008 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2009 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2010 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2011 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2012 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2013 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2014 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2015 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2016 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2017 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2018 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2019 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2020 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2021 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2022
2023 /* Accessors for typedefs defined by a class. */
2024 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2025 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2026 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2027 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2028 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2029 TYPE_TYPEDEF_FIELD (thistype, n).name
2030 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2031 TYPE_TYPEDEF_FIELD (thistype, n).type
2032 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2033 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2034 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2035 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2036 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2037 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2038
2039 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2040 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2041 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2042 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2043 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2044 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2045 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2046 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2047 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2048 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2049 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2050 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2051 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2052 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2053
2054 #define TYPE_IS_OPAQUE(thistype) \
2055 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2056 || ((thistype)->code () == TYPE_CODE_UNION)) \
2057 && ((thistype)->num_fields () == 0) \
2058 && (!HAVE_CPLUS_STRUCT (thistype) \
2059 || TYPE_NFN_FIELDS (thistype) == 0) \
2060 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2061
2062 /* * A helper macro that returns the name of a type or "unnamed type"
2063 if the type has no name. */
2064
2065 #define TYPE_SAFE_NAME(type) \
2066 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2067
2068 /* * A helper macro that returns the name of an error type. If the
2069 type has a name, it is used; otherwise, a default is used. */
2070
2071 #define TYPE_ERROR_NAME(type) \
2072 (type->name () ? type->name () : _("<error type>"))
2073
2074 /* Given TYPE, return its floatformat. */
2075 const struct floatformat *floatformat_from_type (const struct type *type);
2076
2077 struct builtin_type
2078 {
2079 /* Integral types. */
2080
2081 /* Implicit size/sign (based on the architecture's ABI). */
2082 struct type *builtin_void;
2083 struct type *builtin_char;
2084 struct type *builtin_short;
2085 struct type *builtin_int;
2086 struct type *builtin_long;
2087 struct type *builtin_signed_char;
2088 struct type *builtin_unsigned_char;
2089 struct type *builtin_unsigned_short;
2090 struct type *builtin_unsigned_int;
2091 struct type *builtin_unsigned_long;
2092 struct type *builtin_bfloat16;
2093 struct type *builtin_half;
2094 struct type *builtin_float;
2095 struct type *builtin_double;
2096 struct type *builtin_long_double;
2097 struct type *builtin_complex;
2098 struct type *builtin_double_complex;
2099 struct type *builtin_string;
2100 struct type *builtin_bool;
2101 struct type *builtin_long_long;
2102 struct type *builtin_unsigned_long_long;
2103 struct type *builtin_decfloat;
2104 struct type *builtin_decdouble;
2105 struct type *builtin_declong;
2106
2107 /* "True" character types.
2108 We use these for the '/c' print format, because c_char is just a
2109 one-byte integral type, which languages less laid back than C
2110 will print as ... well, a one-byte integral type. */
2111 struct type *builtin_true_char;
2112 struct type *builtin_true_unsigned_char;
2113
2114 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2115 is for when an architecture needs to describe a register that has
2116 no size. */
2117 struct type *builtin_int0;
2118 struct type *builtin_int8;
2119 struct type *builtin_uint8;
2120 struct type *builtin_int16;
2121 struct type *builtin_uint16;
2122 struct type *builtin_int24;
2123 struct type *builtin_uint24;
2124 struct type *builtin_int32;
2125 struct type *builtin_uint32;
2126 struct type *builtin_int64;
2127 struct type *builtin_uint64;
2128 struct type *builtin_int128;
2129 struct type *builtin_uint128;
2130
2131 /* Wide character types. */
2132 struct type *builtin_char16;
2133 struct type *builtin_char32;
2134 struct type *builtin_wchar;
2135
2136 /* Pointer types. */
2137
2138 /* * `pointer to data' type. Some target platforms use an implicitly
2139 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2140 struct type *builtin_data_ptr;
2141
2142 /* * `pointer to function (returning void)' type. Harvard
2143 architectures mean that ABI function and code pointers are not
2144 interconvertible. Similarly, since ANSI, C standards have
2145 explicitly said that pointers to functions and pointers to data
2146 are not interconvertible --- that is, you can't cast a function
2147 pointer to void * and back, and expect to get the same value.
2148 However, all function pointer types are interconvertible, so void
2149 (*) () can server as a generic function pointer. */
2150
2151 struct type *builtin_func_ptr;
2152
2153 /* * `function returning pointer to function (returning void)' type.
2154 The final void return type is not significant for it. */
2155
2156 struct type *builtin_func_func;
2157
2158 /* Special-purpose types. */
2159
2160 /* * This type is used to represent a GDB internal function. */
2161
2162 struct type *internal_fn;
2163
2164 /* * This type is used to represent an xmethod. */
2165 struct type *xmethod;
2166 };
2167
2168 /* * Return the type table for the specified architecture. */
2169
2170 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2171
2172 /* * Per-objfile types used by symbol readers. */
2173
2174 struct objfile_type
2175 {
2176 /* Basic types based on the objfile architecture. */
2177 struct type *builtin_void;
2178 struct type *builtin_char;
2179 struct type *builtin_short;
2180 struct type *builtin_int;
2181 struct type *builtin_long;
2182 struct type *builtin_long_long;
2183 struct type *builtin_signed_char;
2184 struct type *builtin_unsigned_char;
2185 struct type *builtin_unsigned_short;
2186 struct type *builtin_unsigned_int;
2187 struct type *builtin_unsigned_long;
2188 struct type *builtin_unsigned_long_long;
2189 struct type *builtin_half;
2190 struct type *builtin_float;
2191 struct type *builtin_double;
2192 struct type *builtin_long_double;
2193
2194 /* * This type is used to represent symbol addresses. */
2195 struct type *builtin_core_addr;
2196
2197 /* * This type represents a type that was unrecognized in symbol
2198 read-in. */
2199 struct type *builtin_error;
2200
2201 /* * Types used for symbols with no debug information. */
2202 struct type *nodebug_text_symbol;
2203 struct type *nodebug_text_gnu_ifunc_symbol;
2204 struct type *nodebug_got_plt_symbol;
2205 struct type *nodebug_data_symbol;
2206 struct type *nodebug_unknown_symbol;
2207 struct type *nodebug_tls_symbol;
2208 };
2209
2210 /* * Return the type table for the specified objfile. */
2211
2212 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2213
2214 /* Explicit floating-point formats. See "floatformat.h". */
2215 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2216 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2217 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2218 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2219 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2220 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2221 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2222 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2223 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2224 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2225 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2226 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2227 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2228
2229 /* Allocate space for storing data associated with a particular
2230 type. We ensure that the space is allocated using the same
2231 mechanism that was used to allocate the space for the type
2232 structure itself. I.e. if the type is on an objfile's
2233 objfile_obstack, then the space for data associated with that type
2234 will also be allocated on the objfile_obstack. If the type is
2235 associated with a gdbarch, then the space for data associated with that
2236 type will also be allocated on the gdbarch_obstack.
2237
2238 If a type is not associated with neither an objfile or a gdbarch then
2239 you should not use this macro to allocate space for data, instead you
2240 should call xmalloc directly, and ensure the memory is correctly freed
2241 when it is no longer needed. */
2242
2243 #define TYPE_ALLOC(t,size) \
2244 (obstack_alloc (((t)->is_objfile_owned () \
2245 ? &((t)->objfile ()->objfile_obstack) \
2246 : gdbarch_obstack ((t)->arch ())), \
2247 size))
2248
2249
2250 /* See comment on TYPE_ALLOC. */
2251
2252 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2253
2254 /* Use alloc_type to allocate a type owned by an objfile. Use
2255 alloc_type_arch to allocate a type owned by an architecture. Use
2256 alloc_type_copy to allocate a type with the same owner as a
2257 pre-existing template type, no matter whether objfile or
2258 gdbarch. */
2259 extern struct type *alloc_type (struct objfile *);
2260 extern struct type *alloc_type_arch (struct gdbarch *);
2261 extern struct type *alloc_type_copy (const struct type *);
2262
2263 /* * Return the type's architecture. For types owned by an
2264 architecture, that architecture is returned. For types owned by an
2265 objfile, that objfile's architecture is returned. */
2266
2267 extern struct gdbarch *get_type_arch (const struct type *);
2268
2269 /* * This returns the target type (or NULL) of TYPE, also skipping
2270 past typedefs. */
2271
2272 extern struct type *get_target_type (struct type *type);
2273
2274 /* Return the equivalent of TYPE_LENGTH, but in number of target
2275 addressable memory units of the associated gdbarch instead of bytes. */
2276
2277 extern unsigned int type_length_units (struct type *type);
2278
2279 /* * Helper function to construct objfile-owned types. */
2280
2281 extern struct type *init_type (struct objfile *, enum type_code, int,
2282 const char *);
2283 extern struct type *init_integer_type (struct objfile *, int, int,
2284 const char *);
2285 extern struct type *init_character_type (struct objfile *, int, int,
2286 const char *);
2287 extern struct type *init_boolean_type (struct objfile *, int, int,
2288 const char *);
2289 extern struct type *init_float_type (struct objfile *, int, const char *,
2290 const struct floatformat **,
2291 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2292 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2293 extern struct type *init_complex_type (const char *, struct type *);
2294 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2295 struct type *);
2296 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2297 const char *);
2298
2299 /* Helper functions to construct architecture-owned types. */
2300 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2301 const char *);
2302 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2303 const char *);
2304 extern struct type *arch_character_type (struct gdbarch *, int, int,
2305 const char *);
2306 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2307 const char *);
2308 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2309 const struct floatformat **);
2310 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2311 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2312 struct type *);
2313
2314 /* Helper functions to construct a struct or record type. An
2315 initially empty type is created using arch_composite_type().
2316 Fields are then added using append_composite_type_field*(). A union
2317 type has its size set to the largest field. A struct type has each
2318 field packed against the previous. */
2319
2320 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2321 const char *name, enum type_code code);
2322 extern void append_composite_type_field (struct type *t, const char *name,
2323 struct type *field);
2324 extern void append_composite_type_field_aligned (struct type *t,
2325 const char *name,
2326 struct type *field,
2327 int alignment);
2328 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2329 struct type *field);
2330
2331 /* Helper functions to construct a bit flags type. An initially empty
2332 type is created using arch_flag_type(). Flags are then added using
2333 append_flag_type_field() and append_flag_type_flag(). */
2334 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2335 const char *name, int bit);
2336 extern void append_flags_type_field (struct type *type,
2337 int start_bitpos, int nr_bits,
2338 struct type *field_type, const char *name);
2339 extern void append_flags_type_flag (struct type *type, int bitpos,
2340 const char *name);
2341
2342 extern void make_vector_type (struct type *array_type);
2343 extern struct type *init_vector_type (struct type *elt_type, int n);
2344
2345 extern struct type *lookup_reference_type (struct type *, enum type_code);
2346 extern struct type *lookup_lvalue_reference_type (struct type *);
2347 extern struct type *lookup_rvalue_reference_type (struct type *);
2348
2349
2350 extern struct type *make_reference_type (struct type *, struct type **,
2351 enum type_code);
2352
2353 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2354
2355 extern struct type *make_restrict_type (struct type *);
2356
2357 extern struct type *make_unqualified_type (struct type *);
2358
2359 extern struct type *make_atomic_type (struct type *);
2360
2361 extern void replace_type (struct type *, struct type *);
2362
2363 extern type_instance_flags address_space_name_to_type_instance_flags
2364 (struct gdbarch *, const char *);
2365
2366 extern const char *address_space_type_instance_flags_to_name
2367 (struct gdbarch *, type_instance_flags);
2368
2369 extern struct type *make_type_with_address_space
2370 (struct type *type, type_instance_flags space_identifier);
2371
2372 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2373
2374 extern struct type *lookup_methodptr_type (struct type *);
2375
2376 extern void smash_to_method_type (struct type *type, struct type *self_type,
2377 struct type *to_type, struct field *args,
2378 int nargs, int varargs);
2379
2380 extern void smash_to_memberptr_type (struct type *, struct type *,
2381 struct type *);
2382
2383 extern void smash_to_methodptr_type (struct type *, struct type *);
2384
2385 extern struct type *allocate_stub_method (struct type *);
2386
2387 extern const char *type_name_or_error (struct type *type);
2388
2389 struct struct_elt
2390 {
2391 /* The field of the element, or NULL if no element was found. */
2392 struct field *field;
2393
2394 /* The bit offset of the element in the parent structure. */
2395 LONGEST offset;
2396 };
2397
2398 /* Given a type TYPE, lookup the field and offset of the component named
2399 NAME.
2400
2401 TYPE can be either a struct or union, or a pointer or reference to
2402 a struct or union. If it is a pointer or reference, its target
2403 type is automatically used. Thus '.' and '->' are interchangable,
2404 as specified for the definitions of the expression element types
2405 STRUCTOP_STRUCT and STRUCTOP_PTR.
2406
2407 If NOERR is nonzero, the returned structure will have field set to
2408 NULL if there is no component named NAME.
2409
2410 If the component NAME is a field in an anonymous substructure of
2411 TYPE, the returned offset is a "global" offset relative to TYPE
2412 rather than an offset within the substructure. */
2413
2414 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2415
2416 /* Given a type TYPE, lookup the type of the component named NAME.
2417
2418 TYPE can be either a struct or union, or a pointer or reference to
2419 a struct or union. If it is a pointer or reference, its target
2420 type is automatically used. Thus '.' and '->' are interchangable,
2421 as specified for the definitions of the expression element types
2422 STRUCTOP_STRUCT and STRUCTOP_PTR.
2423
2424 If NOERR is nonzero, return NULL if there is no component named
2425 NAME. */
2426
2427 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2428
2429 extern struct type *make_pointer_type (struct type *, struct type **);
2430
2431 extern struct type *lookup_pointer_type (struct type *);
2432
2433 extern struct type *make_function_type (struct type *, struct type **);
2434
2435 extern struct type *lookup_function_type (struct type *);
2436
2437 extern struct type *lookup_function_type_with_arguments (struct type *,
2438 int,
2439 struct type **);
2440
2441 extern struct type *create_static_range_type (struct type *, struct type *,
2442 LONGEST, LONGEST);
2443
2444
2445 extern struct type *create_array_type_with_stride
2446 (struct type *, struct type *, struct type *,
2447 struct dynamic_prop *, unsigned int);
2448
2449 extern struct type *create_range_type (struct type *, struct type *,
2450 const struct dynamic_prop *,
2451 const struct dynamic_prop *,
2452 LONGEST);
2453
2454 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2455 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2456 stride. */
2457
2458 extern struct type * create_range_type_with_stride
2459 (struct type *result_type, struct type *index_type,
2460 const struct dynamic_prop *low_bound,
2461 const struct dynamic_prop *high_bound, LONGEST bias,
2462 const struct dynamic_prop *stride, bool byte_stride_p);
2463
2464 extern struct type *create_array_type (struct type *, struct type *,
2465 struct type *);
2466
2467 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2468
2469 extern struct type *create_string_type (struct type *, struct type *,
2470 struct type *);
2471 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2472
2473 extern struct type *create_set_type (struct type *, struct type *);
2474
2475 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2476 const char *);
2477
2478 extern struct type *lookup_signed_typename (const struct language_defn *,
2479 const char *);
2480
2481 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2482
2483 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2484
2485 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2486 ADDR specifies the location of the variable the type is bound to.
2487 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2488 static properties is returned. */
2489 extern struct type *resolve_dynamic_type
2490 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2491 CORE_ADDR addr);
2492
2493 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2494 extern int is_dynamic_type (struct type *type);
2495
2496 extern struct type *check_typedef (struct type *);
2497
2498 extern void check_stub_method_group (struct type *, int);
2499
2500 extern char *gdb_mangle_name (struct type *, int, int);
2501
2502 extern struct type *lookup_typename (const struct language_defn *,
2503 const char *, const struct block *, int);
2504
2505 extern struct type *lookup_template_type (const char *, struct type *,
2506 const struct block *);
2507
2508 extern int get_vptr_fieldno (struct type *, struct type **);
2509
2510 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2511 TYPE.
2512
2513 Return true if the two bounds are available, false otherwise. */
2514
2515 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2516 LONGEST *highp);
2517
2518 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2519
2520 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2521
2522 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2523
2524 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2525
2526 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2527 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2528 Save the high bound into HIGH_BOUND if not NULL.
2529
2530 Return true if the operation was successful. Return false otherwise,
2531 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2532
2533 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2534 LONGEST *high_bound);
2535
2536 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2537 LONGEST val);
2538
2539 extern int class_types_same_p (const struct type *, const struct type *);
2540
2541 extern int is_ancestor (struct type *, struct type *);
2542
2543 extern int is_public_ancestor (struct type *, struct type *);
2544
2545 extern int is_unique_ancestor (struct type *, struct value *);
2546
2547 /* Overload resolution */
2548
2549 /* * Badness if parameter list length doesn't match arg list length. */
2550 extern const struct rank LENGTH_MISMATCH_BADNESS;
2551
2552 /* * Dummy badness value for nonexistent parameter positions. */
2553 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2554 /* * Badness if no conversion among types. */
2555 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2556
2557 /* * Badness of an exact match. */
2558 extern const struct rank EXACT_MATCH_BADNESS;
2559
2560 /* * Badness of integral promotion. */
2561 extern const struct rank INTEGER_PROMOTION_BADNESS;
2562 /* * Badness of floating promotion. */
2563 extern const struct rank FLOAT_PROMOTION_BADNESS;
2564 /* * Badness of converting a derived class pointer
2565 to a base class pointer. */
2566 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2567 /* * Badness of integral conversion. */
2568 extern const struct rank INTEGER_CONVERSION_BADNESS;
2569 /* * Badness of floating conversion. */
2570 extern const struct rank FLOAT_CONVERSION_BADNESS;
2571 /* * Badness of integer<->floating conversions. */
2572 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2573 /* * Badness of conversion of pointer to void pointer. */
2574 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2575 /* * Badness of conversion to boolean. */
2576 extern const struct rank BOOL_CONVERSION_BADNESS;
2577 /* * Badness of converting derived to base class. */
2578 extern const struct rank BASE_CONVERSION_BADNESS;
2579 /* * Badness of converting from non-reference to reference. Subrank
2580 is the type of reference conversion being done. */
2581 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2582 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2583 /* * Conversion to rvalue reference. */
2584 #define REFERENCE_CONVERSION_RVALUE 1
2585 /* * Conversion to const lvalue reference. */
2586 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2587
2588 /* * Badness of converting integer 0 to NULL pointer. */
2589 extern const struct rank NULL_POINTER_CONVERSION;
2590 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2591 being done. */
2592 extern const struct rank CV_CONVERSION_BADNESS;
2593 #define CV_CONVERSION_CONST 1
2594 #define CV_CONVERSION_VOLATILE 2
2595
2596 /* Non-standard conversions allowed by the debugger */
2597
2598 /* * Converting a pointer to an int is usually OK. */
2599 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2600
2601 /* * Badness of converting a (non-zero) integer constant
2602 to a pointer. */
2603 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2604
2605 extern struct rank sum_ranks (struct rank a, struct rank b);
2606 extern int compare_ranks (struct rank a, struct rank b);
2607
2608 extern int compare_badness (const badness_vector &,
2609 const badness_vector &);
2610
2611 extern badness_vector rank_function (gdb::array_view<type *> parms,
2612 gdb::array_view<value *> args);
2613
2614 extern struct rank rank_one_type (struct type *, struct type *,
2615 struct value *);
2616
2617 extern void recursive_dump_type (struct type *, int);
2618
2619 extern int field_is_static (struct field *);
2620
2621 /* printcmd.c */
2622
2623 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2624 const struct value_print_options *,
2625 int, struct ui_file *);
2626
2627 extern int can_dereference (struct type *);
2628
2629 extern int is_integral_type (struct type *);
2630
2631 extern int is_floating_type (struct type *);
2632
2633 extern int is_scalar_type (struct type *type);
2634
2635 extern int is_scalar_type_recursive (struct type *);
2636
2637 extern int class_or_union_p (const struct type *);
2638
2639 extern void maintenance_print_type (const char *, int);
2640
2641 extern htab_up create_copied_types_hash (struct objfile *objfile);
2642
2643 extern struct type *copy_type_recursive (struct objfile *objfile,
2644 struct type *type,
2645 htab_t copied_types);
2646
2647 extern struct type *copy_type (const struct type *type);
2648
2649 extern bool types_equal (struct type *, struct type *);
2650
2651 extern bool types_deeply_equal (struct type *, struct type *);
2652
2653 extern int type_not_allocated (const struct type *type);
2654
2655 extern int type_not_associated (const struct type *type);
2656
2657 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2658 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2659 extern bool is_fixed_point_type (struct type *type);
2660
2661 /* Allocate a fixed-point type info for TYPE. This should only be
2662 called by INIT_FIXED_POINT_SPECIFIC. */
2663 extern void allocate_fixed_point_type_info (struct type *type);
2664
2665 /* * When the type includes explicit byte ordering, return that.
2666 Otherwise, the byte ordering from gdbarch_byte_order for
2667 get_type_arch is returned. */
2668
2669 extern enum bfd_endian type_byte_order (const struct type *type);
2670
2671 /* A flag to enable printing of debugging information of C++
2672 overloading. */
2673
2674 extern unsigned int overload_debug;
2675
2676 #endif /* GDBTYPES_H */