Change pointer_type to a method of struct type
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Constant type. If this is set, the corresponding type has a
224 const modifier. */
225
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
227
228 /* * Volatile type. If this is set, the corresponding type has a
229 volatile modifier. */
230
231 #define TYPE_VOLATILE(t) \
232 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
233
234 /* * Restrict type. If this is set, the corresponding type has a
235 restrict modifier. */
236
237 #define TYPE_RESTRICT(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
239
240 /* * Atomic type. If this is set, the corresponding type has an
241 _Atomic modifier. */
242
243 #define TYPE_ATOMIC(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
245
246 /* * True if this type represents either an lvalue or lvalue reference type. */
247
248 #define TYPE_IS_REFERENCE(t) \
249 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
250
251 /* * True if this type is allocatable. */
252 #define TYPE_IS_ALLOCATABLE(t) \
253 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
254
255 /* * True if this type has variant parts. */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
258
259 /* * True if this type has a dynamic length. */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
262
263 /* * Instruction-space delimited type. This is for Harvard architectures
264 which have separate instruction and data address spaces (and perhaps
265 others).
266
267 GDB usually defines a flat address space that is a superset of the
268 architecture's two (or more) address spaces, but this is an extension
269 of the architecture's model.
270
271 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272 resides in instruction memory, even if its address (in the extended
273 flat address space) does not reflect this.
274
275 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276 corresponding type resides in the data memory space, even if
277 this is not indicated by its (flat address space) address.
278
279 If neither flag is set, the default space for functions / methods
280 is instruction space, and for data objects is data memory. */
281
282 #define TYPE_CODE_SPACE(t) \
283 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
284
285 #define TYPE_DATA_SPACE(t) \
286 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
287
288 /* * Address class flags. Some environments provide for pointers
289 whose size is different from that of a normal pointer or address
290 types where the bits are interpreted differently than normal
291 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292 target specific ways to represent these different types of address
293 classes. */
294
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
303
304 /* * Information about a single discriminant. */
305
306 struct discriminant_range
307 {
308 /* * The range of values for the variant. This is an inclusive
309 range. */
310 ULONGEST low, high;
311
312 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
313 is true if this should be an unsigned comparison; false for
314 signed. */
315 bool contains (ULONGEST value, bool is_unsigned) const
316 {
317 if (is_unsigned)
318 return value >= low && value <= high;
319 LONGEST valuel = (LONGEST) value;
320 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
321 }
322 };
323
324 struct variant_part;
325
326 /* * A single variant. A variant has a list of discriminant values.
327 When the discriminator matches one of these, the variant is
328 enabled. Each variant controls zero or more fields; and may also
329 control other variant parts as well. This struct corresponds to
330 DW_TAG_variant in DWARF. */
331
332 struct variant : allocate_on_obstack
333 {
334 /* * The discriminant ranges for this variant. */
335 gdb::array_view<discriminant_range> discriminants;
336
337 /* * The fields controlled by this variant. This is inclusive on
338 the low end and exclusive on the high end. A variant may not
339 control any fields, in which case the two values will be equal.
340 These are indexes into the type's array of fields. */
341 int first_field;
342 int last_field;
343
344 /* * Variant parts controlled by this variant. */
345 gdb::array_view<variant_part> parts;
346
347 /* * Return true if this is the default variant. The default
348 variant can be recognized because it has no associated
349 discriminants. */
350 bool is_default () const
351 {
352 return discriminants.empty ();
353 }
354
355 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
356 if this should be an unsigned comparison; false for signed. */
357 bool matches (ULONGEST value, bool is_unsigned) const;
358 };
359
360 /* * A variant part. Each variant part has an optional discriminant
361 and holds an array of variants. This struct corresponds to
362 DW_TAG_variant_part in DWARF. */
363
364 struct variant_part : allocate_on_obstack
365 {
366 /* * The index of the discriminant field in the outer type. This is
367 an index into the type's array of fields. If this is -1, there
368 is no discriminant, and only the default variant can be
369 considered to be selected. */
370 int discriminant_index;
371
372 /* * True if this discriminant is unsigned; false if signed. This
373 comes from the type of the discriminant. */
374 bool is_unsigned;
375
376 /* * The variants that are controlled by this variant part. Note
377 that these will always be sorted by field number. */
378 gdb::array_view<variant> variants;
379 };
380
381
382 enum dynamic_prop_kind
383 {
384 PROP_UNDEFINED, /* Not defined. */
385 PROP_CONST, /* Constant. */
386 PROP_ADDR_OFFSET, /* Address offset. */
387 PROP_LOCEXPR, /* Location expression. */
388 PROP_LOCLIST, /* Location list. */
389 PROP_VARIANT_PARTS, /* Variant parts. */
390 PROP_TYPE, /* Type. */
391 PROP_VARIABLE_NAME, /* Variable name. */
392 };
393
394 union dynamic_prop_data
395 {
396 /* Storage for constant property. */
397
398 LONGEST const_val;
399
400 /* Storage for dynamic property. */
401
402 void *baton;
403
404 /* Storage of variant parts for a type. A type with variant parts
405 has all its fields "linearized" -- stored in a single field
406 array, just as if they had all been declared that way. The
407 variant parts are attached via a dynamic property, and then are
408 used to control which fields end up in the final type during
409 dynamic type resolution. */
410
411 const gdb::array_view<variant_part> *variant_parts;
412
413 /* Once a variant type is resolved, we may want to be able to go
414 from the resolved type to the original type. In this case we
415 rewrite the property's kind and set this field. */
416
417 struct type *original_type;
418
419 /* Name of a variable to look up; the variable holds the value of
420 this property. */
421
422 const char *variable_name;
423 };
424
425 /* * Used to store a dynamic property. */
426
427 struct dynamic_prop
428 {
429 dynamic_prop_kind kind () const
430 {
431 return m_kind;
432 }
433
434 void set_undefined ()
435 {
436 m_kind = PROP_UNDEFINED;
437 }
438
439 LONGEST const_val () const
440 {
441 gdb_assert (m_kind == PROP_CONST);
442
443 return m_data.const_val;
444 }
445
446 void set_const_val (LONGEST const_val)
447 {
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
450 }
451
452 void *baton () const
453 {
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
457
458 return m_data.baton;
459 }
460
461 void set_locexpr (void *baton)
462 {
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
465 }
466
467 void set_loclist (void *baton)
468 {
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
471 }
472
473 void set_addr_offset (void *baton)
474 {
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
477 }
478
479 const gdb::array_view<variant_part> *variant_parts () const
480 {
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
482
483 return m_data.variant_parts;
484 }
485
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487 {
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
490 }
491
492 struct type *original_type () const
493 {
494 gdb_assert (m_kind == PROP_TYPE);
495
496 return m_data.original_type;
497 }
498
499 void set_original_type (struct type *original_type)
500 {
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
503 }
504
505 /* Return the name of the variable that holds this property's value.
506 Only valid for PROP_VARIABLE_NAME. */
507 const char *variable_name () const
508 {
509 gdb_assert (m_kind == PROP_VARIABLE_NAME);
510 return m_data.variable_name;
511 }
512
513 /* Set the name of the variable that holds this property's value,
514 and set this property to be of kind PROP_VARIABLE_NAME. */
515 void set_variable_name (const char *name)
516 {
517 m_kind = PROP_VARIABLE_NAME;
518 m_data.variable_name = name;
519 }
520
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
523
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
526 };
527
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535 return !(l == r);
536 }
537
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
540 {
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
544
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
548
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
552
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
555
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
558
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
561 };
562
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
565 {
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
568
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
571
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
574 };
575
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
578
579 enum field_loc_kind
580 {
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
586 };
587
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
590
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
598
599 enum type_specific_kind
600 {
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
610 };
611
612 union type_owner
613 {
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
616 };
617
618 union field_location
619 {
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
624
625 LONGEST bitpos;
626
627 /* * Enum value. */
628 LONGEST enumval;
629
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
634
635 CORE_ADDR physaddr;
636 const char *physname;
637
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
641
642 struct dwarf2_locexpr_baton *dwarf_block;
643 };
644
645 struct field
646 {
647 struct type *type () const
648 {
649 return this->m_type;
650 }
651
652 void set_type (struct type *type)
653 {
654 this->m_type = type;
655 }
656
657 union field_location loc;
658
659 /* * For a function or member type, this is 1 if the argument is
660 marked artificial. Artificial arguments should not be shown
661 to the user. For TYPE_CODE_RANGE it is set if the specific
662 bound is not defined. */
663
664 unsigned int artificial : 1;
665
666 /* * Discriminant for union field_location. */
667
668 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
669
670 /* * Size of this field, in bits, or zero if not packed.
671 If non-zero in an array type, indicates the element size in
672 bits (used only in Ada at the moment).
673 For an unpacked field, the field's type's length
674 says how many bytes the field occupies. */
675
676 unsigned int bitsize : 28;
677
678 /* * In a struct or union type, type of this field.
679 - In a function or member type, type of this argument.
680 - In an array type, the domain-type of the array. */
681
682 struct type *m_type;
683
684 /* * Name of field, value or argument.
685 NULL for range bounds, array domains, and member function
686 arguments. */
687
688 const char *name;
689 };
690
691 struct range_bounds
692 {
693 ULONGEST bit_stride () const
694 {
695 if (this->flag_is_byte_stride)
696 return this->stride.const_val () * 8;
697 else
698 return this->stride.const_val ();
699 }
700
701 /* * Low bound of range. */
702
703 struct dynamic_prop low;
704
705 /* * High bound of range. */
706
707 struct dynamic_prop high;
708
709 /* The stride value for this range. This can be stored in bits or bytes
710 based on the value of BYTE_STRIDE_P. It is optional to have a stride
711 value, if this range has no stride value defined then this will be set
712 to the constant zero. */
713
714 struct dynamic_prop stride;
715
716 /* * The bias. Sometimes a range value is biased before storage.
717 The bias is added to the stored bits to form the true value. */
718
719 LONGEST bias;
720
721 /* True if HIGH range bound contains the number of elements in the
722 subrange. This affects how the final high bound is computed. */
723
724 unsigned int flag_upper_bound_is_count : 1;
725
726 /* True if LOW or/and HIGH are resolved into a static bound from
727 a dynamic one. */
728
729 unsigned int flag_bound_evaluated : 1;
730
731 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
732
733 unsigned int flag_is_byte_stride : 1;
734 };
735
736 /* Compare two range_bounds objects for equality. Simply does
737 memberwise comparison. */
738 extern bool operator== (const range_bounds &l, const range_bounds &r);
739
740 /* Compare two range_bounds objects for inequality. */
741 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
742 {
743 return !(l == r);
744 }
745
746 union type_specific
747 {
748 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
749 point to cplus_struct_default, a default static instance of a
750 struct cplus_struct_type. */
751
752 struct cplus_struct_type *cplus_stuff;
753
754 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
755 provides additional information. */
756
757 struct gnat_aux_type *gnat_stuff;
758
759 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
760 floatformat object that describes the floating-point value
761 that resides within the type. */
762
763 const struct floatformat *floatformat;
764
765 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
766
767 struct func_type *func_stuff;
768
769 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
770 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
771 is a member of. */
772
773 struct type *self_type;
774
775 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
776 values of that type. */
777 struct fixed_point_type_info *fixed_point_info;
778
779 /* * An integer-like scalar type may be stored in just part of its
780 enclosing storage bytes. This structure describes this
781 situation. */
782 struct
783 {
784 /* * The bit size of the integer. This can be 0. For integers
785 that fill their storage (the ordinary case), this field holds
786 the byte size times 8. */
787 unsigned short bit_size;
788 /* * The bit offset of the integer. This is ordinarily 0, and can
789 only be non-zero if the bit size is less than the storage
790 size. */
791 unsigned short bit_offset;
792 } int_stuff;
793 };
794
795 /* * Main structure representing a type in GDB.
796
797 This structure is space-critical. Its layout has been tweaked to
798 reduce the space used. */
799
800 struct main_type
801 {
802 /* * Code for kind of type. */
803
804 ENUM_BITFIELD(type_code) code : 8;
805
806 /* * Flags about this type. These fields appear at this location
807 because they packs nicely here. See the TYPE_* macros for
808 documentation about these fields. */
809
810 unsigned int m_flag_unsigned : 1;
811 unsigned int m_flag_nosign : 1;
812 unsigned int m_flag_stub : 1;
813 unsigned int m_flag_target_stub : 1;
814 unsigned int m_flag_prototyped : 1;
815 unsigned int m_flag_varargs : 1;
816 unsigned int m_flag_vector : 1;
817 unsigned int m_flag_stub_supported : 1;
818 unsigned int m_flag_gnu_ifunc : 1;
819 unsigned int m_flag_fixed_instance : 1;
820 unsigned int m_flag_objfile_owned : 1;
821 unsigned int m_flag_endianity_not_default : 1;
822
823 /* * True if this type was declared with "class" rather than
824 "struct". */
825
826 unsigned int m_flag_declared_class : 1;
827
828 /* * True if this is an enum type with disjoint values. This
829 affects how the enum is printed. */
830
831 unsigned int m_flag_flag_enum : 1;
832
833 /* * A discriminant telling us which field of the type_specific
834 union is being used for this type, if any. */
835
836 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
837
838 /* * Number of fields described for this type. This field appears
839 at this location because it packs nicely here. */
840
841 short nfields;
842
843 /* * Name of this type, or NULL if none.
844
845 This is used for printing only. For looking up a name, look for
846 a symbol in the VAR_DOMAIN. This is generally allocated in the
847 objfile's obstack. However coffread.c uses malloc. */
848
849 const char *name;
850
851 /* * Every type is now associated with a particular objfile, and the
852 type is allocated on the objfile_obstack for that objfile. One
853 problem however, is that there are times when gdb allocates new
854 types while it is not in the process of reading symbols from a
855 particular objfile. Fortunately, these happen when the type
856 being created is a derived type of an existing type, such as in
857 lookup_pointer_type(). So we can just allocate the new type
858 using the same objfile as the existing type, but to do this we
859 need a backpointer to the objfile from the existing type. Yes
860 this is somewhat ugly, but without major overhaul of the internal
861 type system, it can't be avoided for now. */
862
863 union type_owner m_owner;
864
865 /* * For a pointer type, describes the type of object pointed to.
866 - For an array type, describes the type of the elements.
867 - For a function or method type, describes the type of the return value.
868 - For a range type, describes the type of the full range.
869 - For a complex type, describes the type of each coordinate.
870 - For a special record or union type encoding a dynamic-sized type
871 in GNAT, a memoized pointer to a corresponding static version of
872 the type.
873 - Unused otherwise. */
874
875 struct type *target_type;
876
877 /* * For structure and union types, a description of each field.
878 For set and pascal array types, there is one "field",
879 whose type is the domain type of the set or array.
880 For range types, there are two "fields",
881 the minimum and maximum values (both inclusive).
882 For enum types, each possible value is described by one "field".
883 For a function or method type, a "field" for each parameter.
884 For C++ classes, there is one field for each base class (if it is
885 a derived class) plus one field for each class data member. Member
886 functions are recorded elsewhere.
887
888 Using a pointer to a separate array of fields
889 allows all types to have the same size, which is useful
890 because we can allocate the space for a type before
891 we know what to put in it. */
892
893 union
894 {
895 struct field *fields;
896
897 /* * Union member used for range types. */
898
899 struct range_bounds *bounds;
900
901 /* If this is a scalar type, then this is its corresponding
902 complex type. */
903 struct type *complex_type;
904
905 } flds_bnds;
906
907 /* * Slot to point to additional language-specific fields of this
908 type. */
909
910 union type_specific type_specific;
911
912 /* * Contains all dynamic type properties. */
913 struct dynamic_prop_list *dyn_prop_list;
914 };
915
916 /* * Number of bits allocated for alignment. */
917
918 #define TYPE_ALIGN_BITS 8
919
920 /* * A ``struct type'' describes a particular instance of a type, with
921 some particular qualification. */
922
923 struct type
924 {
925 /* Get the type code of this type.
926
927 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
928 type, you need to do `check_typedef (type)->code ()`. */
929 type_code code () const
930 {
931 return this->main_type->code;
932 }
933
934 /* Set the type code of this type. */
935 void set_code (type_code code)
936 {
937 this->main_type->code = code;
938 }
939
940 /* Get the name of this type. */
941 const char *name () const
942 {
943 return this->main_type->name;
944 }
945
946 /* Set the name of this type. */
947 void set_name (const char *name)
948 {
949 this->main_type->name = name;
950 }
951
952 /* Get the number of fields of this type. */
953 int num_fields () const
954 {
955 return this->main_type->nfields;
956 }
957
958 /* Set the number of fields of this type. */
959 void set_num_fields (int num_fields)
960 {
961 this->main_type->nfields = num_fields;
962 }
963
964 /* Get the fields array of this type. */
965 struct field *fields () const
966 {
967 return this->main_type->flds_bnds.fields;
968 }
969
970 /* Get the field at index IDX. */
971 struct field &field (int idx) const
972 {
973 return this->fields ()[idx];
974 }
975
976 /* Set the fields array of this type. */
977 void set_fields (struct field *fields)
978 {
979 this->main_type->flds_bnds.fields = fields;
980 }
981
982 type *index_type () const
983 {
984 return this->field (0).type ();
985 }
986
987 void set_index_type (type *index_type)
988 {
989 this->field (0).set_type (index_type);
990 }
991
992 /* Return the instance flags converted to the correct type. */
993 const type_instance_flags instance_flags () const
994 {
995 return (enum type_instance_flag_value) this->m_instance_flags;
996 }
997
998 /* Set the instance flags. */
999 void set_instance_flags (type_instance_flags flags)
1000 {
1001 this->m_instance_flags = flags;
1002 }
1003
1004 /* Get the bounds bounds of this type. The type must be a range type. */
1005 range_bounds *bounds () const
1006 {
1007 switch (this->code ())
1008 {
1009 case TYPE_CODE_RANGE:
1010 return this->main_type->flds_bnds.bounds;
1011
1012 case TYPE_CODE_ARRAY:
1013 case TYPE_CODE_STRING:
1014 return this->index_type ()->bounds ();
1015
1016 default:
1017 gdb_assert_not_reached
1018 ("type::bounds called on type with invalid code");
1019 }
1020 }
1021
1022 /* Set the bounds of this type. The type must be a range type. */
1023 void set_bounds (range_bounds *bounds)
1024 {
1025 gdb_assert (this->code () == TYPE_CODE_RANGE);
1026
1027 this->main_type->flds_bnds.bounds = bounds;
1028 }
1029
1030 ULONGEST bit_stride () const
1031 {
1032 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1033 return this->field (0).bitsize;
1034 return this->bounds ()->bit_stride ();
1035 }
1036
1037 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1038 the type is signed (unless TYPE_NOSIGN is set). */
1039
1040 bool is_unsigned () const
1041 {
1042 return this->main_type->m_flag_unsigned;
1043 }
1044
1045 void set_is_unsigned (bool is_unsigned)
1046 {
1047 this->main_type->m_flag_unsigned = is_unsigned;
1048 }
1049
1050 /* No sign for this type. In C++, "char", "signed char", and
1051 "unsigned char" are distinct types; so we need an extra flag to
1052 indicate the absence of a sign! */
1053
1054 bool has_no_signedness () const
1055 {
1056 return this->main_type->m_flag_nosign;
1057 }
1058
1059 void set_has_no_signedness (bool has_no_signedness)
1060 {
1061 this->main_type->m_flag_nosign = has_no_signedness;
1062 }
1063
1064 /* This appears in a type's flags word if it is a stub type (e.g.,
1065 if someone referenced a type that wasn't defined in a source file
1066 via (struct sir_not_appearing_in_this_film *)). */
1067
1068 bool is_stub () const
1069 {
1070 return this->main_type->m_flag_stub;
1071 }
1072
1073 void set_is_stub (bool is_stub)
1074 {
1075 this->main_type->m_flag_stub = is_stub;
1076 }
1077
1078 /* The target type of this type is a stub type, and this type needs
1079 to be updated if it gets un-stubbed in check_typedef. Used for
1080 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1081 based on the TYPE_LENGTH of the target type. Also, set for
1082 TYPE_CODE_TYPEDEF. */
1083
1084 bool target_is_stub () const
1085 {
1086 return this->main_type->m_flag_target_stub;
1087 }
1088
1089 void set_target_is_stub (bool target_is_stub)
1090 {
1091 this->main_type->m_flag_target_stub = target_is_stub;
1092 }
1093
1094 /* This is a function type which appears to have a prototype. We
1095 need this for function calls in order to tell us if it's necessary
1096 to coerce the args, or to just do the standard conversions. This
1097 is used with a short field. */
1098
1099 bool is_prototyped () const
1100 {
1101 return this->main_type->m_flag_prototyped;
1102 }
1103
1104 void set_is_prototyped (bool is_prototyped)
1105 {
1106 this->main_type->m_flag_prototyped = is_prototyped;
1107 }
1108
1109 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1110 to functions. */
1111
1112 bool has_varargs () const
1113 {
1114 return this->main_type->m_flag_varargs;
1115 }
1116
1117 void set_has_varargs (bool has_varargs)
1118 {
1119 this->main_type->m_flag_varargs = has_varargs;
1120 }
1121
1122 /* Identify a vector type. Gcc is handling this by adding an extra
1123 attribute to the array type. We slurp that in as a new flag of a
1124 type. This is used only in dwarf2read.c. */
1125
1126 bool is_vector () const
1127 {
1128 return this->main_type->m_flag_vector;
1129 }
1130
1131 void set_is_vector (bool is_vector)
1132 {
1133 this->main_type->m_flag_vector = is_vector;
1134 }
1135
1136 /* This debug target supports TYPE_STUB(t). In the unsupported case
1137 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1138 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1139 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1140
1141 bool stub_is_supported () const
1142 {
1143 return this->main_type->m_flag_stub_supported;
1144 }
1145
1146 void set_stub_is_supported (bool stub_is_supported)
1147 {
1148 this->main_type->m_flag_stub_supported = stub_is_supported;
1149 }
1150
1151 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1152 address is returned by this function call. TYPE_TARGET_TYPE
1153 determines the final returned function type to be presented to
1154 user. */
1155
1156 bool is_gnu_ifunc () const
1157 {
1158 return this->main_type->m_flag_gnu_ifunc;
1159 }
1160
1161 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1162 {
1163 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1164 }
1165
1166 /* The debugging formats (especially STABS) do not contain enough
1167 information to represent all Ada types---especially those whose
1168 size depends on dynamic quantities. Therefore, the GNAT Ada
1169 compiler includes extra information in the form of additional type
1170 definitions connected by naming conventions. This flag indicates
1171 that the type is an ordinary (unencoded) GDB type that has been
1172 created from the necessary run-time information, and does not need
1173 further interpretation. Optionally marks ordinary, fixed-size GDB
1174 type. */
1175
1176 bool is_fixed_instance () const
1177 {
1178 return this->main_type->m_flag_fixed_instance;
1179 }
1180
1181 void set_is_fixed_instance (bool is_fixed_instance)
1182 {
1183 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1184 }
1185
1186 /* A compiler may supply dwarf instrumentation that indicates the desired
1187 endian interpretation of the variable differs from the native endian
1188 representation. */
1189
1190 bool endianity_is_not_default () const
1191 {
1192 return this->main_type->m_flag_endianity_not_default;
1193 }
1194
1195 void set_endianity_is_not_default (bool endianity_is_not_default)
1196 {
1197 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1198 }
1199
1200
1201 /* True if this type was declared using the "class" keyword. This is
1202 only valid for C++ structure and enum types. If false, a structure
1203 was declared as a "struct"; if true it was declared "class". For
1204 enum types, this is true when "enum class" or "enum struct" was
1205 used to declare the type. */
1206
1207 bool is_declared_class () const
1208 {
1209 return this->main_type->m_flag_declared_class;
1210 }
1211
1212 void set_is_declared_class (bool is_declared_class) const
1213 {
1214 this->main_type->m_flag_declared_class = is_declared_class;
1215 }
1216
1217 /* True if this type is a "flag" enum. A flag enum is one where all
1218 the values are pairwise disjoint when "and"ed together. This
1219 affects how enum values are printed. */
1220
1221 bool is_flag_enum () const
1222 {
1223 return this->main_type->m_flag_flag_enum;
1224 }
1225
1226 void set_is_flag_enum (bool is_flag_enum)
1227 {
1228 this->main_type->m_flag_flag_enum = is_flag_enum;
1229 }
1230
1231 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1232 to this type's fixed_point_info. */
1233
1234 struct fixed_point_type_info &fixed_point_info () const
1235 {
1236 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1237 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1238
1239 return *this->main_type->type_specific.fixed_point_info;
1240 }
1241
1242 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1243 fixed_point_info to INFO. */
1244
1245 void set_fixed_point_info (struct fixed_point_type_info *info) const
1246 {
1247 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1248
1249 this->main_type->type_specific.fixed_point_info = info;
1250 }
1251
1252 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1253
1254 In other words, this returns the type after having peeled all
1255 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1256 The TYPE_CODE of the type returned is guaranteed to be
1257 a TYPE_CODE_FIXED_POINT. */
1258
1259 struct type *fixed_point_type_base_type ();
1260
1261 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1262 factor. */
1263
1264 const gdb_mpq &fixed_point_scaling_factor ();
1265
1266 /* * Return the dynamic property of the requested KIND from this type's
1267 list of dynamic properties. */
1268 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1269
1270 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1271 property to this type.
1272
1273 This function assumes that this type is objfile-owned. */
1274 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1275
1276 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1277 void remove_dyn_prop (dynamic_prop_node_kind kind);
1278
1279 /* Return true if this type is owned by an objfile. Return false if it is
1280 owned by an architecture. */
1281 bool is_objfile_owned () const
1282 {
1283 return this->main_type->m_flag_objfile_owned;
1284 }
1285
1286 /* Set the owner of the type to be OBJFILE. */
1287 void set_owner (objfile *objfile)
1288 {
1289 gdb_assert (objfile != nullptr);
1290
1291 this->main_type->m_owner.objfile = objfile;
1292 this->main_type->m_flag_objfile_owned = true;
1293 }
1294
1295 /* Set the owner of the type to be ARCH. */
1296 void set_owner (gdbarch *arch)
1297 {
1298 gdb_assert (arch != nullptr);
1299
1300 this->main_type->m_owner.gdbarch = arch;
1301 this->main_type->m_flag_objfile_owned = false;
1302 }
1303
1304 /* Return the objfile owner of this type.
1305
1306 Return nullptr if this type is not objfile-owned. */
1307 struct objfile *objfile_owner () const
1308 {
1309 if (!this->is_objfile_owned ())
1310 return nullptr;
1311
1312 return this->main_type->m_owner.objfile;
1313 }
1314
1315 /* Return the gdbarch owner of this type.
1316
1317 Return nullptr if this type is not gdbarch-owned. */
1318 gdbarch *arch_owner () const
1319 {
1320 if (this->is_objfile_owned ())
1321 return nullptr;
1322
1323 return this->main_type->m_owner.gdbarch;
1324 }
1325
1326 /* Return the type's architecture. For types owned by an
1327 architecture, that architecture is returned. For types owned by an
1328 objfile, that objfile's architecture is returned.
1329
1330 The return value is always non-nullptr. */
1331 gdbarch *arch () const;
1332
1333 /* * Return true if this is an integer type whose logical (bit) size
1334 differs from its storage size; false otherwise. Always return
1335 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1336 bool bit_size_differs_p () const
1337 {
1338 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1339 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1340 }
1341
1342 /* * Return the logical (bit) size for this integer type. Only
1343 valid for integer (TYPE_SPECIFIC_INT) types. */
1344 unsigned short bit_size () const
1345 {
1346 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1347 return main_type->type_specific.int_stuff.bit_size;
1348 }
1349
1350 /* * Return the bit offset for this integer type. Only valid for
1351 integer (TYPE_SPECIFIC_INT) types. */
1352 unsigned short bit_offset () const
1353 {
1354 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1355 return main_type->type_specific.int_stuff.bit_offset;
1356 }
1357
1358 /* Return true if this is a pointer or reference type. */
1359 bool is_pointer_or_reference () const
1360 {
1361 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1362 }
1363
1364 /* * Type that is a pointer to this type.
1365 NULL if no such pointer-to type is known yet.
1366 The debugger may add the address of such a type
1367 if it has to construct one later. */
1368
1369 struct type *pointer_type;
1370
1371 /* * C++: also need a reference type. */
1372
1373 struct type *reference_type;
1374
1375 /* * A C++ rvalue reference type added in C++11. */
1376
1377 struct type *rvalue_reference_type;
1378
1379 /* * Variant chain. This points to a type that differs from this
1380 one only in qualifiers and length. Currently, the possible
1381 qualifiers are const, volatile, code-space, data-space, and
1382 address class. The length may differ only when one of the
1383 address class flags are set. The variants are linked in a
1384 circular ring and share MAIN_TYPE. */
1385
1386 struct type *chain;
1387
1388 /* * The alignment for this type. Zero means that the alignment was
1389 not specified in the debug info. Note that this is stored in a
1390 funny way: as the log base 2 (plus 1) of the alignment; so a
1391 value of 1 means the alignment is 1, and a value of 9 means the
1392 alignment is 256. */
1393
1394 unsigned align_log2 : TYPE_ALIGN_BITS;
1395
1396 /* * Flags specific to this instance of the type, indicating where
1397 on the ring we are.
1398
1399 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1400 binary or-ed with the target type, with a special case for
1401 address class and space class. For example if this typedef does
1402 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1403 instance flags are completely inherited from the target type. No
1404 qualifiers can be cleared by the typedef. See also
1405 check_typedef. */
1406 unsigned m_instance_flags : 9;
1407
1408 /* * Length of storage for a value of this type. The value is the
1409 expression in host bytes of what sizeof(type) would return. This
1410 size includes padding. For example, an i386 extended-precision
1411 floating point value really only occupies ten bytes, but most
1412 ABI's declare its size to be 12 bytes, to preserve alignment.
1413 A `struct type' representing such a floating-point type would
1414 have a `length' value of 12, even though the last two bytes are
1415 unused.
1416
1417 Since this field is expressed in host bytes, its value is appropriate
1418 to pass to memcpy and such (it is assumed that GDB itself always runs
1419 on an 8-bits addressable architecture). However, when using it for
1420 target address arithmetic (e.g. adding it to a target address), the
1421 type_length_units function should be used in order to get the length
1422 expressed in target addressable memory units. */
1423
1424 ULONGEST length;
1425
1426 /* * Core type, shared by a group of qualified types. */
1427
1428 struct main_type *main_type;
1429 };
1430
1431 struct fn_fieldlist
1432 {
1433
1434 /* * The overloaded name.
1435 This is generally allocated in the objfile's obstack.
1436 However stabsread.c sometimes uses malloc. */
1437
1438 const char *name;
1439
1440 /* * The number of methods with this name. */
1441
1442 int length;
1443
1444 /* * The list of methods. */
1445
1446 struct fn_field *fn_fields;
1447 };
1448
1449
1450
1451 struct fn_field
1452 {
1453 /* * If is_stub is clear, this is the mangled name which we can look
1454 up to find the address of the method (FIXME: it would be cleaner
1455 to have a pointer to the struct symbol here instead).
1456
1457 If is_stub is set, this is the portion of the mangled name which
1458 specifies the arguments. For example, "ii", if there are two int
1459 arguments, or "" if there are no arguments. See gdb_mangle_name
1460 for the conversion from this format to the one used if is_stub is
1461 clear. */
1462
1463 const char *physname;
1464
1465 /* * The function type for the method.
1466
1467 (This comment used to say "The return value of the method", but
1468 that's wrong. The function type is expected here, i.e. something
1469 with TYPE_CODE_METHOD, and *not* the return-value type). */
1470
1471 struct type *type;
1472
1473 /* * For virtual functions. First baseclass that defines this
1474 virtual function. */
1475
1476 struct type *fcontext;
1477
1478 /* Attributes. */
1479
1480 unsigned int is_const:1;
1481 unsigned int is_volatile:1;
1482 unsigned int is_private:1;
1483 unsigned int is_protected:1;
1484 unsigned int is_artificial:1;
1485
1486 /* * A stub method only has some fields valid (but they are enough
1487 to reconstruct the rest of the fields). */
1488
1489 unsigned int is_stub:1;
1490
1491 /* * True if this function is a constructor, false otherwise. */
1492
1493 unsigned int is_constructor : 1;
1494
1495 /* * True if this function is deleted, false otherwise. */
1496
1497 unsigned int is_deleted : 1;
1498
1499 /* * DW_AT_defaulted attribute for this function. The value is one
1500 of the DW_DEFAULTED constants. */
1501
1502 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1503
1504 /* * Unused. */
1505
1506 unsigned int dummy:6;
1507
1508 /* * Index into that baseclass's virtual function table, minus 2;
1509 else if static: VOFFSET_STATIC; else: 0. */
1510
1511 unsigned int voffset:16;
1512
1513 #define VOFFSET_STATIC 1
1514
1515 };
1516
1517 struct decl_field
1518 {
1519 /* * Unqualified name to be prefixed by owning class qualified
1520 name. */
1521
1522 const char *name;
1523
1524 /* * Type this typedef named NAME represents. */
1525
1526 struct type *type;
1527
1528 /* * True if this field was declared protected, false otherwise. */
1529 unsigned int is_protected : 1;
1530
1531 /* * True if this field was declared private, false otherwise. */
1532 unsigned int is_private : 1;
1533 };
1534
1535 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1536 TYPE_CODE_UNION nodes. */
1537
1538 struct cplus_struct_type
1539 {
1540 /* * Number of base classes this type derives from. The
1541 baseclasses are stored in the first N_BASECLASSES fields
1542 (i.e. the `fields' field of the struct type). The only fields
1543 of struct field that are used are: type, name, loc.bitpos. */
1544
1545 short n_baseclasses;
1546
1547 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1548 All access to this field must be through TYPE_VPTR_FIELDNO as one
1549 thing it does is check whether the field has been initialized.
1550 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1551 which for portability reasons doesn't initialize this field.
1552 TYPE_VPTR_FIELDNO returns -1 for this case.
1553
1554 If -1, we were unable to find the virtual function table pointer in
1555 initial symbol reading, and get_vptr_fieldno should be called to find
1556 it if possible. get_vptr_fieldno will update this field if possible.
1557 Otherwise the value is left at -1.
1558
1559 Unused if this type does not have virtual functions. */
1560
1561 short vptr_fieldno;
1562
1563 /* * Number of methods with unique names. All overloaded methods
1564 with the same name count only once. */
1565
1566 short nfn_fields;
1567
1568 /* * Number of template arguments. */
1569
1570 unsigned short n_template_arguments;
1571
1572 /* * One if this struct is a dynamic class, as defined by the
1573 Itanium C++ ABI: if it requires a virtual table pointer,
1574 because it or any of its base classes have one or more virtual
1575 member functions or virtual base classes. Minus one if not
1576 dynamic. Zero if not yet computed. */
1577
1578 int is_dynamic : 2;
1579
1580 /* * The calling convention for this type, fetched from the
1581 DW_AT_calling_convention attribute. The value is one of the
1582 DW_CC constants. */
1583
1584 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1585
1586 /* * The base class which defined the virtual function table pointer. */
1587
1588 struct type *vptr_basetype;
1589
1590 /* * For derived classes, the number of base classes is given by
1591 n_baseclasses and virtual_field_bits is a bit vector containing
1592 one bit per base class. If the base class is virtual, the
1593 corresponding bit will be set.
1594 I.E, given:
1595
1596 class A{};
1597 class B{};
1598 class C : public B, public virtual A {};
1599
1600 B is a baseclass of C; A is a virtual baseclass for C.
1601 This is a C++ 2.0 language feature. */
1602
1603 B_TYPE *virtual_field_bits;
1604
1605 /* * For classes with private fields, the number of fields is
1606 given by nfields and private_field_bits is a bit vector
1607 containing one bit per field.
1608
1609 If the field is private, the corresponding bit will be set. */
1610
1611 B_TYPE *private_field_bits;
1612
1613 /* * For classes with protected fields, the number of fields is
1614 given by nfields and protected_field_bits is a bit vector
1615 containing one bit per field.
1616
1617 If the field is private, the corresponding bit will be set. */
1618
1619 B_TYPE *protected_field_bits;
1620
1621 /* * For classes with fields to be ignored, either this is
1622 optimized out or this field has length 0. */
1623
1624 B_TYPE *ignore_field_bits;
1625
1626 /* * For classes, structures, and unions, a description of each
1627 field, which consists of an overloaded name, followed by the
1628 types of arguments that the method expects, and then the name
1629 after it has been renamed to make it distinct.
1630
1631 fn_fieldlists points to an array of nfn_fields of these. */
1632
1633 struct fn_fieldlist *fn_fieldlists;
1634
1635 /* * typedefs defined inside this class. typedef_field points to
1636 an array of typedef_field_count elements. */
1637
1638 struct decl_field *typedef_field;
1639
1640 unsigned typedef_field_count;
1641
1642 /* * The nested types defined by this type. nested_types points to
1643 an array of nested_types_count elements. */
1644
1645 struct decl_field *nested_types;
1646
1647 unsigned nested_types_count;
1648
1649 /* * The template arguments. This is an array with
1650 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1651 classes. */
1652
1653 struct symbol **template_arguments;
1654 };
1655
1656 /* * Struct used to store conversion rankings. */
1657
1658 struct rank
1659 {
1660 short rank;
1661
1662 /* * When two conversions are of the same type and therefore have
1663 the same rank, subrank is used to differentiate the two.
1664
1665 Eg: Two derived-class-pointer to base-class-pointer conversions
1666 would both have base pointer conversion rank, but the
1667 conversion with the shorter distance to the ancestor is
1668 preferable. 'subrank' would be used to reflect that. */
1669
1670 short subrank;
1671 };
1672
1673 /* * Used for ranking a function for overload resolution. */
1674
1675 typedef std::vector<rank> badness_vector;
1676
1677 /* * GNAT Ada-specific information for various Ada types. */
1678
1679 struct gnat_aux_type
1680 {
1681 /* * Parallel type used to encode information about dynamic types
1682 used in Ada (such as variant records, variable-size array,
1683 etc). */
1684 struct type* descriptive_type;
1685 };
1686
1687 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1688
1689 struct func_type
1690 {
1691 /* * The calling convention for targets supporting multiple ABIs.
1692 Right now this is only fetched from the Dwarf-2
1693 DW_AT_calling_convention attribute. The value is one of the
1694 DW_CC constants. */
1695
1696 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1697
1698 /* * Whether this function normally returns to its caller. It is
1699 set from the DW_AT_noreturn attribute if set on the
1700 DW_TAG_subprogram. */
1701
1702 unsigned int is_noreturn : 1;
1703
1704 /* * Only those DW_TAG_call_site's in this function that have
1705 DW_AT_call_tail_call set are linked in this list. Function
1706 without its tail call list complete
1707 (DW_AT_call_all_tail_calls or its superset
1708 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1709 DW_TAG_call_site's exist in such function. */
1710
1711 struct call_site *tail_call_list;
1712
1713 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1714 contains the method. */
1715
1716 struct type *self_type;
1717 };
1718
1719 /* struct call_site_parameter can be referenced in callees by several ways. */
1720
1721 enum call_site_parameter_kind
1722 {
1723 /* * Use field call_site_parameter.u.dwarf_reg. */
1724 CALL_SITE_PARAMETER_DWARF_REG,
1725
1726 /* * Use field call_site_parameter.u.fb_offset. */
1727 CALL_SITE_PARAMETER_FB_OFFSET,
1728
1729 /* * Use field call_site_parameter.u.param_offset. */
1730 CALL_SITE_PARAMETER_PARAM_OFFSET
1731 };
1732
1733 struct call_site_target
1734 {
1735 union field_location loc;
1736
1737 /* * Discriminant for union field_location. */
1738
1739 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1740 };
1741
1742 union call_site_parameter_u
1743 {
1744 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1745 as DWARF register number, for register passed
1746 parameters. */
1747
1748 int dwarf_reg;
1749
1750 /* * Offset from the callee's frame base, for stack passed
1751 parameters. This equals offset from the caller's stack
1752 pointer. */
1753
1754 CORE_ADDR fb_offset;
1755
1756 /* * Offset relative to the start of this PER_CU to
1757 DW_TAG_formal_parameter which is referenced by both
1758 caller and the callee. */
1759
1760 cu_offset param_cu_off;
1761 };
1762
1763 struct call_site_parameter
1764 {
1765 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1766
1767 union call_site_parameter_u u;
1768
1769 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1770
1771 const gdb_byte *value;
1772 size_t value_size;
1773
1774 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1775 It may be NULL if not provided by DWARF. */
1776
1777 const gdb_byte *data_value;
1778 size_t data_value_size;
1779 };
1780
1781 /* * A place where a function gets called from, represented by
1782 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1783
1784 struct call_site
1785 {
1786 /* * Address of the first instruction after this call. It must be
1787 the first field as we overload core_addr_hash and core_addr_eq
1788 for it. */
1789
1790 CORE_ADDR pc;
1791
1792 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1793
1794 struct call_site *tail_call_next;
1795
1796 /* * Describe DW_AT_call_target. Missing attribute uses
1797 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1798
1799 struct call_site_target target;
1800
1801 /* * Size of the PARAMETER array. */
1802
1803 unsigned parameter_count;
1804
1805 /* * CU of the function where the call is located. It gets used
1806 for DWARF blocks execution in the parameter array below. */
1807
1808 dwarf2_per_cu_data *per_cu;
1809
1810 /* objfile of the function where the call is located. */
1811
1812 dwarf2_per_objfile *per_objfile;
1813
1814 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1815
1816 struct call_site_parameter parameter[1];
1817 };
1818
1819 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1820
1821 struct fixed_point_type_info
1822 {
1823 /* The fixed point type's scaling factor. */
1824 gdb_mpq scaling_factor;
1825 };
1826
1827 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1828 static structure. */
1829
1830 extern const struct cplus_struct_type cplus_struct_default;
1831
1832 extern void allocate_cplus_struct_type (struct type *);
1833
1834 #define INIT_CPLUS_SPECIFIC(type) \
1835 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1836 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1837 &cplus_struct_default)
1838
1839 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1840
1841 #define HAVE_CPLUS_STRUCT(type) \
1842 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1843 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1844
1845 #define INIT_NONE_SPECIFIC(type) \
1846 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1847 TYPE_MAIN_TYPE (type)->type_specific = {})
1848
1849 extern const struct gnat_aux_type gnat_aux_default;
1850
1851 extern void allocate_gnat_aux_type (struct type *);
1852
1853 #define INIT_GNAT_SPECIFIC(type) \
1854 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1855 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1856 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1857 /* * A macro that returns non-zero if the type-specific data should be
1858 read as "gnat-stuff". */
1859 #define HAVE_GNAT_AUX_INFO(type) \
1860 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1861
1862 /* * True if TYPE is known to be an Ada type of some kind. */
1863 #define ADA_TYPE_P(type) \
1864 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1865 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1866 && (type)->is_fixed_instance ()))
1867
1868 #define INIT_FUNC_SPECIFIC(type) \
1869 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1870 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1871 TYPE_ZALLOC (type, \
1872 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1873
1874 /* "struct fixed_point_type_info" has a field that has a destructor.
1875 See allocate_fixed_point_type_info to understand how this is
1876 handled. */
1877 #define INIT_FIXED_POINT_SPECIFIC(type) \
1878 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1879 allocate_fixed_point_type_info (type))
1880
1881 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1882 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1883 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1884 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1885 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1886 #define TYPE_CHAIN(thistype) (thistype)->chain
1887 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1888 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1889 so you only have to call check_typedef once. Since allocate_value
1890 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1891 #define TYPE_LENGTH(thistype) (thistype)->length
1892
1893 /* * Return the alignment of the type in target addressable memory
1894 units, or 0 if no alignment was specified. */
1895 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1896
1897 /* * Return the alignment of the type in target addressable memory
1898 units, or 0 if no alignment was specified. */
1899 extern unsigned type_raw_align (struct type *);
1900
1901 /* * Return the alignment of the type in target addressable memory
1902 units. Return 0 if the alignment cannot be determined; but note
1903 that this makes an effort to compute the alignment even it it was
1904 not specified in the debug info. */
1905 extern unsigned type_align (struct type *);
1906
1907 /* * Set the alignment of the type. The alignment must be a power of
1908 2. Returns false if the given value does not fit in the available
1909 space in struct type. */
1910 extern bool set_type_align (struct type *, ULONGEST);
1911
1912 /* Property accessors for the type data location. */
1913 #define TYPE_DATA_LOCATION(thistype) \
1914 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1915 #define TYPE_DATA_LOCATION_BATON(thistype) \
1916 TYPE_DATA_LOCATION (thistype)->data.baton
1917 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1918 (TYPE_DATA_LOCATION (thistype)->const_val ())
1919 #define TYPE_DATA_LOCATION_KIND(thistype) \
1920 (TYPE_DATA_LOCATION (thistype)->kind ())
1921 #define TYPE_DYNAMIC_LENGTH(thistype) \
1922 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1923
1924 /* Property accessors for the type allocated/associated. */
1925 #define TYPE_ALLOCATED_PROP(thistype) \
1926 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1927 #define TYPE_ASSOCIATED_PROP(thistype) \
1928 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1929
1930 /* C++ */
1931
1932 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1933 /* Do not call this, use TYPE_SELF_TYPE. */
1934 extern struct type *internal_type_self_type (struct type *);
1935 extern void set_type_self_type (struct type *, struct type *);
1936
1937 extern int internal_type_vptr_fieldno (struct type *);
1938 extern void set_type_vptr_fieldno (struct type *, int);
1939 extern struct type *internal_type_vptr_basetype (struct type *);
1940 extern void set_type_vptr_basetype (struct type *, struct type *);
1941 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1942 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1943
1944 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1945 #define TYPE_SPECIFIC_FIELD(thistype) \
1946 TYPE_MAIN_TYPE(thistype)->type_specific_field
1947 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1948 where we're trying to print an Ada array using the C language.
1949 In that case, there is no "cplus_stuff", but the C language assumes
1950 that there is. What we do, in that case, is pretend that there is
1951 an implicit one which is the default cplus stuff. */
1952 #define TYPE_CPLUS_SPECIFIC(thistype) \
1953 (!HAVE_CPLUS_STRUCT(thistype) \
1954 ? (struct cplus_struct_type*)&cplus_struct_default \
1955 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1956 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1957 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1958 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1959 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1960 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1961 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1962 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1963 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1964 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1965 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1966 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1967 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1968 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1969 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1970 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1971 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1972
1973 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1974 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1975 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1976
1977 #define FIELD_NAME(thisfld) ((thisfld).name)
1978 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1979 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1980 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1981 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1982 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1983 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1984 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1985 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1986 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1987 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1988 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1989 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1990 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1991 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1992 #define SET_FIELD_PHYSNAME(thisfld, name) \
1993 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1994 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1995 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1996 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1997 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1998 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1999 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
2000 FIELD_DWARF_BLOCK (thisfld) = (addr))
2001 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2002 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2003
2004 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
2005 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
2006 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
2007 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
2008 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
2009 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
2010 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
2011 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2012 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2013 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2014
2015 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2016 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2017 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2018 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2019 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2020 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2021 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2022 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2023 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2024 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2025 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2026 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2027 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2028 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2029 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2030 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2031 #define TYPE_FIELD_PRIVATE(thistype, n) \
2032 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2033 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2034 #define TYPE_FIELD_PROTECTED(thistype, n) \
2035 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2036 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2037 #define TYPE_FIELD_IGNORE(thistype, n) \
2038 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2039 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2040 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2041 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2042 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2043
2044 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2045 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2046 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2047 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2048 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2049
2050 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2051 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2052 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2053 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2054 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2055 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2056
2057 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2058 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2059 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2060 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2061 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2062 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2063 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2064 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2065 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2066 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2067 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2068 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2069 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2070 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2071 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2072 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2073 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2074
2075 /* Accessors for typedefs defined by a class. */
2076 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2077 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2078 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2079 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2080 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2081 TYPE_TYPEDEF_FIELD (thistype, n).name
2082 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2083 TYPE_TYPEDEF_FIELD (thistype, n).type
2084 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2085 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2086 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2087 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2088 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2089 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2090
2091 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2092 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2093 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2094 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2095 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2096 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2097 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2098 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2099 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2100 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2101 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2102 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2103 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2104 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2105
2106 #define TYPE_IS_OPAQUE(thistype) \
2107 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2108 || ((thistype)->code () == TYPE_CODE_UNION)) \
2109 && ((thistype)->num_fields () == 0) \
2110 && (!HAVE_CPLUS_STRUCT (thistype) \
2111 || TYPE_NFN_FIELDS (thistype) == 0) \
2112 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2113
2114 /* * A helper macro that returns the name of a type or "unnamed type"
2115 if the type has no name. */
2116
2117 #define TYPE_SAFE_NAME(type) \
2118 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2119
2120 /* * A helper macro that returns the name of an error type. If the
2121 type has a name, it is used; otherwise, a default is used. */
2122
2123 #define TYPE_ERROR_NAME(type) \
2124 (type->name () ? type->name () : _("<error type>"))
2125
2126 /* Given TYPE, return its floatformat. */
2127 const struct floatformat *floatformat_from_type (const struct type *type);
2128
2129 struct builtin_type
2130 {
2131 /* Integral types. */
2132
2133 /* Implicit size/sign (based on the architecture's ABI). */
2134 struct type *builtin_void;
2135 struct type *builtin_char;
2136 struct type *builtin_short;
2137 struct type *builtin_int;
2138 struct type *builtin_long;
2139 struct type *builtin_signed_char;
2140 struct type *builtin_unsigned_char;
2141 struct type *builtin_unsigned_short;
2142 struct type *builtin_unsigned_int;
2143 struct type *builtin_unsigned_long;
2144 struct type *builtin_bfloat16;
2145 struct type *builtin_half;
2146 struct type *builtin_float;
2147 struct type *builtin_double;
2148 struct type *builtin_long_double;
2149 struct type *builtin_complex;
2150 struct type *builtin_double_complex;
2151 struct type *builtin_string;
2152 struct type *builtin_bool;
2153 struct type *builtin_long_long;
2154 struct type *builtin_unsigned_long_long;
2155 struct type *builtin_decfloat;
2156 struct type *builtin_decdouble;
2157 struct type *builtin_declong;
2158
2159 /* "True" character types.
2160 We use these for the '/c' print format, because c_char is just a
2161 one-byte integral type, which languages less laid back than C
2162 will print as ... well, a one-byte integral type. */
2163 struct type *builtin_true_char;
2164 struct type *builtin_true_unsigned_char;
2165
2166 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2167 is for when an architecture needs to describe a register that has
2168 no size. */
2169 struct type *builtin_int0;
2170 struct type *builtin_int8;
2171 struct type *builtin_uint8;
2172 struct type *builtin_int16;
2173 struct type *builtin_uint16;
2174 struct type *builtin_int24;
2175 struct type *builtin_uint24;
2176 struct type *builtin_int32;
2177 struct type *builtin_uint32;
2178 struct type *builtin_int64;
2179 struct type *builtin_uint64;
2180 struct type *builtin_int128;
2181 struct type *builtin_uint128;
2182
2183 /* Wide character types. */
2184 struct type *builtin_char16;
2185 struct type *builtin_char32;
2186 struct type *builtin_wchar;
2187
2188 /* Pointer types. */
2189
2190 /* * `pointer to data' type. Some target platforms use an implicitly
2191 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2192 struct type *builtin_data_ptr;
2193
2194 /* * `pointer to function (returning void)' type. Harvard
2195 architectures mean that ABI function and code pointers are not
2196 interconvertible. Similarly, since ANSI, C standards have
2197 explicitly said that pointers to functions and pointers to data
2198 are not interconvertible --- that is, you can't cast a function
2199 pointer to void * and back, and expect to get the same value.
2200 However, all function pointer types are interconvertible, so void
2201 (*) () can server as a generic function pointer. */
2202
2203 struct type *builtin_func_ptr;
2204
2205 /* * `function returning pointer to function (returning void)' type.
2206 The final void return type is not significant for it. */
2207
2208 struct type *builtin_func_func;
2209
2210 /* Special-purpose types. */
2211
2212 /* * This type is used to represent a GDB internal function. */
2213
2214 struct type *internal_fn;
2215
2216 /* * This type is used to represent an xmethod. */
2217 struct type *xmethod;
2218 };
2219
2220 /* * Return the type table for the specified architecture. */
2221
2222 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2223
2224 /* * Per-objfile types used by symbol readers. */
2225
2226 struct objfile_type
2227 {
2228 /* Basic types based on the objfile architecture. */
2229 struct type *builtin_void;
2230 struct type *builtin_char;
2231 struct type *builtin_short;
2232 struct type *builtin_int;
2233 struct type *builtin_long;
2234 struct type *builtin_long_long;
2235 struct type *builtin_signed_char;
2236 struct type *builtin_unsigned_char;
2237 struct type *builtin_unsigned_short;
2238 struct type *builtin_unsigned_int;
2239 struct type *builtin_unsigned_long;
2240 struct type *builtin_unsigned_long_long;
2241 struct type *builtin_half;
2242 struct type *builtin_float;
2243 struct type *builtin_double;
2244 struct type *builtin_long_double;
2245
2246 /* * This type is used to represent symbol addresses. */
2247 struct type *builtin_core_addr;
2248
2249 /* * This type represents a type that was unrecognized in symbol
2250 read-in. */
2251 struct type *builtin_error;
2252
2253 /* * Types used for symbols with no debug information. */
2254 struct type *nodebug_text_symbol;
2255 struct type *nodebug_text_gnu_ifunc_symbol;
2256 struct type *nodebug_got_plt_symbol;
2257 struct type *nodebug_data_symbol;
2258 struct type *nodebug_unknown_symbol;
2259 struct type *nodebug_tls_symbol;
2260 };
2261
2262 /* * Return the type table for the specified objfile. */
2263
2264 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2265
2266 /* Explicit floating-point formats. See "floatformat.h". */
2267 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2268 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2269 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2270 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2271 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2272 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2273 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2274 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2275 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2276 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2277 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2278 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2279 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2280
2281 /* Allocate space for storing data associated with a particular
2282 type. We ensure that the space is allocated using the same
2283 mechanism that was used to allocate the space for the type
2284 structure itself. I.e. if the type is on an objfile's
2285 objfile_obstack, then the space for data associated with that type
2286 will also be allocated on the objfile_obstack. If the type is
2287 associated with a gdbarch, then the space for data associated with that
2288 type will also be allocated on the gdbarch_obstack.
2289
2290 If a type is not associated with neither an objfile or a gdbarch then
2291 you should not use this macro to allocate space for data, instead you
2292 should call xmalloc directly, and ensure the memory is correctly freed
2293 when it is no longer needed. */
2294
2295 #define TYPE_ALLOC(t,size) \
2296 (obstack_alloc (((t)->is_objfile_owned () \
2297 ? &((t)->objfile_owner ()->objfile_obstack) \
2298 : gdbarch_obstack ((t)->arch_owner ())), \
2299 size))
2300
2301
2302 /* See comment on TYPE_ALLOC. */
2303
2304 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2305
2306 /* Use alloc_type to allocate a type owned by an objfile. Use
2307 alloc_type_arch to allocate a type owned by an architecture. Use
2308 alloc_type_copy to allocate a type with the same owner as a
2309 pre-existing template type, no matter whether objfile or
2310 gdbarch. */
2311 extern struct type *alloc_type (struct objfile *);
2312 extern struct type *alloc_type_arch (struct gdbarch *);
2313 extern struct type *alloc_type_copy (const struct type *);
2314
2315 /* * This returns the target type (or NULL) of TYPE, also skipping
2316 past typedefs. */
2317
2318 extern struct type *get_target_type (struct type *type);
2319
2320 /* Return the equivalent of TYPE_LENGTH, but in number of target
2321 addressable memory units of the associated gdbarch instead of bytes. */
2322
2323 extern unsigned int type_length_units (struct type *type);
2324
2325 /* * Helper function to construct objfile-owned types. */
2326
2327 extern struct type *init_type (struct objfile *, enum type_code, int,
2328 const char *);
2329 extern struct type *init_integer_type (struct objfile *, int, int,
2330 const char *);
2331 extern struct type *init_character_type (struct objfile *, int, int,
2332 const char *);
2333 extern struct type *init_boolean_type (struct objfile *, int, int,
2334 const char *);
2335 extern struct type *init_float_type (struct objfile *, int, const char *,
2336 const struct floatformat **,
2337 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2338 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2339 extern bool can_create_complex_type (struct type *);
2340 extern struct type *init_complex_type (const char *, struct type *);
2341 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2342 struct type *);
2343 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2344 const char *);
2345
2346 /* Helper functions to construct architecture-owned types. */
2347 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2348 const char *);
2349 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2350 const char *);
2351 extern struct type *arch_character_type (struct gdbarch *, int, int,
2352 const char *);
2353 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2354 const char *);
2355 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2356 const struct floatformat **);
2357 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2358 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2359 struct type *);
2360
2361 /* Helper functions to construct a struct or record type. An
2362 initially empty type is created using arch_composite_type().
2363 Fields are then added using append_composite_type_field*(). A union
2364 type has its size set to the largest field. A struct type has each
2365 field packed against the previous. */
2366
2367 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2368 const char *name, enum type_code code);
2369 extern void append_composite_type_field (struct type *t, const char *name,
2370 struct type *field);
2371 extern void append_composite_type_field_aligned (struct type *t,
2372 const char *name,
2373 struct type *field,
2374 int alignment);
2375 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2376 struct type *field);
2377
2378 /* Helper functions to construct a bit flags type. An initially empty
2379 type is created using arch_flag_type(). Flags are then added using
2380 append_flag_type_field() and append_flag_type_flag(). */
2381 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2382 const char *name, int bit);
2383 extern void append_flags_type_field (struct type *type,
2384 int start_bitpos, int nr_bits,
2385 struct type *field_type, const char *name);
2386 extern void append_flags_type_flag (struct type *type, int bitpos,
2387 const char *name);
2388
2389 extern void make_vector_type (struct type *array_type);
2390 extern struct type *init_vector_type (struct type *elt_type, int n);
2391
2392 extern struct type *lookup_reference_type (struct type *, enum type_code);
2393 extern struct type *lookup_lvalue_reference_type (struct type *);
2394 extern struct type *lookup_rvalue_reference_type (struct type *);
2395
2396
2397 extern struct type *make_reference_type (struct type *, struct type **,
2398 enum type_code);
2399
2400 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2401
2402 extern struct type *make_restrict_type (struct type *);
2403
2404 extern struct type *make_unqualified_type (struct type *);
2405
2406 extern struct type *make_atomic_type (struct type *);
2407
2408 extern void replace_type (struct type *, struct type *);
2409
2410 extern type_instance_flags address_space_name_to_type_instance_flags
2411 (struct gdbarch *, const char *);
2412
2413 extern const char *address_space_type_instance_flags_to_name
2414 (struct gdbarch *, type_instance_flags);
2415
2416 extern struct type *make_type_with_address_space
2417 (struct type *type, type_instance_flags space_identifier);
2418
2419 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2420
2421 extern struct type *lookup_methodptr_type (struct type *);
2422
2423 extern void smash_to_method_type (struct type *type, struct type *self_type,
2424 struct type *to_type, struct field *args,
2425 int nargs, int varargs);
2426
2427 extern void smash_to_memberptr_type (struct type *, struct type *,
2428 struct type *);
2429
2430 extern void smash_to_methodptr_type (struct type *, struct type *);
2431
2432 extern struct type *allocate_stub_method (struct type *);
2433
2434 extern const char *type_name_or_error (struct type *type);
2435
2436 struct struct_elt
2437 {
2438 /* The field of the element, or NULL if no element was found. */
2439 struct field *field;
2440
2441 /* The bit offset of the element in the parent structure. */
2442 LONGEST offset;
2443 };
2444
2445 /* Given a type TYPE, lookup the field and offset of the component named
2446 NAME.
2447
2448 TYPE can be either a struct or union, or a pointer or reference to
2449 a struct or union. If it is a pointer or reference, its target
2450 type is automatically used. Thus '.' and '->' are interchangable,
2451 as specified for the definitions of the expression element types
2452 STRUCTOP_STRUCT and STRUCTOP_PTR.
2453
2454 If NOERR is nonzero, the returned structure will have field set to
2455 NULL if there is no component named NAME.
2456
2457 If the component NAME is a field in an anonymous substructure of
2458 TYPE, the returned offset is a "global" offset relative to TYPE
2459 rather than an offset within the substructure. */
2460
2461 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2462
2463 /* Given a type TYPE, lookup the type of the component named NAME.
2464
2465 TYPE can be either a struct or union, or a pointer or reference to
2466 a struct or union. If it is a pointer or reference, its target
2467 type is automatically used. Thus '.' and '->' are interchangable,
2468 as specified for the definitions of the expression element types
2469 STRUCTOP_STRUCT and STRUCTOP_PTR.
2470
2471 If NOERR is nonzero, return NULL if there is no component named
2472 NAME. */
2473
2474 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2475
2476 extern struct type *make_pointer_type (struct type *, struct type **);
2477
2478 extern struct type *lookup_pointer_type (struct type *);
2479
2480 extern struct type *make_function_type (struct type *, struct type **);
2481
2482 extern struct type *lookup_function_type (struct type *);
2483
2484 extern struct type *lookup_function_type_with_arguments (struct type *,
2485 int,
2486 struct type **);
2487
2488 extern struct type *create_static_range_type (struct type *, struct type *,
2489 LONGEST, LONGEST);
2490
2491
2492 extern struct type *create_array_type_with_stride
2493 (struct type *, struct type *, struct type *,
2494 struct dynamic_prop *, unsigned int);
2495
2496 extern struct type *create_range_type (struct type *, struct type *,
2497 const struct dynamic_prop *,
2498 const struct dynamic_prop *,
2499 LONGEST);
2500
2501 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2502 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2503 stride. */
2504
2505 extern struct type * create_range_type_with_stride
2506 (struct type *result_type, struct type *index_type,
2507 const struct dynamic_prop *low_bound,
2508 const struct dynamic_prop *high_bound, LONGEST bias,
2509 const struct dynamic_prop *stride, bool byte_stride_p);
2510
2511 extern struct type *create_array_type (struct type *, struct type *,
2512 struct type *);
2513
2514 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2515
2516 extern struct type *create_string_type (struct type *, struct type *,
2517 struct type *);
2518 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2519
2520 extern struct type *create_set_type (struct type *, struct type *);
2521
2522 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2523 const char *);
2524
2525 extern struct type *lookup_signed_typename (const struct language_defn *,
2526 const char *);
2527
2528 extern ULONGEST get_unsigned_type_max (struct type *);
2529
2530 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2531
2532 extern CORE_ADDR get_pointer_type_max (struct type *);
2533
2534 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2535 ADDR specifies the location of the variable the type is bound to.
2536 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2537 static properties is returned. */
2538 extern struct type *resolve_dynamic_type
2539 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2540 CORE_ADDR addr);
2541
2542 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2543 extern int is_dynamic_type (struct type *type);
2544
2545 extern struct type *check_typedef (struct type *);
2546
2547 extern void check_stub_method_group (struct type *, int);
2548
2549 extern char *gdb_mangle_name (struct type *, int, int);
2550
2551 extern struct type *lookup_typename (const struct language_defn *,
2552 const char *, const struct block *, int);
2553
2554 extern struct type *lookup_template_type (const char *, struct type *,
2555 const struct block *);
2556
2557 extern int get_vptr_fieldno (struct type *, struct type **);
2558
2559 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2560 TYPE.
2561
2562 Return true if the two bounds are available, false otherwise. */
2563
2564 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2565 LONGEST *highp);
2566
2567 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2568
2569 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2570
2571 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2572
2573 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2574
2575 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2576 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2577 Save the high bound into HIGH_BOUND if not NULL.
2578
2579 Return true if the operation was successful. Return false otherwise,
2580 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2581
2582 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2583 LONGEST *high_bound);
2584
2585 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2586 LONGEST val);
2587
2588 extern int class_types_same_p (const struct type *, const struct type *);
2589
2590 extern int is_ancestor (struct type *, struct type *);
2591
2592 extern int is_public_ancestor (struct type *, struct type *);
2593
2594 extern int is_unique_ancestor (struct type *, struct value *);
2595
2596 /* Overload resolution */
2597
2598 /* * Badness if parameter list length doesn't match arg list length. */
2599 extern const struct rank LENGTH_MISMATCH_BADNESS;
2600
2601 /* * Dummy badness value for nonexistent parameter positions. */
2602 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2603 /* * Badness if no conversion among types. */
2604 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2605
2606 /* * Badness of an exact match. */
2607 extern const struct rank EXACT_MATCH_BADNESS;
2608
2609 /* * Badness of integral promotion. */
2610 extern const struct rank INTEGER_PROMOTION_BADNESS;
2611 /* * Badness of floating promotion. */
2612 extern const struct rank FLOAT_PROMOTION_BADNESS;
2613 /* * Badness of converting a derived class pointer
2614 to a base class pointer. */
2615 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2616 /* * Badness of integral conversion. */
2617 extern const struct rank INTEGER_CONVERSION_BADNESS;
2618 /* * Badness of floating conversion. */
2619 extern const struct rank FLOAT_CONVERSION_BADNESS;
2620 /* * Badness of integer<->floating conversions. */
2621 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2622 /* * Badness of conversion of pointer to void pointer. */
2623 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2624 /* * Badness of conversion to boolean. */
2625 extern const struct rank BOOL_CONVERSION_BADNESS;
2626 /* * Badness of converting derived to base class. */
2627 extern const struct rank BASE_CONVERSION_BADNESS;
2628 /* * Badness of converting from non-reference to reference. Subrank
2629 is the type of reference conversion being done. */
2630 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2631 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2632 /* * Conversion to rvalue reference. */
2633 #define REFERENCE_CONVERSION_RVALUE 1
2634 /* * Conversion to const lvalue reference. */
2635 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2636
2637 /* * Badness of converting integer 0 to NULL pointer. */
2638 extern const struct rank NULL_POINTER_CONVERSION;
2639 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2640 being done. */
2641 extern const struct rank CV_CONVERSION_BADNESS;
2642 #define CV_CONVERSION_CONST 1
2643 #define CV_CONVERSION_VOLATILE 2
2644
2645 /* Non-standard conversions allowed by the debugger */
2646
2647 /* * Converting a pointer to an int is usually OK. */
2648 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2649
2650 /* * Badness of converting a (non-zero) integer constant
2651 to a pointer. */
2652 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2653
2654 extern struct rank sum_ranks (struct rank a, struct rank b);
2655 extern int compare_ranks (struct rank a, struct rank b);
2656
2657 extern int compare_badness (const badness_vector &,
2658 const badness_vector &);
2659
2660 extern badness_vector rank_function (gdb::array_view<type *> parms,
2661 gdb::array_view<value *> args);
2662
2663 extern struct rank rank_one_type (struct type *, struct type *,
2664 struct value *);
2665
2666 extern void recursive_dump_type (struct type *, int);
2667
2668 extern int field_is_static (struct field *);
2669
2670 /* printcmd.c */
2671
2672 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2673 const struct value_print_options *,
2674 int, struct ui_file *);
2675
2676 extern int can_dereference (struct type *);
2677
2678 extern int is_integral_type (struct type *);
2679
2680 extern int is_floating_type (struct type *);
2681
2682 extern int is_scalar_type (struct type *type);
2683
2684 extern int is_scalar_type_recursive (struct type *);
2685
2686 extern int class_or_union_p (const struct type *);
2687
2688 extern void maintenance_print_type (const char *, int);
2689
2690 extern htab_up create_copied_types_hash (struct objfile *objfile);
2691
2692 extern struct type *copy_type_recursive (struct objfile *objfile,
2693 struct type *type,
2694 htab_t copied_types);
2695
2696 extern struct type *copy_type (const struct type *type);
2697
2698 extern bool types_equal (struct type *, struct type *);
2699
2700 extern bool types_deeply_equal (struct type *, struct type *);
2701
2702 extern int type_not_allocated (const struct type *type);
2703
2704 extern int type_not_associated (const struct type *type);
2705
2706 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2707 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2708 extern bool is_fixed_point_type (struct type *type);
2709
2710 /* Allocate a fixed-point type info for TYPE. This should only be
2711 called by INIT_FIXED_POINT_SPECIFIC. */
2712 extern void allocate_fixed_point_type_info (struct type *type);
2713
2714 /* * When the type includes explicit byte ordering, return that.
2715 Otherwise, the byte ordering from gdbarch_byte_order for
2716 the type's arch is returned. */
2717
2718 extern enum bfd_endian type_byte_order (const struct type *type);
2719
2720 /* A flag to enable printing of debugging information of C++
2721 overloading. */
2722
2723 extern unsigned int overload_debug;
2724
2725 #endif /* GDBTYPES_H */