gdb: remove TYPE_VECTOR
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The debugging formats (especially STABS) do not contain enough
220 information to represent all Ada types---especially those whose
221 size depends on dynamic quantities. Therefore, the GNAT Ada
222 compiler includes extra information in the form of additional type
223 definitions connected by naming conventions. This flag indicates
224 that the type is an ordinary (unencoded) GDB type that has been
225 created from the necessary run-time information, and does not need
226 further interpretation. Optionally marks ordinary, fixed-size GDB
227 type. */
228
229 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
230
231 /* * This debug target supports TYPE_STUB(t). In the unsupported case
232 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
233 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
234 guessed the TYPE_STUB(t) value (see dwarfread.c). */
235
236 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
237
238 /* * Not textual. By default, GDB treats all single byte integers as
239 characters (or elements of strings) unless this flag is set. */
240
241 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
242
243 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
244 address is returned by this function call. TYPE_TARGET_TYPE
245 determines the final returned function type to be presented to
246 user. */
247
248 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
249
250 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
251 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
252 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
253
254 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
255 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
256 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
257
258 /* * True if this type was declared using the "class" keyword. This is
259 only valid for C++ structure and enum types. If false, a structure
260 was declared as a "struct"; if true it was declared "class". For
261 enum types, this is true when "enum class" or "enum struct" was
262 used to declare the type.. */
263
264 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
265
266 /* * True if this type is a "flag" enum. A flag enum is one where all
267 the values are pairwise disjoint when "and"ed together. This
268 affects how enum values are printed. */
269
270 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
271
272 /* * Constant type. If this is set, the corresponding type has a
273 const modifier. */
274
275 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
276
277 /* * Volatile type. If this is set, the corresponding type has a
278 volatile modifier. */
279
280 #define TYPE_VOLATILE(t) \
281 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
282
283 /* * Restrict type. If this is set, the corresponding type has a
284 restrict modifier. */
285
286 #define TYPE_RESTRICT(t) \
287 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
288
289 /* * Atomic type. If this is set, the corresponding type has an
290 _Atomic modifier. */
291
292 #define TYPE_ATOMIC(t) \
293 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
294
295 /* * True if this type represents either an lvalue or lvalue reference type. */
296
297 #define TYPE_IS_REFERENCE(t) \
298 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
299
300 /* * True if this type is allocatable. */
301 #define TYPE_IS_ALLOCATABLE(t) \
302 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
303
304 /* * True if this type has variant parts. */
305 #define TYPE_HAS_VARIANT_PARTS(t) \
306 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
307
308 /* * True if this type has a dynamic length. */
309 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
310 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
311
312 /* * Instruction-space delimited type. This is for Harvard architectures
313 which have separate instruction and data address spaces (and perhaps
314 others).
315
316 GDB usually defines a flat address space that is a superset of the
317 architecture's two (or more) address spaces, but this is an extension
318 of the architecture's model.
319
320 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
321 resides in instruction memory, even if its address (in the extended
322 flat address space) does not reflect this.
323
324 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
325 corresponding type resides in the data memory space, even if
326 this is not indicated by its (flat address space) address.
327
328 If neither flag is set, the default space for functions / methods
329 is instruction space, and for data objects is data memory. */
330
331 #define TYPE_CODE_SPACE(t) \
332 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
333
334 #define TYPE_DATA_SPACE(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
336
337 /* * Address class flags. Some environments provide for pointers
338 whose size is different from that of a normal pointer or address
339 types where the bits are interpreted differently than normal
340 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
341 target specific ways to represent these different types of address
342 classes. */
343
344 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
345 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
346 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
347 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
348 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
349 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
350 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
351 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
352
353 /* * Information about a single discriminant. */
354
355 struct discriminant_range
356 {
357 /* * The range of values for the variant. This is an inclusive
358 range. */
359 ULONGEST low, high;
360
361 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
362 is true if this should be an unsigned comparison; false for
363 signed. */
364 bool contains (ULONGEST value, bool is_unsigned) const
365 {
366 if (is_unsigned)
367 return value >= low && value <= high;
368 LONGEST valuel = (LONGEST) value;
369 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
370 }
371 };
372
373 struct variant_part;
374
375 /* * A single variant. A variant has a list of discriminant values.
376 When the discriminator matches one of these, the variant is
377 enabled. Each variant controls zero or more fields; and may also
378 control other variant parts as well. This struct corresponds to
379 DW_TAG_variant in DWARF. */
380
381 struct variant : allocate_on_obstack
382 {
383 /* * The discriminant ranges for this variant. */
384 gdb::array_view<discriminant_range> discriminants;
385
386 /* * The fields controlled by this variant. This is inclusive on
387 the low end and exclusive on the high end. A variant may not
388 control any fields, in which case the two values will be equal.
389 These are indexes into the type's array of fields. */
390 int first_field;
391 int last_field;
392
393 /* * Variant parts controlled by this variant. */
394 gdb::array_view<variant_part> parts;
395
396 /* * Return true if this is the default variant. The default
397 variant can be recognized because it has no associated
398 discriminants. */
399 bool is_default () const
400 {
401 return discriminants.empty ();
402 }
403
404 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
405 if this should be an unsigned comparison; false for signed. */
406 bool matches (ULONGEST value, bool is_unsigned) const;
407 };
408
409 /* * A variant part. Each variant part has an optional discriminant
410 and holds an array of variants. This struct corresponds to
411 DW_TAG_variant_part in DWARF. */
412
413 struct variant_part : allocate_on_obstack
414 {
415 /* * The index of the discriminant field in the outer type. This is
416 an index into the type's array of fields. If this is -1, there
417 is no discriminant, and only the default variant can be
418 considered to be selected. */
419 int discriminant_index;
420
421 /* * True if this discriminant is unsigned; false if signed. This
422 comes from the type of the discriminant. */
423 bool is_unsigned;
424
425 /* * The variants that are controlled by this variant part. Note
426 that these will always be sorted by field number. */
427 gdb::array_view<variant> variants;
428 };
429
430
431 enum dynamic_prop_kind
432 {
433 PROP_UNDEFINED, /* Not defined. */
434 PROP_CONST, /* Constant. */
435 PROP_ADDR_OFFSET, /* Address offset. */
436 PROP_LOCEXPR, /* Location expression. */
437 PROP_LOCLIST, /* Location list. */
438 PROP_VARIANT_PARTS, /* Variant parts. */
439 PROP_TYPE, /* Type. */
440 };
441
442 union dynamic_prop_data
443 {
444 /* Storage for constant property. */
445
446 LONGEST const_val;
447
448 /* Storage for dynamic property. */
449
450 void *baton;
451
452 /* Storage of variant parts for a type. A type with variant parts
453 has all its fields "linearized" -- stored in a single field
454 array, just as if they had all been declared that way. The
455 variant parts are attached via a dynamic property, and then are
456 used to control which fields end up in the final type during
457 dynamic type resolution. */
458
459 const gdb::array_view<variant_part> *variant_parts;
460
461 /* Once a variant type is resolved, we may want to be able to go
462 from the resolved type to the original type. In this case we
463 rewrite the property's kind and set this field. */
464
465 struct type *original_type;
466 };
467
468 /* * Used to store a dynamic property. */
469
470 struct dynamic_prop
471 {
472 dynamic_prop_kind kind () const
473 {
474 return m_kind;
475 }
476
477 void set_undefined ()
478 {
479 m_kind = PROP_UNDEFINED;
480 }
481
482 LONGEST const_val () const
483 {
484 gdb_assert (m_kind == PROP_CONST);
485
486 return m_data.const_val;
487 }
488
489 void set_const_val (LONGEST const_val)
490 {
491 m_kind = PROP_CONST;
492 m_data.const_val = const_val;
493 }
494
495 void *baton () const
496 {
497 gdb_assert (m_kind == PROP_LOCEXPR
498 || m_kind == PROP_LOCLIST
499 || m_kind == PROP_ADDR_OFFSET);
500
501 return m_data.baton;
502 }
503
504 void set_locexpr (void *baton)
505 {
506 m_kind = PROP_LOCEXPR;
507 m_data.baton = baton;
508 }
509
510 void set_loclist (void *baton)
511 {
512 m_kind = PROP_LOCLIST;
513 m_data.baton = baton;
514 }
515
516 void set_addr_offset (void *baton)
517 {
518 m_kind = PROP_ADDR_OFFSET;
519 m_data.baton = baton;
520 }
521
522 const gdb::array_view<variant_part> *variant_parts () const
523 {
524 gdb_assert (m_kind == PROP_VARIANT_PARTS);
525
526 return m_data.variant_parts;
527 }
528
529 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
530 {
531 m_kind = PROP_VARIANT_PARTS;
532 m_data.variant_parts = variant_parts;
533 }
534
535 struct type *original_type () const
536 {
537 gdb_assert (m_kind == PROP_TYPE);
538
539 return m_data.original_type;
540 }
541
542 void set_original_type (struct type *original_type)
543 {
544 m_kind = PROP_TYPE;
545 m_data.original_type = original_type;
546 }
547
548 /* Determine which field of the union dynamic_prop.data is used. */
549 enum dynamic_prop_kind m_kind;
550
551 /* Storage for dynamic or static value. */
552 union dynamic_prop_data m_data;
553 };
554
555 /* Compare two dynamic_prop objects for equality. dynamic_prop
556 instances are equal iff they have the same type and storage. */
557 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
558
559 /* Compare two dynamic_prop objects for inequality. */
560 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
561 {
562 return !(l == r);
563 }
564
565 /* * Define a type's dynamic property node kind. */
566 enum dynamic_prop_node_kind
567 {
568 /* A property providing a type's data location.
569 Evaluating this field yields to the location of an object's data. */
570 DYN_PROP_DATA_LOCATION,
571
572 /* A property representing DW_AT_allocated. The presence of this attribute
573 indicates that the object of the type can be allocated/deallocated. */
574 DYN_PROP_ALLOCATED,
575
576 /* A property representing DW_AT_associated. The presence of this attribute
577 indicated that the object of the type can be associated. */
578 DYN_PROP_ASSOCIATED,
579
580 /* A property providing an array's byte stride. */
581 DYN_PROP_BYTE_STRIDE,
582
583 /* A property holding variant parts. */
584 DYN_PROP_VARIANT_PARTS,
585
586 /* A property holding the size of the type. */
587 DYN_PROP_BYTE_SIZE,
588 };
589
590 /* * List for dynamic type attributes. */
591 struct dynamic_prop_list
592 {
593 /* The kind of dynamic prop in this node. */
594 enum dynamic_prop_node_kind prop_kind;
595
596 /* The dynamic property itself. */
597 struct dynamic_prop prop;
598
599 /* A pointer to the next dynamic property. */
600 struct dynamic_prop_list *next;
601 };
602
603 /* * Determine which field of the union main_type.fields[x].loc is
604 used. */
605
606 enum field_loc_kind
607 {
608 FIELD_LOC_KIND_BITPOS, /**< bitpos */
609 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
610 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
611 FIELD_LOC_KIND_PHYSNAME, /**< physname */
612 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
613 };
614
615 /* * A discriminant to determine which field in the
616 main_type.type_specific union is being used, if any.
617
618 For types such as TYPE_CODE_FLT, the use of this
619 discriminant is really redundant, as we know from the type code
620 which field is going to be used. As such, it would be possible to
621 reduce the size of this enum in order to save a bit or two for
622 other fields of struct main_type. But, since we still have extra
623 room , and for the sake of clarity and consistency, we treat all fields
624 of the union the same way. */
625
626 enum type_specific_kind
627 {
628 TYPE_SPECIFIC_NONE,
629 TYPE_SPECIFIC_CPLUS_STUFF,
630 TYPE_SPECIFIC_GNAT_STUFF,
631 TYPE_SPECIFIC_FLOATFORMAT,
632 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
633 TYPE_SPECIFIC_FUNC,
634 TYPE_SPECIFIC_SELF_TYPE
635 };
636
637 union type_owner
638 {
639 struct objfile *objfile;
640 struct gdbarch *gdbarch;
641 };
642
643 union field_location
644 {
645 /* * Position of this field, counting in bits from start of
646 containing structure. For big-endian targets, it is the bit
647 offset to the MSB. For little-endian targets, it is the bit
648 offset to the LSB. */
649
650 LONGEST bitpos;
651
652 /* * Enum value. */
653 LONGEST enumval;
654
655 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
656 physaddr is the location (in the target) of the static
657 field. Otherwise, physname is the mangled label of the
658 static field. */
659
660 CORE_ADDR physaddr;
661 const char *physname;
662
663 /* * The field location can be computed by evaluating the
664 following DWARF block. Its DATA is allocated on
665 objfile_obstack - no CU load is needed to access it. */
666
667 struct dwarf2_locexpr_baton *dwarf_block;
668 };
669
670 struct field
671 {
672 struct type *type () const
673 {
674 return this->m_type;
675 }
676
677 void set_type (struct type *type)
678 {
679 this->m_type = type;
680 }
681
682 union field_location loc;
683
684 /* * For a function or member type, this is 1 if the argument is
685 marked artificial. Artificial arguments should not be shown
686 to the user. For TYPE_CODE_RANGE it is set if the specific
687 bound is not defined. */
688
689 unsigned int artificial : 1;
690
691 /* * Discriminant for union field_location. */
692
693 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
694
695 /* * Size of this field, in bits, or zero if not packed.
696 If non-zero in an array type, indicates the element size in
697 bits (used only in Ada at the moment).
698 For an unpacked field, the field's type's length
699 says how many bytes the field occupies. */
700
701 unsigned int bitsize : 28;
702
703 /* * In a struct or union type, type of this field.
704 - In a function or member type, type of this argument.
705 - In an array type, the domain-type of the array. */
706
707 struct type *m_type;
708
709 /* * Name of field, value or argument.
710 NULL for range bounds, array domains, and member function
711 arguments. */
712
713 const char *name;
714 };
715
716 struct range_bounds
717 {
718 ULONGEST bit_stride () const
719 {
720 if (this->flag_is_byte_stride)
721 return this->stride.const_val () * 8;
722 else
723 return this->stride.const_val ();
724 }
725
726 /* * Low bound of range. */
727
728 struct dynamic_prop low;
729
730 /* * High bound of range. */
731
732 struct dynamic_prop high;
733
734 /* The stride value for this range. This can be stored in bits or bytes
735 based on the value of BYTE_STRIDE_P. It is optional to have a stride
736 value, if this range has no stride value defined then this will be set
737 to the constant zero. */
738
739 struct dynamic_prop stride;
740
741 /* * The bias. Sometimes a range value is biased before storage.
742 The bias is added to the stored bits to form the true value. */
743
744 LONGEST bias;
745
746 /* True if HIGH range bound contains the number of elements in the
747 subrange. This affects how the final high bound is computed. */
748
749 unsigned int flag_upper_bound_is_count : 1;
750
751 /* True if LOW or/and HIGH are resolved into a static bound from
752 a dynamic one. */
753
754 unsigned int flag_bound_evaluated : 1;
755
756 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
757
758 unsigned int flag_is_byte_stride : 1;
759 };
760
761 /* Compare two range_bounds objects for equality. Simply does
762 memberwise comparison. */
763 extern bool operator== (const range_bounds &l, const range_bounds &r);
764
765 /* Compare two range_bounds objects for inequality. */
766 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
767 {
768 return !(l == r);
769 }
770
771 union type_specific
772 {
773 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
774 point to cplus_struct_default, a default static instance of a
775 struct cplus_struct_type. */
776
777 struct cplus_struct_type *cplus_stuff;
778
779 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
780 provides additional information. */
781
782 struct gnat_aux_type *gnat_stuff;
783
784 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
785 floatformat object that describes the floating-point value
786 that resides within the type. */
787
788 const struct floatformat *floatformat;
789
790 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
791
792 struct func_type *func_stuff;
793
794 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
795 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
796 is a member of. */
797
798 struct type *self_type;
799 };
800
801 /* * Main structure representing a type in GDB.
802
803 This structure is space-critical. Its layout has been tweaked to
804 reduce the space used. */
805
806 struct main_type
807 {
808 /* * Code for kind of type. */
809
810 ENUM_BITFIELD(type_code) code : 8;
811
812 /* * Flags about this type. These fields appear at this location
813 because they packs nicely here. See the TYPE_* macros for
814 documentation about these fields. */
815
816 unsigned int m_flag_unsigned : 1;
817 unsigned int m_flag_nosign : 1;
818 unsigned int m_flag_stub : 1;
819 unsigned int m_flag_target_stub : 1;
820 unsigned int m_flag_prototyped : 1;
821 unsigned int m_flag_varargs : 1;
822 unsigned int m_flag_vector : 1;
823 unsigned int flag_stub_supported : 1;
824 unsigned int flag_gnu_ifunc : 1;
825 unsigned int flag_fixed_instance : 1;
826 unsigned int flag_objfile_owned : 1;
827 unsigned int flag_endianity_not_default : 1;
828
829 /* * True if this type was declared with "class" rather than
830 "struct". */
831
832 unsigned int flag_declared_class : 1;
833
834 /* * True if this is an enum type with disjoint values. This
835 affects how the enum is printed. */
836
837 unsigned int flag_flag_enum : 1;
838
839 /* * A discriminant telling us which field of the type_specific
840 union is being used for this type, if any. */
841
842 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
843
844 /* * Number of fields described for this type. This field appears
845 at this location because it packs nicely here. */
846
847 short nfields;
848
849 /* * Name of this type, or NULL if none.
850
851 This is used for printing only. For looking up a name, look for
852 a symbol in the VAR_DOMAIN. This is generally allocated in the
853 objfile's obstack. However coffread.c uses malloc. */
854
855 const char *name;
856
857 /* * Every type is now associated with a particular objfile, and the
858 type is allocated on the objfile_obstack for that objfile. One
859 problem however, is that there are times when gdb allocates new
860 types while it is not in the process of reading symbols from a
861 particular objfile. Fortunately, these happen when the type
862 being created is a derived type of an existing type, such as in
863 lookup_pointer_type(). So we can just allocate the new type
864 using the same objfile as the existing type, but to do this we
865 need a backpointer to the objfile from the existing type. Yes
866 this is somewhat ugly, but without major overhaul of the internal
867 type system, it can't be avoided for now. */
868
869 union type_owner owner;
870
871 /* * For a pointer type, describes the type of object pointed to.
872 - For an array type, describes the type of the elements.
873 - For a function or method type, describes the type of the return value.
874 - For a range type, describes the type of the full range.
875 - For a complex type, describes the type of each coordinate.
876 - For a special record or union type encoding a dynamic-sized type
877 in GNAT, a memoized pointer to a corresponding static version of
878 the type.
879 - Unused otherwise. */
880
881 struct type *target_type;
882
883 /* * For structure and union types, a description of each field.
884 For set and pascal array types, there is one "field",
885 whose type is the domain type of the set or array.
886 For range types, there are two "fields",
887 the minimum and maximum values (both inclusive).
888 For enum types, each possible value is described by one "field".
889 For a function or method type, a "field" for each parameter.
890 For C++ classes, there is one field for each base class (if it is
891 a derived class) plus one field for each class data member. Member
892 functions are recorded elsewhere.
893
894 Using a pointer to a separate array of fields
895 allows all types to have the same size, which is useful
896 because we can allocate the space for a type before
897 we know what to put in it. */
898
899 union
900 {
901 struct field *fields;
902
903 /* * Union member used for range types. */
904
905 struct range_bounds *bounds;
906
907 /* If this is a scalar type, then this is its corresponding
908 complex type. */
909 struct type *complex_type;
910
911 } flds_bnds;
912
913 /* * Slot to point to additional language-specific fields of this
914 type. */
915
916 union type_specific type_specific;
917
918 /* * Contains all dynamic type properties. */
919 struct dynamic_prop_list *dyn_prop_list;
920 };
921
922 /* * Number of bits allocated for alignment. */
923
924 #define TYPE_ALIGN_BITS 8
925
926 /* * A ``struct type'' describes a particular instance of a type, with
927 some particular qualification. */
928
929 struct type
930 {
931 /* Get the type code of this type.
932
933 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
934 type, you need to do `check_typedef (type)->code ()`. */
935 type_code code () const
936 {
937 return this->main_type->code;
938 }
939
940 /* Set the type code of this type. */
941 void set_code (type_code code)
942 {
943 this->main_type->code = code;
944 }
945
946 /* Get the name of this type. */
947 const char *name () const
948 {
949 return this->main_type->name;
950 }
951
952 /* Set the name of this type. */
953 void set_name (const char *name)
954 {
955 this->main_type->name = name;
956 }
957
958 /* Get the number of fields of this type. */
959 int num_fields () const
960 {
961 return this->main_type->nfields;
962 }
963
964 /* Set the number of fields of this type. */
965 void set_num_fields (int num_fields)
966 {
967 this->main_type->nfields = num_fields;
968 }
969
970 /* Get the fields array of this type. */
971 struct field *fields () const
972 {
973 return this->main_type->flds_bnds.fields;
974 }
975
976 /* Get the field at index IDX. */
977 struct field &field (int idx) const
978 {
979 return this->fields ()[idx];
980 }
981
982 /* Set the fields array of this type. */
983 void set_fields (struct field *fields)
984 {
985 this->main_type->flds_bnds.fields = fields;
986 }
987
988 type *index_type () const
989 {
990 return this->field (0).type ();
991 }
992
993 void set_index_type (type *index_type)
994 {
995 this->field (0).set_type (index_type);
996 }
997
998 /* Get the bounds bounds of this type. The type must be a range type. */
999 range_bounds *bounds () const
1000 {
1001 switch (this->code ())
1002 {
1003 case TYPE_CODE_RANGE:
1004 return this->main_type->flds_bnds.bounds;
1005
1006 case TYPE_CODE_ARRAY:
1007 case TYPE_CODE_STRING:
1008 return this->index_type ()->bounds ();
1009
1010 default:
1011 gdb_assert_not_reached
1012 ("type::bounds called on type with invalid code");
1013 }
1014 }
1015
1016 /* Set the bounds of this type. The type must be a range type. */
1017 void set_bounds (range_bounds *bounds)
1018 {
1019 gdb_assert (this->code () == TYPE_CODE_RANGE);
1020
1021 this->main_type->flds_bnds.bounds = bounds;
1022 }
1023
1024 ULONGEST bit_stride () const
1025 {
1026 return this->bounds ()->bit_stride ();
1027 }
1028
1029 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1030 the type is signed (unless TYPE_NOSIGN is set). */
1031
1032 bool is_unsigned () const
1033 {
1034 return this->main_type->m_flag_unsigned;
1035 }
1036
1037 void set_is_unsigned (bool is_unsigned)
1038 {
1039 this->main_type->m_flag_unsigned = is_unsigned;
1040 }
1041
1042 /* No sign for this type. In C++, "char", "signed char", and
1043 "unsigned char" are distinct types; so we need an extra flag to
1044 indicate the absence of a sign! */
1045
1046 bool has_no_signedness () const
1047 {
1048 return this->main_type->m_flag_nosign;
1049 }
1050
1051 void set_has_no_signedness (bool has_no_signedness)
1052 {
1053 this->main_type->m_flag_nosign = has_no_signedness;
1054 }
1055
1056 /* This appears in a type's flags word if it is a stub type (e.g.,
1057 if someone referenced a type that wasn't defined in a source file
1058 via (struct sir_not_appearing_in_this_film *)). */
1059
1060 bool is_stub () const
1061 {
1062 return this->main_type->m_flag_stub;
1063 }
1064
1065 void set_is_stub (bool is_stub)
1066 {
1067 this->main_type->m_flag_stub = is_stub;
1068 }
1069
1070 /* The target type of this type is a stub type, and this type needs
1071 to be updated if it gets un-stubbed in check_typedef. Used for
1072 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1073 based on the TYPE_LENGTH of the target type. Also, set for
1074 TYPE_CODE_TYPEDEF. */
1075
1076 bool target_is_stub () const
1077 {
1078 return this->main_type->m_flag_target_stub;
1079 }
1080
1081 void set_target_is_stub (bool target_is_stub)
1082 {
1083 this->main_type->m_flag_target_stub = target_is_stub;
1084 }
1085
1086 /* This is a function type which appears to have a prototype. We
1087 need this for function calls in order to tell us if it's necessary
1088 to coerce the args, or to just do the standard conversions. This
1089 is used with a short field. */
1090
1091 bool is_prototyped () const
1092 {
1093 return this->main_type->m_flag_prototyped;
1094 }
1095
1096 void set_is_prototyped (bool is_prototyped)
1097 {
1098 this->main_type->m_flag_prototyped = is_prototyped;
1099 }
1100
1101 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1102 to functions. */
1103
1104 bool has_varargs () const
1105 {
1106 return this->main_type->m_flag_varargs;
1107 }
1108
1109 void set_has_varargs (bool has_varargs)
1110 {
1111 this->main_type->m_flag_varargs = has_varargs;
1112 }
1113
1114 /* Identify a vector type. Gcc is handling this by adding an extra
1115 attribute to the array type. We slurp that in as a new flag of a
1116 type. This is used only in dwarf2read.c. */
1117
1118 bool is_vector () const
1119 {
1120 return this->main_type->m_flag_vector;
1121 }
1122
1123 void set_is_vector (bool is_vector)
1124 {
1125 this->main_type->m_flag_vector = is_vector;
1126 }
1127
1128 /* * Return the dynamic property of the requested KIND from this type's
1129 list of dynamic properties. */
1130 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1131
1132 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1133 property to this type.
1134
1135 This function assumes that this type is objfile-owned. */
1136 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1137
1138 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1139 void remove_dyn_prop (dynamic_prop_node_kind kind);
1140
1141 /* * Type that is a pointer to this type.
1142 NULL if no such pointer-to type is known yet.
1143 The debugger may add the address of such a type
1144 if it has to construct one later. */
1145
1146 struct type *pointer_type;
1147
1148 /* * C++: also need a reference type. */
1149
1150 struct type *reference_type;
1151
1152 /* * A C++ rvalue reference type added in C++11. */
1153
1154 struct type *rvalue_reference_type;
1155
1156 /* * Variant chain. This points to a type that differs from this
1157 one only in qualifiers and length. Currently, the possible
1158 qualifiers are const, volatile, code-space, data-space, and
1159 address class. The length may differ only when one of the
1160 address class flags are set. The variants are linked in a
1161 circular ring and share MAIN_TYPE. */
1162
1163 struct type *chain;
1164
1165 /* * The alignment for this type. Zero means that the alignment was
1166 not specified in the debug info. Note that this is stored in a
1167 funny way: as the log base 2 (plus 1) of the alignment; so a
1168 value of 1 means the alignment is 1, and a value of 9 means the
1169 alignment is 256. */
1170
1171 unsigned align_log2 : TYPE_ALIGN_BITS;
1172
1173 /* * Flags specific to this instance of the type, indicating where
1174 on the ring we are.
1175
1176 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1177 binary or-ed with the target type, with a special case for
1178 address class and space class. For example if this typedef does
1179 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1180 instance flags are completely inherited from the target type. No
1181 qualifiers can be cleared by the typedef. See also
1182 check_typedef. */
1183 unsigned instance_flags : 9;
1184
1185 /* * Length of storage for a value of this type. The value is the
1186 expression in host bytes of what sizeof(type) would return. This
1187 size includes padding. For example, an i386 extended-precision
1188 floating point value really only occupies ten bytes, but most
1189 ABI's declare its size to be 12 bytes, to preserve alignment.
1190 A `struct type' representing such a floating-point type would
1191 have a `length' value of 12, even though the last two bytes are
1192 unused.
1193
1194 Since this field is expressed in host bytes, its value is appropriate
1195 to pass to memcpy and such (it is assumed that GDB itself always runs
1196 on an 8-bits addressable architecture). However, when using it for
1197 target address arithmetic (e.g. adding it to a target address), the
1198 type_length_units function should be used in order to get the length
1199 expressed in target addressable memory units. */
1200
1201 ULONGEST length;
1202
1203 /* * Core type, shared by a group of qualified types. */
1204
1205 struct main_type *main_type;
1206 };
1207
1208 struct fn_fieldlist
1209 {
1210
1211 /* * The overloaded name.
1212 This is generally allocated in the objfile's obstack.
1213 However stabsread.c sometimes uses malloc. */
1214
1215 const char *name;
1216
1217 /* * The number of methods with this name. */
1218
1219 int length;
1220
1221 /* * The list of methods. */
1222
1223 struct fn_field *fn_fields;
1224 };
1225
1226
1227
1228 struct fn_field
1229 {
1230 /* * If is_stub is clear, this is the mangled name which we can look
1231 up to find the address of the method (FIXME: it would be cleaner
1232 to have a pointer to the struct symbol here instead).
1233
1234 If is_stub is set, this is the portion of the mangled name which
1235 specifies the arguments. For example, "ii", if there are two int
1236 arguments, or "" if there are no arguments. See gdb_mangle_name
1237 for the conversion from this format to the one used if is_stub is
1238 clear. */
1239
1240 const char *physname;
1241
1242 /* * The function type for the method.
1243
1244 (This comment used to say "The return value of the method", but
1245 that's wrong. The function type is expected here, i.e. something
1246 with TYPE_CODE_METHOD, and *not* the return-value type). */
1247
1248 struct type *type;
1249
1250 /* * For virtual functions. First baseclass that defines this
1251 virtual function. */
1252
1253 struct type *fcontext;
1254
1255 /* Attributes. */
1256
1257 unsigned int is_const:1;
1258 unsigned int is_volatile:1;
1259 unsigned int is_private:1;
1260 unsigned int is_protected:1;
1261 unsigned int is_artificial:1;
1262
1263 /* * A stub method only has some fields valid (but they are enough
1264 to reconstruct the rest of the fields). */
1265
1266 unsigned int is_stub:1;
1267
1268 /* * True if this function is a constructor, false otherwise. */
1269
1270 unsigned int is_constructor : 1;
1271
1272 /* * True if this function is deleted, false otherwise. */
1273
1274 unsigned int is_deleted : 1;
1275
1276 /* * DW_AT_defaulted attribute for this function. The value is one
1277 of the DW_DEFAULTED constants. */
1278
1279 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1280
1281 /* * Unused. */
1282
1283 unsigned int dummy:6;
1284
1285 /* * Index into that baseclass's virtual function table, minus 2;
1286 else if static: VOFFSET_STATIC; else: 0. */
1287
1288 unsigned int voffset:16;
1289
1290 #define VOFFSET_STATIC 1
1291
1292 };
1293
1294 struct decl_field
1295 {
1296 /* * Unqualified name to be prefixed by owning class qualified
1297 name. */
1298
1299 const char *name;
1300
1301 /* * Type this typedef named NAME represents. */
1302
1303 struct type *type;
1304
1305 /* * True if this field was declared protected, false otherwise. */
1306 unsigned int is_protected : 1;
1307
1308 /* * True if this field was declared private, false otherwise. */
1309 unsigned int is_private : 1;
1310 };
1311
1312 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1313 TYPE_CODE_UNION nodes. */
1314
1315 struct cplus_struct_type
1316 {
1317 /* * Number of base classes this type derives from. The
1318 baseclasses are stored in the first N_BASECLASSES fields
1319 (i.e. the `fields' field of the struct type). The only fields
1320 of struct field that are used are: type, name, loc.bitpos. */
1321
1322 short n_baseclasses;
1323
1324 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1325 All access to this field must be through TYPE_VPTR_FIELDNO as one
1326 thing it does is check whether the field has been initialized.
1327 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1328 which for portability reasons doesn't initialize this field.
1329 TYPE_VPTR_FIELDNO returns -1 for this case.
1330
1331 If -1, we were unable to find the virtual function table pointer in
1332 initial symbol reading, and get_vptr_fieldno should be called to find
1333 it if possible. get_vptr_fieldno will update this field if possible.
1334 Otherwise the value is left at -1.
1335
1336 Unused if this type does not have virtual functions. */
1337
1338 short vptr_fieldno;
1339
1340 /* * Number of methods with unique names. All overloaded methods
1341 with the same name count only once. */
1342
1343 short nfn_fields;
1344
1345 /* * Number of template arguments. */
1346
1347 unsigned short n_template_arguments;
1348
1349 /* * One if this struct is a dynamic class, as defined by the
1350 Itanium C++ ABI: if it requires a virtual table pointer,
1351 because it or any of its base classes have one or more virtual
1352 member functions or virtual base classes. Minus one if not
1353 dynamic. Zero if not yet computed. */
1354
1355 int is_dynamic : 2;
1356
1357 /* * The calling convention for this type, fetched from the
1358 DW_AT_calling_convention attribute. The value is one of the
1359 DW_CC constants. */
1360
1361 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1362
1363 /* * The base class which defined the virtual function table pointer. */
1364
1365 struct type *vptr_basetype;
1366
1367 /* * For derived classes, the number of base classes is given by
1368 n_baseclasses and virtual_field_bits is a bit vector containing
1369 one bit per base class. If the base class is virtual, the
1370 corresponding bit will be set.
1371 I.E, given:
1372
1373 class A{};
1374 class B{};
1375 class C : public B, public virtual A {};
1376
1377 B is a baseclass of C; A is a virtual baseclass for C.
1378 This is a C++ 2.0 language feature. */
1379
1380 B_TYPE *virtual_field_bits;
1381
1382 /* * For classes with private fields, the number of fields is
1383 given by nfields and private_field_bits is a bit vector
1384 containing one bit per field.
1385
1386 If the field is private, the corresponding bit will be set. */
1387
1388 B_TYPE *private_field_bits;
1389
1390 /* * For classes with protected fields, the number of fields is
1391 given by nfields and protected_field_bits is a bit vector
1392 containing one bit per field.
1393
1394 If the field is private, the corresponding bit will be set. */
1395
1396 B_TYPE *protected_field_bits;
1397
1398 /* * For classes with fields to be ignored, either this is
1399 optimized out or this field has length 0. */
1400
1401 B_TYPE *ignore_field_bits;
1402
1403 /* * For classes, structures, and unions, a description of each
1404 field, which consists of an overloaded name, followed by the
1405 types of arguments that the method expects, and then the name
1406 after it has been renamed to make it distinct.
1407
1408 fn_fieldlists points to an array of nfn_fields of these. */
1409
1410 struct fn_fieldlist *fn_fieldlists;
1411
1412 /* * typedefs defined inside this class. typedef_field points to
1413 an array of typedef_field_count elements. */
1414
1415 struct decl_field *typedef_field;
1416
1417 unsigned typedef_field_count;
1418
1419 /* * The nested types defined by this type. nested_types points to
1420 an array of nested_types_count elements. */
1421
1422 struct decl_field *nested_types;
1423
1424 unsigned nested_types_count;
1425
1426 /* * The template arguments. This is an array with
1427 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1428 classes. */
1429
1430 struct symbol **template_arguments;
1431 };
1432
1433 /* * Struct used to store conversion rankings. */
1434
1435 struct rank
1436 {
1437 short rank;
1438
1439 /* * When two conversions are of the same type and therefore have
1440 the same rank, subrank is used to differentiate the two.
1441
1442 Eg: Two derived-class-pointer to base-class-pointer conversions
1443 would both have base pointer conversion rank, but the
1444 conversion with the shorter distance to the ancestor is
1445 preferable. 'subrank' would be used to reflect that. */
1446
1447 short subrank;
1448 };
1449
1450 /* * Used for ranking a function for overload resolution. */
1451
1452 typedef std::vector<rank> badness_vector;
1453
1454 /* * GNAT Ada-specific information for various Ada types. */
1455
1456 struct gnat_aux_type
1457 {
1458 /* * Parallel type used to encode information about dynamic types
1459 used in Ada (such as variant records, variable-size array,
1460 etc). */
1461 struct type* descriptive_type;
1462 };
1463
1464 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1465
1466 struct func_type
1467 {
1468 /* * The calling convention for targets supporting multiple ABIs.
1469 Right now this is only fetched from the Dwarf-2
1470 DW_AT_calling_convention attribute. The value is one of the
1471 DW_CC constants. */
1472
1473 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1474
1475 /* * Whether this function normally returns to its caller. It is
1476 set from the DW_AT_noreturn attribute if set on the
1477 DW_TAG_subprogram. */
1478
1479 unsigned int is_noreturn : 1;
1480
1481 /* * Only those DW_TAG_call_site's in this function that have
1482 DW_AT_call_tail_call set are linked in this list. Function
1483 without its tail call list complete
1484 (DW_AT_call_all_tail_calls or its superset
1485 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1486 DW_TAG_call_site's exist in such function. */
1487
1488 struct call_site *tail_call_list;
1489
1490 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1491 contains the method. */
1492
1493 struct type *self_type;
1494 };
1495
1496 /* struct call_site_parameter can be referenced in callees by several ways. */
1497
1498 enum call_site_parameter_kind
1499 {
1500 /* * Use field call_site_parameter.u.dwarf_reg. */
1501 CALL_SITE_PARAMETER_DWARF_REG,
1502
1503 /* * Use field call_site_parameter.u.fb_offset. */
1504 CALL_SITE_PARAMETER_FB_OFFSET,
1505
1506 /* * Use field call_site_parameter.u.param_offset. */
1507 CALL_SITE_PARAMETER_PARAM_OFFSET
1508 };
1509
1510 struct call_site_target
1511 {
1512 union field_location loc;
1513
1514 /* * Discriminant for union field_location. */
1515
1516 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1517 };
1518
1519 union call_site_parameter_u
1520 {
1521 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1522 as DWARF register number, for register passed
1523 parameters. */
1524
1525 int dwarf_reg;
1526
1527 /* * Offset from the callee's frame base, for stack passed
1528 parameters. This equals offset from the caller's stack
1529 pointer. */
1530
1531 CORE_ADDR fb_offset;
1532
1533 /* * Offset relative to the start of this PER_CU to
1534 DW_TAG_formal_parameter which is referenced by both
1535 caller and the callee. */
1536
1537 cu_offset param_cu_off;
1538 };
1539
1540 struct call_site_parameter
1541 {
1542 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1543
1544 union call_site_parameter_u u;
1545
1546 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1547
1548 const gdb_byte *value;
1549 size_t value_size;
1550
1551 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1552 It may be NULL if not provided by DWARF. */
1553
1554 const gdb_byte *data_value;
1555 size_t data_value_size;
1556 };
1557
1558 /* * A place where a function gets called from, represented by
1559 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1560
1561 struct call_site
1562 {
1563 /* * Address of the first instruction after this call. It must be
1564 the first field as we overload core_addr_hash and core_addr_eq
1565 for it. */
1566
1567 CORE_ADDR pc;
1568
1569 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1570
1571 struct call_site *tail_call_next;
1572
1573 /* * Describe DW_AT_call_target. Missing attribute uses
1574 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1575
1576 struct call_site_target target;
1577
1578 /* * Size of the PARAMETER array. */
1579
1580 unsigned parameter_count;
1581
1582 /* * CU of the function where the call is located. It gets used
1583 for DWARF blocks execution in the parameter array below. */
1584
1585 dwarf2_per_cu_data *per_cu;
1586
1587 /* objfile of the function where the call is located. */
1588
1589 dwarf2_per_objfile *per_objfile;
1590
1591 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1592
1593 struct call_site_parameter parameter[1];
1594 };
1595
1596 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1597 static structure. */
1598
1599 extern const struct cplus_struct_type cplus_struct_default;
1600
1601 extern void allocate_cplus_struct_type (struct type *);
1602
1603 #define INIT_CPLUS_SPECIFIC(type) \
1604 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1605 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1606 &cplus_struct_default)
1607
1608 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1609
1610 #define HAVE_CPLUS_STRUCT(type) \
1611 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1612 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1613
1614 #define INIT_NONE_SPECIFIC(type) \
1615 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1616 TYPE_MAIN_TYPE (type)->type_specific = {})
1617
1618 extern const struct gnat_aux_type gnat_aux_default;
1619
1620 extern void allocate_gnat_aux_type (struct type *);
1621
1622 #define INIT_GNAT_SPECIFIC(type) \
1623 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1624 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1625 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1626 /* * A macro that returns non-zero if the type-specific data should be
1627 read as "gnat-stuff". */
1628 #define HAVE_GNAT_AUX_INFO(type) \
1629 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1630
1631 /* * True if TYPE is known to be an Ada type of some kind. */
1632 #define ADA_TYPE_P(type) \
1633 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1634 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1635 && TYPE_FIXED_INSTANCE (type)))
1636
1637 #define INIT_FUNC_SPECIFIC(type) \
1638 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1639 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1640 TYPE_ZALLOC (type, \
1641 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1642
1643 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1644 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1645 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1646 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1647 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1648 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1649 #define TYPE_CHAIN(thistype) (thistype)->chain
1650 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1651 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1652 so you only have to call check_typedef once. Since allocate_value
1653 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1654 #define TYPE_LENGTH(thistype) (thistype)->length
1655
1656 /* * Return the alignment of the type in target addressable memory
1657 units, or 0 if no alignment was specified. */
1658 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1659
1660 /* * Return the alignment of the type in target addressable memory
1661 units, or 0 if no alignment was specified. */
1662 extern unsigned type_raw_align (struct type *);
1663
1664 /* * Return the alignment of the type in target addressable memory
1665 units. Return 0 if the alignment cannot be determined; but note
1666 that this makes an effort to compute the alignment even it it was
1667 not specified in the debug info. */
1668 extern unsigned type_align (struct type *);
1669
1670 /* * Set the alignment of the type. The alignment must be a power of
1671 2. Returns false if the given value does not fit in the available
1672 space in struct type. */
1673 extern bool set_type_align (struct type *, ULONGEST);
1674
1675 /* Property accessors for the type data location. */
1676 #define TYPE_DATA_LOCATION(thistype) \
1677 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1678 #define TYPE_DATA_LOCATION_BATON(thistype) \
1679 TYPE_DATA_LOCATION (thistype)->data.baton
1680 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1681 (TYPE_DATA_LOCATION (thistype)->const_val ())
1682 #define TYPE_DATA_LOCATION_KIND(thistype) \
1683 (TYPE_DATA_LOCATION (thistype)->kind ())
1684 #define TYPE_DYNAMIC_LENGTH(thistype) \
1685 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1686
1687 /* Property accessors for the type allocated/associated. */
1688 #define TYPE_ALLOCATED_PROP(thistype) \
1689 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1690 #define TYPE_ASSOCIATED_PROP(thistype) \
1691 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1692
1693 /* C++ */
1694
1695 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1696 /* Do not call this, use TYPE_SELF_TYPE. */
1697 extern struct type *internal_type_self_type (struct type *);
1698 extern void set_type_self_type (struct type *, struct type *);
1699
1700 extern int internal_type_vptr_fieldno (struct type *);
1701 extern void set_type_vptr_fieldno (struct type *, int);
1702 extern struct type *internal_type_vptr_basetype (struct type *);
1703 extern void set_type_vptr_basetype (struct type *, struct type *);
1704 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1705 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1706
1707 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1708 #define TYPE_SPECIFIC_FIELD(thistype) \
1709 TYPE_MAIN_TYPE(thistype)->type_specific_field
1710 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1711 where we're trying to print an Ada array using the C language.
1712 In that case, there is no "cplus_stuff", but the C language assumes
1713 that there is. What we do, in that case, is pretend that there is
1714 an implicit one which is the default cplus stuff. */
1715 #define TYPE_CPLUS_SPECIFIC(thistype) \
1716 (!HAVE_CPLUS_STRUCT(thistype) \
1717 ? (struct cplus_struct_type*)&cplus_struct_default \
1718 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1719 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1720 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1721 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1722 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1723 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1724 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1725 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1726 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1727 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1728 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1729 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1730 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1731 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1732 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1733 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1734 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1735
1736 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1737 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1738 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1739
1740 #define FIELD_NAME(thisfld) ((thisfld).name)
1741 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1742 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1743 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1744 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1745 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1746 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1747 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1748 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1749 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1750 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1751 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1752 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1753 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1754 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1755 #define SET_FIELD_PHYSNAME(thisfld, name) \
1756 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1757 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1758 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1759 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1760 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1761 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1762 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1763 FIELD_DWARF_BLOCK (thisfld) = (addr))
1764 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1765 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1766
1767 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1768 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1769 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1770 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1771 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1772 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1773 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1774 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1775 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1776 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1777
1778 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1779 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1780 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1781 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1782 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1783 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1784 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1785 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1786 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1787 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1788 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1789 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1790 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1791 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1792 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1793 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1794 #define TYPE_FIELD_PRIVATE(thistype, n) \
1795 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1796 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1797 #define TYPE_FIELD_PROTECTED(thistype, n) \
1798 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1799 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1800 #define TYPE_FIELD_IGNORE(thistype, n) \
1801 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1802 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1803 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1804 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1805 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1806
1807 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1808 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1809 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1810 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1811 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1812
1813 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1814 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1815 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1816 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1817 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1818 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1819
1820 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1821 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1822 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1823 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1824 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1825 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1826 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1827 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1828 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1829 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1830 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1831 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1832 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1833 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1834 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1835 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1836 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1837
1838 /* Accessors for typedefs defined by a class. */
1839 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1840 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1841 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1842 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1843 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1844 TYPE_TYPEDEF_FIELD (thistype, n).name
1845 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1846 TYPE_TYPEDEF_FIELD (thistype, n).type
1847 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1849 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1850 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1851 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1852 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1853
1854 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1855 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1856 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1857 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1858 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1859 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1860 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1861 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1862 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1863 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1864 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1865 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1866 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1867 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1868
1869 #define TYPE_IS_OPAQUE(thistype) \
1870 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1871 || ((thistype)->code () == TYPE_CODE_UNION)) \
1872 && ((thistype)->num_fields () == 0) \
1873 && (!HAVE_CPLUS_STRUCT (thistype) \
1874 || TYPE_NFN_FIELDS (thistype) == 0) \
1875 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1876
1877 /* * A helper macro that returns the name of a type or "unnamed type"
1878 if the type has no name. */
1879
1880 #define TYPE_SAFE_NAME(type) \
1881 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1882
1883 /* * A helper macro that returns the name of an error type. If the
1884 type has a name, it is used; otherwise, a default is used. */
1885
1886 #define TYPE_ERROR_NAME(type) \
1887 (type->name () ? type->name () : _("<error type>"))
1888
1889 /* Given TYPE, return its floatformat. */
1890 const struct floatformat *floatformat_from_type (const struct type *type);
1891
1892 struct builtin_type
1893 {
1894 /* Integral types. */
1895
1896 /* Implicit size/sign (based on the architecture's ABI). */
1897 struct type *builtin_void;
1898 struct type *builtin_char;
1899 struct type *builtin_short;
1900 struct type *builtin_int;
1901 struct type *builtin_long;
1902 struct type *builtin_signed_char;
1903 struct type *builtin_unsigned_char;
1904 struct type *builtin_unsigned_short;
1905 struct type *builtin_unsigned_int;
1906 struct type *builtin_unsigned_long;
1907 struct type *builtin_bfloat16;
1908 struct type *builtin_half;
1909 struct type *builtin_float;
1910 struct type *builtin_double;
1911 struct type *builtin_long_double;
1912 struct type *builtin_complex;
1913 struct type *builtin_double_complex;
1914 struct type *builtin_string;
1915 struct type *builtin_bool;
1916 struct type *builtin_long_long;
1917 struct type *builtin_unsigned_long_long;
1918 struct type *builtin_decfloat;
1919 struct type *builtin_decdouble;
1920 struct type *builtin_declong;
1921
1922 /* "True" character types.
1923 We use these for the '/c' print format, because c_char is just a
1924 one-byte integral type, which languages less laid back than C
1925 will print as ... well, a one-byte integral type. */
1926 struct type *builtin_true_char;
1927 struct type *builtin_true_unsigned_char;
1928
1929 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1930 is for when an architecture needs to describe a register that has
1931 no size. */
1932 struct type *builtin_int0;
1933 struct type *builtin_int8;
1934 struct type *builtin_uint8;
1935 struct type *builtin_int16;
1936 struct type *builtin_uint16;
1937 struct type *builtin_int24;
1938 struct type *builtin_uint24;
1939 struct type *builtin_int32;
1940 struct type *builtin_uint32;
1941 struct type *builtin_int64;
1942 struct type *builtin_uint64;
1943 struct type *builtin_int128;
1944 struct type *builtin_uint128;
1945
1946 /* Wide character types. */
1947 struct type *builtin_char16;
1948 struct type *builtin_char32;
1949 struct type *builtin_wchar;
1950
1951 /* Pointer types. */
1952
1953 /* * `pointer to data' type. Some target platforms use an implicitly
1954 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1955 struct type *builtin_data_ptr;
1956
1957 /* * `pointer to function (returning void)' type. Harvard
1958 architectures mean that ABI function and code pointers are not
1959 interconvertible. Similarly, since ANSI, C standards have
1960 explicitly said that pointers to functions and pointers to data
1961 are not interconvertible --- that is, you can't cast a function
1962 pointer to void * and back, and expect to get the same value.
1963 However, all function pointer types are interconvertible, so void
1964 (*) () can server as a generic function pointer. */
1965
1966 struct type *builtin_func_ptr;
1967
1968 /* * `function returning pointer to function (returning void)' type.
1969 The final void return type is not significant for it. */
1970
1971 struct type *builtin_func_func;
1972
1973 /* Special-purpose types. */
1974
1975 /* * This type is used to represent a GDB internal function. */
1976
1977 struct type *internal_fn;
1978
1979 /* * This type is used to represent an xmethod. */
1980 struct type *xmethod;
1981 };
1982
1983 /* * Return the type table for the specified architecture. */
1984
1985 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1986
1987 /* * Per-objfile types used by symbol readers. */
1988
1989 struct objfile_type
1990 {
1991 /* Basic types based on the objfile architecture. */
1992 struct type *builtin_void;
1993 struct type *builtin_char;
1994 struct type *builtin_short;
1995 struct type *builtin_int;
1996 struct type *builtin_long;
1997 struct type *builtin_long_long;
1998 struct type *builtin_signed_char;
1999 struct type *builtin_unsigned_char;
2000 struct type *builtin_unsigned_short;
2001 struct type *builtin_unsigned_int;
2002 struct type *builtin_unsigned_long;
2003 struct type *builtin_unsigned_long_long;
2004 struct type *builtin_half;
2005 struct type *builtin_float;
2006 struct type *builtin_double;
2007 struct type *builtin_long_double;
2008
2009 /* * This type is used to represent symbol addresses. */
2010 struct type *builtin_core_addr;
2011
2012 /* * This type represents a type that was unrecognized in symbol
2013 read-in. */
2014 struct type *builtin_error;
2015
2016 /* * Types used for symbols with no debug information. */
2017 struct type *nodebug_text_symbol;
2018 struct type *nodebug_text_gnu_ifunc_symbol;
2019 struct type *nodebug_got_plt_symbol;
2020 struct type *nodebug_data_symbol;
2021 struct type *nodebug_unknown_symbol;
2022 struct type *nodebug_tls_symbol;
2023 };
2024
2025 /* * Return the type table for the specified objfile. */
2026
2027 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2028
2029 /* Explicit floating-point formats. See "floatformat.h". */
2030 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2031 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2032 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2033 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2034 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2035 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2036 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2037 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2038 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2039 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2040 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2041 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2042 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2043
2044 /* Allocate space for storing data associated with a particular
2045 type. We ensure that the space is allocated using the same
2046 mechanism that was used to allocate the space for the type
2047 structure itself. I.e. if the type is on an objfile's
2048 objfile_obstack, then the space for data associated with that type
2049 will also be allocated on the objfile_obstack. If the type is
2050 associated with a gdbarch, then the space for data associated with that
2051 type will also be allocated on the gdbarch_obstack.
2052
2053 If a type is not associated with neither an objfile or a gdbarch then
2054 you should not use this macro to allocate space for data, instead you
2055 should call xmalloc directly, and ensure the memory is correctly freed
2056 when it is no longer needed. */
2057
2058 #define TYPE_ALLOC(t,size) \
2059 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2060 ? &TYPE_OBJFILE (t)->objfile_obstack \
2061 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2062 size))
2063
2064
2065 /* See comment on TYPE_ALLOC. */
2066
2067 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2068
2069 /* Use alloc_type to allocate a type owned by an objfile. Use
2070 alloc_type_arch to allocate a type owned by an architecture. Use
2071 alloc_type_copy to allocate a type with the same owner as a
2072 pre-existing template type, no matter whether objfile or
2073 gdbarch. */
2074 extern struct type *alloc_type (struct objfile *);
2075 extern struct type *alloc_type_arch (struct gdbarch *);
2076 extern struct type *alloc_type_copy (const struct type *);
2077
2078 /* * Return the type's architecture. For types owned by an
2079 architecture, that architecture is returned. For types owned by an
2080 objfile, that objfile's architecture is returned. */
2081
2082 extern struct gdbarch *get_type_arch (const struct type *);
2083
2084 /* * This returns the target type (or NULL) of TYPE, also skipping
2085 past typedefs. */
2086
2087 extern struct type *get_target_type (struct type *type);
2088
2089 /* Return the equivalent of TYPE_LENGTH, but in number of target
2090 addressable memory units of the associated gdbarch instead of bytes. */
2091
2092 extern unsigned int type_length_units (struct type *type);
2093
2094 /* * Helper function to construct objfile-owned types. */
2095
2096 extern struct type *init_type (struct objfile *, enum type_code, int,
2097 const char *);
2098 extern struct type *init_integer_type (struct objfile *, int, int,
2099 const char *);
2100 extern struct type *init_character_type (struct objfile *, int, int,
2101 const char *);
2102 extern struct type *init_boolean_type (struct objfile *, int, int,
2103 const char *);
2104 extern struct type *init_float_type (struct objfile *, int, const char *,
2105 const struct floatformat **,
2106 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2107 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2108 extern struct type *init_complex_type (const char *, struct type *);
2109 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2110 struct type *);
2111
2112 /* Helper functions to construct architecture-owned types. */
2113 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2114 const char *);
2115 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2116 const char *);
2117 extern struct type *arch_character_type (struct gdbarch *, int, int,
2118 const char *);
2119 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2120 const char *);
2121 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2122 const struct floatformat **);
2123 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2124 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2125 struct type *);
2126
2127 /* Helper functions to construct a struct or record type. An
2128 initially empty type is created using arch_composite_type().
2129 Fields are then added using append_composite_type_field*(). A union
2130 type has its size set to the largest field. A struct type has each
2131 field packed against the previous. */
2132
2133 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2134 const char *name, enum type_code code);
2135 extern void append_composite_type_field (struct type *t, const char *name,
2136 struct type *field);
2137 extern void append_composite_type_field_aligned (struct type *t,
2138 const char *name,
2139 struct type *field,
2140 int alignment);
2141 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2142 struct type *field);
2143
2144 /* Helper functions to construct a bit flags type. An initially empty
2145 type is created using arch_flag_type(). Flags are then added using
2146 append_flag_type_field() and append_flag_type_flag(). */
2147 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2148 const char *name, int bit);
2149 extern void append_flags_type_field (struct type *type,
2150 int start_bitpos, int nr_bits,
2151 struct type *field_type, const char *name);
2152 extern void append_flags_type_flag (struct type *type, int bitpos,
2153 const char *name);
2154
2155 extern void make_vector_type (struct type *array_type);
2156 extern struct type *init_vector_type (struct type *elt_type, int n);
2157
2158 extern struct type *lookup_reference_type (struct type *, enum type_code);
2159 extern struct type *lookup_lvalue_reference_type (struct type *);
2160 extern struct type *lookup_rvalue_reference_type (struct type *);
2161
2162
2163 extern struct type *make_reference_type (struct type *, struct type **,
2164 enum type_code);
2165
2166 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2167
2168 extern struct type *make_restrict_type (struct type *);
2169
2170 extern struct type *make_unqualified_type (struct type *);
2171
2172 extern struct type *make_atomic_type (struct type *);
2173
2174 extern void replace_type (struct type *, struct type *);
2175
2176 extern int address_space_name_to_int (struct gdbarch *, const char *);
2177
2178 extern const char *address_space_int_to_name (struct gdbarch *, int);
2179
2180 extern struct type *make_type_with_address_space (struct type *type,
2181 int space_identifier);
2182
2183 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2184
2185 extern struct type *lookup_methodptr_type (struct type *);
2186
2187 extern void smash_to_method_type (struct type *type, struct type *self_type,
2188 struct type *to_type, struct field *args,
2189 int nargs, int varargs);
2190
2191 extern void smash_to_memberptr_type (struct type *, struct type *,
2192 struct type *);
2193
2194 extern void smash_to_methodptr_type (struct type *, struct type *);
2195
2196 extern struct type *allocate_stub_method (struct type *);
2197
2198 extern const char *type_name_or_error (struct type *type);
2199
2200 struct struct_elt
2201 {
2202 /* The field of the element, or NULL if no element was found. */
2203 struct field *field;
2204
2205 /* The bit offset of the element in the parent structure. */
2206 LONGEST offset;
2207 };
2208
2209 /* Given a type TYPE, lookup the field and offset of the component named
2210 NAME.
2211
2212 TYPE can be either a struct or union, or a pointer or reference to
2213 a struct or union. If it is a pointer or reference, its target
2214 type is automatically used. Thus '.' and '->' are interchangable,
2215 as specified for the definitions of the expression element types
2216 STRUCTOP_STRUCT and STRUCTOP_PTR.
2217
2218 If NOERR is nonzero, the returned structure will have field set to
2219 NULL if there is no component named NAME.
2220
2221 If the component NAME is a field in an anonymous substructure of
2222 TYPE, the returned offset is a "global" offset relative to TYPE
2223 rather than an offset within the substructure. */
2224
2225 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2226
2227 /* Given a type TYPE, lookup the type of the component named NAME.
2228
2229 TYPE can be either a struct or union, or a pointer or reference to
2230 a struct or union. If it is a pointer or reference, its target
2231 type is automatically used. Thus '.' and '->' are interchangable,
2232 as specified for the definitions of the expression element types
2233 STRUCTOP_STRUCT and STRUCTOP_PTR.
2234
2235 If NOERR is nonzero, return NULL if there is no component named
2236 NAME. */
2237
2238 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2239
2240 extern struct type *make_pointer_type (struct type *, struct type **);
2241
2242 extern struct type *lookup_pointer_type (struct type *);
2243
2244 extern struct type *make_function_type (struct type *, struct type **);
2245
2246 extern struct type *lookup_function_type (struct type *);
2247
2248 extern struct type *lookup_function_type_with_arguments (struct type *,
2249 int,
2250 struct type **);
2251
2252 extern struct type *create_static_range_type (struct type *, struct type *,
2253 LONGEST, LONGEST);
2254
2255
2256 extern struct type *create_array_type_with_stride
2257 (struct type *, struct type *, struct type *,
2258 struct dynamic_prop *, unsigned int);
2259
2260 extern struct type *create_range_type (struct type *, struct type *,
2261 const struct dynamic_prop *,
2262 const struct dynamic_prop *,
2263 LONGEST);
2264
2265 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2266 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2267 stride. */
2268
2269 extern struct type * create_range_type_with_stride
2270 (struct type *result_type, struct type *index_type,
2271 const struct dynamic_prop *low_bound,
2272 const struct dynamic_prop *high_bound, LONGEST bias,
2273 const struct dynamic_prop *stride, bool byte_stride_p);
2274
2275 extern struct type *create_array_type (struct type *, struct type *,
2276 struct type *);
2277
2278 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2279
2280 extern struct type *create_string_type (struct type *, struct type *,
2281 struct type *);
2282 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2283
2284 extern struct type *create_set_type (struct type *, struct type *);
2285
2286 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2287 const char *);
2288
2289 extern struct type *lookup_signed_typename (const struct language_defn *,
2290 const char *);
2291
2292 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2293
2294 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2295
2296 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2297 ADDR specifies the location of the variable the type is bound to.
2298 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2299 static properties is returned. */
2300 extern struct type *resolve_dynamic_type
2301 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2302 CORE_ADDR addr);
2303
2304 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2305 extern int is_dynamic_type (struct type *type);
2306
2307 extern struct type *check_typedef (struct type *);
2308
2309 extern void check_stub_method_group (struct type *, int);
2310
2311 extern char *gdb_mangle_name (struct type *, int, int);
2312
2313 extern struct type *lookup_typename (const struct language_defn *,
2314 const char *, const struct block *, int);
2315
2316 extern struct type *lookup_template_type (const char *, struct type *,
2317 const struct block *);
2318
2319 extern int get_vptr_fieldno (struct type *, struct type **);
2320
2321 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2322
2323 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2324 LONGEST *high_bound);
2325
2326 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2327
2328 extern int class_types_same_p (const struct type *, const struct type *);
2329
2330 extern int is_ancestor (struct type *, struct type *);
2331
2332 extern int is_public_ancestor (struct type *, struct type *);
2333
2334 extern int is_unique_ancestor (struct type *, struct value *);
2335
2336 /* Overload resolution */
2337
2338 /* * Badness if parameter list length doesn't match arg list length. */
2339 extern const struct rank LENGTH_MISMATCH_BADNESS;
2340
2341 /* * Dummy badness value for nonexistent parameter positions. */
2342 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2343 /* * Badness if no conversion among types. */
2344 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2345
2346 /* * Badness of an exact match. */
2347 extern const struct rank EXACT_MATCH_BADNESS;
2348
2349 /* * Badness of integral promotion. */
2350 extern const struct rank INTEGER_PROMOTION_BADNESS;
2351 /* * Badness of floating promotion. */
2352 extern const struct rank FLOAT_PROMOTION_BADNESS;
2353 /* * Badness of converting a derived class pointer
2354 to a base class pointer. */
2355 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2356 /* * Badness of integral conversion. */
2357 extern const struct rank INTEGER_CONVERSION_BADNESS;
2358 /* * Badness of floating conversion. */
2359 extern const struct rank FLOAT_CONVERSION_BADNESS;
2360 /* * Badness of integer<->floating conversions. */
2361 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2362 /* * Badness of conversion of pointer to void pointer. */
2363 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2364 /* * Badness of conversion to boolean. */
2365 extern const struct rank BOOL_CONVERSION_BADNESS;
2366 /* * Badness of converting derived to base class. */
2367 extern const struct rank BASE_CONVERSION_BADNESS;
2368 /* * Badness of converting from non-reference to reference. Subrank
2369 is the type of reference conversion being done. */
2370 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2371 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2372 /* * Conversion to rvalue reference. */
2373 #define REFERENCE_CONVERSION_RVALUE 1
2374 /* * Conversion to const lvalue reference. */
2375 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2376
2377 /* * Badness of converting integer 0 to NULL pointer. */
2378 extern const struct rank NULL_POINTER_CONVERSION;
2379 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2380 being done. */
2381 extern const struct rank CV_CONVERSION_BADNESS;
2382 #define CV_CONVERSION_CONST 1
2383 #define CV_CONVERSION_VOLATILE 2
2384
2385 /* Non-standard conversions allowed by the debugger */
2386
2387 /* * Converting a pointer to an int is usually OK. */
2388 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2389
2390 /* * Badness of converting a (non-zero) integer constant
2391 to a pointer. */
2392 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2393
2394 extern struct rank sum_ranks (struct rank a, struct rank b);
2395 extern int compare_ranks (struct rank a, struct rank b);
2396
2397 extern int compare_badness (const badness_vector &,
2398 const badness_vector &);
2399
2400 extern badness_vector rank_function (gdb::array_view<type *> parms,
2401 gdb::array_view<value *> args);
2402
2403 extern struct rank rank_one_type (struct type *, struct type *,
2404 struct value *);
2405
2406 extern void recursive_dump_type (struct type *, int);
2407
2408 extern int field_is_static (struct field *);
2409
2410 /* printcmd.c */
2411
2412 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2413 const struct value_print_options *,
2414 int, struct ui_file *);
2415
2416 extern int can_dereference (struct type *);
2417
2418 extern int is_integral_type (struct type *);
2419
2420 extern int is_floating_type (struct type *);
2421
2422 extern int is_scalar_type (struct type *type);
2423
2424 extern int is_scalar_type_recursive (struct type *);
2425
2426 extern int class_or_union_p (const struct type *);
2427
2428 extern void maintenance_print_type (const char *, int);
2429
2430 extern htab_t create_copied_types_hash (struct objfile *objfile);
2431
2432 extern struct type *copy_type_recursive (struct objfile *objfile,
2433 struct type *type,
2434 htab_t copied_types);
2435
2436 extern struct type *copy_type (const struct type *type);
2437
2438 extern bool types_equal (struct type *, struct type *);
2439
2440 extern bool types_deeply_equal (struct type *, struct type *);
2441
2442 extern int type_not_allocated (const struct type *type);
2443
2444 extern int type_not_associated (const struct type *type);
2445
2446 /* * When the type includes explicit byte ordering, return that.
2447 Otherwise, the byte ordering from gdbarch_byte_order for
2448 get_type_arch is returned. */
2449
2450 extern enum bfd_endian type_byte_order (const struct type *type);
2451
2452 /* A flag to enable printing of debugging information of C++
2453 overloading. */
2454
2455 extern unsigned int overload_debug;
2456
2457 #endif /* GDBTYPES_H */