gdb: add type::is_fixed_instance / type::set_is_fixed_instance
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The debugging formats (especially STABS) do not contain enough
220 information to represent all Ada types---especially those whose
221 size depends on dynamic quantities. Therefore, the GNAT Ada
222 compiler includes extra information in the form of additional type
223 definitions connected by naming conventions. This flag indicates
224 that the type is an ordinary (unencoded) GDB type that has been
225 created from the necessary run-time information, and does not need
226 further interpretation. Optionally marks ordinary, fixed-size GDB
227 type. */
228
229 #define TYPE_FIXED_INSTANCE(t) ((t)->is_fixed_instance ())
230
231 /* * Not textual. By default, GDB treats all single byte integers as
232 characters (or elements of strings) unless this flag is set. */
233
234 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
235
236 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
237 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
238 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
239
240 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
241 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
242 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
243
244 /* * True if this type was declared using the "class" keyword. This is
245 only valid for C++ structure and enum types. If false, a structure
246 was declared as a "struct"; if true it was declared "class". For
247 enum types, this is true when "enum class" or "enum struct" was
248 used to declare the type.. */
249
250 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
251
252 /* * True if this type is a "flag" enum. A flag enum is one where all
253 the values are pairwise disjoint when "and"ed together. This
254 affects how enum values are printed. */
255
256 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
257
258 /* * Constant type. If this is set, the corresponding type has a
259 const modifier. */
260
261 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
262
263 /* * Volatile type. If this is set, the corresponding type has a
264 volatile modifier. */
265
266 #define TYPE_VOLATILE(t) \
267 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
268
269 /* * Restrict type. If this is set, the corresponding type has a
270 restrict modifier. */
271
272 #define TYPE_RESTRICT(t) \
273 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
274
275 /* * Atomic type. If this is set, the corresponding type has an
276 _Atomic modifier. */
277
278 #define TYPE_ATOMIC(t) \
279 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
280
281 /* * True if this type represents either an lvalue or lvalue reference type. */
282
283 #define TYPE_IS_REFERENCE(t) \
284 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
285
286 /* * True if this type is allocatable. */
287 #define TYPE_IS_ALLOCATABLE(t) \
288 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
289
290 /* * True if this type has variant parts. */
291 #define TYPE_HAS_VARIANT_PARTS(t) \
292 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
293
294 /* * True if this type has a dynamic length. */
295 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
296 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
297
298 /* * Instruction-space delimited type. This is for Harvard architectures
299 which have separate instruction and data address spaces (and perhaps
300 others).
301
302 GDB usually defines a flat address space that is a superset of the
303 architecture's two (or more) address spaces, but this is an extension
304 of the architecture's model.
305
306 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
307 resides in instruction memory, even if its address (in the extended
308 flat address space) does not reflect this.
309
310 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
311 corresponding type resides in the data memory space, even if
312 this is not indicated by its (flat address space) address.
313
314 If neither flag is set, the default space for functions / methods
315 is instruction space, and for data objects is data memory. */
316
317 #define TYPE_CODE_SPACE(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
319
320 #define TYPE_DATA_SPACE(t) \
321 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
322
323 /* * Address class flags. Some environments provide for pointers
324 whose size is different from that of a normal pointer or address
325 types where the bits are interpreted differently than normal
326 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
327 target specific ways to represent these different types of address
328 classes. */
329
330 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
331 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
332 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
333 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
334 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
335 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
336 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
337 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
338
339 /* * Information about a single discriminant. */
340
341 struct discriminant_range
342 {
343 /* * The range of values for the variant. This is an inclusive
344 range. */
345 ULONGEST low, high;
346
347 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
348 is true if this should be an unsigned comparison; false for
349 signed. */
350 bool contains (ULONGEST value, bool is_unsigned) const
351 {
352 if (is_unsigned)
353 return value >= low && value <= high;
354 LONGEST valuel = (LONGEST) value;
355 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
356 }
357 };
358
359 struct variant_part;
360
361 /* * A single variant. A variant has a list of discriminant values.
362 When the discriminator matches one of these, the variant is
363 enabled. Each variant controls zero or more fields; and may also
364 control other variant parts as well. This struct corresponds to
365 DW_TAG_variant in DWARF. */
366
367 struct variant : allocate_on_obstack
368 {
369 /* * The discriminant ranges for this variant. */
370 gdb::array_view<discriminant_range> discriminants;
371
372 /* * The fields controlled by this variant. This is inclusive on
373 the low end and exclusive on the high end. A variant may not
374 control any fields, in which case the two values will be equal.
375 These are indexes into the type's array of fields. */
376 int first_field;
377 int last_field;
378
379 /* * Variant parts controlled by this variant. */
380 gdb::array_view<variant_part> parts;
381
382 /* * Return true if this is the default variant. The default
383 variant can be recognized because it has no associated
384 discriminants. */
385 bool is_default () const
386 {
387 return discriminants.empty ();
388 }
389
390 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
391 if this should be an unsigned comparison; false for signed. */
392 bool matches (ULONGEST value, bool is_unsigned) const;
393 };
394
395 /* * A variant part. Each variant part has an optional discriminant
396 and holds an array of variants. This struct corresponds to
397 DW_TAG_variant_part in DWARF. */
398
399 struct variant_part : allocate_on_obstack
400 {
401 /* * The index of the discriminant field in the outer type. This is
402 an index into the type's array of fields. If this is -1, there
403 is no discriminant, and only the default variant can be
404 considered to be selected. */
405 int discriminant_index;
406
407 /* * True if this discriminant is unsigned; false if signed. This
408 comes from the type of the discriminant. */
409 bool is_unsigned;
410
411 /* * The variants that are controlled by this variant part. Note
412 that these will always be sorted by field number. */
413 gdb::array_view<variant> variants;
414 };
415
416
417 enum dynamic_prop_kind
418 {
419 PROP_UNDEFINED, /* Not defined. */
420 PROP_CONST, /* Constant. */
421 PROP_ADDR_OFFSET, /* Address offset. */
422 PROP_LOCEXPR, /* Location expression. */
423 PROP_LOCLIST, /* Location list. */
424 PROP_VARIANT_PARTS, /* Variant parts. */
425 PROP_TYPE, /* Type. */
426 };
427
428 union dynamic_prop_data
429 {
430 /* Storage for constant property. */
431
432 LONGEST const_val;
433
434 /* Storage for dynamic property. */
435
436 void *baton;
437
438 /* Storage of variant parts for a type. A type with variant parts
439 has all its fields "linearized" -- stored in a single field
440 array, just as if they had all been declared that way. The
441 variant parts are attached via a dynamic property, and then are
442 used to control which fields end up in the final type during
443 dynamic type resolution. */
444
445 const gdb::array_view<variant_part> *variant_parts;
446
447 /* Once a variant type is resolved, we may want to be able to go
448 from the resolved type to the original type. In this case we
449 rewrite the property's kind and set this field. */
450
451 struct type *original_type;
452 };
453
454 /* * Used to store a dynamic property. */
455
456 struct dynamic_prop
457 {
458 dynamic_prop_kind kind () const
459 {
460 return m_kind;
461 }
462
463 void set_undefined ()
464 {
465 m_kind = PROP_UNDEFINED;
466 }
467
468 LONGEST const_val () const
469 {
470 gdb_assert (m_kind == PROP_CONST);
471
472 return m_data.const_val;
473 }
474
475 void set_const_val (LONGEST const_val)
476 {
477 m_kind = PROP_CONST;
478 m_data.const_val = const_val;
479 }
480
481 void *baton () const
482 {
483 gdb_assert (m_kind == PROP_LOCEXPR
484 || m_kind == PROP_LOCLIST
485 || m_kind == PROP_ADDR_OFFSET);
486
487 return m_data.baton;
488 }
489
490 void set_locexpr (void *baton)
491 {
492 m_kind = PROP_LOCEXPR;
493 m_data.baton = baton;
494 }
495
496 void set_loclist (void *baton)
497 {
498 m_kind = PROP_LOCLIST;
499 m_data.baton = baton;
500 }
501
502 void set_addr_offset (void *baton)
503 {
504 m_kind = PROP_ADDR_OFFSET;
505 m_data.baton = baton;
506 }
507
508 const gdb::array_view<variant_part> *variant_parts () const
509 {
510 gdb_assert (m_kind == PROP_VARIANT_PARTS);
511
512 return m_data.variant_parts;
513 }
514
515 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
516 {
517 m_kind = PROP_VARIANT_PARTS;
518 m_data.variant_parts = variant_parts;
519 }
520
521 struct type *original_type () const
522 {
523 gdb_assert (m_kind == PROP_TYPE);
524
525 return m_data.original_type;
526 }
527
528 void set_original_type (struct type *original_type)
529 {
530 m_kind = PROP_TYPE;
531 m_data.original_type = original_type;
532 }
533
534 /* Determine which field of the union dynamic_prop.data is used. */
535 enum dynamic_prop_kind m_kind;
536
537 /* Storage for dynamic or static value. */
538 union dynamic_prop_data m_data;
539 };
540
541 /* Compare two dynamic_prop objects for equality. dynamic_prop
542 instances are equal iff they have the same type and storage. */
543 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
544
545 /* Compare two dynamic_prop objects for inequality. */
546 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
547 {
548 return !(l == r);
549 }
550
551 /* * Define a type's dynamic property node kind. */
552 enum dynamic_prop_node_kind
553 {
554 /* A property providing a type's data location.
555 Evaluating this field yields to the location of an object's data. */
556 DYN_PROP_DATA_LOCATION,
557
558 /* A property representing DW_AT_allocated. The presence of this attribute
559 indicates that the object of the type can be allocated/deallocated. */
560 DYN_PROP_ALLOCATED,
561
562 /* A property representing DW_AT_associated. The presence of this attribute
563 indicated that the object of the type can be associated. */
564 DYN_PROP_ASSOCIATED,
565
566 /* A property providing an array's byte stride. */
567 DYN_PROP_BYTE_STRIDE,
568
569 /* A property holding variant parts. */
570 DYN_PROP_VARIANT_PARTS,
571
572 /* A property holding the size of the type. */
573 DYN_PROP_BYTE_SIZE,
574 };
575
576 /* * List for dynamic type attributes. */
577 struct dynamic_prop_list
578 {
579 /* The kind of dynamic prop in this node. */
580 enum dynamic_prop_node_kind prop_kind;
581
582 /* The dynamic property itself. */
583 struct dynamic_prop prop;
584
585 /* A pointer to the next dynamic property. */
586 struct dynamic_prop_list *next;
587 };
588
589 /* * Determine which field of the union main_type.fields[x].loc is
590 used. */
591
592 enum field_loc_kind
593 {
594 FIELD_LOC_KIND_BITPOS, /**< bitpos */
595 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
596 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
597 FIELD_LOC_KIND_PHYSNAME, /**< physname */
598 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
599 };
600
601 /* * A discriminant to determine which field in the
602 main_type.type_specific union is being used, if any.
603
604 For types such as TYPE_CODE_FLT, the use of this
605 discriminant is really redundant, as we know from the type code
606 which field is going to be used. As such, it would be possible to
607 reduce the size of this enum in order to save a bit or two for
608 other fields of struct main_type. But, since we still have extra
609 room , and for the sake of clarity and consistency, we treat all fields
610 of the union the same way. */
611
612 enum type_specific_kind
613 {
614 TYPE_SPECIFIC_NONE,
615 TYPE_SPECIFIC_CPLUS_STUFF,
616 TYPE_SPECIFIC_GNAT_STUFF,
617 TYPE_SPECIFIC_FLOATFORMAT,
618 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
619 TYPE_SPECIFIC_FUNC,
620 TYPE_SPECIFIC_SELF_TYPE
621 };
622
623 union type_owner
624 {
625 struct objfile *objfile;
626 struct gdbarch *gdbarch;
627 };
628
629 union field_location
630 {
631 /* * Position of this field, counting in bits from start of
632 containing structure. For big-endian targets, it is the bit
633 offset to the MSB. For little-endian targets, it is the bit
634 offset to the LSB. */
635
636 LONGEST bitpos;
637
638 /* * Enum value. */
639 LONGEST enumval;
640
641 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
642 physaddr is the location (in the target) of the static
643 field. Otherwise, physname is the mangled label of the
644 static field. */
645
646 CORE_ADDR physaddr;
647 const char *physname;
648
649 /* * The field location can be computed by evaluating the
650 following DWARF block. Its DATA is allocated on
651 objfile_obstack - no CU load is needed to access it. */
652
653 struct dwarf2_locexpr_baton *dwarf_block;
654 };
655
656 struct field
657 {
658 struct type *type () const
659 {
660 return this->m_type;
661 }
662
663 void set_type (struct type *type)
664 {
665 this->m_type = type;
666 }
667
668 union field_location loc;
669
670 /* * For a function or member type, this is 1 if the argument is
671 marked artificial. Artificial arguments should not be shown
672 to the user. For TYPE_CODE_RANGE it is set if the specific
673 bound is not defined. */
674
675 unsigned int artificial : 1;
676
677 /* * Discriminant for union field_location. */
678
679 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
680
681 /* * Size of this field, in bits, or zero if not packed.
682 If non-zero in an array type, indicates the element size in
683 bits (used only in Ada at the moment).
684 For an unpacked field, the field's type's length
685 says how many bytes the field occupies. */
686
687 unsigned int bitsize : 28;
688
689 /* * In a struct or union type, type of this field.
690 - In a function or member type, type of this argument.
691 - In an array type, the domain-type of the array. */
692
693 struct type *m_type;
694
695 /* * Name of field, value or argument.
696 NULL for range bounds, array domains, and member function
697 arguments. */
698
699 const char *name;
700 };
701
702 struct range_bounds
703 {
704 ULONGEST bit_stride () const
705 {
706 if (this->flag_is_byte_stride)
707 return this->stride.const_val () * 8;
708 else
709 return this->stride.const_val ();
710 }
711
712 /* * Low bound of range. */
713
714 struct dynamic_prop low;
715
716 /* * High bound of range. */
717
718 struct dynamic_prop high;
719
720 /* The stride value for this range. This can be stored in bits or bytes
721 based on the value of BYTE_STRIDE_P. It is optional to have a stride
722 value, if this range has no stride value defined then this will be set
723 to the constant zero. */
724
725 struct dynamic_prop stride;
726
727 /* * The bias. Sometimes a range value is biased before storage.
728 The bias is added to the stored bits to form the true value. */
729
730 LONGEST bias;
731
732 /* True if HIGH range bound contains the number of elements in the
733 subrange. This affects how the final high bound is computed. */
734
735 unsigned int flag_upper_bound_is_count : 1;
736
737 /* True if LOW or/and HIGH are resolved into a static bound from
738 a dynamic one. */
739
740 unsigned int flag_bound_evaluated : 1;
741
742 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
743
744 unsigned int flag_is_byte_stride : 1;
745 };
746
747 /* Compare two range_bounds objects for equality. Simply does
748 memberwise comparison. */
749 extern bool operator== (const range_bounds &l, const range_bounds &r);
750
751 /* Compare two range_bounds objects for inequality. */
752 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
753 {
754 return !(l == r);
755 }
756
757 union type_specific
758 {
759 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
760 point to cplus_struct_default, a default static instance of a
761 struct cplus_struct_type. */
762
763 struct cplus_struct_type *cplus_stuff;
764
765 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
766 provides additional information. */
767
768 struct gnat_aux_type *gnat_stuff;
769
770 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
771 floatformat object that describes the floating-point value
772 that resides within the type. */
773
774 const struct floatformat *floatformat;
775
776 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
777
778 struct func_type *func_stuff;
779
780 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
781 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
782 is a member of. */
783
784 struct type *self_type;
785 };
786
787 /* * Main structure representing a type in GDB.
788
789 This structure is space-critical. Its layout has been tweaked to
790 reduce the space used. */
791
792 struct main_type
793 {
794 /* * Code for kind of type. */
795
796 ENUM_BITFIELD(type_code) code : 8;
797
798 /* * Flags about this type. These fields appear at this location
799 because they packs nicely here. See the TYPE_* macros for
800 documentation about these fields. */
801
802 unsigned int m_flag_unsigned : 1;
803 unsigned int m_flag_nosign : 1;
804 unsigned int m_flag_stub : 1;
805 unsigned int m_flag_target_stub : 1;
806 unsigned int m_flag_prototyped : 1;
807 unsigned int m_flag_varargs : 1;
808 unsigned int m_flag_vector : 1;
809 unsigned int m_flag_stub_supported : 1;
810 unsigned int m_flag_gnu_ifunc : 1;
811 unsigned int m_flag_fixed_instance : 1;
812 unsigned int flag_objfile_owned : 1;
813 unsigned int flag_endianity_not_default : 1;
814
815 /* * True if this type was declared with "class" rather than
816 "struct". */
817
818 unsigned int flag_declared_class : 1;
819
820 /* * True if this is an enum type with disjoint values. This
821 affects how the enum is printed. */
822
823 unsigned int flag_flag_enum : 1;
824
825 /* * A discriminant telling us which field of the type_specific
826 union is being used for this type, if any. */
827
828 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
829
830 /* * Number of fields described for this type. This field appears
831 at this location because it packs nicely here. */
832
833 short nfields;
834
835 /* * Name of this type, or NULL if none.
836
837 This is used for printing only. For looking up a name, look for
838 a symbol in the VAR_DOMAIN. This is generally allocated in the
839 objfile's obstack. However coffread.c uses malloc. */
840
841 const char *name;
842
843 /* * Every type is now associated with a particular objfile, and the
844 type is allocated on the objfile_obstack for that objfile. One
845 problem however, is that there are times when gdb allocates new
846 types while it is not in the process of reading symbols from a
847 particular objfile. Fortunately, these happen when the type
848 being created is a derived type of an existing type, such as in
849 lookup_pointer_type(). So we can just allocate the new type
850 using the same objfile as the existing type, but to do this we
851 need a backpointer to the objfile from the existing type. Yes
852 this is somewhat ugly, but without major overhaul of the internal
853 type system, it can't be avoided for now. */
854
855 union type_owner owner;
856
857 /* * For a pointer type, describes the type of object pointed to.
858 - For an array type, describes the type of the elements.
859 - For a function or method type, describes the type of the return value.
860 - For a range type, describes the type of the full range.
861 - For a complex type, describes the type of each coordinate.
862 - For a special record or union type encoding a dynamic-sized type
863 in GNAT, a memoized pointer to a corresponding static version of
864 the type.
865 - Unused otherwise. */
866
867 struct type *target_type;
868
869 /* * For structure and union types, a description of each field.
870 For set and pascal array types, there is one "field",
871 whose type is the domain type of the set or array.
872 For range types, there are two "fields",
873 the minimum and maximum values (both inclusive).
874 For enum types, each possible value is described by one "field".
875 For a function or method type, a "field" for each parameter.
876 For C++ classes, there is one field for each base class (if it is
877 a derived class) plus one field for each class data member. Member
878 functions are recorded elsewhere.
879
880 Using a pointer to a separate array of fields
881 allows all types to have the same size, which is useful
882 because we can allocate the space for a type before
883 we know what to put in it. */
884
885 union
886 {
887 struct field *fields;
888
889 /* * Union member used for range types. */
890
891 struct range_bounds *bounds;
892
893 /* If this is a scalar type, then this is its corresponding
894 complex type. */
895 struct type *complex_type;
896
897 } flds_bnds;
898
899 /* * Slot to point to additional language-specific fields of this
900 type. */
901
902 union type_specific type_specific;
903
904 /* * Contains all dynamic type properties. */
905 struct dynamic_prop_list *dyn_prop_list;
906 };
907
908 /* * Number of bits allocated for alignment. */
909
910 #define TYPE_ALIGN_BITS 8
911
912 /* * A ``struct type'' describes a particular instance of a type, with
913 some particular qualification. */
914
915 struct type
916 {
917 /* Get the type code of this type.
918
919 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
920 type, you need to do `check_typedef (type)->code ()`. */
921 type_code code () const
922 {
923 return this->main_type->code;
924 }
925
926 /* Set the type code of this type. */
927 void set_code (type_code code)
928 {
929 this->main_type->code = code;
930 }
931
932 /* Get the name of this type. */
933 const char *name () const
934 {
935 return this->main_type->name;
936 }
937
938 /* Set the name of this type. */
939 void set_name (const char *name)
940 {
941 this->main_type->name = name;
942 }
943
944 /* Get the number of fields of this type. */
945 int num_fields () const
946 {
947 return this->main_type->nfields;
948 }
949
950 /* Set the number of fields of this type. */
951 void set_num_fields (int num_fields)
952 {
953 this->main_type->nfields = num_fields;
954 }
955
956 /* Get the fields array of this type. */
957 struct field *fields () const
958 {
959 return this->main_type->flds_bnds.fields;
960 }
961
962 /* Get the field at index IDX. */
963 struct field &field (int idx) const
964 {
965 return this->fields ()[idx];
966 }
967
968 /* Set the fields array of this type. */
969 void set_fields (struct field *fields)
970 {
971 this->main_type->flds_bnds.fields = fields;
972 }
973
974 type *index_type () const
975 {
976 return this->field (0).type ();
977 }
978
979 void set_index_type (type *index_type)
980 {
981 this->field (0).set_type (index_type);
982 }
983
984 /* Get the bounds bounds of this type. The type must be a range type. */
985 range_bounds *bounds () const
986 {
987 switch (this->code ())
988 {
989 case TYPE_CODE_RANGE:
990 return this->main_type->flds_bnds.bounds;
991
992 case TYPE_CODE_ARRAY:
993 case TYPE_CODE_STRING:
994 return this->index_type ()->bounds ();
995
996 default:
997 gdb_assert_not_reached
998 ("type::bounds called on type with invalid code");
999 }
1000 }
1001
1002 /* Set the bounds of this type. The type must be a range type. */
1003 void set_bounds (range_bounds *bounds)
1004 {
1005 gdb_assert (this->code () == TYPE_CODE_RANGE);
1006
1007 this->main_type->flds_bnds.bounds = bounds;
1008 }
1009
1010 ULONGEST bit_stride () const
1011 {
1012 return this->bounds ()->bit_stride ();
1013 }
1014
1015 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1016 the type is signed (unless TYPE_NOSIGN is set). */
1017
1018 bool is_unsigned () const
1019 {
1020 return this->main_type->m_flag_unsigned;
1021 }
1022
1023 void set_is_unsigned (bool is_unsigned)
1024 {
1025 this->main_type->m_flag_unsigned = is_unsigned;
1026 }
1027
1028 /* No sign for this type. In C++, "char", "signed char", and
1029 "unsigned char" are distinct types; so we need an extra flag to
1030 indicate the absence of a sign! */
1031
1032 bool has_no_signedness () const
1033 {
1034 return this->main_type->m_flag_nosign;
1035 }
1036
1037 void set_has_no_signedness (bool has_no_signedness)
1038 {
1039 this->main_type->m_flag_nosign = has_no_signedness;
1040 }
1041
1042 /* This appears in a type's flags word if it is a stub type (e.g.,
1043 if someone referenced a type that wasn't defined in a source file
1044 via (struct sir_not_appearing_in_this_film *)). */
1045
1046 bool is_stub () const
1047 {
1048 return this->main_type->m_flag_stub;
1049 }
1050
1051 void set_is_stub (bool is_stub)
1052 {
1053 this->main_type->m_flag_stub = is_stub;
1054 }
1055
1056 /* The target type of this type is a stub type, and this type needs
1057 to be updated if it gets un-stubbed in check_typedef. Used for
1058 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1059 based on the TYPE_LENGTH of the target type. Also, set for
1060 TYPE_CODE_TYPEDEF. */
1061
1062 bool target_is_stub () const
1063 {
1064 return this->main_type->m_flag_target_stub;
1065 }
1066
1067 void set_target_is_stub (bool target_is_stub)
1068 {
1069 this->main_type->m_flag_target_stub = target_is_stub;
1070 }
1071
1072 /* This is a function type which appears to have a prototype. We
1073 need this for function calls in order to tell us if it's necessary
1074 to coerce the args, or to just do the standard conversions. This
1075 is used with a short field. */
1076
1077 bool is_prototyped () const
1078 {
1079 return this->main_type->m_flag_prototyped;
1080 }
1081
1082 void set_is_prototyped (bool is_prototyped)
1083 {
1084 this->main_type->m_flag_prototyped = is_prototyped;
1085 }
1086
1087 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1088 to functions. */
1089
1090 bool has_varargs () const
1091 {
1092 return this->main_type->m_flag_varargs;
1093 }
1094
1095 void set_has_varargs (bool has_varargs)
1096 {
1097 this->main_type->m_flag_varargs = has_varargs;
1098 }
1099
1100 /* Identify a vector type. Gcc is handling this by adding an extra
1101 attribute to the array type. We slurp that in as a new flag of a
1102 type. This is used only in dwarf2read.c. */
1103
1104 bool is_vector () const
1105 {
1106 return this->main_type->m_flag_vector;
1107 }
1108
1109 void set_is_vector (bool is_vector)
1110 {
1111 this->main_type->m_flag_vector = is_vector;
1112 }
1113
1114 /* This debug target supports TYPE_STUB(t). In the unsupported case
1115 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1116 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1117 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1118
1119 bool stub_is_supported () const
1120 {
1121 return this->main_type->m_flag_stub_supported;
1122 }
1123
1124 void set_stub_is_supported (bool stub_is_supported)
1125 {
1126 this->main_type->m_flag_stub_supported = stub_is_supported;
1127 }
1128
1129 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1130 address is returned by this function call. TYPE_TARGET_TYPE
1131 determines the final returned function type to be presented to
1132 user. */
1133
1134 bool is_gnu_ifunc () const
1135 {
1136 return this->main_type->m_flag_gnu_ifunc;
1137 }
1138
1139 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1140 {
1141 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1142 }
1143
1144 bool is_fixed_instance () const
1145 {
1146 return this->main_type->m_flag_fixed_instance;
1147 }
1148
1149 void set_is_fixed_instance (bool is_fixed_instance)
1150 {
1151 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1152 }
1153
1154 /* * Return the dynamic property of the requested KIND from this type's
1155 list of dynamic properties. */
1156 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1157
1158 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1159 property to this type.
1160
1161 This function assumes that this type is objfile-owned. */
1162 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1163
1164 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1165 void remove_dyn_prop (dynamic_prop_node_kind kind);
1166
1167 /* * Type that is a pointer to this type.
1168 NULL if no such pointer-to type is known yet.
1169 The debugger may add the address of such a type
1170 if it has to construct one later. */
1171
1172 struct type *pointer_type;
1173
1174 /* * C++: also need a reference type. */
1175
1176 struct type *reference_type;
1177
1178 /* * A C++ rvalue reference type added in C++11. */
1179
1180 struct type *rvalue_reference_type;
1181
1182 /* * Variant chain. This points to a type that differs from this
1183 one only in qualifiers and length. Currently, the possible
1184 qualifiers are const, volatile, code-space, data-space, and
1185 address class. The length may differ only when one of the
1186 address class flags are set. The variants are linked in a
1187 circular ring and share MAIN_TYPE. */
1188
1189 struct type *chain;
1190
1191 /* * The alignment for this type. Zero means that the alignment was
1192 not specified in the debug info. Note that this is stored in a
1193 funny way: as the log base 2 (plus 1) of the alignment; so a
1194 value of 1 means the alignment is 1, and a value of 9 means the
1195 alignment is 256. */
1196
1197 unsigned align_log2 : TYPE_ALIGN_BITS;
1198
1199 /* * Flags specific to this instance of the type, indicating where
1200 on the ring we are.
1201
1202 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1203 binary or-ed with the target type, with a special case for
1204 address class and space class. For example if this typedef does
1205 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1206 instance flags are completely inherited from the target type. No
1207 qualifiers can be cleared by the typedef. See also
1208 check_typedef. */
1209 unsigned instance_flags : 9;
1210
1211 /* * Length of storage for a value of this type. The value is the
1212 expression in host bytes of what sizeof(type) would return. This
1213 size includes padding. For example, an i386 extended-precision
1214 floating point value really only occupies ten bytes, but most
1215 ABI's declare its size to be 12 bytes, to preserve alignment.
1216 A `struct type' representing such a floating-point type would
1217 have a `length' value of 12, even though the last two bytes are
1218 unused.
1219
1220 Since this field is expressed in host bytes, its value is appropriate
1221 to pass to memcpy and such (it is assumed that GDB itself always runs
1222 on an 8-bits addressable architecture). However, when using it for
1223 target address arithmetic (e.g. adding it to a target address), the
1224 type_length_units function should be used in order to get the length
1225 expressed in target addressable memory units. */
1226
1227 ULONGEST length;
1228
1229 /* * Core type, shared by a group of qualified types. */
1230
1231 struct main_type *main_type;
1232 };
1233
1234 struct fn_fieldlist
1235 {
1236
1237 /* * The overloaded name.
1238 This is generally allocated in the objfile's obstack.
1239 However stabsread.c sometimes uses malloc. */
1240
1241 const char *name;
1242
1243 /* * The number of methods with this name. */
1244
1245 int length;
1246
1247 /* * The list of methods. */
1248
1249 struct fn_field *fn_fields;
1250 };
1251
1252
1253
1254 struct fn_field
1255 {
1256 /* * If is_stub is clear, this is the mangled name which we can look
1257 up to find the address of the method (FIXME: it would be cleaner
1258 to have a pointer to the struct symbol here instead).
1259
1260 If is_stub is set, this is the portion of the mangled name which
1261 specifies the arguments. For example, "ii", if there are two int
1262 arguments, or "" if there are no arguments. See gdb_mangle_name
1263 for the conversion from this format to the one used if is_stub is
1264 clear. */
1265
1266 const char *physname;
1267
1268 /* * The function type for the method.
1269
1270 (This comment used to say "The return value of the method", but
1271 that's wrong. The function type is expected here, i.e. something
1272 with TYPE_CODE_METHOD, and *not* the return-value type). */
1273
1274 struct type *type;
1275
1276 /* * For virtual functions. First baseclass that defines this
1277 virtual function. */
1278
1279 struct type *fcontext;
1280
1281 /* Attributes. */
1282
1283 unsigned int is_const:1;
1284 unsigned int is_volatile:1;
1285 unsigned int is_private:1;
1286 unsigned int is_protected:1;
1287 unsigned int is_artificial:1;
1288
1289 /* * A stub method only has some fields valid (but they are enough
1290 to reconstruct the rest of the fields). */
1291
1292 unsigned int is_stub:1;
1293
1294 /* * True if this function is a constructor, false otherwise. */
1295
1296 unsigned int is_constructor : 1;
1297
1298 /* * True if this function is deleted, false otherwise. */
1299
1300 unsigned int is_deleted : 1;
1301
1302 /* * DW_AT_defaulted attribute for this function. The value is one
1303 of the DW_DEFAULTED constants. */
1304
1305 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1306
1307 /* * Unused. */
1308
1309 unsigned int dummy:6;
1310
1311 /* * Index into that baseclass's virtual function table, minus 2;
1312 else if static: VOFFSET_STATIC; else: 0. */
1313
1314 unsigned int voffset:16;
1315
1316 #define VOFFSET_STATIC 1
1317
1318 };
1319
1320 struct decl_field
1321 {
1322 /* * Unqualified name to be prefixed by owning class qualified
1323 name. */
1324
1325 const char *name;
1326
1327 /* * Type this typedef named NAME represents. */
1328
1329 struct type *type;
1330
1331 /* * True if this field was declared protected, false otherwise. */
1332 unsigned int is_protected : 1;
1333
1334 /* * True if this field was declared private, false otherwise. */
1335 unsigned int is_private : 1;
1336 };
1337
1338 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1339 TYPE_CODE_UNION nodes. */
1340
1341 struct cplus_struct_type
1342 {
1343 /* * Number of base classes this type derives from. The
1344 baseclasses are stored in the first N_BASECLASSES fields
1345 (i.e. the `fields' field of the struct type). The only fields
1346 of struct field that are used are: type, name, loc.bitpos. */
1347
1348 short n_baseclasses;
1349
1350 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1351 All access to this field must be through TYPE_VPTR_FIELDNO as one
1352 thing it does is check whether the field has been initialized.
1353 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1354 which for portability reasons doesn't initialize this field.
1355 TYPE_VPTR_FIELDNO returns -1 for this case.
1356
1357 If -1, we were unable to find the virtual function table pointer in
1358 initial symbol reading, and get_vptr_fieldno should be called to find
1359 it if possible. get_vptr_fieldno will update this field if possible.
1360 Otherwise the value is left at -1.
1361
1362 Unused if this type does not have virtual functions. */
1363
1364 short vptr_fieldno;
1365
1366 /* * Number of methods with unique names. All overloaded methods
1367 with the same name count only once. */
1368
1369 short nfn_fields;
1370
1371 /* * Number of template arguments. */
1372
1373 unsigned short n_template_arguments;
1374
1375 /* * One if this struct is a dynamic class, as defined by the
1376 Itanium C++ ABI: if it requires a virtual table pointer,
1377 because it or any of its base classes have one or more virtual
1378 member functions or virtual base classes. Minus one if not
1379 dynamic. Zero if not yet computed. */
1380
1381 int is_dynamic : 2;
1382
1383 /* * The calling convention for this type, fetched from the
1384 DW_AT_calling_convention attribute. The value is one of the
1385 DW_CC constants. */
1386
1387 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1388
1389 /* * The base class which defined the virtual function table pointer. */
1390
1391 struct type *vptr_basetype;
1392
1393 /* * For derived classes, the number of base classes is given by
1394 n_baseclasses and virtual_field_bits is a bit vector containing
1395 one bit per base class. If the base class is virtual, the
1396 corresponding bit will be set.
1397 I.E, given:
1398
1399 class A{};
1400 class B{};
1401 class C : public B, public virtual A {};
1402
1403 B is a baseclass of C; A is a virtual baseclass for C.
1404 This is a C++ 2.0 language feature. */
1405
1406 B_TYPE *virtual_field_bits;
1407
1408 /* * For classes with private fields, the number of fields is
1409 given by nfields and private_field_bits is a bit vector
1410 containing one bit per field.
1411
1412 If the field is private, the corresponding bit will be set. */
1413
1414 B_TYPE *private_field_bits;
1415
1416 /* * For classes with protected fields, the number of fields is
1417 given by nfields and protected_field_bits is a bit vector
1418 containing one bit per field.
1419
1420 If the field is private, the corresponding bit will be set. */
1421
1422 B_TYPE *protected_field_bits;
1423
1424 /* * For classes with fields to be ignored, either this is
1425 optimized out or this field has length 0. */
1426
1427 B_TYPE *ignore_field_bits;
1428
1429 /* * For classes, structures, and unions, a description of each
1430 field, which consists of an overloaded name, followed by the
1431 types of arguments that the method expects, and then the name
1432 after it has been renamed to make it distinct.
1433
1434 fn_fieldlists points to an array of nfn_fields of these. */
1435
1436 struct fn_fieldlist *fn_fieldlists;
1437
1438 /* * typedefs defined inside this class. typedef_field points to
1439 an array of typedef_field_count elements. */
1440
1441 struct decl_field *typedef_field;
1442
1443 unsigned typedef_field_count;
1444
1445 /* * The nested types defined by this type. nested_types points to
1446 an array of nested_types_count elements. */
1447
1448 struct decl_field *nested_types;
1449
1450 unsigned nested_types_count;
1451
1452 /* * The template arguments. This is an array with
1453 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1454 classes. */
1455
1456 struct symbol **template_arguments;
1457 };
1458
1459 /* * Struct used to store conversion rankings. */
1460
1461 struct rank
1462 {
1463 short rank;
1464
1465 /* * When two conversions are of the same type and therefore have
1466 the same rank, subrank is used to differentiate the two.
1467
1468 Eg: Two derived-class-pointer to base-class-pointer conversions
1469 would both have base pointer conversion rank, but the
1470 conversion with the shorter distance to the ancestor is
1471 preferable. 'subrank' would be used to reflect that. */
1472
1473 short subrank;
1474 };
1475
1476 /* * Used for ranking a function for overload resolution. */
1477
1478 typedef std::vector<rank> badness_vector;
1479
1480 /* * GNAT Ada-specific information for various Ada types. */
1481
1482 struct gnat_aux_type
1483 {
1484 /* * Parallel type used to encode information about dynamic types
1485 used in Ada (such as variant records, variable-size array,
1486 etc). */
1487 struct type* descriptive_type;
1488 };
1489
1490 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1491
1492 struct func_type
1493 {
1494 /* * The calling convention for targets supporting multiple ABIs.
1495 Right now this is only fetched from the Dwarf-2
1496 DW_AT_calling_convention attribute. The value is one of the
1497 DW_CC constants. */
1498
1499 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1500
1501 /* * Whether this function normally returns to its caller. It is
1502 set from the DW_AT_noreturn attribute if set on the
1503 DW_TAG_subprogram. */
1504
1505 unsigned int is_noreturn : 1;
1506
1507 /* * Only those DW_TAG_call_site's in this function that have
1508 DW_AT_call_tail_call set are linked in this list. Function
1509 without its tail call list complete
1510 (DW_AT_call_all_tail_calls or its superset
1511 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1512 DW_TAG_call_site's exist in such function. */
1513
1514 struct call_site *tail_call_list;
1515
1516 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1517 contains the method. */
1518
1519 struct type *self_type;
1520 };
1521
1522 /* struct call_site_parameter can be referenced in callees by several ways. */
1523
1524 enum call_site_parameter_kind
1525 {
1526 /* * Use field call_site_parameter.u.dwarf_reg. */
1527 CALL_SITE_PARAMETER_DWARF_REG,
1528
1529 /* * Use field call_site_parameter.u.fb_offset. */
1530 CALL_SITE_PARAMETER_FB_OFFSET,
1531
1532 /* * Use field call_site_parameter.u.param_offset. */
1533 CALL_SITE_PARAMETER_PARAM_OFFSET
1534 };
1535
1536 struct call_site_target
1537 {
1538 union field_location loc;
1539
1540 /* * Discriminant for union field_location. */
1541
1542 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1543 };
1544
1545 union call_site_parameter_u
1546 {
1547 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1548 as DWARF register number, for register passed
1549 parameters. */
1550
1551 int dwarf_reg;
1552
1553 /* * Offset from the callee's frame base, for stack passed
1554 parameters. This equals offset from the caller's stack
1555 pointer. */
1556
1557 CORE_ADDR fb_offset;
1558
1559 /* * Offset relative to the start of this PER_CU to
1560 DW_TAG_formal_parameter which is referenced by both
1561 caller and the callee. */
1562
1563 cu_offset param_cu_off;
1564 };
1565
1566 struct call_site_parameter
1567 {
1568 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1569
1570 union call_site_parameter_u u;
1571
1572 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1573
1574 const gdb_byte *value;
1575 size_t value_size;
1576
1577 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1578 It may be NULL if not provided by DWARF. */
1579
1580 const gdb_byte *data_value;
1581 size_t data_value_size;
1582 };
1583
1584 /* * A place where a function gets called from, represented by
1585 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1586
1587 struct call_site
1588 {
1589 /* * Address of the first instruction after this call. It must be
1590 the first field as we overload core_addr_hash and core_addr_eq
1591 for it. */
1592
1593 CORE_ADDR pc;
1594
1595 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1596
1597 struct call_site *tail_call_next;
1598
1599 /* * Describe DW_AT_call_target. Missing attribute uses
1600 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1601
1602 struct call_site_target target;
1603
1604 /* * Size of the PARAMETER array. */
1605
1606 unsigned parameter_count;
1607
1608 /* * CU of the function where the call is located. It gets used
1609 for DWARF blocks execution in the parameter array below. */
1610
1611 dwarf2_per_cu_data *per_cu;
1612
1613 /* objfile of the function where the call is located. */
1614
1615 dwarf2_per_objfile *per_objfile;
1616
1617 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1618
1619 struct call_site_parameter parameter[1];
1620 };
1621
1622 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1623 static structure. */
1624
1625 extern const struct cplus_struct_type cplus_struct_default;
1626
1627 extern void allocate_cplus_struct_type (struct type *);
1628
1629 #define INIT_CPLUS_SPECIFIC(type) \
1630 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1631 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1632 &cplus_struct_default)
1633
1634 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1635
1636 #define HAVE_CPLUS_STRUCT(type) \
1637 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1638 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1639
1640 #define INIT_NONE_SPECIFIC(type) \
1641 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1642 TYPE_MAIN_TYPE (type)->type_specific = {})
1643
1644 extern const struct gnat_aux_type gnat_aux_default;
1645
1646 extern void allocate_gnat_aux_type (struct type *);
1647
1648 #define INIT_GNAT_SPECIFIC(type) \
1649 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1650 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1651 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1652 /* * A macro that returns non-zero if the type-specific data should be
1653 read as "gnat-stuff". */
1654 #define HAVE_GNAT_AUX_INFO(type) \
1655 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1656
1657 /* * True if TYPE is known to be an Ada type of some kind. */
1658 #define ADA_TYPE_P(type) \
1659 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1660 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1661 && TYPE_FIXED_INSTANCE (type)))
1662
1663 #define INIT_FUNC_SPECIFIC(type) \
1664 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1665 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1666 TYPE_ZALLOC (type, \
1667 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1668
1669 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1670 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1671 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1672 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1673 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1674 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1675 #define TYPE_CHAIN(thistype) (thistype)->chain
1676 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1677 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1678 so you only have to call check_typedef once. Since allocate_value
1679 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1680 #define TYPE_LENGTH(thistype) (thistype)->length
1681
1682 /* * Return the alignment of the type in target addressable memory
1683 units, or 0 if no alignment was specified. */
1684 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1685
1686 /* * Return the alignment of the type in target addressable memory
1687 units, or 0 if no alignment was specified. */
1688 extern unsigned type_raw_align (struct type *);
1689
1690 /* * Return the alignment of the type in target addressable memory
1691 units. Return 0 if the alignment cannot be determined; but note
1692 that this makes an effort to compute the alignment even it it was
1693 not specified in the debug info. */
1694 extern unsigned type_align (struct type *);
1695
1696 /* * Set the alignment of the type. The alignment must be a power of
1697 2. Returns false if the given value does not fit in the available
1698 space in struct type. */
1699 extern bool set_type_align (struct type *, ULONGEST);
1700
1701 /* Property accessors for the type data location. */
1702 #define TYPE_DATA_LOCATION(thistype) \
1703 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1704 #define TYPE_DATA_LOCATION_BATON(thistype) \
1705 TYPE_DATA_LOCATION (thistype)->data.baton
1706 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1707 (TYPE_DATA_LOCATION (thistype)->const_val ())
1708 #define TYPE_DATA_LOCATION_KIND(thistype) \
1709 (TYPE_DATA_LOCATION (thistype)->kind ())
1710 #define TYPE_DYNAMIC_LENGTH(thistype) \
1711 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1712
1713 /* Property accessors for the type allocated/associated. */
1714 #define TYPE_ALLOCATED_PROP(thistype) \
1715 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1716 #define TYPE_ASSOCIATED_PROP(thistype) \
1717 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1718
1719 /* C++ */
1720
1721 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1722 /* Do not call this, use TYPE_SELF_TYPE. */
1723 extern struct type *internal_type_self_type (struct type *);
1724 extern void set_type_self_type (struct type *, struct type *);
1725
1726 extern int internal_type_vptr_fieldno (struct type *);
1727 extern void set_type_vptr_fieldno (struct type *, int);
1728 extern struct type *internal_type_vptr_basetype (struct type *);
1729 extern void set_type_vptr_basetype (struct type *, struct type *);
1730 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1731 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1732
1733 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1734 #define TYPE_SPECIFIC_FIELD(thistype) \
1735 TYPE_MAIN_TYPE(thistype)->type_specific_field
1736 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1737 where we're trying to print an Ada array using the C language.
1738 In that case, there is no "cplus_stuff", but the C language assumes
1739 that there is. What we do, in that case, is pretend that there is
1740 an implicit one which is the default cplus stuff. */
1741 #define TYPE_CPLUS_SPECIFIC(thistype) \
1742 (!HAVE_CPLUS_STRUCT(thistype) \
1743 ? (struct cplus_struct_type*)&cplus_struct_default \
1744 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1745 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1746 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1747 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1748 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1749 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1750 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1751 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1752 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1753 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1754 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1755 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1756 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1757 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1758 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1759 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1760 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1761
1762 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1763 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1764 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1765
1766 #define FIELD_NAME(thisfld) ((thisfld).name)
1767 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1768 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1769 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1770 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1771 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1772 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1773 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1774 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1775 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1776 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1777 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1778 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1779 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1780 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1781 #define SET_FIELD_PHYSNAME(thisfld, name) \
1782 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1783 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1784 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1785 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1786 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1787 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1788 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1789 FIELD_DWARF_BLOCK (thisfld) = (addr))
1790 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1791 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1792
1793 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1794 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1795 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1796 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1797 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1798 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1799 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1800 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1801 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1802 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1803
1804 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1805 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1806 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1807 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1808 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1809 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1810 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1811 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1812 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1813 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1814 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1815 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1816 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1817 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1818 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1819 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1820 #define TYPE_FIELD_PRIVATE(thistype, n) \
1821 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1822 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1823 #define TYPE_FIELD_PROTECTED(thistype, n) \
1824 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1825 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1826 #define TYPE_FIELD_IGNORE(thistype, n) \
1827 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1828 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1829 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1830 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1831 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1832
1833 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1834 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1835 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1836 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1837 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1838
1839 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1840 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1841 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1842 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1843 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1844 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1845
1846 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1847 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1848 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1849 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1850 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1851 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1852 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1853 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1854 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1855 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1856 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1857 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1858 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1859 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1860 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1861 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1862 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1863
1864 /* Accessors for typedefs defined by a class. */
1865 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1866 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1867 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1868 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1869 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1870 TYPE_TYPEDEF_FIELD (thistype, n).name
1871 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1872 TYPE_TYPEDEF_FIELD (thistype, n).type
1873 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1874 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1875 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1876 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1877 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1878 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1879
1880 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1881 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1882 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1883 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1884 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1885 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1886 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1887 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1888 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1889 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1890 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1891 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1892 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1893 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1894
1895 #define TYPE_IS_OPAQUE(thistype) \
1896 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1897 || ((thistype)->code () == TYPE_CODE_UNION)) \
1898 && ((thistype)->num_fields () == 0) \
1899 && (!HAVE_CPLUS_STRUCT (thistype) \
1900 || TYPE_NFN_FIELDS (thistype) == 0) \
1901 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1902
1903 /* * A helper macro that returns the name of a type or "unnamed type"
1904 if the type has no name. */
1905
1906 #define TYPE_SAFE_NAME(type) \
1907 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1908
1909 /* * A helper macro that returns the name of an error type. If the
1910 type has a name, it is used; otherwise, a default is used. */
1911
1912 #define TYPE_ERROR_NAME(type) \
1913 (type->name () ? type->name () : _("<error type>"))
1914
1915 /* Given TYPE, return its floatformat. */
1916 const struct floatformat *floatformat_from_type (const struct type *type);
1917
1918 struct builtin_type
1919 {
1920 /* Integral types. */
1921
1922 /* Implicit size/sign (based on the architecture's ABI). */
1923 struct type *builtin_void;
1924 struct type *builtin_char;
1925 struct type *builtin_short;
1926 struct type *builtin_int;
1927 struct type *builtin_long;
1928 struct type *builtin_signed_char;
1929 struct type *builtin_unsigned_char;
1930 struct type *builtin_unsigned_short;
1931 struct type *builtin_unsigned_int;
1932 struct type *builtin_unsigned_long;
1933 struct type *builtin_bfloat16;
1934 struct type *builtin_half;
1935 struct type *builtin_float;
1936 struct type *builtin_double;
1937 struct type *builtin_long_double;
1938 struct type *builtin_complex;
1939 struct type *builtin_double_complex;
1940 struct type *builtin_string;
1941 struct type *builtin_bool;
1942 struct type *builtin_long_long;
1943 struct type *builtin_unsigned_long_long;
1944 struct type *builtin_decfloat;
1945 struct type *builtin_decdouble;
1946 struct type *builtin_declong;
1947
1948 /* "True" character types.
1949 We use these for the '/c' print format, because c_char is just a
1950 one-byte integral type, which languages less laid back than C
1951 will print as ... well, a one-byte integral type. */
1952 struct type *builtin_true_char;
1953 struct type *builtin_true_unsigned_char;
1954
1955 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1956 is for when an architecture needs to describe a register that has
1957 no size. */
1958 struct type *builtin_int0;
1959 struct type *builtin_int8;
1960 struct type *builtin_uint8;
1961 struct type *builtin_int16;
1962 struct type *builtin_uint16;
1963 struct type *builtin_int24;
1964 struct type *builtin_uint24;
1965 struct type *builtin_int32;
1966 struct type *builtin_uint32;
1967 struct type *builtin_int64;
1968 struct type *builtin_uint64;
1969 struct type *builtin_int128;
1970 struct type *builtin_uint128;
1971
1972 /* Wide character types. */
1973 struct type *builtin_char16;
1974 struct type *builtin_char32;
1975 struct type *builtin_wchar;
1976
1977 /* Pointer types. */
1978
1979 /* * `pointer to data' type. Some target platforms use an implicitly
1980 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1981 struct type *builtin_data_ptr;
1982
1983 /* * `pointer to function (returning void)' type. Harvard
1984 architectures mean that ABI function and code pointers are not
1985 interconvertible. Similarly, since ANSI, C standards have
1986 explicitly said that pointers to functions and pointers to data
1987 are not interconvertible --- that is, you can't cast a function
1988 pointer to void * and back, and expect to get the same value.
1989 However, all function pointer types are interconvertible, so void
1990 (*) () can server as a generic function pointer. */
1991
1992 struct type *builtin_func_ptr;
1993
1994 /* * `function returning pointer to function (returning void)' type.
1995 The final void return type is not significant for it. */
1996
1997 struct type *builtin_func_func;
1998
1999 /* Special-purpose types. */
2000
2001 /* * This type is used to represent a GDB internal function. */
2002
2003 struct type *internal_fn;
2004
2005 /* * This type is used to represent an xmethod. */
2006 struct type *xmethod;
2007 };
2008
2009 /* * Return the type table for the specified architecture. */
2010
2011 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2012
2013 /* * Per-objfile types used by symbol readers. */
2014
2015 struct objfile_type
2016 {
2017 /* Basic types based on the objfile architecture. */
2018 struct type *builtin_void;
2019 struct type *builtin_char;
2020 struct type *builtin_short;
2021 struct type *builtin_int;
2022 struct type *builtin_long;
2023 struct type *builtin_long_long;
2024 struct type *builtin_signed_char;
2025 struct type *builtin_unsigned_char;
2026 struct type *builtin_unsigned_short;
2027 struct type *builtin_unsigned_int;
2028 struct type *builtin_unsigned_long;
2029 struct type *builtin_unsigned_long_long;
2030 struct type *builtin_half;
2031 struct type *builtin_float;
2032 struct type *builtin_double;
2033 struct type *builtin_long_double;
2034
2035 /* * This type is used to represent symbol addresses. */
2036 struct type *builtin_core_addr;
2037
2038 /* * This type represents a type that was unrecognized in symbol
2039 read-in. */
2040 struct type *builtin_error;
2041
2042 /* * Types used for symbols with no debug information. */
2043 struct type *nodebug_text_symbol;
2044 struct type *nodebug_text_gnu_ifunc_symbol;
2045 struct type *nodebug_got_plt_symbol;
2046 struct type *nodebug_data_symbol;
2047 struct type *nodebug_unknown_symbol;
2048 struct type *nodebug_tls_symbol;
2049 };
2050
2051 /* * Return the type table for the specified objfile. */
2052
2053 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2054
2055 /* Explicit floating-point formats. See "floatformat.h". */
2056 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2057 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2058 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2059 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2060 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2061 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2062 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2063 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2064 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2065 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2066 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2067 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2068 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2069
2070 /* Allocate space for storing data associated with a particular
2071 type. We ensure that the space is allocated using the same
2072 mechanism that was used to allocate the space for the type
2073 structure itself. I.e. if the type is on an objfile's
2074 objfile_obstack, then the space for data associated with that type
2075 will also be allocated on the objfile_obstack. If the type is
2076 associated with a gdbarch, then the space for data associated with that
2077 type will also be allocated on the gdbarch_obstack.
2078
2079 If a type is not associated with neither an objfile or a gdbarch then
2080 you should not use this macro to allocate space for data, instead you
2081 should call xmalloc directly, and ensure the memory is correctly freed
2082 when it is no longer needed. */
2083
2084 #define TYPE_ALLOC(t,size) \
2085 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2086 ? &TYPE_OBJFILE (t)->objfile_obstack \
2087 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2088 size))
2089
2090
2091 /* See comment on TYPE_ALLOC. */
2092
2093 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2094
2095 /* Use alloc_type to allocate a type owned by an objfile. Use
2096 alloc_type_arch to allocate a type owned by an architecture. Use
2097 alloc_type_copy to allocate a type with the same owner as a
2098 pre-existing template type, no matter whether objfile or
2099 gdbarch. */
2100 extern struct type *alloc_type (struct objfile *);
2101 extern struct type *alloc_type_arch (struct gdbarch *);
2102 extern struct type *alloc_type_copy (const struct type *);
2103
2104 /* * Return the type's architecture. For types owned by an
2105 architecture, that architecture is returned. For types owned by an
2106 objfile, that objfile's architecture is returned. */
2107
2108 extern struct gdbarch *get_type_arch (const struct type *);
2109
2110 /* * This returns the target type (or NULL) of TYPE, also skipping
2111 past typedefs. */
2112
2113 extern struct type *get_target_type (struct type *type);
2114
2115 /* Return the equivalent of TYPE_LENGTH, but in number of target
2116 addressable memory units of the associated gdbarch instead of bytes. */
2117
2118 extern unsigned int type_length_units (struct type *type);
2119
2120 /* * Helper function to construct objfile-owned types. */
2121
2122 extern struct type *init_type (struct objfile *, enum type_code, int,
2123 const char *);
2124 extern struct type *init_integer_type (struct objfile *, int, int,
2125 const char *);
2126 extern struct type *init_character_type (struct objfile *, int, int,
2127 const char *);
2128 extern struct type *init_boolean_type (struct objfile *, int, int,
2129 const char *);
2130 extern struct type *init_float_type (struct objfile *, int, const char *,
2131 const struct floatformat **,
2132 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2133 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2134 extern struct type *init_complex_type (const char *, struct type *);
2135 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2136 struct type *);
2137
2138 /* Helper functions to construct architecture-owned types. */
2139 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2140 const char *);
2141 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2142 const char *);
2143 extern struct type *arch_character_type (struct gdbarch *, int, int,
2144 const char *);
2145 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2146 const char *);
2147 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2148 const struct floatformat **);
2149 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2150 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2151 struct type *);
2152
2153 /* Helper functions to construct a struct or record type. An
2154 initially empty type is created using arch_composite_type().
2155 Fields are then added using append_composite_type_field*(). A union
2156 type has its size set to the largest field. A struct type has each
2157 field packed against the previous. */
2158
2159 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2160 const char *name, enum type_code code);
2161 extern void append_composite_type_field (struct type *t, const char *name,
2162 struct type *field);
2163 extern void append_composite_type_field_aligned (struct type *t,
2164 const char *name,
2165 struct type *field,
2166 int alignment);
2167 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2168 struct type *field);
2169
2170 /* Helper functions to construct a bit flags type. An initially empty
2171 type is created using arch_flag_type(). Flags are then added using
2172 append_flag_type_field() and append_flag_type_flag(). */
2173 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2174 const char *name, int bit);
2175 extern void append_flags_type_field (struct type *type,
2176 int start_bitpos, int nr_bits,
2177 struct type *field_type, const char *name);
2178 extern void append_flags_type_flag (struct type *type, int bitpos,
2179 const char *name);
2180
2181 extern void make_vector_type (struct type *array_type);
2182 extern struct type *init_vector_type (struct type *elt_type, int n);
2183
2184 extern struct type *lookup_reference_type (struct type *, enum type_code);
2185 extern struct type *lookup_lvalue_reference_type (struct type *);
2186 extern struct type *lookup_rvalue_reference_type (struct type *);
2187
2188
2189 extern struct type *make_reference_type (struct type *, struct type **,
2190 enum type_code);
2191
2192 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2193
2194 extern struct type *make_restrict_type (struct type *);
2195
2196 extern struct type *make_unqualified_type (struct type *);
2197
2198 extern struct type *make_atomic_type (struct type *);
2199
2200 extern void replace_type (struct type *, struct type *);
2201
2202 extern int address_space_name_to_int (struct gdbarch *, const char *);
2203
2204 extern const char *address_space_int_to_name (struct gdbarch *, int);
2205
2206 extern struct type *make_type_with_address_space (struct type *type,
2207 int space_identifier);
2208
2209 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2210
2211 extern struct type *lookup_methodptr_type (struct type *);
2212
2213 extern void smash_to_method_type (struct type *type, struct type *self_type,
2214 struct type *to_type, struct field *args,
2215 int nargs, int varargs);
2216
2217 extern void smash_to_memberptr_type (struct type *, struct type *,
2218 struct type *);
2219
2220 extern void smash_to_methodptr_type (struct type *, struct type *);
2221
2222 extern struct type *allocate_stub_method (struct type *);
2223
2224 extern const char *type_name_or_error (struct type *type);
2225
2226 struct struct_elt
2227 {
2228 /* The field of the element, or NULL if no element was found. */
2229 struct field *field;
2230
2231 /* The bit offset of the element in the parent structure. */
2232 LONGEST offset;
2233 };
2234
2235 /* Given a type TYPE, lookup the field and offset of the component named
2236 NAME.
2237
2238 TYPE can be either a struct or union, or a pointer or reference to
2239 a struct or union. If it is a pointer or reference, its target
2240 type is automatically used. Thus '.' and '->' are interchangable,
2241 as specified for the definitions of the expression element types
2242 STRUCTOP_STRUCT and STRUCTOP_PTR.
2243
2244 If NOERR is nonzero, the returned structure will have field set to
2245 NULL if there is no component named NAME.
2246
2247 If the component NAME is a field in an anonymous substructure of
2248 TYPE, the returned offset is a "global" offset relative to TYPE
2249 rather than an offset within the substructure. */
2250
2251 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2252
2253 /* Given a type TYPE, lookup the type of the component named NAME.
2254
2255 TYPE can be either a struct or union, or a pointer or reference to
2256 a struct or union. If it is a pointer or reference, its target
2257 type is automatically used. Thus '.' and '->' are interchangable,
2258 as specified for the definitions of the expression element types
2259 STRUCTOP_STRUCT and STRUCTOP_PTR.
2260
2261 If NOERR is nonzero, return NULL if there is no component named
2262 NAME. */
2263
2264 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2265
2266 extern struct type *make_pointer_type (struct type *, struct type **);
2267
2268 extern struct type *lookup_pointer_type (struct type *);
2269
2270 extern struct type *make_function_type (struct type *, struct type **);
2271
2272 extern struct type *lookup_function_type (struct type *);
2273
2274 extern struct type *lookup_function_type_with_arguments (struct type *,
2275 int,
2276 struct type **);
2277
2278 extern struct type *create_static_range_type (struct type *, struct type *,
2279 LONGEST, LONGEST);
2280
2281
2282 extern struct type *create_array_type_with_stride
2283 (struct type *, struct type *, struct type *,
2284 struct dynamic_prop *, unsigned int);
2285
2286 extern struct type *create_range_type (struct type *, struct type *,
2287 const struct dynamic_prop *,
2288 const struct dynamic_prop *,
2289 LONGEST);
2290
2291 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2292 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2293 stride. */
2294
2295 extern struct type * create_range_type_with_stride
2296 (struct type *result_type, struct type *index_type,
2297 const struct dynamic_prop *low_bound,
2298 const struct dynamic_prop *high_bound, LONGEST bias,
2299 const struct dynamic_prop *stride, bool byte_stride_p);
2300
2301 extern struct type *create_array_type (struct type *, struct type *,
2302 struct type *);
2303
2304 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2305
2306 extern struct type *create_string_type (struct type *, struct type *,
2307 struct type *);
2308 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2309
2310 extern struct type *create_set_type (struct type *, struct type *);
2311
2312 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2313 const char *);
2314
2315 extern struct type *lookup_signed_typename (const struct language_defn *,
2316 const char *);
2317
2318 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2319
2320 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2321
2322 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2323 ADDR specifies the location of the variable the type is bound to.
2324 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2325 static properties is returned. */
2326 extern struct type *resolve_dynamic_type
2327 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2328 CORE_ADDR addr);
2329
2330 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2331 extern int is_dynamic_type (struct type *type);
2332
2333 extern struct type *check_typedef (struct type *);
2334
2335 extern void check_stub_method_group (struct type *, int);
2336
2337 extern char *gdb_mangle_name (struct type *, int, int);
2338
2339 extern struct type *lookup_typename (const struct language_defn *,
2340 const char *, const struct block *, int);
2341
2342 extern struct type *lookup_template_type (const char *, struct type *,
2343 const struct block *);
2344
2345 extern int get_vptr_fieldno (struct type *, struct type **);
2346
2347 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2348
2349 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2350 LONGEST *high_bound);
2351
2352 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2353
2354 extern int class_types_same_p (const struct type *, const struct type *);
2355
2356 extern int is_ancestor (struct type *, struct type *);
2357
2358 extern int is_public_ancestor (struct type *, struct type *);
2359
2360 extern int is_unique_ancestor (struct type *, struct value *);
2361
2362 /* Overload resolution */
2363
2364 /* * Badness if parameter list length doesn't match arg list length. */
2365 extern const struct rank LENGTH_MISMATCH_BADNESS;
2366
2367 /* * Dummy badness value for nonexistent parameter positions. */
2368 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2369 /* * Badness if no conversion among types. */
2370 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2371
2372 /* * Badness of an exact match. */
2373 extern const struct rank EXACT_MATCH_BADNESS;
2374
2375 /* * Badness of integral promotion. */
2376 extern const struct rank INTEGER_PROMOTION_BADNESS;
2377 /* * Badness of floating promotion. */
2378 extern const struct rank FLOAT_PROMOTION_BADNESS;
2379 /* * Badness of converting a derived class pointer
2380 to a base class pointer. */
2381 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2382 /* * Badness of integral conversion. */
2383 extern const struct rank INTEGER_CONVERSION_BADNESS;
2384 /* * Badness of floating conversion. */
2385 extern const struct rank FLOAT_CONVERSION_BADNESS;
2386 /* * Badness of integer<->floating conversions. */
2387 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2388 /* * Badness of conversion of pointer to void pointer. */
2389 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2390 /* * Badness of conversion to boolean. */
2391 extern const struct rank BOOL_CONVERSION_BADNESS;
2392 /* * Badness of converting derived to base class. */
2393 extern const struct rank BASE_CONVERSION_BADNESS;
2394 /* * Badness of converting from non-reference to reference. Subrank
2395 is the type of reference conversion being done. */
2396 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2397 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2398 /* * Conversion to rvalue reference. */
2399 #define REFERENCE_CONVERSION_RVALUE 1
2400 /* * Conversion to const lvalue reference. */
2401 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2402
2403 /* * Badness of converting integer 0 to NULL pointer. */
2404 extern const struct rank NULL_POINTER_CONVERSION;
2405 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2406 being done. */
2407 extern const struct rank CV_CONVERSION_BADNESS;
2408 #define CV_CONVERSION_CONST 1
2409 #define CV_CONVERSION_VOLATILE 2
2410
2411 /* Non-standard conversions allowed by the debugger */
2412
2413 /* * Converting a pointer to an int is usually OK. */
2414 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2415
2416 /* * Badness of converting a (non-zero) integer constant
2417 to a pointer. */
2418 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2419
2420 extern struct rank sum_ranks (struct rank a, struct rank b);
2421 extern int compare_ranks (struct rank a, struct rank b);
2422
2423 extern int compare_badness (const badness_vector &,
2424 const badness_vector &);
2425
2426 extern badness_vector rank_function (gdb::array_view<type *> parms,
2427 gdb::array_view<value *> args);
2428
2429 extern struct rank rank_one_type (struct type *, struct type *,
2430 struct value *);
2431
2432 extern void recursive_dump_type (struct type *, int);
2433
2434 extern int field_is_static (struct field *);
2435
2436 /* printcmd.c */
2437
2438 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2439 const struct value_print_options *,
2440 int, struct ui_file *);
2441
2442 extern int can_dereference (struct type *);
2443
2444 extern int is_integral_type (struct type *);
2445
2446 extern int is_floating_type (struct type *);
2447
2448 extern int is_scalar_type (struct type *type);
2449
2450 extern int is_scalar_type_recursive (struct type *);
2451
2452 extern int class_or_union_p (const struct type *);
2453
2454 extern void maintenance_print_type (const char *, int);
2455
2456 extern htab_t create_copied_types_hash (struct objfile *objfile);
2457
2458 extern struct type *copy_type_recursive (struct objfile *objfile,
2459 struct type *type,
2460 htab_t copied_types);
2461
2462 extern struct type *copy_type (const struct type *type);
2463
2464 extern bool types_equal (struct type *, struct type *);
2465
2466 extern bool types_deeply_equal (struct type *, struct type *);
2467
2468 extern int type_not_allocated (const struct type *type);
2469
2470 extern int type_not_associated (const struct type *type);
2471
2472 /* * When the type includes explicit byte ordering, return that.
2473 Otherwise, the byte ordering from gdbarch_byte_order for
2474 get_type_arch is returned. */
2475
2476 extern enum bfd_endian type_byte_order (const struct type *type);
2477
2478 /* A flag to enable printing of debugging information of C++
2479 overloading. */
2480
2481 extern unsigned int overload_debug;
2482
2483 #endif /* GDBTYPES_H */