gdb: remove TYPE_STUB_SUPPORTED
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The debugging formats (especially STABS) do not contain enough
220 information to represent all Ada types---especially those whose
221 size depends on dynamic quantities. Therefore, the GNAT Ada
222 compiler includes extra information in the form of additional type
223 definitions connected by naming conventions. This flag indicates
224 that the type is an ordinary (unencoded) GDB type that has been
225 created from the necessary run-time information, and does not need
226 further interpretation. Optionally marks ordinary, fixed-size GDB
227 type. */
228
229 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
230
231 /* * Not textual. By default, GDB treats all single byte integers as
232 characters (or elements of strings) unless this flag is set. */
233
234 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
235
236 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
237 address is returned by this function call. TYPE_TARGET_TYPE
238 determines the final returned function type to be presented to
239 user. */
240
241 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
242
243 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
244 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
245 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
246
247 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
248 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
249 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
250
251 /* * True if this type was declared using the "class" keyword. This is
252 only valid for C++ structure and enum types. If false, a structure
253 was declared as a "struct"; if true it was declared "class". For
254 enum types, this is true when "enum class" or "enum struct" was
255 used to declare the type.. */
256
257 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
258
259 /* * True if this type is a "flag" enum. A flag enum is one where all
260 the values are pairwise disjoint when "and"ed together. This
261 affects how enum values are printed. */
262
263 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
264
265 /* * Constant type. If this is set, the corresponding type has a
266 const modifier. */
267
268 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
269
270 /* * Volatile type. If this is set, the corresponding type has a
271 volatile modifier. */
272
273 #define TYPE_VOLATILE(t) \
274 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
275
276 /* * Restrict type. If this is set, the corresponding type has a
277 restrict modifier. */
278
279 #define TYPE_RESTRICT(t) \
280 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
281
282 /* * Atomic type. If this is set, the corresponding type has an
283 _Atomic modifier. */
284
285 #define TYPE_ATOMIC(t) \
286 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
287
288 /* * True if this type represents either an lvalue or lvalue reference type. */
289
290 #define TYPE_IS_REFERENCE(t) \
291 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
292
293 /* * True if this type is allocatable. */
294 #define TYPE_IS_ALLOCATABLE(t) \
295 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
296
297 /* * True if this type has variant parts. */
298 #define TYPE_HAS_VARIANT_PARTS(t) \
299 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
300
301 /* * True if this type has a dynamic length. */
302 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
303 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
304
305 /* * Instruction-space delimited type. This is for Harvard architectures
306 which have separate instruction and data address spaces (and perhaps
307 others).
308
309 GDB usually defines a flat address space that is a superset of the
310 architecture's two (or more) address spaces, but this is an extension
311 of the architecture's model.
312
313 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
314 resides in instruction memory, even if its address (in the extended
315 flat address space) does not reflect this.
316
317 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
318 corresponding type resides in the data memory space, even if
319 this is not indicated by its (flat address space) address.
320
321 If neither flag is set, the default space for functions / methods
322 is instruction space, and for data objects is data memory. */
323
324 #define TYPE_CODE_SPACE(t) \
325 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
326
327 #define TYPE_DATA_SPACE(t) \
328 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
329
330 /* * Address class flags. Some environments provide for pointers
331 whose size is different from that of a normal pointer or address
332 types where the bits are interpreted differently than normal
333 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
334 target specific ways to represent these different types of address
335 classes. */
336
337 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
338 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
339 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
340 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
341 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
342 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
343 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
344 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
345
346 /* * Information about a single discriminant. */
347
348 struct discriminant_range
349 {
350 /* * The range of values for the variant. This is an inclusive
351 range. */
352 ULONGEST low, high;
353
354 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
355 is true if this should be an unsigned comparison; false for
356 signed. */
357 bool contains (ULONGEST value, bool is_unsigned) const
358 {
359 if (is_unsigned)
360 return value >= low && value <= high;
361 LONGEST valuel = (LONGEST) value;
362 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
363 }
364 };
365
366 struct variant_part;
367
368 /* * A single variant. A variant has a list of discriminant values.
369 When the discriminator matches one of these, the variant is
370 enabled. Each variant controls zero or more fields; and may also
371 control other variant parts as well. This struct corresponds to
372 DW_TAG_variant in DWARF. */
373
374 struct variant : allocate_on_obstack
375 {
376 /* * The discriminant ranges for this variant. */
377 gdb::array_view<discriminant_range> discriminants;
378
379 /* * The fields controlled by this variant. This is inclusive on
380 the low end and exclusive on the high end. A variant may not
381 control any fields, in which case the two values will be equal.
382 These are indexes into the type's array of fields. */
383 int first_field;
384 int last_field;
385
386 /* * Variant parts controlled by this variant. */
387 gdb::array_view<variant_part> parts;
388
389 /* * Return true if this is the default variant. The default
390 variant can be recognized because it has no associated
391 discriminants. */
392 bool is_default () const
393 {
394 return discriminants.empty ();
395 }
396
397 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
398 if this should be an unsigned comparison; false for signed. */
399 bool matches (ULONGEST value, bool is_unsigned) const;
400 };
401
402 /* * A variant part. Each variant part has an optional discriminant
403 and holds an array of variants. This struct corresponds to
404 DW_TAG_variant_part in DWARF. */
405
406 struct variant_part : allocate_on_obstack
407 {
408 /* * The index of the discriminant field in the outer type. This is
409 an index into the type's array of fields. If this is -1, there
410 is no discriminant, and only the default variant can be
411 considered to be selected. */
412 int discriminant_index;
413
414 /* * True if this discriminant is unsigned; false if signed. This
415 comes from the type of the discriminant. */
416 bool is_unsigned;
417
418 /* * The variants that are controlled by this variant part. Note
419 that these will always be sorted by field number. */
420 gdb::array_view<variant> variants;
421 };
422
423
424 enum dynamic_prop_kind
425 {
426 PROP_UNDEFINED, /* Not defined. */
427 PROP_CONST, /* Constant. */
428 PROP_ADDR_OFFSET, /* Address offset. */
429 PROP_LOCEXPR, /* Location expression. */
430 PROP_LOCLIST, /* Location list. */
431 PROP_VARIANT_PARTS, /* Variant parts. */
432 PROP_TYPE, /* Type. */
433 };
434
435 union dynamic_prop_data
436 {
437 /* Storage for constant property. */
438
439 LONGEST const_val;
440
441 /* Storage for dynamic property. */
442
443 void *baton;
444
445 /* Storage of variant parts for a type. A type with variant parts
446 has all its fields "linearized" -- stored in a single field
447 array, just as if they had all been declared that way. The
448 variant parts are attached via a dynamic property, and then are
449 used to control which fields end up in the final type during
450 dynamic type resolution. */
451
452 const gdb::array_view<variant_part> *variant_parts;
453
454 /* Once a variant type is resolved, we may want to be able to go
455 from the resolved type to the original type. In this case we
456 rewrite the property's kind and set this field. */
457
458 struct type *original_type;
459 };
460
461 /* * Used to store a dynamic property. */
462
463 struct dynamic_prop
464 {
465 dynamic_prop_kind kind () const
466 {
467 return m_kind;
468 }
469
470 void set_undefined ()
471 {
472 m_kind = PROP_UNDEFINED;
473 }
474
475 LONGEST const_val () const
476 {
477 gdb_assert (m_kind == PROP_CONST);
478
479 return m_data.const_val;
480 }
481
482 void set_const_val (LONGEST const_val)
483 {
484 m_kind = PROP_CONST;
485 m_data.const_val = const_val;
486 }
487
488 void *baton () const
489 {
490 gdb_assert (m_kind == PROP_LOCEXPR
491 || m_kind == PROP_LOCLIST
492 || m_kind == PROP_ADDR_OFFSET);
493
494 return m_data.baton;
495 }
496
497 void set_locexpr (void *baton)
498 {
499 m_kind = PROP_LOCEXPR;
500 m_data.baton = baton;
501 }
502
503 void set_loclist (void *baton)
504 {
505 m_kind = PROP_LOCLIST;
506 m_data.baton = baton;
507 }
508
509 void set_addr_offset (void *baton)
510 {
511 m_kind = PROP_ADDR_OFFSET;
512 m_data.baton = baton;
513 }
514
515 const gdb::array_view<variant_part> *variant_parts () const
516 {
517 gdb_assert (m_kind == PROP_VARIANT_PARTS);
518
519 return m_data.variant_parts;
520 }
521
522 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
523 {
524 m_kind = PROP_VARIANT_PARTS;
525 m_data.variant_parts = variant_parts;
526 }
527
528 struct type *original_type () const
529 {
530 gdb_assert (m_kind == PROP_TYPE);
531
532 return m_data.original_type;
533 }
534
535 void set_original_type (struct type *original_type)
536 {
537 m_kind = PROP_TYPE;
538 m_data.original_type = original_type;
539 }
540
541 /* Determine which field of the union dynamic_prop.data is used. */
542 enum dynamic_prop_kind m_kind;
543
544 /* Storage for dynamic or static value. */
545 union dynamic_prop_data m_data;
546 };
547
548 /* Compare two dynamic_prop objects for equality. dynamic_prop
549 instances are equal iff they have the same type and storage. */
550 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
551
552 /* Compare two dynamic_prop objects for inequality. */
553 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
554 {
555 return !(l == r);
556 }
557
558 /* * Define a type's dynamic property node kind. */
559 enum dynamic_prop_node_kind
560 {
561 /* A property providing a type's data location.
562 Evaluating this field yields to the location of an object's data. */
563 DYN_PROP_DATA_LOCATION,
564
565 /* A property representing DW_AT_allocated. The presence of this attribute
566 indicates that the object of the type can be allocated/deallocated. */
567 DYN_PROP_ALLOCATED,
568
569 /* A property representing DW_AT_associated. The presence of this attribute
570 indicated that the object of the type can be associated. */
571 DYN_PROP_ASSOCIATED,
572
573 /* A property providing an array's byte stride. */
574 DYN_PROP_BYTE_STRIDE,
575
576 /* A property holding variant parts. */
577 DYN_PROP_VARIANT_PARTS,
578
579 /* A property holding the size of the type. */
580 DYN_PROP_BYTE_SIZE,
581 };
582
583 /* * List for dynamic type attributes. */
584 struct dynamic_prop_list
585 {
586 /* The kind of dynamic prop in this node. */
587 enum dynamic_prop_node_kind prop_kind;
588
589 /* The dynamic property itself. */
590 struct dynamic_prop prop;
591
592 /* A pointer to the next dynamic property. */
593 struct dynamic_prop_list *next;
594 };
595
596 /* * Determine which field of the union main_type.fields[x].loc is
597 used. */
598
599 enum field_loc_kind
600 {
601 FIELD_LOC_KIND_BITPOS, /**< bitpos */
602 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
603 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
604 FIELD_LOC_KIND_PHYSNAME, /**< physname */
605 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
606 };
607
608 /* * A discriminant to determine which field in the
609 main_type.type_specific union is being used, if any.
610
611 For types such as TYPE_CODE_FLT, the use of this
612 discriminant is really redundant, as we know from the type code
613 which field is going to be used. As such, it would be possible to
614 reduce the size of this enum in order to save a bit or two for
615 other fields of struct main_type. But, since we still have extra
616 room , and for the sake of clarity and consistency, we treat all fields
617 of the union the same way. */
618
619 enum type_specific_kind
620 {
621 TYPE_SPECIFIC_NONE,
622 TYPE_SPECIFIC_CPLUS_STUFF,
623 TYPE_SPECIFIC_GNAT_STUFF,
624 TYPE_SPECIFIC_FLOATFORMAT,
625 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
626 TYPE_SPECIFIC_FUNC,
627 TYPE_SPECIFIC_SELF_TYPE
628 };
629
630 union type_owner
631 {
632 struct objfile *objfile;
633 struct gdbarch *gdbarch;
634 };
635
636 union field_location
637 {
638 /* * Position of this field, counting in bits from start of
639 containing structure. For big-endian targets, it is the bit
640 offset to the MSB. For little-endian targets, it is the bit
641 offset to the LSB. */
642
643 LONGEST bitpos;
644
645 /* * Enum value. */
646 LONGEST enumval;
647
648 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
649 physaddr is the location (in the target) of the static
650 field. Otherwise, physname is the mangled label of the
651 static field. */
652
653 CORE_ADDR physaddr;
654 const char *physname;
655
656 /* * The field location can be computed by evaluating the
657 following DWARF block. Its DATA is allocated on
658 objfile_obstack - no CU load is needed to access it. */
659
660 struct dwarf2_locexpr_baton *dwarf_block;
661 };
662
663 struct field
664 {
665 struct type *type () const
666 {
667 return this->m_type;
668 }
669
670 void set_type (struct type *type)
671 {
672 this->m_type = type;
673 }
674
675 union field_location loc;
676
677 /* * For a function or member type, this is 1 if the argument is
678 marked artificial. Artificial arguments should not be shown
679 to the user. For TYPE_CODE_RANGE it is set if the specific
680 bound is not defined. */
681
682 unsigned int artificial : 1;
683
684 /* * Discriminant for union field_location. */
685
686 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
687
688 /* * Size of this field, in bits, or zero if not packed.
689 If non-zero in an array type, indicates the element size in
690 bits (used only in Ada at the moment).
691 For an unpacked field, the field's type's length
692 says how many bytes the field occupies. */
693
694 unsigned int bitsize : 28;
695
696 /* * In a struct or union type, type of this field.
697 - In a function or member type, type of this argument.
698 - In an array type, the domain-type of the array. */
699
700 struct type *m_type;
701
702 /* * Name of field, value or argument.
703 NULL for range bounds, array domains, and member function
704 arguments. */
705
706 const char *name;
707 };
708
709 struct range_bounds
710 {
711 ULONGEST bit_stride () const
712 {
713 if (this->flag_is_byte_stride)
714 return this->stride.const_val () * 8;
715 else
716 return this->stride.const_val ();
717 }
718
719 /* * Low bound of range. */
720
721 struct dynamic_prop low;
722
723 /* * High bound of range. */
724
725 struct dynamic_prop high;
726
727 /* The stride value for this range. This can be stored in bits or bytes
728 based on the value of BYTE_STRIDE_P. It is optional to have a stride
729 value, if this range has no stride value defined then this will be set
730 to the constant zero. */
731
732 struct dynamic_prop stride;
733
734 /* * The bias. Sometimes a range value is biased before storage.
735 The bias is added to the stored bits to form the true value. */
736
737 LONGEST bias;
738
739 /* True if HIGH range bound contains the number of elements in the
740 subrange. This affects how the final high bound is computed. */
741
742 unsigned int flag_upper_bound_is_count : 1;
743
744 /* True if LOW or/and HIGH are resolved into a static bound from
745 a dynamic one. */
746
747 unsigned int flag_bound_evaluated : 1;
748
749 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
750
751 unsigned int flag_is_byte_stride : 1;
752 };
753
754 /* Compare two range_bounds objects for equality. Simply does
755 memberwise comparison. */
756 extern bool operator== (const range_bounds &l, const range_bounds &r);
757
758 /* Compare two range_bounds objects for inequality. */
759 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
760 {
761 return !(l == r);
762 }
763
764 union type_specific
765 {
766 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
767 point to cplus_struct_default, a default static instance of a
768 struct cplus_struct_type. */
769
770 struct cplus_struct_type *cplus_stuff;
771
772 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
773 provides additional information. */
774
775 struct gnat_aux_type *gnat_stuff;
776
777 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
778 floatformat object that describes the floating-point value
779 that resides within the type. */
780
781 const struct floatformat *floatformat;
782
783 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
784
785 struct func_type *func_stuff;
786
787 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
788 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
789 is a member of. */
790
791 struct type *self_type;
792 };
793
794 /* * Main structure representing a type in GDB.
795
796 This structure is space-critical. Its layout has been tweaked to
797 reduce the space used. */
798
799 struct main_type
800 {
801 /* * Code for kind of type. */
802
803 ENUM_BITFIELD(type_code) code : 8;
804
805 /* * Flags about this type. These fields appear at this location
806 because they packs nicely here. See the TYPE_* macros for
807 documentation about these fields. */
808
809 unsigned int m_flag_unsigned : 1;
810 unsigned int m_flag_nosign : 1;
811 unsigned int m_flag_stub : 1;
812 unsigned int m_flag_target_stub : 1;
813 unsigned int m_flag_prototyped : 1;
814 unsigned int m_flag_varargs : 1;
815 unsigned int m_flag_vector : 1;
816 unsigned int m_flag_stub_supported : 1;
817 unsigned int flag_gnu_ifunc : 1;
818 unsigned int flag_fixed_instance : 1;
819 unsigned int flag_objfile_owned : 1;
820 unsigned int flag_endianity_not_default : 1;
821
822 /* * True if this type was declared with "class" rather than
823 "struct". */
824
825 unsigned int flag_declared_class : 1;
826
827 /* * True if this is an enum type with disjoint values. This
828 affects how the enum is printed. */
829
830 unsigned int flag_flag_enum : 1;
831
832 /* * A discriminant telling us which field of the type_specific
833 union is being used for this type, if any. */
834
835 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
836
837 /* * Number of fields described for this type. This field appears
838 at this location because it packs nicely here. */
839
840 short nfields;
841
842 /* * Name of this type, or NULL if none.
843
844 This is used for printing only. For looking up a name, look for
845 a symbol in the VAR_DOMAIN. This is generally allocated in the
846 objfile's obstack. However coffread.c uses malloc. */
847
848 const char *name;
849
850 /* * Every type is now associated with a particular objfile, and the
851 type is allocated on the objfile_obstack for that objfile. One
852 problem however, is that there are times when gdb allocates new
853 types while it is not in the process of reading symbols from a
854 particular objfile. Fortunately, these happen when the type
855 being created is a derived type of an existing type, such as in
856 lookup_pointer_type(). So we can just allocate the new type
857 using the same objfile as the existing type, but to do this we
858 need a backpointer to the objfile from the existing type. Yes
859 this is somewhat ugly, but without major overhaul of the internal
860 type system, it can't be avoided for now. */
861
862 union type_owner owner;
863
864 /* * For a pointer type, describes the type of object pointed to.
865 - For an array type, describes the type of the elements.
866 - For a function or method type, describes the type of the return value.
867 - For a range type, describes the type of the full range.
868 - For a complex type, describes the type of each coordinate.
869 - For a special record or union type encoding a dynamic-sized type
870 in GNAT, a memoized pointer to a corresponding static version of
871 the type.
872 - Unused otherwise. */
873
874 struct type *target_type;
875
876 /* * For structure and union types, a description of each field.
877 For set and pascal array types, there is one "field",
878 whose type is the domain type of the set or array.
879 For range types, there are two "fields",
880 the minimum and maximum values (both inclusive).
881 For enum types, each possible value is described by one "field".
882 For a function or method type, a "field" for each parameter.
883 For C++ classes, there is one field for each base class (if it is
884 a derived class) plus one field for each class data member. Member
885 functions are recorded elsewhere.
886
887 Using a pointer to a separate array of fields
888 allows all types to have the same size, which is useful
889 because we can allocate the space for a type before
890 we know what to put in it. */
891
892 union
893 {
894 struct field *fields;
895
896 /* * Union member used for range types. */
897
898 struct range_bounds *bounds;
899
900 /* If this is a scalar type, then this is its corresponding
901 complex type. */
902 struct type *complex_type;
903
904 } flds_bnds;
905
906 /* * Slot to point to additional language-specific fields of this
907 type. */
908
909 union type_specific type_specific;
910
911 /* * Contains all dynamic type properties. */
912 struct dynamic_prop_list *dyn_prop_list;
913 };
914
915 /* * Number of bits allocated for alignment. */
916
917 #define TYPE_ALIGN_BITS 8
918
919 /* * A ``struct type'' describes a particular instance of a type, with
920 some particular qualification. */
921
922 struct type
923 {
924 /* Get the type code of this type.
925
926 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
927 type, you need to do `check_typedef (type)->code ()`. */
928 type_code code () const
929 {
930 return this->main_type->code;
931 }
932
933 /* Set the type code of this type. */
934 void set_code (type_code code)
935 {
936 this->main_type->code = code;
937 }
938
939 /* Get the name of this type. */
940 const char *name () const
941 {
942 return this->main_type->name;
943 }
944
945 /* Set the name of this type. */
946 void set_name (const char *name)
947 {
948 this->main_type->name = name;
949 }
950
951 /* Get the number of fields of this type. */
952 int num_fields () const
953 {
954 return this->main_type->nfields;
955 }
956
957 /* Set the number of fields of this type. */
958 void set_num_fields (int num_fields)
959 {
960 this->main_type->nfields = num_fields;
961 }
962
963 /* Get the fields array of this type. */
964 struct field *fields () const
965 {
966 return this->main_type->flds_bnds.fields;
967 }
968
969 /* Get the field at index IDX. */
970 struct field &field (int idx) const
971 {
972 return this->fields ()[idx];
973 }
974
975 /* Set the fields array of this type. */
976 void set_fields (struct field *fields)
977 {
978 this->main_type->flds_bnds.fields = fields;
979 }
980
981 type *index_type () const
982 {
983 return this->field (0).type ();
984 }
985
986 void set_index_type (type *index_type)
987 {
988 this->field (0).set_type (index_type);
989 }
990
991 /* Get the bounds bounds of this type. The type must be a range type. */
992 range_bounds *bounds () const
993 {
994 switch (this->code ())
995 {
996 case TYPE_CODE_RANGE:
997 return this->main_type->flds_bnds.bounds;
998
999 case TYPE_CODE_ARRAY:
1000 case TYPE_CODE_STRING:
1001 return this->index_type ()->bounds ();
1002
1003 default:
1004 gdb_assert_not_reached
1005 ("type::bounds called on type with invalid code");
1006 }
1007 }
1008
1009 /* Set the bounds of this type. The type must be a range type. */
1010 void set_bounds (range_bounds *bounds)
1011 {
1012 gdb_assert (this->code () == TYPE_CODE_RANGE);
1013
1014 this->main_type->flds_bnds.bounds = bounds;
1015 }
1016
1017 ULONGEST bit_stride () const
1018 {
1019 return this->bounds ()->bit_stride ();
1020 }
1021
1022 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1023 the type is signed (unless TYPE_NOSIGN is set). */
1024
1025 bool is_unsigned () const
1026 {
1027 return this->main_type->m_flag_unsigned;
1028 }
1029
1030 void set_is_unsigned (bool is_unsigned)
1031 {
1032 this->main_type->m_flag_unsigned = is_unsigned;
1033 }
1034
1035 /* No sign for this type. In C++, "char", "signed char", and
1036 "unsigned char" are distinct types; so we need an extra flag to
1037 indicate the absence of a sign! */
1038
1039 bool has_no_signedness () const
1040 {
1041 return this->main_type->m_flag_nosign;
1042 }
1043
1044 void set_has_no_signedness (bool has_no_signedness)
1045 {
1046 this->main_type->m_flag_nosign = has_no_signedness;
1047 }
1048
1049 /* This appears in a type's flags word if it is a stub type (e.g.,
1050 if someone referenced a type that wasn't defined in a source file
1051 via (struct sir_not_appearing_in_this_film *)). */
1052
1053 bool is_stub () const
1054 {
1055 return this->main_type->m_flag_stub;
1056 }
1057
1058 void set_is_stub (bool is_stub)
1059 {
1060 this->main_type->m_flag_stub = is_stub;
1061 }
1062
1063 /* The target type of this type is a stub type, and this type needs
1064 to be updated if it gets un-stubbed in check_typedef. Used for
1065 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1066 based on the TYPE_LENGTH of the target type. Also, set for
1067 TYPE_CODE_TYPEDEF. */
1068
1069 bool target_is_stub () const
1070 {
1071 return this->main_type->m_flag_target_stub;
1072 }
1073
1074 void set_target_is_stub (bool target_is_stub)
1075 {
1076 this->main_type->m_flag_target_stub = target_is_stub;
1077 }
1078
1079 /* This is a function type which appears to have a prototype. We
1080 need this for function calls in order to tell us if it's necessary
1081 to coerce the args, or to just do the standard conversions. This
1082 is used with a short field. */
1083
1084 bool is_prototyped () const
1085 {
1086 return this->main_type->m_flag_prototyped;
1087 }
1088
1089 void set_is_prototyped (bool is_prototyped)
1090 {
1091 this->main_type->m_flag_prototyped = is_prototyped;
1092 }
1093
1094 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1095 to functions. */
1096
1097 bool has_varargs () const
1098 {
1099 return this->main_type->m_flag_varargs;
1100 }
1101
1102 void set_has_varargs (bool has_varargs)
1103 {
1104 this->main_type->m_flag_varargs = has_varargs;
1105 }
1106
1107 /* Identify a vector type. Gcc is handling this by adding an extra
1108 attribute to the array type. We slurp that in as a new flag of a
1109 type. This is used only in dwarf2read.c. */
1110
1111 bool is_vector () const
1112 {
1113 return this->main_type->m_flag_vector;
1114 }
1115
1116 void set_is_vector (bool is_vector)
1117 {
1118 this->main_type->m_flag_vector = is_vector;
1119 }
1120
1121 /* This debug target supports TYPE_STUB(t). In the unsupported case
1122 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1123 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1124 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1125
1126 bool stub_is_supported () const
1127 {
1128 return this->main_type->m_flag_stub_supported;
1129 }
1130
1131 void set_stub_is_supported (bool stub_is_supported)
1132 {
1133 this->main_type->m_flag_stub_supported = stub_is_supported;
1134 }
1135
1136 /* * Return the dynamic property of the requested KIND from this type's
1137 list of dynamic properties. */
1138 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1139
1140 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1141 property to this type.
1142
1143 This function assumes that this type is objfile-owned. */
1144 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1145
1146 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1147 void remove_dyn_prop (dynamic_prop_node_kind kind);
1148
1149 /* * Type that is a pointer to this type.
1150 NULL if no such pointer-to type is known yet.
1151 The debugger may add the address of such a type
1152 if it has to construct one later. */
1153
1154 struct type *pointer_type;
1155
1156 /* * C++: also need a reference type. */
1157
1158 struct type *reference_type;
1159
1160 /* * A C++ rvalue reference type added in C++11. */
1161
1162 struct type *rvalue_reference_type;
1163
1164 /* * Variant chain. This points to a type that differs from this
1165 one only in qualifiers and length. Currently, the possible
1166 qualifiers are const, volatile, code-space, data-space, and
1167 address class. The length may differ only when one of the
1168 address class flags are set. The variants are linked in a
1169 circular ring and share MAIN_TYPE. */
1170
1171 struct type *chain;
1172
1173 /* * The alignment for this type. Zero means that the alignment was
1174 not specified in the debug info. Note that this is stored in a
1175 funny way: as the log base 2 (plus 1) of the alignment; so a
1176 value of 1 means the alignment is 1, and a value of 9 means the
1177 alignment is 256. */
1178
1179 unsigned align_log2 : TYPE_ALIGN_BITS;
1180
1181 /* * Flags specific to this instance of the type, indicating where
1182 on the ring we are.
1183
1184 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1185 binary or-ed with the target type, with a special case for
1186 address class and space class. For example if this typedef does
1187 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1188 instance flags are completely inherited from the target type. No
1189 qualifiers can be cleared by the typedef. See also
1190 check_typedef. */
1191 unsigned instance_flags : 9;
1192
1193 /* * Length of storage for a value of this type. The value is the
1194 expression in host bytes of what sizeof(type) would return. This
1195 size includes padding. For example, an i386 extended-precision
1196 floating point value really only occupies ten bytes, but most
1197 ABI's declare its size to be 12 bytes, to preserve alignment.
1198 A `struct type' representing such a floating-point type would
1199 have a `length' value of 12, even though the last two bytes are
1200 unused.
1201
1202 Since this field is expressed in host bytes, its value is appropriate
1203 to pass to memcpy and such (it is assumed that GDB itself always runs
1204 on an 8-bits addressable architecture). However, when using it for
1205 target address arithmetic (e.g. adding it to a target address), the
1206 type_length_units function should be used in order to get the length
1207 expressed in target addressable memory units. */
1208
1209 ULONGEST length;
1210
1211 /* * Core type, shared by a group of qualified types. */
1212
1213 struct main_type *main_type;
1214 };
1215
1216 struct fn_fieldlist
1217 {
1218
1219 /* * The overloaded name.
1220 This is generally allocated in the objfile's obstack.
1221 However stabsread.c sometimes uses malloc. */
1222
1223 const char *name;
1224
1225 /* * The number of methods with this name. */
1226
1227 int length;
1228
1229 /* * The list of methods. */
1230
1231 struct fn_field *fn_fields;
1232 };
1233
1234
1235
1236 struct fn_field
1237 {
1238 /* * If is_stub is clear, this is the mangled name which we can look
1239 up to find the address of the method (FIXME: it would be cleaner
1240 to have a pointer to the struct symbol here instead).
1241
1242 If is_stub is set, this is the portion of the mangled name which
1243 specifies the arguments. For example, "ii", if there are two int
1244 arguments, or "" if there are no arguments. See gdb_mangle_name
1245 for the conversion from this format to the one used if is_stub is
1246 clear. */
1247
1248 const char *physname;
1249
1250 /* * The function type for the method.
1251
1252 (This comment used to say "The return value of the method", but
1253 that's wrong. The function type is expected here, i.e. something
1254 with TYPE_CODE_METHOD, and *not* the return-value type). */
1255
1256 struct type *type;
1257
1258 /* * For virtual functions. First baseclass that defines this
1259 virtual function. */
1260
1261 struct type *fcontext;
1262
1263 /* Attributes. */
1264
1265 unsigned int is_const:1;
1266 unsigned int is_volatile:1;
1267 unsigned int is_private:1;
1268 unsigned int is_protected:1;
1269 unsigned int is_artificial:1;
1270
1271 /* * A stub method only has some fields valid (but they are enough
1272 to reconstruct the rest of the fields). */
1273
1274 unsigned int is_stub:1;
1275
1276 /* * True if this function is a constructor, false otherwise. */
1277
1278 unsigned int is_constructor : 1;
1279
1280 /* * True if this function is deleted, false otherwise. */
1281
1282 unsigned int is_deleted : 1;
1283
1284 /* * DW_AT_defaulted attribute for this function. The value is one
1285 of the DW_DEFAULTED constants. */
1286
1287 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1288
1289 /* * Unused. */
1290
1291 unsigned int dummy:6;
1292
1293 /* * Index into that baseclass's virtual function table, minus 2;
1294 else if static: VOFFSET_STATIC; else: 0. */
1295
1296 unsigned int voffset:16;
1297
1298 #define VOFFSET_STATIC 1
1299
1300 };
1301
1302 struct decl_field
1303 {
1304 /* * Unqualified name to be prefixed by owning class qualified
1305 name. */
1306
1307 const char *name;
1308
1309 /* * Type this typedef named NAME represents. */
1310
1311 struct type *type;
1312
1313 /* * True if this field was declared protected, false otherwise. */
1314 unsigned int is_protected : 1;
1315
1316 /* * True if this field was declared private, false otherwise. */
1317 unsigned int is_private : 1;
1318 };
1319
1320 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1321 TYPE_CODE_UNION nodes. */
1322
1323 struct cplus_struct_type
1324 {
1325 /* * Number of base classes this type derives from. The
1326 baseclasses are stored in the first N_BASECLASSES fields
1327 (i.e. the `fields' field of the struct type). The only fields
1328 of struct field that are used are: type, name, loc.bitpos. */
1329
1330 short n_baseclasses;
1331
1332 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1333 All access to this field must be through TYPE_VPTR_FIELDNO as one
1334 thing it does is check whether the field has been initialized.
1335 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1336 which for portability reasons doesn't initialize this field.
1337 TYPE_VPTR_FIELDNO returns -1 for this case.
1338
1339 If -1, we were unable to find the virtual function table pointer in
1340 initial symbol reading, and get_vptr_fieldno should be called to find
1341 it if possible. get_vptr_fieldno will update this field if possible.
1342 Otherwise the value is left at -1.
1343
1344 Unused if this type does not have virtual functions. */
1345
1346 short vptr_fieldno;
1347
1348 /* * Number of methods with unique names. All overloaded methods
1349 with the same name count only once. */
1350
1351 short nfn_fields;
1352
1353 /* * Number of template arguments. */
1354
1355 unsigned short n_template_arguments;
1356
1357 /* * One if this struct is a dynamic class, as defined by the
1358 Itanium C++ ABI: if it requires a virtual table pointer,
1359 because it or any of its base classes have one or more virtual
1360 member functions or virtual base classes. Minus one if not
1361 dynamic. Zero if not yet computed. */
1362
1363 int is_dynamic : 2;
1364
1365 /* * The calling convention for this type, fetched from the
1366 DW_AT_calling_convention attribute. The value is one of the
1367 DW_CC constants. */
1368
1369 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1370
1371 /* * The base class which defined the virtual function table pointer. */
1372
1373 struct type *vptr_basetype;
1374
1375 /* * For derived classes, the number of base classes is given by
1376 n_baseclasses and virtual_field_bits is a bit vector containing
1377 one bit per base class. If the base class is virtual, the
1378 corresponding bit will be set.
1379 I.E, given:
1380
1381 class A{};
1382 class B{};
1383 class C : public B, public virtual A {};
1384
1385 B is a baseclass of C; A is a virtual baseclass for C.
1386 This is a C++ 2.0 language feature. */
1387
1388 B_TYPE *virtual_field_bits;
1389
1390 /* * For classes with private fields, the number of fields is
1391 given by nfields and private_field_bits is a bit vector
1392 containing one bit per field.
1393
1394 If the field is private, the corresponding bit will be set. */
1395
1396 B_TYPE *private_field_bits;
1397
1398 /* * For classes with protected fields, the number of fields is
1399 given by nfields and protected_field_bits is a bit vector
1400 containing one bit per field.
1401
1402 If the field is private, the corresponding bit will be set. */
1403
1404 B_TYPE *protected_field_bits;
1405
1406 /* * For classes with fields to be ignored, either this is
1407 optimized out or this field has length 0. */
1408
1409 B_TYPE *ignore_field_bits;
1410
1411 /* * For classes, structures, and unions, a description of each
1412 field, which consists of an overloaded name, followed by the
1413 types of arguments that the method expects, and then the name
1414 after it has been renamed to make it distinct.
1415
1416 fn_fieldlists points to an array of nfn_fields of these. */
1417
1418 struct fn_fieldlist *fn_fieldlists;
1419
1420 /* * typedefs defined inside this class. typedef_field points to
1421 an array of typedef_field_count elements. */
1422
1423 struct decl_field *typedef_field;
1424
1425 unsigned typedef_field_count;
1426
1427 /* * The nested types defined by this type. nested_types points to
1428 an array of nested_types_count elements. */
1429
1430 struct decl_field *nested_types;
1431
1432 unsigned nested_types_count;
1433
1434 /* * The template arguments. This is an array with
1435 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1436 classes. */
1437
1438 struct symbol **template_arguments;
1439 };
1440
1441 /* * Struct used to store conversion rankings. */
1442
1443 struct rank
1444 {
1445 short rank;
1446
1447 /* * When two conversions are of the same type and therefore have
1448 the same rank, subrank is used to differentiate the two.
1449
1450 Eg: Two derived-class-pointer to base-class-pointer conversions
1451 would both have base pointer conversion rank, but the
1452 conversion with the shorter distance to the ancestor is
1453 preferable. 'subrank' would be used to reflect that. */
1454
1455 short subrank;
1456 };
1457
1458 /* * Used for ranking a function for overload resolution. */
1459
1460 typedef std::vector<rank> badness_vector;
1461
1462 /* * GNAT Ada-specific information for various Ada types. */
1463
1464 struct gnat_aux_type
1465 {
1466 /* * Parallel type used to encode information about dynamic types
1467 used in Ada (such as variant records, variable-size array,
1468 etc). */
1469 struct type* descriptive_type;
1470 };
1471
1472 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1473
1474 struct func_type
1475 {
1476 /* * The calling convention for targets supporting multiple ABIs.
1477 Right now this is only fetched from the Dwarf-2
1478 DW_AT_calling_convention attribute. The value is one of the
1479 DW_CC constants. */
1480
1481 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1482
1483 /* * Whether this function normally returns to its caller. It is
1484 set from the DW_AT_noreturn attribute if set on the
1485 DW_TAG_subprogram. */
1486
1487 unsigned int is_noreturn : 1;
1488
1489 /* * Only those DW_TAG_call_site's in this function that have
1490 DW_AT_call_tail_call set are linked in this list. Function
1491 without its tail call list complete
1492 (DW_AT_call_all_tail_calls or its superset
1493 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1494 DW_TAG_call_site's exist in such function. */
1495
1496 struct call_site *tail_call_list;
1497
1498 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1499 contains the method. */
1500
1501 struct type *self_type;
1502 };
1503
1504 /* struct call_site_parameter can be referenced in callees by several ways. */
1505
1506 enum call_site_parameter_kind
1507 {
1508 /* * Use field call_site_parameter.u.dwarf_reg. */
1509 CALL_SITE_PARAMETER_DWARF_REG,
1510
1511 /* * Use field call_site_parameter.u.fb_offset. */
1512 CALL_SITE_PARAMETER_FB_OFFSET,
1513
1514 /* * Use field call_site_parameter.u.param_offset. */
1515 CALL_SITE_PARAMETER_PARAM_OFFSET
1516 };
1517
1518 struct call_site_target
1519 {
1520 union field_location loc;
1521
1522 /* * Discriminant for union field_location. */
1523
1524 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1525 };
1526
1527 union call_site_parameter_u
1528 {
1529 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1530 as DWARF register number, for register passed
1531 parameters. */
1532
1533 int dwarf_reg;
1534
1535 /* * Offset from the callee's frame base, for stack passed
1536 parameters. This equals offset from the caller's stack
1537 pointer. */
1538
1539 CORE_ADDR fb_offset;
1540
1541 /* * Offset relative to the start of this PER_CU to
1542 DW_TAG_formal_parameter which is referenced by both
1543 caller and the callee. */
1544
1545 cu_offset param_cu_off;
1546 };
1547
1548 struct call_site_parameter
1549 {
1550 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1551
1552 union call_site_parameter_u u;
1553
1554 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1555
1556 const gdb_byte *value;
1557 size_t value_size;
1558
1559 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1560 It may be NULL if not provided by DWARF. */
1561
1562 const gdb_byte *data_value;
1563 size_t data_value_size;
1564 };
1565
1566 /* * A place where a function gets called from, represented by
1567 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1568
1569 struct call_site
1570 {
1571 /* * Address of the first instruction after this call. It must be
1572 the first field as we overload core_addr_hash and core_addr_eq
1573 for it. */
1574
1575 CORE_ADDR pc;
1576
1577 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1578
1579 struct call_site *tail_call_next;
1580
1581 /* * Describe DW_AT_call_target. Missing attribute uses
1582 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1583
1584 struct call_site_target target;
1585
1586 /* * Size of the PARAMETER array. */
1587
1588 unsigned parameter_count;
1589
1590 /* * CU of the function where the call is located. It gets used
1591 for DWARF blocks execution in the parameter array below. */
1592
1593 dwarf2_per_cu_data *per_cu;
1594
1595 /* objfile of the function where the call is located. */
1596
1597 dwarf2_per_objfile *per_objfile;
1598
1599 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1600
1601 struct call_site_parameter parameter[1];
1602 };
1603
1604 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1605 static structure. */
1606
1607 extern const struct cplus_struct_type cplus_struct_default;
1608
1609 extern void allocate_cplus_struct_type (struct type *);
1610
1611 #define INIT_CPLUS_SPECIFIC(type) \
1612 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1613 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1614 &cplus_struct_default)
1615
1616 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1617
1618 #define HAVE_CPLUS_STRUCT(type) \
1619 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1620 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1621
1622 #define INIT_NONE_SPECIFIC(type) \
1623 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1624 TYPE_MAIN_TYPE (type)->type_specific = {})
1625
1626 extern const struct gnat_aux_type gnat_aux_default;
1627
1628 extern void allocate_gnat_aux_type (struct type *);
1629
1630 #define INIT_GNAT_SPECIFIC(type) \
1631 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1632 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1633 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1634 /* * A macro that returns non-zero if the type-specific data should be
1635 read as "gnat-stuff". */
1636 #define HAVE_GNAT_AUX_INFO(type) \
1637 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1638
1639 /* * True if TYPE is known to be an Ada type of some kind. */
1640 #define ADA_TYPE_P(type) \
1641 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1642 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1643 && TYPE_FIXED_INSTANCE (type)))
1644
1645 #define INIT_FUNC_SPECIFIC(type) \
1646 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1647 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1648 TYPE_ZALLOC (type, \
1649 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1650
1651 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1652 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1653 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1654 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1655 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1656 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1657 #define TYPE_CHAIN(thistype) (thistype)->chain
1658 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1659 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1660 so you only have to call check_typedef once. Since allocate_value
1661 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1662 #define TYPE_LENGTH(thistype) (thistype)->length
1663
1664 /* * Return the alignment of the type in target addressable memory
1665 units, or 0 if no alignment was specified. */
1666 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1667
1668 /* * Return the alignment of the type in target addressable memory
1669 units, or 0 if no alignment was specified. */
1670 extern unsigned type_raw_align (struct type *);
1671
1672 /* * Return the alignment of the type in target addressable memory
1673 units. Return 0 if the alignment cannot be determined; but note
1674 that this makes an effort to compute the alignment even it it was
1675 not specified in the debug info. */
1676 extern unsigned type_align (struct type *);
1677
1678 /* * Set the alignment of the type. The alignment must be a power of
1679 2. Returns false if the given value does not fit in the available
1680 space in struct type. */
1681 extern bool set_type_align (struct type *, ULONGEST);
1682
1683 /* Property accessors for the type data location. */
1684 #define TYPE_DATA_LOCATION(thistype) \
1685 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1686 #define TYPE_DATA_LOCATION_BATON(thistype) \
1687 TYPE_DATA_LOCATION (thistype)->data.baton
1688 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1689 (TYPE_DATA_LOCATION (thistype)->const_val ())
1690 #define TYPE_DATA_LOCATION_KIND(thistype) \
1691 (TYPE_DATA_LOCATION (thistype)->kind ())
1692 #define TYPE_DYNAMIC_LENGTH(thistype) \
1693 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1694
1695 /* Property accessors for the type allocated/associated. */
1696 #define TYPE_ALLOCATED_PROP(thistype) \
1697 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1698 #define TYPE_ASSOCIATED_PROP(thistype) \
1699 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1700
1701 /* C++ */
1702
1703 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1704 /* Do not call this, use TYPE_SELF_TYPE. */
1705 extern struct type *internal_type_self_type (struct type *);
1706 extern void set_type_self_type (struct type *, struct type *);
1707
1708 extern int internal_type_vptr_fieldno (struct type *);
1709 extern void set_type_vptr_fieldno (struct type *, int);
1710 extern struct type *internal_type_vptr_basetype (struct type *);
1711 extern void set_type_vptr_basetype (struct type *, struct type *);
1712 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1713 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1714
1715 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1716 #define TYPE_SPECIFIC_FIELD(thistype) \
1717 TYPE_MAIN_TYPE(thistype)->type_specific_field
1718 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1719 where we're trying to print an Ada array using the C language.
1720 In that case, there is no "cplus_stuff", but the C language assumes
1721 that there is. What we do, in that case, is pretend that there is
1722 an implicit one which is the default cplus stuff. */
1723 #define TYPE_CPLUS_SPECIFIC(thistype) \
1724 (!HAVE_CPLUS_STRUCT(thistype) \
1725 ? (struct cplus_struct_type*)&cplus_struct_default \
1726 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1727 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1728 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1729 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1730 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1731 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1732 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1733 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1734 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1735 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1736 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1737 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1738 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1739 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1740 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1741 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1742 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1743
1744 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1745 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1746 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1747
1748 #define FIELD_NAME(thisfld) ((thisfld).name)
1749 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1750 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1751 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1752 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1753 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1754 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1755 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1756 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1757 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1758 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1759 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1760 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1761 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1762 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1763 #define SET_FIELD_PHYSNAME(thisfld, name) \
1764 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1765 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1766 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1767 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1768 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1769 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1770 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1771 FIELD_DWARF_BLOCK (thisfld) = (addr))
1772 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1773 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1774
1775 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1776 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1777 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1778 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1779 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1780 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1781 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1782 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1783 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1784 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1785
1786 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1787 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1788 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1789 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1790 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1791 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1792 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1793 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1794 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1795 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1796 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1797 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1798 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1799 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1800 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1801 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1802 #define TYPE_FIELD_PRIVATE(thistype, n) \
1803 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1804 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1805 #define TYPE_FIELD_PROTECTED(thistype, n) \
1806 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1807 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1808 #define TYPE_FIELD_IGNORE(thistype, n) \
1809 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1810 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1811 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1812 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1813 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1814
1815 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1816 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1817 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1818 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1819 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1820
1821 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1822 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1823 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1824 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1825 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1826 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1827
1828 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1829 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1830 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1831 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1832 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1833 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1834 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1835 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1836 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1837 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1838 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1839 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1840 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1841 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1842 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1843 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1844 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1845
1846 /* Accessors for typedefs defined by a class. */
1847 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1849 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1850 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1851 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1852 TYPE_TYPEDEF_FIELD (thistype, n).name
1853 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1854 TYPE_TYPEDEF_FIELD (thistype, n).type
1855 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1856 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1857 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1858 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1859 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1860 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1861
1862 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1863 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1864 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1865 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1866 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1867 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1868 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1869 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1870 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1871 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1872 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1873 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1874 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1875 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1876
1877 #define TYPE_IS_OPAQUE(thistype) \
1878 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1879 || ((thistype)->code () == TYPE_CODE_UNION)) \
1880 && ((thistype)->num_fields () == 0) \
1881 && (!HAVE_CPLUS_STRUCT (thistype) \
1882 || TYPE_NFN_FIELDS (thistype) == 0) \
1883 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1884
1885 /* * A helper macro that returns the name of a type or "unnamed type"
1886 if the type has no name. */
1887
1888 #define TYPE_SAFE_NAME(type) \
1889 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1890
1891 /* * A helper macro that returns the name of an error type. If the
1892 type has a name, it is used; otherwise, a default is used. */
1893
1894 #define TYPE_ERROR_NAME(type) \
1895 (type->name () ? type->name () : _("<error type>"))
1896
1897 /* Given TYPE, return its floatformat. */
1898 const struct floatformat *floatformat_from_type (const struct type *type);
1899
1900 struct builtin_type
1901 {
1902 /* Integral types. */
1903
1904 /* Implicit size/sign (based on the architecture's ABI). */
1905 struct type *builtin_void;
1906 struct type *builtin_char;
1907 struct type *builtin_short;
1908 struct type *builtin_int;
1909 struct type *builtin_long;
1910 struct type *builtin_signed_char;
1911 struct type *builtin_unsigned_char;
1912 struct type *builtin_unsigned_short;
1913 struct type *builtin_unsigned_int;
1914 struct type *builtin_unsigned_long;
1915 struct type *builtin_bfloat16;
1916 struct type *builtin_half;
1917 struct type *builtin_float;
1918 struct type *builtin_double;
1919 struct type *builtin_long_double;
1920 struct type *builtin_complex;
1921 struct type *builtin_double_complex;
1922 struct type *builtin_string;
1923 struct type *builtin_bool;
1924 struct type *builtin_long_long;
1925 struct type *builtin_unsigned_long_long;
1926 struct type *builtin_decfloat;
1927 struct type *builtin_decdouble;
1928 struct type *builtin_declong;
1929
1930 /* "True" character types.
1931 We use these for the '/c' print format, because c_char is just a
1932 one-byte integral type, which languages less laid back than C
1933 will print as ... well, a one-byte integral type. */
1934 struct type *builtin_true_char;
1935 struct type *builtin_true_unsigned_char;
1936
1937 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1938 is for when an architecture needs to describe a register that has
1939 no size. */
1940 struct type *builtin_int0;
1941 struct type *builtin_int8;
1942 struct type *builtin_uint8;
1943 struct type *builtin_int16;
1944 struct type *builtin_uint16;
1945 struct type *builtin_int24;
1946 struct type *builtin_uint24;
1947 struct type *builtin_int32;
1948 struct type *builtin_uint32;
1949 struct type *builtin_int64;
1950 struct type *builtin_uint64;
1951 struct type *builtin_int128;
1952 struct type *builtin_uint128;
1953
1954 /* Wide character types. */
1955 struct type *builtin_char16;
1956 struct type *builtin_char32;
1957 struct type *builtin_wchar;
1958
1959 /* Pointer types. */
1960
1961 /* * `pointer to data' type. Some target platforms use an implicitly
1962 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1963 struct type *builtin_data_ptr;
1964
1965 /* * `pointer to function (returning void)' type. Harvard
1966 architectures mean that ABI function and code pointers are not
1967 interconvertible. Similarly, since ANSI, C standards have
1968 explicitly said that pointers to functions and pointers to data
1969 are not interconvertible --- that is, you can't cast a function
1970 pointer to void * and back, and expect to get the same value.
1971 However, all function pointer types are interconvertible, so void
1972 (*) () can server as a generic function pointer. */
1973
1974 struct type *builtin_func_ptr;
1975
1976 /* * `function returning pointer to function (returning void)' type.
1977 The final void return type is not significant for it. */
1978
1979 struct type *builtin_func_func;
1980
1981 /* Special-purpose types. */
1982
1983 /* * This type is used to represent a GDB internal function. */
1984
1985 struct type *internal_fn;
1986
1987 /* * This type is used to represent an xmethod. */
1988 struct type *xmethod;
1989 };
1990
1991 /* * Return the type table for the specified architecture. */
1992
1993 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1994
1995 /* * Per-objfile types used by symbol readers. */
1996
1997 struct objfile_type
1998 {
1999 /* Basic types based on the objfile architecture. */
2000 struct type *builtin_void;
2001 struct type *builtin_char;
2002 struct type *builtin_short;
2003 struct type *builtin_int;
2004 struct type *builtin_long;
2005 struct type *builtin_long_long;
2006 struct type *builtin_signed_char;
2007 struct type *builtin_unsigned_char;
2008 struct type *builtin_unsigned_short;
2009 struct type *builtin_unsigned_int;
2010 struct type *builtin_unsigned_long;
2011 struct type *builtin_unsigned_long_long;
2012 struct type *builtin_half;
2013 struct type *builtin_float;
2014 struct type *builtin_double;
2015 struct type *builtin_long_double;
2016
2017 /* * This type is used to represent symbol addresses. */
2018 struct type *builtin_core_addr;
2019
2020 /* * This type represents a type that was unrecognized in symbol
2021 read-in. */
2022 struct type *builtin_error;
2023
2024 /* * Types used for symbols with no debug information. */
2025 struct type *nodebug_text_symbol;
2026 struct type *nodebug_text_gnu_ifunc_symbol;
2027 struct type *nodebug_got_plt_symbol;
2028 struct type *nodebug_data_symbol;
2029 struct type *nodebug_unknown_symbol;
2030 struct type *nodebug_tls_symbol;
2031 };
2032
2033 /* * Return the type table for the specified objfile. */
2034
2035 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2036
2037 /* Explicit floating-point formats. See "floatformat.h". */
2038 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2039 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2040 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2041 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2042 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2043 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2044 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2045 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2046 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2047 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2048 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2049 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2050 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2051
2052 /* Allocate space for storing data associated with a particular
2053 type. We ensure that the space is allocated using the same
2054 mechanism that was used to allocate the space for the type
2055 structure itself. I.e. if the type is on an objfile's
2056 objfile_obstack, then the space for data associated with that type
2057 will also be allocated on the objfile_obstack. If the type is
2058 associated with a gdbarch, then the space for data associated with that
2059 type will also be allocated on the gdbarch_obstack.
2060
2061 If a type is not associated with neither an objfile or a gdbarch then
2062 you should not use this macro to allocate space for data, instead you
2063 should call xmalloc directly, and ensure the memory is correctly freed
2064 when it is no longer needed. */
2065
2066 #define TYPE_ALLOC(t,size) \
2067 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2068 ? &TYPE_OBJFILE (t)->objfile_obstack \
2069 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2070 size))
2071
2072
2073 /* See comment on TYPE_ALLOC. */
2074
2075 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2076
2077 /* Use alloc_type to allocate a type owned by an objfile. Use
2078 alloc_type_arch to allocate a type owned by an architecture. Use
2079 alloc_type_copy to allocate a type with the same owner as a
2080 pre-existing template type, no matter whether objfile or
2081 gdbarch. */
2082 extern struct type *alloc_type (struct objfile *);
2083 extern struct type *alloc_type_arch (struct gdbarch *);
2084 extern struct type *alloc_type_copy (const struct type *);
2085
2086 /* * Return the type's architecture. For types owned by an
2087 architecture, that architecture is returned. For types owned by an
2088 objfile, that objfile's architecture is returned. */
2089
2090 extern struct gdbarch *get_type_arch (const struct type *);
2091
2092 /* * This returns the target type (or NULL) of TYPE, also skipping
2093 past typedefs. */
2094
2095 extern struct type *get_target_type (struct type *type);
2096
2097 /* Return the equivalent of TYPE_LENGTH, but in number of target
2098 addressable memory units of the associated gdbarch instead of bytes. */
2099
2100 extern unsigned int type_length_units (struct type *type);
2101
2102 /* * Helper function to construct objfile-owned types. */
2103
2104 extern struct type *init_type (struct objfile *, enum type_code, int,
2105 const char *);
2106 extern struct type *init_integer_type (struct objfile *, int, int,
2107 const char *);
2108 extern struct type *init_character_type (struct objfile *, int, int,
2109 const char *);
2110 extern struct type *init_boolean_type (struct objfile *, int, int,
2111 const char *);
2112 extern struct type *init_float_type (struct objfile *, int, const char *,
2113 const struct floatformat **,
2114 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2115 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2116 extern struct type *init_complex_type (const char *, struct type *);
2117 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2118 struct type *);
2119
2120 /* Helper functions to construct architecture-owned types. */
2121 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2122 const char *);
2123 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2124 const char *);
2125 extern struct type *arch_character_type (struct gdbarch *, int, int,
2126 const char *);
2127 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2128 const char *);
2129 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2130 const struct floatformat **);
2131 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2132 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2133 struct type *);
2134
2135 /* Helper functions to construct a struct or record type. An
2136 initially empty type is created using arch_composite_type().
2137 Fields are then added using append_composite_type_field*(). A union
2138 type has its size set to the largest field. A struct type has each
2139 field packed against the previous. */
2140
2141 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2142 const char *name, enum type_code code);
2143 extern void append_composite_type_field (struct type *t, const char *name,
2144 struct type *field);
2145 extern void append_composite_type_field_aligned (struct type *t,
2146 const char *name,
2147 struct type *field,
2148 int alignment);
2149 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2150 struct type *field);
2151
2152 /* Helper functions to construct a bit flags type. An initially empty
2153 type is created using arch_flag_type(). Flags are then added using
2154 append_flag_type_field() and append_flag_type_flag(). */
2155 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2156 const char *name, int bit);
2157 extern void append_flags_type_field (struct type *type,
2158 int start_bitpos, int nr_bits,
2159 struct type *field_type, const char *name);
2160 extern void append_flags_type_flag (struct type *type, int bitpos,
2161 const char *name);
2162
2163 extern void make_vector_type (struct type *array_type);
2164 extern struct type *init_vector_type (struct type *elt_type, int n);
2165
2166 extern struct type *lookup_reference_type (struct type *, enum type_code);
2167 extern struct type *lookup_lvalue_reference_type (struct type *);
2168 extern struct type *lookup_rvalue_reference_type (struct type *);
2169
2170
2171 extern struct type *make_reference_type (struct type *, struct type **,
2172 enum type_code);
2173
2174 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2175
2176 extern struct type *make_restrict_type (struct type *);
2177
2178 extern struct type *make_unqualified_type (struct type *);
2179
2180 extern struct type *make_atomic_type (struct type *);
2181
2182 extern void replace_type (struct type *, struct type *);
2183
2184 extern int address_space_name_to_int (struct gdbarch *, const char *);
2185
2186 extern const char *address_space_int_to_name (struct gdbarch *, int);
2187
2188 extern struct type *make_type_with_address_space (struct type *type,
2189 int space_identifier);
2190
2191 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2192
2193 extern struct type *lookup_methodptr_type (struct type *);
2194
2195 extern void smash_to_method_type (struct type *type, struct type *self_type,
2196 struct type *to_type, struct field *args,
2197 int nargs, int varargs);
2198
2199 extern void smash_to_memberptr_type (struct type *, struct type *,
2200 struct type *);
2201
2202 extern void smash_to_methodptr_type (struct type *, struct type *);
2203
2204 extern struct type *allocate_stub_method (struct type *);
2205
2206 extern const char *type_name_or_error (struct type *type);
2207
2208 struct struct_elt
2209 {
2210 /* The field of the element, or NULL if no element was found. */
2211 struct field *field;
2212
2213 /* The bit offset of the element in the parent structure. */
2214 LONGEST offset;
2215 };
2216
2217 /* Given a type TYPE, lookup the field and offset of the component named
2218 NAME.
2219
2220 TYPE can be either a struct or union, or a pointer or reference to
2221 a struct or union. If it is a pointer or reference, its target
2222 type is automatically used. Thus '.' and '->' are interchangable,
2223 as specified for the definitions of the expression element types
2224 STRUCTOP_STRUCT and STRUCTOP_PTR.
2225
2226 If NOERR is nonzero, the returned structure will have field set to
2227 NULL if there is no component named NAME.
2228
2229 If the component NAME is a field in an anonymous substructure of
2230 TYPE, the returned offset is a "global" offset relative to TYPE
2231 rather than an offset within the substructure. */
2232
2233 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2234
2235 /* Given a type TYPE, lookup the type of the component named NAME.
2236
2237 TYPE can be either a struct or union, or a pointer or reference to
2238 a struct or union. If it is a pointer or reference, its target
2239 type is automatically used. Thus '.' and '->' are interchangable,
2240 as specified for the definitions of the expression element types
2241 STRUCTOP_STRUCT and STRUCTOP_PTR.
2242
2243 If NOERR is nonzero, return NULL if there is no component named
2244 NAME. */
2245
2246 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2247
2248 extern struct type *make_pointer_type (struct type *, struct type **);
2249
2250 extern struct type *lookup_pointer_type (struct type *);
2251
2252 extern struct type *make_function_type (struct type *, struct type **);
2253
2254 extern struct type *lookup_function_type (struct type *);
2255
2256 extern struct type *lookup_function_type_with_arguments (struct type *,
2257 int,
2258 struct type **);
2259
2260 extern struct type *create_static_range_type (struct type *, struct type *,
2261 LONGEST, LONGEST);
2262
2263
2264 extern struct type *create_array_type_with_stride
2265 (struct type *, struct type *, struct type *,
2266 struct dynamic_prop *, unsigned int);
2267
2268 extern struct type *create_range_type (struct type *, struct type *,
2269 const struct dynamic_prop *,
2270 const struct dynamic_prop *,
2271 LONGEST);
2272
2273 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2274 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2275 stride. */
2276
2277 extern struct type * create_range_type_with_stride
2278 (struct type *result_type, struct type *index_type,
2279 const struct dynamic_prop *low_bound,
2280 const struct dynamic_prop *high_bound, LONGEST bias,
2281 const struct dynamic_prop *stride, bool byte_stride_p);
2282
2283 extern struct type *create_array_type (struct type *, struct type *,
2284 struct type *);
2285
2286 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2287
2288 extern struct type *create_string_type (struct type *, struct type *,
2289 struct type *);
2290 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2291
2292 extern struct type *create_set_type (struct type *, struct type *);
2293
2294 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2295 const char *);
2296
2297 extern struct type *lookup_signed_typename (const struct language_defn *,
2298 const char *);
2299
2300 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2301
2302 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2303
2304 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2305 ADDR specifies the location of the variable the type is bound to.
2306 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2307 static properties is returned. */
2308 extern struct type *resolve_dynamic_type
2309 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2310 CORE_ADDR addr);
2311
2312 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2313 extern int is_dynamic_type (struct type *type);
2314
2315 extern struct type *check_typedef (struct type *);
2316
2317 extern void check_stub_method_group (struct type *, int);
2318
2319 extern char *gdb_mangle_name (struct type *, int, int);
2320
2321 extern struct type *lookup_typename (const struct language_defn *,
2322 const char *, const struct block *, int);
2323
2324 extern struct type *lookup_template_type (const char *, struct type *,
2325 const struct block *);
2326
2327 extern int get_vptr_fieldno (struct type *, struct type **);
2328
2329 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2330
2331 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2332 LONGEST *high_bound);
2333
2334 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2335
2336 extern int class_types_same_p (const struct type *, const struct type *);
2337
2338 extern int is_ancestor (struct type *, struct type *);
2339
2340 extern int is_public_ancestor (struct type *, struct type *);
2341
2342 extern int is_unique_ancestor (struct type *, struct value *);
2343
2344 /* Overload resolution */
2345
2346 /* * Badness if parameter list length doesn't match arg list length. */
2347 extern const struct rank LENGTH_MISMATCH_BADNESS;
2348
2349 /* * Dummy badness value for nonexistent parameter positions. */
2350 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2351 /* * Badness if no conversion among types. */
2352 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2353
2354 /* * Badness of an exact match. */
2355 extern const struct rank EXACT_MATCH_BADNESS;
2356
2357 /* * Badness of integral promotion. */
2358 extern const struct rank INTEGER_PROMOTION_BADNESS;
2359 /* * Badness of floating promotion. */
2360 extern const struct rank FLOAT_PROMOTION_BADNESS;
2361 /* * Badness of converting a derived class pointer
2362 to a base class pointer. */
2363 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2364 /* * Badness of integral conversion. */
2365 extern const struct rank INTEGER_CONVERSION_BADNESS;
2366 /* * Badness of floating conversion. */
2367 extern const struct rank FLOAT_CONVERSION_BADNESS;
2368 /* * Badness of integer<->floating conversions. */
2369 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2370 /* * Badness of conversion of pointer to void pointer. */
2371 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2372 /* * Badness of conversion to boolean. */
2373 extern const struct rank BOOL_CONVERSION_BADNESS;
2374 /* * Badness of converting derived to base class. */
2375 extern const struct rank BASE_CONVERSION_BADNESS;
2376 /* * Badness of converting from non-reference to reference. Subrank
2377 is the type of reference conversion being done. */
2378 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2379 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2380 /* * Conversion to rvalue reference. */
2381 #define REFERENCE_CONVERSION_RVALUE 1
2382 /* * Conversion to const lvalue reference. */
2383 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2384
2385 /* * Badness of converting integer 0 to NULL pointer. */
2386 extern const struct rank NULL_POINTER_CONVERSION;
2387 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2388 being done. */
2389 extern const struct rank CV_CONVERSION_BADNESS;
2390 #define CV_CONVERSION_CONST 1
2391 #define CV_CONVERSION_VOLATILE 2
2392
2393 /* Non-standard conversions allowed by the debugger */
2394
2395 /* * Converting a pointer to an int is usually OK. */
2396 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2397
2398 /* * Badness of converting a (non-zero) integer constant
2399 to a pointer. */
2400 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2401
2402 extern struct rank sum_ranks (struct rank a, struct rank b);
2403 extern int compare_ranks (struct rank a, struct rank b);
2404
2405 extern int compare_badness (const badness_vector &,
2406 const badness_vector &);
2407
2408 extern badness_vector rank_function (gdb::array_view<type *> parms,
2409 gdb::array_view<value *> args);
2410
2411 extern struct rank rank_one_type (struct type *, struct type *,
2412 struct value *);
2413
2414 extern void recursive_dump_type (struct type *, int);
2415
2416 extern int field_is_static (struct field *);
2417
2418 /* printcmd.c */
2419
2420 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2421 const struct value_print_options *,
2422 int, struct ui_file *);
2423
2424 extern int can_dereference (struct type *);
2425
2426 extern int is_integral_type (struct type *);
2427
2428 extern int is_floating_type (struct type *);
2429
2430 extern int is_scalar_type (struct type *type);
2431
2432 extern int is_scalar_type_recursive (struct type *);
2433
2434 extern int class_or_union_p (const struct type *);
2435
2436 extern void maintenance_print_type (const char *, int);
2437
2438 extern htab_t create_copied_types_hash (struct objfile *objfile);
2439
2440 extern struct type *copy_type_recursive (struct objfile *objfile,
2441 struct type *type,
2442 htab_t copied_types);
2443
2444 extern struct type *copy_type (const struct type *type);
2445
2446 extern bool types_equal (struct type *, struct type *);
2447
2448 extern bool types_deeply_equal (struct type *, struct type *);
2449
2450 extern int type_not_allocated (const struct type *type);
2451
2452 extern int type_not_associated (const struct type *type);
2453
2454 /* * When the type includes explicit byte ordering, return that.
2455 Otherwise, the byte ordering from gdbarch_byte_order for
2456 get_type_arch is returned. */
2457
2458 extern enum bfd_endian type_byte_order (const struct type *type);
2459
2460 /* A flag to enable printing of debugging information of C++
2461 overloading. */
2462
2463 extern unsigned int overload_debug;
2464
2465 #endif /* GDBTYPES_H */