gdb: add type::is_stub / type::set_is_stub
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * This appears in a type's flags word if it is a stub type (e.g.,
220 if someone referenced a type that wasn't defined in a source file
221 via (struct sir_not_appearing_in_this_film *)). */
222
223 #define TYPE_STUB(t) ((t)->is_stub ())
224
225 /* * The target type of this type is a stub type, and this type needs
226 to be updated if it gets un-stubbed in check_typedef. Used for
227 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
228 based on the TYPE_LENGTH of the target type. Also, set for
229 TYPE_CODE_TYPEDEF. */
230
231 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
232
233 /* * This is a function type which appears to have a prototype. We
234 need this for function calls in order to tell us if it's necessary
235 to coerce the args, or to just do the standard conversions. This
236 is used with a short field. */
237
238 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
239
240 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
241 to functions. */
242
243 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
244
245 /* * Identify a vector type. Gcc is handling this by adding an extra
246 attribute to the array type. We slurp that in as a new flag of a
247 type. This is used only in dwarf2read.c. */
248 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
249
250 /* * The debugging formats (especially STABS) do not contain enough
251 information to represent all Ada types---especially those whose
252 size depends on dynamic quantities. Therefore, the GNAT Ada
253 compiler includes extra information in the form of additional type
254 definitions connected by naming conventions. This flag indicates
255 that the type is an ordinary (unencoded) GDB type that has been
256 created from the necessary run-time information, and does not need
257 further interpretation. Optionally marks ordinary, fixed-size GDB
258 type. */
259
260 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
261
262 /* * This debug target supports TYPE_STUB(t). In the unsupported case
263 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
264 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
265 guessed the TYPE_STUB(t) value (see dwarfread.c). */
266
267 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
268
269 /* * Not textual. By default, GDB treats all single byte integers as
270 characters (or elements of strings) unless this flag is set. */
271
272 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
273
274 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
275 address is returned by this function call. TYPE_TARGET_TYPE
276 determines the final returned function type to be presented to
277 user. */
278
279 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
280
281 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
282 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
283 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
284
285 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
286 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
287 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
288
289 /* * True if this type was declared using the "class" keyword. This is
290 only valid for C++ structure and enum types. If false, a structure
291 was declared as a "struct"; if true it was declared "class". For
292 enum types, this is true when "enum class" or "enum struct" was
293 used to declare the type.. */
294
295 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
296
297 /* * True if this type is a "flag" enum. A flag enum is one where all
298 the values are pairwise disjoint when "and"ed together. This
299 affects how enum values are printed. */
300
301 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
302
303 /* * Constant type. If this is set, the corresponding type has a
304 const modifier. */
305
306 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
307
308 /* * Volatile type. If this is set, the corresponding type has a
309 volatile modifier. */
310
311 #define TYPE_VOLATILE(t) \
312 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
313
314 /* * Restrict type. If this is set, the corresponding type has a
315 restrict modifier. */
316
317 #define TYPE_RESTRICT(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
319
320 /* * Atomic type. If this is set, the corresponding type has an
321 _Atomic modifier. */
322
323 #define TYPE_ATOMIC(t) \
324 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
325
326 /* * True if this type represents either an lvalue or lvalue reference type. */
327
328 #define TYPE_IS_REFERENCE(t) \
329 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
330
331 /* * True if this type is allocatable. */
332 #define TYPE_IS_ALLOCATABLE(t) \
333 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
334
335 /* * True if this type has variant parts. */
336 #define TYPE_HAS_VARIANT_PARTS(t) \
337 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
338
339 /* * True if this type has a dynamic length. */
340 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
341 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
342
343 /* * Instruction-space delimited type. This is for Harvard architectures
344 which have separate instruction and data address spaces (and perhaps
345 others).
346
347 GDB usually defines a flat address space that is a superset of the
348 architecture's two (or more) address spaces, but this is an extension
349 of the architecture's model.
350
351 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
352 resides in instruction memory, even if its address (in the extended
353 flat address space) does not reflect this.
354
355 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
356 corresponding type resides in the data memory space, even if
357 this is not indicated by its (flat address space) address.
358
359 If neither flag is set, the default space for functions / methods
360 is instruction space, and for data objects is data memory. */
361
362 #define TYPE_CODE_SPACE(t) \
363 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
364
365 #define TYPE_DATA_SPACE(t) \
366 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
367
368 /* * Address class flags. Some environments provide for pointers
369 whose size is different from that of a normal pointer or address
370 types where the bits are interpreted differently than normal
371 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
372 target specific ways to represent these different types of address
373 classes. */
374
375 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
376 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
377 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
378 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
379 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
380 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
381 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
382 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
383
384 /* * Information about a single discriminant. */
385
386 struct discriminant_range
387 {
388 /* * The range of values for the variant. This is an inclusive
389 range. */
390 ULONGEST low, high;
391
392 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
393 is true if this should be an unsigned comparison; false for
394 signed. */
395 bool contains (ULONGEST value, bool is_unsigned) const
396 {
397 if (is_unsigned)
398 return value >= low && value <= high;
399 LONGEST valuel = (LONGEST) value;
400 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
401 }
402 };
403
404 struct variant_part;
405
406 /* * A single variant. A variant has a list of discriminant values.
407 When the discriminator matches one of these, the variant is
408 enabled. Each variant controls zero or more fields; and may also
409 control other variant parts as well. This struct corresponds to
410 DW_TAG_variant in DWARF. */
411
412 struct variant : allocate_on_obstack
413 {
414 /* * The discriminant ranges for this variant. */
415 gdb::array_view<discriminant_range> discriminants;
416
417 /* * The fields controlled by this variant. This is inclusive on
418 the low end and exclusive on the high end. A variant may not
419 control any fields, in which case the two values will be equal.
420 These are indexes into the type's array of fields. */
421 int first_field;
422 int last_field;
423
424 /* * Variant parts controlled by this variant. */
425 gdb::array_view<variant_part> parts;
426
427 /* * Return true if this is the default variant. The default
428 variant can be recognized because it has no associated
429 discriminants. */
430 bool is_default () const
431 {
432 return discriminants.empty ();
433 }
434
435 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
436 if this should be an unsigned comparison; false for signed. */
437 bool matches (ULONGEST value, bool is_unsigned) const;
438 };
439
440 /* * A variant part. Each variant part has an optional discriminant
441 and holds an array of variants. This struct corresponds to
442 DW_TAG_variant_part in DWARF. */
443
444 struct variant_part : allocate_on_obstack
445 {
446 /* * The index of the discriminant field in the outer type. This is
447 an index into the type's array of fields. If this is -1, there
448 is no discriminant, and only the default variant can be
449 considered to be selected. */
450 int discriminant_index;
451
452 /* * True if this discriminant is unsigned; false if signed. This
453 comes from the type of the discriminant. */
454 bool is_unsigned;
455
456 /* * The variants that are controlled by this variant part. Note
457 that these will always be sorted by field number. */
458 gdb::array_view<variant> variants;
459 };
460
461
462 enum dynamic_prop_kind
463 {
464 PROP_UNDEFINED, /* Not defined. */
465 PROP_CONST, /* Constant. */
466 PROP_ADDR_OFFSET, /* Address offset. */
467 PROP_LOCEXPR, /* Location expression. */
468 PROP_LOCLIST, /* Location list. */
469 PROP_VARIANT_PARTS, /* Variant parts. */
470 PROP_TYPE, /* Type. */
471 };
472
473 union dynamic_prop_data
474 {
475 /* Storage for constant property. */
476
477 LONGEST const_val;
478
479 /* Storage for dynamic property. */
480
481 void *baton;
482
483 /* Storage of variant parts for a type. A type with variant parts
484 has all its fields "linearized" -- stored in a single field
485 array, just as if they had all been declared that way. The
486 variant parts are attached via a dynamic property, and then are
487 used to control which fields end up in the final type during
488 dynamic type resolution. */
489
490 const gdb::array_view<variant_part> *variant_parts;
491
492 /* Once a variant type is resolved, we may want to be able to go
493 from the resolved type to the original type. In this case we
494 rewrite the property's kind and set this field. */
495
496 struct type *original_type;
497 };
498
499 /* * Used to store a dynamic property. */
500
501 struct dynamic_prop
502 {
503 dynamic_prop_kind kind () const
504 {
505 return m_kind;
506 }
507
508 void set_undefined ()
509 {
510 m_kind = PROP_UNDEFINED;
511 }
512
513 LONGEST const_val () const
514 {
515 gdb_assert (m_kind == PROP_CONST);
516
517 return m_data.const_val;
518 }
519
520 void set_const_val (LONGEST const_val)
521 {
522 m_kind = PROP_CONST;
523 m_data.const_val = const_val;
524 }
525
526 void *baton () const
527 {
528 gdb_assert (m_kind == PROP_LOCEXPR
529 || m_kind == PROP_LOCLIST
530 || m_kind == PROP_ADDR_OFFSET);
531
532 return m_data.baton;
533 }
534
535 void set_locexpr (void *baton)
536 {
537 m_kind = PROP_LOCEXPR;
538 m_data.baton = baton;
539 }
540
541 void set_loclist (void *baton)
542 {
543 m_kind = PROP_LOCLIST;
544 m_data.baton = baton;
545 }
546
547 void set_addr_offset (void *baton)
548 {
549 m_kind = PROP_ADDR_OFFSET;
550 m_data.baton = baton;
551 }
552
553 const gdb::array_view<variant_part> *variant_parts () const
554 {
555 gdb_assert (m_kind == PROP_VARIANT_PARTS);
556
557 return m_data.variant_parts;
558 }
559
560 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
561 {
562 m_kind = PROP_VARIANT_PARTS;
563 m_data.variant_parts = variant_parts;
564 }
565
566 struct type *original_type () const
567 {
568 gdb_assert (m_kind == PROP_TYPE);
569
570 return m_data.original_type;
571 }
572
573 void set_original_type (struct type *original_type)
574 {
575 m_kind = PROP_TYPE;
576 m_data.original_type = original_type;
577 }
578
579 /* Determine which field of the union dynamic_prop.data is used. */
580 enum dynamic_prop_kind m_kind;
581
582 /* Storage for dynamic or static value. */
583 union dynamic_prop_data m_data;
584 };
585
586 /* Compare two dynamic_prop objects for equality. dynamic_prop
587 instances are equal iff they have the same type and storage. */
588 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
589
590 /* Compare two dynamic_prop objects for inequality. */
591 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
592 {
593 return !(l == r);
594 }
595
596 /* * Define a type's dynamic property node kind. */
597 enum dynamic_prop_node_kind
598 {
599 /* A property providing a type's data location.
600 Evaluating this field yields to the location of an object's data. */
601 DYN_PROP_DATA_LOCATION,
602
603 /* A property representing DW_AT_allocated. The presence of this attribute
604 indicates that the object of the type can be allocated/deallocated. */
605 DYN_PROP_ALLOCATED,
606
607 /* A property representing DW_AT_associated. The presence of this attribute
608 indicated that the object of the type can be associated. */
609 DYN_PROP_ASSOCIATED,
610
611 /* A property providing an array's byte stride. */
612 DYN_PROP_BYTE_STRIDE,
613
614 /* A property holding variant parts. */
615 DYN_PROP_VARIANT_PARTS,
616
617 /* A property holding the size of the type. */
618 DYN_PROP_BYTE_SIZE,
619 };
620
621 /* * List for dynamic type attributes. */
622 struct dynamic_prop_list
623 {
624 /* The kind of dynamic prop in this node. */
625 enum dynamic_prop_node_kind prop_kind;
626
627 /* The dynamic property itself. */
628 struct dynamic_prop prop;
629
630 /* A pointer to the next dynamic property. */
631 struct dynamic_prop_list *next;
632 };
633
634 /* * Determine which field of the union main_type.fields[x].loc is
635 used. */
636
637 enum field_loc_kind
638 {
639 FIELD_LOC_KIND_BITPOS, /**< bitpos */
640 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
641 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
642 FIELD_LOC_KIND_PHYSNAME, /**< physname */
643 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
644 };
645
646 /* * A discriminant to determine which field in the
647 main_type.type_specific union is being used, if any.
648
649 For types such as TYPE_CODE_FLT, the use of this
650 discriminant is really redundant, as we know from the type code
651 which field is going to be used. As such, it would be possible to
652 reduce the size of this enum in order to save a bit or two for
653 other fields of struct main_type. But, since we still have extra
654 room , and for the sake of clarity and consistency, we treat all fields
655 of the union the same way. */
656
657 enum type_specific_kind
658 {
659 TYPE_SPECIFIC_NONE,
660 TYPE_SPECIFIC_CPLUS_STUFF,
661 TYPE_SPECIFIC_GNAT_STUFF,
662 TYPE_SPECIFIC_FLOATFORMAT,
663 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
664 TYPE_SPECIFIC_FUNC,
665 TYPE_SPECIFIC_SELF_TYPE
666 };
667
668 union type_owner
669 {
670 struct objfile *objfile;
671 struct gdbarch *gdbarch;
672 };
673
674 union field_location
675 {
676 /* * Position of this field, counting in bits from start of
677 containing structure. For big-endian targets, it is the bit
678 offset to the MSB. For little-endian targets, it is the bit
679 offset to the LSB. */
680
681 LONGEST bitpos;
682
683 /* * Enum value. */
684 LONGEST enumval;
685
686 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
687 physaddr is the location (in the target) of the static
688 field. Otherwise, physname is the mangled label of the
689 static field. */
690
691 CORE_ADDR physaddr;
692 const char *physname;
693
694 /* * The field location can be computed by evaluating the
695 following DWARF block. Its DATA is allocated on
696 objfile_obstack - no CU load is needed to access it. */
697
698 struct dwarf2_locexpr_baton *dwarf_block;
699 };
700
701 struct field
702 {
703 struct type *type () const
704 {
705 return this->m_type;
706 }
707
708 void set_type (struct type *type)
709 {
710 this->m_type = type;
711 }
712
713 union field_location loc;
714
715 /* * For a function or member type, this is 1 if the argument is
716 marked artificial. Artificial arguments should not be shown
717 to the user. For TYPE_CODE_RANGE it is set if the specific
718 bound is not defined. */
719
720 unsigned int artificial : 1;
721
722 /* * Discriminant for union field_location. */
723
724 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
725
726 /* * Size of this field, in bits, or zero if not packed.
727 If non-zero in an array type, indicates the element size in
728 bits (used only in Ada at the moment).
729 For an unpacked field, the field's type's length
730 says how many bytes the field occupies. */
731
732 unsigned int bitsize : 28;
733
734 /* * In a struct or union type, type of this field.
735 - In a function or member type, type of this argument.
736 - In an array type, the domain-type of the array. */
737
738 struct type *m_type;
739
740 /* * Name of field, value or argument.
741 NULL for range bounds, array domains, and member function
742 arguments. */
743
744 const char *name;
745 };
746
747 struct range_bounds
748 {
749 ULONGEST bit_stride () const
750 {
751 if (this->flag_is_byte_stride)
752 return this->stride.const_val () * 8;
753 else
754 return this->stride.const_val ();
755 }
756
757 /* * Low bound of range. */
758
759 struct dynamic_prop low;
760
761 /* * High bound of range. */
762
763 struct dynamic_prop high;
764
765 /* The stride value for this range. This can be stored in bits or bytes
766 based on the value of BYTE_STRIDE_P. It is optional to have a stride
767 value, if this range has no stride value defined then this will be set
768 to the constant zero. */
769
770 struct dynamic_prop stride;
771
772 /* * The bias. Sometimes a range value is biased before storage.
773 The bias is added to the stored bits to form the true value. */
774
775 LONGEST bias;
776
777 /* True if HIGH range bound contains the number of elements in the
778 subrange. This affects how the final high bound is computed. */
779
780 unsigned int flag_upper_bound_is_count : 1;
781
782 /* True if LOW or/and HIGH are resolved into a static bound from
783 a dynamic one. */
784
785 unsigned int flag_bound_evaluated : 1;
786
787 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
788
789 unsigned int flag_is_byte_stride : 1;
790 };
791
792 /* Compare two range_bounds objects for equality. Simply does
793 memberwise comparison. */
794 extern bool operator== (const range_bounds &l, const range_bounds &r);
795
796 /* Compare two range_bounds objects for inequality. */
797 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
798 {
799 return !(l == r);
800 }
801
802 union type_specific
803 {
804 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
805 point to cplus_struct_default, a default static instance of a
806 struct cplus_struct_type. */
807
808 struct cplus_struct_type *cplus_stuff;
809
810 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
811 provides additional information. */
812
813 struct gnat_aux_type *gnat_stuff;
814
815 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
816 floatformat object that describes the floating-point value
817 that resides within the type. */
818
819 const struct floatformat *floatformat;
820
821 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
822
823 struct func_type *func_stuff;
824
825 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
826 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
827 is a member of. */
828
829 struct type *self_type;
830 };
831
832 /* * Main structure representing a type in GDB.
833
834 This structure is space-critical. Its layout has been tweaked to
835 reduce the space used. */
836
837 struct main_type
838 {
839 /* * Code for kind of type. */
840
841 ENUM_BITFIELD(type_code) code : 8;
842
843 /* * Flags about this type. These fields appear at this location
844 because they packs nicely here. See the TYPE_* macros for
845 documentation about these fields. */
846
847 unsigned int m_flag_unsigned : 1;
848 unsigned int m_flag_nosign : 1;
849 unsigned int m_flag_stub : 1;
850 unsigned int flag_target_stub : 1;
851 unsigned int flag_prototyped : 1;
852 unsigned int flag_varargs : 1;
853 unsigned int flag_vector : 1;
854 unsigned int flag_stub_supported : 1;
855 unsigned int flag_gnu_ifunc : 1;
856 unsigned int flag_fixed_instance : 1;
857 unsigned int flag_objfile_owned : 1;
858 unsigned int flag_endianity_not_default : 1;
859
860 /* * True if this type was declared with "class" rather than
861 "struct". */
862
863 unsigned int flag_declared_class : 1;
864
865 /* * True if this is an enum type with disjoint values. This
866 affects how the enum is printed. */
867
868 unsigned int flag_flag_enum : 1;
869
870 /* * A discriminant telling us which field of the type_specific
871 union is being used for this type, if any. */
872
873 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
874
875 /* * Number of fields described for this type. This field appears
876 at this location because it packs nicely here. */
877
878 short nfields;
879
880 /* * Name of this type, or NULL if none.
881
882 This is used for printing only. For looking up a name, look for
883 a symbol in the VAR_DOMAIN. This is generally allocated in the
884 objfile's obstack. However coffread.c uses malloc. */
885
886 const char *name;
887
888 /* * Every type is now associated with a particular objfile, and the
889 type is allocated on the objfile_obstack for that objfile. One
890 problem however, is that there are times when gdb allocates new
891 types while it is not in the process of reading symbols from a
892 particular objfile. Fortunately, these happen when the type
893 being created is a derived type of an existing type, such as in
894 lookup_pointer_type(). So we can just allocate the new type
895 using the same objfile as the existing type, but to do this we
896 need a backpointer to the objfile from the existing type. Yes
897 this is somewhat ugly, but without major overhaul of the internal
898 type system, it can't be avoided for now. */
899
900 union type_owner owner;
901
902 /* * For a pointer type, describes the type of object pointed to.
903 - For an array type, describes the type of the elements.
904 - For a function or method type, describes the type of the return value.
905 - For a range type, describes the type of the full range.
906 - For a complex type, describes the type of each coordinate.
907 - For a special record or union type encoding a dynamic-sized type
908 in GNAT, a memoized pointer to a corresponding static version of
909 the type.
910 - Unused otherwise. */
911
912 struct type *target_type;
913
914 /* * For structure and union types, a description of each field.
915 For set and pascal array types, there is one "field",
916 whose type is the domain type of the set or array.
917 For range types, there are two "fields",
918 the minimum and maximum values (both inclusive).
919 For enum types, each possible value is described by one "field".
920 For a function or method type, a "field" for each parameter.
921 For C++ classes, there is one field for each base class (if it is
922 a derived class) plus one field for each class data member. Member
923 functions are recorded elsewhere.
924
925 Using a pointer to a separate array of fields
926 allows all types to have the same size, which is useful
927 because we can allocate the space for a type before
928 we know what to put in it. */
929
930 union
931 {
932 struct field *fields;
933
934 /* * Union member used for range types. */
935
936 struct range_bounds *bounds;
937
938 /* If this is a scalar type, then this is its corresponding
939 complex type. */
940 struct type *complex_type;
941
942 } flds_bnds;
943
944 /* * Slot to point to additional language-specific fields of this
945 type. */
946
947 union type_specific type_specific;
948
949 /* * Contains all dynamic type properties. */
950 struct dynamic_prop_list *dyn_prop_list;
951 };
952
953 /* * Number of bits allocated for alignment. */
954
955 #define TYPE_ALIGN_BITS 8
956
957 /* * A ``struct type'' describes a particular instance of a type, with
958 some particular qualification. */
959
960 struct type
961 {
962 /* Get the type code of this type.
963
964 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
965 type, you need to do `check_typedef (type)->code ()`. */
966 type_code code () const
967 {
968 return this->main_type->code;
969 }
970
971 /* Set the type code of this type. */
972 void set_code (type_code code)
973 {
974 this->main_type->code = code;
975 }
976
977 /* Get the name of this type. */
978 const char *name () const
979 {
980 return this->main_type->name;
981 }
982
983 /* Set the name of this type. */
984 void set_name (const char *name)
985 {
986 this->main_type->name = name;
987 }
988
989 /* Get the number of fields of this type. */
990 int num_fields () const
991 {
992 return this->main_type->nfields;
993 }
994
995 /* Set the number of fields of this type. */
996 void set_num_fields (int num_fields)
997 {
998 this->main_type->nfields = num_fields;
999 }
1000
1001 /* Get the fields array of this type. */
1002 struct field *fields () const
1003 {
1004 return this->main_type->flds_bnds.fields;
1005 }
1006
1007 /* Get the field at index IDX. */
1008 struct field &field (int idx) const
1009 {
1010 return this->fields ()[idx];
1011 }
1012
1013 /* Set the fields array of this type. */
1014 void set_fields (struct field *fields)
1015 {
1016 this->main_type->flds_bnds.fields = fields;
1017 }
1018
1019 type *index_type () const
1020 {
1021 return this->field (0).type ();
1022 }
1023
1024 void set_index_type (type *index_type)
1025 {
1026 this->field (0).set_type (index_type);
1027 }
1028
1029 /* Get the bounds bounds of this type. The type must be a range type. */
1030 range_bounds *bounds () const
1031 {
1032 switch (this->code ())
1033 {
1034 case TYPE_CODE_RANGE:
1035 return this->main_type->flds_bnds.bounds;
1036
1037 case TYPE_CODE_ARRAY:
1038 case TYPE_CODE_STRING:
1039 return this->index_type ()->bounds ();
1040
1041 default:
1042 gdb_assert_not_reached
1043 ("type::bounds called on type with invalid code");
1044 }
1045 }
1046
1047 /* Set the bounds of this type. The type must be a range type. */
1048 void set_bounds (range_bounds *bounds)
1049 {
1050 gdb_assert (this->code () == TYPE_CODE_RANGE);
1051
1052 this->main_type->flds_bnds.bounds = bounds;
1053 }
1054
1055 ULONGEST bit_stride () const
1056 {
1057 return this->bounds ()->bit_stride ();
1058 }
1059
1060 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1061 the type is signed (unless TYPE_NOSIGN is set). */
1062
1063 bool is_unsigned () const
1064 {
1065 return this->main_type->m_flag_unsigned;
1066 }
1067
1068 void set_is_unsigned (bool is_unsigned)
1069 {
1070 this->main_type->m_flag_unsigned = is_unsigned;
1071 }
1072
1073 /* No sign for this type. In C++, "char", "signed char", and
1074 "unsigned char" are distinct types; so we need an extra flag to
1075 indicate the absence of a sign! */
1076
1077 bool has_no_signedness () const
1078 {
1079 return this->main_type->m_flag_nosign;
1080 }
1081
1082 void set_has_no_signedness (bool has_no_signedness)
1083 {
1084 this->main_type->m_flag_nosign = has_no_signedness;
1085 }
1086
1087 bool is_stub () const
1088 {
1089 return this->main_type->m_flag_stub;
1090 }
1091
1092 void set_is_stub (bool is_stub)
1093 {
1094 this->main_type->m_flag_stub = is_stub;
1095 }
1096
1097 /* * Return the dynamic property of the requested KIND from this type's
1098 list of dynamic properties. */
1099 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1100
1101 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1102 property to this type.
1103
1104 This function assumes that this type is objfile-owned. */
1105 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1106
1107 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1108 void remove_dyn_prop (dynamic_prop_node_kind kind);
1109
1110 /* * Type that is a pointer to this type.
1111 NULL if no such pointer-to type is known yet.
1112 The debugger may add the address of such a type
1113 if it has to construct one later. */
1114
1115 struct type *pointer_type;
1116
1117 /* * C++: also need a reference type. */
1118
1119 struct type *reference_type;
1120
1121 /* * A C++ rvalue reference type added in C++11. */
1122
1123 struct type *rvalue_reference_type;
1124
1125 /* * Variant chain. This points to a type that differs from this
1126 one only in qualifiers and length. Currently, the possible
1127 qualifiers are const, volatile, code-space, data-space, and
1128 address class. The length may differ only when one of the
1129 address class flags are set. The variants are linked in a
1130 circular ring and share MAIN_TYPE. */
1131
1132 struct type *chain;
1133
1134 /* * The alignment for this type. Zero means that the alignment was
1135 not specified in the debug info. Note that this is stored in a
1136 funny way: as the log base 2 (plus 1) of the alignment; so a
1137 value of 1 means the alignment is 1, and a value of 9 means the
1138 alignment is 256. */
1139
1140 unsigned align_log2 : TYPE_ALIGN_BITS;
1141
1142 /* * Flags specific to this instance of the type, indicating where
1143 on the ring we are.
1144
1145 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1146 binary or-ed with the target type, with a special case for
1147 address class and space class. For example if this typedef does
1148 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1149 instance flags are completely inherited from the target type. No
1150 qualifiers can be cleared by the typedef. See also
1151 check_typedef. */
1152 unsigned instance_flags : 9;
1153
1154 /* * Length of storage for a value of this type. The value is the
1155 expression in host bytes of what sizeof(type) would return. This
1156 size includes padding. For example, an i386 extended-precision
1157 floating point value really only occupies ten bytes, but most
1158 ABI's declare its size to be 12 bytes, to preserve alignment.
1159 A `struct type' representing such a floating-point type would
1160 have a `length' value of 12, even though the last two bytes are
1161 unused.
1162
1163 Since this field is expressed in host bytes, its value is appropriate
1164 to pass to memcpy and such (it is assumed that GDB itself always runs
1165 on an 8-bits addressable architecture). However, when using it for
1166 target address arithmetic (e.g. adding it to a target address), the
1167 type_length_units function should be used in order to get the length
1168 expressed in target addressable memory units. */
1169
1170 ULONGEST length;
1171
1172 /* * Core type, shared by a group of qualified types. */
1173
1174 struct main_type *main_type;
1175 };
1176
1177 struct fn_fieldlist
1178 {
1179
1180 /* * The overloaded name.
1181 This is generally allocated in the objfile's obstack.
1182 However stabsread.c sometimes uses malloc. */
1183
1184 const char *name;
1185
1186 /* * The number of methods with this name. */
1187
1188 int length;
1189
1190 /* * The list of methods. */
1191
1192 struct fn_field *fn_fields;
1193 };
1194
1195
1196
1197 struct fn_field
1198 {
1199 /* * If is_stub is clear, this is the mangled name which we can look
1200 up to find the address of the method (FIXME: it would be cleaner
1201 to have a pointer to the struct symbol here instead).
1202
1203 If is_stub is set, this is the portion of the mangled name which
1204 specifies the arguments. For example, "ii", if there are two int
1205 arguments, or "" if there are no arguments. See gdb_mangle_name
1206 for the conversion from this format to the one used if is_stub is
1207 clear. */
1208
1209 const char *physname;
1210
1211 /* * The function type for the method.
1212
1213 (This comment used to say "The return value of the method", but
1214 that's wrong. The function type is expected here, i.e. something
1215 with TYPE_CODE_METHOD, and *not* the return-value type). */
1216
1217 struct type *type;
1218
1219 /* * For virtual functions. First baseclass that defines this
1220 virtual function. */
1221
1222 struct type *fcontext;
1223
1224 /* Attributes. */
1225
1226 unsigned int is_const:1;
1227 unsigned int is_volatile:1;
1228 unsigned int is_private:1;
1229 unsigned int is_protected:1;
1230 unsigned int is_artificial:1;
1231
1232 /* * A stub method only has some fields valid (but they are enough
1233 to reconstruct the rest of the fields). */
1234
1235 unsigned int is_stub:1;
1236
1237 /* * True if this function is a constructor, false otherwise. */
1238
1239 unsigned int is_constructor : 1;
1240
1241 /* * True if this function is deleted, false otherwise. */
1242
1243 unsigned int is_deleted : 1;
1244
1245 /* * DW_AT_defaulted attribute for this function. The value is one
1246 of the DW_DEFAULTED constants. */
1247
1248 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1249
1250 /* * Unused. */
1251
1252 unsigned int dummy:6;
1253
1254 /* * Index into that baseclass's virtual function table, minus 2;
1255 else if static: VOFFSET_STATIC; else: 0. */
1256
1257 unsigned int voffset:16;
1258
1259 #define VOFFSET_STATIC 1
1260
1261 };
1262
1263 struct decl_field
1264 {
1265 /* * Unqualified name to be prefixed by owning class qualified
1266 name. */
1267
1268 const char *name;
1269
1270 /* * Type this typedef named NAME represents. */
1271
1272 struct type *type;
1273
1274 /* * True if this field was declared protected, false otherwise. */
1275 unsigned int is_protected : 1;
1276
1277 /* * True if this field was declared private, false otherwise. */
1278 unsigned int is_private : 1;
1279 };
1280
1281 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1282 TYPE_CODE_UNION nodes. */
1283
1284 struct cplus_struct_type
1285 {
1286 /* * Number of base classes this type derives from. The
1287 baseclasses are stored in the first N_BASECLASSES fields
1288 (i.e. the `fields' field of the struct type). The only fields
1289 of struct field that are used are: type, name, loc.bitpos. */
1290
1291 short n_baseclasses;
1292
1293 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1294 All access to this field must be through TYPE_VPTR_FIELDNO as one
1295 thing it does is check whether the field has been initialized.
1296 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1297 which for portability reasons doesn't initialize this field.
1298 TYPE_VPTR_FIELDNO returns -1 for this case.
1299
1300 If -1, we were unable to find the virtual function table pointer in
1301 initial symbol reading, and get_vptr_fieldno should be called to find
1302 it if possible. get_vptr_fieldno will update this field if possible.
1303 Otherwise the value is left at -1.
1304
1305 Unused if this type does not have virtual functions. */
1306
1307 short vptr_fieldno;
1308
1309 /* * Number of methods with unique names. All overloaded methods
1310 with the same name count only once. */
1311
1312 short nfn_fields;
1313
1314 /* * Number of template arguments. */
1315
1316 unsigned short n_template_arguments;
1317
1318 /* * One if this struct is a dynamic class, as defined by the
1319 Itanium C++ ABI: if it requires a virtual table pointer,
1320 because it or any of its base classes have one or more virtual
1321 member functions or virtual base classes. Minus one if not
1322 dynamic. Zero if not yet computed. */
1323
1324 int is_dynamic : 2;
1325
1326 /* * The calling convention for this type, fetched from the
1327 DW_AT_calling_convention attribute. The value is one of the
1328 DW_CC constants. */
1329
1330 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1331
1332 /* * The base class which defined the virtual function table pointer. */
1333
1334 struct type *vptr_basetype;
1335
1336 /* * For derived classes, the number of base classes is given by
1337 n_baseclasses and virtual_field_bits is a bit vector containing
1338 one bit per base class. If the base class is virtual, the
1339 corresponding bit will be set.
1340 I.E, given:
1341
1342 class A{};
1343 class B{};
1344 class C : public B, public virtual A {};
1345
1346 B is a baseclass of C; A is a virtual baseclass for C.
1347 This is a C++ 2.0 language feature. */
1348
1349 B_TYPE *virtual_field_bits;
1350
1351 /* * For classes with private fields, the number of fields is
1352 given by nfields and private_field_bits is a bit vector
1353 containing one bit per field.
1354
1355 If the field is private, the corresponding bit will be set. */
1356
1357 B_TYPE *private_field_bits;
1358
1359 /* * For classes with protected fields, the number of fields is
1360 given by nfields and protected_field_bits is a bit vector
1361 containing one bit per field.
1362
1363 If the field is private, the corresponding bit will be set. */
1364
1365 B_TYPE *protected_field_bits;
1366
1367 /* * For classes with fields to be ignored, either this is
1368 optimized out or this field has length 0. */
1369
1370 B_TYPE *ignore_field_bits;
1371
1372 /* * For classes, structures, and unions, a description of each
1373 field, which consists of an overloaded name, followed by the
1374 types of arguments that the method expects, and then the name
1375 after it has been renamed to make it distinct.
1376
1377 fn_fieldlists points to an array of nfn_fields of these. */
1378
1379 struct fn_fieldlist *fn_fieldlists;
1380
1381 /* * typedefs defined inside this class. typedef_field points to
1382 an array of typedef_field_count elements. */
1383
1384 struct decl_field *typedef_field;
1385
1386 unsigned typedef_field_count;
1387
1388 /* * The nested types defined by this type. nested_types points to
1389 an array of nested_types_count elements. */
1390
1391 struct decl_field *nested_types;
1392
1393 unsigned nested_types_count;
1394
1395 /* * The template arguments. This is an array with
1396 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1397 classes. */
1398
1399 struct symbol **template_arguments;
1400 };
1401
1402 /* * Struct used to store conversion rankings. */
1403
1404 struct rank
1405 {
1406 short rank;
1407
1408 /* * When two conversions are of the same type and therefore have
1409 the same rank, subrank is used to differentiate the two.
1410
1411 Eg: Two derived-class-pointer to base-class-pointer conversions
1412 would both have base pointer conversion rank, but the
1413 conversion with the shorter distance to the ancestor is
1414 preferable. 'subrank' would be used to reflect that. */
1415
1416 short subrank;
1417 };
1418
1419 /* * Used for ranking a function for overload resolution. */
1420
1421 typedef std::vector<rank> badness_vector;
1422
1423 /* * GNAT Ada-specific information for various Ada types. */
1424
1425 struct gnat_aux_type
1426 {
1427 /* * Parallel type used to encode information about dynamic types
1428 used in Ada (such as variant records, variable-size array,
1429 etc). */
1430 struct type* descriptive_type;
1431 };
1432
1433 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1434
1435 struct func_type
1436 {
1437 /* * The calling convention for targets supporting multiple ABIs.
1438 Right now this is only fetched from the Dwarf-2
1439 DW_AT_calling_convention attribute. The value is one of the
1440 DW_CC constants. */
1441
1442 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1443
1444 /* * Whether this function normally returns to its caller. It is
1445 set from the DW_AT_noreturn attribute if set on the
1446 DW_TAG_subprogram. */
1447
1448 unsigned int is_noreturn : 1;
1449
1450 /* * Only those DW_TAG_call_site's in this function that have
1451 DW_AT_call_tail_call set are linked in this list. Function
1452 without its tail call list complete
1453 (DW_AT_call_all_tail_calls or its superset
1454 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1455 DW_TAG_call_site's exist in such function. */
1456
1457 struct call_site *tail_call_list;
1458
1459 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1460 contains the method. */
1461
1462 struct type *self_type;
1463 };
1464
1465 /* struct call_site_parameter can be referenced in callees by several ways. */
1466
1467 enum call_site_parameter_kind
1468 {
1469 /* * Use field call_site_parameter.u.dwarf_reg. */
1470 CALL_SITE_PARAMETER_DWARF_REG,
1471
1472 /* * Use field call_site_parameter.u.fb_offset. */
1473 CALL_SITE_PARAMETER_FB_OFFSET,
1474
1475 /* * Use field call_site_parameter.u.param_offset. */
1476 CALL_SITE_PARAMETER_PARAM_OFFSET
1477 };
1478
1479 struct call_site_target
1480 {
1481 union field_location loc;
1482
1483 /* * Discriminant for union field_location. */
1484
1485 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1486 };
1487
1488 union call_site_parameter_u
1489 {
1490 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1491 as DWARF register number, for register passed
1492 parameters. */
1493
1494 int dwarf_reg;
1495
1496 /* * Offset from the callee's frame base, for stack passed
1497 parameters. This equals offset from the caller's stack
1498 pointer. */
1499
1500 CORE_ADDR fb_offset;
1501
1502 /* * Offset relative to the start of this PER_CU to
1503 DW_TAG_formal_parameter which is referenced by both
1504 caller and the callee. */
1505
1506 cu_offset param_cu_off;
1507 };
1508
1509 struct call_site_parameter
1510 {
1511 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1512
1513 union call_site_parameter_u u;
1514
1515 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1516
1517 const gdb_byte *value;
1518 size_t value_size;
1519
1520 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1521 It may be NULL if not provided by DWARF. */
1522
1523 const gdb_byte *data_value;
1524 size_t data_value_size;
1525 };
1526
1527 /* * A place where a function gets called from, represented by
1528 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1529
1530 struct call_site
1531 {
1532 /* * Address of the first instruction after this call. It must be
1533 the first field as we overload core_addr_hash and core_addr_eq
1534 for it. */
1535
1536 CORE_ADDR pc;
1537
1538 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1539
1540 struct call_site *tail_call_next;
1541
1542 /* * Describe DW_AT_call_target. Missing attribute uses
1543 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1544
1545 struct call_site_target target;
1546
1547 /* * Size of the PARAMETER array. */
1548
1549 unsigned parameter_count;
1550
1551 /* * CU of the function where the call is located. It gets used
1552 for DWARF blocks execution in the parameter array below. */
1553
1554 dwarf2_per_cu_data *per_cu;
1555
1556 /* objfile of the function where the call is located. */
1557
1558 dwarf2_per_objfile *per_objfile;
1559
1560 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1561
1562 struct call_site_parameter parameter[1];
1563 };
1564
1565 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1566 static structure. */
1567
1568 extern const struct cplus_struct_type cplus_struct_default;
1569
1570 extern void allocate_cplus_struct_type (struct type *);
1571
1572 #define INIT_CPLUS_SPECIFIC(type) \
1573 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1574 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1575 &cplus_struct_default)
1576
1577 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1578
1579 #define HAVE_CPLUS_STRUCT(type) \
1580 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1581 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1582
1583 #define INIT_NONE_SPECIFIC(type) \
1584 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1585 TYPE_MAIN_TYPE (type)->type_specific = {})
1586
1587 extern const struct gnat_aux_type gnat_aux_default;
1588
1589 extern void allocate_gnat_aux_type (struct type *);
1590
1591 #define INIT_GNAT_SPECIFIC(type) \
1592 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1593 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1594 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1595 /* * A macro that returns non-zero if the type-specific data should be
1596 read as "gnat-stuff". */
1597 #define HAVE_GNAT_AUX_INFO(type) \
1598 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1599
1600 /* * True if TYPE is known to be an Ada type of some kind. */
1601 #define ADA_TYPE_P(type) \
1602 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1603 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1604 && TYPE_FIXED_INSTANCE (type)))
1605
1606 #define INIT_FUNC_SPECIFIC(type) \
1607 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1608 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1609 TYPE_ZALLOC (type, \
1610 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1611
1612 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1613 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1614 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1615 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1616 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1617 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1618 #define TYPE_CHAIN(thistype) (thistype)->chain
1619 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1620 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1621 so you only have to call check_typedef once. Since allocate_value
1622 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1623 #define TYPE_LENGTH(thistype) (thistype)->length
1624
1625 /* * Return the alignment of the type in target addressable memory
1626 units, or 0 if no alignment was specified. */
1627 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1628
1629 /* * Return the alignment of the type in target addressable memory
1630 units, or 0 if no alignment was specified. */
1631 extern unsigned type_raw_align (struct type *);
1632
1633 /* * Return the alignment of the type in target addressable memory
1634 units. Return 0 if the alignment cannot be determined; but note
1635 that this makes an effort to compute the alignment even it it was
1636 not specified in the debug info. */
1637 extern unsigned type_align (struct type *);
1638
1639 /* * Set the alignment of the type. The alignment must be a power of
1640 2. Returns false if the given value does not fit in the available
1641 space in struct type. */
1642 extern bool set_type_align (struct type *, ULONGEST);
1643
1644 /* Property accessors for the type data location. */
1645 #define TYPE_DATA_LOCATION(thistype) \
1646 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1647 #define TYPE_DATA_LOCATION_BATON(thistype) \
1648 TYPE_DATA_LOCATION (thistype)->data.baton
1649 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1650 (TYPE_DATA_LOCATION (thistype)->const_val ())
1651 #define TYPE_DATA_LOCATION_KIND(thistype) \
1652 (TYPE_DATA_LOCATION (thistype)->kind ())
1653 #define TYPE_DYNAMIC_LENGTH(thistype) \
1654 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1655
1656 /* Property accessors for the type allocated/associated. */
1657 #define TYPE_ALLOCATED_PROP(thistype) \
1658 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1659 #define TYPE_ASSOCIATED_PROP(thistype) \
1660 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1661
1662 /* C++ */
1663
1664 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1665 /* Do not call this, use TYPE_SELF_TYPE. */
1666 extern struct type *internal_type_self_type (struct type *);
1667 extern void set_type_self_type (struct type *, struct type *);
1668
1669 extern int internal_type_vptr_fieldno (struct type *);
1670 extern void set_type_vptr_fieldno (struct type *, int);
1671 extern struct type *internal_type_vptr_basetype (struct type *);
1672 extern void set_type_vptr_basetype (struct type *, struct type *);
1673 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1674 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1675
1676 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1677 #define TYPE_SPECIFIC_FIELD(thistype) \
1678 TYPE_MAIN_TYPE(thistype)->type_specific_field
1679 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1680 where we're trying to print an Ada array using the C language.
1681 In that case, there is no "cplus_stuff", but the C language assumes
1682 that there is. What we do, in that case, is pretend that there is
1683 an implicit one which is the default cplus stuff. */
1684 #define TYPE_CPLUS_SPECIFIC(thistype) \
1685 (!HAVE_CPLUS_STRUCT(thistype) \
1686 ? (struct cplus_struct_type*)&cplus_struct_default \
1687 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1688 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1689 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1690 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1691 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1692 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1693 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1694 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1695 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1696 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1697 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1698 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1699 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1700 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1701 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1702 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1703 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1704
1705 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1706 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1707 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1708
1709 #define FIELD_NAME(thisfld) ((thisfld).name)
1710 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1711 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1712 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1713 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1714 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1715 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1716 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1717 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1718 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1719 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1720 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1721 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1722 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1723 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1724 #define SET_FIELD_PHYSNAME(thisfld, name) \
1725 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1726 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1727 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1728 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1729 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1730 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1731 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1732 FIELD_DWARF_BLOCK (thisfld) = (addr))
1733 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1734 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1735
1736 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1737 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1738 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1739 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1740 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1741 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1742 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1743 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1744 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1745 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1746
1747 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1748 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1749 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1750 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1751 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1752 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1753 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1754 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1755 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1756 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1757 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1758 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1759 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1760 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1761 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1762 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1763 #define TYPE_FIELD_PRIVATE(thistype, n) \
1764 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1765 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1766 #define TYPE_FIELD_PROTECTED(thistype, n) \
1767 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1768 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1769 #define TYPE_FIELD_IGNORE(thistype, n) \
1770 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1771 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1772 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1773 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1774 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1775
1776 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1777 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1778 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1779 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1780 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1781
1782 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1783 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1784 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1785 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1786 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1787 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1788
1789 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1790 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1791 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1792 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1793 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1794 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1795 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1796 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1797 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1798 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1799 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1800 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1801 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1802 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1803 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1804 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1805 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1806
1807 /* Accessors for typedefs defined by a class. */
1808 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1809 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1810 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1811 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1812 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1813 TYPE_TYPEDEF_FIELD (thistype, n).name
1814 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1815 TYPE_TYPEDEF_FIELD (thistype, n).type
1816 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1817 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1818 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1819 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1820 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1821 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1822
1823 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1824 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1825 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1826 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1827 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1828 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1829 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1830 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1831 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1832 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1833 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1834 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1835 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1836 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1837
1838 #define TYPE_IS_OPAQUE(thistype) \
1839 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1840 || ((thistype)->code () == TYPE_CODE_UNION)) \
1841 && ((thistype)->num_fields () == 0) \
1842 && (!HAVE_CPLUS_STRUCT (thistype) \
1843 || TYPE_NFN_FIELDS (thistype) == 0) \
1844 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1845
1846 /* * A helper macro that returns the name of a type or "unnamed type"
1847 if the type has no name. */
1848
1849 #define TYPE_SAFE_NAME(type) \
1850 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1851
1852 /* * A helper macro that returns the name of an error type. If the
1853 type has a name, it is used; otherwise, a default is used. */
1854
1855 #define TYPE_ERROR_NAME(type) \
1856 (type->name () ? type->name () : _("<error type>"))
1857
1858 /* Given TYPE, return its floatformat. */
1859 const struct floatformat *floatformat_from_type (const struct type *type);
1860
1861 struct builtin_type
1862 {
1863 /* Integral types. */
1864
1865 /* Implicit size/sign (based on the architecture's ABI). */
1866 struct type *builtin_void;
1867 struct type *builtin_char;
1868 struct type *builtin_short;
1869 struct type *builtin_int;
1870 struct type *builtin_long;
1871 struct type *builtin_signed_char;
1872 struct type *builtin_unsigned_char;
1873 struct type *builtin_unsigned_short;
1874 struct type *builtin_unsigned_int;
1875 struct type *builtin_unsigned_long;
1876 struct type *builtin_bfloat16;
1877 struct type *builtin_half;
1878 struct type *builtin_float;
1879 struct type *builtin_double;
1880 struct type *builtin_long_double;
1881 struct type *builtin_complex;
1882 struct type *builtin_double_complex;
1883 struct type *builtin_string;
1884 struct type *builtin_bool;
1885 struct type *builtin_long_long;
1886 struct type *builtin_unsigned_long_long;
1887 struct type *builtin_decfloat;
1888 struct type *builtin_decdouble;
1889 struct type *builtin_declong;
1890
1891 /* "True" character types.
1892 We use these for the '/c' print format, because c_char is just a
1893 one-byte integral type, which languages less laid back than C
1894 will print as ... well, a one-byte integral type. */
1895 struct type *builtin_true_char;
1896 struct type *builtin_true_unsigned_char;
1897
1898 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1899 is for when an architecture needs to describe a register that has
1900 no size. */
1901 struct type *builtin_int0;
1902 struct type *builtin_int8;
1903 struct type *builtin_uint8;
1904 struct type *builtin_int16;
1905 struct type *builtin_uint16;
1906 struct type *builtin_int24;
1907 struct type *builtin_uint24;
1908 struct type *builtin_int32;
1909 struct type *builtin_uint32;
1910 struct type *builtin_int64;
1911 struct type *builtin_uint64;
1912 struct type *builtin_int128;
1913 struct type *builtin_uint128;
1914
1915 /* Wide character types. */
1916 struct type *builtin_char16;
1917 struct type *builtin_char32;
1918 struct type *builtin_wchar;
1919
1920 /* Pointer types. */
1921
1922 /* * `pointer to data' type. Some target platforms use an implicitly
1923 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1924 struct type *builtin_data_ptr;
1925
1926 /* * `pointer to function (returning void)' type. Harvard
1927 architectures mean that ABI function and code pointers are not
1928 interconvertible. Similarly, since ANSI, C standards have
1929 explicitly said that pointers to functions and pointers to data
1930 are not interconvertible --- that is, you can't cast a function
1931 pointer to void * and back, and expect to get the same value.
1932 However, all function pointer types are interconvertible, so void
1933 (*) () can server as a generic function pointer. */
1934
1935 struct type *builtin_func_ptr;
1936
1937 /* * `function returning pointer to function (returning void)' type.
1938 The final void return type is not significant for it. */
1939
1940 struct type *builtin_func_func;
1941
1942 /* Special-purpose types. */
1943
1944 /* * This type is used to represent a GDB internal function. */
1945
1946 struct type *internal_fn;
1947
1948 /* * This type is used to represent an xmethod. */
1949 struct type *xmethod;
1950 };
1951
1952 /* * Return the type table for the specified architecture. */
1953
1954 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1955
1956 /* * Per-objfile types used by symbol readers. */
1957
1958 struct objfile_type
1959 {
1960 /* Basic types based on the objfile architecture. */
1961 struct type *builtin_void;
1962 struct type *builtin_char;
1963 struct type *builtin_short;
1964 struct type *builtin_int;
1965 struct type *builtin_long;
1966 struct type *builtin_long_long;
1967 struct type *builtin_signed_char;
1968 struct type *builtin_unsigned_char;
1969 struct type *builtin_unsigned_short;
1970 struct type *builtin_unsigned_int;
1971 struct type *builtin_unsigned_long;
1972 struct type *builtin_unsigned_long_long;
1973 struct type *builtin_half;
1974 struct type *builtin_float;
1975 struct type *builtin_double;
1976 struct type *builtin_long_double;
1977
1978 /* * This type is used to represent symbol addresses. */
1979 struct type *builtin_core_addr;
1980
1981 /* * This type represents a type that was unrecognized in symbol
1982 read-in. */
1983 struct type *builtin_error;
1984
1985 /* * Types used for symbols with no debug information. */
1986 struct type *nodebug_text_symbol;
1987 struct type *nodebug_text_gnu_ifunc_symbol;
1988 struct type *nodebug_got_plt_symbol;
1989 struct type *nodebug_data_symbol;
1990 struct type *nodebug_unknown_symbol;
1991 struct type *nodebug_tls_symbol;
1992 };
1993
1994 /* * Return the type table for the specified objfile. */
1995
1996 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1997
1998 /* Explicit floating-point formats. See "floatformat.h". */
1999 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2000 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2001 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2002 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2003 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2004 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2005 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2006 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2007 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2008 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2009 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2010 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2011 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2012
2013 /* Allocate space for storing data associated with a particular
2014 type. We ensure that the space is allocated using the same
2015 mechanism that was used to allocate the space for the type
2016 structure itself. I.e. if the type is on an objfile's
2017 objfile_obstack, then the space for data associated with that type
2018 will also be allocated on the objfile_obstack. If the type is
2019 associated with a gdbarch, then the space for data associated with that
2020 type will also be allocated on the gdbarch_obstack.
2021
2022 If a type is not associated with neither an objfile or a gdbarch then
2023 you should not use this macro to allocate space for data, instead you
2024 should call xmalloc directly, and ensure the memory is correctly freed
2025 when it is no longer needed. */
2026
2027 #define TYPE_ALLOC(t,size) \
2028 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2029 ? &TYPE_OBJFILE (t)->objfile_obstack \
2030 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2031 size))
2032
2033
2034 /* See comment on TYPE_ALLOC. */
2035
2036 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2037
2038 /* Use alloc_type to allocate a type owned by an objfile. Use
2039 alloc_type_arch to allocate a type owned by an architecture. Use
2040 alloc_type_copy to allocate a type with the same owner as a
2041 pre-existing template type, no matter whether objfile or
2042 gdbarch. */
2043 extern struct type *alloc_type (struct objfile *);
2044 extern struct type *alloc_type_arch (struct gdbarch *);
2045 extern struct type *alloc_type_copy (const struct type *);
2046
2047 /* * Return the type's architecture. For types owned by an
2048 architecture, that architecture is returned. For types owned by an
2049 objfile, that objfile's architecture is returned. */
2050
2051 extern struct gdbarch *get_type_arch (const struct type *);
2052
2053 /* * This returns the target type (or NULL) of TYPE, also skipping
2054 past typedefs. */
2055
2056 extern struct type *get_target_type (struct type *type);
2057
2058 /* Return the equivalent of TYPE_LENGTH, but in number of target
2059 addressable memory units of the associated gdbarch instead of bytes. */
2060
2061 extern unsigned int type_length_units (struct type *type);
2062
2063 /* * Helper function to construct objfile-owned types. */
2064
2065 extern struct type *init_type (struct objfile *, enum type_code, int,
2066 const char *);
2067 extern struct type *init_integer_type (struct objfile *, int, int,
2068 const char *);
2069 extern struct type *init_character_type (struct objfile *, int, int,
2070 const char *);
2071 extern struct type *init_boolean_type (struct objfile *, int, int,
2072 const char *);
2073 extern struct type *init_float_type (struct objfile *, int, const char *,
2074 const struct floatformat **,
2075 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2076 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2077 extern struct type *init_complex_type (const char *, struct type *);
2078 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2079 struct type *);
2080
2081 /* Helper functions to construct architecture-owned types. */
2082 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2083 const char *);
2084 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2085 const char *);
2086 extern struct type *arch_character_type (struct gdbarch *, int, int,
2087 const char *);
2088 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2089 const char *);
2090 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2091 const struct floatformat **);
2092 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2093 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2094 struct type *);
2095
2096 /* Helper functions to construct a struct or record type. An
2097 initially empty type is created using arch_composite_type().
2098 Fields are then added using append_composite_type_field*(). A union
2099 type has its size set to the largest field. A struct type has each
2100 field packed against the previous. */
2101
2102 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2103 const char *name, enum type_code code);
2104 extern void append_composite_type_field (struct type *t, const char *name,
2105 struct type *field);
2106 extern void append_composite_type_field_aligned (struct type *t,
2107 const char *name,
2108 struct type *field,
2109 int alignment);
2110 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2111 struct type *field);
2112
2113 /* Helper functions to construct a bit flags type. An initially empty
2114 type is created using arch_flag_type(). Flags are then added using
2115 append_flag_type_field() and append_flag_type_flag(). */
2116 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2117 const char *name, int bit);
2118 extern void append_flags_type_field (struct type *type,
2119 int start_bitpos, int nr_bits,
2120 struct type *field_type, const char *name);
2121 extern void append_flags_type_flag (struct type *type, int bitpos,
2122 const char *name);
2123
2124 extern void make_vector_type (struct type *array_type);
2125 extern struct type *init_vector_type (struct type *elt_type, int n);
2126
2127 extern struct type *lookup_reference_type (struct type *, enum type_code);
2128 extern struct type *lookup_lvalue_reference_type (struct type *);
2129 extern struct type *lookup_rvalue_reference_type (struct type *);
2130
2131
2132 extern struct type *make_reference_type (struct type *, struct type **,
2133 enum type_code);
2134
2135 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2136
2137 extern struct type *make_restrict_type (struct type *);
2138
2139 extern struct type *make_unqualified_type (struct type *);
2140
2141 extern struct type *make_atomic_type (struct type *);
2142
2143 extern void replace_type (struct type *, struct type *);
2144
2145 extern int address_space_name_to_int (struct gdbarch *, const char *);
2146
2147 extern const char *address_space_int_to_name (struct gdbarch *, int);
2148
2149 extern struct type *make_type_with_address_space (struct type *type,
2150 int space_identifier);
2151
2152 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2153
2154 extern struct type *lookup_methodptr_type (struct type *);
2155
2156 extern void smash_to_method_type (struct type *type, struct type *self_type,
2157 struct type *to_type, struct field *args,
2158 int nargs, int varargs);
2159
2160 extern void smash_to_memberptr_type (struct type *, struct type *,
2161 struct type *);
2162
2163 extern void smash_to_methodptr_type (struct type *, struct type *);
2164
2165 extern struct type *allocate_stub_method (struct type *);
2166
2167 extern const char *type_name_or_error (struct type *type);
2168
2169 struct struct_elt
2170 {
2171 /* The field of the element, or NULL if no element was found. */
2172 struct field *field;
2173
2174 /* The bit offset of the element in the parent structure. */
2175 LONGEST offset;
2176 };
2177
2178 /* Given a type TYPE, lookup the field and offset of the component named
2179 NAME.
2180
2181 TYPE can be either a struct or union, or a pointer or reference to
2182 a struct or union. If it is a pointer or reference, its target
2183 type is automatically used. Thus '.' and '->' are interchangable,
2184 as specified for the definitions of the expression element types
2185 STRUCTOP_STRUCT and STRUCTOP_PTR.
2186
2187 If NOERR is nonzero, the returned structure will have field set to
2188 NULL if there is no component named NAME.
2189
2190 If the component NAME is a field in an anonymous substructure of
2191 TYPE, the returned offset is a "global" offset relative to TYPE
2192 rather than an offset within the substructure. */
2193
2194 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2195
2196 /* Given a type TYPE, lookup the type of the component named NAME.
2197
2198 TYPE can be either a struct or union, or a pointer or reference to
2199 a struct or union. If it is a pointer or reference, its target
2200 type is automatically used. Thus '.' and '->' are interchangable,
2201 as specified for the definitions of the expression element types
2202 STRUCTOP_STRUCT and STRUCTOP_PTR.
2203
2204 If NOERR is nonzero, return NULL if there is no component named
2205 NAME. */
2206
2207 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2208
2209 extern struct type *make_pointer_type (struct type *, struct type **);
2210
2211 extern struct type *lookup_pointer_type (struct type *);
2212
2213 extern struct type *make_function_type (struct type *, struct type **);
2214
2215 extern struct type *lookup_function_type (struct type *);
2216
2217 extern struct type *lookup_function_type_with_arguments (struct type *,
2218 int,
2219 struct type **);
2220
2221 extern struct type *create_static_range_type (struct type *, struct type *,
2222 LONGEST, LONGEST);
2223
2224
2225 extern struct type *create_array_type_with_stride
2226 (struct type *, struct type *, struct type *,
2227 struct dynamic_prop *, unsigned int);
2228
2229 extern struct type *create_range_type (struct type *, struct type *,
2230 const struct dynamic_prop *,
2231 const struct dynamic_prop *,
2232 LONGEST);
2233
2234 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2235 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2236 stride. */
2237
2238 extern struct type * create_range_type_with_stride
2239 (struct type *result_type, struct type *index_type,
2240 const struct dynamic_prop *low_bound,
2241 const struct dynamic_prop *high_bound, LONGEST bias,
2242 const struct dynamic_prop *stride, bool byte_stride_p);
2243
2244 extern struct type *create_array_type (struct type *, struct type *,
2245 struct type *);
2246
2247 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2248
2249 extern struct type *create_string_type (struct type *, struct type *,
2250 struct type *);
2251 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2252
2253 extern struct type *create_set_type (struct type *, struct type *);
2254
2255 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2256 const char *);
2257
2258 extern struct type *lookup_signed_typename (const struct language_defn *,
2259 const char *);
2260
2261 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2262
2263 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2264
2265 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2266 ADDR specifies the location of the variable the type is bound to.
2267 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2268 static properties is returned. */
2269 extern struct type *resolve_dynamic_type
2270 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2271 CORE_ADDR addr);
2272
2273 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2274 extern int is_dynamic_type (struct type *type);
2275
2276 extern struct type *check_typedef (struct type *);
2277
2278 extern void check_stub_method_group (struct type *, int);
2279
2280 extern char *gdb_mangle_name (struct type *, int, int);
2281
2282 extern struct type *lookup_typename (const struct language_defn *,
2283 const char *, const struct block *, int);
2284
2285 extern struct type *lookup_template_type (const char *, struct type *,
2286 const struct block *);
2287
2288 extern int get_vptr_fieldno (struct type *, struct type **);
2289
2290 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2291
2292 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2293 LONGEST *high_bound);
2294
2295 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2296
2297 extern int class_types_same_p (const struct type *, const struct type *);
2298
2299 extern int is_ancestor (struct type *, struct type *);
2300
2301 extern int is_public_ancestor (struct type *, struct type *);
2302
2303 extern int is_unique_ancestor (struct type *, struct value *);
2304
2305 /* Overload resolution */
2306
2307 /* * Badness if parameter list length doesn't match arg list length. */
2308 extern const struct rank LENGTH_MISMATCH_BADNESS;
2309
2310 /* * Dummy badness value for nonexistent parameter positions. */
2311 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2312 /* * Badness if no conversion among types. */
2313 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2314
2315 /* * Badness of an exact match. */
2316 extern const struct rank EXACT_MATCH_BADNESS;
2317
2318 /* * Badness of integral promotion. */
2319 extern const struct rank INTEGER_PROMOTION_BADNESS;
2320 /* * Badness of floating promotion. */
2321 extern const struct rank FLOAT_PROMOTION_BADNESS;
2322 /* * Badness of converting a derived class pointer
2323 to a base class pointer. */
2324 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2325 /* * Badness of integral conversion. */
2326 extern const struct rank INTEGER_CONVERSION_BADNESS;
2327 /* * Badness of floating conversion. */
2328 extern const struct rank FLOAT_CONVERSION_BADNESS;
2329 /* * Badness of integer<->floating conversions. */
2330 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2331 /* * Badness of conversion of pointer to void pointer. */
2332 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2333 /* * Badness of conversion to boolean. */
2334 extern const struct rank BOOL_CONVERSION_BADNESS;
2335 /* * Badness of converting derived to base class. */
2336 extern const struct rank BASE_CONVERSION_BADNESS;
2337 /* * Badness of converting from non-reference to reference. Subrank
2338 is the type of reference conversion being done. */
2339 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2340 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2341 /* * Conversion to rvalue reference. */
2342 #define REFERENCE_CONVERSION_RVALUE 1
2343 /* * Conversion to const lvalue reference. */
2344 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2345
2346 /* * Badness of converting integer 0 to NULL pointer. */
2347 extern const struct rank NULL_POINTER_CONVERSION;
2348 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2349 being done. */
2350 extern const struct rank CV_CONVERSION_BADNESS;
2351 #define CV_CONVERSION_CONST 1
2352 #define CV_CONVERSION_VOLATILE 2
2353
2354 /* Non-standard conversions allowed by the debugger */
2355
2356 /* * Converting a pointer to an int is usually OK. */
2357 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2358
2359 /* * Badness of converting a (non-zero) integer constant
2360 to a pointer. */
2361 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2362
2363 extern struct rank sum_ranks (struct rank a, struct rank b);
2364 extern int compare_ranks (struct rank a, struct rank b);
2365
2366 extern int compare_badness (const badness_vector &,
2367 const badness_vector &);
2368
2369 extern badness_vector rank_function (gdb::array_view<type *> parms,
2370 gdb::array_view<value *> args);
2371
2372 extern struct rank rank_one_type (struct type *, struct type *,
2373 struct value *);
2374
2375 extern void recursive_dump_type (struct type *, int);
2376
2377 extern int field_is_static (struct field *);
2378
2379 /* printcmd.c */
2380
2381 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2382 const struct value_print_options *,
2383 int, struct ui_file *);
2384
2385 extern int can_dereference (struct type *);
2386
2387 extern int is_integral_type (struct type *);
2388
2389 extern int is_floating_type (struct type *);
2390
2391 extern int is_scalar_type (struct type *type);
2392
2393 extern int is_scalar_type_recursive (struct type *);
2394
2395 extern int class_or_union_p (const struct type *);
2396
2397 extern void maintenance_print_type (const char *, int);
2398
2399 extern htab_t create_copied_types_hash (struct objfile *objfile);
2400
2401 extern struct type *copy_type_recursive (struct objfile *objfile,
2402 struct type *type,
2403 htab_t copied_types);
2404
2405 extern struct type *copy_type (const struct type *type);
2406
2407 extern bool types_equal (struct type *, struct type *);
2408
2409 extern bool types_deeply_equal (struct type *, struct type *);
2410
2411 extern int type_not_allocated (const struct type *type);
2412
2413 extern int type_not_associated (const struct type *type);
2414
2415 /* * When the type includes explicit byte ordering, return that.
2416 Otherwise, the byte ordering from gdbarch_byte_order for
2417 get_type_arch is returned. */
2418
2419 extern enum bfd_endian type_byte_order (const struct type *type);
2420
2421 /* A flag to enable printing of debugging information of C++
2422 overloading. */
2423
2424 extern unsigned int overload_debug;
2425
2426 #endif /* GDBTYPES_H */