gdb: remove TYPE_DECLARED_CLASS
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * True if this type is a "flag" enum. A flag enum is one where all
224 the values are pairwise disjoint when "and"ed together. This
225 affects how enum values are printed. */
226
227 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
228
229 /* * Constant type. If this is set, the corresponding type has a
230 const modifier. */
231
232 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
233
234 /* * Volatile type. If this is set, the corresponding type has a
235 volatile modifier. */
236
237 #define TYPE_VOLATILE(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
239
240 /* * Restrict type. If this is set, the corresponding type has a
241 restrict modifier. */
242
243 #define TYPE_RESTRICT(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
245
246 /* * Atomic type. If this is set, the corresponding type has an
247 _Atomic modifier. */
248
249 #define TYPE_ATOMIC(t) \
250 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
251
252 /* * True if this type represents either an lvalue or lvalue reference type. */
253
254 #define TYPE_IS_REFERENCE(t) \
255 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
256
257 /* * True if this type is allocatable. */
258 #define TYPE_IS_ALLOCATABLE(t) \
259 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
260
261 /* * True if this type has variant parts. */
262 #define TYPE_HAS_VARIANT_PARTS(t) \
263 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
264
265 /* * True if this type has a dynamic length. */
266 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
267 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
268
269 /* * Instruction-space delimited type. This is for Harvard architectures
270 which have separate instruction and data address spaces (and perhaps
271 others).
272
273 GDB usually defines a flat address space that is a superset of the
274 architecture's two (or more) address spaces, but this is an extension
275 of the architecture's model.
276
277 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
278 resides in instruction memory, even if its address (in the extended
279 flat address space) does not reflect this.
280
281 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
282 corresponding type resides in the data memory space, even if
283 this is not indicated by its (flat address space) address.
284
285 If neither flag is set, the default space for functions / methods
286 is instruction space, and for data objects is data memory. */
287
288 #define TYPE_CODE_SPACE(t) \
289 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
290
291 #define TYPE_DATA_SPACE(t) \
292 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
293
294 /* * Address class flags. Some environments provide for pointers
295 whose size is different from that of a normal pointer or address
296 types where the bits are interpreted differently than normal
297 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
298 target specific ways to represent these different types of address
299 classes. */
300
301 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
303 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
304 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
305 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
306 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
307 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
308 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
309
310 /* * Information about a single discriminant. */
311
312 struct discriminant_range
313 {
314 /* * The range of values for the variant. This is an inclusive
315 range. */
316 ULONGEST low, high;
317
318 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
319 is true if this should be an unsigned comparison; false for
320 signed. */
321 bool contains (ULONGEST value, bool is_unsigned) const
322 {
323 if (is_unsigned)
324 return value >= low && value <= high;
325 LONGEST valuel = (LONGEST) value;
326 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
327 }
328 };
329
330 struct variant_part;
331
332 /* * A single variant. A variant has a list of discriminant values.
333 When the discriminator matches one of these, the variant is
334 enabled. Each variant controls zero or more fields; and may also
335 control other variant parts as well. This struct corresponds to
336 DW_TAG_variant in DWARF. */
337
338 struct variant : allocate_on_obstack
339 {
340 /* * The discriminant ranges for this variant. */
341 gdb::array_view<discriminant_range> discriminants;
342
343 /* * The fields controlled by this variant. This is inclusive on
344 the low end and exclusive on the high end. A variant may not
345 control any fields, in which case the two values will be equal.
346 These are indexes into the type's array of fields. */
347 int first_field;
348 int last_field;
349
350 /* * Variant parts controlled by this variant. */
351 gdb::array_view<variant_part> parts;
352
353 /* * Return true if this is the default variant. The default
354 variant can be recognized because it has no associated
355 discriminants. */
356 bool is_default () const
357 {
358 return discriminants.empty ();
359 }
360
361 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
362 if this should be an unsigned comparison; false for signed. */
363 bool matches (ULONGEST value, bool is_unsigned) const;
364 };
365
366 /* * A variant part. Each variant part has an optional discriminant
367 and holds an array of variants. This struct corresponds to
368 DW_TAG_variant_part in DWARF. */
369
370 struct variant_part : allocate_on_obstack
371 {
372 /* * The index of the discriminant field in the outer type. This is
373 an index into the type's array of fields. If this is -1, there
374 is no discriminant, and only the default variant can be
375 considered to be selected. */
376 int discriminant_index;
377
378 /* * True if this discriminant is unsigned; false if signed. This
379 comes from the type of the discriminant. */
380 bool is_unsigned;
381
382 /* * The variants that are controlled by this variant part. Note
383 that these will always be sorted by field number. */
384 gdb::array_view<variant> variants;
385 };
386
387
388 enum dynamic_prop_kind
389 {
390 PROP_UNDEFINED, /* Not defined. */
391 PROP_CONST, /* Constant. */
392 PROP_ADDR_OFFSET, /* Address offset. */
393 PROP_LOCEXPR, /* Location expression. */
394 PROP_LOCLIST, /* Location list. */
395 PROP_VARIANT_PARTS, /* Variant parts. */
396 PROP_TYPE, /* Type. */
397 };
398
399 union dynamic_prop_data
400 {
401 /* Storage for constant property. */
402
403 LONGEST const_val;
404
405 /* Storage for dynamic property. */
406
407 void *baton;
408
409 /* Storage of variant parts for a type. A type with variant parts
410 has all its fields "linearized" -- stored in a single field
411 array, just as if they had all been declared that way. The
412 variant parts are attached via a dynamic property, and then are
413 used to control which fields end up in the final type during
414 dynamic type resolution. */
415
416 const gdb::array_view<variant_part> *variant_parts;
417
418 /* Once a variant type is resolved, we may want to be able to go
419 from the resolved type to the original type. In this case we
420 rewrite the property's kind and set this field. */
421
422 struct type *original_type;
423 };
424
425 /* * Used to store a dynamic property. */
426
427 struct dynamic_prop
428 {
429 dynamic_prop_kind kind () const
430 {
431 return m_kind;
432 }
433
434 void set_undefined ()
435 {
436 m_kind = PROP_UNDEFINED;
437 }
438
439 LONGEST const_val () const
440 {
441 gdb_assert (m_kind == PROP_CONST);
442
443 return m_data.const_val;
444 }
445
446 void set_const_val (LONGEST const_val)
447 {
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
450 }
451
452 void *baton () const
453 {
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
457
458 return m_data.baton;
459 }
460
461 void set_locexpr (void *baton)
462 {
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
465 }
466
467 void set_loclist (void *baton)
468 {
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
471 }
472
473 void set_addr_offset (void *baton)
474 {
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
477 }
478
479 const gdb::array_view<variant_part> *variant_parts () const
480 {
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
482
483 return m_data.variant_parts;
484 }
485
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487 {
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
490 }
491
492 struct type *original_type () const
493 {
494 gdb_assert (m_kind == PROP_TYPE);
495
496 return m_data.original_type;
497 }
498
499 void set_original_type (struct type *original_type)
500 {
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
503 }
504
505 /* Determine which field of the union dynamic_prop.data is used. */
506 enum dynamic_prop_kind m_kind;
507
508 /* Storage for dynamic or static value. */
509 union dynamic_prop_data m_data;
510 };
511
512 /* Compare two dynamic_prop objects for equality. dynamic_prop
513 instances are equal iff they have the same type and storage. */
514 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
515
516 /* Compare two dynamic_prop objects for inequality. */
517 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
518 {
519 return !(l == r);
520 }
521
522 /* * Define a type's dynamic property node kind. */
523 enum dynamic_prop_node_kind
524 {
525 /* A property providing a type's data location.
526 Evaluating this field yields to the location of an object's data. */
527 DYN_PROP_DATA_LOCATION,
528
529 /* A property representing DW_AT_allocated. The presence of this attribute
530 indicates that the object of the type can be allocated/deallocated. */
531 DYN_PROP_ALLOCATED,
532
533 /* A property representing DW_AT_associated. The presence of this attribute
534 indicated that the object of the type can be associated. */
535 DYN_PROP_ASSOCIATED,
536
537 /* A property providing an array's byte stride. */
538 DYN_PROP_BYTE_STRIDE,
539
540 /* A property holding variant parts. */
541 DYN_PROP_VARIANT_PARTS,
542
543 /* A property holding the size of the type. */
544 DYN_PROP_BYTE_SIZE,
545 };
546
547 /* * List for dynamic type attributes. */
548 struct dynamic_prop_list
549 {
550 /* The kind of dynamic prop in this node. */
551 enum dynamic_prop_node_kind prop_kind;
552
553 /* The dynamic property itself. */
554 struct dynamic_prop prop;
555
556 /* A pointer to the next dynamic property. */
557 struct dynamic_prop_list *next;
558 };
559
560 /* * Determine which field of the union main_type.fields[x].loc is
561 used. */
562
563 enum field_loc_kind
564 {
565 FIELD_LOC_KIND_BITPOS, /**< bitpos */
566 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
567 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
568 FIELD_LOC_KIND_PHYSNAME, /**< physname */
569 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
570 };
571
572 /* * A discriminant to determine which field in the
573 main_type.type_specific union is being used, if any.
574
575 For types such as TYPE_CODE_FLT, the use of this
576 discriminant is really redundant, as we know from the type code
577 which field is going to be used. As such, it would be possible to
578 reduce the size of this enum in order to save a bit or two for
579 other fields of struct main_type. But, since we still have extra
580 room , and for the sake of clarity and consistency, we treat all fields
581 of the union the same way. */
582
583 enum type_specific_kind
584 {
585 TYPE_SPECIFIC_NONE,
586 TYPE_SPECIFIC_CPLUS_STUFF,
587 TYPE_SPECIFIC_GNAT_STUFF,
588 TYPE_SPECIFIC_FLOATFORMAT,
589 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
590 TYPE_SPECIFIC_FUNC,
591 TYPE_SPECIFIC_SELF_TYPE,
592 TYPE_SPECIFIC_INT,
593 TYPE_SPECIFIC_FIXED_POINT,
594 };
595
596 union type_owner
597 {
598 struct objfile *objfile;
599 struct gdbarch *gdbarch;
600 };
601
602 union field_location
603 {
604 /* * Position of this field, counting in bits from start of
605 containing structure. For big-endian targets, it is the bit
606 offset to the MSB. For little-endian targets, it is the bit
607 offset to the LSB. */
608
609 LONGEST bitpos;
610
611 /* * Enum value. */
612 LONGEST enumval;
613
614 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
615 physaddr is the location (in the target) of the static
616 field. Otherwise, physname is the mangled label of the
617 static field. */
618
619 CORE_ADDR physaddr;
620 const char *physname;
621
622 /* * The field location can be computed by evaluating the
623 following DWARF block. Its DATA is allocated on
624 objfile_obstack - no CU load is needed to access it. */
625
626 struct dwarf2_locexpr_baton *dwarf_block;
627 };
628
629 struct field
630 {
631 struct type *type () const
632 {
633 return this->m_type;
634 }
635
636 void set_type (struct type *type)
637 {
638 this->m_type = type;
639 }
640
641 union field_location loc;
642
643 /* * For a function or member type, this is 1 if the argument is
644 marked artificial. Artificial arguments should not be shown
645 to the user. For TYPE_CODE_RANGE it is set if the specific
646 bound is not defined. */
647
648 unsigned int artificial : 1;
649
650 /* * Discriminant for union field_location. */
651
652 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
653
654 /* * Size of this field, in bits, or zero if not packed.
655 If non-zero in an array type, indicates the element size in
656 bits (used only in Ada at the moment).
657 For an unpacked field, the field's type's length
658 says how many bytes the field occupies. */
659
660 unsigned int bitsize : 28;
661
662 /* * In a struct or union type, type of this field.
663 - In a function or member type, type of this argument.
664 - In an array type, the domain-type of the array. */
665
666 struct type *m_type;
667
668 /* * Name of field, value or argument.
669 NULL for range bounds, array domains, and member function
670 arguments. */
671
672 const char *name;
673 };
674
675 struct range_bounds
676 {
677 ULONGEST bit_stride () const
678 {
679 if (this->flag_is_byte_stride)
680 return this->stride.const_val () * 8;
681 else
682 return this->stride.const_val ();
683 }
684
685 /* * Low bound of range. */
686
687 struct dynamic_prop low;
688
689 /* * High bound of range. */
690
691 struct dynamic_prop high;
692
693 /* The stride value for this range. This can be stored in bits or bytes
694 based on the value of BYTE_STRIDE_P. It is optional to have a stride
695 value, if this range has no stride value defined then this will be set
696 to the constant zero. */
697
698 struct dynamic_prop stride;
699
700 /* * The bias. Sometimes a range value is biased before storage.
701 The bias is added to the stored bits to form the true value. */
702
703 LONGEST bias;
704
705 /* True if HIGH range bound contains the number of elements in the
706 subrange. This affects how the final high bound is computed. */
707
708 unsigned int flag_upper_bound_is_count : 1;
709
710 /* True if LOW or/and HIGH are resolved into a static bound from
711 a dynamic one. */
712
713 unsigned int flag_bound_evaluated : 1;
714
715 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
716
717 unsigned int flag_is_byte_stride : 1;
718 };
719
720 /* Compare two range_bounds objects for equality. Simply does
721 memberwise comparison. */
722 extern bool operator== (const range_bounds &l, const range_bounds &r);
723
724 /* Compare two range_bounds objects for inequality. */
725 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
726 {
727 return !(l == r);
728 }
729
730 union type_specific
731 {
732 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
733 point to cplus_struct_default, a default static instance of a
734 struct cplus_struct_type. */
735
736 struct cplus_struct_type *cplus_stuff;
737
738 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
739 provides additional information. */
740
741 struct gnat_aux_type *gnat_stuff;
742
743 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
744 floatformat object that describes the floating-point value
745 that resides within the type. */
746
747 const struct floatformat *floatformat;
748
749 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
750
751 struct func_type *func_stuff;
752
753 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
754 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
755 is a member of. */
756
757 struct type *self_type;
758
759 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
760 values of that type. */
761 struct fixed_point_type_info *fixed_point_info;
762
763 /* * An integer-like scalar type may be stored in just part of its
764 enclosing storage bytes. This structure describes this
765 situation. */
766 struct
767 {
768 /* * The bit size of the integer. This can be 0. For integers
769 that fill their storage (the ordinary case), this field holds
770 the byte size times 8. */
771 unsigned short bit_size;
772 /* * The bit offset of the integer. This is ordinarily 0, and can
773 only be non-zero if the bit size is less than the storage
774 size. */
775 unsigned short bit_offset;
776 } int_stuff;
777 };
778
779 /* * Main structure representing a type in GDB.
780
781 This structure is space-critical. Its layout has been tweaked to
782 reduce the space used. */
783
784 struct main_type
785 {
786 /* * Code for kind of type. */
787
788 ENUM_BITFIELD(type_code) code : 8;
789
790 /* * Flags about this type. These fields appear at this location
791 because they packs nicely here. See the TYPE_* macros for
792 documentation about these fields. */
793
794 unsigned int m_flag_unsigned : 1;
795 unsigned int m_flag_nosign : 1;
796 unsigned int m_flag_stub : 1;
797 unsigned int m_flag_target_stub : 1;
798 unsigned int m_flag_prototyped : 1;
799 unsigned int m_flag_varargs : 1;
800 unsigned int m_flag_vector : 1;
801 unsigned int m_flag_stub_supported : 1;
802 unsigned int m_flag_gnu_ifunc : 1;
803 unsigned int m_flag_fixed_instance : 1;
804 unsigned int m_flag_objfile_owned : 1;
805 unsigned int m_flag_endianity_not_default : 1;
806
807 /* * True if this type was declared with "class" rather than
808 "struct". */
809
810 unsigned int m_flag_declared_class : 1;
811
812 /* * True if this is an enum type with disjoint values. This
813 affects how the enum is printed. */
814
815 unsigned int flag_flag_enum : 1;
816
817 /* * A discriminant telling us which field of the type_specific
818 union is being used for this type, if any. */
819
820 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
821
822 /* * Number of fields described for this type. This field appears
823 at this location because it packs nicely here. */
824
825 short nfields;
826
827 /* * Name of this type, or NULL if none.
828
829 This is used for printing only. For looking up a name, look for
830 a symbol in the VAR_DOMAIN. This is generally allocated in the
831 objfile's obstack. However coffread.c uses malloc. */
832
833 const char *name;
834
835 /* * Every type is now associated with a particular objfile, and the
836 type is allocated on the objfile_obstack for that objfile. One
837 problem however, is that there are times when gdb allocates new
838 types while it is not in the process of reading symbols from a
839 particular objfile. Fortunately, these happen when the type
840 being created is a derived type of an existing type, such as in
841 lookup_pointer_type(). So we can just allocate the new type
842 using the same objfile as the existing type, but to do this we
843 need a backpointer to the objfile from the existing type. Yes
844 this is somewhat ugly, but without major overhaul of the internal
845 type system, it can't be avoided for now. */
846
847 union type_owner m_owner;
848
849 /* * For a pointer type, describes the type of object pointed to.
850 - For an array type, describes the type of the elements.
851 - For a function or method type, describes the type of the return value.
852 - For a range type, describes the type of the full range.
853 - For a complex type, describes the type of each coordinate.
854 - For a special record or union type encoding a dynamic-sized type
855 in GNAT, a memoized pointer to a corresponding static version of
856 the type.
857 - Unused otherwise. */
858
859 struct type *target_type;
860
861 /* * For structure and union types, a description of each field.
862 For set and pascal array types, there is one "field",
863 whose type is the domain type of the set or array.
864 For range types, there are two "fields",
865 the minimum and maximum values (both inclusive).
866 For enum types, each possible value is described by one "field".
867 For a function or method type, a "field" for each parameter.
868 For C++ classes, there is one field for each base class (if it is
869 a derived class) plus one field for each class data member. Member
870 functions are recorded elsewhere.
871
872 Using a pointer to a separate array of fields
873 allows all types to have the same size, which is useful
874 because we can allocate the space for a type before
875 we know what to put in it. */
876
877 union
878 {
879 struct field *fields;
880
881 /* * Union member used for range types. */
882
883 struct range_bounds *bounds;
884
885 /* If this is a scalar type, then this is its corresponding
886 complex type. */
887 struct type *complex_type;
888
889 } flds_bnds;
890
891 /* * Slot to point to additional language-specific fields of this
892 type. */
893
894 union type_specific type_specific;
895
896 /* * Contains all dynamic type properties. */
897 struct dynamic_prop_list *dyn_prop_list;
898 };
899
900 /* * Number of bits allocated for alignment. */
901
902 #define TYPE_ALIGN_BITS 8
903
904 /* * A ``struct type'' describes a particular instance of a type, with
905 some particular qualification. */
906
907 struct type
908 {
909 /* Get the type code of this type.
910
911 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
912 type, you need to do `check_typedef (type)->code ()`. */
913 type_code code () const
914 {
915 return this->main_type->code;
916 }
917
918 /* Set the type code of this type. */
919 void set_code (type_code code)
920 {
921 this->main_type->code = code;
922 }
923
924 /* Get the name of this type. */
925 const char *name () const
926 {
927 return this->main_type->name;
928 }
929
930 /* Set the name of this type. */
931 void set_name (const char *name)
932 {
933 this->main_type->name = name;
934 }
935
936 /* Get the number of fields of this type. */
937 int num_fields () const
938 {
939 return this->main_type->nfields;
940 }
941
942 /* Set the number of fields of this type. */
943 void set_num_fields (int num_fields)
944 {
945 this->main_type->nfields = num_fields;
946 }
947
948 /* Get the fields array of this type. */
949 struct field *fields () const
950 {
951 return this->main_type->flds_bnds.fields;
952 }
953
954 /* Get the field at index IDX. */
955 struct field &field (int idx) const
956 {
957 return this->fields ()[idx];
958 }
959
960 /* Set the fields array of this type. */
961 void set_fields (struct field *fields)
962 {
963 this->main_type->flds_bnds.fields = fields;
964 }
965
966 type *index_type () const
967 {
968 return this->field (0).type ();
969 }
970
971 void set_index_type (type *index_type)
972 {
973 this->field (0).set_type (index_type);
974 }
975
976 /* Return the instance flags converted to the correct type. */
977 const type_instance_flags instance_flags () const
978 {
979 return (enum type_instance_flag_value) this->m_instance_flags;
980 }
981
982 /* Set the instance flags. */
983 void set_instance_flags (type_instance_flags flags)
984 {
985 this->m_instance_flags = flags;
986 }
987
988 /* Get the bounds bounds of this type. The type must be a range type. */
989 range_bounds *bounds () const
990 {
991 switch (this->code ())
992 {
993 case TYPE_CODE_RANGE:
994 return this->main_type->flds_bnds.bounds;
995
996 case TYPE_CODE_ARRAY:
997 case TYPE_CODE_STRING:
998 return this->index_type ()->bounds ();
999
1000 default:
1001 gdb_assert_not_reached
1002 ("type::bounds called on type with invalid code");
1003 }
1004 }
1005
1006 /* Set the bounds of this type. The type must be a range type. */
1007 void set_bounds (range_bounds *bounds)
1008 {
1009 gdb_assert (this->code () == TYPE_CODE_RANGE);
1010
1011 this->main_type->flds_bnds.bounds = bounds;
1012 }
1013
1014 ULONGEST bit_stride () const
1015 {
1016 return this->bounds ()->bit_stride ();
1017 }
1018
1019 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1020 the type is signed (unless TYPE_NOSIGN is set). */
1021
1022 bool is_unsigned () const
1023 {
1024 return this->main_type->m_flag_unsigned;
1025 }
1026
1027 void set_is_unsigned (bool is_unsigned)
1028 {
1029 this->main_type->m_flag_unsigned = is_unsigned;
1030 }
1031
1032 /* No sign for this type. In C++, "char", "signed char", and
1033 "unsigned char" are distinct types; so we need an extra flag to
1034 indicate the absence of a sign! */
1035
1036 bool has_no_signedness () const
1037 {
1038 return this->main_type->m_flag_nosign;
1039 }
1040
1041 void set_has_no_signedness (bool has_no_signedness)
1042 {
1043 this->main_type->m_flag_nosign = has_no_signedness;
1044 }
1045
1046 /* This appears in a type's flags word if it is a stub type (e.g.,
1047 if someone referenced a type that wasn't defined in a source file
1048 via (struct sir_not_appearing_in_this_film *)). */
1049
1050 bool is_stub () const
1051 {
1052 return this->main_type->m_flag_stub;
1053 }
1054
1055 void set_is_stub (bool is_stub)
1056 {
1057 this->main_type->m_flag_stub = is_stub;
1058 }
1059
1060 /* The target type of this type is a stub type, and this type needs
1061 to be updated if it gets un-stubbed in check_typedef. Used for
1062 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1063 based on the TYPE_LENGTH of the target type. Also, set for
1064 TYPE_CODE_TYPEDEF. */
1065
1066 bool target_is_stub () const
1067 {
1068 return this->main_type->m_flag_target_stub;
1069 }
1070
1071 void set_target_is_stub (bool target_is_stub)
1072 {
1073 this->main_type->m_flag_target_stub = target_is_stub;
1074 }
1075
1076 /* This is a function type which appears to have a prototype. We
1077 need this for function calls in order to tell us if it's necessary
1078 to coerce the args, or to just do the standard conversions. This
1079 is used with a short field. */
1080
1081 bool is_prototyped () const
1082 {
1083 return this->main_type->m_flag_prototyped;
1084 }
1085
1086 void set_is_prototyped (bool is_prototyped)
1087 {
1088 this->main_type->m_flag_prototyped = is_prototyped;
1089 }
1090
1091 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1092 to functions. */
1093
1094 bool has_varargs () const
1095 {
1096 return this->main_type->m_flag_varargs;
1097 }
1098
1099 void set_has_varargs (bool has_varargs)
1100 {
1101 this->main_type->m_flag_varargs = has_varargs;
1102 }
1103
1104 /* Identify a vector type. Gcc is handling this by adding an extra
1105 attribute to the array type. We slurp that in as a new flag of a
1106 type. This is used only in dwarf2read.c. */
1107
1108 bool is_vector () const
1109 {
1110 return this->main_type->m_flag_vector;
1111 }
1112
1113 void set_is_vector (bool is_vector)
1114 {
1115 this->main_type->m_flag_vector = is_vector;
1116 }
1117
1118 /* This debug target supports TYPE_STUB(t). In the unsupported case
1119 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1120 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1121 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1122
1123 bool stub_is_supported () const
1124 {
1125 return this->main_type->m_flag_stub_supported;
1126 }
1127
1128 void set_stub_is_supported (bool stub_is_supported)
1129 {
1130 this->main_type->m_flag_stub_supported = stub_is_supported;
1131 }
1132
1133 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1134 address is returned by this function call. TYPE_TARGET_TYPE
1135 determines the final returned function type to be presented to
1136 user. */
1137
1138 bool is_gnu_ifunc () const
1139 {
1140 return this->main_type->m_flag_gnu_ifunc;
1141 }
1142
1143 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1144 {
1145 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1146 }
1147
1148 /* The debugging formats (especially STABS) do not contain enough
1149 information to represent all Ada types---especially those whose
1150 size depends on dynamic quantities. Therefore, the GNAT Ada
1151 compiler includes extra information in the form of additional type
1152 definitions connected by naming conventions. This flag indicates
1153 that the type is an ordinary (unencoded) GDB type that has been
1154 created from the necessary run-time information, and does not need
1155 further interpretation. Optionally marks ordinary, fixed-size GDB
1156 type. */
1157
1158 bool is_fixed_instance () const
1159 {
1160 return this->main_type->m_flag_fixed_instance;
1161 }
1162
1163 void set_is_fixed_instance (bool is_fixed_instance)
1164 {
1165 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1166 }
1167
1168 /* A compiler may supply dwarf instrumentation that indicates the desired
1169 endian interpretation of the variable differs from the native endian
1170 representation. */
1171
1172 bool endianity_is_not_default () const
1173 {
1174 return this->main_type->m_flag_endianity_not_default;
1175 }
1176
1177 void set_endianity_is_not_default (bool endianity_is_not_default)
1178 {
1179 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1180 }
1181
1182
1183 /* True if this type was declared using the "class" keyword. This is
1184 only valid for C++ structure and enum types. If false, a structure
1185 was declared as a "struct"; if true it was declared "class". For
1186 enum types, this is true when "enum class" or "enum struct" was
1187 used to declare the type. */
1188
1189 bool is_declared_class () const
1190 {
1191 return this->main_type->m_flag_declared_class;
1192 }
1193
1194 void set_is_declared_class (bool is_declared_class) const
1195 {
1196 this->main_type->m_flag_declared_class = is_declared_class;
1197 }
1198
1199 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1200 to this type's fixed_point_info. */
1201
1202 struct fixed_point_type_info &fixed_point_info () const
1203 {
1204 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1205 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1206
1207 return *this->main_type->type_specific.fixed_point_info;
1208 }
1209
1210 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1211 fixed_point_info to INFO. */
1212
1213 void set_fixed_point_info (struct fixed_point_type_info *info) const
1214 {
1215 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1216
1217 this->main_type->type_specific.fixed_point_info = info;
1218 }
1219
1220 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1221
1222 In other words, this returns the type after having peeled all
1223 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1224 The TYPE_CODE of the type returned is guaranteed to be
1225 a TYPE_CODE_FIXED_POINT. */
1226
1227 struct type *fixed_point_type_base_type ();
1228
1229 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1230 factor. */
1231
1232 const gdb_mpq &fixed_point_scaling_factor ();
1233
1234 /* * Return the dynamic property of the requested KIND from this type's
1235 list of dynamic properties. */
1236 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1237
1238 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1239 property to this type.
1240
1241 This function assumes that this type is objfile-owned. */
1242 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1243
1244 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1245 void remove_dyn_prop (dynamic_prop_node_kind kind);
1246
1247 /* Return true if this type is owned by an objfile. Return false if it is
1248 owned by an architecture. */
1249 bool is_objfile_owned () const
1250 {
1251 return this->main_type->m_flag_objfile_owned;
1252 }
1253
1254 /* Set the owner of the type to be OBJFILE. */
1255 void set_owner (objfile *objfile)
1256 {
1257 gdb_assert (objfile != nullptr);
1258
1259 this->main_type->m_owner.objfile = objfile;
1260 this->main_type->m_flag_objfile_owned = true;
1261 }
1262
1263 /* Set the owner of the type to be ARCH. */
1264 void set_owner (gdbarch *arch)
1265 {
1266 gdb_assert (arch != nullptr);
1267
1268 this->main_type->m_owner.gdbarch = arch;
1269 this->main_type->m_flag_objfile_owned = false;
1270 }
1271
1272 /* Return the objfile owner of this type.
1273
1274 Return nullptr if this type is not objfile-owned. */
1275 struct objfile *objfile_owner () const
1276 {
1277 if (!this->is_objfile_owned ())
1278 return nullptr;
1279
1280 return this->main_type->m_owner.objfile;
1281 }
1282
1283 /* Return the gdbarch owner of this type.
1284
1285 Return nullptr if this type is not gdbarch-owned. */
1286 gdbarch *arch_owner () const
1287 {
1288 if (this->is_objfile_owned ())
1289 return nullptr;
1290
1291 return this->main_type->m_owner.gdbarch;
1292 }
1293
1294 /* Return the type's architecture. For types owned by an
1295 architecture, that architecture is returned. For types owned by an
1296 objfile, that objfile's architecture is returned.
1297
1298 The return value is always non-nullptr. */
1299 gdbarch *arch () const;
1300
1301 /* * Return true if this is an integer type whose logical (bit) size
1302 differs from its storage size; false otherwise. Always return
1303 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1304 bool bit_size_differs_p () const
1305 {
1306 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1307 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1308 }
1309
1310 /* * Return the logical (bit) size for this integer type. Only
1311 valid for integer (TYPE_SPECIFIC_INT) types. */
1312 unsigned short bit_size () const
1313 {
1314 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1315 return main_type->type_specific.int_stuff.bit_size;
1316 }
1317
1318 /* * Return the bit offset for this integer type. Only valid for
1319 integer (TYPE_SPECIFIC_INT) types. */
1320 unsigned short bit_offset () const
1321 {
1322 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1323 return main_type->type_specific.int_stuff.bit_offset;
1324 }
1325
1326 /* * Type that is a pointer to this type.
1327 NULL if no such pointer-to type is known yet.
1328 The debugger may add the address of such a type
1329 if it has to construct one later. */
1330
1331 struct type *pointer_type;
1332
1333 /* * C++: also need a reference type. */
1334
1335 struct type *reference_type;
1336
1337 /* * A C++ rvalue reference type added in C++11. */
1338
1339 struct type *rvalue_reference_type;
1340
1341 /* * Variant chain. This points to a type that differs from this
1342 one only in qualifiers and length. Currently, the possible
1343 qualifiers are const, volatile, code-space, data-space, and
1344 address class. The length may differ only when one of the
1345 address class flags are set. The variants are linked in a
1346 circular ring and share MAIN_TYPE. */
1347
1348 struct type *chain;
1349
1350 /* * The alignment for this type. Zero means that the alignment was
1351 not specified in the debug info. Note that this is stored in a
1352 funny way: as the log base 2 (plus 1) of the alignment; so a
1353 value of 1 means the alignment is 1, and a value of 9 means the
1354 alignment is 256. */
1355
1356 unsigned align_log2 : TYPE_ALIGN_BITS;
1357
1358 /* * Flags specific to this instance of the type, indicating where
1359 on the ring we are.
1360
1361 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1362 binary or-ed with the target type, with a special case for
1363 address class and space class. For example if this typedef does
1364 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1365 instance flags are completely inherited from the target type. No
1366 qualifiers can be cleared by the typedef. See also
1367 check_typedef. */
1368 unsigned m_instance_flags : 9;
1369
1370 /* * Length of storage for a value of this type. The value is the
1371 expression in host bytes of what sizeof(type) would return. This
1372 size includes padding. For example, an i386 extended-precision
1373 floating point value really only occupies ten bytes, but most
1374 ABI's declare its size to be 12 bytes, to preserve alignment.
1375 A `struct type' representing such a floating-point type would
1376 have a `length' value of 12, even though the last two bytes are
1377 unused.
1378
1379 Since this field is expressed in host bytes, its value is appropriate
1380 to pass to memcpy and such (it is assumed that GDB itself always runs
1381 on an 8-bits addressable architecture). However, when using it for
1382 target address arithmetic (e.g. adding it to a target address), the
1383 type_length_units function should be used in order to get the length
1384 expressed in target addressable memory units. */
1385
1386 ULONGEST length;
1387
1388 /* * Core type, shared by a group of qualified types. */
1389
1390 struct main_type *main_type;
1391 };
1392
1393 struct fn_fieldlist
1394 {
1395
1396 /* * The overloaded name.
1397 This is generally allocated in the objfile's obstack.
1398 However stabsread.c sometimes uses malloc. */
1399
1400 const char *name;
1401
1402 /* * The number of methods with this name. */
1403
1404 int length;
1405
1406 /* * The list of methods. */
1407
1408 struct fn_field *fn_fields;
1409 };
1410
1411
1412
1413 struct fn_field
1414 {
1415 /* * If is_stub is clear, this is the mangled name which we can look
1416 up to find the address of the method (FIXME: it would be cleaner
1417 to have a pointer to the struct symbol here instead).
1418
1419 If is_stub is set, this is the portion of the mangled name which
1420 specifies the arguments. For example, "ii", if there are two int
1421 arguments, or "" if there are no arguments. See gdb_mangle_name
1422 for the conversion from this format to the one used if is_stub is
1423 clear. */
1424
1425 const char *physname;
1426
1427 /* * The function type for the method.
1428
1429 (This comment used to say "The return value of the method", but
1430 that's wrong. The function type is expected here, i.e. something
1431 with TYPE_CODE_METHOD, and *not* the return-value type). */
1432
1433 struct type *type;
1434
1435 /* * For virtual functions. First baseclass that defines this
1436 virtual function. */
1437
1438 struct type *fcontext;
1439
1440 /* Attributes. */
1441
1442 unsigned int is_const:1;
1443 unsigned int is_volatile:1;
1444 unsigned int is_private:1;
1445 unsigned int is_protected:1;
1446 unsigned int is_artificial:1;
1447
1448 /* * A stub method only has some fields valid (but they are enough
1449 to reconstruct the rest of the fields). */
1450
1451 unsigned int is_stub:1;
1452
1453 /* * True if this function is a constructor, false otherwise. */
1454
1455 unsigned int is_constructor : 1;
1456
1457 /* * True if this function is deleted, false otherwise. */
1458
1459 unsigned int is_deleted : 1;
1460
1461 /* * DW_AT_defaulted attribute for this function. The value is one
1462 of the DW_DEFAULTED constants. */
1463
1464 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1465
1466 /* * Unused. */
1467
1468 unsigned int dummy:6;
1469
1470 /* * Index into that baseclass's virtual function table, minus 2;
1471 else if static: VOFFSET_STATIC; else: 0. */
1472
1473 unsigned int voffset:16;
1474
1475 #define VOFFSET_STATIC 1
1476
1477 };
1478
1479 struct decl_field
1480 {
1481 /* * Unqualified name to be prefixed by owning class qualified
1482 name. */
1483
1484 const char *name;
1485
1486 /* * Type this typedef named NAME represents. */
1487
1488 struct type *type;
1489
1490 /* * True if this field was declared protected, false otherwise. */
1491 unsigned int is_protected : 1;
1492
1493 /* * True if this field was declared private, false otherwise. */
1494 unsigned int is_private : 1;
1495 };
1496
1497 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1498 TYPE_CODE_UNION nodes. */
1499
1500 struct cplus_struct_type
1501 {
1502 /* * Number of base classes this type derives from. The
1503 baseclasses are stored in the first N_BASECLASSES fields
1504 (i.e. the `fields' field of the struct type). The only fields
1505 of struct field that are used are: type, name, loc.bitpos. */
1506
1507 short n_baseclasses;
1508
1509 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1510 All access to this field must be through TYPE_VPTR_FIELDNO as one
1511 thing it does is check whether the field has been initialized.
1512 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1513 which for portability reasons doesn't initialize this field.
1514 TYPE_VPTR_FIELDNO returns -1 for this case.
1515
1516 If -1, we were unable to find the virtual function table pointer in
1517 initial symbol reading, and get_vptr_fieldno should be called to find
1518 it if possible. get_vptr_fieldno will update this field if possible.
1519 Otherwise the value is left at -1.
1520
1521 Unused if this type does not have virtual functions. */
1522
1523 short vptr_fieldno;
1524
1525 /* * Number of methods with unique names. All overloaded methods
1526 with the same name count only once. */
1527
1528 short nfn_fields;
1529
1530 /* * Number of template arguments. */
1531
1532 unsigned short n_template_arguments;
1533
1534 /* * One if this struct is a dynamic class, as defined by the
1535 Itanium C++ ABI: if it requires a virtual table pointer,
1536 because it or any of its base classes have one or more virtual
1537 member functions or virtual base classes. Minus one if not
1538 dynamic. Zero if not yet computed. */
1539
1540 int is_dynamic : 2;
1541
1542 /* * The calling convention for this type, fetched from the
1543 DW_AT_calling_convention attribute. The value is one of the
1544 DW_CC constants. */
1545
1546 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1547
1548 /* * The base class which defined the virtual function table pointer. */
1549
1550 struct type *vptr_basetype;
1551
1552 /* * For derived classes, the number of base classes is given by
1553 n_baseclasses and virtual_field_bits is a bit vector containing
1554 one bit per base class. If the base class is virtual, the
1555 corresponding bit will be set.
1556 I.E, given:
1557
1558 class A{};
1559 class B{};
1560 class C : public B, public virtual A {};
1561
1562 B is a baseclass of C; A is a virtual baseclass for C.
1563 This is a C++ 2.0 language feature. */
1564
1565 B_TYPE *virtual_field_bits;
1566
1567 /* * For classes with private fields, the number of fields is
1568 given by nfields and private_field_bits is a bit vector
1569 containing one bit per field.
1570
1571 If the field is private, the corresponding bit will be set. */
1572
1573 B_TYPE *private_field_bits;
1574
1575 /* * For classes with protected fields, the number of fields is
1576 given by nfields and protected_field_bits is a bit vector
1577 containing one bit per field.
1578
1579 If the field is private, the corresponding bit will be set. */
1580
1581 B_TYPE *protected_field_bits;
1582
1583 /* * For classes with fields to be ignored, either this is
1584 optimized out or this field has length 0. */
1585
1586 B_TYPE *ignore_field_bits;
1587
1588 /* * For classes, structures, and unions, a description of each
1589 field, which consists of an overloaded name, followed by the
1590 types of arguments that the method expects, and then the name
1591 after it has been renamed to make it distinct.
1592
1593 fn_fieldlists points to an array of nfn_fields of these. */
1594
1595 struct fn_fieldlist *fn_fieldlists;
1596
1597 /* * typedefs defined inside this class. typedef_field points to
1598 an array of typedef_field_count elements. */
1599
1600 struct decl_field *typedef_field;
1601
1602 unsigned typedef_field_count;
1603
1604 /* * The nested types defined by this type. nested_types points to
1605 an array of nested_types_count elements. */
1606
1607 struct decl_field *nested_types;
1608
1609 unsigned nested_types_count;
1610
1611 /* * The template arguments. This is an array with
1612 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1613 classes. */
1614
1615 struct symbol **template_arguments;
1616 };
1617
1618 /* * Struct used to store conversion rankings. */
1619
1620 struct rank
1621 {
1622 short rank;
1623
1624 /* * When two conversions are of the same type and therefore have
1625 the same rank, subrank is used to differentiate the two.
1626
1627 Eg: Two derived-class-pointer to base-class-pointer conversions
1628 would both have base pointer conversion rank, but the
1629 conversion with the shorter distance to the ancestor is
1630 preferable. 'subrank' would be used to reflect that. */
1631
1632 short subrank;
1633 };
1634
1635 /* * Used for ranking a function for overload resolution. */
1636
1637 typedef std::vector<rank> badness_vector;
1638
1639 /* * GNAT Ada-specific information for various Ada types. */
1640
1641 struct gnat_aux_type
1642 {
1643 /* * Parallel type used to encode information about dynamic types
1644 used in Ada (such as variant records, variable-size array,
1645 etc). */
1646 struct type* descriptive_type;
1647 };
1648
1649 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1650
1651 struct func_type
1652 {
1653 /* * The calling convention for targets supporting multiple ABIs.
1654 Right now this is only fetched from the Dwarf-2
1655 DW_AT_calling_convention attribute. The value is one of the
1656 DW_CC constants. */
1657
1658 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1659
1660 /* * Whether this function normally returns to its caller. It is
1661 set from the DW_AT_noreturn attribute if set on the
1662 DW_TAG_subprogram. */
1663
1664 unsigned int is_noreturn : 1;
1665
1666 /* * Only those DW_TAG_call_site's in this function that have
1667 DW_AT_call_tail_call set are linked in this list. Function
1668 without its tail call list complete
1669 (DW_AT_call_all_tail_calls or its superset
1670 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1671 DW_TAG_call_site's exist in such function. */
1672
1673 struct call_site *tail_call_list;
1674
1675 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1676 contains the method. */
1677
1678 struct type *self_type;
1679 };
1680
1681 /* struct call_site_parameter can be referenced in callees by several ways. */
1682
1683 enum call_site_parameter_kind
1684 {
1685 /* * Use field call_site_parameter.u.dwarf_reg. */
1686 CALL_SITE_PARAMETER_DWARF_REG,
1687
1688 /* * Use field call_site_parameter.u.fb_offset. */
1689 CALL_SITE_PARAMETER_FB_OFFSET,
1690
1691 /* * Use field call_site_parameter.u.param_offset. */
1692 CALL_SITE_PARAMETER_PARAM_OFFSET
1693 };
1694
1695 struct call_site_target
1696 {
1697 union field_location loc;
1698
1699 /* * Discriminant for union field_location. */
1700
1701 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1702 };
1703
1704 union call_site_parameter_u
1705 {
1706 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1707 as DWARF register number, for register passed
1708 parameters. */
1709
1710 int dwarf_reg;
1711
1712 /* * Offset from the callee's frame base, for stack passed
1713 parameters. This equals offset from the caller's stack
1714 pointer. */
1715
1716 CORE_ADDR fb_offset;
1717
1718 /* * Offset relative to the start of this PER_CU to
1719 DW_TAG_formal_parameter which is referenced by both
1720 caller and the callee. */
1721
1722 cu_offset param_cu_off;
1723 };
1724
1725 struct call_site_parameter
1726 {
1727 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1728
1729 union call_site_parameter_u u;
1730
1731 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1732
1733 const gdb_byte *value;
1734 size_t value_size;
1735
1736 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1737 It may be NULL if not provided by DWARF. */
1738
1739 const gdb_byte *data_value;
1740 size_t data_value_size;
1741 };
1742
1743 /* * A place where a function gets called from, represented by
1744 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1745
1746 struct call_site
1747 {
1748 /* * Address of the first instruction after this call. It must be
1749 the first field as we overload core_addr_hash and core_addr_eq
1750 for it. */
1751
1752 CORE_ADDR pc;
1753
1754 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1755
1756 struct call_site *tail_call_next;
1757
1758 /* * Describe DW_AT_call_target. Missing attribute uses
1759 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1760
1761 struct call_site_target target;
1762
1763 /* * Size of the PARAMETER array. */
1764
1765 unsigned parameter_count;
1766
1767 /* * CU of the function where the call is located. It gets used
1768 for DWARF blocks execution in the parameter array below. */
1769
1770 dwarf2_per_cu_data *per_cu;
1771
1772 /* objfile of the function where the call is located. */
1773
1774 dwarf2_per_objfile *per_objfile;
1775
1776 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1777
1778 struct call_site_parameter parameter[1];
1779 };
1780
1781 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1782
1783 struct fixed_point_type_info
1784 {
1785 /* The fixed point type's scaling factor. */
1786 gdb_mpq scaling_factor;
1787 };
1788
1789 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1790 static structure. */
1791
1792 extern const struct cplus_struct_type cplus_struct_default;
1793
1794 extern void allocate_cplus_struct_type (struct type *);
1795
1796 #define INIT_CPLUS_SPECIFIC(type) \
1797 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1798 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1799 &cplus_struct_default)
1800
1801 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1802
1803 #define HAVE_CPLUS_STRUCT(type) \
1804 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1805 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1806
1807 #define INIT_NONE_SPECIFIC(type) \
1808 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1809 TYPE_MAIN_TYPE (type)->type_specific = {})
1810
1811 extern const struct gnat_aux_type gnat_aux_default;
1812
1813 extern void allocate_gnat_aux_type (struct type *);
1814
1815 #define INIT_GNAT_SPECIFIC(type) \
1816 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1817 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1818 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1819 /* * A macro that returns non-zero if the type-specific data should be
1820 read as "gnat-stuff". */
1821 #define HAVE_GNAT_AUX_INFO(type) \
1822 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1823
1824 /* * True if TYPE is known to be an Ada type of some kind. */
1825 #define ADA_TYPE_P(type) \
1826 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1827 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1828 && (type)->is_fixed_instance ()))
1829
1830 #define INIT_FUNC_SPECIFIC(type) \
1831 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1832 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1833 TYPE_ZALLOC (type, \
1834 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1835
1836 /* "struct fixed_point_type_info" has a field that has a destructor.
1837 See allocate_fixed_point_type_info to understand how this is
1838 handled. */
1839 #define INIT_FIXED_POINT_SPECIFIC(type) \
1840 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1841 allocate_fixed_point_type_info (type))
1842
1843 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1844 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1845 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1846 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1847 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1848 #define TYPE_CHAIN(thistype) (thistype)->chain
1849 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1850 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1851 so you only have to call check_typedef once. Since allocate_value
1852 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1853 #define TYPE_LENGTH(thistype) (thistype)->length
1854
1855 /* * Return the alignment of the type in target addressable memory
1856 units, or 0 if no alignment was specified. */
1857 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1858
1859 /* * Return the alignment of the type in target addressable memory
1860 units, or 0 if no alignment was specified. */
1861 extern unsigned type_raw_align (struct type *);
1862
1863 /* * Return the alignment of the type in target addressable memory
1864 units. Return 0 if the alignment cannot be determined; but note
1865 that this makes an effort to compute the alignment even it it was
1866 not specified in the debug info. */
1867 extern unsigned type_align (struct type *);
1868
1869 /* * Set the alignment of the type. The alignment must be a power of
1870 2. Returns false if the given value does not fit in the available
1871 space in struct type. */
1872 extern bool set_type_align (struct type *, ULONGEST);
1873
1874 /* Property accessors for the type data location. */
1875 #define TYPE_DATA_LOCATION(thistype) \
1876 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1877 #define TYPE_DATA_LOCATION_BATON(thistype) \
1878 TYPE_DATA_LOCATION (thistype)->data.baton
1879 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1880 (TYPE_DATA_LOCATION (thistype)->const_val ())
1881 #define TYPE_DATA_LOCATION_KIND(thistype) \
1882 (TYPE_DATA_LOCATION (thistype)->kind ())
1883 #define TYPE_DYNAMIC_LENGTH(thistype) \
1884 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1885
1886 /* Property accessors for the type allocated/associated. */
1887 #define TYPE_ALLOCATED_PROP(thistype) \
1888 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1889 #define TYPE_ASSOCIATED_PROP(thistype) \
1890 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1891
1892 /* C++ */
1893
1894 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1895 /* Do not call this, use TYPE_SELF_TYPE. */
1896 extern struct type *internal_type_self_type (struct type *);
1897 extern void set_type_self_type (struct type *, struct type *);
1898
1899 extern int internal_type_vptr_fieldno (struct type *);
1900 extern void set_type_vptr_fieldno (struct type *, int);
1901 extern struct type *internal_type_vptr_basetype (struct type *);
1902 extern void set_type_vptr_basetype (struct type *, struct type *);
1903 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1904 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1905
1906 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1907 #define TYPE_SPECIFIC_FIELD(thistype) \
1908 TYPE_MAIN_TYPE(thistype)->type_specific_field
1909 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1910 where we're trying to print an Ada array using the C language.
1911 In that case, there is no "cplus_stuff", but the C language assumes
1912 that there is. What we do, in that case, is pretend that there is
1913 an implicit one which is the default cplus stuff. */
1914 #define TYPE_CPLUS_SPECIFIC(thistype) \
1915 (!HAVE_CPLUS_STRUCT(thistype) \
1916 ? (struct cplus_struct_type*)&cplus_struct_default \
1917 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1918 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1919 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1920 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1921 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1922 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1923 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1924 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1925 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1926 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1927 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1928 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1929 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1930 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1931 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1932 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1933 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1934
1935 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1936 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1937 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1938
1939 #define FIELD_NAME(thisfld) ((thisfld).name)
1940 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1941 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1942 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1943 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1944 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1945 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1946 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1947 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1948 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1949 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1950 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1951 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1952 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1953 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1954 #define SET_FIELD_PHYSNAME(thisfld, name) \
1955 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1956 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1957 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1958 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1959 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1960 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1961 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1962 FIELD_DWARF_BLOCK (thisfld) = (addr))
1963 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1964 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1965
1966 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1967 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1968 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1969 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1970 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1971 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1972 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1973 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1974 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1975 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1976
1977 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1978 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1979 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1980 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1981 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1982 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1983 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1984 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1985 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1986 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1987 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1988 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1989 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1990 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1991 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1992 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1993 #define TYPE_FIELD_PRIVATE(thistype, n) \
1994 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1995 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1996 #define TYPE_FIELD_PROTECTED(thistype, n) \
1997 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1998 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1999 #define TYPE_FIELD_IGNORE(thistype, n) \
2000 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2001 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2002 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2003 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2004 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2005
2006 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2007 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2008 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2009 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2010 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2011
2012 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2013 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2014 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2015 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2016 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2017 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2018
2019 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2020 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2021 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2022 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2023 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2024 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2025 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2026 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2027 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2028 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2029 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2030 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2031 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2032 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2033 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2034 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2035 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2036
2037 /* Accessors for typedefs defined by a class. */
2038 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2039 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2040 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2041 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2042 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2043 TYPE_TYPEDEF_FIELD (thistype, n).name
2044 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2045 TYPE_TYPEDEF_FIELD (thistype, n).type
2046 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2047 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2048 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2049 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2050 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2051 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2052
2053 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2054 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2055 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2056 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2057 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2058 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2059 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2060 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2061 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2062 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2063 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2064 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2065 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2066 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2067
2068 #define TYPE_IS_OPAQUE(thistype) \
2069 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2070 || ((thistype)->code () == TYPE_CODE_UNION)) \
2071 && ((thistype)->num_fields () == 0) \
2072 && (!HAVE_CPLUS_STRUCT (thistype) \
2073 || TYPE_NFN_FIELDS (thistype) == 0) \
2074 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2075
2076 /* * A helper macro that returns the name of a type or "unnamed type"
2077 if the type has no name. */
2078
2079 #define TYPE_SAFE_NAME(type) \
2080 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2081
2082 /* * A helper macro that returns the name of an error type. If the
2083 type has a name, it is used; otherwise, a default is used. */
2084
2085 #define TYPE_ERROR_NAME(type) \
2086 (type->name () ? type->name () : _("<error type>"))
2087
2088 /* Given TYPE, return its floatformat. */
2089 const struct floatformat *floatformat_from_type (const struct type *type);
2090
2091 struct builtin_type
2092 {
2093 /* Integral types. */
2094
2095 /* Implicit size/sign (based on the architecture's ABI). */
2096 struct type *builtin_void;
2097 struct type *builtin_char;
2098 struct type *builtin_short;
2099 struct type *builtin_int;
2100 struct type *builtin_long;
2101 struct type *builtin_signed_char;
2102 struct type *builtin_unsigned_char;
2103 struct type *builtin_unsigned_short;
2104 struct type *builtin_unsigned_int;
2105 struct type *builtin_unsigned_long;
2106 struct type *builtin_bfloat16;
2107 struct type *builtin_half;
2108 struct type *builtin_float;
2109 struct type *builtin_double;
2110 struct type *builtin_long_double;
2111 struct type *builtin_complex;
2112 struct type *builtin_double_complex;
2113 struct type *builtin_string;
2114 struct type *builtin_bool;
2115 struct type *builtin_long_long;
2116 struct type *builtin_unsigned_long_long;
2117 struct type *builtin_decfloat;
2118 struct type *builtin_decdouble;
2119 struct type *builtin_declong;
2120
2121 /* "True" character types.
2122 We use these for the '/c' print format, because c_char is just a
2123 one-byte integral type, which languages less laid back than C
2124 will print as ... well, a one-byte integral type. */
2125 struct type *builtin_true_char;
2126 struct type *builtin_true_unsigned_char;
2127
2128 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2129 is for when an architecture needs to describe a register that has
2130 no size. */
2131 struct type *builtin_int0;
2132 struct type *builtin_int8;
2133 struct type *builtin_uint8;
2134 struct type *builtin_int16;
2135 struct type *builtin_uint16;
2136 struct type *builtin_int24;
2137 struct type *builtin_uint24;
2138 struct type *builtin_int32;
2139 struct type *builtin_uint32;
2140 struct type *builtin_int64;
2141 struct type *builtin_uint64;
2142 struct type *builtin_int128;
2143 struct type *builtin_uint128;
2144
2145 /* Wide character types. */
2146 struct type *builtin_char16;
2147 struct type *builtin_char32;
2148 struct type *builtin_wchar;
2149
2150 /* Pointer types. */
2151
2152 /* * `pointer to data' type. Some target platforms use an implicitly
2153 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2154 struct type *builtin_data_ptr;
2155
2156 /* * `pointer to function (returning void)' type. Harvard
2157 architectures mean that ABI function and code pointers are not
2158 interconvertible. Similarly, since ANSI, C standards have
2159 explicitly said that pointers to functions and pointers to data
2160 are not interconvertible --- that is, you can't cast a function
2161 pointer to void * and back, and expect to get the same value.
2162 However, all function pointer types are interconvertible, so void
2163 (*) () can server as a generic function pointer. */
2164
2165 struct type *builtin_func_ptr;
2166
2167 /* * `function returning pointer to function (returning void)' type.
2168 The final void return type is not significant for it. */
2169
2170 struct type *builtin_func_func;
2171
2172 /* Special-purpose types. */
2173
2174 /* * This type is used to represent a GDB internal function. */
2175
2176 struct type *internal_fn;
2177
2178 /* * This type is used to represent an xmethod. */
2179 struct type *xmethod;
2180 };
2181
2182 /* * Return the type table for the specified architecture. */
2183
2184 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2185
2186 /* * Per-objfile types used by symbol readers. */
2187
2188 struct objfile_type
2189 {
2190 /* Basic types based on the objfile architecture. */
2191 struct type *builtin_void;
2192 struct type *builtin_char;
2193 struct type *builtin_short;
2194 struct type *builtin_int;
2195 struct type *builtin_long;
2196 struct type *builtin_long_long;
2197 struct type *builtin_signed_char;
2198 struct type *builtin_unsigned_char;
2199 struct type *builtin_unsigned_short;
2200 struct type *builtin_unsigned_int;
2201 struct type *builtin_unsigned_long;
2202 struct type *builtin_unsigned_long_long;
2203 struct type *builtin_half;
2204 struct type *builtin_float;
2205 struct type *builtin_double;
2206 struct type *builtin_long_double;
2207
2208 /* * This type is used to represent symbol addresses. */
2209 struct type *builtin_core_addr;
2210
2211 /* * This type represents a type that was unrecognized in symbol
2212 read-in. */
2213 struct type *builtin_error;
2214
2215 /* * Types used for symbols with no debug information. */
2216 struct type *nodebug_text_symbol;
2217 struct type *nodebug_text_gnu_ifunc_symbol;
2218 struct type *nodebug_got_plt_symbol;
2219 struct type *nodebug_data_symbol;
2220 struct type *nodebug_unknown_symbol;
2221 struct type *nodebug_tls_symbol;
2222 };
2223
2224 /* * Return the type table for the specified objfile. */
2225
2226 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2227
2228 /* Explicit floating-point formats. See "floatformat.h". */
2229 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2230 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2231 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2232 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2233 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2234 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2235 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2236 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2237 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2238 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2239 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2240 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2241 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2242
2243 /* Allocate space for storing data associated with a particular
2244 type. We ensure that the space is allocated using the same
2245 mechanism that was used to allocate the space for the type
2246 structure itself. I.e. if the type is on an objfile's
2247 objfile_obstack, then the space for data associated with that type
2248 will also be allocated on the objfile_obstack. If the type is
2249 associated with a gdbarch, then the space for data associated with that
2250 type will also be allocated on the gdbarch_obstack.
2251
2252 If a type is not associated with neither an objfile or a gdbarch then
2253 you should not use this macro to allocate space for data, instead you
2254 should call xmalloc directly, and ensure the memory is correctly freed
2255 when it is no longer needed. */
2256
2257 #define TYPE_ALLOC(t,size) \
2258 (obstack_alloc (((t)->is_objfile_owned () \
2259 ? &((t)->objfile_owner ()->objfile_obstack) \
2260 : gdbarch_obstack ((t)->arch_owner ())), \
2261 size))
2262
2263
2264 /* See comment on TYPE_ALLOC. */
2265
2266 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2267
2268 /* Use alloc_type to allocate a type owned by an objfile. Use
2269 alloc_type_arch to allocate a type owned by an architecture. Use
2270 alloc_type_copy to allocate a type with the same owner as a
2271 pre-existing template type, no matter whether objfile or
2272 gdbarch. */
2273 extern struct type *alloc_type (struct objfile *);
2274 extern struct type *alloc_type_arch (struct gdbarch *);
2275 extern struct type *alloc_type_copy (const struct type *);
2276
2277 /* * This returns the target type (or NULL) of TYPE, also skipping
2278 past typedefs. */
2279
2280 extern struct type *get_target_type (struct type *type);
2281
2282 /* Return the equivalent of TYPE_LENGTH, but in number of target
2283 addressable memory units of the associated gdbarch instead of bytes. */
2284
2285 extern unsigned int type_length_units (struct type *type);
2286
2287 /* * Helper function to construct objfile-owned types. */
2288
2289 extern struct type *init_type (struct objfile *, enum type_code, int,
2290 const char *);
2291 extern struct type *init_integer_type (struct objfile *, int, int,
2292 const char *);
2293 extern struct type *init_character_type (struct objfile *, int, int,
2294 const char *);
2295 extern struct type *init_boolean_type (struct objfile *, int, int,
2296 const char *);
2297 extern struct type *init_float_type (struct objfile *, int, const char *,
2298 const struct floatformat **,
2299 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2300 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2301 extern bool can_create_complex_type (struct type *);
2302 extern struct type *init_complex_type (const char *, struct type *);
2303 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2304 struct type *);
2305 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2306 const char *);
2307
2308 /* Helper functions to construct architecture-owned types. */
2309 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2310 const char *);
2311 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2312 const char *);
2313 extern struct type *arch_character_type (struct gdbarch *, int, int,
2314 const char *);
2315 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2316 const char *);
2317 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2318 const struct floatformat **);
2319 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2320 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2321 struct type *);
2322
2323 /* Helper functions to construct a struct or record type. An
2324 initially empty type is created using arch_composite_type().
2325 Fields are then added using append_composite_type_field*(). A union
2326 type has its size set to the largest field. A struct type has each
2327 field packed against the previous. */
2328
2329 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2330 const char *name, enum type_code code);
2331 extern void append_composite_type_field (struct type *t, const char *name,
2332 struct type *field);
2333 extern void append_composite_type_field_aligned (struct type *t,
2334 const char *name,
2335 struct type *field,
2336 int alignment);
2337 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2338 struct type *field);
2339
2340 /* Helper functions to construct a bit flags type. An initially empty
2341 type is created using arch_flag_type(). Flags are then added using
2342 append_flag_type_field() and append_flag_type_flag(). */
2343 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2344 const char *name, int bit);
2345 extern void append_flags_type_field (struct type *type,
2346 int start_bitpos, int nr_bits,
2347 struct type *field_type, const char *name);
2348 extern void append_flags_type_flag (struct type *type, int bitpos,
2349 const char *name);
2350
2351 extern void make_vector_type (struct type *array_type);
2352 extern struct type *init_vector_type (struct type *elt_type, int n);
2353
2354 extern struct type *lookup_reference_type (struct type *, enum type_code);
2355 extern struct type *lookup_lvalue_reference_type (struct type *);
2356 extern struct type *lookup_rvalue_reference_type (struct type *);
2357
2358
2359 extern struct type *make_reference_type (struct type *, struct type **,
2360 enum type_code);
2361
2362 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2363
2364 extern struct type *make_restrict_type (struct type *);
2365
2366 extern struct type *make_unqualified_type (struct type *);
2367
2368 extern struct type *make_atomic_type (struct type *);
2369
2370 extern void replace_type (struct type *, struct type *);
2371
2372 extern type_instance_flags address_space_name_to_type_instance_flags
2373 (struct gdbarch *, const char *);
2374
2375 extern const char *address_space_type_instance_flags_to_name
2376 (struct gdbarch *, type_instance_flags);
2377
2378 extern struct type *make_type_with_address_space
2379 (struct type *type, type_instance_flags space_identifier);
2380
2381 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2382
2383 extern struct type *lookup_methodptr_type (struct type *);
2384
2385 extern void smash_to_method_type (struct type *type, struct type *self_type,
2386 struct type *to_type, struct field *args,
2387 int nargs, int varargs);
2388
2389 extern void smash_to_memberptr_type (struct type *, struct type *,
2390 struct type *);
2391
2392 extern void smash_to_methodptr_type (struct type *, struct type *);
2393
2394 extern struct type *allocate_stub_method (struct type *);
2395
2396 extern const char *type_name_or_error (struct type *type);
2397
2398 struct struct_elt
2399 {
2400 /* The field of the element, or NULL if no element was found. */
2401 struct field *field;
2402
2403 /* The bit offset of the element in the parent structure. */
2404 LONGEST offset;
2405 };
2406
2407 /* Given a type TYPE, lookup the field and offset of the component named
2408 NAME.
2409
2410 TYPE can be either a struct or union, or a pointer or reference to
2411 a struct or union. If it is a pointer or reference, its target
2412 type is automatically used. Thus '.' and '->' are interchangable,
2413 as specified for the definitions of the expression element types
2414 STRUCTOP_STRUCT and STRUCTOP_PTR.
2415
2416 If NOERR is nonzero, the returned structure will have field set to
2417 NULL if there is no component named NAME.
2418
2419 If the component NAME is a field in an anonymous substructure of
2420 TYPE, the returned offset is a "global" offset relative to TYPE
2421 rather than an offset within the substructure. */
2422
2423 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2424
2425 /* Given a type TYPE, lookup the type of the component named NAME.
2426
2427 TYPE can be either a struct or union, or a pointer or reference to
2428 a struct or union. If it is a pointer or reference, its target
2429 type is automatically used. Thus '.' and '->' are interchangable,
2430 as specified for the definitions of the expression element types
2431 STRUCTOP_STRUCT and STRUCTOP_PTR.
2432
2433 If NOERR is nonzero, return NULL if there is no component named
2434 NAME. */
2435
2436 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2437
2438 extern struct type *make_pointer_type (struct type *, struct type **);
2439
2440 extern struct type *lookup_pointer_type (struct type *);
2441
2442 extern struct type *make_function_type (struct type *, struct type **);
2443
2444 extern struct type *lookup_function_type (struct type *);
2445
2446 extern struct type *lookup_function_type_with_arguments (struct type *,
2447 int,
2448 struct type **);
2449
2450 extern struct type *create_static_range_type (struct type *, struct type *,
2451 LONGEST, LONGEST);
2452
2453
2454 extern struct type *create_array_type_with_stride
2455 (struct type *, struct type *, struct type *,
2456 struct dynamic_prop *, unsigned int);
2457
2458 extern struct type *create_range_type (struct type *, struct type *,
2459 const struct dynamic_prop *,
2460 const struct dynamic_prop *,
2461 LONGEST);
2462
2463 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2464 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2465 stride. */
2466
2467 extern struct type * create_range_type_with_stride
2468 (struct type *result_type, struct type *index_type,
2469 const struct dynamic_prop *low_bound,
2470 const struct dynamic_prop *high_bound, LONGEST bias,
2471 const struct dynamic_prop *stride, bool byte_stride_p);
2472
2473 extern struct type *create_array_type (struct type *, struct type *,
2474 struct type *);
2475
2476 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2477
2478 extern struct type *create_string_type (struct type *, struct type *,
2479 struct type *);
2480 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2481
2482 extern struct type *create_set_type (struct type *, struct type *);
2483
2484 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2485 const char *);
2486
2487 extern struct type *lookup_signed_typename (const struct language_defn *,
2488 const char *);
2489
2490 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2491
2492 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2493
2494 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2495 ADDR specifies the location of the variable the type is bound to.
2496 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2497 static properties is returned. */
2498 extern struct type *resolve_dynamic_type
2499 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2500 CORE_ADDR addr);
2501
2502 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2503 extern int is_dynamic_type (struct type *type);
2504
2505 extern struct type *check_typedef (struct type *);
2506
2507 extern void check_stub_method_group (struct type *, int);
2508
2509 extern char *gdb_mangle_name (struct type *, int, int);
2510
2511 extern struct type *lookup_typename (const struct language_defn *,
2512 const char *, const struct block *, int);
2513
2514 extern struct type *lookup_template_type (const char *, struct type *,
2515 const struct block *);
2516
2517 extern int get_vptr_fieldno (struct type *, struct type **);
2518
2519 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2520 TYPE.
2521
2522 Return true if the two bounds are available, false otherwise. */
2523
2524 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2525 LONGEST *highp);
2526
2527 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2528
2529 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2530
2531 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2532
2533 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2534
2535 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2536 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2537 Save the high bound into HIGH_BOUND if not NULL.
2538
2539 Return true if the operation was successful. Return false otherwise,
2540 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2541
2542 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2543 LONGEST *high_bound);
2544
2545 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2546 LONGEST val);
2547
2548 extern int class_types_same_p (const struct type *, const struct type *);
2549
2550 extern int is_ancestor (struct type *, struct type *);
2551
2552 extern int is_public_ancestor (struct type *, struct type *);
2553
2554 extern int is_unique_ancestor (struct type *, struct value *);
2555
2556 /* Overload resolution */
2557
2558 /* * Badness if parameter list length doesn't match arg list length. */
2559 extern const struct rank LENGTH_MISMATCH_BADNESS;
2560
2561 /* * Dummy badness value for nonexistent parameter positions. */
2562 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2563 /* * Badness if no conversion among types. */
2564 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2565
2566 /* * Badness of an exact match. */
2567 extern const struct rank EXACT_MATCH_BADNESS;
2568
2569 /* * Badness of integral promotion. */
2570 extern const struct rank INTEGER_PROMOTION_BADNESS;
2571 /* * Badness of floating promotion. */
2572 extern const struct rank FLOAT_PROMOTION_BADNESS;
2573 /* * Badness of converting a derived class pointer
2574 to a base class pointer. */
2575 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2576 /* * Badness of integral conversion. */
2577 extern const struct rank INTEGER_CONVERSION_BADNESS;
2578 /* * Badness of floating conversion. */
2579 extern const struct rank FLOAT_CONVERSION_BADNESS;
2580 /* * Badness of integer<->floating conversions. */
2581 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2582 /* * Badness of conversion of pointer to void pointer. */
2583 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2584 /* * Badness of conversion to boolean. */
2585 extern const struct rank BOOL_CONVERSION_BADNESS;
2586 /* * Badness of converting derived to base class. */
2587 extern const struct rank BASE_CONVERSION_BADNESS;
2588 /* * Badness of converting from non-reference to reference. Subrank
2589 is the type of reference conversion being done. */
2590 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2591 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2592 /* * Conversion to rvalue reference. */
2593 #define REFERENCE_CONVERSION_RVALUE 1
2594 /* * Conversion to const lvalue reference. */
2595 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2596
2597 /* * Badness of converting integer 0 to NULL pointer. */
2598 extern const struct rank NULL_POINTER_CONVERSION;
2599 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2600 being done. */
2601 extern const struct rank CV_CONVERSION_BADNESS;
2602 #define CV_CONVERSION_CONST 1
2603 #define CV_CONVERSION_VOLATILE 2
2604
2605 /* Non-standard conversions allowed by the debugger */
2606
2607 /* * Converting a pointer to an int is usually OK. */
2608 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2609
2610 /* * Badness of converting a (non-zero) integer constant
2611 to a pointer. */
2612 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2613
2614 extern struct rank sum_ranks (struct rank a, struct rank b);
2615 extern int compare_ranks (struct rank a, struct rank b);
2616
2617 extern int compare_badness (const badness_vector &,
2618 const badness_vector &);
2619
2620 extern badness_vector rank_function (gdb::array_view<type *> parms,
2621 gdb::array_view<value *> args);
2622
2623 extern struct rank rank_one_type (struct type *, struct type *,
2624 struct value *);
2625
2626 extern void recursive_dump_type (struct type *, int);
2627
2628 extern int field_is_static (struct field *);
2629
2630 /* printcmd.c */
2631
2632 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2633 const struct value_print_options *,
2634 int, struct ui_file *);
2635
2636 extern int can_dereference (struct type *);
2637
2638 extern int is_integral_type (struct type *);
2639
2640 extern int is_floating_type (struct type *);
2641
2642 extern int is_scalar_type (struct type *type);
2643
2644 extern int is_scalar_type_recursive (struct type *);
2645
2646 extern int class_or_union_p (const struct type *);
2647
2648 extern void maintenance_print_type (const char *, int);
2649
2650 extern htab_up create_copied_types_hash (struct objfile *objfile);
2651
2652 extern struct type *copy_type_recursive (struct objfile *objfile,
2653 struct type *type,
2654 htab_t copied_types);
2655
2656 extern struct type *copy_type (const struct type *type);
2657
2658 extern bool types_equal (struct type *, struct type *);
2659
2660 extern bool types_deeply_equal (struct type *, struct type *);
2661
2662 extern int type_not_allocated (const struct type *type);
2663
2664 extern int type_not_associated (const struct type *type);
2665
2666 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2667 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2668 extern bool is_fixed_point_type (struct type *type);
2669
2670 /* Allocate a fixed-point type info for TYPE. This should only be
2671 called by INIT_FIXED_POINT_SPECIFIC. */
2672 extern void allocate_fixed_point_type_info (struct type *type);
2673
2674 /* * When the type includes explicit byte ordering, return that.
2675 Otherwise, the byte ordering from gdbarch_byte_order for
2676 the type's arch is returned. */
2677
2678 extern enum bfd_endian type_byte_order (const struct type *type);
2679
2680 /* A flag to enable printing of debugging information of C++
2681 overloading. */
2682
2683 extern unsigned int overload_debug;
2684
2685 #endif /* GDBTYPES_H */