gdb: add accessors for field (and call site) location
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Constant type. If this is set, the corresponding type has a
224 const modifier. */
225
226 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
227
228 /* * Volatile type. If this is set, the corresponding type has a
229 volatile modifier. */
230
231 #define TYPE_VOLATILE(t) \
232 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
233
234 /* * Restrict type. If this is set, the corresponding type has a
235 restrict modifier. */
236
237 #define TYPE_RESTRICT(t) \
238 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
239
240 /* * Atomic type. If this is set, the corresponding type has an
241 _Atomic modifier. */
242
243 #define TYPE_ATOMIC(t) \
244 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
245
246 /* * True if this type represents either an lvalue or lvalue reference type. */
247
248 #define TYPE_IS_REFERENCE(t) \
249 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
250
251 /* * True if this type is allocatable. */
252 #define TYPE_IS_ALLOCATABLE(t) \
253 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
254
255 /* * True if this type has variant parts. */
256 #define TYPE_HAS_VARIANT_PARTS(t) \
257 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
258
259 /* * True if this type has a dynamic length. */
260 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
261 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
262
263 /* * Instruction-space delimited type. This is for Harvard architectures
264 which have separate instruction and data address spaces (and perhaps
265 others).
266
267 GDB usually defines a flat address space that is a superset of the
268 architecture's two (or more) address spaces, but this is an extension
269 of the architecture's model.
270
271 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
272 resides in instruction memory, even if its address (in the extended
273 flat address space) does not reflect this.
274
275 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
276 corresponding type resides in the data memory space, even if
277 this is not indicated by its (flat address space) address.
278
279 If neither flag is set, the default space for functions / methods
280 is instruction space, and for data objects is data memory. */
281
282 #define TYPE_CODE_SPACE(t) \
283 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
284
285 #define TYPE_DATA_SPACE(t) \
286 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
287
288 /* * Address class flags. Some environments provide for pointers
289 whose size is different from that of a normal pointer or address
290 types where the bits are interpreted differently than normal
291 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
292 target specific ways to represent these different types of address
293 classes. */
294
295 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
296 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
297 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
299 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
300 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
302 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
303
304 /* * Information about a single discriminant. */
305
306 struct discriminant_range
307 {
308 /* * The range of values for the variant. This is an inclusive
309 range. */
310 ULONGEST low, high;
311
312 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
313 is true if this should be an unsigned comparison; false for
314 signed. */
315 bool contains (ULONGEST value, bool is_unsigned) const
316 {
317 if (is_unsigned)
318 return value >= low && value <= high;
319 LONGEST valuel = (LONGEST) value;
320 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
321 }
322 };
323
324 struct variant_part;
325
326 /* * A single variant. A variant has a list of discriminant values.
327 When the discriminator matches one of these, the variant is
328 enabled. Each variant controls zero or more fields; and may also
329 control other variant parts as well. This struct corresponds to
330 DW_TAG_variant in DWARF. */
331
332 struct variant : allocate_on_obstack
333 {
334 /* * The discriminant ranges for this variant. */
335 gdb::array_view<discriminant_range> discriminants;
336
337 /* * The fields controlled by this variant. This is inclusive on
338 the low end and exclusive on the high end. A variant may not
339 control any fields, in which case the two values will be equal.
340 These are indexes into the type's array of fields. */
341 int first_field;
342 int last_field;
343
344 /* * Variant parts controlled by this variant. */
345 gdb::array_view<variant_part> parts;
346
347 /* * Return true if this is the default variant. The default
348 variant can be recognized because it has no associated
349 discriminants. */
350 bool is_default () const
351 {
352 return discriminants.empty ();
353 }
354
355 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
356 if this should be an unsigned comparison; false for signed. */
357 bool matches (ULONGEST value, bool is_unsigned) const;
358 };
359
360 /* * A variant part. Each variant part has an optional discriminant
361 and holds an array of variants. This struct corresponds to
362 DW_TAG_variant_part in DWARF. */
363
364 struct variant_part : allocate_on_obstack
365 {
366 /* * The index of the discriminant field in the outer type. This is
367 an index into the type's array of fields. If this is -1, there
368 is no discriminant, and only the default variant can be
369 considered to be selected. */
370 int discriminant_index;
371
372 /* * True if this discriminant is unsigned; false if signed. This
373 comes from the type of the discriminant. */
374 bool is_unsigned;
375
376 /* * The variants that are controlled by this variant part. Note
377 that these will always be sorted by field number. */
378 gdb::array_view<variant> variants;
379 };
380
381
382 enum dynamic_prop_kind
383 {
384 PROP_UNDEFINED, /* Not defined. */
385 PROP_CONST, /* Constant. */
386 PROP_ADDR_OFFSET, /* Address offset. */
387 PROP_LOCEXPR, /* Location expression. */
388 PROP_LOCLIST, /* Location list. */
389 PROP_VARIANT_PARTS, /* Variant parts. */
390 PROP_TYPE, /* Type. */
391 PROP_VARIABLE_NAME, /* Variable name. */
392 };
393
394 union dynamic_prop_data
395 {
396 /* Storage for constant property. */
397
398 LONGEST const_val;
399
400 /* Storage for dynamic property. */
401
402 void *baton;
403
404 /* Storage of variant parts for a type. A type with variant parts
405 has all its fields "linearized" -- stored in a single field
406 array, just as if they had all been declared that way. The
407 variant parts are attached via a dynamic property, and then are
408 used to control which fields end up in the final type during
409 dynamic type resolution. */
410
411 const gdb::array_view<variant_part> *variant_parts;
412
413 /* Once a variant type is resolved, we may want to be able to go
414 from the resolved type to the original type. In this case we
415 rewrite the property's kind and set this field. */
416
417 struct type *original_type;
418
419 /* Name of a variable to look up; the variable holds the value of
420 this property. */
421
422 const char *variable_name;
423 };
424
425 /* * Used to store a dynamic property. */
426
427 struct dynamic_prop
428 {
429 dynamic_prop_kind kind () const
430 {
431 return m_kind;
432 }
433
434 void set_undefined ()
435 {
436 m_kind = PROP_UNDEFINED;
437 }
438
439 LONGEST const_val () const
440 {
441 gdb_assert (m_kind == PROP_CONST);
442
443 return m_data.const_val;
444 }
445
446 void set_const_val (LONGEST const_val)
447 {
448 m_kind = PROP_CONST;
449 m_data.const_val = const_val;
450 }
451
452 void *baton () const
453 {
454 gdb_assert (m_kind == PROP_LOCEXPR
455 || m_kind == PROP_LOCLIST
456 || m_kind == PROP_ADDR_OFFSET);
457
458 return m_data.baton;
459 }
460
461 void set_locexpr (void *baton)
462 {
463 m_kind = PROP_LOCEXPR;
464 m_data.baton = baton;
465 }
466
467 void set_loclist (void *baton)
468 {
469 m_kind = PROP_LOCLIST;
470 m_data.baton = baton;
471 }
472
473 void set_addr_offset (void *baton)
474 {
475 m_kind = PROP_ADDR_OFFSET;
476 m_data.baton = baton;
477 }
478
479 const gdb::array_view<variant_part> *variant_parts () const
480 {
481 gdb_assert (m_kind == PROP_VARIANT_PARTS);
482
483 return m_data.variant_parts;
484 }
485
486 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
487 {
488 m_kind = PROP_VARIANT_PARTS;
489 m_data.variant_parts = variant_parts;
490 }
491
492 struct type *original_type () const
493 {
494 gdb_assert (m_kind == PROP_TYPE);
495
496 return m_data.original_type;
497 }
498
499 void set_original_type (struct type *original_type)
500 {
501 m_kind = PROP_TYPE;
502 m_data.original_type = original_type;
503 }
504
505 /* Return the name of the variable that holds this property's value.
506 Only valid for PROP_VARIABLE_NAME. */
507 const char *variable_name () const
508 {
509 gdb_assert (m_kind == PROP_VARIABLE_NAME);
510 return m_data.variable_name;
511 }
512
513 /* Set the name of the variable that holds this property's value,
514 and set this property to be of kind PROP_VARIABLE_NAME. */
515 void set_variable_name (const char *name)
516 {
517 m_kind = PROP_VARIABLE_NAME;
518 m_data.variable_name = name;
519 }
520
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
523
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
526 };
527
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535 return !(l == r);
536 }
537
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
540 {
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
544
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
548
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
552
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
555
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
558
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
561 };
562
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
565 {
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
568
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
571
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
574 };
575
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
578
579 enum field_loc_kind
580 {
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
586 };
587
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
590
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
598
599 enum type_specific_kind
600 {
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
610 };
611
612 union type_owner
613 {
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
616 };
617
618 union field_location
619 {
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
624
625 LONGEST bitpos;
626
627 /* * Enum value. */
628 LONGEST enumval;
629
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
634
635 CORE_ADDR physaddr;
636 const char *physname;
637
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
641
642 struct dwarf2_locexpr_baton *dwarf_block;
643 };
644
645 struct field
646 {
647 struct type *type () const
648 {
649 return this->m_type;
650 }
651
652 void set_type (struct type *type)
653 {
654 this->m_type = type;
655 }
656
657 const char *name () const
658 {
659 return m_name;
660 }
661
662 void set_name (const char *name)
663 {
664 m_name = name;
665 }
666
667 /* Location getters / setters. */
668
669 field_loc_kind loc_kind () const
670 {
671 return m_loc_kind;
672 }
673
674 LONGEST loc_bitpos () const
675 {
676 gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
677 return m_loc.bitpos;
678 }
679
680 void set_loc_bitpos (LONGEST bitpos)
681 {
682 m_loc_kind = FIELD_LOC_KIND_BITPOS;
683 m_loc.bitpos = bitpos;
684 }
685
686 LONGEST loc_enumval () const
687 {
688 gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
689 return m_loc.enumval;
690 }
691
692 void set_loc_enumval (LONGEST enumval)
693 {
694 m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
695 m_loc.enumval = enumval;
696 }
697
698 CORE_ADDR loc_physaddr () const
699 {
700 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
701 return m_loc.physaddr;
702 }
703
704 void set_loc_physaddr (CORE_ADDR physaddr)
705 {
706 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
707 m_loc.physaddr = physaddr;
708 }
709
710 const char *loc_physname () const
711 {
712 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
713 return m_loc.physname;
714 }
715
716 void set_loc_physname (const char *physname)
717 {
718 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
719 m_loc.physname = physname;
720 }
721
722 dwarf2_locexpr_baton *loc_dwarf_block () const
723 {
724 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
725 return m_loc.dwarf_block;
726 }
727
728 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
729 {
730 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
731 m_loc.dwarf_block = dwarf_block;
732 }
733
734 union field_location m_loc;
735
736 /* * For a function or member type, this is 1 if the argument is
737 marked artificial. Artificial arguments should not be shown
738 to the user. For TYPE_CODE_RANGE it is set if the specific
739 bound is not defined. */
740
741 unsigned int artificial : 1;
742
743 /* * Discriminant for union field_location. */
744
745 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
746
747 /* * Size of this field, in bits, or zero if not packed.
748 If non-zero in an array type, indicates the element size in
749 bits (used only in Ada at the moment).
750 For an unpacked field, the field's type's length
751 says how many bytes the field occupies. */
752
753 unsigned int bitsize : 28;
754
755 /* * In a struct or union type, type of this field.
756 - In a function or member type, type of this argument.
757 - In an array type, the domain-type of the array. */
758
759 struct type *m_type;
760
761 /* * Name of field, value or argument.
762 NULL for range bounds, array domains, and member function
763 arguments. */
764
765 const char *m_name;
766 };
767
768 struct range_bounds
769 {
770 ULONGEST bit_stride () const
771 {
772 if (this->flag_is_byte_stride)
773 return this->stride.const_val () * 8;
774 else
775 return this->stride.const_val ();
776 }
777
778 /* * Low bound of range. */
779
780 struct dynamic_prop low;
781
782 /* * High bound of range. */
783
784 struct dynamic_prop high;
785
786 /* The stride value for this range. This can be stored in bits or bytes
787 based on the value of BYTE_STRIDE_P. It is optional to have a stride
788 value, if this range has no stride value defined then this will be set
789 to the constant zero. */
790
791 struct dynamic_prop stride;
792
793 /* * The bias. Sometimes a range value is biased before storage.
794 The bias is added to the stored bits to form the true value. */
795
796 LONGEST bias;
797
798 /* True if HIGH range bound contains the number of elements in the
799 subrange. This affects how the final high bound is computed. */
800
801 unsigned int flag_upper_bound_is_count : 1;
802
803 /* True if LOW or/and HIGH are resolved into a static bound from
804 a dynamic one. */
805
806 unsigned int flag_bound_evaluated : 1;
807
808 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
809
810 unsigned int flag_is_byte_stride : 1;
811 };
812
813 /* Compare two range_bounds objects for equality. Simply does
814 memberwise comparison. */
815 extern bool operator== (const range_bounds &l, const range_bounds &r);
816
817 /* Compare two range_bounds objects for inequality. */
818 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
819 {
820 return !(l == r);
821 }
822
823 union type_specific
824 {
825 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
826 point to cplus_struct_default, a default static instance of a
827 struct cplus_struct_type. */
828
829 struct cplus_struct_type *cplus_stuff;
830
831 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
832 provides additional information. */
833
834 struct gnat_aux_type *gnat_stuff;
835
836 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
837 floatformat object that describes the floating-point value
838 that resides within the type. */
839
840 const struct floatformat *floatformat;
841
842 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
843
844 struct func_type *func_stuff;
845
846 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
847 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
848 is a member of. */
849
850 struct type *self_type;
851
852 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
853 values of that type. */
854 struct fixed_point_type_info *fixed_point_info;
855
856 /* * An integer-like scalar type may be stored in just part of its
857 enclosing storage bytes. This structure describes this
858 situation. */
859 struct
860 {
861 /* * The bit size of the integer. This can be 0. For integers
862 that fill their storage (the ordinary case), this field holds
863 the byte size times 8. */
864 unsigned short bit_size;
865 /* * The bit offset of the integer. This is ordinarily 0, and can
866 only be non-zero if the bit size is less than the storage
867 size. */
868 unsigned short bit_offset;
869 } int_stuff;
870 };
871
872 /* * Main structure representing a type in GDB.
873
874 This structure is space-critical. Its layout has been tweaked to
875 reduce the space used. */
876
877 struct main_type
878 {
879 /* * Code for kind of type. */
880
881 ENUM_BITFIELD(type_code) code : 8;
882
883 /* * Flags about this type. These fields appear at this location
884 because they packs nicely here. See the TYPE_* macros for
885 documentation about these fields. */
886
887 unsigned int m_flag_unsigned : 1;
888 unsigned int m_flag_nosign : 1;
889 unsigned int m_flag_stub : 1;
890 unsigned int m_flag_target_stub : 1;
891 unsigned int m_flag_prototyped : 1;
892 unsigned int m_flag_varargs : 1;
893 unsigned int m_flag_vector : 1;
894 unsigned int m_flag_stub_supported : 1;
895 unsigned int m_flag_gnu_ifunc : 1;
896 unsigned int m_flag_fixed_instance : 1;
897 unsigned int m_flag_objfile_owned : 1;
898 unsigned int m_flag_endianity_not_default : 1;
899
900 /* * True if this type was declared with "class" rather than
901 "struct". */
902
903 unsigned int m_flag_declared_class : 1;
904
905 /* * True if this is an enum type with disjoint values. This
906 affects how the enum is printed. */
907
908 unsigned int m_flag_flag_enum : 1;
909
910 /* * A discriminant telling us which field of the type_specific
911 union is being used for this type, if any. */
912
913 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
914
915 /* * Number of fields described for this type. This field appears
916 at this location because it packs nicely here. */
917
918 short nfields;
919
920 /* * Name of this type, or NULL if none.
921
922 This is used for printing only. For looking up a name, look for
923 a symbol in the VAR_DOMAIN. This is generally allocated in the
924 objfile's obstack. However coffread.c uses malloc. */
925
926 const char *name;
927
928 /* * Every type is now associated with a particular objfile, and the
929 type is allocated on the objfile_obstack for that objfile. One
930 problem however, is that there are times when gdb allocates new
931 types while it is not in the process of reading symbols from a
932 particular objfile. Fortunately, these happen when the type
933 being created is a derived type of an existing type, such as in
934 lookup_pointer_type(). So we can just allocate the new type
935 using the same objfile as the existing type, but to do this we
936 need a backpointer to the objfile from the existing type. Yes
937 this is somewhat ugly, but without major overhaul of the internal
938 type system, it can't be avoided for now. */
939
940 union type_owner m_owner;
941
942 /* * For a pointer type, describes the type of object pointed to.
943 - For an array type, describes the type of the elements.
944 - For a function or method type, describes the type of the return value.
945 - For a range type, describes the type of the full range.
946 - For a complex type, describes the type of each coordinate.
947 - For a special record or union type encoding a dynamic-sized type
948 in GNAT, a memoized pointer to a corresponding static version of
949 the type.
950 - Unused otherwise. */
951
952 struct type *target_type;
953
954 /* * For structure and union types, a description of each field.
955 For set and pascal array types, there is one "field",
956 whose type is the domain type of the set or array.
957 For range types, there are two "fields",
958 the minimum and maximum values (both inclusive).
959 For enum types, each possible value is described by one "field".
960 For a function or method type, a "field" for each parameter.
961 For C++ classes, there is one field for each base class (if it is
962 a derived class) plus one field for each class data member. Member
963 functions are recorded elsewhere.
964
965 Using a pointer to a separate array of fields
966 allows all types to have the same size, which is useful
967 because we can allocate the space for a type before
968 we know what to put in it. */
969
970 union
971 {
972 struct field *fields;
973
974 /* * Union member used for range types. */
975
976 struct range_bounds *bounds;
977
978 /* If this is a scalar type, then this is its corresponding
979 complex type. */
980 struct type *complex_type;
981
982 } flds_bnds;
983
984 /* * Slot to point to additional language-specific fields of this
985 type. */
986
987 union type_specific type_specific;
988
989 /* * Contains all dynamic type properties. */
990 struct dynamic_prop_list *dyn_prop_list;
991 };
992
993 /* * Number of bits allocated for alignment. */
994
995 #define TYPE_ALIGN_BITS 8
996
997 /* * A ``struct type'' describes a particular instance of a type, with
998 some particular qualification. */
999
1000 struct type
1001 {
1002 /* Get the type code of this type.
1003
1004 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
1005 type, you need to do `check_typedef (type)->code ()`. */
1006 type_code code () const
1007 {
1008 return this->main_type->code;
1009 }
1010
1011 /* Set the type code of this type. */
1012 void set_code (type_code code)
1013 {
1014 this->main_type->code = code;
1015 }
1016
1017 /* Get the name of this type. */
1018 const char *name () const
1019 {
1020 return this->main_type->name;
1021 }
1022
1023 /* Set the name of this type. */
1024 void set_name (const char *name)
1025 {
1026 this->main_type->name = name;
1027 }
1028
1029 /* Get the number of fields of this type. */
1030 int num_fields () const
1031 {
1032 return this->main_type->nfields;
1033 }
1034
1035 /* Set the number of fields of this type. */
1036 void set_num_fields (int num_fields)
1037 {
1038 this->main_type->nfields = num_fields;
1039 }
1040
1041 /* Get the fields array of this type. */
1042 struct field *fields () const
1043 {
1044 return this->main_type->flds_bnds.fields;
1045 }
1046
1047 /* Get the field at index IDX. */
1048 struct field &field (int idx) const
1049 {
1050 return this->fields ()[idx];
1051 }
1052
1053 /* Set the fields array of this type. */
1054 void set_fields (struct field *fields)
1055 {
1056 this->main_type->flds_bnds.fields = fields;
1057 }
1058
1059 type *index_type () const
1060 {
1061 return this->field (0).type ();
1062 }
1063
1064 void set_index_type (type *index_type)
1065 {
1066 this->field (0).set_type (index_type);
1067 }
1068
1069 /* Return the instance flags converted to the correct type. */
1070 const type_instance_flags instance_flags () const
1071 {
1072 return (enum type_instance_flag_value) this->m_instance_flags;
1073 }
1074
1075 /* Set the instance flags. */
1076 void set_instance_flags (type_instance_flags flags)
1077 {
1078 this->m_instance_flags = flags;
1079 }
1080
1081 /* Get the bounds bounds of this type. The type must be a range type. */
1082 range_bounds *bounds () const
1083 {
1084 switch (this->code ())
1085 {
1086 case TYPE_CODE_RANGE:
1087 return this->main_type->flds_bnds.bounds;
1088
1089 case TYPE_CODE_ARRAY:
1090 case TYPE_CODE_STRING:
1091 return this->index_type ()->bounds ();
1092
1093 default:
1094 gdb_assert_not_reached
1095 ("type::bounds called on type with invalid code");
1096 }
1097 }
1098
1099 /* Set the bounds of this type. The type must be a range type. */
1100 void set_bounds (range_bounds *bounds)
1101 {
1102 gdb_assert (this->code () == TYPE_CODE_RANGE);
1103
1104 this->main_type->flds_bnds.bounds = bounds;
1105 }
1106
1107 ULONGEST bit_stride () const
1108 {
1109 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1110 return this->field (0).bitsize;
1111 return this->bounds ()->bit_stride ();
1112 }
1113
1114 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1115 the type is signed (unless TYPE_NOSIGN is set). */
1116
1117 bool is_unsigned () const
1118 {
1119 return this->main_type->m_flag_unsigned;
1120 }
1121
1122 void set_is_unsigned (bool is_unsigned)
1123 {
1124 this->main_type->m_flag_unsigned = is_unsigned;
1125 }
1126
1127 /* No sign for this type. In C++, "char", "signed char", and
1128 "unsigned char" are distinct types; so we need an extra flag to
1129 indicate the absence of a sign! */
1130
1131 bool has_no_signedness () const
1132 {
1133 return this->main_type->m_flag_nosign;
1134 }
1135
1136 void set_has_no_signedness (bool has_no_signedness)
1137 {
1138 this->main_type->m_flag_nosign = has_no_signedness;
1139 }
1140
1141 /* This appears in a type's flags word if it is a stub type (e.g.,
1142 if someone referenced a type that wasn't defined in a source file
1143 via (struct sir_not_appearing_in_this_film *)). */
1144
1145 bool is_stub () const
1146 {
1147 return this->main_type->m_flag_stub;
1148 }
1149
1150 void set_is_stub (bool is_stub)
1151 {
1152 this->main_type->m_flag_stub = is_stub;
1153 }
1154
1155 /* The target type of this type is a stub type, and this type needs
1156 to be updated if it gets un-stubbed in check_typedef. Used for
1157 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1158 based on the TYPE_LENGTH of the target type. Also, set for
1159 TYPE_CODE_TYPEDEF. */
1160
1161 bool target_is_stub () const
1162 {
1163 return this->main_type->m_flag_target_stub;
1164 }
1165
1166 void set_target_is_stub (bool target_is_stub)
1167 {
1168 this->main_type->m_flag_target_stub = target_is_stub;
1169 }
1170
1171 /* This is a function type which appears to have a prototype. We
1172 need this for function calls in order to tell us if it's necessary
1173 to coerce the args, or to just do the standard conversions. This
1174 is used with a short field. */
1175
1176 bool is_prototyped () const
1177 {
1178 return this->main_type->m_flag_prototyped;
1179 }
1180
1181 void set_is_prototyped (bool is_prototyped)
1182 {
1183 this->main_type->m_flag_prototyped = is_prototyped;
1184 }
1185
1186 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1187 to functions. */
1188
1189 bool has_varargs () const
1190 {
1191 return this->main_type->m_flag_varargs;
1192 }
1193
1194 void set_has_varargs (bool has_varargs)
1195 {
1196 this->main_type->m_flag_varargs = has_varargs;
1197 }
1198
1199 /* Identify a vector type. Gcc is handling this by adding an extra
1200 attribute to the array type. We slurp that in as a new flag of a
1201 type. This is used only in dwarf2read.c. */
1202
1203 bool is_vector () const
1204 {
1205 return this->main_type->m_flag_vector;
1206 }
1207
1208 void set_is_vector (bool is_vector)
1209 {
1210 this->main_type->m_flag_vector = is_vector;
1211 }
1212
1213 /* This debug target supports TYPE_STUB(t). In the unsupported case
1214 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1215 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1216 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1217
1218 bool stub_is_supported () const
1219 {
1220 return this->main_type->m_flag_stub_supported;
1221 }
1222
1223 void set_stub_is_supported (bool stub_is_supported)
1224 {
1225 this->main_type->m_flag_stub_supported = stub_is_supported;
1226 }
1227
1228 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1229 address is returned by this function call. TYPE_TARGET_TYPE
1230 determines the final returned function type to be presented to
1231 user. */
1232
1233 bool is_gnu_ifunc () const
1234 {
1235 return this->main_type->m_flag_gnu_ifunc;
1236 }
1237
1238 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1239 {
1240 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1241 }
1242
1243 /* The debugging formats (especially STABS) do not contain enough
1244 information to represent all Ada types---especially those whose
1245 size depends on dynamic quantities. Therefore, the GNAT Ada
1246 compiler includes extra information in the form of additional type
1247 definitions connected by naming conventions. This flag indicates
1248 that the type is an ordinary (unencoded) GDB type that has been
1249 created from the necessary run-time information, and does not need
1250 further interpretation. Optionally marks ordinary, fixed-size GDB
1251 type. */
1252
1253 bool is_fixed_instance () const
1254 {
1255 return this->main_type->m_flag_fixed_instance;
1256 }
1257
1258 void set_is_fixed_instance (bool is_fixed_instance)
1259 {
1260 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1261 }
1262
1263 /* A compiler may supply dwarf instrumentation that indicates the desired
1264 endian interpretation of the variable differs from the native endian
1265 representation. */
1266
1267 bool endianity_is_not_default () const
1268 {
1269 return this->main_type->m_flag_endianity_not_default;
1270 }
1271
1272 void set_endianity_is_not_default (bool endianity_is_not_default)
1273 {
1274 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1275 }
1276
1277
1278 /* True if this type was declared using the "class" keyword. This is
1279 only valid for C++ structure and enum types. If false, a structure
1280 was declared as a "struct"; if true it was declared "class". For
1281 enum types, this is true when "enum class" or "enum struct" was
1282 used to declare the type. */
1283
1284 bool is_declared_class () const
1285 {
1286 return this->main_type->m_flag_declared_class;
1287 }
1288
1289 void set_is_declared_class (bool is_declared_class) const
1290 {
1291 this->main_type->m_flag_declared_class = is_declared_class;
1292 }
1293
1294 /* True if this type is a "flag" enum. A flag enum is one where all
1295 the values are pairwise disjoint when "and"ed together. This
1296 affects how enum values are printed. */
1297
1298 bool is_flag_enum () const
1299 {
1300 return this->main_type->m_flag_flag_enum;
1301 }
1302
1303 void set_is_flag_enum (bool is_flag_enum)
1304 {
1305 this->main_type->m_flag_flag_enum = is_flag_enum;
1306 }
1307
1308 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1309 to this type's fixed_point_info. */
1310
1311 struct fixed_point_type_info &fixed_point_info () const
1312 {
1313 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1314 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1315
1316 return *this->main_type->type_specific.fixed_point_info;
1317 }
1318
1319 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1320 fixed_point_info to INFO. */
1321
1322 void set_fixed_point_info (struct fixed_point_type_info *info) const
1323 {
1324 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1325
1326 this->main_type->type_specific.fixed_point_info = info;
1327 }
1328
1329 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1330
1331 In other words, this returns the type after having peeled all
1332 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1333 The TYPE_CODE of the type returned is guaranteed to be
1334 a TYPE_CODE_FIXED_POINT. */
1335
1336 struct type *fixed_point_type_base_type ();
1337
1338 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1339 factor. */
1340
1341 const gdb_mpq &fixed_point_scaling_factor ();
1342
1343 /* * Return the dynamic property of the requested KIND from this type's
1344 list of dynamic properties. */
1345 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1346
1347 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1348 property to this type.
1349
1350 This function assumes that this type is objfile-owned. */
1351 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1352
1353 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1354 void remove_dyn_prop (dynamic_prop_node_kind kind);
1355
1356 /* Return true if this type is owned by an objfile. Return false if it is
1357 owned by an architecture. */
1358 bool is_objfile_owned () const
1359 {
1360 return this->main_type->m_flag_objfile_owned;
1361 }
1362
1363 /* Set the owner of the type to be OBJFILE. */
1364 void set_owner (objfile *objfile)
1365 {
1366 gdb_assert (objfile != nullptr);
1367
1368 this->main_type->m_owner.objfile = objfile;
1369 this->main_type->m_flag_objfile_owned = true;
1370 }
1371
1372 /* Set the owner of the type to be ARCH. */
1373 void set_owner (gdbarch *arch)
1374 {
1375 gdb_assert (arch != nullptr);
1376
1377 this->main_type->m_owner.gdbarch = arch;
1378 this->main_type->m_flag_objfile_owned = false;
1379 }
1380
1381 /* Return the objfile owner of this type.
1382
1383 Return nullptr if this type is not objfile-owned. */
1384 struct objfile *objfile_owner () const
1385 {
1386 if (!this->is_objfile_owned ())
1387 return nullptr;
1388
1389 return this->main_type->m_owner.objfile;
1390 }
1391
1392 /* Return the gdbarch owner of this type.
1393
1394 Return nullptr if this type is not gdbarch-owned. */
1395 gdbarch *arch_owner () const
1396 {
1397 if (this->is_objfile_owned ())
1398 return nullptr;
1399
1400 return this->main_type->m_owner.gdbarch;
1401 }
1402
1403 /* Return the type's architecture. For types owned by an
1404 architecture, that architecture is returned. For types owned by an
1405 objfile, that objfile's architecture is returned.
1406
1407 The return value is always non-nullptr. */
1408 gdbarch *arch () const;
1409
1410 /* * Return true if this is an integer type whose logical (bit) size
1411 differs from its storage size; false otherwise. Always return
1412 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1413 bool bit_size_differs_p () const
1414 {
1415 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1416 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1417 }
1418
1419 /* * Return the logical (bit) size for this integer type. Only
1420 valid for integer (TYPE_SPECIFIC_INT) types. */
1421 unsigned short bit_size () const
1422 {
1423 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1424 return main_type->type_specific.int_stuff.bit_size;
1425 }
1426
1427 /* * Return the bit offset for this integer type. Only valid for
1428 integer (TYPE_SPECIFIC_INT) types. */
1429 unsigned short bit_offset () const
1430 {
1431 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1432 return main_type->type_specific.int_stuff.bit_offset;
1433 }
1434
1435 /* Return true if this is a pointer or reference type. */
1436 bool is_pointer_or_reference () const
1437 {
1438 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1439 }
1440
1441 /* * Type that is a pointer to this type.
1442 NULL if no such pointer-to type is known yet.
1443 The debugger may add the address of such a type
1444 if it has to construct one later. */
1445
1446 struct type *pointer_type;
1447
1448 /* * C++: also need a reference type. */
1449
1450 struct type *reference_type;
1451
1452 /* * A C++ rvalue reference type added in C++11. */
1453
1454 struct type *rvalue_reference_type;
1455
1456 /* * Variant chain. This points to a type that differs from this
1457 one only in qualifiers and length. Currently, the possible
1458 qualifiers are const, volatile, code-space, data-space, and
1459 address class. The length may differ only when one of the
1460 address class flags are set. The variants are linked in a
1461 circular ring and share MAIN_TYPE. */
1462
1463 struct type *chain;
1464
1465 /* * The alignment for this type. Zero means that the alignment was
1466 not specified in the debug info. Note that this is stored in a
1467 funny way: as the log base 2 (plus 1) of the alignment; so a
1468 value of 1 means the alignment is 1, and a value of 9 means the
1469 alignment is 256. */
1470
1471 unsigned align_log2 : TYPE_ALIGN_BITS;
1472
1473 /* * Flags specific to this instance of the type, indicating where
1474 on the ring we are.
1475
1476 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1477 binary or-ed with the target type, with a special case for
1478 address class and space class. For example if this typedef does
1479 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1480 instance flags are completely inherited from the target type. No
1481 qualifiers can be cleared by the typedef. See also
1482 check_typedef. */
1483 unsigned m_instance_flags : 9;
1484
1485 /* * Length of storage for a value of this type. The value is the
1486 expression in host bytes of what sizeof(type) would return. This
1487 size includes padding. For example, an i386 extended-precision
1488 floating point value really only occupies ten bytes, but most
1489 ABI's declare its size to be 12 bytes, to preserve alignment.
1490 A `struct type' representing such a floating-point type would
1491 have a `length' value of 12, even though the last two bytes are
1492 unused.
1493
1494 Since this field is expressed in host bytes, its value is appropriate
1495 to pass to memcpy and such (it is assumed that GDB itself always runs
1496 on an 8-bits addressable architecture). However, when using it for
1497 target address arithmetic (e.g. adding it to a target address), the
1498 type_length_units function should be used in order to get the length
1499 expressed in target addressable memory units. */
1500
1501 ULONGEST length;
1502
1503 /* * Core type, shared by a group of qualified types. */
1504
1505 struct main_type *main_type;
1506 };
1507
1508 struct fn_fieldlist
1509 {
1510
1511 /* * The overloaded name.
1512 This is generally allocated in the objfile's obstack.
1513 However stabsread.c sometimes uses malloc. */
1514
1515 const char *name;
1516
1517 /* * The number of methods with this name. */
1518
1519 int length;
1520
1521 /* * The list of methods. */
1522
1523 struct fn_field *fn_fields;
1524 };
1525
1526
1527
1528 struct fn_field
1529 {
1530 /* * If is_stub is clear, this is the mangled name which we can look
1531 up to find the address of the method (FIXME: it would be cleaner
1532 to have a pointer to the struct symbol here instead).
1533
1534 If is_stub is set, this is the portion of the mangled name which
1535 specifies the arguments. For example, "ii", if there are two int
1536 arguments, or "" if there are no arguments. See gdb_mangle_name
1537 for the conversion from this format to the one used if is_stub is
1538 clear. */
1539
1540 const char *physname;
1541
1542 /* * The function type for the method.
1543
1544 (This comment used to say "The return value of the method", but
1545 that's wrong. The function type is expected here, i.e. something
1546 with TYPE_CODE_METHOD, and *not* the return-value type). */
1547
1548 struct type *type;
1549
1550 /* * For virtual functions. First baseclass that defines this
1551 virtual function. */
1552
1553 struct type *fcontext;
1554
1555 /* Attributes. */
1556
1557 unsigned int is_const:1;
1558 unsigned int is_volatile:1;
1559 unsigned int is_private:1;
1560 unsigned int is_protected:1;
1561 unsigned int is_artificial:1;
1562
1563 /* * A stub method only has some fields valid (but they are enough
1564 to reconstruct the rest of the fields). */
1565
1566 unsigned int is_stub:1;
1567
1568 /* * True if this function is a constructor, false otherwise. */
1569
1570 unsigned int is_constructor : 1;
1571
1572 /* * True if this function is deleted, false otherwise. */
1573
1574 unsigned int is_deleted : 1;
1575
1576 /* * DW_AT_defaulted attribute for this function. The value is one
1577 of the DW_DEFAULTED constants. */
1578
1579 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1580
1581 /* * Unused. */
1582
1583 unsigned int dummy:6;
1584
1585 /* * Index into that baseclass's virtual function table, minus 2;
1586 else if static: VOFFSET_STATIC; else: 0. */
1587
1588 unsigned int voffset:16;
1589
1590 #define VOFFSET_STATIC 1
1591
1592 };
1593
1594 struct decl_field
1595 {
1596 /* * Unqualified name to be prefixed by owning class qualified
1597 name. */
1598
1599 const char *name;
1600
1601 /* * Type this typedef named NAME represents. */
1602
1603 struct type *type;
1604
1605 /* * True if this field was declared protected, false otherwise. */
1606 unsigned int is_protected : 1;
1607
1608 /* * True if this field was declared private, false otherwise. */
1609 unsigned int is_private : 1;
1610 };
1611
1612 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1613 TYPE_CODE_UNION nodes. */
1614
1615 struct cplus_struct_type
1616 {
1617 /* * Number of base classes this type derives from. The
1618 baseclasses are stored in the first N_BASECLASSES fields
1619 (i.e. the `fields' field of the struct type). The only fields
1620 of struct field that are used are: type, name, loc.bitpos. */
1621
1622 short n_baseclasses;
1623
1624 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1625 All access to this field must be through TYPE_VPTR_FIELDNO as one
1626 thing it does is check whether the field has been initialized.
1627 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1628 which for portability reasons doesn't initialize this field.
1629 TYPE_VPTR_FIELDNO returns -1 for this case.
1630
1631 If -1, we were unable to find the virtual function table pointer in
1632 initial symbol reading, and get_vptr_fieldno should be called to find
1633 it if possible. get_vptr_fieldno will update this field if possible.
1634 Otherwise the value is left at -1.
1635
1636 Unused if this type does not have virtual functions. */
1637
1638 short vptr_fieldno;
1639
1640 /* * Number of methods with unique names. All overloaded methods
1641 with the same name count only once. */
1642
1643 short nfn_fields;
1644
1645 /* * Number of template arguments. */
1646
1647 unsigned short n_template_arguments;
1648
1649 /* * One if this struct is a dynamic class, as defined by the
1650 Itanium C++ ABI: if it requires a virtual table pointer,
1651 because it or any of its base classes have one or more virtual
1652 member functions or virtual base classes. Minus one if not
1653 dynamic. Zero if not yet computed. */
1654
1655 int is_dynamic : 2;
1656
1657 /* * The calling convention for this type, fetched from the
1658 DW_AT_calling_convention attribute. The value is one of the
1659 DW_CC constants. */
1660
1661 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1662
1663 /* * The base class which defined the virtual function table pointer. */
1664
1665 struct type *vptr_basetype;
1666
1667 /* * For derived classes, the number of base classes is given by
1668 n_baseclasses and virtual_field_bits is a bit vector containing
1669 one bit per base class. If the base class is virtual, the
1670 corresponding bit will be set.
1671 I.E, given:
1672
1673 class A{};
1674 class B{};
1675 class C : public B, public virtual A {};
1676
1677 B is a baseclass of C; A is a virtual baseclass for C.
1678 This is a C++ 2.0 language feature. */
1679
1680 B_TYPE *virtual_field_bits;
1681
1682 /* * For classes with private fields, the number of fields is
1683 given by nfields and private_field_bits is a bit vector
1684 containing one bit per field.
1685
1686 If the field is private, the corresponding bit will be set. */
1687
1688 B_TYPE *private_field_bits;
1689
1690 /* * For classes with protected fields, the number of fields is
1691 given by nfields and protected_field_bits is a bit vector
1692 containing one bit per field.
1693
1694 If the field is private, the corresponding bit will be set. */
1695
1696 B_TYPE *protected_field_bits;
1697
1698 /* * For classes with fields to be ignored, either this is
1699 optimized out or this field has length 0. */
1700
1701 B_TYPE *ignore_field_bits;
1702
1703 /* * For classes, structures, and unions, a description of each
1704 field, which consists of an overloaded name, followed by the
1705 types of arguments that the method expects, and then the name
1706 after it has been renamed to make it distinct.
1707
1708 fn_fieldlists points to an array of nfn_fields of these. */
1709
1710 struct fn_fieldlist *fn_fieldlists;
1711
1712 /* * typedefs defined inside this class. typedef_field points to
1713 an array of typedef_field_count elements. */
1714
1715 struct decl_field *typedef_field;
1716
1717 unsigned typedef_field_count;
1718
1719 /* * The nested types defined by this type. nested_types points to
1720 an array of nested_types_count elements. */
1721
1722 struct decl_field *nested_types;
1723
1724 unsigned nested_types_count;
1725
1726 /* * The template arguments. This is an array with
1727 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1728 classes. */
1729
1730 struct symbol **template_arguments;
1731 };
1732
1733 /* * Struct used to store conversion rankings. */
1734
1735 struct rank
1736 {
1737 short rank;
1738
1739 /* * When two conversions are of the same type and therefore have
1740 the same rank, subrank is used to differentiate the two.
1741
1742 Eg: Two derived-class-pointer to base-class-pointer conversions
1743 would both have base pointer conversion rank, but the
1744 conversion with the shorter distance to the ancestor is
1745 preferable. 'subrank' would be used to reflect that. */
1746
1747 short subrank;
1748 };
1749
1750 /* * Used for ranking a function for overload resolution. */
1751
1752 typedef std::vector<rank> badness_vector;
1753
1754 /* * GNAT Ada-specific information for various Ada types. */
1755
1756 struct gnat_aux_type
1757 {
1758 /* * Parallel type used to encode information about dynamic types
1759 used in Ada (such as variant records, variable-size array,
1760 etc). */
1761 struct type* descriptive_type;
1762 };
1763
1764 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1765
1766 struct func_type
1767 {
1768 /* * The calling convention for targets supporting multiple ABIs.
1769 Right now this is only fetched from the Dwarf-2
1770 DW_AT_calling_convention attribute. The value is one of the
1771 DW_CC constants. */
1772
1773 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1774
1775 /* * Whether this function normally returns to its caller. It is
1776 set from the DW_AT_noreturn attribute if set on the
1777 DW_TAG_subprogram. */
1778
1779 unsigned int is_noreturn : 1;
1780
1781 /* * Only those DW_TAG_call_site's in this function that have
1782 DW_AT_call_tail_call set are linked in this list. Function
1783 without its tail call list complete
1784 (DW_AT_call_all_tail_calls or its superset
1785 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1786 DW_TAG_call_site's exist in such function. */
1787
1788 struct call_site *tail_call_list;
1789
1790 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1791 contains the method. */
1792
1793 struct type *self_type;
1794 };
1795
1796 /* struct call_site_parameter can be referenced in callees by several ways. */
1797
1798 enum call_site_parameter_kind
1799 {
1800 /* * Use field call_site_parameter.u.dwarf_reg. */
1801 CALL_SITE_PARAMETER_DWARF_REG,
1802
1803 /* * Use field call_site_parameter.u.fb_offset. */
1804 CALL_SITE_PARAMETER_FB_OFFSET,
1805
1806 /* * Use field call_site_parameter.u.param_offset. */
1807 CALL_SITE_PARAMETER_PARAM_OFFSET
1808 };
1809
1810 struct call_site_target
1811 {
1812 field_loc_kind loc_kind () const
1813 {
1814 return m_loc_kind;
1815 }
1816
1817 CORE_ADDR loc_physaddr () const
1818 {
1819 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
1820 return m_loc.physaddr;
1821 }
1822
1823 void set_loc_physaddr (CORE_ADDR physaddr)
1824 {
1825 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
1826 m_loc.physaddr = physaddr;
1827 }
1828
1829 const char *loc_physname () const
1830 {
1831 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
1832 return m_loc.physname;
1833 }
1834
1835 void set_loc_physname (const char *physname)
1836 {
1837 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
1838 m_loc.physname = physname;
1839 }
1840
1841 dwarf2_locexpr_baton *loc_dwarf_block () const
1842 {
1843 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
1844 return m_loc.dwarf_block;
1845 }
1846
1847 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1848 {
1849 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
1850 m_loc.dwarf_block = dwarf_block;
1851 }
1852
1853 union field_location m_loc;
1854
1855 /* * Discriminant for union field_location. */
1856
1857 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
1858 };
1859
1860 union call_site_parameter_u
1861 {
1862 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1863 as DWARF register number, for register passed
1864 parameters. */
1865
1866 int dwarf_reg;
1867
1868 /* * Offset from the callee's frame base, for stack passed
1869 parameters. This equals offset from the caller's stack
1870 pointer. */
1871
1872 CORE_ADDR fb_offset;
1873
1874 /* * Offset relative to the start of this PER_CU to
1875 DW_TAG_formal_parameter which is referenced by both
1876 caller and the callee. */
1877
1878 cu_offset param_cu_off;
1879 };
1880
1881 struct call_site_parameter
1882 {
1883 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1884
1885 union call_site_parameter_u u;
1886
1887 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1888
1889 const gdb_byte *value;
1890 size_t value_size;
1891
1892 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1893 It may be NULL if not provided by DWARF. */
1894
1895 const gdb_byte *data_value;
1896 size_t data_value_size;
1897 };
1898
1899 /* * A place where a function gets called from, represented by
1900 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1901
1902 struct call_site
1903 {
1904 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1905 dwarf2_per_objfile *per_objfile)
1906 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1907 {}
1908
1909 static int
1910 eq (const call_site *a, const call_site *b)
1911 {
1912 return core_addr_eq (&a->m_unrelocated_pc, &b->m_unrelocated_pc);
1913 }
1914
1915 static hashval_t
1916 hash (const call_site *a)
1917 {
1918 return core_addr_hash (&a->m_unrelocated_pc);
1919 }
1920
1921 static int
1922 eq (const void *a, const void *b)
1923 {
1924 return eq ((const call_site *)a, (const call_site *)b);
1925 }
1926
1927 static hashval_t
1928 hash (const void *a)
1929 {
1930 return hash ((const call_site *)a);
1931 }
1932
1933 /* Return the address of the first instruction after this call. */
1934
1935 CORE_ADDR pc () const;
1936
1937 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1938
1939 struct call_site *tail_call_next = nullptr;
1940
1941 /* * Describe DW_AT_call_target. Missing attribute uses
1942 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1943
1944 struct call_site_target target {};
1945
1946 /* * Size of the PARAMETER array. */
1947
1948 unsigned parameter_count = 0;
1949
1950 /* * CU of the function where the call is located. It gets used
1951 for DWARF blocks execution in the parameter array below. */
1952
1953 dwarf2_per_cu_data *const per_cu = nullptr;
1954
1955 /* objfile of the function where the call is located. */
1956
1957 dwarf2_per_objfile *const per_objfile = nullptr;
1958
1959 private:
1960 /* Unrelocated address of the first instruction after this call. */
1961 const CORE_ADDR m_unrelocated_pc;
1962
1963 public:
1964 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1965
1966 struct call_site_parameter parameter[];
1967 };
1968
1969 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1970
1971 struct fixed_point_type_info
1972 {
1973 /* The fixed point type's scaling factor. */
1974 gdb_mpq scaling_factor;
1975 };
1976
1977 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1978 static structure. */
1979
1980 extern const struct cplus_struct_type cplus_struct_default;
1981
1982 extern void allocate_cplus_struct_type (struct type *);
1983
1984 #define INIT_CPLUS_SPECIFIC(type) \
1985 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1986 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1987 &cplus_struct_default)
1988
1989 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1990
1991 #define HAVE_CPLUS_STRUCT(type) \
1992 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1993 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1994
1995 #define INIT_NONE_SPECIFIC(type) \
1996 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1997 TYPE_MAIN_TYPE (type)->type_specific = {})
1998
1999 extern const struct gnat_aux_type gnat_aux_default;
2000
2001 extern void allocate_gnat_aux_type (struct type *);
2002
2003 #define INIT_GNAT_SPECIFIC(type) \
2004 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2005 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2006 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2007 /* * A macro that returns non-zero if the type-specific data should be
2008 read as "gnat-stuff". */
2009 #define HAVE_GNAT_AUX_INFO(type) \
2010 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2011
2012 /* * True if TYPE is known to be an Ada type of some kind. */
2013 #define ADA_TYPE_P(type) \
2014 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
2015 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
2016 && (type)->is_fixed_instance ()))
2017
2018 #define INIT_FUNC_SPECIFIC(type) \
2019 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
2020 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
2021 TYPE_ZALLOC (type, \
2022 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2023
2024 /* "struct fixed_point_type_info" has a field that has a destructor.
2025 See allocate_fixed_point_type_info to understand how this is
2026 handled. */
2027 #define INIT_FIXED_POINT_SPECIFIC(type) \
2028 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2029 allocate_fixed_point_type_info (type))
2030
2031 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2032 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
2033 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2034 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2035 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2036 #define TYPE_CHAIN(thistype) (thistype)->chain
2037 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
2038 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
2039 so you only have to call check_typedef once. Since allocate_value
2040 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
2041 #define TYPE_LENGTH(thistype) (thistype)->length
2042
2043 /* * Return the alignment of the type in target addressable memory
2044 units, or 0 if no alignment was specified. */
2045 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2046
2047 /* * Return the alignment of the type in target addressable memory
2048 units, or 0 if no alignment was specified. */
2049 extern unsigned type_raw_align (struct type *);
2050
2051 /* * Return the alignment of the type in target addressable memory
2052 units. Return 0 if the alignment cannot be determined; but note
2053 that this makes an effort to compute the alignment even it it was
2054 not specified in the debug info. */
2055 extern unsigned type_align (struct type *);
2056
2057 /* * Set the alignment of the type. The alignment must be a power of
2058 2. Returns false if the given value does not fit in the available
2059 space in struct type. */
2060 extern bool set_type_align (struct type *, ULONGEST);
2061
2062 /* Property accessors for the type data location. */
2063 #define TYPE_DATA_LOCATION(thistype) \
2064 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2065 #define TYPE_DATA_LOCATION_BATON(thistype) \
2066 TYPE_DATA_LOCATION (thistype)->data.baton
2067 #define TYPE_DATA_LOCATION_ADDR(thistype) \
2068 (TYPE_DATA_LOCATION (thistype)->const_val ())
2069 #define TYPE_DATA_LOCATION_KIND(thistype) \
2070 (TYPE_DATA_LOCATION (thistype)->kind ())
2071 #define TYPE_DYNAMIC_LENGTH(thistype) \
2072 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2073
2074 /* Property accessors for the type allocated/associated. */
2075 #define TYPE_ALLOCATED_PROP(thistype) \
2076 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2077 #define TYPE_ASSOCIATED_PROP(thistype) \
2078 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2079
2080 /* C++ */
2081
2082 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2083 /* Do not call this, use TYPE_SELF_TYPE. */
2084 extern struct type *internal_type_self_type (struct type *);
2085 extern void set_type_self_type (struct type *, struct type *);
2086
2087 extern int internal_type_vptr_fieldno (struct type *);
2088 extern void set_type_vptr_fieldno (struct type *, int);
2089 extern struct type *internal_type_vptr_basetype (struct type *);
2090 extern void set_type_vptr_basetype (struct type *, struct type *);
2091 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2092 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2093
2094 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2095 #define TYPE_SPECIFIC_FIELD(thistype) \
2096 TYPE_MAIN_TYPE(thistype)->type_specific_field
2097 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2098 where we're trying to print an Ada array using the C language.
2099 In that case, there is no "cplus_stuff", but the C language assumes
2100 that there is. What we do, in that case, is pretend that there is
2101 an implicit one which is the default cplus stuff. */
2102 #define TYPE_CPLUS_SPECIFIC(thistype) \
2103 (!HAVE_CPLUS_STRUCT(thistype) \
2104 ? (struct cplus_struct_type*)&cplus_struct_default \
2105 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2106 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2107 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2108 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2109 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2110 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2111 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2112 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2113 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2114 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2115 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2116 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2117 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2118 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
2119 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2120 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2121 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2122
2123 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2124 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2125 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2126
2127 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind ())
2128 #define FIELD_BITPOS(thisfld) ((thisfld).loc_bitpos ())
2129 #define FIELD_ENUMVAL(thisfld) ((thisfld).loc_enumval ())
2130 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc_physname ())
2131 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc_physaddr ())
2132 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc_dwarf_block ())
2133 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2134 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2135
2136 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
2137 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
2138 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
2139 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
2140 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
2141 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
2142 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2143 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2144 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2145
2146 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2147 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2148 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2149 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2150 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2151 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2152 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2153 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2154 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2155 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2156 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2157 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2158 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2159 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2160 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2161 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2162 #define TYPE_FIELD_PRIVATE(thistype, n) \
2163 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2164 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2165 #define TYPE_FIELD_PROTECTED(thistype, n) \
2166 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2167 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2168 #define TYPE_FIELD_IGNORE(thistype, n) \
2169 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2170 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2171 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2172 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2173 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2174
2175 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2176 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2177 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2178 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2179 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2180
2181 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2182 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2183 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2184 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2185 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2186 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2187
2188 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2189 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2190 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2191 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2192 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2193 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2194 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2195 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2196 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2197 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2198 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2199 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2200 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2201 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2202 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2203 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2204 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2205
2206 /* Accessors for typedefs defined by a class. */
2207 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2208 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2209 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2210 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2211 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2212 TYPE_TYPEDEF_FIELD (thistype, n).name
2213 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2214 TYPE_TYPEDEF_FIELD (thistype, n).type
2215 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2216 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2217 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2218 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2219 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2220 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2221
2222 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2223 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2224 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2225 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2226 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2227 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2228 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2229 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2230 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2231 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2232 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2233 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2234 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2235 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2236
2237 #define TYPE_IS_OPAQUE(thistype) \
2238 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2239 || ((thistype)->code () == TYPE_CODE_UNION)) \
2240 && ((thistype)->num_fields () == 0) \
2241 && (!HAVE_CPLUS_STRUCT (thistype) \
2242 || TYPE_NFN_FIELDS (thistype) == 0) \
2243 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2244
2245 /* * A helper macro that returns the name of a type or "unnamed type"
2246 if the type has no name. */
2247
2248 #define TYPE_SAFE_NAME(type) \
2249 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2250
2251 /* * A helper macro that returns the name of an error type. If the
2252 type has a name, it is used; otherwise, a default is used. */
2253
2254 #define TYPE_ERROR_NAME(type) \
2255 (type->name () ? type->name () : _("<error type>"))
2256
2257 /* Given TYPE, return its floatformat. */
2258 const struct floatformat *floatformat_from_type (const struct type *type);
2259
2260 struct builtin_type
2261 {
2262 /* Integral types. */
2263
2264 /* Implicit size/sign (based on the architecture's ABI). */
2265 struct type *builtin_void;
2266 struct type *builtin_char;
2267 struct type *builtin_short;
2268 struct type *builtin_int;
2269 struct type *builtin_long;
2270 struct type *builtin_signed_char;
2271 struct type *builtin_unsigned_char;
2272 struct type *builtin_unsigned_short;
2273 struct type *builtin_unsigned_int;
2274 struct type *builtin_unsigned_long;
2275 struct type *builtin_bfloat16;
2276 struct type *builtin_half;
2277 struct type *builtin_float;
2278 struct type *builtin_double;
2279 struct type *builtin_long_double;
2280 struct type *builtin_complex;
2281 struct type *builtin_double_complex;
2282 struct type *builtin_string;
2283 struct type *builtin_bool;
2284 struct type *builtin_long_long;
2285 struct type *builtin_unsigned_long_long;
2286 struct type *builtin_decfloat;
2287 struct type *builtin_decdouble;
2288 struct type *builtin_declong;
2289
2290 /* "True" character types.
2291 We use these for the '/c' print format, because c_char is just a
2292 one-byte integral type, which languages less laid back than C
2293 will print as ... well, a one-byte integral type. */
2294 struct type *builtin_true_char;
2295 struct type *builtin_true_unsigned_char;
2296
2297 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2298 is for when an architecture needs to describe a register that has
2299 no size. */
2300 struct type *builtin_int0;
2301 struct type *builtin_int8;
2302 struct type *builtin_uint8;
2303 struct type *builtin_int16;
2304 struct type *builtin_uint16;
2305 struct type *builtin_int24;
2306 struct type *builtin_uint24;
2307 struct type *builtin_int32;
2308 struct type *builtin_uint32;
2309 struct type *builtin_int64;
2310 struct type *builtin_uint64;
2311 struct type *builtin_int128;
2312 struct type *builtin_uint128;
2313
2314 /* Wide character types. */
2315 struct type *builtin_char16;
2316 struct type *builtin_char32;
2317 struct type *builtin_wchar;
2318
2319 /* Pointer types. */
2320
2321 /* * `pointer to data' type. Some target platforms use an implicitly
2322 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2323 struct type *builtin_data_ptr;
2324
2325 /* * `pointer to function (returning void)' type. Harvard
2326 architectures mean that ABI function and code pointers are not
2327 interconvertible. Similarly, since ANSI, C standards have
2328 explicitly said that pointers to functions and pointers to data
2329 are not interconvertible --- that is, you can't cast a function
2330 pointer to void * and back, and expect to get the same value.
2331 However, all function pointer types are interconvertible, so void
2332 (*) () can server as a generic function pointer. */
2333
2334 struct type *builtin_func_ptr;
2335
2336 /* * `function returning pointer to function (returning void)' type.
2337 The final void return type is not significant for it. */
2338
2339 struct type *builtin_func_func;
2340
2341 /* Special-purpose types. */
2342
2343 /* * This type is used to represent a GDB internal function. */
2344
2345 struct type *internal_fn;
2346
2347 /* * This type is used to represent an xmethod. */
2348 struct type *xmethod;
2349 };
2350
2351 /* * Return the type table for the specified architecture. */
2352
2353 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2354
2355 /* * Per-objfile types used by symbol readers. */
2356
2357 struct objfile_type
2358 {
2359 /* Basic types based on the objfile architecture. */
2360 struct type *builtin_void;
2361 struct type *builtin_char;
2362 struct type *builtin_short;
2363 struct type *builtin_int;
2364 struct type *builtin_long;
2365 struct type *builtin_long_long;
2366 struct type *builtin_signed_char;
2367 struct type *builtin_unsigned_char;
2368 struct type *builtin_unsigned_short;
2369 struct type *builtin_unsigned_int;
2370 struct type *builtin_unsigned_long;
2371 struct type *builtin_unsigned_long_long;
2372 struct type *builtin_half;
2373 struct type *builtin_float;
2374 struct type *builtin_double;
2375 struct type *builtin_long_double;
2376
2377 /* * This type is used to represent symbol addresses. */
2378 struct type *builtin_core_addr;
2379
2380 /* * This type represents a type that was unrecognized in symbol
2381 read-in. */
2382 struct type *builtin_error;
2383
2384 /* * Types used for symbols with no debug information. */
2385 struct type *nodebug_text_symbol;
2386 struct type *nodebug_text_gnu_ifunc_symbol;
2387 struct type *nodebug_got_plt_symbol;
2388 struct type *nodebug_data_symbol;
2389 struct type *nodebug_unknown_symbol;
2390 struct type *nodebug_tls_symbol;
2391 };
2392
2393 /* * Return the type table for the specified objfile. */
2394
2395 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2396
2397 /* Explicit floating-point formats. See "floatformat.h". */
2398 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2399 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2400 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2401 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2402 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2403 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2404 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2405 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2406 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2407 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2408 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2409 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2410 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2411
2412 /* Allocate space for storing data associated with a particular
2413 type. We ensure that the space is allocated using the same
2414 mechanism that was used to allocate the space for the type
2415 structure itself. I.e. if the type is on an objfile's
2416 objfile_obstack, then the space for data associated with that type
2417 will also be allocated on the objfile_obstack. If the type is
2418 associated with a gdbarch, then the space for data associated with that
2419 type will also be allocated on the gdbarch_obstack.
2420
2421 If a type is not associated with neither an objfile or a gdbarch then
2422 you should not use this macro to allocate space for data, instead you
2423 should call xmalloc directly, and ensure the memory is correctly freed
2424 when it is no longer needed. */
2425
2426 #define TYPE_ALLOC(t,size) \
2427 (obstack_alloc (((t)->is_objfile_owned () \
2428 ? &((t)->objfile_owner ()->objfile_obstack) \
2429 : gdbarch_obstack ((t)->arch_owner ())), \
2430 size))
2431
2432
2433 /* See comment on TYPE_ALLOC. */
2434
2435 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2436
2437 /* Use alloc_type to allocate a type owned by an objfile. Use
2438 alloc_type_arch to allocate a type owned by an architecture. Use
2439 alloc_type_copy to allocate a type with the same owner as a
2440 pre-existing template type, no matter whether objfile or
2441 gdbarch. */
2442 extern struct type *alloc_type (struct objfile *);
2443 extern struct type *alloc_type_arch (struct gdbarch *);
2444 extern struct type *alloc_type_copy (const struct type *);
2445
2446 /* * This returns the target type (or NULL) of TYPE, also skipping
2447 past typedefs. */
2448
2449 extern struct type *get_target_type (struct type *type);
2450
2451 /* Return the equivalent of TYPE_LENGTH, but in number of target
2452 addressable memory units of the associated gdbarch instead of bytes. */
2453
2454 extern unsigned int type_length_units (struct type *type);
2455
2456 /* * Helper function to construct objfile-owned types. */
2457
2458 extern struct type *init_type (struct objfile *, enum type_code, int,
2459 const char *);
2460 extern struct type *init_integer_type (struct objfile *, int, int,
2461 const char *);
2462 extern struct type *init_character_type (struct objfile *, int, int,
2463 const char *);
2464 extern struct type *init_boolean_type (struct objfile *, int, int,
2465 const char *);
2466 extern struct type *init_float_type (struct objfile *, int, const char *,
2467 const struct floatformat **,
2468 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2469 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2470 extern bool can_create_complex_type (struct type *);
2471 extern struct type *init_complex_type (const char *, struct type *);
2472 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2473 struct type *);
2474 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2475 const char *);
2476
2477 /* Helper functions to construct architecture-owned types. */
2478 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2479 const char *);
2480 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2481 const char *);
2482 extern struct type *arch_character_type (struct gdbarch *, int, int,
2483 const char *);
2484 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2485 const char *);
2486 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2487 const struct floatformat **);
2488 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2489 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2490 struct type *);
2491
2492 /* Helper functions to construct a struct or record type. An
2493 initially empty type is created using arch_composite_type().
2494 Fields are then added using append_composite_type_field*(). A union
2495 type has its size set to the largest field. A struct type has each
2496 field packed against the previous. */
2497
2498 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2499 const char *name, enum type_code code);
2500 extern void append_composite_type_field (struct type *t, const char *name,
2501 struct type *field);
2502 extern void append_composite_type_field_aligned (struct type *t,
2503 const char *name,
2504 struct type *field,
2505 int alignment);
2506 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2507 struct type *field);
2508
2509 /* Helper functions to construct a bit flags type. An initially empty
2510 type is created using arch_flag_type(). Flags are then added using
2511 append_flag_type_field() and append_flag_type_flag(). */
2512 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2513 const char *name, int bit);
2514 extern void append_flags_type_field (struct type *type,
2515 int start_bitpos, int nr_bits,
2516 struct type *field_type, const char *name);
2517 extern void append_flags_type_flag (struct type *type, int bitpos,
2518 const char *name);
2519
2520 extern void make_vector_type (struct type *array_type);
2521 extern struct type *init_vector_type (struct type *elt_type, int n);
2522
2523 extern struct type *lookup_reference_type (struct type *, enum type_code);
2524 extern struct type *lookup_lvalue_reference_type (struct type *);
2525 extern struct type *lookup_rvalue_reference_type (struct type *);
2526
2527
2528 extern struct type *make_reference_type (struct type *, struct type **,
2529 enum type_code);
2530
2531 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2532
2533 extern struct type *make_restrict_type (struct type *);
2534
2535 extern struct type *make_unqualified_type (struct type *);
2536
2537 extern struct type *make_atomic_type (struct type *);
2538
2539 extern void replace_type (struct type *, struct type *);
2540
2541 extern type_instance_flags address_space_name_to_type_instance_flags
2542 (struct gdbarch *, const char *);
2543
2544 extern const char *address_space_type_instance_flags_to_name
2545 (struct gdbarch *, type_instance_flags);
2546
2547 extern struct type *make_type_with_address_space
2548 (struct type *type, type_instance_flags space_identifier);
2549
2550 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2551
2552 extern struct type *lookup_methodptr_type (struct type *);
2553
2554 extern void smash_to_method_type (struct type *type, struct type *self_type,
2555 struct type *to_type, struct field *args,
2556 int nargs, int varargs);
2557
2558 extern void smash_to_memberptr_type (struct type *, struct type *,
2559 struct type *);
2560
2561 extern void smash_to_methodptr_type (struct type *, struct type *);
2562
2563 extern struct type *allocate_stub_method (struct type *);
2564
2565 extern const char *type_name_or_error (struct type *type);
2566
2567 struct struct_elt
2568 {
2569 /* The field of the element, or NULL if no element was found. */
2570 struct field *field;
2571
2572 /* The bit offset of the element in the parent structure. */
2573 LONGEST offset;
2574 };
2575
2576 /* Given a type TYPE, lookup the field and offset of the component named
2577 NAME.
2578
2579 TYPE can be either a struct or union, or a pointer or reference to
2580 a struct or union. If it is a pointer or reference, its target
2581 type is automatically used. Thus '.' and '->' are interchangable,
2582 as specified for the definitions of the expression element types
2583 STRUCTOP_STRUCT and STRUCTOP_PTR.
2584
2585 If NOERR is nonzero, the returned structure will have field set to
2586 NULL if there is no component named NAME.
2587
2588 If the component NAME is a field in an anonymous substructure of
2589 TYPE, the returned offset is a "global" offset relative to TYPE
2590 rather than an offset within the substructure. */
2591
2592 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2593
2594 /* Given a type TYPE, lookup the type of the component named NAME.
2595
2596 TYPE can be either a struct or union, or a pointer or reference to
2597 a struct or union. If it is a pointer or reference, its target
2598 type is automatically used. Thus '.' and '->' are interchangable,
2599 as specified for the definitions of the expression element types
2600 STRUCTOP_STRUCT and STRUCTOP_PTR.
2601
2602 If NOERR is nonzero, return NULL if there is no component named
2603 NAME. */
2604
2605 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2606
2607 extern struct type *make_pointer_type (struct type *, struct type **);
2608
2609 extern struct type *lookup_pointer_type (struct type *);
2610
2611 extern struct type *make_function_type (struct type *, struct type **);
2612
2613 extern struct type *lookup_function_type (struct type *);
2614
2615 extern struct type *lookup_function_type_with_arguments (struct type *,
2616 int,
2617 struct type **);
2618
2619 extern struct type *create_static_range_type (struct type *, struct type *,
2620 LONGEST, LONGEST);
2621
2622
2623 extern struct type *create_array_type_with_stride
2624 (struct type *, struct type *, struct type *,
2625 struct dynamic_prop *, unsigned int);
2626
2627 extern struct type *create_range_type (struct type *, struct type *,
2628 const struct dynamic_prop *,
2629 const struct dynamic_prop *,
2630 LONGEST);
2631
2632 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2633 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2634 stride. */
2635
2636 extern struct type * create_range_type_with_stride
2637 (struct type *result_type, struct type *index_type,
2638 const struct dynamic_prop *low_bound,
2639 const struct dynamic_prop *high_bound, LONGEST bias,
2640 const struct dynamic_prop *stride, bool byte_stride_p);
2641
2642 extern struct type *create_array_type (struct type *, struct type *,
2643 struct type *);
2644
2645 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2646
2647 extern struct type *create_string_type (struct type *, struct type *,
2648 struct type *);
2649 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2650
2651 extern struct type *create_set_type (struct type *, struct type *);
2652
2653 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2654 const char *);
2655
2656 extern struct type *lookup_signed_typename (const struct language_defn *,
2657 const char *);
2658
2659 extern ULONGEST get_unsigned_type_max (struct type *);
2660
2661 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2662
2663 extern CORE_ADDR get_pointer_type_max (struct type *);
2664
2665 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2666 ADDR specifies the location of the variable the type is bound to.
2667 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2668 static properties is returned. */
2669 extern struct type *resolve_dynamic_type
2670 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2671 CORE_ADDR addr);
2672
2673 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2674 extern int is_dynamic_type (struct type *type);
2675
2676 extern struct type *check_typedef (struct type *);
2677
2678 extern void check_stub_method_group (struct type *, int);
2679
2680 extern char *gdb_mangle_name (struct type *, int, int);
2681
2682 extern struct type *lookup_typename (const struct language_defn *,
2683 const char *, const struct block *, int);
2684
2685 extern struct type *lookup_template_type (const char *, struct type *,
2686 const struct block *);
2687
2688 extern int get_vptr_fieldno (struct type *, struct type **);
2689
2690 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2691 TYPE.
2692
2693 Return true if the two bounds are available, false otherwise. */
2694
2695 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2696 LONGEST *highp);
2697
2698 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2699
2700 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2701
2702 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2703
2704 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2705
2706 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2707 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2708 Save the high bound into HIGH_BOUND if not NULL.
2709
2710 Return true if the operation was successful. Return false otherwise,
2711 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2712
2713 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2714 LONGEST *high_bound);
2715
2716 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2717 LONGEST val);
2718
2719 extern int class_types_same_p (const struct type *, const struct type *);
2720
2721 extern int is_ancestor (struct type *, struct type *);
2722
2723 extern int is_public_ancestor (struct type *, struct type *);
2724
2725 extern int is_unique_ancestor (struct type *, struct value *);
2726
2727 /* Overload resolution */
2728
2729 /* * Badness if parameter list length doesn't match arg list length. */
2730 extern const struct rank LENGTH_MISMATCH_BADNESS;
2731
2732 /* * Dummy badness value for nonexistent parameter positions. */
2733 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2734 /* * Badness if no conversion among types. */
2735 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2736
2737 /* * Badness of an exact match. */
2738 extern const struct rank EXACT_MATCH_BADNESS;
2739
2740 /* * Badness of integral promotion. */
2741 extern const struct rank INTEGER_PROMOTION_BADNESS;
2742 /* * Badness of floating promotion. */
2743 extern const struct rank FLOAT_PROMOTION_BADNESS;
2744 /* * Badness of converting a derived class pointer
2745 to a base class pointer. */
2746 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2747 /* * Badness of integral conversion. */
2748 extern const struct rank INTEGER_CONVERSION_BADNESS;
2749 /* * Badness of floating conversion. */
2750 extern const struct rank FLOAT_CONVERSION_BADNESS;
2751 /* * Badness of integer<->floating conversions. */
2752 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2753 /* * Badness of conversion of pointer to void pointer. */
2754 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2755 /* * Badness of conversion to boolean. */
2756 extern const struct rank BOOL_CONVERSION_BADNESS;
2757 /* * Badness of converting derived to base class. */
2758 extern const struct rank BASE_CONVERSION_BADNESS;
2759 /* * Badness of converting from non-reference to reference. Subrank
2760 is the type of reference conversion being done. */
2761 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2762 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2763 /* * Conversion to rvalue reference. */
2764 #define REFERENCE_CONVERSION_RVALUE 1
2765 /* * Conversion to const lvalue reference. */
2766 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2767
2768 /* * Badness of converting integer 0 to NULL pointer. */
2769 extern const struct rank NULL_POINTER_CONVERSION;
2770 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2771 being done. */
2772 extern const struct rank CV_CONVERSION_BADNESS;
2773 #define CV_CONVERSION_CONST 1
2774 #define CV_CONVERSION_VOLATILE 2
2775
2776 /* Non-standard conversions allowed by the debugger */
2777
2778 /* * Converting a pointer to an int is usually OK. */
2779 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2780
2781 /* * Badness of converting a (non-zero) integer constant
2782 to a pointer. */
2783 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2784
2785 extern struct rank sum_ranks (struct rank a, struct rank b);
2786 extern int compare_ranks (struct rank a, struct rank b);
2787
2788 extern int compare_badness (const badness_vector &,
2789 const badness_vector &);
2790
2791 extern badness_vector rank_function (gdb::array_view<type *> parms,
2792 gdb::array_view<value *> args);
2793
2794 extern struct rank rank_one_type (struct type *, struct type *,
2795 struct value *);
2796
2797 extern void recursive_dump_type (struct type *, int);
2798
2799 extern int field_is_static (struct field *);
2800
2801 /* printcmd.c */
2802
2803 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2804 const struct value_print_options *,
2805 int, struct ui_file *);
2806
2807 extern int can_dereference (struct type *);
2808
2809 extern int is_integral_type (struct type *);
2810
2811 extern int is_floating_type (struct type *);
2812
2813 extern int is_scalar_type (struct type *type);
2814
2815 extern int is_scalar_type_recursive (struct type *);
2816
2817 extern int class_or_union_p (const struct type *);
2818
2819 extern void maintenance_print_type (const char *, int);
2820
2821 extern htab_up create_copied_types_hash (struct objfile *objfile);
2822
2823 extern struct type *copy_type_recursive (struct objfile *objfile,
2824 struct type *type,
2825 htab_t copied_types);
2826
2827 extern struct type *copy_type (const struct type *type);
2828
2829 extern bool types_equal (struct type *, struct type *);
2830
2831 extern bool types_deeply_equal (struct type *, struct type *);
2832
2833 extern int type_not_allocated (const struct type *type);
2834
2835 extern int type_not_associated (const struct type *type);
2836
2837 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2838 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2839 extern bool is_fixed_point_type (struct type *type);
2840
2841 /* Allocate a fixed-point type info for TYPE. This should only be
2842 called by INIT_FIXED_POINT_SPECIFIC. */
2843 extern void allocate_fixed_point_type_info (struct type *type);
2844
2845 /* * When the type includes explicit byte ordering, return that.
2846 Otherwise, the byte ordering from gdbarch_byte_order for
2847 the type's arch is returned. */
2848
2849 extern enum bfd_endian type_byte_order (const struct type *type);
2850
2851 /* A flag to enable printing of debugging information of C++
2852 overloading. */
2853
2854 extern unsigned int overload_debug;
2855
2856 #endif /* GDBTYPES_H */