gdb: remove TYPE_UNSIGNED
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * No sign for this type. In C++, "char", "signed char", and
214 "unsigned char" are distinct types; so we need an extra flag to
215 indicate the absence of a sign! */
216
217 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
218
219 /* * A compiler may supply dwarf instrumentation
220 that indicates the desired endian interpretation of the variable
221 differs from the native endian representation. */
222
223 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
224
225 /* * This appears in a type's flags word if it is a stub type (e.g.,
226 if someone referenced a type that wasn't defined in a source file
227 via (struct sir_not_appearing_in_this_film *)). */
228
229 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
230
231 /* * The target type of this type is a stub type, and this type needs
232 to be updated if it gets un-stubbed in check_typedef. Used for
233 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
234 based on the TYPE_LENGTH of the target type. Also, set for
235 TYPE_CODE_TYPEDEF. */
236
237 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
238
239 /* * This is a function type which appears to have a prototype. We
240 need this for function calls in order to tell us if it's necessary
241 to coerce the args, or to just do the standard conversions. This
242 is used with a short field. */
243
244 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
245
246 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
247 to functions. */
248
249 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
250
251 /* * Identify a vector type. Gcc is handling this by adding an extra
252 attribute to the array type. We slurp that in as a new flag of a
253 type. This is used only in dwarf2read.c. */
254 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
255
256 /* * The debugging formats (especially STABS) do not contain enough
257 information to represent all Ada types---especially those whose
258 size depends on dynamic quantities. Therefore, the GNAT Ada
259 compiler includes extra information in the form of additional type
260 definitions connected by naming conventions. This flag indicates
261 that the type is an ordinary (unencoded) GDB type that has been
262 created from the necessary run-time information, and does not need
263 further interpretation. Optionally marks ordinary, fixed-size GDB
264 type. */
265
266 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
267
268 /* * This debug target supports TYPE_STUB(t). In the unsupported case
269 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
270 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
271 guessed the TYPE_STUB(t) value (see dwarfread.c). */
272
273 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
274
275 /* * Not textual. By default, GDB treats all single byte integers as
276 characters (or elements of strings) unless this flag is set. */
277
278 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
279
280 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
281 address is returned by this function call. TYPE_TARGET_TYPE
282 determines the final returned function type to be presented to
283 user. */
284
285 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
286
287 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
288 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
289 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
290
291 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
292 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
293 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
294
295 /* * True if this type was declared using the "class" keyword. This is
296 only valid for C++ structure and enum types. If false, a structure
297 was declared as a "struct"; if true it was declared "class". For
298 enum types, this is true when "enum class" or "enum struct" was
299 used to declare the type.. */
300
301 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
302
303 /* * True if this type is a "flag" enum. A flag enum is one where all
304 the values are pairwise disjoint when "and"ed together. This
305 affects how enum values are printed. */
306
307 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
308
309 /* * Constant type. If this is set, the corresponding type has a
310 const modifier. */
311
312 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
313
314 /* * Volatile type. If this is set, the corresponding type has a
315 volatile modifier. */
316
317 #define TYPE_VOLATILE(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
319
320 /* * Restrict type. If this is set, the corresponding type has a
321 restrict modifier. */
322
323 #define TYPE_RESTRICT(t) \
324 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
325
326 /* * Atomic type. If this is set, the corresponding type has an
327 _Atomic modifier. */
328
329 #define TYPE_ATOMIC(t) \
330 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
331
332 /* * True if this type represents either an lvalue or lvalue reference type. */
333
334 #define TYPE_IS_REFERENCE(t) \
335 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
336
337 /* * True if this type is allocatable. */
338 #define TYPE_IS_ALLOCATABLE(t) \
339 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
340
341 /* * True if this type has variant parts. */
342 #define TYPE_HAS_VARIANT_PARTS(t) \
343 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
344
345 /* * True if this type has a dynamic length. */
346 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
347 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
348
349 /* * Instruction-space delimited type. This is for Harvard architectures
350 which have separate instruction and data address spaces (and perhaps
351 others).
352
353 GDB usually defines a flat address space that is a superset of the
354 architecture's two (or more) address spaces, but this is an extension
355 of the architecture's model.
356
357 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
358 resides in instruction memory, even if its address (in the extended
359 flat address space) does not reflect this.
360
361 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
362 corresponding type resides in the data memory space, even if
363 this is not indicated by its (flat address space) address.
364
365 If neither flag is set, the default space for functions / methods
366 is instruction space, and for data objects is data memory. */
367
368 #define TYPE_CODE_SPACE(t) \
369 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
370
371 #define TYPE_DATA_SPACE(t) \
372 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
373
374 /* * Address class flags. Some environments provide for pointers
375 whose size is different from that of a normal pointer or address
376 types where the bits are interpreted differently than normal
377 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
378 target specific ways to represent these different types of address
379 classes. */
380
381 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
382 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
383 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
384 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
385 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
386 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
387 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
388 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
389
390 /* * Information about a single discriminant. */
391
392 struct discriminant_range
393 {
394 /* * The range of values for the variant. This is an inclusive
395 range. */
396 ULONGEST low, high;
397
398 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
399 is true if this should be an unsigned comparison; false for
400 signed. */
401 bool contains (ULONGEST value, bool is_unsigned) const
402 {
403 if (is_unsigned)
404 return value >= low && value <= high;
405 LONGEST valuel = (LONGEST) value;
406 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
407 }
408 };
409
410 struct variant_part;
411
412 /* * A single variant. A variant has a list of discriminant values.
413 When the discriminator matches one of these, the variant is
414 enabled. Each variant controls zero or more fields; and may also
415 control other variant parts as well. This struct corresponds to
416 DW_TAG_variant in DWARF. */
417
418 struct variant : allocate_on_obstack
419 {
420 /* * The discriminant ranges for this variant. */
421 gdb::array_view<discriminant_range> discriminants;
422
423 /* * The fields controlled by this variant. This is inclusive on
424 the low end and exclusive on the high end. A variant may not
425 control any fields, in which case the two values will be equal.
426 These are indexes into the type's array of fields. */
427 int first_field;
428 int last_field;
429
430 /* * Variant parts controlled by this variant. */
431 gdb::array_view<variant_part> parts;
432
433 /* * Return true if this is the default variant. The default
434 variant can be recognized because it has no associated
435 discriminants. */
436 bool is_default () const
437 {
438 return discriminants.empty ();
439 }
440
441 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
442 if this should be an unsigned comparison; false for signed. */
443 bool matches (ULONGEST value, bool is_unsigned) const;
444 };
445
446 /* * A variant part. Each variant part has an optional discriminant
447 and holds an array of variants. This struct corresponds to
448 DW_TAG_variant_part in DWARF. */
449
450 struct variant_part : allocate_on_obstack
451 {
452 /* * The index of the discriminant field in the outer type. This is
453 an index into the type's array of fields. If this is -1, there
454 is no discriminant, and only the default variant can be
455 considered to be selected. */
456 int discriminant_index;
457
458 /* * True if this discriminant is unsigned; false if signed. This
459 comes from the type of the discriminant. */
460 bool is_unsigned;
461
462 /* * The variants that are controlled by this variant part. Note
463 that these will always be sorted by field number. */
464 gdb::array_view<variant> variants;
465 };
466
467
468 enum dynamic_prop_kind
469 {
470 PROP_UNDEFINED, /* Not defined. */
471 PROP_CONST, /* Constant. */
472 PROP_ADDR_OFFSET, /* Address offset. */
473 PROP_LOCEXPR, /* Location expression. */
474 PROP_LOCLIST, /* Location list. */
475 PROP_VARIANT_PARTS, /* Variant parts. */
476 PROP_TYPE, /* Type. */
477 };
478
479 union dynamic_prop_data
480 {
481 /* Storage for constant property. */
482
483 LONGEST const_val;
484
485 /* Storage for dynamic property. */
486
487 void *baton;
488
489 /* Storage of variant parts for a type. A type with variant parts
490 has all its fields "linearized" -- stored in a single field
491 array, just as if they had all been declared that way. The
492 variant parts are attached via a dynamic property, and then are
493 used to control which fields end up in the final type during
494 dynamic type resolution. */
495
496 const gdb::array_view<variant_part> *variant_parts;
497
498 /* Once a variant type is resolved, we may want to be able to go
499 from the resolved type to the original type. In this case we
500 rewrite the property's kind and set this field. */
501
502 struct type *original_type;
503 };
504
505 /* * Used to store a dynamic property. */
506
507 struct dynamic_prop
508 {
509 dynamic_prop_kind kind () const
510 {
511 return m_kind;
512 }
513
514 void set_undefined ()
515 {
516 m_kind = PROP_UNDEFINED;
517 }
518
519 LONGEST const_val () const
520 {
521 gdb_assert (m_kind == PROP_CONST);
522
523 return m_data.const_val;
524 }
525
526 void set_const_val (LONGEST const_val)
527 {
528 m_kind = PROP_CONST;
529 m_data.const_val = const_val;
530 }
531
532 void *baton () const
533 {
534 gdb_assert (m_kind == PROP_LOCEXPR
535 || m_kind == PROP_LOCLIST
536 || m_kind == PROP_ADDR_OFFSET);
537
538 return m_data.baton;
539 }
540
541 void set_locexpr (void *baton)
542 {
543 m_kind = PROP_LOCEXPR;
544 m_data.baton = baton;
545 }
546
547 void set_loclist (void *baton)
548 {
549 m_kind = PROP_LOCLIST;
550 m_data.baton = baton;
551 }
552
553 void set_addr_offset (void *baton)
554 {
555 m_kind = PROP_ADDR_OFFSET;
556 m_data.baton = baton;
557 }
558
559 const gdb::array_view<variant_part> *variant_parts () const
560 {
561 gdb_assert (m_kind == PROP_VARIANT_PARTS);
562
563 return m_data.variant_parts;
564 }
565
566 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
567 {
568 m_kind = PROP_VARIANT_PARTS;
569 m_data.variant_parts = variant_parts;
570 }
571
572 struct type *original_type () const
573 {
574 gdb_assert (m_kind == PROP_TYPE);
575
576 return m_data.original_type;
577 }
578
579 void set_original_type (struct type *original_type)
580 {
581 m_kind = PROP_TYPE;
582 m_data.original_type = original_type;
583 }
584
585 /* Determine which field of the union dynamic_prop.data is used. */
586 enum dynamic_prop_kind m_kind;
587
588 /* Storage for dynamic or static value. */
589 union dynamic_prop_data m_data;
590 };
591
592 /* Compare two dynamic_prop objects for equality. dynamic_prop
593 instances are equal iff they have the same type and storage. */
594 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
595
596 /* Compare two dynamic_prop objects for inequality. */
597 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
598 {
599 return !(l == r);
600 }
601
602 /* * Define a type's dynamic property node kind. */
603 enum dynamic_prop_node_kind
604 {
605 /* A property providing a type's data location.
606 Evaluating this field yields to the location of an object's data. */
607 DYN_PROP_DATA_LOCATION,
608
609 /* A property representing DW_AT_allocated. The presence of this attribute
610 indicates that the object of the type can be allocated/deallocated. */
611 DYN_PROP_ALLOCATED,
612
613 /* A property representing DW_AT_associated. The presence of this attribute
614 indicated that the object of the type can be associated. */
615 DYN_PROP_ASSOCIATED,
616
617 /* A property providing an array's byte stride. */
618 DYN_PROP_BYTE_STRIDE,
619
620 /* A property holding variant parts. */
621 DYN_PROP_VARIANT_PARTS,
622
623 /* A property holding the size of the type. */
624 DYN_PROP_BYTE_SIZE,
625 };
626
627 /* * List for dynamic type attributes. */
628 struct dynamic_prop_list
629 {
630 /* The kind of dynamic prop in this node. */
631 enum dynamic_prop_node_kind prop_kind;
632
633 /* The dynamic property itself. */
634 struct dynamic_prop prop;
635
636 /* A pointer to the next dynamic property. */
637 struct dynamic_prop_list *next;
638 };
639
640 /* * Determine which field of the union main_type.fields[x].loc is
641 used. */
642
643 enum field_loc_kind
644 {
645 FIELD_LOC_KIND_BITPOS, /**< bitpos */
646 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
647 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
648 FIELD_LOC_KIND_PHYSNAME, /**< physname */
649 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
650 };
651
652 /* * A discriminant to determine which field in the
653 main_type.type_specific union is being used, if any.
654
655 For types such as TYPE_CODE_FLT, the use of this
656 discriminant is really redundant, as we know from the type code
657 which field is going to be used. As such, it would be possible to
658 reduce the size of this enum in order to save a bit or two for
659 other fields of struct main_type. But, since we still have extra
660 room , and for the sake of clarity and consistency, we treat all fields
661 of the union the same way. */
662
663 enum type_specific_kind
664 {
665 TYPE_SPECIFIC_NONE,
666 TYPE_SPECIFIC_CPLUS_STUFF,
667 TYPE_SPECIFIC_GNAT_STUFF,
668 TYPE_SPECIFIC_FLOATFORMAT,
669 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
670 TYPE_SPECIFIC_FUNC,
671 TYPE_SPECIFIC_SELF_TYPE
672 };
673
674 union type_owner
675 {
676 struct objfile *objfile;
677 struct gdbarch *gdbarch;
678 };
679
680 union field_location
681 {
682 /* * Position of this field, counting in bits from start of
683 containing structure. For big-endian targets, it is the bit
684 offset to the MSB. For little-endian targets, it is the bit
685 offset to the LSB. */
686
687 LONGEST bitpos;
688
689 /* * Enum value. */
690 LONGEST enumval;
691
692 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
693 physaddr is the location (in the target) of the static
694 field. Otherwise, physname is the mangled label of the
695 static field. */
696
697 CORE_ADDR physaddr;
698 const char *physname;
699
700 /* * The field location can be computed by evaluating the
701 following DWARF block. Its DATA is allocated on
702 objfile_obstack - no CU load is needed to access it. */
703
704 struct dwarf2_locexpr_baton *dwarf_block;
705 };
706
707 struct field
708 {
709 struct type *type () const
710 {
711 return this->m_type;
712 }
713
714 void set_type (struct type *type)
715 {
716 this->m_type = type;
717 }
718
719 union field_location loc;
720
721 /* * For a function or member type, this is 1 if the argument is
722 marked artificial. Artificial arguments should not be shown
723 to the user. For TYPE_CODE_RANGE it is set if the specific
724 bound is not defined. */
725
726 unsigned int artificial : 1;
727
728 /* * Discriminant for union field_location. */
729
730 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
731
732 /* * Size of this field, in bits, or zero if not packed.
733 If non-zero in an array type, indicates the element size in
734 bits (used only in Ada at the moment).
735 For an unpacked field, the field's type's length
736 says how many bytes the field occupies. */
737
738 unsigned int bitsize : 28;
739
740 /* * In a struct or union type, type of this field.
741 - In a function or member type, type of this argument.
742 - In an array type, the domain-type of the array. */
743
744 struct type *m_type;
745
746 /* * Name of field, value or argument.
747 NULL for range bounds, array domains, and member function
748 arguments. */
749
750 const char *name;
751 };
752
753 struct range_bounds
754 {
755 ULONGEST bit_stride () const
756 {
757 if (this->flag_is_byte_stride)
758 return this->stride.const_val () * 8;
759 else
760 return this->stride.const_val ();
761 }
762
763 /* * Low bound of range. */
764
765 struct dynamic_prop low;
766
767 /* * High bound of range. */
768
769 struct dynamic_prop high;
770
771 /* The stride value for this range. This can be stored in bits or bytes
772 based on the value of BYTE_STRIDE_P. It is optional to have a stride
773 value, if this range has no stride value defined then this will be set
774 to the constant zero. */
775
776 struct dynamic_prop stride;
777
778 /* * The bias. Sometimes a range value is biased before storage.
779 The bias is added to the stored bits to form the true value. */
780
781 LONGEST bias;
782
783 /* True if HIGH range bound contains the number of elements in the
784 subrange. This affects how the final high bound is computed. */
785
786 unsigned int flag_upper_bound_is_count : 1;
787
788 /* True if LOW or/and HIGH are resolved into a static bound from
789 a dynamic one. */
790
791 unsigned int flag_bound_evaluated : 1;
792
793 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
794
795 unsigned int flag_is_byte_stride : 1;
796 };
797
798 /* Compare two range_bounds objects for equality. Simply does
799 memberwise comparison. */
800 extern bool operator== (const range_bounds &l, const range_bounds &r);
801
802 /* Compare two range_bounds objects for inequality. */
803 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
804 {
805 return !(l == r);
806 }
807
808 union type_specific
809 {
810 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
811 point to cplus_struct_default, a default static instance of a
812 struct cplus_struct_type. */
813
814 struct cplus_struct_type *cplus_stuff;
815
816 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
817 provides additional information. */
818
819 struct gnat_aux_type *gnat_stuff;
820
821 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
822 floatformat object that describes the floating-point value
823 that resides within the type. */
824
825 const struct floatformat *floatformat;
826
827 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
828
829 struct func_type *func_stuff;
830
831 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
832 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
833 is a member of. */
834
835 struct type *self_type;
836 };
837
838 /* * Main structure representing a type in GDB.
839
840 This structure is space-critical. Its layout has been tweaked to
841 reduce the space used. */
842
843 struct main_type
844 {
845 /* * Code for kind of type. */
846
847 ENUM_BITFIELD(type_code) code : 8;
848
849 /* * Flags about this type. These fields appear at this location
850 because they packs nicely here. See the TYPE_* macros for
851 documentation about these fields. */
852
853 unsigned int m_flag_unsigned : 1;
854 unsigned int flag_nosign : 1;
855 unsigned int flag_stub : 1;
856 unsigned int flag_target_stub : 1;
857 unsigned int flag_prototyped : 1;
858 unsigned int flag_varargs : 1;
859 unsigned int flag_vector : 1;
860 unsigned int flag_stub_supported : 1;
861 unsigned int flag_gnu_ifunc : 1;
862 unsigned int flag_fixed_instance : 1;
863 unsigned int flag_objfile_owned : 1;
864 unsigned int flag_endianity_not_default : 1;
865
866 /* * True if this type was declared with "class" rather than
867 "struct". */
868
869 unsigned int flag_declared_class : 1;
870
871 /* * True if this is an enum type with disjoint values. This
872 affects how the enum is printed. */
873
874 unsigned int flag_flag_enum : 1;
875
876 /* * A discriminant telling us which field of the type_specific
877 union is being used for this type, if any. */
878
879 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
880
881 /* * Number of fields described for this type. This field appears
882 at this location because it packs nicely here. */
883
884 short nfields;
885
886 /* * Name of this type, or NULL if none.
887
888 This is used for printing only. For looking up a name, look for
889 a symbol in the VAR_DOMAIN. This is generally allocated in the
890 objfile's obstack. However coffread.c uses malloc. */
891
892 const char *name;
893
894 /* * Every type is now associated with a particular objfile, and the
895 type is allocated on the objfile_obstack for that objfile. One
896 problem however, is that there are times when gdb allocates new
897 types while it is not in the process of reading symbols from a
898 particular objfile. Fortunately, these happen when the type
899 being created is a derived type of an existing type, such as in
900 lookup_pointer_type(). So we can just allocate the new type
901 using the same objfile as the existing type, but to do this we
902 need a backpointer to the objfile from the existing type. Yes
903 this is somewhat ugly, but without major overhaul of the internal
904 type system, it can't be avoided for now. */
905
906 union type_owner owner;
907
908 /* * For a pointer type, describes the type of object pointed to.
909 - For an array type, describes the type of the elements.
910 - For a function or method type, describes the type of the return value.
911 - For a range type, describes the type of the full range.
912 - For a complex type, describes the type of each coordinate.
913 - For a special record or union type encoding a dynamic-sized type
914 in GNAT, a memoized pointer to a corresponding static version of
915 the type.
916 - Unused otherwise. */
917
918 struct type *target_type;
919
920 /* * For structure and union types, a description of each field.
921 For set and pascal array types, there is one "field",
922 whose type is the domain type of the set or array.
923 For range types, there are two "fields",
924 the minimum and maximum values (both inclusive).
925 For enum types, each possible value is described by one "field".
926 For a function or method type, a "field" for each parameter.
927 For C++ classes, there is one field for each base class (if it is
928 a derived class) plus one field for each class data member. Member
929 functions are recorded elsewhere.
930
931 Using a pointer to a separate array of fields
932 allows all types to have the same size, which is useful
933 because we can allocate the space for a type before
934 we know what to put in it. */
935
936 union
937 {
938 struct field *fields;
939
940 /* * Union member used for range types. */
941
942 struct range_bounds *bounds;
943
944 /* If this is a scalar type, then this is its corresponding
945 complex type. */
946 struct type *complex_type;
947
948 } flds_bnds;
949
950 /* * Slot to point to additional language-specific fields of this
951 type. */
952
953 union type_specific type_specific;
954
955 /* * Contains all dynamic type properties. */
956 struct dynamic_prop_list *dyn_prop_list;
957 };
958
959 /* * Number of bits allocated for alignment. */
960
961 #define TYPE_ALIGN_BITS 8
962
963 /* * A ``struct type'' describes a particular instance of a type, with
964 some particular qualification. */
965
966 struct type
967 {
968 /* Get the type code of this type.
969
970 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
971 type, you need to do `check_typedef (type)->code ()`. */
972 type_code code () const
973 {
974 return this->main_type->code;
975 }
976
977 /* Set the type code of this type. */
978 void set_code (type_code code)
979 {
980 this->main_type->code = code;
981 }
982
983 /* Get the name of this type. */
984 const char *name () const
985 {
986 return this->main_type->name;
987 }
988
989 /* Set the name of this type. */
990 void set_name (const char *name)
991 {
992 this->main_type->name = name;
993 }
994
995 /* Get the number of fields of this type. */
996 int num_fields () const
997 {
998 return this->main_type->nfields;
999 }
1000
1001 /* Set the number of fields of this type. */
1002 void set_num_fields (int num_fields)
1003 {
1004 this->main_type->nfields = num_fields;
1005 }
1006
1007 /* Get the fields array of this type. */
1008 struct field *fields () const
1009 {
1010 return this->main_type->flds_bnds.fields;
1011 }
1012
1013 /* Get the field at index IDX. */
1014 struct field &field (int idx) const
1015 {
1016 return this->fields ()[idx];
1017 }
1018
1019 /* Set the fields array of this type. */
1020 void set_fields (struct field *fields)
1021 {
1022 this->main_type->flds_bnds.fields = fields;
1023 }
1024
1025 type *index_type () const
1026 {
1027 return this->field (0).type ();
1028 }
1029
1030 void set_index_type (type *index_type)
1031 {
1032 this->field (0).set_type (index_type);
1033 }
1034
1035 /* Get the bounds bounds of this type. The type must be a range type. */
1036 range_bounds *bounds () const
1037 {
1038 switch (this->code ())
1039 {
1040 case TYPE_CODE_RANGE:
1041 return this->main_type->flds_bnds.bounds;
1042
1043 case TYPE_CODE_ARRAY:
1044 case TYPE_CODE_STRING:
1045 return this->index_type ()->bounds ();
1046
1047 default:
1048 gdb_assert_not_reached
1049 ("type::bounds called on type with invalid code");
1050 }
1051 }
1052
1053 /* Set the bounds of this type. The type must be a range type. */
1054 void set_bounds (range_bounds *bounds)
1055 {
1056 gdb_assert (this->code () == TYPE_CODE_RANGE);
1057
1058 this->main_type->flds_bnds.bounds = bounds;
1059 }
1060
1061 ULONGEST bit_stride () const
1062 {
1063 return this->bounds ()->bit_stride ();
1064 }
1065
1066 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1067 the type is signed (unless TYPE_NOSIGN is set). */
1068
1069 bool is_unsigned () const
1070 {
1071 return this->main_type->m_flag_unsigned;
1072 }
1073
1074 void set_is_unsigned (bool is_unsigned)
1075 {
1076 this->main_type->m_flag_unsigned = is_unsigned;
1077 }
1078
1079 /* * Return the dynamic property of the requested KIND from this type's
1080 list of dynamic properties. */
1081 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1082
1083 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1084 property to this type.
1085
1086 This function assumes that this type is objfile-owned. */
1087 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1088
1089 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1090 void remove_dyn_prop (dynamic_prop_node_kind kind);
1091
1092 /* * Type that is a pointer to this type.
1093 NULL if no such pointer-to type is known yet.
1094 The debugger may add the address of such a type
1095 if it has to construct one later. */
1096
1097 struct type *pointer_type;
1098
1099 /* * C++: also need a reference type. */
1100
1101 struct type *reference_type;
1102
1103 /* * A C++ rvalue reference type added in C++11. */
1104
1105 struct type *rvalue_reference_type;
1106
1107 /* * Variant chain. This points to a type that differs from this
1108 one only in qualifiers and length. Currently, the possible
1109 qualifiers are const, volatile, code-space, data-space, and
1110 address class. The length may differ only when one of the
1111 address class flags are set. The variants are linked in a
1112 circular ring and share MAIN_TYPE. */
1113
1114 struct type *chain;
1115
1116 /* * The alignment for this type. Zero means that the alignment was
1117 not specified in the debug info. Note that this is stored in a
1118 funny way: as the log base 2 (plus 1) of the alignment; so a
1119 value of 1 means the alignment is 1, and a value of 9 means the
1120 alignment is 256. */
1121
1122 unsigned align_log2 : TYPE_ALIGN_BITS;
1123
1124 /* * Flags specific to this instance of the type, indicating where
1125 on the ring we are.
1126
1127 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1128 binary or-ed with the target type, with a special case for
1129 address class and space class. For example if this typedef does
1130 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1131 instance flags are completely inherited from the target type. No
1132 qualifiers can be cleared by the typedef. See also
1133 check_typedef. */
1134 unsigned instance_flags : 9;
1135
1136 /* * Length of storage for a value of this type. The value is the
1137 expression in host bytes of what sizeof(type) would return. This
1138 size includes padding. For example, an i386 extended-precision
1139 floating point value really only occupies ten bytes, but most
1140 ABI's declare its size to be 12 bytes, to preserve alignment.
1141 A `struct type' representing such a floating-point type would
1142 have a `length' value of 12, even though the last two bytes are
1143 unused.
1144
1145 Since this field is expressed in host bytes, its value is appropriate
1146 to pass to memcpy and such (it is assumed that GDB itself always runs
1147 on an 8-bits addressable architecture). However, when using it for
1148 target address arithmetic (e.g. adding it to a target address), the
1149 type_length_units function should be used in order to get the length
1150 expressed in target addressable memory units. */
1151
1152 ULONGEST length;
1153
1154 /* * Core type, shared by a group of qualified types. */
1155
1156 struct main_type *main_type;
1157 };
1158
1159 struct fn_fieldlist
1160 {
1161
1162 /* * The overloaded name.
1163 This is generally allocated in the objfile's obstack.
1164 However stabsread.c sometimes uses malloc. */
1165
1166 const char *name;
1167
1168 /* * The number of methods with this name. */
1169
1170 int length;
1171
1172 /* * The list of methods. */
1173
1174 struct fn_field *fn_fields;
1175 };
1176
1177
1178
1179 struct fn_field
1180 {
1181 /* * If is_stub is clear, this is the mangled name which we can look
1182 up to find the address of the method (FIXME: it would be cleaner
1183 to have a pointer to the struct symbol here instead).
1184
1185 If is_stub is set, this is the portion of the mangled name which
1186 specifies the arguments. For example, "ii", if there are two int
1187 arguments, or "" if there are no arguments. See gdb_mangle_name
1188 for the conversion from this format to the one used if is_stub is
1189 clear. */
1190
1191 const char *physname;
1192
1193 /* * The function type for the method.
1194
1195 (This comment used to say "The return value of the method", but
1196 that's wrong. The function type is expected here, i.e. something
1197 with TYPE_CODE_METHOD, and *not* the return-value type). */
1198
1199 struct type *type;
1200
1201 /* * For virtual functions. First baseclass that defines this
1202 virtual function. */
1203
1204 struct type *fcontext;
1205
1206 /* Attributes. */
1207
1208 unsigned int is_const:1;
1209 unsigned int is_volatile:1;
1210 unsigned int is_private:1;
1211 unsigned int is_protected:1;
1212 unsigned int is_artificial:1;
1213
1214 /* * A stub method only has some fields valid (but they are enough
1215 to reconstruct the rest of the fields). */
1216
1217 unsigned int is_stub:1;
1218
1219 /* * True if this function is a constructor, false otherwise. */
1220
1221 unsigned int is_constructor : 1;
1222
1223 /* * True if this function is deleted, false otherwise. */
1224
1225 unsigned int is_deleted : 1;
1226
1227 /* * DW_AT_defaulted attribute for this function. The value is one
1228 of the DW_DEFAULTED constants. */
1229
1230 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1231
1232 /* * Unused. */
1233
1234 unsigned int dummy:6;
1235
1236 /* * Index into that baseclass's virtual function table, minus 2;
1237 else if static: VOFFSET_STATIC; else: 0. */
1238
1239 unsigned int voffset:16;
1240
1241 #define VOFFSET_STATIC 1
1242
1243 };
1244
1245 struct decl_field
1246 {
1247 /* * Unqualified name to be prefixed by owning class qualified
1248 name. */
1249
1250 const char *name;
1251
1252 /* * Type this typedef named NAME represents. */
1253
1254 struct type *type;
1255
1256 /* * True if this field was declared protected, false otherwise. */
1257 unsigned int is_protected : 1;
1258
1259 /* * True if this field was declared private, false otherwise. */
1260 unsigned int is_private : 1;
1261 };
1262
1263 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1264 TYPE_CODE_UNION nodes. */
1265
1266 struct cplus_struct_type
1267 {
1268 /* * Number of base classes this type derives from. The
1269 baseclasses are stored in the first N_BASECLASSES fields
1270 (i.e. the `fields' field of the struct type). The only fields
1271 of struct field that are used are: type, name, loc.bitpos. */
1272
1273 short n_baseclasses;
1274
1275 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1276 All access to this field must be through TYPE_VPTR_FIELDNO as one
1277 thing it does is check whether the field has been initialized.
1278 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1279 which for portability reasons doesn't initialize this field.
1280 TYPE_VPTR_FIELDNO returns -1 for this case.
1281
1282 If -1, we were unable to find the virtual function table pointer in
1283 initial symbol reading, and get_vptr_fieldno should be called to find
1284 it if possible. get_vptr_fieldno will update this field if possible.
1285 Otherwise the value is left at -1.
1286
1287 Unused if this type does not have virtual functions. */
1288
1289 short vptr_fieldno;
1290
1291 /* * Number of methods with unique names. All overloaded methods
1292 with the same name count only once. */
1293
1294 short nfn_fields;
1295
1296 /* * Number of template arguments. */
1297
1298 unsigned short n_template_arguments;
1299
1300 /* * One if this struct is a dynamic class, as defined by the
1301 Itanium C++ ABI: if it requires a virtual table pointer,
1302 because it or any of its base classes have one or more virtual
1303 member functions or virtual base classes. Minus one if not
1304 dynamic. Zero if not yet computed. */
1305
1306 int is_dynamic : 2;
1307
1308 /* * The calling convention for this type, fetched from the
1309 DW_AT_calling_convention attribute. The value is one of the
1310 DW_CC constants. */
1311
1312 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1313
1314 /* * The base class which defined the virtual function table pointer. */
1315
1316 struct type *vptr_basetype;
1317
1318 /* * For derived classes, the number of base classes is given by
1319 n_baseclasses and virtual_field_bits is a bit vector containing
1320 one bit per base class. If the base class is virtual, the
1321 corresponding bit will be set.
1322 I.E, given:
1323
1324 class A{};
1325 class B{};
1326 class C : public B, public virtual A {};
1327
1328 B is a baseclass of C; A is a virtual baseclass for C.
1329 This is a C++ 2.0 language feature. */
1330
1331 B_TYPE *virtual_field_bits;
1332
1333 /* * For classes with private fields, the number of fields is
1334 given by nfields and private_field_bits is a bit vector
1335 containing one bit per field.
1336
1337 If the field is private, the corresponding bit will be set. */
1338
1339 B_TYPE *private_field_bits;
1340
1341 /* * For classes with protected fields, the number of fields is
1342 given by nfields and protected_field_bits is a bit vector
1343 containing one bit per field.
1344
1345 If the field is private, the corresponding bit will be set. */
1346
1347 B_TYPE *protected_field_bits;
1348
1349 /* * For classes with fields to be ignored, either this is
1350 optimized out or this field has length 0. */
1351
1352 B_TYPE *ignore_field_bits;
1353
1354 /* * For classes, structures, and unions, a description of each
1355 field, which consists of an overloaded name, followed by the
1356 types of arguments that the method expects, and then the name
1357 after it has been renamed to make it distinct.
1358
1359 fn_fieldlists points to an array of nfn_fields of these. */
1360
1361 struct fn_fieldlist *fn_fieldlists;
1362
1363 /* * typedefs defined inside this class. typedef_field points to
1364 an array of typedef_field_count elements. */
1365
1366 struct decl_field *typedef_field;
1367
1368 unsigned typedef_field_count;
1369
1370 /* * The nested types defined by this type. nested_types points to
1371 an array of nested_types_count elements. */
1372
1373 struct decl_field *nested_types;
1374
1375 unsigned nested_types_count;
1376
1377 /* * The template arguments. This is an array with
1378 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1379 classes. */
1380
1381 struct symbol **template_arguments;
1382 };
1383
1384 /* * Struct used to store conversion rankings. */
1385
1386 struct rank
1387 {
1388 short rank;
1389
1390 /* * When two conversions are of the same type and therefore have
1391 the same rank, subrank is used to differentiate the two.
1392
1393 Eg: Two derived-class-pointer to base-class-pointer conversions
1394 would both have base pointer conversion rank, but the
1395 conversion with the shorter distance to the ancestor is
1396 preferable. 'subrank' would be used to reflect that. */
1397
1398 short subrank;
1399 };
1400
1401 /* * Used for ranking a function for overload resolution. */
1402
1403 typedef std::vector<rank> badness_vector;
1404
1405 /* * GNAT Ada-specific information for various Ada types. */
1406
1407 struct gnat_aux_type
1408 {
1409 /* * Parallel type used to encode information about dynamic types
1410 used in Ada (such as variant records, variable-size array,
1411 etc). */
1412 struct type* descriptive_type;
1413 };
1414
1415 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1416
1417 struct func_type
1418 {
1419 /* * The calling convention for targets supporting multiple ABIs.
1420 Right now this is only fetched from the Dwarf-2
1421 DW_AT_calling_convention attribute. The value is one of the
1422 DW_CC constants. */
1423
1424 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1425
1426 /* * Whether this function normally returns to its caller. It is
1427 set from the DW_AT_noreturn attribute if set on the
1428 DW_TAG_subprogram. */
1429
1430 unsigned int is_noreturn : 1;
1431
1432 /* * Only those DW_TAG_call_site's in this function that have
1433 DW_AT_call_tail_call set are linked in this list. Function
1434 without its tail call list complete
1435 (DW_AT_call_all_tail_calls or its superset
1436 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1437 DW_TAG_call_site's exist in such function. */
1438
1439 struct call_site *tail_call_list;
1440
1441 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1442 contains the method. */
1443
1444 struct type *self_type;
1445 };
1446
1447 /* struct call_site_parameter can be referenced in callees by several ways. */
1448
1449 enum call_site_parameter_kind
1450 {
1451 /* * Use field call_site_parameter.u.dwarf_reg. */
1452 CALL_SITE_PARAMETER_DWARF_REG,
1453
1454 /* * Use field call_site_parameter.u.fb_offset. */
1455 CALL_SITE_PARAMETER_FB_OFFSET,
1456
1457 /* * Use field call_site_parameter.u.param_offset. */
1458 CALL_SITE_PARAMETER_PARAM_OFFSET
1459 };
1460
1461 struct call_site_target
1462 {
1463 union field_location loc;
1464
1465 /* * Discriminant for union field_location. */
1466
1467 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1468 };
1469
1470 union call_site_parameter_u
1471 {
1472 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1473 as DWARF register number, for register passed
1474 parameters. */
1475
1476 int dwarf_reg;
1477
1478 /* * Offset from the callee's frame base, for stack passed
1479 parameters. This equals offset from the caller's stack
1480 pointer. */
1481
1482 CORE_ADDR fb_offset;
1483
1484 /* * Offset relative to the start of this PER_CU to
1485 DW_TAG_formal_parameter which is referenced by both
1486 caller and the callee. */
1487
1488 cu_offset param_cu_off;
1489 };
1490
1491 struct call_site_parameter
1492 {
1493 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1494
1495 union call_site_parameter_u u;
1496
1497 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1498
1499 const gdb_byte *value;
1500 size_t value_size;
1501
1502 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1503 It may be NULL if not provided by DWARF. */
1504
1505 const gdb_byte *data_value;
1506 size_t data_value_size;
1507 };
1508
1509 /* * A place where a function gets called from, represented by
1510 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1511
1512 struct call_site
1513 {
1514 /* * Address of the first instruction after this call. It must be
1515 the first field as we overload core_addr_hash and core_addr_eq
1516 for it. */
1517
1518 CORE_ADDR pc;
1519
1520 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1521
1522 struct call_site *tail_call_next;
1523
1524 /* * Describe DW_AT_call_target. Missing attribute uses
1525 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1526
1527 struct call_site_target target;
1528
1529 /* * Size of the PARAMETER array. */
1530
1531 unsigned parameter_count;
1532
1533 /* * CU of the function where the call is located. It gets used
1534 for DWARF blocks execution in the parameter array below. */
1535
1536 dwarf2_per_cu_data *per_cu;
1537
1538 /* objfile of the function where the call is located. */
1539
1540 dwarf2_per_objfile *per_objfile;
1541
1542 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1543
1544 struct call_site_parameter parameter[1];
1545 };
1546
1547 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1548 static structure. */
1549
1550 extern const struct cplus_struct_type cplus_struct_default;
1551
1552 extern void allocate_cplus_struct_type (struct type *);
1553
1554 #define INIT_CPLUS_SPECIFIC(type) \
1555 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1556 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1557 &cplus_struct_default)
1558
1559 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1560
1561 #define HAVE_CPLUS_STRUCT(type) \
1562 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1563 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1564
1565 #define INIT_NONE_SPECIFIC(type) \
1566 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1567 TYPE_MAIN_TYPE (type)->type_specific = {})
1568
1569 extern const struct gnat_aux_type gnat_aux_default;
1570
1571 extern void allocate_gnat_aux_type (struct type *);
1572
1573 #define INIT_GNAT_SPECIFIC(type) \
1574 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1575 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1576 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1577 /* * A macro that returns non-zero if the type-specific data should be
1578 read as "gnat-stuff". */
1579 #define HAVE_GNAT_AUX_INFO(type) \
1580 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1581
1582 /* * True if TYPE is known to be an Ada type of some kind. */
1583 #define ADA_TYPE_P(type) \
1584 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1585 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1586 && TYPE_FIXED_INSTANCE (type)))
1587
1588 #define INIT_FUNC_SPECIFIC(type) \
1589 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1590 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1591 TYPE_ZALLOC (type, \
1592 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1593
1594 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1595 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1596 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1597 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1598 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1599 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1600 #define TYPE_CHAIN(thistype) (thistype)->chain
1601 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1602 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1603 so you only have to call check_typedef once. Since allocate_value
1604 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1605 #define TYPE_LENGTH(thistype) (thistype)->length
1606
1607 /* * Return the alignment of the type in target addressable memory
1608 units, or 0 if no alignment was specified. */
1609 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1610
1611 /* * Return the alignment of the type in target addressable memory
1612 units, or 0 if no alignment was specified. */
1613 extern unsigned type_raw_align (struct type *);
1614
1615 /* * Return the alignment of the type in target addressable memory
1616 units. Return 0 if the alignment cannot be determined; but note
1617 that this makes an effort to compute the alignment even it it was
1618 not specified in the debug info. */
1619 extern unsigned type_align (struct type *);
1620
1621 /* * Set the alignment of the type. The alignment must be a power of
1622 2. Returns false if the given value does not fit in the available
1623 space in struct type. */
1624 extern bool set_type_align (struct type *, ULONGEST);
1625
1626 /* Property accessors for the type data location. */
1627 #define TYPE_DATA_LOCATION(thistype) \
1628 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1629 #define TYPE_DATA_LOCATION_BATON(thistype) \
1630 TYPE_DATA_LOCATION (thistype)->data.baton
1631 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1632 (TYPE_DATA_LOCATION (thistype)->const_val ())
1633 #define TYPE_DATA_LOCATION_KIND(thistype) \
1634 (TYPE_DATA_LOCATION (thistype)->kind ())
1635 #define TYPE_DYNAMIC_LENGTH(thistype) \
1636 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1637
1638 /* Property accessors for the type allocated/associated. */
1639 #define TYPE_ALLOCATED_PROP(thistype) \
1640 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1641 #define TYPE_ASSOCIATED_PROP(thistype) \
1642 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1643
1644 /* C++ */
1645
1646 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1647 /* Do not call this, use TYPE_SELF_TYPE. */
1648 extern struct type *internal_type_self_type (struct type *);
1649 extern void set_type_self_type (struct type *, struct type *);
1650
1651 extern int internal_type_vptr_fieldno (struct type *);
1652 extern void set_type_vptr_fieldno (struct type *, int);
1653 extern struct type *internal_type_vptr_basetype (struct type *);
1654 extern void set_type_vptr_basetype (struct type *, struct type *);
1655 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1656 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1657
1658 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1659 #define TYPE_SPECIFIC_FIELD(thistype) \
1660 TYPE_MAIN_TYPE(thistype)->type_specific_field
1661 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1662 where we're trying to print an Ada array using the C language.
1663 In that case, there is no "cplus_stuff", but the C language assumes
1664 that there is. What we do, in that case, is pretend that there is
1665 an implicit one which is the default cplus stuff. */
1666 #define TYPE_CPLUS_SPECIFIC(thistype) \
1667 (!HAVE_CPLUS_STRUCT(thistype) \
1668 ? (struct cplus_struct_type*)&cplus_struct_default \
1669 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1670 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1671 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1672 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1673 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1674 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1675 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1676 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1677 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1678 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1679 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1680 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1681 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1682 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1683 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1684 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1685 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1686
1687 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1688 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1689 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1690
1691 #define FIELD_NAME(thisfld) ((thisfld).name)
1692 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1693 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1694 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1695 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1696 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1697 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1698 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1699 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1700 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1701 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1702 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1703 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1704 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1705 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1706 #define SET_FIELD_PHYSNAME(thisfld, name) \
1707 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1708 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1709 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1710 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1711 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1712 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1713 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1714 FIELD_DWARF_BLOCK (thisfld) = (addr))
1715 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1716 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1717
1718 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1719 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1720 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1721 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1722 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1723 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1724 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1725 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1726 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1727 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1728
1729 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1730 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1731 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1732 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1733 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1734 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1735 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1736 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1737 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1738 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1739 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1740 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1741 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1742 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1743 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1744 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1745 #define TYPE_FIELD_PRIVATE(thistype, n) \
1746 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1747 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1748 #define TYPE_FIELD_PROTECTED(thistype, n) \
1749 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1750 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1751 #define TYPE_FIELD_IGNORE(thistype, n) \
1752 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1753 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1754 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1755 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1756 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1757
1758 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1759 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1760 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1761 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1762 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1763
1764 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1765 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1766 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1767 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1768 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1769 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1770
1771 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1772 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1773 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1774 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1775 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1776 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1777 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1778 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1779 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1780 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1781 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1782 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1783 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1784 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1785 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1786 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1787 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1788
1789 /* Accessors for typedefs defined by a class. */
1790 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1791 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1792 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1793 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1794 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1795 TYPE_TYPEDEF_FIELD (thistype, n).name
1796 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1797 TYPE_TYPEDEF_FIELD (thistype, n).type
1798 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1799 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1800 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1801 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1802 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1803 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1804
1805 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1806 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1807 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1808 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1809 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1810 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1811 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1812 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1813 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1814 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1815 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1816 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1817 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1818 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1819
1820 #define TYPE_IS_OPAQUE(thistype) \
1821 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1822 || ((thistype)->code () == TYPE_CODE_UNION)) \
1823 && ((thistype)->num_fields () == 0) \
1824 && (!HAVE_CPLUS_STRUCT (thistype) \
1825 || TYPE_NFN_FIELDS (thistype) == 0) \
1826 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1827
1828 /* * A helper macro that returns the name of a type or "unnamed type"
1829 if the type has no name. */
1830
1831 #define TYPE_SAFE_NAME(type) \
1832 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1833
1834 /* * A helper macro that returns the name of an error type. If the
1835 type has a name, it is used; otherwise, a default is used. */
1836
1837 #define TYPE_ERROR_NAME(type) \
1838 (type->name () ? type->name () : _("<error type>"))
1839
1840 /* Given TYPE, return its floatformat. */
1841 const struct floatformat *floatformat_from_type (const struct type *type);
1842
1843 struct builtin_type
1844 {
1845 /* Integral types. */
1846
1847 /* Implicit size/sign (based on the architecture's ABI). */
1848 struct type *builtin_void;
1849 struct type *builtin_char;
1850 struct type *builtin_short;
1851 struct type *builtin_int;
1852 struct type *builtin_long;
1853 struct type *builtin_signed_char;
1854 struct type *builtin_unsigned_char;
1855 struct type *builtin_unsigned_short;
1856 struct type *builtin_unsigned_int;
1857 struct type *builtin_unsigned_long;
1858 struct type *builtin_bfloat16;
1859 struct type *builtin_half;
1860 struct type *builtin_float;
1861 struct type *builtin_double;
1862 struct type *builtin_long_double;
1863 struct type *builtin_complex;
1864 struct type *builtin_double_complex;
1865 struct type *builtin_string;
1866 struct type *builtin_bool;
1867 struct type *builtin_long_long;
1868 struct type *builtin_unsigned_long_long;
1869 struct type *builtin_decfloat;
1870 struct type *builtin_decdouble;
1871 struct type *builtin_declong;
1872
1873 /* "True" character types.
1874 We use these for the '/c' print format, because c_char is just a
1875 one-byte integral type, which languages less laid back than C
1876 will print as ... well, a one-byte integral type. */
1877 struct type *builtin_true_char;
1878 struct type *builtin_true_unsigned_char;
1879
1880 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1881 is for when an architecture needs to describe a register that has
1882 no size. */
1883 struct type *builtin_int0;
1884 struct type *builtin_int8;
1885 struct type *builtin_uint8;
1886 struct type *builtin_int16;
1887 struct type *builtin_uint16;
1888 struct type *builtin_int24;
1889 struct type *builtin_uint24;
1890 struct type *builtin_int32;
1891 struct type *builtin_uint32;
1892 struct type *builtin_int64;
1893 struct type *builtin_uint64;
1894 struct type *builtin_int128;
1895 struct type *builtin_uint128;
1896
1897 /* Wide character types. */
1898 struct type *builtin_char16;
1899 struct type *builtin_char32;
1900 struct type *builtin_wchar;
1901
1902 /* Pointer types. */
1903
1904 /* * `pointer to data' type. Some target platforms use an implicitly
1905 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1906 struct type *builtin_data_ptr;
1907
1908 /* * `pointer to function (returning void)' type. Harvard
1909 architectures mean that ABI function and code pointers are not
1910 interconvertible. Similarly, since ANSI, C standards have
1911 explicitly said that pointers to functions and pointers to data
1912 are not interconvertible --- that is, you can't cast a function
1913 pointer to void * and back, and expect to get the same value.
1914 However, all function pointer types are interconvertible, so void
1915 (*) () can server as a generic function pointer. */
1916
1917 struct type *builtin_func_ptr;
1918
1919 /* * `function returning pointer to function (returning void)' type.
1920 The final void return type is not significant for it. */
1921
1922 struct type *builtin_func_func;
1923
1924 /* Special-purpose types. */
1925
1926 /* * This type is used to represent a GDB internal function. */
1927
1928 struct type *internal_fn;
1929
1930 /* * This type is used to represent an xmethod. */
1931 struct type *xmethod;
1932 };
1933
1934 /* * Return the type table for the specified architecture. */
1935
1936 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1937
1938 /* * Per-objfile types used by symbol readers. */
1939
1940 struct objfile_type
1941 {
1942 /* Basic types based on the objfile architecture. */
1943 struct type *builtin_void;
1944 struct type *builtin_char;
1945 struct type *builtin_short;
1946 struct type *builtin_int;
1947 struct type *builtin_long;
1948 struct type *builtin_long_long;
1949 struct type *builtin_signed_char;
1950 struct type *builtin_unsigned_char;
1951 struct type *builtin_unsigned_short;
1952 struct type *builtin_unsigned_int;
1953 struct type *builtin_unsigned_long;
1954 struct type *builtin_unsigned_long_long;
1955 struct type *builtin_half;
1956 struct type *builtin_float;
1957 struct type *builtin_double;
1958 struct type *builtin_long_double;
1959
1960 /* * This type is used to represent symbol addresses. */
1961 struct type *builtin_core_addr;
1962
1963 /* * This type represents a type that was unrecognized in symbol
1964 read-in. */
1965 struct type *builtin_error;
1966
1967 /* * Types used for symbols with no debug information. */
1968 struct type *nodebug_text_symbol;
1969 struct type *nodebug_text_gnu_ifunc_symbol;
1970 struct type *nodebug_got_plt_symbol;
1971 struct type *nodebug_data_symbol;
1972 struct type *nodebug_unknown_symbol;
1973 struct type *nodebug_tls_symbol;
1974 };
1975
1976 /* * Return the type table for the specified objfile. */
1977
1978 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1979
1980 /* Explicit floating-point formats. See "floatformat.h". */
1981 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1982 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1983 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1984 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1985 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1986 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1987 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1988 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1989 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1990 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1991 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1992 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1993 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
1994
1995 /* Allocate space for storing data associated with a particular
1996 type. We ensure that the space is allocated using the same
1997 mechanism that was used to allocate the space for the type
1998 structure itself. I.e. if the type is on an objfile's
1999 objfile_obstack, then the space for data associated with that type
2000 will also be allocated on the objfile_obstack. If the type is
2001 associated with a gdbarch, then the space for data associated with that
2002 type will also be allocated on the gdbarch_obstack.
2003
2004 If a type is not associated with neither an objfile or a gdbarch then
2005 you should not use this macro to allocate space for data, instead you
2006 should call xmalloc directly, and ensure the memory is correctly freed
2007 when it is no longer needed. */
2008
2009 #define TYPE_ALLOC(t,size) \
2010 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2011 ? &TYPE_OBJFILE (t)->objfile_obstack \
2012 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2013 size))
2014
2015
2016 /* See comment on TYPE_ALLOC. */
2017
2018 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2019
2020 /* Use alloc_type to allocate a type owned by an objfile. Use
2021 alloc_type_arch to allocate a type owned by an architecture. Use
2022 alloc_type_copy to allocate a type with the same owner as a
2023 pre-existing template type, no matter whether objfile or
2024 gdbarch. */
2025 extern struct type *alloc_type (struct objfile *);
2026 extern struct type *alloc_type_arch (struct gdbarch *);
2027 extern struct type *alloc_type_copy (const struct type *);
2028
2029 /* * Return the type's architecture. For types owned by an
2030 architecture, that architecture is returned. For types owned by an
2031 objfile, that objfile's architecture is returned. */
2032
2033 extern struct gdbarch *get_type_arch (const struct type *);
2034
2035 /* * This returns the target type (or NULL) of TYPE, also skipping
2036 past typedefs. */
2037
2038 extern struct type *get_target_type (struct type *type);
2039
2040 /* Return the equivalent of TYPE_LENGTH, but in number of target
2041 addressable memory units of the associated gdbarch instead of bytes. */
2042
2043 extern unsigned int type_length_units (struct type *type);
2044
2045 /* * Helper function to construct objfile-owned types. */
2046
2047 extern struct type *init_type (struct objfile *, enum type_code, int,
2048 const char *);
2049 extern struct type *init_integer_type (struct objfile *, int, int,
2050 const char *);
2051 extern struct type *init_character_type (struct objfile *, int, int,
2052 const char *);
2053 extern struct type *init_boolean_type (struct objfile *, int, int,
2054 const char *);
2055 extern struct type *init_float_type (struct objfile *, int, const char *,
2056 const struct floatformat **,
2057 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2058 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2059 extern struct type *init_complex_type (const char *, struct type *);
2060 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2061 struct type *);
2062
2063 /* Helper functions to construct architecture-owned types. */
2064 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2065 const char *);
2066 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2067 const char *);
2068 extern struct type *arch_character_type (struct gdbarch *, int, int,
2069 const char *);
2070 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2071 const char *);
2072 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2073 const struct floatformat **);
2074 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2075 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2076 struct type *);
2077
2078 /* Helper functions to construct a struct or record type. An
2079 initially empty type is created using arch_composite_type().
2080 Fields are then added using append_composite_type_field*(). A union
2081 type has its size set to the largest field. A struct type has each
2082 field packed against the previous. */
2083
2084 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2085 const char *name, enum type_code code);
2086 extern void append_composite_type_field (struct type *t, const char *name,
2087 struct type *field);
2088 extern void append_composite_type_field_aligned (struct type *t,
2089 const char *name,
2090 struct type *field,
2091 int alignment);
2092 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2093 struct type *field);
2094
2095 /* Helper functions to construct a bit flags type. An initially empty
2096 type is created using arch_flag_type(). Flags are then added using
2097 append_flag_type_field() and append_flag_type_flag(). */
2098 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2099 const char *name, int bit);
2100 extern void append_flags_type_field (struct type *type,
2101 int start_bitpos, int nr_bits,
2102 struct type *field_type, const char *name);
2103 extern void append_flags_type_flag (struct type *type, int bitpos,
2104 const char *name);
2105
2106 extern void make_vector_type (struct type *array_type);
2107 extern struct type *init_vector_type (struct type *elt_type, int n);
2108
2109 extern struct type *lookup_reference_type (struct type *, enum type_code);
2110 extern struct type *lookup_lvalue_reference_type (struct type *);
2111 extern struct type *lookup_rvalue_reference_type (struct type *);
2112
2113
2114 extern struct type *make_reference_type (struct type *, struct type **,
2115 enum type_code);
2116
2117 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2118
2119 extern struct type *make_restrict_type (struct type *);
2120
2121 extern struct type *make_unqualified_type (struct type *);
2122
2123 extern struct type *make_atomic_type (struct type *);
2124
2125 extern void replace_type (struct type *, struct type *);
2126
2127 extern int address_space_name_to_int (struct gdbarch *, const char *);
2128
2129 extern const char *address_space_int_to_name (struct gdbarch *, int);
2130
2131 extern struct type *make_type_with_address_space (struct type *type,
2132 int space_identifier);
2133
2134 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2135
2136 extern struct type *lookup_methodptr_type (struct type *);
2137
2138 extern void smash_to_method_type (struct type *type, struct type *self_type,
2139 struct type *to_type, struct field *args,
2140 int nargs, int varargs);
2141
2142 extern void smash_to_memberptr_type (struct type *, struct type *,
2143 struct type *);
2144
2145 extern void smash_to_methodptr_type (struct type *, struct type *);
2146
2147 extern struct type *allocate_stub_method (struct type *);
2148
2149 extern const char *type_name_or_error (struct type *type);
2150
2151 struct struct_elt
2152 {
2153 /* The field of the element, or NULL if no element was found. */
2154 struct field *field;
2155
2156 /* The bit offset of the element in the parent structure. */
2157 LONGEST offset;
2158 };
2159
2160 /* Given a type TYPE, lookup the field and offset of the component named
2161 NAME.
2162
2163 TYPE can be either a struct or union, or a pointer or reference to
2164 a struct or union. If it is a pointer or reference, its target
2165 type is automatically used. Thus '.' and '->' are interchangable,
2166 as specified for the definitions of the expression element types
2167 STRUCTOP_STRUCT and STRUCTOP_PTR.
2168
2169 If NOERR is nonzero, the returned structure will have field set to
2170 NULL if there is no component named NAME.
2171
2172 If the component NAME is a field in an anonymous substructure of
2173 TYPE, the returned offset is a "global" offset relative to TYPE
2174 rather than an offset within the substructure. */
2175
2176 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2177
2178 /* Given a type TYPE, lookup the type of the component named NAME.
2179
2180 TYPE can be either a struct or union, or a pointer or reference to
2181 a struct or union. If it is a pointer or reference, its target
2182 type is automatically used. Thus '.' and '->' are interchangable,
2183 as specified for the definitions of the expression element types
2184 STRUCTOP_STRUCT and STRUCTOP_PTR.
2185
2186 If NOERR is nonzero, return NULL if there is no component named
2187 NAME. */
2188
2189 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2190
2191 extern struct type *make_pointer_type (struct type *, struct type **);
2192
2193 extern struct type *lookup_pointer_type (struct type *);
2194
2195 extern struct type *make_function_type (struct type *, struct type **);
2196
2197 extern struct type *lookup_function_type (struct type *);
2198
2199 extern struct type *lookup_function_type_with_arguments (struct type *,
2200 int,
2201 struct type **);
2202
2203 extern struct type *create_static_range_type (struct type *, struct type *,
2204 LONGEST, LONGEST);
2205
2206
2207 extern struct type *create_array_type_with_stride
2208 (struct type *, struct type *, struct type *,
2209 struct dynamic_prop *, unsigned int);
2210
2211 extern struct type *create_range_type (struct type *, struct type *,
2212 const struct dynamic_prop *,
2213 const struct dynamic_prop *,
2214 LONGEST);
2215
2216 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2217 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2218 stride. */
2219
2220 extern struct type * create_range_type_with_stride
2221 (struct type *result_type, struct type *index_type,
2222 const struct dynamic_prop *low_bound,
2223 const struct dynamic_prop *high_bound, LONGEST bias,
2224 const struct dynamic_prop *stride, bool byte_stride_p);
2225
2226 extern struct type *create_array_type (struct type *, struct type *,
2227 struct type *);
2228
2229 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2230
2231 extern struct type *create_string_type (struct type *, struct type *,
2232 struct type *);
2233 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2234
2235 extern struct type *create_set_type (struct type *, struct type *);
2236
2237 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2238 const char *);
2239
2240 extern struct type *lookup_signed_typename (const struct language_defn *,
2241 const char *);
2242
2243 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2244
2245 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2246
2247 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2248 ADDR specifies the location of the variable the type is bound to.
2249 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2250 static properties is returned. */
2251 extern struct type *resolve_dynamic_type
2252 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2253 CORE_ADDR addr);
2254
2255 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2256 extern int is_dynamic_type (struct type *type);
2257
2258 extern struct type *check_typedef (struct type *);
2259
2260 extern void check_stub_method_group (struct type *, int);
2261
2262 extern char *gdb_mangle_name (struct type *, int, int);
2263
2264 extern struct type *lookup_typename (const struct language_defn *,
2265 const char *, const struct block *, int);
2266
2267 extern struct type *lookup_template_type (const char *, struct type *,
2268 const struct block *);
2269
2270 extern int get_vptr_fieldno (struct type *, struct type **);
2271
2272 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2273
2274 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2275 LONGEST *high_bound);
2276
2277 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2278
2279 extern int class_types_same_p (const struct type *, const struct type *);
2280
2281 extern int is_ancestor (struct type *, struct type *);
2282
2283 extern int is_public_ancestor (struct type *, struct type *);
2284
2285 extern int is_unique_ancestor (struct type *, struct value *);
2286
2287 /* Overload resolution */
2288
2289 /* * Badness if parameter list length doesn't match arg list length. */
2290 extern const struct rank LENGTH_MISMATCH_BADNESS;
2291
2292 /* * Dummy badness value for nonexistent parameter positions. */
2293 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2294 /* * Badness if no conversion among types. */
2295 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2296
2297 /* * Badness of an exact match. */
2298 extern const struct rank EXACT_MATCH_BADNESS;
2299
2300 /* * Badness of integral promotion. */
2301 extern const struct rank INTEGER_PROMOTION_BADNESS;
2302 /* * Badness of floating promotion. */
2303 extern const struct rank FLOAT_PROMOTION_BADNESS;
2304 /* * Badness of converting a derived class pointer
2305 to a base class pointer. */
2306 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2307 /* * Badness of integral conversion. */
2308 extern const struct rank INTEGER_CONVERSION_BADNESS;
2309 /* * Badness of floating conversion. */
2310 extern const struct rank FLOAT_CONVERSION_BADNESS;
2311 /* * Badness of integer<->floating conversions. */
2312 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2313 /* * Badness of conversion of pointer to void pointer. */
2314 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2315 /* * Badness of conversion to boolean. */
2316 extern const struct rank BOOL_CONVERSION_BADNESS;
2317 /* * Badness of converting derived to base class. */
2318 extern const struct rank BASE_CONVERSION_BADNESS;
2319 /* * Badness of converting from non-reference to reference. Subrank
2320 is the type of reference conversion being done. */
2321 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2322 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2323 /* * Conversion to rvalue reference. */
2324 #define REFERENCE_CONVERSION_RVALUE 1
2325 /* * Conversion to const lvalue reference. */
2326 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2327
2328 /* * Badness of converting integer 0 to NULL pointer. */
2329 extern const struct rank NULL_POINTER_CONVERSION;
2330 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2331 being done. */
2332 extern const struct rank CV_CONVERSION_BADNESS;
2333 #define CV_CONVERSION_CONST 1
2334 #define CV_CONVERSION_VOLATILE 2
2335
2336 /* Non-standard conversions allowed by the debugger */
2337
2338 /* * Converting a pointer to an int is usually OK. */
2339 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2340
2341 /* * Badness of converting a (non-zero) integer constant
2342 to a pointer. */
2343 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2344
2345 extern struct rank sum_ranks (struct rank a, struct rank b);
2346 extern int compare_ranks (struct rank a, struct rank b);
2347
2348 extern int compare_badness (const badness_vector &,
2349 const badness_vector &);
2350
2351 extern badness_vector rank_function (gdb::array_view<type *> parms,
2352 gdb::array_view<value *> args);
2353
2354 extern struct rank rank_one_type (struct type *, struct type *,
2355 struct value *);
2356
2357 extern void recursive_dump_type (struct type *, int);
2358
2359 extern int field_is_static (struct field *);
2360
2361 /* printcmd.c */
2362
2363 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2364 const struct value_print_options *,
2365 int, struct ui_file *);
2366
2367 extern int can_dereference (struct type *);
2368
2369 extern int is_integral_type (struct type *);
2370
2371 extern int is_floating_type (struct type *);
2372
2373 extern int is_scalar_type (struct type *type);
2374
2375 extern int is_scalar_type_recursive (struct type *);
2376
2377 extern int class_or_union_p (const struct type *);
2378
2379 extern void maintenance_print_type (const char *, int);
2380
2381 extern htab_t create_copied_types_hash (struct objfile *objfile);
2382
2383 extern struct type *copy_type_recursive (struct objfile *objfile,
2384 struct type *type,
2385 htab_t copied_types);
2386
2387 extern struct type *copy_type (const struct type *type);
2388
2389 extern bool types_equal (struct type *, struct type *);
2390
2391 extern bool types_deeply_equal (struct type *, struct type *);
2392
2393 extern int type_not_allocated (const struct type *type);
2394
2395 extern int type_not_associated (const struct type *type);
2396
2397 /* * When the type includes explicit byte ordering, return that.
2398 Otherwise, the byte ordering from gdbarch_byte_order for
2399 get_type_arch is returned. */
2400
2401 extern enum bfd_endian type_byte_order (const struct type *type);
2402
2403 /* A flag to enable printing of debugging information of C++
2404 overloading. */
2405
2406 extern unsigned int overload_debug;
2407
2408 #endif /* GDBTYPES_H */