gdb: remove TYPE_OBJFILE macro
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * True if this type was declared using the "class" keyword. This is
224 only valid for C++ structure and enum types. If false, a structure
225 was declared as a "struct"; if true it was declared "class". For
226 enum types, this is true when "enum class" or "enum struct" was
227 used to declare the type.. */
228
229 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
230
231 /* * True if this type is a "flag" enum. A flag enum is one where all
232 the values are pairwise disjoint when "and"ed together. This
233 affects how enum values are printed. */
234
235 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
236
237 /* * Constant type. If this is set, the corresponding type has a
238 const modifier. */
239
240 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
241
242 /* * Volatile type. If this is set, the corresponding type has a
243 volatile modifier. */
244
245 #define TYPE_VOLATILE(t) \
246 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
247
248 /* * Restrict type. If this is set, the corresponding type has a
249 restrict modifier. */
250
251 #define TYPE_RESTRICT(t) \
252 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
253
254 /* * Atomic type. If this is set, the corresponding type has an
255 _Atomic modifier. */
256
257 #define TYPE_ATOMIC(t) \
258 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
259
260 /* * True if this type represents either an lvalue or lvalue reference type. */
261
262 #define TYPE_IS_REFERENCE(t) \
263 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
264
265 /* * True if this type is allocatable. */
266 #define TYPE_IS_ALLOCATABLE(t) \
267 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
268
269 /* * True if this type has variant parts. */
270 #define TYPE_HAS_VARIANT_PARTS(t) \
271 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
272
273 /* * True if this type has a dynamic length. */
274 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
275 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
276
277 /* * Instruction-space delimited type. This is for Harvard architectures
278 which have separate instruction and data address spaces (and perhaps
279 others).
280
281 GDB usually defines a flat address space that is a superset of the
282 architecture's two (or more) address spaces, but this is an extension
283 of the architecture's model.
284
285 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
286 resides in instruction memory, even if its address (in the extended
287 flat address space) does not reflect this.
288
289 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
290 corresponding type resides in the data memory space, even if
291 this is not indicated by its (flat address space) address.
292
293 If neither flag is set, the default space for functions / methods
294 is instruction space, and for data objects is data memory. */
295
296 #define TYPE_CODE_SPACE(t) \
297 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
298
299 #define TYPE_DATA_SPACE(t) \
300 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
301
302 /* * Address class flags. Some environments provide for pointers
303 whose size is different from that of a normal pointer or address
304 types where the bits are interpreted differently than normal
305 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
306 target specific ways to represent these different types of address
307 classes. */
308
309 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
310 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
311 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
312 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
313 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
314 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
315 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
316 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
317
318 /* * Information about a single discriminant. */
319
320 struct discriminant_range
321 {
322 /* * The range of values for the variant. This is an inclusive
323 range. */
324 ULONGEST low, high;
325
326 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
327 is true if this should be an unsigned comparison; false for
328 signed. */
329 bool contains (ULONGEST value, bool is_unsigned) const
330 {
331 if (is_unsigned)
332 return value >= low && value <= high;
333 LONGEST valuel = (LONGEST) value;
334 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
335 }
336 };
337
338 struct variant_part;
339
340 /* * A single variant. A variant has a list of discriminant values.
341 When the discriminator matches one of these, the variant is
342 enabled. Each variant controls zero or more fields; and may also
343 control other variant parts as well. This struct corresponds to
344 DW_TAG_variant in DWARF. */
345
346 struct variant : allocate_on_obstack
347 {
348 /* * The discriminant ranges for this variant. */
349 gdb::array_view<discriminant_range> discriminants;
350
351 /* * The fields controlled by this variant. This is inclusive on
352 the low end and exclusive on the high end. A variant may not
353 control any fields, in which case the two values will be equal.
354 These are indexes into the type's array of fields. */
355 int first_field;
356 int last_field;
357
358 /* * Variant parts controlled by this variant. */
359 gdb::array_view<variant_part> parts;
360
361 /* * Return true if this is the default variant. The default
362 variant can be recognized because it has no associated
363 discriminants. */
364 bool is_default () const
365 {
366 return discriminants.empty ();
367 }
368
369 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
370 if this should be an unsigned comparison; false for signed. */
371 bool matches (ULONGEST value, bool is_unsigned) const;
372 };
373
374 /* * A variant part. Each variant part has an optional discriminant
375 and holds an array of variants. This struct corresponds to
376 DW_TAG_variant_part in DWARF. */
377
378 struct variant_part : allocate_on_obstack
379 {
380 /* * The index of the discriminant field in the outer type. This is
381 an index into the type's array of fields. If this is -1, there
382 is no discriminant, and only the default variant can be
383 considered to be selected. */
384 int discriminant_index;
385
386 /* * True if this discriminant is unsigned; false if signed. This
387 comes from the type of the discriminant. */
388 bool is_unsigned;
389
390 /* * The variants that are controlled by this variant part. Note
391 that these will always be sorted by field number. */
392 gdb::array_view<variant> variants;
393 };
394
395
396 enum dynamic_prop_kind
397 {
398 PROP_UNDEFINED, /* Not defined. */
399 PROP_CONST, /* Constant. */
400 PROP_ADDR_OFFSET, /* Address offset. */
401 PROP_LOCEXPR, /* Location expression. */
402 PROP_LOCLIST, /* Location list. */
403 PROP_VARIANT_PARTS, /* Variant parts. */
404 PROP_TYPE, /* Type. */
405 };
406
407 union dynamic_prop_data
408 {
409 /* Storage for constant property. */
410
411 LONGEST const_val;
412
413 /* Storage for dynamic property. */
414
415 void *baton;
416
417 /* Storage of variant parts for a type. A type with variant parts
418 has all its fields "linearized" -- stored in a single field
419 array, just as if they had all been declared that way. The
420 variant parts are attached via a dynamic property, and then are
421 used to control which fields end up in the final type during
422 dynamic type resolution. */
423
424 const gdb::array_view<variant_part> *variant_parts;
425
426 /* Once a variant type is resolved, we may want to be able to go
427 from the resolved type to the original type. In this case we
428 rewrite the property's kind and set this field. */
429
430 struct type *original_type;
431 };
432
433 /* * Used to store a dynamic property. */
434
435 struct dynamic_prop
436 {
437 dynamic_prop_kind kind () const
438 {
439 return m_kind;
440 }
441
442 void set_undefined ()
443 {
444 m_kind = PROP_UNDEFINED;
445 }
446
447 LONGEST const_val () const
448 {
449 gdb_assert (m_kind == PROP_CONST);
450
451 return m_data.const_val;
452 }
453
454 void set_const_val (LONGEST const_val)
455 {
456 m_kind = PROP_CONST;
457 m_data.const_val = const_val;
458 }
459
460 void *baton () const
461 {
462 gdb_assert (m_kind == PROP_LOCEXPR
463 || m_kind == PROP_LOCLIST
464 || m_kind == PROP_ADDR_OFFSET);
465
466 return m_data.baton;
467 }
468
469 void set_locexpr (void *baton)
470 {
471 m_kind = PROP_LOCEXPR;
472 m_data.baton = baton;
473 }
474
475 void set_loclist (void *baton)
476 {
477 m_kind = PROP_LOCLIST;
478 m_data.baton = baton;
479 }
480
481 void set_addr_offset (void *baton)
482 {
483 m_kind = PROP_ADDR_OFFSET;
484 m_data.baton = baton;
485 }
486
487 const gdb::array_view<variant_part> *variant_parts () const
488 {
489 gdb_assert (m_kind == PROP_VARIANT_PARTS);
490
491 return m_data.variant_parts;
492 }
493
494 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
495 {
496 m_kind = PROP_VARIANT_PARTS;
497 m_data.variant_parts = variant_parts;
498 }
499
500 struct type *original_type () const
501 {
502 gdb_assert (m_kind == PROP_TYPE);
503
504 return m_data.original_type;
505 }
506
507 void set_original_type (struct type *original_type)
508 {
509 m_kind = PROP_TYPE;
510 m_data.original_type = original_type;
511 }
512
513 /* Determine which field of the union dynamic_prop.data is used. */
514 enum dynamic_prop_kind m_kind;
515
516 /* Storage for dynamic or static value. */
517 union dynamic_prop_data m_data;
518 };
519
520 /* Compare two dynamic_prop objects for equality. dynamic_prop
521 instances are equal iff they have the same type and storage. */
522 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
523
524 /* Compare two dynamic_prop objects for inequality. */
525 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
526 {
527 return !(l == r);
528 }
529
530 /* * Define a type's dynamic property node kind. */
531 enum dynamic_prop_node_kind
532 {
533 /* A property providing a type's data location.
534 Evaluating this field yields to the location of an object's data. */
535 DYN_PROP_DATA_LOCATION,
536
537 /* A property representing DW_AT_allocated. The presence of this attribute
538 indicates that the object of the type can be allocated/deallocated. */
539 DYN_PROP_ALLOCATED,
540
541 /* A property representing DW_AT_associated. The presence of this attribute
542 indicated that the object of the type can be associated. */
543 DYN_PROP_ASSOCIATED,
544
545 /* A property providing an array's byte stride. */
546 DYN_PROP_BYTE_STRIDE,
547
548 /* A property holding variant parts. */
549 DYN_PROP_VARIANT_PARTS,
550
551 /* A property holding the size of the type. */
552 DYN_PROP_BYTE_SIZE,
553 };
554
555 /* * List for dynamic type attributes. */
556 struct dynamic_prop_list
557 {
558 /* The kind of dynamic prop in this node. */
559 enum dynamic_prop_node_kind prop_kind;
560
561 /* The dynamic property itself. */
562 struct dynamic_prop prop;
563
564 /* A pointer to the next dynamic property. */
565 struct dynamic_prop_list *next;
566 };
567
568 /* * Determine which field of the union main_type.fields[x].loc is
569 used. */
570
571 enum field_loc_kind
572 {
573 FIELD_LOC_KIND_BITPOS, /**< bitpos */
574 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
575 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
576 FIELD_LOC_KIND_PHYSNAME, /**< physname */
577 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
578 };
579
580 /* * A discriminant to determine which field in the
581 main_type.type_specific union is being used, if any.
582
583 For types such as TYPE_CODE_FLT, the use of this
584 discriminant is really redundant, as we know from the type code
585 which field is going to be used. As such, it would be possible to
586 reduce the size of this enum in order to save a bit or two for
587 other fields of struct main_type. But, since we still have extra
588 room , and for the sake of clarity and consistency, we treat all fields
589 of the union the same way. */
590
591 enum type_specific_kind
592 {
593 TYPE_SPECIFIC_NONE,
594 TYPE_SPECIFIC_CPLUS_STUFF,
595 TYPE_SPECIFIC_GNAT_STUFF,
596 TYPE_SPECIFIC_FLOATFORMAT,
597 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598 TYPE_SPECIFIC_FUNC,
599 TYPE_SPECIFIC_SELF_TYPE,
600 TYPE_SPECIFIC_INT,
601 TYPE_SPECIFIC_FIXED_POINT,
602 };
603
604 union type_owner
605 {
606 struct objfile *objfile;
607 struct gdbarch *gdbarch;
608 };
609
610 union field_location
611 {
612 /* * Position of this field, counting in bits from start of
613 containing structure. For big-endian targets, it is the bit
614 offset to the MSB. For little-endian targets, it is the bit
615 offset to the LSB. */
616
617 LONGEST bitpos;
618
619 /* * Enum value. */
620 LONGEST enumval;
621
622 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
623 physaddr is the location (in the target) of the static
624 field. Otherwise, physname is the mangled label of the
625 static field. */
626
627 CORE_ADDR physaddr;
628 const char *physname;
629
630 /* * The field location can be computed by evaluating the
631 following DWARF block. Its DATA is allocated on
632 objfile_obstack - no CU load is needed to access it. */
633
634 struct dwarf2_locexpr_baton *dwarf_block;
635 };
636
637 struct field
638 {
639 struct type *type () const
640 {
641 return this->m_type;
642 }
643
644 void set_type (struct type *type)
645 {
646 this->m_type = type;
647 }
648
649 union field_location loc;
650
651 /* * For a function or member type, this is 1 if the argument is
652 marked artificial. Artificial arguments should not be shown
653 to the user. For TYPE_CODE_RANGE it is set if the specific
654 bound is not defined. */
655
656 unsigned int artificial : 1;
657
658 /* * Discriminant for union field_location. */
659
660 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
661
662 /* * Size of this field, in bits, or zero if not packed.
663 If non-zero in an array type, indicates the element size in
664 bits (used only in Ada at the moment).
665 For an unpacked field, the field's type's length
666 says how many bytes the field occupies. */
667
668 unsigned int bitsize : 28;
669
670 /* * In a struct or union type, type of this field.
671 - In a function or member type, type of this argument.
672 - In an array type, the domain-type of the array. */
673
674 struct type *m_type;
675
676 /* * Name of field, value or argument.
677 NULL for range bounds, array domains, and member function
678 arguments. */
679
680 const char *name;
681 };
682
683 struct range_bounds
684 {
685 ULONGEST bit_stride () const
686 {
687 if (this->flag_is_byte_stride)
688 return this->stride.const_val () * 8;
689 else
690 return this->stride.const_val ();
691 }
692
693 /* * Low bound of range. */
694
695 struct dynamic_prop low;
696
697 /* * High bound of range. */
698
699 struct dynamic_prop high;
700
701 /* The stride value for this range. This can be stored in bits or bytes
702 based on the value of BYTE_STRIDE_P. It is optional to have a stride
703 value, if this range has no stride value defined then this will be set
704 to the constant zero. */
705
706 struct dynamic_prop stride;
707
708 /* * The bias. Sometimes a range value is biased before storage.
709 The bias is added to the stored bits to form the true value. */
710
711 LONGEST bias;
712
713 /* True if HIGH range bound contains the number of elements in the
714 subrange. This affects how the final high bound is computed. */
715
716 unsigned int flag_upper_bound_is_count : 1;
717
718 /* True if LOW or/and HIGH are resolved into a static bound from
719 a dynamic one. */
720
721 unsigned int flag_bound_evaluated : 1;
722
723 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
724
725 unsigned int flag_is_byte_stride : 1;
726 };
727
728 /* Compare two range_bounds objects for equality. Simply does
729 memberwise comparison. */
730 extern bool operator== (const range_bounds &l, const range_bounds &r);
731
732 /* Compare two range_bounds objects for inequality. */
733 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
734 {
735 return !(l == r);
736 }
737
738 union type_specific
739 {
740 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
741 point to cplus_struct_default, a default static instance of a
742 struct cplus_struct_type. */
743
744 struct cplus_struct_type *cplus_stuff;
745
746 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
747 provides additional information. */
748
749 struct gnat_aux_type *gnat_stuff;
750
751 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
752 floatformat object that describes the floating-point value
753 that resides within the type. */
754
755 const struct floatformat *floatformat;
756
757 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
758
759 struct func_type *func_stuff;
760
761 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
762 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
763 is a member of. */
764
765 struct type *self_type;
766
767 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
768 values of that type. */
769 struct fixed_point_type_info *fixed_point_info;
770
771 /* * An integer-like scalar type may be stored in just part of its
772 enclosing storage bytes. This structure describes this
773 situation. */
774 struct
775 {
776 /* * The bit size of the integer. This can be 0. For integers
777 that fill their storage (the ordinary case), this field holds
778 the byte size times 8. */
779 unsigned short bit_size;
780 /* * The bit offset of the integer. This is ordinarily 0, and can
781 only be non-zero if the bit size is less than the storage
782 size. */
783 unsigned short bit_offset;
784 } int_stuff;
785 };
786
787 /* * Main structure representing a type in GDB.
788
789 This structure is space-critical. Its layout has been tweaked to
790 reduce the space used. */
791
792 struct main_type
793 {
794 /* * Code for kind of type. */
795
796 ENUM_BITFIELD(type_code) code : 8;
797
798 /* * Flags about this type. These fields appear at this location
799 because they packs nicely here. See the TYPE_* macros for
800 documentation about these fields. */
801
802 unsigned int m_flag_unsigned : 1;
803 unsigned int m_flag_nosign : 1;
804 unsigned int m_flag_stub : 1;
805 unsigned int m_flag_target_stub : 1;
806 unsigned int m_flag_prototyped : 1;
807 unsigned int m_flag_varargs : 1;
808 unsigned int m_flag_vector : 1;
809 unsigned int m_flag_stub_supported : 1;
810 unsigned int m_flag_gnu_ifunc : 1;
811 unsigned int m_flag_fixed_instance : 1;
812 unsigned int m_flag_objfile_owned : 1;
813 unsigned int m_flag_endianity_not_default : 1;
814
815 /* * True if this type was declared with "class" rather than
816 "struct". */
817
818 unsigned int flag_declared_class : 1;
819
820 /* * True if this is an enum type with disjoint values. This
821 affects how the enum is printed. */
822
823 unsigned int flag_flag_enum : 1;
824
825 /* * A discriminant telling us which field of the type_specific
826 union is being used for this type, if any. */
827
828 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
829
830 /* * Number of fields described for this type. This field appears
831 at this location because it packs nicely here. */
832
833 short nfields;
834
835 /* * Name of this type, or NULL if none.
836
837 This is used for printing only. For looking up a name, look for
838 a symbol in the VAR_DOMAIN. This is generally allocated in the
839 objfile's obstack. However coffread.c uses malloc. */
840
841 const char *name;
842
843 /* * Every type is now associated with a particular objfile, and the
844 type is allocated on the objfile_obstack for that objfile. One
845 problem however, is that there are times when gdb allocates new
846 types while it is not in the process of reading symbols from a
847 particular objfile. Fortunately, these happen when the type
848 being created is a derived type of an existing type, such as in
849 lookup_pointer_type(). So we can just allocate the new type
850 using the same objfile as the existing type, but to do this we
851 need a backpointer to the objfile from the existing type. Yes
852 this is somewhat ugly, but without major overhaul of the internal
853 type system, it can't be avoided for now. */
854
855 union type_owner m_owner;
856
857 /* * For a pointer type, describes the type of object pointed to.
858 - For an array type, describes the type of the elements.
859 - For a function or method type, describes the type of the return value.
860 - For a range type, describes the type of the full range.
861 - For a complex type, describes the type of each coordinate.
862 - For a special record or union type encoding a dynamic-sized type
863 in GNAT, a memoized pointer to a corresponding static version of
864 the type.
865 - Unused otherwise. */
866
867 struct type *target_type;
868
869 /* * For structure and union types, a description of each field.
870 For set and pascal array types, there is one "field",
871 whose type is the domain type of the set or array.
872 For range types, there are two "fields",
873 the minimum and maximum values (both inclusive).
874 For enum types, each possible value is described by one "field".
875 For a function or method type, a "field" for each parameter.
876 For C++ classes, there is one field for each base class (if it is
877 a derived class) plus one field for each class data member. Member
878 functions are recorded elsewhere.
879
880 Using a pointer to a separate array of fields
881 allows all types to have the same size, which is useful
882 because we can allocate the space for a type before
883 we know what to put in it. */
884
885 union
886 {
887 struct field *fields;
888
889 /* * Union member used for range types. */
890
891 struct range_bounds *bounds;
892
893 /* If this is a scalar type, then this is its corresponding
894 complex type. */
895 struct type *complex_type;
896
897 } flds_bnds;
898
899 /* * Slot to point to additional language-specific fields of this
900 type. */
901
902 union type_specific type_specific;
903
904 /* * Contains all dynamic type properties. */
905 struct dynamic_prop_list *dyn_prop_list;
906 };
907
908 /* * Number of bits allocated for alignment. */
909
910 #define TYPE_ALIGN_BITS 8
911
912 /* * A ``struct type'' describes a particular instance of a type, with
913 some particular qualification. */
914
915 struct type
916 {
917 /* Get the type code of this type.
918
919 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
920 type, you need to do `check_typedef (type)->code ()`. */
921 type_code code () const
922 {
923 return this->main_type->code;
924 }
925
926 /* Set the type code of this type. */
927 void set_code (type_code code)
928 {
929 this->main_type->code = code;
930 }
931
932 /* Get the name of this type. */
933 const char *name () const
934 {
935 return this->main_type->name;
936 }
937
938 /* Set the name of this type. */
939 void set_name (const char *name)
940 {
941 this->main_type->name = name;
942 }
943
944 /* Get the number of fields of this type. */
945 int num_fields () const
946 {
947 return this->main_type->nfields;
948 }
949
950 /* Set the number of fields of this type. */
951 void set_num_fields (int num_fields)
952 {
953 this->main_type->nfields = num_fields;
954 }
955
956 /* Get the fields array of this type. */
957 struct field *fields () const
958 {
959 return this->main_type->flds_bnds.fields;
960 }
961
962 /* Get the field at index IDX. */
963 struct field &field (int idx) const
964 {
965 return this->fields ()[idx];
966 }
967
968 /* Set the fields array of this type. */
969 void set_fields (struct field *fields)
970 {
971 this->main_type->flds_bnds.fields = fields;
972 }
973
974 type *index_type () const
975 {
976 return this->field (0).type ();
977 }
978
979 void set_index_type (type *index_type)
980 {
981 this->field (0).set_type (index_type);
982 }
983
984 /* Return the instance flags converted to the correct type. */
985 const type_instance_flags instance_flags () const
986 {
987 return (enum type_instance_flag_value) this->m_instance_flags;
988 }
989
990 /* Set the instance flags. */
991 void set_instance_flags (type_instance_flags flags)
992 {
993 this->m_instance_flags = flags;
994 }
995
996 /* Get the bounds bounds of this type. The type must be a range type. */
997 range_bounds *bounds () const
998 {
999 switch (this->code ())
1000 {
1001 case TYPE_CODE_RANGE:
1002 return this->main_type->flds_bnds.bounds;
1003
1004 case TYPE_CODE_ARRAY:
1005 case TYPE_CODE_STRING:
1006 return this->index_type ()->bounds ();
1007
1008 default:
1009 gdb_assert_not_reached
1010 ("type::bounds called on type with invalid code");
1011 }
1012 }
1013
1014 /* Set the bounds of this type. The type must be a range type. */
1015 void set_bounds (range_bounds *bounds)
1016 {
1017 gdb_assert (this->code () == TYPE_CODE_RANGE);
1018
1019 this->main_type->flds_bnds.bounds = bounds;
1020 }
1021
1022 ULONGEST bit_stride () const
1023 {
1024 return this->bounds ()->bit_stride ();
1025 }
1026
1027 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1028 the type is signed (unless TYPE_NOSIGN is set). */
1029
1030 bool is_unsigned () const
1031 {
1032 return this->main_type->m_flag_unsigned;
1033 }
1034
1035 void set_is_unsigned (bool is_unsigned)
1036 {
1037 this->main_type->m_flag_unsigned = is_unsigned;
1038 }
1039
1040 /* No sign for this type. In C++, "char", "signed char", and
1041 "unsigned char" are distinct types; so we need an extra flag to
1042 indicate the absence of a sign! */
1043
1044 bool has_no_signedness () const
1045 {
1046 return this->main_type->m_flag_nosign;
1047 }
1048
1049 void set_has_no_signedness (bool has_no_signedness)
1050 {
1051 this->main_type->m_flag_nosign = has_no_signedness;
1052 }
1053
1054 /* This appears in a type's flags word if it is a stub type (e.g.,
1055 if someone referenced a type that wasn't defined in a source file
1056 via (struct sir_not_appearing_in_this_film *)). */
1057
1058 bool is_stub () const
1059 {
1060 return this->main_type->m_flag_stub;
1061 }
1062
1063 void set_is_stub (bool is_stub)
1064 {
1065 this->main_type->m_flag_stub = is_stub;
1066 }
1067
1068 /* The target type of this type is a stub type, and this type needs
1069 to be updated if it gets un-stubbed in check_typedef. Used for
1070 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1071 based on the TYPE_LENGTH of the target type. Also, set for
1072 TYPE_CODE_TYPEDEF. */
1073
1074 bool target_is_stub () const
1075 {
1076 return this->main_type->m_flag_target_stub;
1077 }
1078
1079 void set_target_is_stub (bool target_is_stub)
1080 {
1081 this->main_type->m_flag_target_stub = target_is_stub;
1082 }
1083
1084 /* This is a function type which appears to have a prototype. We
1085 need this for function calls in order to tell us if it's necessary
1086 to coerce the args, or to just do the standard conversions. This
1087 is used with a short field. */
1088
1089 bool is_prototyped () const
1090 {
1091 return this->main_type->m_flag_prototyped;
1092 }
1093
1094 void set_is_prototyped (bool is_prototyped)
1095 {
1096 this->main_type->m_flag_prototyped = is_prototyped;
1097 }
1098
1099 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1100 to functions. */
1101
1102 bool has_varargs () const
1103 {
1104 return this->main_type->m_flag_varargs;
1105 }
1106
1107 void set_has_varargs (bool has_varargs)
1108 {
1109 this->main_type->m_flag_varargs = has_varargs;
1110 }
1111
1112 /* Identify a vector type. Gcc is handling this by adding an extra
1113 attribute to the array type. We slurp that in as a new flag of a
1114 type. This is used only in dwarf2read.c. */
1115
1116 bool is_vector () const
1117 {
1118 return this->main_type->m_flag_vector;
1119 }
1120
1121 void set_is_vector (bool is_vector)
1122 {
1123 this->main_type->m_flag_vector = is_vector;
1124 }
1125
1126 /* This debug target supports TYPE_STUB(t). In the unsupported case
1127 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1128 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1129 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1130
1131 bool stub_is_supported () const
1132 {
1133 return this->main_type->m_flag_stub_supported;
1134 }
1135
1136 void set_stub_is_supported (bool stub_is_supported)
1137 {
1138 this->main_type->m_flag_stub_supported = stub_is_supported;
1139 }
1140
1141 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1142 address is returned by this function call. TYPE_TARGET_TYPE
1143 determines the final returned function type to be presented to
1144 user. */
1145
1146 bool is_gnu_ifunc () const
1147 {
1148 return this->main_type->m_flag_gnu_ifunc;
1149 }
1150
1151 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1152 {
1153 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1154 }
1155
1156 /* The debugging formats (especially STABS) do not contain enough
1157 information to represent all Ada types---especially those whose
1158 size depends on dynamic quantities. Therefore, the GNAT Ada
1159 compiler includes extra information in the form of additional type
1160 definitions connected by naming conventions. This flag indicates
1161 that the type is an ordinary (unencoded) GDB type that has been
1162 created from the necessary run-time information, and does not need
1163 further interpretation. Optionally marks ordinary, fixed-size GDB
1164 type. */
1165
1166 bool is_fixed_instance () const
1167 {
1168 return this->main_type->m_flag_fixed_instance;
1169 }
1170
1171 void set_is_fixed_instance (bool is_fixed_instance)
1172 {
1173 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1174 }
1175
1176 /* A compiler may supply dwarf instrumentation that indicates the desired
1177 endian interpretation of the variable differs from the native endian
1178 representation. */
1179
1180 bool endianity_is_not_default () const
1181 {
1182 return this->main_type->m_flag_endianity_not_default;
1183 }
1184
1185 void set_endianity_is_not_default (bool endianity_is_not_default)
1186 {
1187 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1188 }
1189
1190 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1191 to this type's fixed_point_info. */
1192
1193 struct fixed_point_type_info &fixed_point_info () const
1194 {
1195 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1196 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1197
1198 return *this->main_type->type_specific.fixed_point_info;
1199 }
1200
1201 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1202 fixed_point_info to INFO. */
1203
1204 void set_fixed_point_info (struct fixed_point_type_info *info) const
1205 {
1206 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1207
1208 this->main_type->type_specific.fixed_point_info = info;
1209 }
1210
1211 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1212
1213 In other words, this returns the type after having peeled all
1214 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1215 The TYPE_CODE of the type returned is guaranteed to be
1216 a TYPE_CODE_FIXED_POINT. */
1217
1218 struct type *fixed_point_type_base_type ();
1219
1220 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1221 factor. */
1222
1223 const gdb_mpq &fixed_point_scaling_factor ();
1224
1225 /* * Return the dynamic property of the requested KIND from this type's
1226 list of dynamic properties. */
1227 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1228
1229 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1230 property to this type.
1231
1232 This function assumes that this type is objfile-owned. */
1233 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1234
1235 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1236 void remove_dyn_prop (dynamic_prop_node_kind kind);
1237
1238 /* Return true if this type is owned by an objfile. Return false if it is
1239 owned by an architecture. */
1240 bool is_objfile_owned () const
1241 {
1242 return this->main_type->m_flag_objfile_owned;
1243 }
1244
1245 /* Set the owner of the type to be OBJFILE. */
1246 void set_owner (objfile *objfile)
1247 {
1248 this->main_type->m_owner.objfile = objfile;
1249 this->main_type->m_flag_objfile_owned = true;
1250 }
1251
1252 /* Set the owner of the type to be ARCH. */
1253 void set_owner (gdbarch *arch)
1254 {
1255 this->main_type->m_owner.gdbarch = arch;
1256 this->main_type->m_flag_objfile_owned = false;
1257 }
1258
1259 /* Return the objfile owner of this type.
1260
1261 Return nullptr if this type is not objfile-owned. */
1262 struct objfile *objfile () const
1263 {
1264 if (!this->is_objfile_owned ())
1265 return nullptr;
1266
1267 return this->main_type->m_owner.objfile;
1268 }
1269
1270 /* Return the gdbarch owner of this type.
1271
1272 Return nullptr if this type is not gdbarch-owned. */
1273 gdbarch *arch () const
1274 {
1275 if (this->is_objfile_owned ())
1276 return nullptr;
1277
1278 return this->main_type->m_owner.gdbarch;
1279 }
1280
1281 /* * Return true if this is an integer type whose logical (bit) size
1282 differs from its storage size; false otherwise. Always return
1283 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1284 bool bit_size_differs_p () const
1285 {
1286 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1287 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1288 }
1289
1290 /* * Return the logical (bit) size for this integer type. Only
1291 valid for integer (TYPE_SPECIFIC_INT) types. */
1292 unsigned short bit_size () const
1293 {
1294 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1295 return main_type->type_specific.int_stuff.bit_size;
1296 }
1297
1298 /* * Return the bit offset for this integer type. Only valid for
1299 integer (TYPE_SPECIFIC_INT) types. */
1300 unsigned short bit_offset () const
1301 {
1302 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1303 return main_type->type_specific.int_stuff.bit_offset;
1304 }
1305
1306 /* * Type that is a pointer to this type.
1307 NULL if no such pointer-to type is known yet.
1308 The debugger may add the address of such a type
1309 if it has to construct one later. */
1310
1311 struct type *pointer_type;
1312
1313 /* * C++: also need a reference type. */
1314
1315 struct type *reference_type;
1316
1317 /* * A C++ rvalue reference type added in C++11. */
1318
1319 struct type *rvalue_reference_type;
1320
1321 /* * Variant chain. This points to a type that differs from this
1322 one only in qualifiers and length. Currently, the possible
1323 qualifiers are const, volatile, code-space, data-space, and
1324 address class. The length may differ only when one of the
1325 address class flags are set. The variants are linked in a
1326 circular ring and share MAIN_TYPE. */
1327
1328 struct type *chain;
1329
1330 /* * The alignment for this type. Zero means that the alignment was
1331 not specified in the debug info. Note that this is stored in a
1332 funny way: as the log base 2 (plus 1) of the alignment; so a
1333 value of 1 means the alignment is 1, and a value of 9 means the
1334 alignment is 256. */
1335
1336 unsigned align_log2 : TYPE_ALIGN_BITS;
1337
1338 /* * Flags specific to this instance of the type, indicating where
1339 on the ring we are.
1340
1341 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1342 binary or-ed with the target type, with a special case for
1343 address class and space class. For example if this typedef does
1344 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1345 instance flags are completely inherited from the target type. No
1346 qualifiers can be cleared by the typedef. See also
1347 check_typedef. */
1348 unsigned m_instance_flags : 9;
1349
1350 /* * Length of storage for a value of this type. The value is the
1351 expression in host bytes of what sizeof(type) would return. This
1352 size includes padding. For example, an i386 extended-precision
1353 floating point value really only occupies ten bytes, but most
1354 ABI's declare its size to be 12 bytes, to preserve alignment.
1355 A `struct type' representing such a floating-point type would
1356 have a `length' value of 12, even though the last two bytes are
1357 unused.
1358
1359 Since this field is expressed in host bytes, its value is appropriate
1360 to pass to memcpy and such (it is assumed that GDB itself always runs
1361 on an 8-bits addressable architecture). However, when using it for
1362 target address arithmetic (e.g. adding it to a target address), the
1363 type_length_units function should be used in order to get the length
1364 expressed in target addressable memory units. */
1365
1366 ULONGEST length;
1367
1368 /* * Core type, shared by a group of qualified types. */
1369
1370 struct main_type *main_type;
1371 };
1372
1373 struct fn_fieldlist
1374 {
1375
1376 /* * The overloaded name.
1377 This is generally allocated in the objfile's obstack.
1378 However stabsread.c sometimes uses malloc. */
1379
1380 const char *name;
1381
1382 /* * The number of methods with this name. */
1383
1384 int length;
1385
1386 /* * The list of methods. */
1387
1388 struct fn_field *fn_fields;
1389 };
1390
1391
1392
1393 struct fn_field
1394 {
1395 /* * If is_stub is clear, this is the mangled name which we can look
1396 up to find the address of the method (FIXME: it would be cleaner
1397 to have a pointer to the struct symbol here instead).
1398
1399 If is_stub is set, this is the portion of the mangled name which
1400 specifies the arguments. For example, "ii", if there are two int
1401 arguments, or "" if there are no arguments. See gdb_mangle_name
1402 for the conversion from this format to the one used if is_stub is
1403 clear. */
1404
1405 const char *physname;
1406
1407 /* * The function type for the method.
1408
1409 (This comment used to say "The return value of the method", but
1410 that's wrong. The function type is expected here, i.e. something
1411 with TYPE_CODE_METHOD, and *not* the return-value type). */
1412
1413 struct type *type;
1414
1415 /* * For virtual functions. First baseclass that defines this
1416 virtual function. */
1417
1418 struct type *fcontext;
1419
1420 /* Attributes. */
1421
1422 unsigned int is_const:1;
1423 unsigned int is_volatile:1;
1424 unsigned int is_private:1;
1425 unsigned int is_protected:1;
1426 unsigned int is_artificial:1;
1427
1428 /* * A stub method only has some fields valid (but they are enough
1429 to reconstruct the rest of the fields). */
1430
1431 unsigned int is_stub:1;
1432
1433 /* * True if this function is a constructor, false otherwise. */
1434
1435 unsigned int is_constructor : 1;
1436
1437 /* * True if this function is deleted, false otherwise. */
1438
1439 unsigned int is_deleted : 1;
1440
1441 /* * DW_AT_defaulted attribute for this function. The value is one
1442 of the DW_DEFAULTED constants. */
1443
1444 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1445
1446 /* * Unused. */
1447
1448 unsigned int dummy:6;
1449
1450 /* * Index into that baseclass's virtual function table, minus 2;
1451 else if static: VOFFSET_STATIC; else: 0. */
1452
1453 unsigned int voffset:16;
1454
1455 #define VOFFSET_STATIC 1
1456
1457 };
1458
1459 struct decl_field
1460 {
1461 /* * Unqualified name to be prefixed by owning class qualified
1462 name. */
1463
1464 const char *name;
1465
1466 /* * Type this typedef named NAME represents. */
1467
1468 struct type *type;
1469
1470 /* * True if this field was declared protected, false otherwise. */
1471 unsigned int is_protected : 1;
1472
1473 /* * True if this field was declared private, false otherwise. */
1474 unsigned int is_private : 1;
1475 };
1476
1477 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1478 TYPE_CODE_UNION nodes. */
1479
1480 struct cplus_struct_type
1481 {
1482 /* * Number of base classes this type derives from. The
1483 baseclasses are stored in the first N_BASECLASSES fields
1484 (i.e. the `fields' field of the struct type). The only fields
1485 of struct field that are used are: type, name, loc.bitpos. */
1486
1487 short n_baseclasses;
1488
1489 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1490 All access to this field must be through TYPE_VPTR_FIELDNO as one
1491 thing it does is check whether the field has been initialized.
1492 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1493 which for portability reasons doesn't initialize this field.
1494 TYPE_VPTR_FIELDNO returns -1 for this case.
1495
1496 If -1, we were unable to find the virtual function table pointer in
1497 initial symbol reading, and get_vptr_fieldno should be called to find
1498 it if possible. get_vptr_fieldno will update this field if possible.
1499 Otherwise the value is left at -1.
1500
1501 Unused if this type does not have virtual functions. */
1502
1503 short vptr_fieldno;
1504
1505 /* * Number of methods with unique names. All overloaded methods
1506 with the same name count only once. */
1507
1508 short nfn_fields;
1509
1510 /* * Number of template arguments. */
1511
1512 unsigned short n_template_arguments;
1513
1514 /* * One if this struct is a dynamic class, as defined by the
1515 Itanium C++ ABI: if it requires a virtual table pointer,
1516 because it or any of its base classes have one or more virtual
1517 member functions or virtual base classes. Minus one if not
1518 dynamic. Zero if not yet computed. */
1519
1520 int is_dynamic : 2;
1521
1522 /* * The calling convention for this type, fetched from the
1523 DW_AT_calling_convention attribute. The value is one of the
1524 DW_CC constants. */
1525
1526 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1527
1528 /* * The base class which defined the virtual function table pointer. */
1529
1530 struct type *vptr_basetype;
1531
1532 /* * For derived classes, the number of base classes is given by
1533 n_baseclasses and virtual_field_bits is a bit vector containing
1534 one bit per base class. If the base class is virtual, the
1535 corresponding bit will be set.
1536 I.E, given:
1537
1538 class A{};
1539 class B{};
1540 class C : public B, public virtual A {};
1541
1542 B is a baseclass of C; A is a virtual baseclass for C.
1543 This is a C++ 2.0 language feature. */
1544
1545 B_TYPE *virtual_field_bits;
1546
1547 /* * For classes with private fields, the number of fields is
1548 given by nfields and private_field_bits is a bit vector
1549 containing one bit per field.
1550
1551 If the field is private, the corresponding bit will be set. */
1552
1553 B_TYPE *private_field_bits;
1554
1555 /* * For classes with protected fields, the number of fields is
1556 given by nfields and protected_field_bits is a bit vector
1557 containing one bit per field.
1558
1559 If the field is private, the corresponding bit will be set. */
1560
1561 B_TYPE *protected_field_bits;
1562
1563 /* * For classes with fields to be ignored, either this is
1564 optimized out or this field has length 0. */
1565
1566 B_TYPE *ignore_field_bits;
1567
1568 /* * For classes, structures, and unions, a description of each
1569 field, which consists of an overloaded name, followed by the
1570 types of arguments that the method expects, and then the name
1571 after it has been renamed to make it distinct.
1572
1573 fn_fieldlists points to an array of nfn_fields of these. */
1574
1575 struct fn_fieldlist *fn_fieldlists;
1576
1577 /* * typedefs defined inside this class. typedef_field points to
1578 an array of typedef_field_count elements. */
1579
1580 struct decl_field *typedef_field;
1581
1582 unsigned typedef_field_count;
1583
1584 /* * The nested types defined by this type. nested_types points to
1585 an array of nested_types_count elements. */
1586
1587 struct decl_field *nested_types;
1588
1589 unsigned nested_types_count;
1590
1591 /* * The template arguments. This is an array with
1592 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1593 classes. */
1594
1595 struct symbol **template_arguments;
1596 };
1597
1598 /* * Struct used to store conversion rankings. */
1599
1600 struct rank
1601 {
1602 short rank;
1603
1604 /* * When two conversions are of the same type and therefore have
1605 the same rank, subrank is used to differentiate the two.
1606
1607 Eg: Two derived-class-pointer to base-class-pointer conversions
1608 would both have base pointer conversion rank, but the
1609 conversion with the shorter distance to the ancestor is
1610 preferable. 'subrank' would be used to reflect that. */
1611
1612 short subrank;
1613 };
1614
1615 /* * Used for ranking a function for overload resolution. */
1616
1617 typedef std::vector<rank> badness_vector;
1618
1619 /* * GNAT Ada-specific information for various Ada types. */
1620
1621 struct gnat_aux_type
1622 {
1623 /* * Parallel type used to encode information about dynamic types
1624 used in Ada (such as variant records, variable-size array,
1625 etc). */
1626 struct type* descriptive_type;
1627 };
1628
1629 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1630
1631 struct func_type
1632 {
1633 /* * The calling convention for targets supporting multiple ABIs.
1634 Right now this is only fetched from the Dwarf-2
1635 DW_AT_calling_convention attribute. The value is one of the
1636 DW_CC constants. */
1637
1638 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1639
1640 /* * Whether this function normally returns to its caller. It is
1641 set from the DW_AT_noreturn attribute if set on the
1642 DW_TAG_subprogram. */
1643
1644 unsigned int is_noreturn : 1;
1645
1646 /* * Only those DW_TAG_call_site's in this function that have
1647 DW_AT_call_tail_call set are linked in this list. Function
1648 without its tail call list complete
1649 (DW_AT_call_all_tail_calls or its superset
1650 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1651 DW_TAG_call_site's exist in such function. */
1652
1653 struct call_site *tail_call_list;
1654
1655 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1656 contains the method. */
1657
1658 struct type *self_type;
1659 };
1660
1661 /* struct call_site_parameter can be referenced in callees by several ways. */
1662
1663 enum call_site_parameter_kind
1664 {
1665 /* * Use field call_site_parameter.u.dwarf_reg. */
1666 CALL_SITE_PARAMETER_DWARF_REG,
1667
1668 /* * Use field call_site_parameter.u.fb_offset. */
1669 CALL_SITE_PARAMETER_FB_OFFSET,
1670
1671 /* * Use field call_site_parameter.u.param_offset. */
1672 CALL_SITE_PARAMETER_PARAM_OFFSET
1673 };
1674
1675 struct call_site_target
1676 {
1677 union field_location loc;
1678
1679 /* * Discriminant for union field_location. */
1680
1681 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1682 };
1683
1684 union call_site_parameter_u
1685 {
1686 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1687 as DWARF register number, for register passed
1688 parameters. */
1689
1690 int dwarf_reg;
1691
1692 /* * Offset from the callee's frame base, for stack passed
1693 parameters. This equals offset from the caller's stack
1694 pointer. */
1695
1696 CORE_ADDR fb_offset;
1697
1698 /* * Offset relative to the start of this PER_CU to
1699 DW_TAG_formal_parameter which is referenced by both
1700 caller and the callee. */
1701
1702 cu_offset param_cu_off;
1703 };
1704
1705 struct call_site_parameter
1706 {
1707 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1708
1709 union call_site_parameter_u u;
1710
1711 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1712
1713 const gdb_byte *value;
1714 size_t value_size;
1715
1716 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1717 It may be NULL if not provided by DWARF. */
1718
1719 const gdb_byte *data_value;
1720 size_t data_value_size;
1721 };
1722
1723 /* * A place where a function gets called from, represented by
1724 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1725
1726 struct call_site
1727 {
1728 /* * Address of the first instruction after this call. It must be
1729 the first field as we overload core_addr_hash and core_addr_eq
1730 for it. */
1731
1732 CORE_ADDR pc;
1733
1734 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1735
1736 struct call_site *tail_call_next;
1737
1738 /* * Describe DW_AT_call_target. Missing attribute uses
1739 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1740
1741 struct call_site_target target;
1742
1743 /* * Size of the PARAMETER array. */
1744
1745 unsigned parameter_count;
1746
1747 /* * CU of the function where the call is located. It gets used
1748 for DWARF blocks execution in the parameter array below. */
1749
1750 dwarf2_per_cu_data *per_cu;
1751
1752 /* objfile of the function where the call is located. */
1753
1754 dwarf2_per_objfile *per_objfile;
1755
1756 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1757
1758 struct call_site_parameter parameter[1];
1759 };
1760
1761 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1762
1763 struct fixed_point_type_info
1764 {
1765 /* The fixed point type's scaling factor. */
1766 gdb_mpq scaling_factor;
1767 };
1768
1769 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1770 static structure. */
1771
1772 extern const struct cplus_struct_type cplus_struct_default;
1773
1774 extern void allocate_cplus_struct_type (struct type *);
1775
1776 #define INIT_CPLUS_SPECIFIC(type) \
1777 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1778 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1779 &cplus_struct_default)
1780
1781 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1782
1783 #define HAVE_CPLUS_STRUCT(type) \
1784 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1785 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1786
1787 #define INIT_NONE_SPECIFIC(type) \
1788 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1789 TYPE_MAIN_TYPE (type)->type_specific = {})
1790
1791 extern const struct gnat_aux_type gnat_aux_default;
1792
1793 extern void allocate_gnat_aux_type (struct type *);
1794
1795 #define INIT_GNAT_SPECIFIC(type) \
1796 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1797 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1798 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1799 /* * A macro that returns non-zero if the type-specific data should be
1800 read as "gnat-stuff". */
1801 #define HAVE_GNAT_AUX_INFO(type) \
1802 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1803
1804 /* * True if TYPE is known to be an Ada type of some kind. */
1805 #define ADA_TYPE_P(type) \
1806 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1807 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1808 && (type)->is_fixed_instance ()))
1809
1810 #define INIT_FUNC_SPECIFIC(type) \
1811 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1812 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1813 TYPE_ZALLOC (type, \
1814 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1815
1816 /* "struct fixed_point_type_info" has a field that has a destructor.
1817 See allocate_fixed_point_type_info to understand how this is
1818 handled. */
1819 #define INIT_FIXED_POINT_SPECIFIC(type) \
1820 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1821 allocate_fixed_point_type_info (type))
1822
1823 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1824 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1825 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1826 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1827 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1828 #define TYPE_CHAIN(thistype) (thistype)->chain
1829 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1830 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1831 so you only have to call check_typedef once. Since allocate_value
1832 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1833 #define TYPE_LENGTH(thistype) (thistype)->length
1834
1835 /* * Return the alignment of the type in target addressable memory
1836 units, or 0 if no alignment was specified. */
1837 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1838
1839 /* * Return the alignment of the type in target addressable memory
1840 units, or 0 if no alignment was specified. */
1841 extern unsigned type_raw_align (struct type *);
1842
1843 /* * Return the alignment of the type in target addressable memory
1844 units. Return 0 if the alignment cannot be determined; but note
1845 that this makes an effort to compute the alignment even it it was
1846 not specified in the debug info. */
1847 extern unsigned type_align (struct type *);
1848
1849 /* * Set the alignment of the type. The alignment must be a power of
1850 2. Returns false if the given value does not fit in the available
1851 space in struct type. */
1852 extern bool set_type_align (struct type *, ULONGEST);
1853
1854 /* Property accessors for the type data location. */
1855 #define TYPE_DATA_LOCATION(thistype) \
1856 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1857 #define TYPE_DATA_LOCATION_BATON(thistype) \
1858 TYPE_DATA_LOCATION (thistype)->data.baton
1859 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1860 (TYPE_DATA_LOCATION (thistype)->const_val ())
1861 #define TYPE_DATA_LOCATION_KIND(thistype) \
1862 (TYPE_DATA_LOCATION (thistype)->kind ())
1863 #define TYPE_DYNAMIC_LENGTH(thistype) \
1864 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1865
1866 /* Property accessors for the type allocated/associated. */
1867 #define TYPE_ALLOCATED_PROP(thistype) \
1868 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1869 #define TYPE_ASSOCIATED_PROP(thistype) \
1870 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1871
1872 /* C++ */
1873
1874 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1875 /* Do not call this, use TYPE_SELF_TYPE. */
1876 extern struct type *internal_type_self_type (struct type *);
1877 extern void set_type_self_type (struct type *, struct type *);
1878
1879 extern int internal_type_vptr_fieldno (struct type *);
1880 extern void set_type_vptr_fieldno (struct type *, int);
1881 extern struct type *internal_type_vptr_basetype (struct type *);
1882 extern void set_type_vptr_basetype (struct type *, struct type *);
1883 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1884 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1885
1886 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1887 #define TYPE_SPECIFIC_FIELD(thistype) \
1888 TYPE_MAIN_TYPE(thistype)->type_specific_field
1889 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1890 where we're trying to print an Ada array using the C language.
1891 In that case, there is no "cplus_stuff", but the C language assumes
1892 that there is. What we do, in that case, is pretend that there is
1893 an implicit one which is the default cplus stuff. */
1894 #define TYPE_CPLUS_SPECIFIC(thistype) \
1895 (!HAVE_CPLUS_STRUCT(thistype) \
1896 ? (struct cplus_struct_type*)&cplus_struct_default \
1897 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1898 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1899 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1900 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1901 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1902 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1903 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1904 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1905 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1906 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1907 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1908 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1909 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1910 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1911 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1912 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1913 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1914
1915 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1916 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1917 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1918
1919 #define FIELD_NAME(thisfld) ((thisfld).name)
1920 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1921 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1922 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1923 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1924 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1925 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1926 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1927 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1928 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1929 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1930 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1931 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1932 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1933 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1934 #define SET_FIELD_PHYSNAME(thisfld, name) \
1935 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1936 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1937 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1938 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1939 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1940 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1941 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1942 FIELD_DWARF_BLOCK (thisfld) = (addr))
1943 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1944 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1945
1946 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1947 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1948 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1949 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1950 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1951 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1952 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1953 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1954 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1955 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1956
1957 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1958 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1959 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1960 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1961 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1962 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1963 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1964 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1965 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1966 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1967 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1968 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1969 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1970 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1971 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1972 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1973 #define TYPE_FIELD_PRIVATE(thistype, n) \
1974 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1975 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1976 #define TYPE_FIELD_PROTECTED(thistype, n) \
1977 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1978 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1979 #define TYPE_FIELD_IGNORE(thistype, n) \
1980 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1981 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1982 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1983 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1984 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1985
1986 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1987 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1988 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1989 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1990 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1991
1992 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1993 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1994 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1995 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1996 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1997 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1998
1999 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2000 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2001 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2002 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2003 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2004 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2005 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2006 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2007 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2008 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2009 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2010 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2011 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2012 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2013 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2014 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2015 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2016
2017 /* Accessors for typedefs defined by a class. */
2018 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2019 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2020 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2021 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2022 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2023 TYPE_TYPEDEF_FIELD (thistype, n).name
2024 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2025 TYPE_TYPEDEF_FIELD (thistype, n).type
2026 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2027 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2028 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2029 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2030 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2031 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2032
2033 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2034 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2035 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2036 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2037 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2038 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2039 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2040 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2041 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2042 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2043 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2044 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2045 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2046 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2047
2048 #define TYPE_IS_OPAQUE(thistype) \
2049 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2050 || ((thistype)->code () == TYPE_CODE_UNION)) \
2051 && ((thistype)->num_fields () == 0) \
2052 && (!HAVE_CPLUS_STRUCT (thistype) \
2053 || TYPE_NFN_FIELDS (thistype) == 0) \
2054 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2055
2056 /* * A helper macro that returns the name of a type or "unnamed type"
2057 if the type has no name. */
2058
2059 #define TYPE_SAFE_NAME(type) \
2060 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2061
2062 /* * A helper macro that returns the name of an error type. If the
2063 type has a name, it is used; otherwise, a default is used. */
2064
2065 #define TYPE_ERROR_NAME(type) \
2066 (type->name () ? type->name () : _("<error type>"))
2067
2068 /* Given TYPE, return its floatformat. */
2069 const struct floatformat *floatformat_from_type (const struct type *type);
2070
2071 struct builtin_type
2072 {
2073 /* Integral types. */
2074
2075 /* Implicit size/sign (based on the architecture's ABI). */
2076 struct type *builtin_void;
2077 struct type *builtin_char;
2078 struct type *builtin_short;
2079 struct type *builtin_int;
2080 struct type *builtin_long;
2081 struct type *builtin_signed_char;
2082 struct type *builtin_unsigned_char;
2083 struct type *builtin_unsigned_short;
2084 struct type *builtin_unsigned_int;
2085 struct type *builtin_unsigned_long;
2086 struct type *builtin_bfloat16;
2087 struct type *builtin_half;
2088 struct type *builtin_float;
2089 struct type *builtin_double;
2090 struct type *builtin_long_double;
2091 struct type *builtin_complex;
2092 struct type *builtin_double_complex;
2093 struct type *builtin_string;
2094 struct type *builtin_bool;
2095 struct type *builtin_long_long;
2096 struct type *builtin_unsigned_long_long;
2097 struct type *builtin_decfloat;
2098 struct type *builtin_decdouble;
2099 struct type *builtin_declong;
2100
2101 /* "True" character types.
2102 We use these for the '/c' print format, because c_char is just a
2103 one-byte integral type, which languages less laid back than C
2104 will print as ... well, a one-byte integral type. */
2105 struct type *builtin_true_char;
2106 struct type *builtin_true_unsigned_char;
2107
2108 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2109 is for when an architecture needs to describe a register that has
2110 no size. */
2111 struct type *builtin_int0;
2112 struct type *builtin_int8;
2113 struct type *builtin_uint8;
2114 struct type *builtin_int16;
2115 struct type *builtin_uint16;
2116 struct type *builtin_int24;
2117 struct type *builtin_uint24;
2118 struct type *builtin_int32;
2119 struct type *builtin_uint32;
2120 struct type *builtin_int64;
2121 struct type *builtin_uint64;
2122 struct type *builtin_int128;
2123 struct type *builtin_uint128;
2124
2125 /* Wide character types. */
2126 struct type *builtin_char16;
2127 struct type *builtin_char32;
2128 struct type *builtin_wchar;
2129
2130 /* Pointer types. */
2131
2132 /* * `pointer to data' type. Some target platforms use an implicitly
2133 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2134 struct type *builtin_data_ptr;
2135
2136 /* * `pointer to function (returning void)' type. Harvard
2137 architectures mean that ABI function and code pointers are not
2138 interconvertible. Similarly, since ANSI, C standards have
2139 explicitly said that pointers to functions and pointers to data
2140 are not interconvertible --- that is, you can't cast a function
2141 pointer to void * and back, and expect to get the same value.
2142 However, all function pointer types are interconvertible, so void
2143 (*) () can server as a generic function pointer. */
2144
2145 struct type *builtin_func_ptr;
2146
2147 /* * `function returning pointer to function (returning void)' type.
2148 The final void return type is not significant for it. */
2149
2150 struct type *builtin_func_func;
2151
2152 /* Special-purpose types. */
2153
2154 /* * This type is used to represent a GDB internal function. */
2155
2156 struct type *internal_fn;
2157
2158 /* * This type is used to represent an xmethod. */
2159 struct type *xmethod;
2160 };
2161
2162 /* * Return the type table for the specified architecture. */
2163
2164 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2165
2166 /* * Per-objfile types used by symbol readers. */
2167
2168 struct objfile_type
2169 {
2170 /* Basic types based on the objfile architecture. */
2171 struct type *builtin_void;
2172 struct type *builtin_char;
2173 struct type *builtin_short;
2174 struct type *builtin_int;
2175 struct type *builtin_long;
2176 struct type *builtin_long_long;
2177 struct type *builtin_signed_char;
2178 struct type *builtin_unsigned_char;
2179 struct type *builtin_unsigned_short;
2180 struct type *builtin_unsigned_int;
2181 struct type *builtin_unsigned_long;
2182 struct type *builtin_unsigned_long_long;
2183 struct type *builtin_half;
2184 struct type *builtin_float;
2185 struct type *builtin_double;
2186 struct type *builtin_long_double;
2187
2188 /* * This type is used to represent symbol addresses. */
2189 struct type *builtin_core_addr;
2190
2191 /* * This type represents a type that was unrecognized in symbol
2192 read-in. */
2193 struct type *builtin_error;
2194
2195 /* * Types used for symbols with no debug information. */
2196 struct type *nodebug_text_symbol;
2197 struct type *nodebug_text_gnu_ifunc_symbol;
2198 struct type *nodebug_got_plt_symbol;
2199 struct type *nodebug_data_symbol;
2200 struct type *nodebug_unknown_symbol;
2201 struct type *nodebug_tls_symbol;
2202 };
2203
2204 /* * Return the type table for the specified objfile. */
2205
2206 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2207
2208 /* Explicit floating-point formats. See "floatformat.h". */
2209 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2210 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2211 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2212 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2213 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2214 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2215 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2216 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2217 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2218 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2219 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2220 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2221 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2222
2223 /* Allocate space for storing data associated with a particular
2224 type. We ensure that the space is allocated using the same
2225 mechanism that was used to allocate the space for the type
2226 structure itself. I.e. if the type is on an objfile's
2227 objfile_obstack, then the space for data associated with that type
2228 will also be allocated on the objfile_obstack. If the type is
2229 associated with a gdbarch, then the space for data associated with that
2230 type will also be allocated on the gdbarch_obstack.
2231
2232 If a type is not associated with neither an objfile or a gdbarch then
2233 you should not use this macro to allocate space for data, instead you
2234 should call xmalloc directly, and ensure the memory is correctly freed
2235 when it is no longer needed. */
2236
2237 #define TYPE_ALLOC(t,size) \
2238 (obstack_alloc (((t)->is_objfile_owned () \
2239 ? &((t)->objfile ()->objfile_obstack) \
2240 : gdbarch_obstack ((t)->arch ())), \
2241 size))
2242
2243
2244 /* See comment on TYPE_ALLOC. */
2245
2246 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2247
2248 /* Use alloc_type to allocate a type owned by an objfile. Use
2249 alloc_type_arch to allocate a type owned by an architecture. Use
2250 alloc_type_copy to allocate a type with the same owner as a
2251 pre-existing template type, no matter whether objfile or
2252 gdbarch. */
2253 extern struct type *alloc_type (struct objfile *);
2254 extern struct type *alloc_type_arch (struct gdbarch *);
2255 extern struct type *alloc_type_copy (const struct type *);
2256
2257 /* * Return the type's architecture. For types owned by an
2258 architecture, that architecture is returned. For types owned by an
2259 objfile, that objfile's architecture is returned. */
2260
2261 extern struct gdbarch *get_type_arch (const struct type *);
2262
2263 /* * This returns the target type (or NULL) of TYPE, also skipping
2264 past typedefs. */
2265
2266 extern struct type *get_target_type (struct type *type);
2267
2268 /* Return the equivalent of TYPE_LENGTH, but in number of target
2269 addressable memory units of the associated gdbarch instead of bytes. */
2270
2271 extern unsigned int type_length_units (struct type *type);
2272
2273 /* * Helper function to construct objfile-owned types. */
2274
2275 extern struct type *init_type (struct objfile *, enum type_code, int,
2276 const char *);
2277 extern struct type *init_integer_type (struct objfile *, int, int,
2278 const char *);
2279 extern struct type *init_character_type (struct objfile *, int, int,
2280 const char *);
2281 extern struct type *init_boolean_type (struct objfile *, int, int,
2282 const char *);
2283 extern struct type *init_float_type (struct objfile *, int, const char *,
2284 const struct floatformat **,
2285 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2286 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2287 extern struct type *init_complex_type (const char *, struct type *);
2288 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2289 struct type *);
2290 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2291 const char *);
2292
2293 /* Helper functions to construct architecture-owned types. */
2294 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2295 const char *);
2296 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2297 const char *);
2298 extern struct type *arch_character_type (struct gdbarch *, int, int,
2299 const char *);
2300 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2301 const char *);
2302 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2303 const struct floatformat **);
2304 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2305 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2306 struct type *);
2307
2308 /* Helper functions to construct a struct or record type. An
2309 initially empty type is created using arch_composite_type().
2310 Fields are then added using append_composite_type_field*(). A union
2311 type has its size set to the largest field. A struct type has each
2312 field packed against the previous. */
2313
2314 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2315 const char *name, enum type_code code);
2316 extern void append_composite_type_field (struct type *t, const char *name,
2317 struct type *field);
2318 extern void append_composite_type_field_aligned (struct type *t,
2319 const char *name,
2320 struct type *field,
2321 int alignment);
2322 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2323 struct type *field);
2324
2325 /* Helper functions to construct a bit flags type. An initially empty
2326 type is created using arch_flag_type(). Flags are then added using
2327 append_flag_type_field() and append_flag_type_flag(). */
2328 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2329 const char *name, int bit);
2330 extern void append_flags_type_field (struct type *type,
2331 int start_bitpos, int nr_bits,
2332 struct type *field_type, const char *name);
2333 extern void append_flags_type_flag (struct type *type, int bitpos,
2334 const char *name);
2335
2336 extern void make_vector_type (struct type *array_type);
2337 extern struct type *init_vector_type (struct type *elt_type, int n);
2338
2339 extern struct type *lookup_reference_type (struct type *, enum type_code);
2340 extern struct type *lookup_lvalue_reference_type (struct type *);
2341 extern struct type *lookup_rvalue_reference_type (struct type *);
2342
2343
2344 extern struct type *make_reference_type (struct type *, struct type **,
2345 enum type_code);
2346
2347 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2348
2349 extern struct type *make_restrict_type (struct type *);
2350
2351 extern struct type *make_unqualified_type (struct type *);
2352
2353 extern struct type *make_atomic_type (struct type *);
2354
2355 extern void replace_type (struct type *, struct type *);
2356
2357 extern type_instance_flags address_space_name_to_type_instance_flags
2358 (struct gdbarch *, const char *);
2359
2360 extern const char *address_space_type_instance_flags_to_name
2361 (struct gdbarch *, type_instance_flags);
2362
2363 extern struct type *make_type_with_address_space
2364 (struct type *type, type_instance_flags space_identifier);
2365
2366 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2367
2368 extern struct type *lookup_methodptr_type (struct type *);
2369
2370 extern void smash_to_method_type (struct type *type, struct type *self_type,
2371 struct type *to_type, struct field *args,
2372 int nargs, int varargs);
2373
2374 extern void smash_to_memberptr_type (struct type *, struct type *,
2375 struct type *);
2376
2377 extern void smash_to_methodptr_type (struct type *, struct type *);
2378
2379 extern struct type *allocate_stub_method (struct type *);
2380
2381 extern const char *type_name_or_error (struct type *type);
2382
2383 struct struct_elt
2384 {
2385 /* The field of the element, or NULL if no element was found. */
2386 struct field *field;
2387
2388 /* The bit offset of the element in the parent structure. */
2389 LONGEST offset;
2390 };
2391
2392 /* Given a type TYPE, lookup the field and offset of the component named
2393 NAME.
2394
2395 TYPE can be either a struct or union, or a pointer or reference to
2396 a struct or union. If it is a pointer or reference, its target
2397 type is automatically used. Thus '.' and '->' are interchangable,
2398 as specified for the definitions of the expression element types
2399 STRUCTOP_STRUCT and STRUCTOP_PTR.
2400
2401 If NOERR is nonzero, the returned structure will have field set to
2402 NULL if there is no component named NAME.
2403
2404 If the component NAME is a field in an anonymous substructure of
2405 TYPE, the returned offset is a "global" offset relative to TYPE
2406 rather than an offset within the substructure. */
2407
2408 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2409
2410 /* Given a type TYPE, lookup the type of the component named NAME.
2411
2412 TYPE can be either a struct or union, or a pointer or reference to
2413 a struct or union. If it is a pointer or reference, its target
2414 type is automatically used. Thus '.' and '->' are interchangable,
2415 as specified for the definitions of the expression element types
2416 STRUCTOP_STRUCT and STRUCTOP_PTR.
2417
2418 If NOERR is nonzero, return NULL if there is no component named
2419 NAME. */
2420
2421 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2422
2423 extern struct type *make_pointer_type (struct type *, struct type **);
2424
2425 extern struct type *lookup_pointer_type (struct type *);
2426
2427 extern struct type *make_function_type (struct type *, struct type **);
2428
2429 extern struct type *lookup_function_type (struct type *);
2430
2431 extern struct type *lookup_function_type_with_arguments (struct type *,
2432 int,
2433 struct type **);
2434
2435 extern struct type *create_static_range_type (struct type *, struct type *,
2436 LONGEST, LONGEST);
2437
2438
2439 extern struct type *create_array_type_with_stride
2440 (struct type *, struct type *, struct type *,
2441 struct dynamic_prop *, unsigned int);
2442
2443 extern struct type *create_range_type (struct type *, struct type *,
2444 const struct dynamic_prop *,
2445 const struct dynamic_prop *,
2446 LONGEST);
2447
2448 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2449 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2450 stride. */
2451
2452 extern struct type * create_range_type_with_stride
2453 (struct type *result_type, struct type *index_type,
2454 const struct dynamic_prop *low_bound,
2455 const struct dynamic_prop *high_bound, LONGEST bias,
2456 const struct dynamic_prop *stride, bool byte_stride_p);
2457
2458 extern struct type *create_array_type (struct type *, struct type *,
2459 struct type *);
2460
2461 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2462
2463 extern struct type *create_string_type (struct type *, struct type *,
2464 struct type *);
2465 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2466
2467 extern struct type *create_set_type (struct type *, struct type *);
2468
2469 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2470 const char *);
2471
2472 extern struct type *lookup_signed_typename (const struct language_defn *,
2473 const char *);
2474
2475 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2476
2477 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2478
2479 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2480 ADDR specifies the location of the variable the type is bound to.
2481 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2482 static properties is returned. */
2483 extern struct type *resolve_dynamic_type
2484 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2485 CORE_ADDR addr);
2486
2487 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2488 extern int is_dynamic_type (struct type *type);
2489
2490 extern struct type *check_typedef (struct type *);
2491
2492 extern void check_stub_method_group (struct type *, int);
2493
2494 extern char *gdb_mangle_name (struct type *, int, int);
2495
2496 extern struct type *lookup_typename (const struct language_defn *,
2497 const char *, const struct block *, int);
2498
2499 extern struct type *lookup_template_type (const char *, struct type *,
2500 const struct block *);
2501
2502 extern int get_vptr_fieldno (struct type *, struct type **);
2503
2504 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2505 TYPE.
2506
2507 Return true if the two bounds are available, false otherwise. */
2508
2509 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2510 LONGEST *highp);
2511
2512 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2513
2514 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2515
2516 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2517
2518 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2519
2520 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2521 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2522 Save the high bound into HIGH_BOUND if not NULL.
2523
2524 Return true if the operation was successful. Return false otherwise,
2525 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2526
2527 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2528 LONGEST *high_bound);
2529
2530 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2531 LONGEST val);
2532
2533 extern int class_types_same_p (const struct type *, const struct type *);
2534
2535 extern int is_ancestor (struct type *, struct type *);
2536
2537 extern int is_public_ancestor (struct type *, struct type *);
2538
2539 extern int is_unique_ancestor (struct type *, struct value *);
2540
2541 /* Overload resolution */
2542
2543 /* * Badness if parameter list length doesn't match arg list length. */
2544 extern const struct rank LENGTH_MISMATCH_BADNESS;
2545
2546 /* * Dummy badness value for nonexistent parameter positions. */
2547 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2548 /* * Badness if no conversion among types. */
2549 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2550
2551 /* * Badness of an exact match. */
2552 extern const struct rank EXACT_MATCH_BADNESS;
2553
2554 /* * Badness of integral promotion. */
2555 extern const struct rank INTEGER_PROMOTION_BADNESS;
2556 /* * Badness of floating promotion. */
2557 extern const struct rank FLOAT_PROMOTION_BADNESS;
2558 /* * Badness of converting a derived class pointer
2559 to a base class pointer. */
2560 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2561 /* * Badness of integral conversion. */
2562 extern const struct rank INTEGER_CONVERSION_BADNESS;
2563 /* * Badness of floating conversion. */
2564 extern const struct rank FLOAT_CONVERSION_BADNESS;
2565 /* * Badness of integer<->floating conversions. */
2566 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2567 /* * Badness of conversion of pointer to void pointer. */
2568 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2569 /* * Badness of conversion to boolean. */
2570 extern const struct rank BOOL_CONVERSION_BADNESS;
2571 /* * Badness of converting derived to base class. */
2572 extern const struct rank BASE_CONVERSION_BADNESS;
2573 /* * Badness of converting from non-reference to reference. Subrank
2574 is the type of reference conversion being done. */
2575 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2576 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2577 /* * Conversion to rvalue reference. */
2578 #define REFERENCE_CONVERSION_RVALUE 1
2579 /* * Conversion to const lvalue reference. */
2580 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2581
2582 /* * Badness of converting integer 0 to NULL pointer. */
2583 extern const struct rank NULL_POINTER_CONVERSION;
2584 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2585 being done. */
2586 extern const struct rank CV_CONVERSION_BADNESS;
2587 #define CV_CONVERSION_CONST 1
2588 #define CV_CONVERSION_VOLATILE 2
2589
2590 /* Non-standard conversions allowed by the debugger */
2591
2592 /* * Converting a pointer to an int is usually OK. */
2593 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2594
2595 /* * Badness of converting a (non-zero) integer constant
2596 to a pointer. */
2597 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2598
2599 extern struct rank sum_ranks (struct rank a, struct rank b);
2600 extern int compare_ranks (struct rank a, struct rank b);
2601
2602 extern int compare_badness (const badness_vector &,
2603 const badness_vector &);
2604
2605 extern badness_vector rank_function (gdb::array_view<type *> parms,
2606 gdb::array_view<value *> args);
2607
2608 extern struct rank rank_one_type (struct type *, struct type *,
2609 struct value *);
2610
2611 extern void recursive_dump_type (struct type *, int);
2612
2613 extern int field_is_static (struct field *);
2614
2615 /* printcmd.c */
2616
2617 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2618 const struct value_print_options *,
2619 int, struct ui_file *);
2620
2621 extern int can_dereference (struct type *);
2622
2623 extern int is_integral_type (struct type *);
2624
2625 extern int is_floating_type (struct type *);
2626
2627 extern int is_scalar_type (struct type *type);
2628
2629 extern int is_scalar_type_recursive (struct type *);
2630
2631 extern int class_or_union_p (const struct type *);
2632
2633 extern void maintenance_print_type (const char *, int);
2634
2635 extern htab_up create_copied_types_hash (struct objfile *objfile);
2636
2637 extern struct type *copy_type_recursive (struct objfile *objfile,
2638 struct type *type,
2639 htab_t copied_types);
2640
2641 extern struct type *copy_type (const struct type *type);
2642
2643 extern bool types_equal (struct type *, struct type *);
2644
2645 extern bool types_deeply_equal (struct type *, struct type *);
2646
2647 extern int type_not_allocated (const struct type *type);
2648
2649 extern int type_not_associated (const struct type *type);
2650
2651 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2652 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2653 extern bool is_fixed_point_type (struct type *type);
2654
2655 /* Allocate a fixed-point type info for TYPE. This should only be
2656 called by INIT_FIXED_POINT_SPECIFIC. */
2657 extern void allocate_fixed_point_type_info (struct type *type);
2658
2659 /* * When the type includes explicit byte ordering, return that.
2660 Otherwise, the byte ordering from gdbarch_byte_order for
2661 get_type_arch is returned. */
2662
2663 extern enum bfd_endian type_byte_order (const struct type *type);
2664
2665 /* A flag to enable printing of debugging information of C++
2666 overloading. */
2667
2668 extern unsigned int overload_debug;
2669
2670 #endif /* GDBTYPES_H */