[gdb/symtab] Use unrelocated addresses in call_site
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Constant type. If this is set, the corresponding type has a
224 const modifier. */
225
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
227
228 /* * Volatile type. If this is set, the corresponding type has a
229 volatile modifier. */
230
231 #define TYPE_VOLATILE(t) \
232 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
233
234 /* * Restrict type. If this is set, the corresponding type has a
235 restrict modifier. */
236
237 #define TYPE_RESTRICT(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
239
240 /* * Atomic type. If this is set, the corresponding type has an
241 _Atomic modifier. */
242
243 #define TYPE_ATOMIC(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
245
246 /* * True if this type represents either an lvalue or lvalue reference type. */
247
248 #define TYPE_IS_REFERENCE(t) \
249 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
250
251 /* * True if this type is allocatable. */
252 #define TYPE_IS_ALLOCATABLE(t) \
253 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
254
255 /* * True if this type has variant parts. */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
258
259 /* * True if this type has a dynamic length. */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
262
263 /* * Instruction-space delimited type. This is for Harvard architectures
264 which have separate instruction and data address spaces (and perhaps
265 others).
266
267 GDB usually defines a flat address space that is a superset of the
268 architecture's two (or more) address spaces, but this is an extension
269 of the architecture's model.
270
271 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272 resides in instruction memory, even if its address (in the extended
273 flat address space) does not reflect this.
274
275 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276 corresponding type resides in the data memory space, even if
277 this is not indicated by its (flat address space) address.
278
279 If neither flag is set, the default space for functions / methods
280 is instruction space, and for data objects is data memory. */
281
282 #define TYPE_CODE_SPACE(t) \
283 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
284
285 #define TYPE_DATA_SPACE(t) \
286 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
287
288 /* * Address class flags. Some environments provide for pointers
289 whose size is different from that of a normal pointer or address
290 types where the bits are interpreted differently than normal
291 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292 target specific ways to represent these different types of address
293 classes. */
294
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
303
304 /* * Information about a single discriminant. */
305
306 struct discriminant_range
307 {
308 /* * The range of values for the variant. This is an inclusive
309 range. */
310 ULONGEST low, high;
311
312 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
313 is true if this should be an unsigned comparison; false for
314 signed. */
315 bool contains (ULONGEST value, bool is_unsigned) const
316 {
317 if (is_unsigned)
318 return value >= low && value <= high;
319 LONGEST valuel = (LONGEST) value;
320 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
321 }
322 };
323
324 struct variant_part;
325
326 /* * A single variant. A variant has a list of discriminant values.
327 When the discriminator matches one of these, the variant is
328 enabled. Each variant controls zero or more fields; and may also
329 control other variant parts as well. This struct corresponds to
330 DW_TAG_variant in DWARF. */
331
332 struct variant : allocate_on_obstack
333 {
334 /* * The discriminant ranges for this variant. */
335 gdb::array_view<discriminant_range> discriminants;
336
337 /* * The fields controlled by this variant. This is inclusive on
338 the low end and exclusive on the high end. A variant may not
339 control any fields, in which case the two values will be equal.
340 These are indexes into the type's array of fields. */
341 int first_field;
342 int last_field;
343
344 /* * Variant parts controlled by this variant. */
345 gdb::array_view<variant_part> parts;
346
347 /* * Return true if this is the default variant. The default
348 variant can be recognized because it has no associated
349 discriminants. */
350 bool is_default () const
351 {
352 return discriminants.empty ();
353 }
354
355 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
356 if this should be an unsigned comparison; false for signed. */
357 bool matches (ULONGEST value, bool is_unsigned) const;
358 };
359
360 /* * A variant part. Each variant part has an optional discriminant
361 and holds an array of variants. This struct corresponds to
362 DW_TAG_variant_part in DWARF. */
363
364 struct variant_part : allocate_on_obstack
365 {
366 /* * The index of the discriminant field in the outer type. This is
367 an index into the type's array of fields. If this is -1, there
368 is no discriminant, and only the default variant can be
369 considered to be selected. */
370 int discriminant_index;
371
372 /* * True if this discriminant is unsigned; false if signed. This
373 comes from the type of the discriminant. */
374 bool is_unsigned;
375
376 /* * The variants that are controlled by this variant part. Note
377 that these will always be sorted by field number. */
378 gdb::array_view<variant> variants;
379 };
380
381
382 enum dynamic_prop_kind
383 {
384 PROP_UNDEFINED, /* Not defined. */
385 PROP_CONST, /* Constant. */
386 PROP_ADDR_OFFSET, /* Address offset. */
387 PROP_LOCEXPR, /* Location expression. */
388 PROP_LOCLIST, /* Location list. */
389 PROP_VARIANT_PARTS, /* Variant parts. */
390 PROP_TYPE, /* Type. */
391 PROP_VARIABLE_NAME, /* Variable name. */
392 };
393
394 union dynamic_prop_data
395 {
396 /* Storage for constant property. */
397
398 LONGEST const_val;
399
400 /* Storage for dynamic property. */
401
402 void *baton;
403
404 /* Storage of variant parts for a type. A type with variant parts
405 has all its fields "linearized" -- stored in a single field
406 array, just as if they had all been declared that way. The
407 variant parts are attached via a dynamic property, and then are
408 used to control which fields end up in the final type during
409 dynamic type resolution. */
410
411 const gdb::array_view<variant_part> *variant_parts;
412
413 /* Once a variant type is resolved, we may want to be able to go
414 from the resolved type to the original type. In this case we
415 rewrite the property's kind and set this field. */
416
417 struct type *original_type;
418
419 /* Name of a variable to look up; the variable holds the value of
420 this property. */
421
422 const char *variable_name;
423 };
424
425 /* * Used to store a dynamic property. */
426
427 struct dynamic_prop
428 {
429 dynamic_prop_kind kind () const
430 {
431 return m_kind;
432 }
433
434 void set_undefined ()
435 {
436 m_kind = PROP_UNDEFINED;
437 }
438
439 LONGEST const_val () const
440 {
441 gdb_assert (m_kind == PROP_CONST);
442
443 return m_data.const_val;
444 }
445
446 void set_const_val (LONGEST const_val)
447 {
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
450 }
451
452 void *baton () const
453 {
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
457
458 return m_data.baton;
459 }
460
461 void set_locexpr (void *baton)
462 {
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
465 }
466
467 void set_loclist (void *baton)
468 {
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
471 }
472
473 void set_addr_offset (void *baton)
474 {
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
477 }
478
479 const gdb::array_view<variant_part> *variant_parts () const
480 {
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
482
483 return m_data.variant_parts;
484 }
485
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487 {
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
490 }
491
492 struct type *original_type () const
493 {
494 gdb_assert (m_kind == PROP_TYPE);
495
496 return m_data.original_type;
497 }
498
499 void set_original_type (struct type *original_type)
500 {
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
503 }
504
505 /* Return the name of the variable that holds this property's value.
506 Only valid for PROP_VARIABLE_NAME. */
507 const char *variable_name () const
508 {
509 gdb_assert (m_kind == PROP_VARIABLE_NAME);
510 return m_data.variable_name;
511 }
512
513 /* Set the name of the variable that holds this property's value,
514 and set this property to be of kind PROP_VARIABLE_NAME. */
515 void set_variable_name (const char *name)
516 {
517 m_kind = PROP_VARIABLE_NAME;
518 m_data.variable_name = name;
519 }
520
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
523
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
526 };
527
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535 return !(l == r);
536 }
537
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
540 {
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
544
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
548
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
552
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
555
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
558
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
561 };
562
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
565 {
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
568
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
571
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
574 };
575
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
578
579 enum field_loc_kind
580 {
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
586 };
587
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
590
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
598
599 enum type_specific_kind
600 {
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
610 };
611
612 union type_owner
613 {
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
616 };
617
618 union field_location
619 {
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
624
625 LONGEST bitpos;
626
627 /* * Enum value. */
628 LONGEST enumval;
629
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
634
635 CORE_ADDR physaddr;
636 const char *physname;
637
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
641
642 struct dwarf2_locexpr_baton *dwarf_block;
643 };
644
645 struct field
646 {
647 struct type *type () const
648 {
649 return this->m_type;
650 }
651
652 void set_type (struct type *type)
653 {
654 this->m_type = type;
655 }
656
657 const char *name () const
658 {
659 return m_name;
660 }
661
662 void set_name (const char *name)
663 {
664 m_name = name;
665 }
666
667 union field_location loc;
668
669 /* * For a function or member type, this is 1 if the argument is
670 marked artificial. Artificial arguments should not be shown
671 to the user. For TYPE_CODE_RANGE it is set if the specific
672 bound is not defined. */
673
674 unsigned int artificial : 1;
675
676 /* * Discriminant for union field_location. */
677
678 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
679
680 /* * Size of this field, in bits, or zero if not packed.
681 If non-zero in an array type, indicates the element size in
682 bits (used only in Ada at the moment).
683 For an unpacked field, the field's type's length
684 says how many bytes the field occupies. */
685
686 unsigned int bitsize : 28;
687
688 /* * In a struct or union type, type of this field.
689 - In a function or member type, type of this argument.
690 - In an array type, the domain-type of the array. */
691
692 struct type *m_type;
693
694 /* * Name of field, value or argument.
695 NULL for range bounds, array domains, and member function
696 arguments. */
697
698 const char *m_name;
699 };
700
701 struct range_bounds
702 {
703 ULONGEST bit_stride () const
704 {
705 if (this->flag_is_byte_stride)
706 return this->stride.const_val () * 8;
707 else
708 return this->stride.const_val ();
709 }
710
711 /* * Low bound of range. */
712
713 struct dynamic_prop low;
714
715 /* * High bound of range. */
716
717 struct dynamic_prop high;
718
719 /* The stride value for this range. This can be stored in bits or bytes
720 based on the value of BYTE_STRIDE_P. It is optional to have a stride
721 value, if this range has no stride value defined then this will be set
722 to the constant zero. */
723
724 struct dynamic_prop stride;
725
726 /* * The bias. Sometimes a range value is biased before storage.
727 The bias is added to the stored bits to form the true value. */
728
729 LONGEST bias;
730
731 /* True if HIGH range bound contains the number of elements in the
732 subrange. This affects how the final high bound is computed. */
733
734 unsigned int flag_upper_bound_is_count : 1;
735
736 /* True if LOW or/and HIGH are resolved into a static bound from
737 a dynamic one. */
738
739 unsigned int flag_bound_evaluated : 1;
740
741 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
742
743 unsigned int flag_is_byte_stride : 1;
744 };
745
746 /* Compare two range_bounds objects for equality. Simply does
747 memberwise comparison. */
748 extern bool operator== (const range_bounds &l, const range_bounds &r);
749
750 /* Compare two range_bounds objects for inequality. */
751 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
752 {
753 return !(l == r);
754 }
755
756 union type_specific
757 {
758 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
759 point to cplus_struct_default, a default static instance of a
760 struct cplus_struct_type. */
761
762 struct cplus_struct_type *cplus_stuff;
763
764 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
765 provides additional information. */
766
767 struct gnat_aux_type *gnat_stuff;
768
769 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
770 floatformat object that describes the floating-point value
771 that resides within the type. */
772
773 const struct floatformat *floatformat;
774
775 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
776
777 struct func_type *func_stuff;
778
779 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
780 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
781 is a member of. */
782
783 struct type *self_type;
784
785 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
786 values of that type. */
787 struct fixed_point_type_info *fixed_point_info;
788
789 /* * An integer-like scalar type may be stored in just part of its
790 enclosing storage bytes. This structure describes this
791 situation. */
792 struct
793 {
794 /* * The bit size of the integer. This can be 0. For integers
795 that fill their storage (the ordinary case), this field holds
796 the byte size times 8. */
797 unsigned short bit_size;
798 /* * The bit offset of the integer. This is ordinarily 0, and can
799 only be non-zero if the bit size is less than the storage
800 size. */
801 unsigned short bit_offset;
802 } int_stuff;
803 };
804
805 /* * Main structure representing a type in GDB.
806
807 This structure is space-critical. Its layout has been tweaked to
808 reduce the space used. */
809
810 struct main_type
811 {
812 /* * Code for kind of type. */
813
814 ENUM_BITFIELD(type_code) code : 8;
815
816 /* * Flags about this type. These fields appear at this location
817 because they packs nicely here. See the TYPE_* macros for
818 documentation about these fields. */
819
820 unsigned int m_flag_unsigned : 1;
821 unsigned int m_flag_nosign : 1;
822 unsigned int m_flag_stub : 1;
823 unsigned int m_flag_target_stub : 1;
824 unsigned int m_flag_prototyped : 1;
825 unsigned int m_flag_varargs : 1;
826 unsigned int m_flag_vector : 1;
827 unsigned int m_flag_stub_supported : 1;
828 unsigned int m_flag_gnu_ifunc : 1;
829 unsigned int m_flag_fixed_instance : 1;
830 unsigned int m_flag_objfile_owned : 1;
831 unsigned int m_flag_endianity_not_default : 1;
832
833 /* * True if this type was declared with "class" rather than
834 "struct". */
835
836 unsigned int m_flag_declared_class : 1;
837
838 /* * True if this is an enum type with disjoint values. This
839 affects how the enum is printed. */
840
841 unsigned int m_flag_flag_enum : 1;
842
843 /* * A discriminant telling us which field of the type_specific
844 union is being used for this type, if any. */
845
846 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
847
848 /* * Number of fields described for this type. This field appears
849 at this location because it packs nicely here. */
850
851 short nfields;
852
853 /* * Name of this type, or NULL if none.
854
855 This is used for printing only. For looking up a name, look for
856 a symbol in the VAR_DOMAIN. This is generally allocated in the
857 objfile's obstack. However coffread.c uses malloc. */
858
859 const char *name;
860
861 /* * Every type is now associated with a particular objfile, and the
862 type is allocated on the objfile_obstack for that objfile. One
863 problem however, is that there are times when gdb allocates new
864 types while it is not in the process of reading symbols from a
865 particular objfile. Fortunately, these happen when the type
866 being created is a derived type of an existing type, such as in
867 lookup_pointer_type(). So we can just allocate the new type
868 using the same objfile as the existing type, but to do this we
869 need a backpointer to the objfile from the existing type. Yes
870 this is somewhat ugly, but without major overhaul of the internal
871 type system, it can't be avoided for now. */
872
873 union type_owner m_owner;
874
875 /* * For a pointer type, describes the type of object pointed to.
876 - For an array type, describes the type of the elements.
877 - For a function or method type, describes the type of the return value.
878 - For a range type, describes the type of the full range.
879 - For a complex type, describes the type of each coordinate.
880 - For a special record or union type encoding a dynamic-sized type
881 in GNAT, a memoized pointer to a corresponding static version of
882 the type.
883 - Unused otherwise. */
884
885 struct type *target_type;
886
887 /* * For structure and union types, a description of each field.
888 For set and pascal array types, there is one "field",
889 whose type is the domain type of the set or array.
890 For range types, there are two "fields",
891 the minimum and maximum values (both inclusive).
892 For enum types, each possible value is described by one "field".
893 For a function or method type, a "field" for each parameter.
894 For C++ classes, there is one field for each base class (if it is
895 a derived class) plus one field for each class data member. Member
896 functions are recorded elsewhere.
897
898 Using a pointer to a separate array of fields
899 allows all types to have the same size, which is useful
900 because we can allocate the space for a type before
901 we know what to put in it. */
902
903 union
904 {
905 struct field *fields;
906
907 /* * Union member used for range types. */
908
909 struct range_bounds *bounds;
910
911 /* If this is a scalar type, then this is its corresponding
912 complex type. */
913 struct type *complex_type;
914
915 } flds_bnds;
916
917 /* * Slot to point to additional language-specific fields of this
918 type. */
919
920 union type_specific type_specific;
921
922 /* * Contains all dynamic type properties. */
923 struct dynamic_prop_list *dyn_prop_list;
924 };
925
926 /* * Number of bits allocated for alignment. */
927
928 #define TYPE_ALIGN_BITS 8
929
930 /* * A ``struct type'' describes a particular instance of a type, with
931 some particular qualification. */
932
933 struct type
934 {
935 /* Get the type code of this type.
936
937 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
938 type, you need to do `check_typedef (type)->code ()`. */
939 type_code code () const
940 {
941 return this->main_type->code;
942 }
943
944 /* Set the type code of this type. */
945 void set_code (type_code code)
946 {
947 this->main_type->code = code;
948 }
949
950 /* Get the name of this type. */
951 const char *name () const
952 {
953 return this->main_type->name;
954 }
955
956 /* Set the name of this type. */
957 void set_name (const char *name)
958 {
959 this->main_type->name = name;
960 }
961
962 /* Get the number of fields of this type. */
963 int num_fields () const
964 {
965 return this->main_type->nfields;
966 }
967
968 /* Set the number of fields of this type. */
969 void set_num_fields (int num_fields)
970 {
971 this->main_type->nfields = num_fields;
972 }
973
974 /* Get the fields array of this type. */
975 struct field *fields () const
976 {
977 return this->main_type->flds_bnds.fields;
978 }
979
980 /* Get the field at index IDX. */
981 struct field &field (int idx) const
982 {
983 return this->fields ()[idx];
984 }
985
986 /* Set the fields array of this type. */
987 void set_fields (struct field *fields)
988 {
989 this->main_type->flds_bnds.fields = fields;
990 }
991
992 type *index_type () const
993 {
994 return this->field (0).type ();
995 }
996
997 void set_index_type (type *index_type)
998 {
999 this->field (0).set_type (index_type);
1000 }
1001
1002 /* Return the instance flags converted to the correct type. */
1003 const type_instance_flags instance_flags () const
1004 {
1005 return (enum type_instance_flag_value) this->m_instance_flags;
1006 }
1007
1008 /* Set the instance flags. */
1009 void set_instance_flags (type_instance_flags flags)
1010 {
1011 this->m_instance_flags = flags;
1012 }
1013
1014 /* Get the bounds bounds of this type. The type must be a range type. */
1015 range_bounds *bounds () const
1016 {
1017 switch (this->code ())
1018 {
1019 case TYPE_CODE_RANGE:
1020 return this->main_type->flds_bnds.bounds;
1021
1022 case TYPE_CODE_ARRAY:
1023 case TYPE_CODE_STRING:
1024 return this->index_type ()->bounds ();
1025
1026 default:
1027 gdb_assert_not_reached
1028 ("type::bounds called on type with invalid code");
1029 }
1030 }
1031
1032 /* Set the bounds of this type. The type must be a range type. */
1033 void set_bounds (range_bounds *bounds)
1034 {
1035 gdb_assert (this->code () == TYPE_CODE_RANGE);
1036
1037 this->main_type->flds_bnds.bounds = bounds;
1038 }
1039
1040 ULONGEST bit_stride () const
1041 {
1042 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1043 return this->field (0).bitsize;
1044 return this->bounds ()->bit_stride ();
1045 }
1046
1047 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1048 the type is signed (unless TYPE_NOSIGN is set). */
1049
1050 bool is_unsigned () const
1051 {
1052 return this->main_type->m_flag_unsigned;
1053 }
1054
1055 void set_is_unsigned (bool is_unsigned)
1056 {
1057 this->main_type->m_flag_unsigned = is_unsigned;
1058 }
1059
1060 /* No sign for this type. In C++, "char", "signed char", and
1061 "unsigned char" are distinct types; so we need an extra flag to
1062 indicate the absence of a sign! */
1063
1064 bool has_no_signedness () const
1065 {
1066 return this->main_type->m_flag_nosign;
1067 }
1068
1069 void set_has_no_signedness (bool has_no_signedness)
1070 {
1071 this->main_type->m_flag_nosign = has_no_signedness;
1072 }
1073
1074 /* This appears in a type's flags word if it is a stub type (e.g.,
1075 if someone referenced a type that wasn't defined in a source file
1076 via (struct sir_not_appearing_in_this_film *)). */
1077
1078 bool is_stub () const
1079 {
1080 return this->main_type->m_flag_stub;
1081 }
1082
1083 void set_is_stub (bool is_stub)
1084 {
1085 this->main_type->m_flag_stub = is_stub;
1086 }
1087
1088 /* The target type of this type is a stub type, and this type needs
1089 to be updated if it gets un-stubbed in check_typedef. Used for
1090 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1091 based on the TYPE_LENGTH of the target type. Also, set for
1092 TYPE_CODE_TYPEDEF. */
1093
1094 bool target_is_stub () const
1095 {
1096 return this->main_type->m_flag_target_stub;
1097 }
1098
1099 void set_target_is_stub (bool target_is_stub)
1100 {
1101 this->main_type->m_flag_target_stub = target_is_stub;
1102 }
1103
1104 /* This is a function type which appears to have a prototype. We
1105 need this for function calls in order to tell us if it's necessary
1106 to coerce the args, or to just do the standard conversions. This
1107 is used with a short field. */
1108
1109 bool is_prototyped () const
1110 {
1111 return this->main_type->m_flag_prototyped;
1112 }
1113
1114 void set_is_prototyped (bool is_prototyped)
1115 {
1116 this->main_type->m_flag_prototyped = is_prototyped;
1117 }
1118
1119 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1120 to functions. */
1121
1122 bool has_varargs () const
1123 {
1124 return this->main_type->m_flag_varargs;
1125 }
1126
1127 void set_has_varargs (bool has_varargs)
1128 {
1129 this->main_type->m_flag_varargs = has_varargs;
1130 }
1131
1132 /* Identify a vector type. Gcc is handling this by adding an extra
1133 attribute to the array type. We slurp that in as a new flag of a
1134 type. This is used only in dwarf2read.c. */
1135
1136 bool is_vector () const
1137 {
1138 return this->main_type->m_flag_vector;
1139 }
1140
1141 void set_is_vector (bool is_vector)
1142 {
1143 this->main_type->m_flag_vector = is_vector;
1144 }
1145
1146 /* This debug target supports TYPE_STUB(t). In the unsupported case
1147 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1148 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1149 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1150
1151 bool stub_is_supported () const
1152 {
1153 return this->main_type->m_flag_stub_supported;
1154 }
1155
1156 void set_stub_is_supported (bool stub_is_supported)
1157 {
1158 this->main_type->m_flag_stub_supported = stub_is_supported;
1159 }
1160
1161 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1162 address is returned by this function call. TYPE_TARGET_TYPE
1163 determines the final returned function type to be presented to
1164 user. */
1165
1166 bool is_gnu_ifunc () const
1167 {
1168 return this->main_type->m_flag_gnu_ifunc;
1169 }
1170
1171 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1172 {
1173 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1174 }
1175
1176 /* The debugging formats (especially STABS) do not contain enough
1177 information to represent all Ada types---especially those whose
1178 size depends on dynamic quantities. Therefore, the GNAT Ada
1179 compiler includes extra information in the form of additional type
1180 definitions connected by naming conventions. This flag indicates
1181 that the type is an ordinary (unencoded) GDB type that has been
1182 created from the necessary run-time information, and does not need
1183 further interpretation. Optionally marks ordinary, fixed-size GDB
1184 type. */
1185
1186 bool is_fixed_instance () const
1187 {
1188 return this->main_type->m_flag_fixed_instance;
1189 }
1190
1191 void set_is_fixed_instance (bool is_fixed_instance)
1192 {
1193 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1194 }
1195
1196 /* A compiler may supply dwarf instrumentation that indicates the desired
1197 endian interpretation of the variable differs from the native endian
1198 representation. */
1199
1200 bool endianity_is_not_default () const
1201 {
1202 return this->main_type->m_flag_endianity_not_default;
1203 }
1204
1205 void set_endianity_is_not_default (bool endianity_is_not_default)
1206 {
1207 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1208 }
1209
1210
1211 /* True if this type was declared using the "class" keyword. This is
1212 only valid for C++ structure and enum types. If false, a structure
1213 was declared as a "struct"; if true it was declared "class". For
1214 enum types, this is true when "enum class" or "enum struct" was
1215 used to declare the type. */
1216
1217 bool is_declared_class () const
1218 {
1219 return this->main_type->m_flag_declared_class;
1220 }
1221
1222 void set_is_declared_class (bool is_declared_class) const
1223 {
1224 this->main_type->m_flag_declared_class = is_declared_class;
1225 }
1226
1227 /* True if this type is a "flag" enum. A flag enum is one where all
1228 the values are pairwise disjoint when "and"ed together. This
1229 affects how enum values are printed. */
1230
1231 bool is_flag_enum () const
1232 {
1233 return this->main_type->m_flag_flag_enum;
1234 }
1235
1236 void set_is_flag_enum (bool is_flag_enum)
1237 {
1238 this->main_type->m_flag_flag_enum = is_flag_enum;
1239 }
1240
1241 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1242 to this type's fixed_point_info. */
1243
1244 struct fixed_point_type_info &fixed_point_info () const
1245 {
1246 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1247 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1248
1249 return *this->main_type->type_specific.fixed_point_info;
1250 }
1251
1252 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1253 fixed_point_info to INFO. */
1254
1255 void set_fixed_point_info (struct fixed_point_type_info *info) const
1256 {
1257 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1258
1259 this->main_type->type_specific.fixed_point_info = info;
1260 }
1261
1262 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1263
1264 In other words, this returns the type after having peeled all
1265 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1266 The TYPE_CODE of the type returned is guaranteed to be
1267 a TYPE_CODE_FIXED_POINT. */
1268
1269 struct type *fixed_point_type_base_type ();
1270
1271 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1272 factor. */
1273
1274 const gdb_mpq &fixed_point_scaling_factor ();
1275
1276 /* * Return the dynamic property of the requested KIND from this type's
1277 list of dynamic properties. */
1278 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1279
1280 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1281 property to this type.
1282
1283 This function assumes that this type is objfile-owned. */
1284 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1285
1286 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1287 void remove_dyn_prop (dynamic_prop_node_kind kind);
1288
1289 /* Return true if this type is owned by an objfile. Return false if it is
1290 owned by an architecture. */
1291 bool is_objfile_owned () const
1292 {
1293 return this->main_type->m_flag_objfile_owned;
1294 }
1295
1296 /* Set the owner of the type to be OBJFILE. */
1297 void set_owner (objfile *objfile)
1298 {
1299 gdb_assert (objfile != nullptr);
1300
1301 this->main_type->m_owner.objfile = objfile;
1302 this->main_type->m_flag_objfile_owned = true;
1303 }
1304
1305 /* Set the owner of the type to be ARCH. */
1306 void set_owner (gdbarch *arch)
1307 {
1308 gdb_assert (arch != nullptr);
1309
1310 this->main_type->m_owner.gdbarch = arch;
1311 this->main_type->m_flag_objfile_owned = false;
1312 }
1313
1314 /* Return the objfile owner of this type.
1315
1316 Return nullptr if this type is not objfile-owned. */
1317 struct objfile *objfile_owner () const
1318 {
1319 if (!this->is_objfile_owned ())
1320 return nullptr;
1321
1322 return this->main_type->m_owner.objfile;
1323 }
1324
1325 /* Return the gdbarch owner of this type.
1326
1327 Return nullptr if this type is not gdbarch-owned. */
1328 gdbarch *arch_owner () const
1329 {
1330 if (this->is_objfile_owned ())
1331 return nullptr;
1332
1333 return this->main_type->m_owner.gdbarch;
1334 }
1335
1336 /* Return the type's architecture. For types owned by an
1337 architecture, that architecture is returned. For types owned by an
1338 objfile, that objfile's architecture is returned.
1339
1340 The return value is always non-nullptr. */
1341 gdbarch *arch () const;
1342
1343 /* * Return true if this is an integer type whose logical (bit) size
1344 differs from its storage size; false otherwise. Always return
1345 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1346 bool bit_size_differs_p () const
1347 {
1348 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1349 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1350 }
1351
1352 /* * Return the logical (bit) size for this integer type. Only
1353 valid for integer (TYPE_SPECIFIC_INT) types. */
1354 unsigned short bit_size () const
1355 {
1356 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1357 return main_type->type_specific.int_stuff.bit_size;
1358 }
1359
1360 /* * Return the bit offset for this integer type. Only valid for
1361 integer (TYPE_SPECIFIC_INT) types. */
1362 unsigned short bit_offset () const
1363 {
1364 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1365 return main_type->type_specific.int_stuff.bit_offset;
1366 }
1367
1368 /* Return true if this is a pointer or reference type. */
1369 bool is_pointer_or_reference () const
1370 {
1371 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1372 }
1373
1374 /* * Type that is a pointer to this type.
1375 NULL if no such pointer-to type is known yet.
1376 The debugger may add the address of such a type
1377 if it has to construct one later. */
1378
1379 struct type *pointer_type;
1380
1381 /* * C++: also need a reference type. */
1382
1383 struct type *reference_type;
1384
1385 /* * A C++ rvalue reference type added in C++11. */
1386
1387 struct type *rvalue_reference_type;
1388
1389 /* * Variant chain. This points to a type that differs from this
1390 one only in qualifiers and length. Currently, the possible
1391 qualifiers are const, volatile, code-space, data-space, and
1392 address class. The length may differ only when one of the
1393 address class flags are set. The variants are linked in a
1394 circular ring and share MAIN_TYPE. */
1395
1396 struct type *chain;
1397
1398 /* * The alignment for this type. Zero means that the alignment was
1399 not specified in the debug info. Note that this is stored in a
1400 funny way: as the log base 2 (plus 1) of the alignment; so a
1401 value of 1 means the alignment is 1, and a value of 9 means the
1402 alignment is 256. */
1403
1404 unsigned align_log2 : TYPE_ALIGN_BITS;
1405
1406 /* * Flags specific to this instance of the type, indicating where
1407 on the ring we are.
1408
1409 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1410 binary or-ed with the target type, with a special case for
1411 address class and space class. For example if this typedef does
1412 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1413 instance flags are completely inherited from the target type. No
1414 qualifiers can be cleared by the typedef. See also
1415 check_typedef. */
1416 unsigned m_instance_flags : 9;
1417
1418 /* * Length of storage for a value of this type. The value is the
1419 expression in host bytes of what sizeof(type) would return. This
1420 size includes padding. For example, an i386 extended-precision
1421 floating point value really only occupies ten bytes, but most
1422 ABI's declare its size to be 12 bytes, to preserve alignment.
1423 A `struct type' representing such a floating-point type would
1424 have a `length' value of 12, even though the last two bytes are
1425 unused.
1426
1427 Since this field is expressed in host bytes, its value is appropriate
1428 to pass to memcpy and such (it is assumed that GDB itself always runs
1429 on an 8-bits addressable architecture). However, when using it for
1430 target address arithmetic (e.g. adding it to a target address), the
1431 type_length_units function should be used in order to get the length
1432 expressed in target addressable memory units. */
1433
1434 ULONGEST length;
1435
1436 /* * Core type, shared by a group of qualified types. */
1437
1438 struct main_type *main_type;
1439 };
1440
1441 struct fn_fieldlist
1442 {
1443
1444 /* * The overloaded name.
1445 This is generally allocated in the objfile's obstack.
1446 However stabsread.c sometimes uses malloc. */
1447
1448 const char *name;
1449
1450 /* * The number of methods with this name. */
1451
1452 int length;
1453
1454 /* * The list of methods. */
1455
1456 struct fn_field *fn_fields;
1457 };
1458
1459
1460
1461 struct fn_field
1462 {
1463 /* * If is_stub is clear, this is the mangled name which we can look
1464 up to find the address of the method (FIXME: it would be cleaner
1465 to have a pointer to the struct symbol here instead).
1466
1467 If is_stub is set, this is the portion of the mangled name which
1468 specifies the arguments. For example, "ii", if there are two int
1469 arguments, or "" if there are no arguments. See gdb_mangle_name
1470 for the conversion from this format to the one used if is_stub is
1471 clear. */
1472
1473 const char *physname;
1474
1475 /* * The function type for the method.
1476
1477 (This comment used to say "The return value of the method", but
1478 that's wrong. The function type is expected here, i.e. something
1479 with TYPE_CODE_METHOD, and *not* the return-value type). */
1480
1481 struct type *type;
1482
1483 /* * For virtual functions. First baseclass that defines this
1484 virtual function. */
1485
1486 struct type *fcontext;
1487
1488 /* Attributes. */
1489
1490 unsigned int is_const:1;
1491 unsigned int is_volatile:1;
1492 unsigned int is_private:1;
1493 unsigned int is_protected:1;
1494 unsigned int is_artificial:1;
1495
1496 /* * A stub method only has some fields valid (but they are enough
1497 to reconstruct the rest of the fields). */
1498
1499 unsigned int is_stub:1;
1500
1501 /* * True if this function is a constructor, false otherwise. */
1502
1503 unsigned int is_constructor : 1;
1504
1505 /* * True if this function is deleted, false otherwise. */
1506
1507 unsigned int is_deleted : 1;
1508
1509 /* * DW_AT_defaulted attribute for this function. The value is one
1510 of the DW_DEFAULTED constants. */
1511
1512 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1513
1514 /* * Unused. */
1515
1516 unsigned int dummy:6;
1517
1518 /* * Index into that baseclass's virtual function table, minus 2;
1519 else if static: VOFFSET_STATIC; else: 0. */
1520
1521 unsigned int voffset:16;
1522
1523 #define VOFFSET_STATIC 1
1524
1525 };
1526
1527 struct decl_field
1528 {
1529 /* * Unqualified name to be prefixed by owning class qualified
1530 name. */
1531
1532 const char *name;
1533
1534 /* * Type this typedef named NAME represents. */
1535
1536 struct type *type;
1537
1538 /* * True if this field was declared protected, false otherwise. */
1539 unsigned int is_protected : 1;
1540
1541 /* * True if this field was declared private, false otherwise. */
1542 unsigned int is_private : 1;
1543 };
1544
1545 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1546 TYPE_CODE_UNION nodes. */
1547
1548 struct cplus_struct_type
1549 {
1550 /* * Number of base classes this type derives from. The
1551 baseclasses are stored in the first N_BASECLASSES fields
1552 (i.e. the `fields' field of the struct type). The only fields
1553 of struct field that are used are: type, name, loc.bitpos. */
1554
1555 short n_baseclasses;
1556
1557 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1558 All access to this field must be through TYPE_VPTR_FIELDNO as one
1559 thing it does is check whether the field has been initialized.
1560 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1561 which for portability reasons doesn't initialize this field.
1562 TYPE_VPTR_FIELDNO returns -1 for this case.
1563
1564 If -1, we were unable to find the virtual function table pointer in
1565 initial symbol reading, and get_vptr_fieldno should be called to find
1566 it if possible. get_vptr_fieldno will update this field if possible.
1567 Otherwise the value is left at -1.
1568
1569 Unused if this type does not have virtual functions. */
1570
1571 short vptr_fieldno;
1572
1573 /* * Number of methods with unique names. All overloaded methods
1574 with the same name count only once. */
1575
1576 short nfn_fields;
1577
1578 /* * Number of template arguments. */
1579
1580 unsigned short n_template_arguments;
1581
1582 /* * One if this struct is a dynamic class, as defined by the
1583 Itanium C++ ABI: if it requires a virtual table pointer,
1584 because it or any of its base classes have one or more virtual
1585 member functions or virtual base classes. Minus one if not
1586 dynamic. Zero if not yet computed. */
1587
1588 int is_dynamic : 2;
1589
1590 /* * The calling convention for this type, fetched from the
1591 DW_AT_calling_convention attribute. The value is one of the
1592 DW_CC constants. */
1593
1594 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1595
1596 /* * The base class which defined the virtual function table pointer. */
1597
1598 struct type *vptr_basetype;
1599
1600 /* * For derived classes, the number of base classes is given by
1601 n_baseclasses and virtual_field_bits is a bit vector containing
1602 one bit per base class. If the base class is virtual, the
1603 corresponding bit will be set.
1604 I.E, given:
1605
1606 class A{};
1607 class B{};
1608 class C : public B, public virtual A {};
1609
1610 B is a baseclass of C; A is a virtual baseclass for C.
1611 This is a C++ 2.0 language feature. */
1612
1613 B_TYPE *virtual_field_bits;
1614
1615 /* * For classes with private fields, the number of fields is
1616 given by nfields and private_field_bits is a bit vector
1617 containing one bit per field.
1618
1619 If the field is private, the corresponding bit will be set. */
1620
1621 B_TYPE *private_field_bits;
1622
1623 /* * For classes with protected fields, the number of fields is
1624 given by nfields and protected_field_bits is a bit vector
1625 containing one bit per field.
1626
1627 If the field is private, the corresponding bit will be set. */
1628
1629 B_TYPE *protected_field_bits;
1630
1631 /* * For classes with fields to be ignored, either this is
1632 optimized out or this field has length 0. */
1633
1634 B_TYPE *ignore_field_bits;
1635
1636 /* * For classes, structures, and unions, a description of each
1637 field, which consists of an overloaded name, followed by the
1638 types of arguments that the method expects, and then the name
1639 after it has been renamed to make it distinct.
1640
1641 fn_fieldlists points to an array of nfn_fields of these. */
1642
1643 struct fn_fieldlist *fn_fieldlists;
1644
1645 /* * typedefs defined inside this class. typedef_field points to
1646 an array of typedef_field_count elements. */
1647
1648 struct decl_field *typedef_field;
1649
1650 unsigned typedef_field_count;
1651
1652 /* * The nested types defined by this type. nested_types points to
1653 an array of nested_types_count elements. */
1654
1655 struct decl_field *nested_types;
1656
1657 unsigned nested_types_count;
1658
1659 /* * The template arguments. This is an array with
1660 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1661 classes. */
1662
1663 struct symbol **template_arguments;
1664 };
1665
1666 /* * Struct used to store conversion rankings. */
1667
1668 struct rank
1669 {
1670 short rank;
1671
1672 /* * When two conversions are of the same type and therefore have
1673 the same rank, subrank is used to differentiate the two.
1674
1675 Eg: Two derived-class-pointer to base-class-pointer conversions
1676 would both have base pointer conversion rank, but the
1677 conversion with the shorter distance to the ancestor is
1678 preferable. 'subrank' would be used to reflect that. */
1679
1680 short subrank;
1681 };
1682
1683 /* * Used for ranking a function for overload resolution. */
1684
1685 typedef std::vector<rank> badness_vector;
1686
1687 /* * GNAT Ada-specific information for various Ada types. */
1688
1689 struct gnat_aux_type
1690 {
1691 /* * Parallel type used to encode information about dynamic types
1692 used in Ada (such as variant records, variable-size array,
1693 etc). */
1694 struct type* descriptive_type;
1695 };
1696
1697 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1698
1699 struct func_type
1700 {
1701 /* * The calling convention for targets supporting multiple ABIs.
1702 Right now this is only fetched from the Dwarf-2
1703 DW_AT_calling_convention attribute. The value is one of the
1704 DW_CC constants. */
1705
1706 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1707
1708 /* * Whether this function normally returns to its caller. It is
1709 set from the DW_AT_noreturn attribute if set on the
1710 DW_TAG_subprogram. */
1711
1712 unsigned int is_noreturn : 1;
1713
1714 /* * Only those DW_TAG_call_site's in this function that have
1715 DW_AT_call_tail_call set are linked in this list. Function
1716 without its tail call list complete
1717 (DW_AT_call_all_tail_calls or its superset
1718 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1719 DW_TAG_call_site's exist in such function. */
1720
1721 struct call_site *tail_call_list;
1722
1723 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1724 contains the method. */
1725
1726 struct type *self_type;
1727 };
1728
1729 /* struct call_site_parameter can be referenced in callees by several ways. */
1730
1731 enum call_site_parameter_kind
1732 {
1733 /* * Use field call_site_parameter.u.dwarf_reg. */
1734 CALL_SITE_PARAMETER_DWARF_REG,
1735
1736 /* * Use field call_site_parameter.u.fb_offset. */
1737 CALL_SITE_PARAMETER_FB_OFFSET,
1738
1739 /* * Use field call_site_parameter.u.param_offset. */
1740 CALL_SITE_PARAMETER_PARAM_OFFSET
1741 };
1742
1743 struct call_site_target
1744 {
1745 union field_location loc;
1746
1747 /* * Discriminant for union field_location. */
1748
1749 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1750 };
1751
1752 union call_site_parameter_u
1753 {
1754 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1755 as DWARF register number, for register passed
1756 parameters. */
1757
1758 int dwarf_reg;
1759
1760 /* * Offset from the callee's frame base, for stack passed
1761 parameters. This equals offset from the caller's stack
1762 pointer. */
1763
1764 CORE_ADDR fb_offset;
1765
1766 /* * Offset relative to the start of this PER_CU to
1767 DW_TAG_formal_parameter which is referenced by both
1768 caller and the callee. */
1769
1770 cu_offset param_cu_off;
1771 };
1772
1773 struct call_site_parameter
1774 {
1775 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1776
1777 union call_site_parameter_u u;
1778
1779 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1780
1781 const gdb_byte *value;
1782 size_t value_size;
1783
1784 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1785 It may be NULL if not provided by DWARF. */
1786
1787 const gdb_byte *data_value;
1788 size_t data_value_size;
1789 };
1790
1791 /* * A place where a function gets called from, represented by
1792 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1793
1794 struct call_site
1795 {
1796 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1797 dwarf2_per_objfile *per_objfile)
1798 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1799 {}
1800
1801 static int
1802 eq (const call_site *a, const call_site *b)
1803 {
1804 return core_addr_eq (&a->m_unrelocated_pc, &b->m_unrelocated_pc);
1805 }
1806
1807 static hashval_t
1808 hash (const call_site *a)
1809 {
1810 return core_addr_hash (&a->m_unrelocated_pc);
1811 }
1812
1813 static int
1814 eq (const void *a, const void *b)
1815 {
1816 return eq ((const call_site *)a, (const call_site *)b);
1817 }
1818
1819 static hashval_t
1820 hash (const void *a)
1821 {
1822 return hash ((const call_site *)a);
1823 }
1824
1825 /* Return the address of the first instruction after this call. */
1826
1827 CORE_ADDR pc () const;
1828
1829 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1830
1831 struct call_site *tail_call_next = nullptr;
1832
1833 /* * Describe DW_AT_call_target. Missing attribute uses
1834 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1835
1836 struct call_site_target target {};
1837
1838 /* * Size of the PARAMETER array. */
1839
1840 unsigned parameter_count = 0;
1841
1842 /* * CU of the function where the call is located. It gets used
1843 for DWARF blocks execution in the parameter array below. */
1844
1845 dwarf2_per_cu_data *const per_cu = nullptr;
1846
1847 /* objfile of the function where the call is located. */
1848
1849 dwarf2_per_objfile *const per_objfile = nullptr;
1850
1851 private:
1852 /* Unrelocated address of the first instruction after this call. */
1853 const CORE_ADDR m_unrelocated_pc;
1854
1855 public:
1856 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1857
1858 struct call_site_parameter parameter[];
1859 };
1860
1861 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1862
1863 struct fixed_point_type_info
1864 {
1865 /* The fixed point type's scaling factor. */
1866 gdb_mpq scaling_factor;
1867 };
1868
1869 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1870 static structure. */
1871
1872 extern const struct cplus_struct_type cplus_struct_default;
1873
1874 extern void allocate_cplus_struct_type (struct type *);
1875
1876 #define INIT_CPLUS_SPECIFIC(type) \
1877 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1878 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1879 &cplus_struct_default)
1880
1881 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1882
1883 #define HAVE_CPLUS_STRUCT(type) \
1884 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1885 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1886
1887 #define INIT_NONE_SPECIFIC(type) \
1888 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1889 TYPE_MAIN_TYPE (type)->type_specific = {})
1890
1891 extern const struct gnat_aux_type gnat_aux_default;
1892
1893 extern void allocate_gnat_aux_type (struct type *);
1894
1895 #define INIT_GNAT_SPECIFIC(type) \
1896 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1897 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1898 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1899 /* * A macro that returns non-zero if the type-specific data should be
1900 read as "gnat-stuff". */
1901 #define HAVE_GNAT_AUX_INFO(type) \
1902 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1903
1904 /* * True if TYPE is known to be an Ada type of some kind. */
1905 #define ADA_TYPE_P(type) \
1906 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1907 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1908 && (type)->is_fixed_instance ()))
1909
1910 #define INIT_FUNC_SPECIFIC(type) \
1911 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1912 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1913 TYPE_ZALLOC (type, \
1914 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1915
1916 /* "struct fixed_point_type_info" has a field that has a destructor.
1917 See allocate_fixed_point_type_info to understand how this is
1918 handled. */
1919 #define INIT_FIXED_POINT_SPECIFIC(type) \
1920 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1921 allocate_fixed_point_type_info (type))
1922
1923 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1924 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1925 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1926 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1927 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1928 #define TYPE_CHAIN(thistype) (thistype)->chain
1929 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1930 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1931 so you only have to call check_typedef once. Since allocate_value
1932 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1933 #define TYPE_LENGTH(thistype) (thistype)->length
1934
1935 /* * Return the alignment of the type in target addressable memory
1936 units, or 0 if no alignment was specified. */
1937 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1938
1939 /* * Return the alignment of the type in target addressable memory
1940 units, or 0 if no alignment was specified. */
1941 extern unsigned type_raw_align (struct type *);
1942
1943 /* * Return the alignment of the type in target addressable memory
1944 units. Return 0 if the alignment cannot be determined; but note
1945 that this makes an effort to compute the alignment even it it was
1946 not specified in the debug info. */
1947 extern unsigned type_align (struct type *);
1948
1949 /* * Set the alignment of the type. The alignment must be a power of
1950 2. Returns false if the given value does not fit in the available
1951 space in struct type. */
1952 extern bool set_type_align (struct type *, ULONGEST);
1953
1954 /* Property accessors for the type data location. */
1955 #define TYPE_DATA_LOCATION(thistype) \
1956 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1957 #define TYPE_DATA_LOCATION_BATON(thistype) \
1958 TYPE_DATA_LOCATION (thistype)->data.baton
1959 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1960 (TYPE_DATA_LOCATION (thistype)->const_val ())
1961 #define TYPE_DATA_LOCATION_KIND(thistype) \
1962 (TYPE_DATA_LOCATION (thistype)->kind ())
1963 #define TYPE_DYNAMIC_LENGTH(thistype) \
1964 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1965
1966 /* Property accessors for the type allocated/associated. */
1967 #define TYPE_ALLOCATED_PROP(thistype) \
1968 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1969 #define TYPE_ASSOCIATED_PROP(thistype) \
1970 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1971
1972 /* C++ */
1973
1974 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1975 /* Do not call this, use TYPE_SELF_TYPE. */
1976 extern struct type *internal_type_self_type (struct type *);
1977 extern void set_type_self_type (struct type *, struct type *);
1978
1979 extern int internal_type_vptr_fieldno (struct type *);
1980 extern void set_type_vptr_fieldno (struct type *, int);
1981 extern struct type *internal_type_vptr_basetype (struct type *);
1982 extern void set_type_vptr_basetype (struct type *, struct type *);
1983 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1984 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1985
1986 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1987 #define TYPE_SPECIFIC_FIELD(thistype) \
1988 TYPE_MAIN_TYPE(thistype)->type_specific_field
1989 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1990 where we're trying to print an Ada array using the C language.
1991 In that case, there is no "cplus_stuff", but the C language assumes
1992 that there is. What we do, in that case, is pretend that there is
1993 an implicit one which is the default cplus stuff. */
1994 #define TYPE_CPLUS_SPECIFIC(thistype) \
1995 (!HAVE_CPLUS_STRUCT(thistype) \
1996 ? (struct cplus_struct_type*)&cplus_struct_default \
1997 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1998 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1999 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2000 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2001 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2002 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2003 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2004 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2005 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2006 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2007 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2008 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2009 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2010 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
2011 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2012 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2013 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2014
2015 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2016 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2017 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2018
2019 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
2020 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
2021 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
2022 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
2023 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
2024 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
2025 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
2026 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
2027 #define SET_FIELD_BITPOS(thisfld, bitpos) \
2028 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
2029 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
2030 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
2031 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
2032 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
2033 #define SET_FIELD_PHYSNAME(thisfld, name) \
2034 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
2035 FIELD_STATIC_PHYSNAME (thisfld) = (name))
2036 #define SET_FIELD_PHYSADDR(thisfld, addr) \
2037 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
2038 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
2039 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
2040 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
2041 FIELD_DWARF_BLOCK (thisfld) = (addr))
2042 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2043 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2044
2045 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
2046 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
2047 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
2048 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
2049 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
2050 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
2051 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2052 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2053 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2054
2055 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2056 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2057 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2058 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2059 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2060 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2061 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2062 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2063 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2064 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2065 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2066 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2067 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2068 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2069 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2070 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2071 #define TYPE_FIELD_PRIVATE(thistype, n) \
2072 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2073 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2074 #define TYPE_FIELD_PROTECTED(thistype, n) \
2075 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2076 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2077 #define TYPE_FIELD_IGNORE(thistype, n) \
2078 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2079 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2080 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2081 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2082 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2083
2084 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2085 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2086 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2087 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2088 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2089
2090 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2091 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2092 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2093 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2094 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2095 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2096
2097 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2098 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2099 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2100 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2101 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2102 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2103 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2104 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2105 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2106 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2107 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2108 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2109 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2110 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2111 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2112 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2113 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2114
2115 /* Accessors for typedefs defined by a class. */
2116 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2117 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2118 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2119 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2120 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2121 TYPE_TYPEDEF_FIELD (thistype, n).name
2122 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2123 TYPE_TYPEDEF_FIELD (thistype, n).type
2124 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2125 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2126 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2127 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2128 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2129 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2130
2131 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2132 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2133 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2134 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2135 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2136 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2137 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2138 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2139 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2140 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2141 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2142 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2143 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2144 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2145
2146 #define TYPE_IS_OPAQUE(thistype) \
2147 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2148 || ((thistype)->code () == TYPE_CODE_UNION)) \
2149 && ((thistype)->num_fields () == 0) \
2150 && (!HAVE_CPLUS_STRUCT (thistype) \
2151 || TYPE_NFN_FIELDS (thistype) == 0) \
2152 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2153
2154 /* * A helper macro that returns the name of a type or "unnamed type"
2155 if the type has no name. */
2156
2157 #define TYPE_SAFE_NAME(type) \
2158 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2159
2160 /* * A helper macro that returns the name of an error type. If the
2161 type has a name, it is used; otherwise, a default is used. */
2162
2163 #define TYPE_ERROR_NAME(type) \
2164 (type->name () ? type->name () : _("<error type>"))
2165
2166 /* Given TYPE, return its floatformat. */
2167 const struct floatformat *floatformat_from_type (const struct type *type);
2168
2169 struct builtin_type
2170 {
2171 /* Integral types. */
2172
2173 /* Implicit size/sign (based on the architecture's ABI). */
2174 struct type *builtin_void;
2175 struct type *builtin_char;
2176 struct type *builtin_short;
2177 struct type *builtin_int;
2178 struct type *builtin_long;
2179 struct type *builtin_signed_char;
2180 struct type *builtin_unsigned_char;
2181 struct type *builtin_unsigned_short;
2182 struct type *builtin_unsigned_int;
2183 struct type *builtin_unsigned_long;
2184 struct type *builtin_bfloat16;
2185 struct type *builtin_half;
2186 struct type *builtin_float;
2187 struct type *builtin_double;
2188 struct type *builtin_long_double;
2189 struct type *builtin_complex;
2190 struct type *builtin_double_complex;
2191 struct type *builtin_string;
2192 struct type *builtin_bool;
2193 struct type *builtin_long_long;
2194 struct type *builtin_unsigned_long_long;
2195 struct type *builtin_decfloat;
2196 struct type *builtin_decdouble;
2197 struct type *builtin_declong;
2198
2199 /* "True" character types.
2200 We use these for the '/c' print format, because c_char is just a
2201 one-byte integral type, which languages less laid back than C
2202 will print as ... well, a one-byte integral type. */
2203 struct type *builtin_true_char;
2204 struct type *builtin_true_unsigned_char;
2205
2206 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2207 is for when an architecture needs to describe a register that has
2208 no size. */
2209 struct type *builtin_int0;
2210 struct type *builtin_int8;
2211 struct type *builtin_uint8;
2212 struct type *builtin_int16;
2213 struct type *builtin_uint16;
2214 struct type *builtin_int24;
2215 struct type *builtin_uint24;
2216 struct type *builtin_int32;
2217 struct type *builtin_uint32;
2218 struct type *builtin_int64;
2219 struct type *builtin_uint64;
2220 struct type *builtin_int128;
2221 struct type *builtin_uint128;
2222
2223 /* Wide character types. */
2224 struct type *builtin_char16;
2225 struct type *builtin_char32;
2226 struct type *builtin_wchar;
2227
2228 /* Pointer types. */
2229
2230 /* * `pointer to data' type. Some target platforms use an implicitly
2231 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2232 struct type *builtin_data_ptr;
2233
2234 /* * `pointer to function (returning void)' type. Harvard
2235 architectures mean that ABI function and code pointers are not
2236 interconvertible. Similarly, since ANSI, C standards have
2237 explicitly said that pointers to functions and pointers to data
2238 are not interconvertible --- that is, you can't cast a function
2239 pointer to void * and back, and expect to get the same value.
2240 However, all function pointer types are interconvertible, so void
2241 (*) () can server as a generic function pointer. */
2242
2243 struct type *builtin_func_ptr;
2244
2245 /* * `function returning pointer to function (returning void)' type.
2246 The final void return type is not significant for it. */
2247
2248 struct type *builtin_func_func;
2249
2250 /* Special-purpose types. */
2251
2252 /* * This type is used to represent a GDB internal function. */
2253
2254 struct type *internal_fn;
2255
2256 /* * This type is used to represent an xmethod. */
2257 struct type *xmethod;
2258 };
2259
2260 /* * Return the type table for the specified architecture. */
2261
2262 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2263
2264 /* * Per-objfile types used by symbol readers. */
2265
2266 struct objfile_type
2267 {
2268 /* Basic types based on the objfile architecture. */
2269 struct type *builtin_void;
2270 struct type *builtin_char;
2271 struct type *builtin_short;
2272 struct type *builtin_int;
2273 struct type *builtin_long;
2274 struct type *builtin_long_long;
2275 struct type *builtin_signed_char;
2276 struct type *builtin_unsigned_char;
2277 struct type *builtin_unsigned_short;
2278 struct type *builtin_unsigned_int;
2279 struct type *builtin_unsigned_long;
2280 struct type *builtin_unsigned_long_long;
2281 struct type *builtin_half;
2282 struct type *builtin_float;
2283 struct type *builtin_double;
2284 struct type *builtin_long_double;
2285
2286 /* * This type is used to represent symbol addresses. */
2287 struct type *builtin_core_addr;
2288
2289 /* * This type represents a type that was unrecognized in symbol
2290 read-in. */
2291 struct type *builtin_error;
2292
2293 /* * Types used for symbols with no debug information. */
2294 struct type *nodebug_text_symbol;
2295 struct type *nodebug_text_gnu_ifunc_symbol;
2296 struct type *nodebug_got_plt_symbol;
2297 struct type *nodebug_data_symbol;
2298 struct type *nodebug_unknown_symbol;
2299 struct type *nodebug_tls_symbol;
2300 };
2301
2302 /* * Return the type table for the specified objfile. */
2303
2304 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2305
2306 /* Explicit floating-point formats. See "floatformat.h". */
2307 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2308 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2309 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2310 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2311 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2312 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2313 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2314 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2315 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2316 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2317 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2318 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2319 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2320
2321 /* Allocate space for storing data associated with a particular
2322 type. We ensure that the space is allocated using the same
2323 mechanism that was used to allocate the space for the type
2324 structure itself. I.e. if the type is on an objfile's
2325 objfile_obstack, then the space for data associated with that type
2326 will also be allocated on the objfile_obstack. If the type is
2327 associated with a gdbarch, then the space for data associated with that
2328 type will also be allocated on the gdbarch_obstack.
2329
2330 If a type is not associated with neither an objfile or a gdbarch then
2331 you should not use this macro to allocate space for data, instead you
2332 should call xmalloc directly, and ensure the memory is correctly freed
2333 when it is no longer needed. */
2334
2335 #define TYPE_ALLOC(t,size) \
2336 (obstack_alloc (((t)->is_objfile_owned () \
2337 ? &((t)->objfile_owner ()->objfile_obstack) \
2338 : gdbarch_obstack ((t)->arch_owner ())), \
2339 size))
2340
2341
2342 /* See comment on TYPE_ALLOC. */
2343
2344 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2345
2346 /* Use alloc_type to allocate a type owned by an objfile. Use
2347 alloc_type_arch to allocate a type owned by an architecture. Use
2348 alloc_type_copy to allocate a type with the same owner as a
2349 pre-existing template type, no matter whether objfile or
2350 gdbarch. */
2351 extern struct type *alloc_type (struct objfile *);
2352 extern struct type *alloc_type_arch (struct gdbarch *);
2353 extern struct type *alloc_type_copy (const struct type *);
2354
2355 /* * This returns the target type (or NULL) of TYPE, also skipping
2356 past typedefs. */
2357
2358 extern struct type *get_target_type (struct type *type);
2359
2360 /* Return the equivalent of TYPE_LENGTH, but in number of target
2361 addressable memory units of the associated gdbarch instead of bytes. */
2362
2363 extern unsigned int type_length_units (struct type *type);
2364
2365 /* * Helper function to construct objfile-owned types. */
2366
2367 extern struct type *init_type (struct objfile *, enum type_code, int,
2368 const char *);
2369 extern struct type *init_integer_type (struct objfile *, int, int,
2370 const char *);
2371 extern struct type *init_character_type (struct objfile *, int, int,
2372 const char *);
2373 extern struct type *init_boolean_type (struct objfile *, int, int,
2374 const char *);
2375 extern struct type *init_float_type (struct objfile *, int, const char *,
2376 const struct floatformat **,
2377 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2378 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2379 extern bool can_create_complex_type (struct type *);
2380 extern struct type *init_complex_type (const char *, struct type *);
2381 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2382 struct type *);
2383 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2384 const char *);
2385
2386 /* Helper functions to construct architecture-owned types. */
2387 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2388 const char *);
2389 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2390 const char *);
2391 extern struct type *arch_character_type (struct gdbarch *, int, int,
2392 const char *);
2393 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2394 const char *);
2395 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2396 const struct floatformat **);
2397 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2398 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2399 struct type *);
2400
2401 /* Helper functions to construct a struct or record type. An
2402 initially empty type is created using arch_composite_type().
2403 Fields are then added using append_composite_type_field*(). A union
2404 type has its size set to the largest field. A struct type has each
2405 field packed against the previous. */
2406
2407 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2408 const char *name, enum type_code code);
2409 extern void append_composite_type_field (struct type *t, const char *name,
2410 struct type *field);
2411 extern void append_composite_type_field_aligned (struct type *t,
2412 const char *name,
2413 struct type *field,
2414 int alignment);
2415 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2416 struct type *field);
2417
2418 /* Helper functions to construct a bit flags type. An initially empty
2419 type is created using arch_flag_type(). Flags are then added using
2420 append_flag_type_field() and append_flag_type_flag(). */
2421 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2422 const char *name, int bit);
2423 extern void append_flags_type_field (struct type *type,
2424 int start_bitpos, int nr_bits,
2425 struct type *field_type, const char *name);
2426 extern void append_flags_type_flag (struct type *type, int bitpos,
2427 const char *name);
2428
2429 extern void make_vector_type (struct type *array_type);
2430 extern struct type *init_vector_type (struct type *elt_type, int n);
2431
2432 extern struct type *lookup_reference_type (struct type *, enum type_code);
2433 extern struct type *lookup_lvalue_reference_type (struct type *);
2434 extern struct type *lookup_rvalue_reference_type (struct type *);
2435
2436
2437 extern struct type *make_reference_type (struct type *, struct type **,
2438 enum type_code);
2439
2440 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2441
2442 extern struct type *make_restrict_type (struct type *);
2443
2444 extern struct type *make_unqualified_type (struct type *);
2445
2446 extern struct type *make_atomic_type (struct type *);
2447
2448 extern void replace_type (struct type *, struct type *);
2449
2450 extern type_instance_flags address_space_name_to_type_instance_flags
2451 (struct gdbarch *, const char *);
2452
2453 extern const char *address_space_type_instance_flags_to_name
2454 (struct gdbarch *, type_instance_flags);
2455
2456 extern struct type *make_type_with_address_space
2457 (struct type *type, type_instance_flags space_identifier);
2458
2459 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2460
2461 extern struct type *lookup_methodptr_type (struct type *);
2462
2463 extern void smash_to_method_type (struct type *type, struct type *self_type,
2464 struct type *to_type, struct field *args,
2465 int nargs, int varargs);
2466
2467 extern void smash_to_memberptr_type (struct type *, struct type *,
2468 struct type *);
2469
2470 extern void smash_to_methodptr_type (struct type *, struct type *);
2471
2472 extern struct type *allocate_stub_method (struct type *);
2473
2474 extern const char *type_name_or_error (struct type *type);
2475
2476 struct struct_elt
2477 {
2478 /* The field of the element, or NULL if no element was found. */
2479 struct field *field;
2480
2481 /* The bit offset of the element in the parent structure. */
2482 LONGEST offset;
2483 };
2484
2485 /* Given a type TYPE, lookup the field and offset of the component named
2486 NAME.
2487
2488 TYPE can be either a struct or union, or a pointer or reference to
2489 a struct or union. If it is a pointer or reference, its target
2490 type is automatically used. Thus '.' and '->' are interchangable,
2491 as specified for the definitions of the expression element types
2492 STRUCTOP_STRUCT and STRUCTOP_PTR.
2493
2494 If NOERR is nonzero, the returned structure will have field set to
2495 NULL if there is no component named NAME.
2496
2497 If the component NAME is a field in an anonymous substructure of
2498 TYPE, the returned offset is a "global" offset relative to TYPE
2499 rather than an offset within the substructure. */
2500
2501 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2502
2503 /* Given a type TYPE, lookup the type of the component named NAME.
2504
2505 TYPE can be either a struct or union, or a pointer or reference to
2506 a struct or union. If it is a pointer or reference, its target
2507 type is automatically used. Thus '.' and '->' are interchangable,
2508 as specified for the definitions of the expression element types
2509 STRUCTOP_STRUCT and STRUCTOP_PTR.
2510
2511 If NOERR is nonzero, return NULL if there is no component named
2512 NAME. */
2513
2514 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2515
2516 extern struct type *make_pointer_type (struct type *, struct type **);
2517
2518 extern struct type *lookup_pointer_type (struct type *);
2519
2520 extern struct type *make_function_type (struct type *, struct type **);
2521
2522 extern struct type *lookup_function_type (struct type *);
2523
2524 extern struct type *lookup_function_type_with_arguments (struct type *,
2525 int,
2526 struct type **);
2527
2528 extern struct type *create_static_range_type (struct type *, struct type *,
2529 LONGEST, LONGEST);
2530
2531
2532 extern struct type *create_array_type_with_stride
2533 (struct type *, struct type *, struct type *,
2534 struct dynamic_prop *, unsigned int);
2535
2536 extern struct type *create_range_type (struct type *, struct type *,
2537 const struct dynamic_prop *,
2538 const struct dynamic_prop *,
2539 LONGEST);
2540
2541 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2542 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2543 stride. */
2544
2545 extern struct type * create_range_type_with_stride
2546 (struct type *result_type, struct type *index_type,
2547 const struct dynamic_prop *low_bound,
2548 const struct dynamic_prop *high_bound, LONGEST bias,
2549 const struct dynamic_prop *stride, bool byte_stride_p);
2550
2551 extern struct type *create_array_type (struct type *, struct type *,
2552 struct type *);
2553
2554 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2555
2556 extern struct type *create_string_type (struct type *, struct type *,
2557 struct type *);
2558 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2559
2560 extern struct type *create_set_type (struct type *, struct type *);
2561
2562 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2563 const char *);
2564
2565 extern struct type *lookup_signed_typename (const struct language_defn *,
2566 const char *);
2567
2568 extern ULONGEST get_unsigned_type_max (struct type *);
2569
2570 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2571
2572 extern CORE_ADDR get_pointer_type_max (struct type *);
2573
2574 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2575 ADDR specifies the location of the variable the type is bound to.
2576 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2577 static properties is returned. */
2578 extern struct type *resolve_dynamic_type
2579 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2580 CORE_ADDR addr);
2581
2582 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2583 extern int is_dynamic_type (struct type *type);
2584
2585 extern struct type *check_typedef (struct type *);
2586
2587 extern void check_stub_method_group (struct type *, int);
2588
2589 extern char *gdb_mangle_name (struct type *, int, int);
2590
2591 extern struct type *lookup_typename (const struct language_defn *,
2592 const char *, const struct block *, int);
2593
2594 extern struct type *lookup_template_type (const char *, struct type *,
2595 const struct block *);
2596
2597 extern int get_vptr_fieldno (struct type *, struct type **);
2598
2599 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2600 TYPE.
2601
2602 Return true if the two bounds are available, false otherwise. */
2603
2604 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2605 LONGEST *highp);
2606
2607 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2608
2609 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2610
2611 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2612
2613 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2614
2615 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2616 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2617 Save the high bound into HIGH_BOUND if not NULL.
2618
2619 Return true if the operation was successful. Return false otherwise,
2620 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2621
2622 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2623 LONGEST *high_bound);
2624
2625 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2626 LONGEST val);
2627
2628 extern int class_types_same_p (const struct type *, const struct type *);
2629
2630 extern int is_ancestor (struct type *, struct type *);
2631
2632 extern int is_public_ancestor (struct type *, struct type *);
2633
2634 extern int is_unique_ancestor (struct type *, struct value *);
2635
2636 /* Overload resolution */
2637
2638 /* * Badness if parameter list length doesn't match arg list length. */
2639 extern const struct rank LENGTH_MISMATCH_BADNESS;
2640
2641 /* * Dummy badness value for nonexistent parameter positions. */
2642 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2643 /* * Badness if no conversion among types. */
2644 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2645
2646 /* * Badness of an exact match. */
2647 extern const struct rank EXACT_MATCH_BADNESS;
2648
2649 /* * Badness of integral promotion. */
2650 extern const struct rank INTEGER_PROMOTION_BADNESS;
2651 /* * Badness of floating promotion. */
2652 extern const struct rank FLOAT_PROMOTION_BADNESS;
2653 /* * Badness of converting a derived class pointer
2654 to a base class pointer. */
2655 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2656 /* * Badness of integral conversion. */
2657 extern const struct rank INTEGER_CONVERSION_BADNESS;
2658 /* * Badness of floating conversion. */
2659 extern const struct rank FLOAT_CONVERSION_BADNESS;
2660 /* * Badness of integer<->floating conversions. */
2661 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2662 /* * Badness of conversion of pointer to void pointer. */
2663 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2664 /* * Badness of conversion to boolean. */
2665 extern const struct rank BOOL_CONVERSION_BADNESS;
2666 /* * Badness of converting derived to base class. */
2667 extern const struct rank BASE_CONVERSION_BADNESS;
2668 /* * Badness of converting from non-reference to reference. Subrank
2669 is the type of reference conversion being done. */
2670 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2671 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2672 /* * Conversion to rvalue reference. */
2673 #define REFERENCE_CONVERSION_RVALUE 1
2674 /* * Conversion to const lvalue reference. */
2675 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2676
2677 /* * Badness of converting integer 0 to NULL pointer. */
2678 extern const struct rank NULL_POINTER_CONVERSION;
2679 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2680 being done. */
2681 extern const struct rank CV_CONVERSION_BADNESS;
2682 #define CV_CONVERSION_CONST 1
2683 #define CV_CONVERSION_VOLATILE 2
2684
2685 /* Non-standard conversions allowed by the debugger */
2686
2687 /* * Converting a pointer to an int is usually OK. */
2688 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2689
2690 /* * Badness of converting a (non-zero) integer constant
2691 to a pointer. */
2692 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2693
2694 extern struct rank sum_ranks (struct rank a, struct rank b);
2695 extern int compare_ranks (struct rank a, struct rank b);
2696
2697 extern int compare_badness (const badness_vector &,
2698 const badness_vector &);
2699
2700 extern badness_vector rank_function (gdb::array_view<type *> parms,
2701 gdb::array_view<value *> args);
2702
2703 extern struct rank rank_one_type (struct type *, struct type *,
2704 struct value *);
2705
2706 extern void recursive_dump_type (struct type *, int);
2707
2708 extern int field_is_static (struct field *);
2709
2710 /* printcmd.c */
2711
2712 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2713 const struct value_print_options *,
2714 int, struct ui_file *);
2715
2716 extern int can_dereference (struct type *);
2717
2718 extern int is_integral_type (struct type *);
2719
2720 extern int is_floating_type (struct type *);
2721
2722 extern int is_scalar_type (struct type *type);
2723
2724 extern int is_scalar_type_recursive (struct type *);
2725
2726 extern int class_or_union_p (const struct type *);
2727
2728 extern void maintenance_print_type (const char *, int);
2729
2730 extern htab_up create_copied_types_hash (struct objfile *objfile);
2731
2732 extern struct type *copy_type_recursive (struct objfile *objfile,
2733 struct type *type,
2734 htab_t copied_types);
2735
2736 extern struct type *copy_type (const struct type *type);
2737
2738 extern bool types_equal (struct type *, struct type *);
2739
2740 extern bool types_deeply_equal (struct type *, struct type *);
2741
2742 extern int type_not_allocated (const struct type *type);
2743
2744 extern int type_not_associated (const struct type *type);
2745
2746 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2747 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2748 extern bool is_fixed_point_type (struct type *type);
2749
2750 /* Allocate a fixed-point type info for TYPE. This should only be
2751 called by INIT_FIXED_POINT_SPECIFIC. */
2752 extern void allocate_fixed_point_type_info (struct type *type);
2753
2754 /* * When the type includes explicit byte ordering, return that.
2755 Otherwise, the byte ordering from gdbarch_byte_order for
2756 the type's arch is returned. */
2757
2758 extern enum bfd_endian type_byte_order (const struct type *type);
2759
2760 /* A flag to enable printing of debugging information of C++
2761 overloading. */
2762
2763 extern unsigned int overload_debug;
2764
2765 #endif /* GDBTYPES_H */