Make fixed_point_type_base_type a method of struct type
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55 #include "gmp-utils.h"
56
57 /* Forward declarations for prototypes. */
58 struct field;
59 struct block;
60 struct value_print_options;
61 struct language_defn;
62 struct dwarf2_per_cu_data;
63 struct dwarf2_per_objfile;
64
65 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
66 are already DWARF-specific. */
67
68 /* * Offset relative to the start of its containing CU (compilation
69 unit). */
70 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
71
72 /* * Offset relative to the start of its .debug_info or .debug_types
73 section. */
74 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
75
76 static inline char *
77 sect_offset_str (sect_offset offset)
78 {
79 return hex_string (to_underlying (offset));
80 }
81
82 /* Some macros for char-based bitfields. */
83
84 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
85 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
86 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
87 #define B_TYPE unsigned char
88 #define B_BYTES(x) ( 1 + ((x)>>3) )
89 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
90
91 /* * Different kinds of data types are distinguished by the `code'
92 field. */
93
94 enum type_code
95 {
96 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
97 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
98 TYPE_CODE_PTR, /**< Pointer type */
99
100 /* * Array type with lower & upper bounds.
101
102 Regardless of the language, GDB represents multidimensional
103 array types the way C does: as arrays of arrays. So an
104 instance of a GDB array type T can always be seen as a series
105 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
106 memory.
107
108 Row-major languages like C lay out multi-dimensional arrays so
109 that incrementing the rightmost index in a subscripting
110 expression results in the smallest change in the address of the
111 element referred to. Column-major languages like Fortran lay
112 them out so that incrementing the leftmost index results in the
113 smallest change.
114
115 This means that, in column-major languages, working our way
116 from type to target type corresponds to working through indices
117 from right to left, not left to right. */
118 TYPE_CODE_ARRAY,
119
120 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
121 TYPE_CODE_UNION, /**< C union or Pascal variant part */
122 TYPE_CODE_ENUM, /**< Enumeration type */
123 TYPE_CODE_FLAGS, /**< Bit flags type */
124 TYPE_CODE_FUNC, /**< Function type */
125 TYPE_CODE_INT, /**< Integer type */
126
127 /* * Floating type. This is *NOT* a complex type. */
128 TYPE_CODE_FLT,
129
130 /* * Void type. The length field specifies the length (probably
131 always one) which is used in pointer arithmetic involving
132 pointers to this type, but actually dereferencing such a
133 pointer is invalid; a void type has no length and no actual
134 representation in memory or registers. A pointer to a void
135 type is a generic pointer. */
136 TYPE_CODE_VOID,
137
138 TYPE_CODE_SET, /**< Pascal sets */
139 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
140
141 /* * A string type which is like an array of character but prints
142 differently. It does not contain a length field as Pascal
143 strings (for many Pascals, anyway) do; if we want to deal with
144 such strings, we should use a new type code. */
145 TYPE_CODE_STRING,
146
147 /* * Unknown type. The length field is valid if we were able to
148 deduce that much about the type, or 0 if we don't even know
149 that. */
150 TYPE_CODE_ERROR,
151
152 /* C++ */
153 TYPE_CODE_METHOD, /**< Method type */
154
155 /* * Pointer-to-member-function type. This describes how to access a
156 particular member function of a class (possibly a virtual
157 member function). The representation may vary between different
158 C++ ABIs. */
159 TYPE_CODE_METHODPTR,
160
161 /* * Pointer-to-member type. This is the offset within a class to
162 some particular data member. The only currently supported
163 representation uses an unbiased offset, with -1 representing
164 NULL; this is used by the Itanium C++ ABI (used by GCC on all
165 platforms). */
166 TYPE_CODE_MEMBERPTR,
167
168 TYPE_CODE_REF, /**< C++ Reference types */
169
170 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
171
172 TYPE_CODE_CHAR, /**< *real* character type */
173
174 /* * Boolean type. 0 is false, 1 is true, and other values are
175 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
176 TYPE_CODE_BOOL,
177
178 /* Fortran */
179 TYPE_CODE_COMPLEX, /**< Complex float */
180
181 TYPE_CODE_TYPEDEF,
182
183 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
184
185 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
186
187 TYPE_CODE_MODULE, /**< Fortran module. */
188
189 /* * Internal function type. */
190 TYPE_CODE_INTERNAL_FUNCTION,
191
192 /* * Methods implemented in extension languages. */
193 TYPE_CODE_XMETHOD,
194
195 /* * Fixed Point type. */
196 TYPE_CODE_FIXED_POINT,
197 };
198
199 /* * Some bits for the type's instance_flags word. See the macros
200 below for documentation on each bit. */
201
202 enum type_instance_flag_value : unsigned
203 {
204 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
205 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
206 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
207 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
208 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
210 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
211 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
212 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
213 };
214
215 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
216
217 /* * Not textual. By default, GDB treats all single byte integers as
218 characters (or elements of strings) unless this flag is set. */
219
220 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
221
222 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
223 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
224 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
225
226 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
227 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
228 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
229
230 /* * True if this type was declared using the "class" keyword. This is
231 only valid for C++ structure and enum types. If false, a structure
232 was declared as a "struct"; if true it was declared "class". For
233 enum types, this is true when "enum class" or "enum struct" was
234 used to declare the type.. */
235
236 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
237
238 /* * True if this type is a "flag" enum. A flag enum is one where all
239 the values are pairwise disjoint when "and"ed together. This
240 affects how enum values are printed. */
241
242 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
243
244 /* * Constant type. If this is set, the corresponding type has a
245 const modifier. */
246
247 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
248
249 /* * Volatile type. If this is set, the corresponding type has a
250 volatile modifier. */
251
252 #define TYPE_VOLATILE(t) \
253 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
254
255 /* * Restrict type. If this is set, the corresponding type has a
256 restrict modifier. */
257
258 #define TYPE_RESTRICT(t) \
259 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
260
261 /* * Atomic type. If this is set, the corresponding type has an
262 _Atomic modifier. */
263
264 #define TYPE_ATOMIC(t) \
265 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
266
267 /* * True if this type represents either an lvalue or lvalue reference type. */
268
269 #define TYPE_IS_REFERENCE(t) \
270 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
271
272 /* * True if this type is allocatable. */
273 #define TYPE_IS_ALLOCATABLE(t) \
274 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
275
276 /* * True if this type has variant parts. */
277 #define TYPE_HAS_VARIANT_PARTS(t) \
278 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
279
280 /* * True if this type has a dynamic length. */
281 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
282 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
283
284 /* * Instruction-space delimited type. This is for Harvard architectures
285 which have separate instruction and data address spaces (and perhaps
286 others).
287
288 GDB usually defines a flat address space that is a superset of the
289 architecture's two (or more) address spaces, but this is an extension
290 of the architecture's model.
291
292 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
293 resides in instruction memory, even if its address (in the extended
294 flat address space) does not reflect this.
295
296 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
297 corresponding type resides in the data memory space, even if
298 this is not indicated by its (flat address space) address.
299
300 If neither flag is set, the default space for functions / methods
301 is instruction space, and for data objects is data memory. */
302
303 #define TYPE_CODE_SPACE(t) \
304 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
305
306 #define TYPE_DATA_SPACE(t) \
307 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
308
309 /* * Address class flags. Some environments provide for pointers
310 whose size is different from that of a normal pointer or address
311 types where the bits are interpreted differently than normal
312 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
313 target specific ways to represent these different types of address
314 classes. */
315
316 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
317 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
318 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
319 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
320 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
321 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
322 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
323 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
324
325 /* * Information about a single discriminant. */
326
327 struct discriminant_range
328 {
329 /* * The range of values for the variant. This is an inclusive
330 range. */
331 ULONGEST low, high;
332
333 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
334 is true if this should be an unsigned comparison; false for
335 signed. */
336 bool contains (ULONGEST value, bool is_unsigned) const
337 {
338 if (is_unsigned)
339 return value >= low && value <= high;
340 LONGEST valuel = (LONGEST) value;
341 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
342 }
343 };
344
345 struct variant_part;
346
347 /* * A single variant. A variant has a list of discriminant values.
348 When the discriminator matches one of these, the variant is
349 enabled. Each variant controls zero or more fields; and may also
350 control other variant parts as well. This struct corresponds to
351 DW_TAG_variant in DWARF. */
352
353 struct variant : allocate_on_obstack
354 {
355 /* * The discriminant ranges for this variant. */
356 gdb::array_view<discriminant_range> discriminants;
357
358 /* * The fields controlled by this variant. This is inclusive on
359 the low end and exclusive on the high end. A variant may not
360 control any fields, in which case the two values will be equal.
361 These are indexes into the type's array of fields. */
362 int first_field;
363 int last_field;
364
365 /* * Variant parts controlled by this variant. */
366 gdb::array_view<variant_part> parts;
367
368 /* * Return true if this is the default variant. The default
369 variant can be recognized because it has no associated
370 discriminants. */
371 bool is_default () const
372 {
373 return discriminants.empty ();
374 }
375
376 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
377 if this should be an unsigned comparison; false for signed. */
378 bool matches (ULONGEST value, bool is_unsigned) const;
379 };
380
381 /* * A variant part. Each variant part has an optional discriminant
382 and holds an array of variants. This struct corresponds to
383 DW_TAG_variant_part in DWARF. */
384
385 struct variant_part : allocate_on_obstack
386 {
387 /* * The index of the discriminant field in the outer type. This is
388 an index into the type's array of fields. If this is -1, there
389 is no discriminant, and only the default variant can be
390 considered to be selected. */
391 int discriminant_index;
392
393 /* * True if this discriminant is unsigned; false if signed. This
394 comes from the type of the discriminant. */
395 bool is_unsigned;
396
397 /* * The variants that are controlled by this variant part. Note
398 that these will always be sorted by field number. */
399 gdb::array_view<variant> variants;
400 };
401
402
403 enum dynamic_prop_kind
404 {
405 PROP_UNDEFINED, /* Not defined. */
406 PROP_CONST, /* Constant. */
407 PROP_ADDR_OFFSET, /* Address offset. */
408 PROP_LOCEXPR, /* Location expression. */
409 PROP_LOCLIST, /* Location list. */
410 PROP_VARIANT_PARTS, /* Variant parts. */
411 PROP_TYPE, /* Type. */
412 };
413
414 union dynamic_prop_data
415 {
416 /* Storage for constant property. */
417
418 LONGEST const_val;
419
420 /* Storage for dynamic property. */
421
422 void *baton;
423
424 /* Storage of variant parts for a type. A type with variant parts
425 has all its fields "linearized" -- stored in a single field
426 array, just as if they had all been declared that way. The
427 variant parts are attached via a dynamic property, and then are
428 used to control which fields end up in the final type during
429 dynamic type resolution. */
430
431 const gdb::array_view<variant_part> *variant_parts;
432
433 /* Once a variant type is resolved, we may want to be able to go
434 from the resolved type to the original type. In this case we
435 rewrite the property's kind and set this field. */
436
437 struct type *original_type;
438 };
439
440 /* * Used to store a dynamic property. */
441
442 struct dynamic_prop
443 {
444 dynamic_prop_kind kind () const
445 {
446 return m_kind;
447 }
448
449 void set_undefined ()
450 {
451 m_kind = PROP_UNDEFINED;
452 }
453
454 LONGEST const_val () const
455 {
456 gdb_assert (m_kind == PROP_CONST);
457
458 return m_data.const_val;
459 }
460
461 void set_const_val (LONGEST const_val)
462 {
463 m_kind = PROP_CONST;
464 m_data.const_val = const_val;
465 }
466
467 void *baton () const
468 {
469 gdb_assert (m_kind == PROP_LOCEXPR
470 || m_kind == PROP_LOCLIST
471 || m_kind == PROP_ADDR_OFFSET);
472
473 return m_data.baton;
474 }
475
476 void set_locexpr (void *baton)
477 {
478 m_kind = PROP_LOCEXPR;
479 m_data.baton = baton;
480 }
481
482 void set_loclist (void *baton)
483 {
484 m_kind = PROP_LOCLIST;
485 m_data.baton = baton;
486 }
487
488 void set_addr_offset (void *baton)
489 {
490 m_kind = PROP_ADDR_OFFSET;
491 m_data.baton = baton;
492 }
493
494 const gdb::array_view<variant_part> *variant_parts () const
495 {
496 gdb_assert (m_kind == PROP_VARIANT_PARTS);
497
498 return m_data.variant_parts;
499 }
500
501 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
502 {
503 m_kind = PROP_VARIANT_PARTS;
504 m_data.variant_parts = variant_parts;
505 }
506
507 struct type *original_type () const
508 {
509 gdb_assert (m_kind == PROP_TYPE);
510
511 return m_data.original_type;
512 }
513
514 void set_original_type (struct type *original_type)
515 {
516 m_kind = PROP_TYPE;
517 m_data.original_type = original_type;
518 }
519
520 /* Determine which field of the union dynamic_prop.data is used. */
521 enum dynamic_prop_kind m_kind;
522
523 /* Storage for dynamic or static value. */
524 union dynamic_prop_data m_data;
525 };
526
527 /* Compare two dynamic_prop objects for equality. dynamic_prop
528 instances are equal iff they have the same type and storage. */
529 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
530
531 /* Compare two dynamic_prop objects for inequality. */
532 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
533 {
534 return !(l == r);
535 }
536
537 /* * Define a type's dynamic property node kind. */
538 enum dynamic_prop_node_kind
539 {
540 /* A property providing a type's data location.
541 Evaluating this field yields to the location of an object's data. */
542 DYN_PROP_DATA_LOCATION,
543
544 /* A property representing DW_AT_allocated. The presence of this attribute
545 indicates that the object of the type can be allocated/deallocated. */
546 DYN_PROP_ALLOCATED,
547
548 /* A property representing DW_AT_associated. The presence of this attribute
549 indicated that the object of the type can be associated. */
550 DYN_PROP_ASSOCIATED,
551
552 /* A property providing an array's byte stride. */
553 DYN_PROP_BYTE_STRIDE,
554
555 /* A property holding variant parts. */
556 DYN_PROP_VARIANT_PARTS,
557
558 /* A property holding the size of the type. */
559 DYN_PROP_BYTE_SIZE,
560 };
561
562 /* * List for dynamic type attributes. */
563 struct dynamic_prop_list
564 {
565 /* The kind of dynamic prop in this node. */
566 enum dynamic_prop_node_kind prop_kind;
567
568 /* The dynamic property itself. */
569 struct dynamic_prop prop;
570
571 /* A pointer to the next dynamic property. */
572 struct dynamic_prop_list *next;
573 };
574
575 /* * Determine which field of the union main_type.fields[x].loc is
576 used. */
577
578 enum field_loc_kind
579 {
580 FIELD_LOC_KIND_BITPOS, /**< bitpos */
581 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
582 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
583 FIELD_LOC_KIND_PHYSNAME, /**< physname */
584 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
585 };
586
587 /* * A discriminant to determine which field in the
588 main_type.type_specific union is being used, if any.
589
590 For types such as TYPE_CODE_FLT, the use of this
591 discriminant is really redundant, as we know from the type code
592 which field is going to be used. As such, it would be possible to
593 reduce the size of this enum in order to save a bit or two for
594 other fields of struct main_type. But, since we still have extra
595 room , and for the sake of clarity and consistency, we treat all fields
596 of the union the same way. */
597
598 enum type_specific_kind
599 {
600 TYPE_SPECIFIC_NONE,
601 TYPE_SPECIFIC_CPLUS_STUFF,
602 TYPE_SPECIFIC_GNAT_STUFF,
603 TYPE_SPECIFIC_FLOATFORMAT,
604 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
605 TYPE_SPECIFIC_FUNC,
606 TYPE_SPECIFIC_SELF_TYPE,
607 TYPE_SPECIFIC_INT,
608 TYPE_SPECIFIC_FIXED_POINT,
609 };
610
611 union type_owner
612 {
613 struct objfile *objfile;
614 struct gdbarch *gdbarch;
615 };
616
617 union field_location
618 {
619 /* * Position of this field, counting in bits from start of
620 containing structure. For big-endian targets, it is the bit
621 offset to the MSB. For little-endian targets, it is the bit
622 offset to the LSB. */
623
624 LONGEST bitpos;
625
626 /* * Enum value. */
627 LONGEST enumval;
628
629 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
630 physaddr is the location (in the target) of the static
631 field. Otherwise, physname is the mangled label of the
632 static field. */
633
634 CORE_ADDR physaddr;
635 const char *physname;
636
637 /* * The field location can be computed by evaluating the
638 following DWARF block. Its DATA is allocated on
639 objfile_obstack - no CU load is needed to access it. */
640
641 struct dwarf2_locexpr_baton *dwarf_block;
642 };
643
644 struct field
645 {
646 struct type *type () const
647 {
648 return this->m_type;
649 }
650
651 void set_type (struct type *type)
652 {
653 this->m_type = type;
654 }
655
656 union field_location loc;
657
658 /* * For a function or member type, this is 1 if the argument is
659 marked artificial. Artificial arguments should not be shown
660 to the user. For TYPE_CODE_RANGE it is set if the specific
661 bound is not defined. */
662
663 unsigned int artificial : 1;
664
665 /* * Discriminant for union field_location. */
666
667 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
668
669 /* * Size of this field, in bits, or zero if not packed.
670 If non-zero in an array type, indicates the element size in
671 bits (used only in Ada at the moment).
672 For an unpacked field, the field's type's length
673 says how many bytes the field occupies. */
674
675 unsigned int bitsize : 28;
676
677 /* * In a struct or union type, type of this field.
678 - In a function or member type, type of this argument.
679 - In an array type, the domain-type of the array. */
680
681 struct type *m_type;
682
683 /* * Name of field, value or argument.
684 NULL for range bounds, array domains, and member function
685 arguments. */
686
687 const char *name;
688 };
689
690 struct range_bounds
691 {
692 ULONGEST bit_stride () const
693 {
694 if (this->flag_is_byte_stride)
695 return this->stride.const_val () * 8;
696 else
697 return this->stride.const_val ();
698 }
699
700 /* * Low bound of range. */
701
702 struct dynamic_prop low;
703
704 /* * High bound of range. */
705
706 struct dynamic_prop high;
707
708 /* The stride value for this range. This can be stored in bits or bytes
709 based on the value of BYTE_STRIDE_P. It is optional to have a stride
710 value, if this range has no stride value defined then this will be set
711 to the constant zero. */
712
713 struct dynamic_prop stride;
714
715 /* * The bias. Sometimes a range value is biased before storage.
716 The bias is added to the stored bits to form the true value. */
717
718 LONGEST bias;
719
720 /* True if HIGH range bound contains the number of elements in the
721 subrange. This affects how the final high bound is computed. */
722
723 unsigned int flag_upper_bound_is_count : 1;
724
725 /* True if LOW or/and HIGH are resolved into a static bound from
726 a dynamic one. */
727
728 unsigned int flag_bound_evaluated : 1;
729
730 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
731
732 unsigned int flag_is_byte_stride : 1;
733 };
734
735 /* Compare two range_bounds objects for equality. Simply does
736 memberwise comparison. */
737 extern bool operator== (const range_bounds &l, const range_bounds &r);
738
739 /* Compare two range_bounds objects for inequality. */
740 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
741 {
742 return !(l == r);
743 }
744
745 union type_specific
746 {
747 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
748 point to cplus_struct_default, a default static instance of a
749 struct cplus_struct_type. */
750
751 struct cplus_struct_type *cplus_stuff;
752
753 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
754 provides additional information. */
755
756 struct gnat_aux_type *gnat_stuff;
757
758 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
759 floatformat object that describes the floating-point value
760 that resides within the type. */
761
762 const struct floatformat *floatformat;
763
764 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
765
766 struct func_type *func_stuff;
767
768 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
769 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
770 is a member of. */
771
772 struct type *self_type;
773
774 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
775 values of that type. */
776 struct fixed_point_type_info *fixed_point_info;
777
778 /* * An integer-like scalar type may be stored in just part of its
779 enclosing storage bytes. This structure describes this
780 situation. */
781 struct
782 {
783 /* * The bit size of the integer. This can be 0. For integers
784 that fill their storage (the ordinary case), this field holds
785 the byte size times 8. */
786 unsigned short bit_size;
787 /* * The bit offset of the integer. This is ordinarily 0, and can
788 only be non-zero if the bit size is less than the storage
789 size. */
790 unsigned short bit_offset;
791 } int_stuff;
792 };
793
794 /* * Main structure representing a type in GDB.
795
796 This structure is space-critical. Its layout has been tweaked to
797 reduce the space used. */
798
799 struct main_type
800 {
801 /* * Code for kind of type. */
802
803 ENUM_BITFIELD(type_code) code : 8;
804
805 /* * Flags about this type. These fields appear at this location
806 because they packs nicely here. See the TYPE_* macros for
807 documentation about these fields. */
808
809 unsigned int m_flag_unsigned : 1;
810 unsigned int m_flag_nosign : 1;
811 unsigned int m_flag_stub : 1;
812 unsigned int m_flag_target_stub : 1;
813 unsigned int m_flag_prototyped : 1;
814 unsigned int m_flag_varargs : 1;
815 unsigned int m_flag_vector : 1;
816 unsigned int m_flag_stub_supported : 1;
817 unsigned int m_flag_gnu_ifunc : 1;
818 unsigned int m_flag_fixed_instance : 1;
819 unsigned int flag_objfile_owned : 1;
820 unsigned int m_flag_endianity_not_default : 1;
821
822 /* * True if this type was declared with "class" rather than
823 "struct". */
824
825 unsigned int flag_declared_class : 1;
826
827 /* * True if this is an enum type with disjoint values. This
828 affects how the enum is printed. */
829
830 unsigned int flag_flag_enum : 1;
831
832 /* * A discriminant telling us which field of the type_specific
833 union is being used for this type, if any. */
834
835 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
836
837 /* * Number of fields described for this type. This field appears
838 at this location because it packs nicely here. */
839
840 short nfields;
841
842 /* * Name of this type, or NULL if none.
843
844 This is used for printing only. For looking up a name, look for
845 a symbol in the VAR_DOMAIN. This is generally allocated in the
846 objfile's obstack. However coffread.c uses malloc. */
847
848 const char *name;
849
850 /* * Every type is now associated with a particular objfile, and the
851 type is allocated on the objfile_obstack for that objfile. One
852 problem however, is that there are times when gdb allocates new
853 types while it is not in the process of reading symbols from a
854 particular objfile. Fortunately, these happen when the type
855 being created is a derived type of an existing type, such as in
856 lookup_pointer_type(). So we can just allocate the new type
857 using the same objfile as the existing type, but to do this we
858 need a backpointer to the objfile from the existing type. Yes
859 this is somewhat ugly, but without major overhaul of the internal
860 type system, it can't be avoided for now. */
861
862 union type_owner owner;
863
864 /* * For a pointer type, describes the type of object pointed to.
865 - For an array type, describes the type of the elements.
866 - For a function or method type, describes the type of the return value.
867 - For a range type, describes the type of the full range.
868 - For a complex type, describes the type of each coordinate.
869 - For a special record or union type encoding a dynamic-sized type
870 in GNAT, a memoized pointer to a corresponding static version of
871 the type.
872 - Unused otherwise. */
873
874 struct type *target_type;
875
876 /* * For structure and union types, a description of each field.
877 For set and pascal array types, there is one "field",
878 whose type is the domain type of the set or array.
879 For range types, there are two "fields",
880 the minimum and maximum values (both inclusive).
881 For enum types, each possible value is described by one "field".
882 For a function or method type, a "field" for each parameter.
883 For C++ classes, there is one field for each base class (if it is
884 a derived class) plus one field for each class data member. Member
885 functions are recorded elsewhere.
886
887 Using a pointer to a separate array of fields
888 allows all types to have the same size, which is useful
889 because we can allocate the space for a type before
890 we know what to put in it. */
891
892 union
893 {
894 struct field *fields;
895
896 /* * Union member used for range types. */
897
898 struct range_bounds *bounds;
899
900 /* If this is a scalar type, then this is its corresponding
901 complex type. */
902 struct type *complex_type;
903
904 } flds_bnds;
905
906 /* * Slot to point to additional language-specific fields of this
907 type. */
908
909 union type_specific type_specific;
910
911 /* * Contains all dynamic type properties. */
912 struct dynamic_prop_list *dyn_prop_list;
913 };
914
915 /* * Number of bits allocated for alignment. */
916
917 #define TYPE_ALIGN_BITS 8
918
919 /* * A ``struct type'' describes a particular instance of a type, with
920 some particular qualification. */
921
922 struct type
923 {
924 /* Get the type code of this type.
925
926 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
927 type, you need to do `check_typedef (type)->code ()`. */
928 type_code code () const
929 {
930 return this->main_type->code;
931 }
932
933 /* Set the type code of this type. */
934 void set_code (type_code code)
935 {
936 this->main_type->code = code;
937 }
938
939 /* Get the name of this type. */
940 const char *name () const
941 {
942 return this->main_type->name;
943 }
944
945 /* Set the name of this type. */
946 void set_name (const char *name)
947 {
948 this->main_type->name = name;
949 }
950
951 /* Get the number of fields of this type. */
952 int num_fields () const
953 {
954 return this->main_type->nfields;
955 }
956
957 /* Set the number of fields of this type. */
958 void set_num_fields (int num_fields)
959 {
960 this->main_type->nfields = num_fields;
961 }
962
963 /* Get the fields array of this type. */
964 struct field *fields () const
965 {
966 return this->main_type->flds_bnds.fields;
967 }
968
969 /* Get the field at index IDX. */
970 struct field &field (int idx) const
971 {
972 return this->fields ()[idx];
973 }
974
975 /* Set the fields array of this type. */
976 void set_fields (struct field *fields)
977 {
978 this->main_type->flds_bnds.fields = fields;
979 }
980
981 type *index_type () const
982 {
983 return this->field (0).type ();
984 }
985
986 void set_index_type (type *index_type)
987 {
988 this->field (0).set_type (index_type);
989 }
990
991 /* Return the instance flags converted to the correct type. */
992 const type_instance_flags instance_flags () const
993 {
994 return (enum type_instance_flag_value) this->m_instance_flags;
995 }
996
997 /* Set the instance flags. */
998 void set_instance_flags (type_instance_flags flags)
999 {
1000 this->m_instance_flags = flags;
1001 }
1002
1003 /* Get the bounds bounds of this type. The type must be a range type. */
1004 range_bounds *bounds () const
1005 {
1006 switch (this->code ())
1007 {
1008 case TYPE_CODE_RANGE:
1009 return this->main_type->flds_bnds.bounds;
1010
1011 case TYPE_CODE_ARRAY:
1012 case TYPE_CODE_STRING:
1013 return this->index_type ()->bounds ();
1014
1015 default:
1016 gdb_assert_not_reached
1017 ("type::bounds called on type with invalid code");
1018 }
1019 }
1020
1021 /* Set the bounds of this type. The type must be a range type. */
1022 void set_bounds (range_bounds *bounds)
1023 {
1024 gdb_assert (this->code () == TYPE_CODE_RANGE);
1025
1026 this->main_type->flds_bnds.bounds = bounds;
1027 }
1028
1029 ULONGEST bit_stride () const
1030 {
1031 return this->bounds ()->bit_stride ();
1032 }
1033
1034 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1035 the type is signed (unless TYPE_NOSIGN is set). */
1036
1037 bool is_unsigned () const
1038 {
1039 return this->main_type->m_flag_unsigned;
1040 }
1041
1042 void set_is_unsigned (bool is_unsigned)
1043 {
1044 this->main_type->m_flag_unsigned = is_unsigned;
1045 }
1046
1047 /* No sign for this type. In C++, "char", "signed char", and
1048 "unsigned char" are distinct types; so we need an extra flag to
1049 indicate the absence of a sign! */
1050
1051 bool has_no_signedness () const
1052 {
1053 return this->main_type->m_flag_nosign;
1054 }
1055
1056 void set_has_no_signedness (bool has_no_signedness)
1057 {
1058 this->main_type->m_flag_nosign = has_no_signedness;
1059 }
1060
1061 /* This appears in a type's flags word if it is a stub type (e.g.,
1062 if someone referenced a type that wasn't defined in a source file
1063 via (struct sir_not_appearing_in_this_film *)). */
1064
1065 bool is_stub () const
1066 {
1067 return this->main_type->m_flag_stub;
1068 }
1069
1070 void set_is_stub (bool is_stub)
1071 {
1072 this->main_type->m_flag_stub = is_stub;
1073 }
1074
1075 /* The target type of this type is a stub type, and this type needs
1076 to be updated if it gets un-stubbed in check_typedef. Used for
1077 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1078 based on the TYPE_LENGTH of the target type. Also, set for
1079 TYPE_CODE_TYPEDEF. */
1080
1081 bool target_is_stub () const
1082 {
1083 return this->main_type->m_flag_target_stub;
1084 }
1085
1086 void set_target_is_stub (bool target_is_stub)
1087 {
1088 this->main_type->m_flag_target_stub = target_is_stub;
1089 }
1090
1091 /* This is a function type which appears to have a prototype. We
1092 need this for function calls in order to tell us if it's necessary
1093 to coerce the args, or to just do the standard conversions. This
1094 is used with a short field. */
1095
1096 bool is_prototyped () const
1097 {
1098 return this->main_type->m_flag_prototyped;
1099 }
1100
1101 void set_is_prototyped (bool is_prototyped)
1102 {
1103 this->main_type->m_flag_prototyped = is_prototyped;
1104 }
1105
1106 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1107 to functions. */
1108
1109 bool has_varargs () const
1110 {
1111 return this->main_type->m_flag_varargs;
1112 }
1113
1114 void set_has_varargs (bool has_varargs)
1115 {
1116 this->main_type->m_flag_varargs = has_varargs;
1117 }
1118
1119 /* Identify a vector type. Gcc is handling this by adding an extra
1120 attribute to the array type. We slurp that in as a new flag of a
1121 type. This is used only in dwarf2read.c. */
1122
1123 bool is_vector () const
1124 {
1125 return this->main_type->m_flag_vector;
1126 }
1127
1128 void set_is_vector (bool is_vector)
1129 {
1130 this->main_type->m_flag_vector = is_vector;
1131 }
1132
1133 /* This debug target supports TYPE_STUB(t). In the unsupported case
1134 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1135 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1136 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1137
1138 bool stub_is_supported () const
1139 {
1140 return this->main_type->m_flag_stub_supported;
1141 }
1142
1143 void set_stub_is_supported (bool stub_is_supported)
1144 {
1145 this->main_type->m_flag_stub_supported = stub_is_supported;
1146 }
1147
1148 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1149 address is returned by this function call. TYPE_TARGET_TYPE
1150 determines the final returned function type to be presented to
1151 user. */
1152
1153 bool is_gnu_ifunc () const
1154 {
1155 return this->main_type->m_flag_gnu_ifunc;
1156 }
1157
1158 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1159 {
1160 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1161 }
1162
1163 /* The debugging formats (especially STABS) do not contain enough
1164 information to represent all Ada types---especially those whose
1165 size depends on dynamic quantities. Therefore, the GNAT Ada
1166 compiler includes extra information in the form of additional type
1167 definitions connected by naming conventions. This flag indicates
1168 that the type is an ordinary (unencoded) GDB type that has been
1169 created from the necessary run-time information, and does not need
1170 further interpretation. Optionally marks ordinary, fixed-size GDB
1171 type. */
1172
1173 bool is_fixed_instance () const
1174 {
1175 return this->main_type->m_flag_fixed_instance;
1176 }
1177
1178 void set_is_fixed_instance (bool is_fixed_instance)
1179 {
1180 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1181 }
1182
1183 /* A compiler may supply dwarf instrumentation that indicates the desired
1184 endian interpretation of the variable differs from the native endian
1185 representation. */
1186
1187 bool endianity_is_not_default () const
1188 {
1189 return this->main_type->m_flag_endianity_not_default;
1190 }
1191
1192 void set_endianity_is_not_default (bool endianity_is_not_default)
1193 {
1194 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1195 }
1196
1197 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1198 to this type's fixed_point_info. */
1199
1200 struct fixed_point_type_info &fixed_point_info () const
1201 {
1202 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1203 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1204
1205 return *this->main_type->type_specific.fixed_point_info;
1206 }
1207
1208 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1209 fixed_point_info to INFO. */
1210
1211 void set_fixed_point_info (struct fixed_point_type_info *info) const
1212 {
1213 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1214
1215 this->main_type->type_specific.fixed_point_info = info;
1216 }
1217
1218 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1219
1220 In other words, this returns the type after having peeled all
1221 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1222 The TYPE_CODE of the type returned is guaranteed to be
1223 a TYPE_CODE_FIXED_POINT. */
1224
1225 struct type *fixed_point_type_base_type ();
1226
1227 /* * Return the dynamic property of the requested KIND from this type's
1228 list of dynamic properties. */
1229 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1230
1231 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1232 property to this type.
1233
1234 This function assumes that this type is objfile-owned. */
1235 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1236
1237 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1238 void remove_dyn_prop (dynamic_prop_node_kind kind);
1239
1240 /* * Return true if this is an integer type whose logical (bit) size
1241 differs from its storage size; false otherwise. Always return
1242 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1243 bool bit_size_differs_p () const
1244 {
1245 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1246 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1247 }
1248
1249 /* * Return the logical (bit) size for this integer type. Only
1250 valid for integer (TYPE_SPECIFIC_INT) types. */
1251 unsigned short bit_size () const
1252 {
1253 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1254 return main_type->type_specific.int_stuff.bit_size;
1255 }
1256
1257 /* * Return the bit offset for this integer type. Only valid for
1258 integer (TYPE_SPECIFIC_INT) types. */
1259 unsigned short bit_offset () const
1260 {
1261 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1262 return main_type->type_specific.int_stuff.bit_offset;
1263 }
1264
1265 /* * Type that is a pointer to this type.
1266 NULL if no such pointer-to type is known yet.
1267 The debugger may add the address of such a type
1268 if it has to construct one later. */
1269
1270 struct type *pointer_type;
1271
1272 /* * C++: also need a reference type. */
1273
1274 struct type *reference_type;
1275
1276 /* * A C++ rvalue reference type added in C++11. */
1277
1278 struct type *rvalue_reference_type;
1279
1280 /* * Variant chain. This points to a type that differs from this
1281 one only in qualifiers and length. Currently, the possible
1282 qualifiers are const, volatile, code-space, data-space, and
1283 address class. The length may differ only when one of the
1284 address class flags are set. The variants are linked in a
1285 circular ring and share MAIN_TYPE. */
1286
1287 struct type *chain;
1288
1289 /* * The alignment for this type. Zero means that the alignment was
1290 not specified in the debug info. Note that this is stored in a
1291 funny way: as the log base 2 (plus 1) of the alignment; so a
1292 value of 1 means the alignment is 1, and a value of 9 means the
1293 alignment is 256. */
1294
1295 unsigned align_log2 : TYPE_ALIGN_BITS;
1296
1297 /* * Flags specific to this instance of the type, indicating where
1298 on the ring we are.
1299
1300 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1301 binary or-ed with the target type, with a special case for
1302 address class and space class. For example if this typedef does
1303 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1304 instance flags are completely inherited from the target type. No
1305 qualifiers can be cleared by the typedef. See also
1306 check_typedef. */
1307 unsigned m_instance_flags : 9;
1308
1309 /* * Length of storage for a value of this type. The value is the
1310 expression in host bytes of what sizeof(type) would return. This
1311 size includes padding. For example, an i386 extended-precision
1312 floating point value really only occupies ten bytes, but most
1313 ABI's declare its size to be 12 bytes, to preserve alignment.
1314 A `struct type' representing such a floating-point type would
1315 have a `length' value of 12, even though the last two bytes are
1316 unused.
1317
1318 Since this field is expressed in host bytes, its value is appropriate
1319 to pass to memcpy and such (it is assumed that GDB itself always runs
1320 on an 8-bits addressable architecture). However, when using it for
1321 target address arithmetic (e.g. adding it to a target address), the
1322 type_length_units function should be used in order to get the length
1323 expressed in target addressable memory units. */
1324
1325 ULONGEST length;
1326
1327 /* * Core type, shared by a group of qualified types. */
1328
1329 struct main_type *main_type;
1330 };
1331
1332 struct fn_fieldlist
1333 {
1334
1335 /* * The overloaded name.
1336 This is generally allocated in the objfile's obstack.
1337 However stabsread.c sometimes uses malloc. */
1338
1339 const char *name;
1340
1341 /* * The number of methods with this name. */
1342
1343 int length;
1344
1345 /* * The list of methods. */
1346
1347 struct fn_field *fn_fields;
1348 };
1349
1350
1351
1352 struct fn_field
1353 {
1354 /* * If is_stub is clear, this is the mangled name which we can look
1355 up to find the address of the method (FIXME: it would be cleaner
1356 to have a pointer to the struct symbol here instead).
1357
1358 If is_stub is set, this is the portion of the mangled name which
1359 specifies the arguments. For example, "ii", if there are two int
1360 arguments, or "" if there are no arguments. See gdb_mangle_name
1361 for the conversion from this format to the one used if is_stub is
1362 clear. */
1363
1364 const char *physname;
1365
1366 /* * The function type for the method.
1367
1368 (This comment used to say "The return value of the method", but
1369 that's wrong. The function type is expected here, i.e. something
1370 with TYPE_CODE_METHOD, and *not* the return-value type). */
1371
1372 struct type *type;
1373
1374 /* * For virtual functions. First baseclass that defines this
1375 virtual function. */
1376
1377 struct type *fcontext;
1378
1379 /* Attributes. */
1380
1381 unsigned int is_const:1;
1382 unsigned int is_volatile:1;
1383 unsigned int is_private:1;
1384 unsigned int is_protected:1;
1385 unsigned int is_artificial:1;
1386
1387 /* * A stub method only has some fields valid (but they are enough
1388 to reconstruct the rest of the fields). */
1389
1390 unsigned int is_stub:1;
1391
1392 /* * True if this function is a constructor, false otherwise. */
1393
1394 unsigned int is_constructor : 1;
1395
1396 /* * True if this function is deleted, false otherwise. */
1397
1398 unsigned int is_deleted : 1;
1399
1400 /* * DW_AT_defaulted attribute for this function. The value is one
1401 of the DW_DEFAULTED constants. */
1402
1403 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1404
1405 /* * Unused. */
1406
1407 unsigned int dummy:6;
1408
1409 /* * Index into that baseclass's virtual function table, minus 2;
1410 else if static: VOFFSET_STATIC; else: 0. */
1411
1412 unsigned int voffset:16;
1413
1414 #define VOFFSET_STATIC 1
1415
1416 };
1417
1418 struct decl_field
1419 {
1420 /* * Unqualified name to be prefixed by owning class qualified
1421 name. */
1422
1423 const char *name;
1424
1425 /* * Type this typedef named NAME represents. */
1426
1427 struct type *type;
1428
1429 /* * True if this field was declared protected, false otherwise. */
1430 unsigned int is_protected : 1;
1431
1432 /* * True if this field was declared private, false otherwise. */
1433 unsigned int is_private : 1;
1434 };
1435
1436 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1437 TYPE_CODE_UNION nodes. */
1438
1439 struct cplus_struct_type
1440 {
1441 /* * Number of base classes this type derives from. The
1442 baseclasses are stored in the first N_BASECLASSES fields
1443 (i.e. the `fields' field of the struct type). The only fields
1444 of struct field that are used are: type, name, loc.bitpos. */
1445
1446 short n_baseclasses;
1447
1448 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1449 All access to this field must be through TYPE_VPTR_FIELDNO as one
1450 thing it does is check whether the field has been initialized.
1451 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1452 which for portability reasons doesn't initialize this field.
1453 TYPE_VPTR_FIELDNO returns -1 for this case.
1454
1455 If -1, we were unable to find the virtual function table pointer in
1456 initial symbol reading, and get_vptr_fieldno should be called to find
1457 it if possible. get_vptr_fieldno will update this field if possible.
1458 Otherwise the value is left at -1.
1459
1460 Unused if this type does not have virtual functions. */
1461
1462 short vptr_fieldno;
1463
1464 /* * Number of methods with unique names. All overloaded methods
1465 with the same name count only once. */
1466
1467 short nfn_fields;
1468
1469 /* * Number of template arguments. */
1470
1471 unsigned short n_template_arguments;
1472
1473 /* * One if this struct is a dynamic class, as defined by the
1474 Itanium C++ ABI: if it requires a virtual table pointer,
1475 because it or any of its base classes have one or more virtual
1476 member functions or virtual base classes. Minus one if not
1477 dynamic. Zero if not yet computed. */
1478
1479 int is_dynamic : 2;
1480
1481 /* * The calling convention for this type, fetched from the
1482 DW_AT_calling_convention attribute. The value is one of the
1483 DW_CC constants. */
1484
1485 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1486
1487 /* * The base class which defined the virtual function table pointer. */
1488
1489 struct type *vptr_basetype;
1490
1491 /* * For derived classes, the number of base classes is given by
1492 n_baseclasses and virtual_field_bits is a bit vector containing
1493 one bit per base class. If the base class is virtual, the
1494 corresponding bit will be set.
1495 I.E, given:
1496
1497 class A{};
1498 class B{};
1499 class C : public B, public virtual A {};
1500
1501 B is a baseclass of C; A is a virtual baseclass for C.
1502 This is a C++ 2.0 language feature. */
1503
1504 B_TYPE *virtual_field_bits;
1505
1506 /* * For classes with private fields, the number of fields is
1507 given by nfields and private_field_bits is a bit vector
1508 containing one bit per field.
1509
1510 If the field is private, the corresponding bit will be set. */
1511
1512 B_TYPE *private_field_bits;
1513
1514 /* * For classes with protected fields, the number of fields is
1515 given by nfields and protected_field_bits is a bit vector
1516 containing one bit per field.
1517
1518 If the field is private, the corresponding bit will be set. */
1519
1520 B_TYPE *protected_field_bits;
1521
1522 /* * For classes with fields to be ignored, either this is
1523 optimized out or this field has length 0. */
1524
1525 B_TYPE *ignore_field_bits;
1526
1527 /* * For classes, structures, and unions, a description of each
1528 field, which consists of an overloaded name, followed by the
1529 types of arguments that the method expects, and then the name
1530 after it has been renamed to make it distinct.
1531
1532 fn_fieldlists points to an array of nfn_fields of these. */
1533
1534 struct fn_fieldlist *fn_fieldlists;
1535
1536 /* * typedefs defined inside this class. typedef_field points to
1537 an array of typedef_field_count elements. */
1538
1539 struct decl_field *typedef_field;
1540
1541 unsigned typedef_field_count;
1542
1543 /* * The nested types defined by this type. nested_types points to
1544 an array of nested_types_count elements. */
1545
1546 struct decl_field *nested_types;
1547
1548 unsigned nested_types_count;
1549
1550 /* * The template arguments. This is an array with
1551 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1552 classes. */
1553
1554 struct symbol **template_arguments;
1555 };
1556
1557 /* * Struct used to store conversion rankings. */
1558
1559 struct rank
1560 {
1561 short rank;
1562
1563 /* * When two conversions are of the same type and therefore have
1564 the same rank, subrank is used to differentiate the two.
1565
1566 Eg: Two derived-class-pointer to base-class-pointer conversions
1567 would both have base pointer conversion rank, but the
1568 conversion with the shorter distance to the ancestor is
1569 preferable. 'subrank' would be used to reflect that. */
1570
1571 short subrank;
1572 };
1573
1574 /* * Used for ranking a function for overload resolution. */
1575
1576 typedef std::vector<rank> badness_vector;
1577
1578 /* * GNAT Ada-specific information for various Ada types. */
1579
1580 struct gnat_aux_type
1581 {
1582 /* * Parallel type used to encode information about dynamic types
1583 used in Ada (such as variant records, variable-size array,
1584 etc). */
1585 struct type* descriptive_type;
1586 };
1587
1588 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1589
1590 struct func_type
1591 {
1592 /* * The calling convention for targets supporting multiple ABIs.
1593 Right now this is only fetched from the Dwarf-2
1594 DW_AT_calling_convention attribute. The value is one of the
1595 DW_CC constants. */
1596
1597 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1598
1599 /* * Whether this function normally returns to its caller. It is
1600 set from the DW_AT_noreturn attribute if set on the
1601 DW_TAG_subprogram. */
1602
1603 unsigned int is_noreturn : 1;
1604
1605 /* * Only those DW_TAG_call_site's in this function that have
1606 DW_AT_call_tail_call set are linked in this list. Function
1607 without its tail call list complete
1608 (DW_AT_call_all_tail_calls or its superset
1609 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1610 DW_TAG_call_site's exist in such function. */
1611
1612 struct call_site *tail_call_list;
1613
1614 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1615 contains the method. */
1616
1617 struct type *self_type;
1618 };
1619
1620 /* struct call_site_parameter can be referenced in callees by several ways. */
1621
1622 enum call_site_parameter_kind
1623 {
1624 /* * Use field call_site_parameter.u.dwarf_reg. */
1625 CALL_SITE_PARAMETER_DWARF_REG,
1626
1627 /* * Use field call_site_parameter.u.fb_offset. */
1628 CALL_SITE_PARAMETER_FB_OFFSET,
1629
1630 /* * Use field call_site_parameter.u.param_offset. */
1631 CALL_SITE_PARAMETER_PARAM_OFFSET
1632 };
1633
1634 struct call_site_target
1635 {
1636 union field_location loc;
1637
1638 /* * Discriminant for union field_location. */
1639
1640 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1641 };
1642
1643 union call_site_parameter_u
1644 {
1645 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1646 as DWARF register number, for register passed
1647 parameters. */
1648
1649 int dwarf_reg;
1650
1651 /* * Offset from the callee's frame base, for stack passed
1652 parameters. This equals offset from the caller's stack
1653 pointer. */
1654
1655 CORE_ADDR fb_offset;
1656
1657 /* * Offset relative to the start of this PER_CU to
1658 DW_TAG_formal_parameter which is referenced by both
1659 caller and the callee. */
1660
1661 cu_offset param_cu_off;
1662 };
1663
1664 struct call_site_parameter
1665 {
1666 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1667
1668 union call_site_parameter_u u;
1669
1670 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1671
1672 const gdb_byte *value;
1673 size_t value_size;
1674
1675 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1676 It may be NULL if not provided by DWARF. */
1677
1678 const gdb_byte *data_value;
1679 size_t data_value_size;
1680 };
1681
1682 /* * A place where a function gets called from, represented by
1683 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1684
1685 struct call_site
1686 {
1687 /* * Address of the first instruction after this call. It must be
1688 the first field as we overload core_addr_hash and core_addr_eq
1689 for it. */
1690
1691 CORE_ADDR pc;
1692
1693 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1694
1695 struct call_site *tail_call_next;
1696
1697 /* * Describe DW_AT_call_target. Missing attribute uses
1698 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1699
1700 struct call_site_target target;
1701
1702 /* * Size of the PARAMETER array. */
1703
1704 unsigned parameter_count;
1705
1706 /* * CU of the function where the call is located. It gets used
1707 for DWARF blocks execution in the parameter array below. */
1708
1709 dwarf2_per_cu_data *per_cu;
1710
1711 /* objfile of the function where the call is located. */
1712
1713 dwarf2_per_objfile *per_objfile;
1714
1715 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1716
1717 struct call_site_parameter parameter[1];
1718 };
1719
1720 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1721
1722 struct fixed_point_type_info
1723 {
1724 /* The fixed point type's scaling factor. */
1725 gdb_mpq scaling_factor;
1726 };
1727
1728 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1729 static structure. */
1730
1731 extern const struct cplus_struct_type cplus_struct_default;
1732
1733 extern void allocate_cplus_struct_type (struct type *);
1734
1735 #define INIT_CPLUS_SPECIFIC(type) \
1736 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1737 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1738 &cplus_struct_default)
1739
1740 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1741
1742 #define HAVE_CPLUS_STRUCT(type) \
1743 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1744 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1745
1746 #define INIT_NONE_SPECIFIC(type) \
1747 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1748 TYPE_MAIN_TYPE (type)->type_specific = {})
1749
1750 extern const struct gnat_aux_type gnat_aux_default;
1751
1752 extern void allocate_gnat_aux_type (struct type *);
1753
1754 #define INIT_GNAT_SPECIFIC(type) \
1755 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1756 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1757 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1758 /* * A macro that returns non-zero if the type-specific data should be
1759 read as "gnat-stuff". */
1760 #define HAVE_GNAT_AUX_INFO(type) \
1761 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1762
1763 /* * True if TYPE is known to be an Ada type of some kind. */
1764 #define ADA_TYPE_P(type) \
1765 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1766 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1767 && (type)->is_fixed_instance ()))
1768
1769 #define INIT_FUNC_SPECIFIC(type) \
1770 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1771 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1772 TYPE_ZALLOC (type, \
1773 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1774
1775 /* "struct fixed_point_type_info" has a field that has a destructor.
1776 See allocate_fixed_point_type_info to understand how this is
1777 handled. */
1778 #define INIT_FIXED_POINT_SPECIFIC(type) \
1779 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1780 allocate_fixed_point_type_info (type))
1781
1782 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1783 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1784 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1785 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1786 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1787 #define TYPE_CHAIN(thistype) (thistype)->chain
1788 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1789 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1790 so you only have to call check_typedef once. Since allocate_value
1791 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1792 #define TYPE_LENGTH(thistype) (thistype)->length
1793
1794 /* * Return the alignment of the type in target addressable memory
1795 units, or 0 if no alignment was specified. */
1796 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1797
1798 /* * Return the alignment of the type in target addressable memory
1799 units, or 0 if no alignment was specified. */
1800 extern unsigned type_raw_align (struct type *);
1801
1802 /* * Return the alignment of the type in target addressable memory
1803 units. Return 0 if the alignment cannot be determined; but note
1804 that this makes an effort to compute the alignment even it it was
1805 not specified in the debug info. */
1806 extern unsigned type_align (struct type *);
1807
1808 /* * Set the alignment of the type. The alignment must be a power of
1809 2. Returns false if the given value does not fit in the available
1810 space in struct type. */
1811 extern bool set_type_align (struct type *, ULONGEST);
1812
1813 /* Property accessors for the type data location. */
1814 #define TYPE_DATA_LOCATION(thistype) \
1815 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1816 #define TYPE_DATA_LOCATION_BATON(thistype) \
1817 TYPE_DATA_LOCATION (thistype)->data.baton
1818 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1819 (TYPE_DATA_LOCATION (thistype)->const_val ())
1820 #define TYPE_DATA_LOCATION_KIND(thistype) \
1821 (TYPE_DATA_LOCATION (thistype)->kind ())
1822 #define TYPE_DYNAMIC_LENGTH(thistype) \
1823 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1824
1825 /* Property accessors for the type allocated/associated. */
1826 #define TYPE_ALLOCATED_PROP(thistype) \
1827 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1828 #define TYPE_ASSOCIATED_PROP(thistype) \
1829 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1830
1831 /* C++ */
1832
1833 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1834 /* Do not call this, use TYPE_SELF_TYPE. */
1835 extern struct type *internal_type_self_type (struct type *);
1836 extern void set_type_self_type (struct type *, struct type *);
1837
1838 extern int internal_type_vptr_fieldno (struct type *);
1839 extern void set_type_vptr_fieldno (struct type *, int);
1840 extern struct type *internal_type_vptr_basetype (struct type *);
1841 extern void set_type_vptr_basetype (struct type *, struct type *);
1842 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1843 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1844
1845 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1846 #define TYPE_SPECIFIC_FIELD(thistype) \
1847 TYPE_MAIN_TYPE(thistype)->type_specific_field
1848 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1849 where we're trying to print an Ada array using the C language.
1850 In that case, there is no "cplus_stuff", but the C language assumes
1851 that there is. What we do, in that case, is pretend that there is
1852 an implicit one which is the default cplus stuff. */
1853 #define TYPE_CPLUS_SPECIFIC(thistype) \
1854 (!HAVE_CPLUS_STRUCT(thistype) \
1855 ? (struct cplus_struct_type*)&cplus_struct_default \
1856 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1857 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1858 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1859 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1860 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1861 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1862 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1863 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1864 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1865 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1866 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1867 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1868 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1869 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1870 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1871 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1872 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1873
1874 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1875 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1876 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1877
1878 #define FIELD_NAME(thisfld) ((thisfld).name)
1879 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1880 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1881 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1882 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1883 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1884 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1885 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1886 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1887 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1888 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1889 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1890 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1891 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1892 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1893 #define SET_FIELD_PHYSNAME(thisfld, name) \
1894 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1895 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1896 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1897 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1898 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1899 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1900 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1901 FIELD_DWARF_BLOCK (thisfld) = (addr))
1902 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1903 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1904
1905 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1906 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1907 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1908 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1909 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1910 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1911 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1912 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1913 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1914 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1915
1916 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1917 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1918 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1919 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1920 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1921 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1922 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1923 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1924 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1925 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1926 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1927 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1928 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1929 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1930 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1931 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1932 #define TYPE_FIELD_PRIVATE(thistype, n) \
1933 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1934 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1935 #define TYPE_FIELD_PROTECTED(thistype, n) \
1936 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1937 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1938 #define TYPE_FIELD_IGNORE(thistype, n) \
1939 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1940 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1941 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1942 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1943 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1944
1945 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1946 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1947 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1948 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1949 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1950
1951 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1952 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1953 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1954 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1955 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1956 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1957
1958 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1959 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1960 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1961 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1962 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1963 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1964 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1965 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1966 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1967 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1968 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1969 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1970 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1971 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1972 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1973 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1974 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1975
1976 /* Accessors for typedefs defined by a class. */
1977 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1978 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1979 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1980 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1981 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1982 TYPE_TYPEDEF_FIELD (thistype, n).name
1983 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1984 TYPE_TYPEDEF_FIELD (thistype, n).type
1985 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1986 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1987 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1988 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1989 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1990 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1991
1992 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1993 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1994 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1995 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1996 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1997 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1998 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1999 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2000 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2001 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2002 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2003 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2004 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2005 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2006
2007 #define TYPE_IS_OPAQUE(thistype) \
2008 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2009 || ((thistype)->code () == TYPE_CODE_UNION)) \
2010 && ((thistype)->num_fields () == 0) \
2011 && (!HAVE_CPLUS_STRUCT (thistype) \
2012 || TYPE_NFN_FIELDS (thistype) == 0) \
2013 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2014
2015 /* * A helper macro that returns the name of a type or "unnamed type"
2016 if the type has no name. */
2017
2018 #define TYPE_SAFE_NAME(type) \
2019 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2020
2021 /* * A helper macro that returns the name of an error type. If the
2022 type has a name, it is used; otherwise, a default is used. */
2023
2024 #define TYPE_ERROR_NAME(type) \
2025 (type->name () ? type->name () : _("<error type>"))
2026
2027 /* Given TYPE, return its floatformat. */
2028 const struct floatformat *floatformat_from_type (const struct type *type);
2029
2030 struct builtin_type
2031 {
2032 /* Integral types. */
2033
2034 /* Implicit size/sign (based on the architecture's ABI). */
2035 struct type *builtin_void;
2036 struct type *builtin_char;
2037 struct type *builtin_short;
2038 struct type *builtin_int;
2039 struct type *builtin_long;
2040 struct type *builtin_signed_char;
2041 struct type *builtin_unsigned_char;
2042 struct type *builtin_unsigned_short;
2043 struct type *builtin_unsigned_int;
2044 struct type *builtin_unsigned_long;
2045 struct type *builtin_bfloat16;
2046 struct type *builtin_half;
2047 struct type *builtin_float;
2048 struct type *builtin_double;
2049 struct type *builtin_long_double;
2050 struct type *builtin_complex;
2051 struct type *builtin_double_complex;
2052 struct type *builtin_string;
2053 struct type *builtin_bool;
2054 struct type *builtin_long_long;
2055 struct type *builtin_unsigned_long_long;
2056 struct type *builtin_decfloat;
2057 struct type *builtin_decdouble;
2058 struct type *builtin_declong;
2059
2060 /* "True" character types.
2061 We use these for the '/c' print format, because c_char is just a
2062 one-byte integral type, which languages less laid back than C
2063 will print as ... well, a one-byte integral type. */
2064 struct type *builtin_true_char;
2065 struct type *builtin_true_unsigned_char;
2066
2067 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2068 is for when an architecture needs to describe a register that has
2069 no size. */
2070 struct type *builtin_int0;
2071 struct type *builtin_int8;
2072 struct type *builtin_uint8;
2073 struct type *builtin_int16;
2074 struct type *builtin_uint16;
2075 struct type *builtin_int24;
2076 struct type *builtin_uint24;
2077 struct type *builtin_int32;
2078 struct type *builtin_uint32;
2079 struct type *builtin_int64;
2080 struct type *builtin_uint64;
2081 struct type *builtin_int128;
2082 struct type *builtin_uint128;
2083
2084 /* Wide character types. */
2085 struct type *builtin_char16;
2086 struct type *builtin_char32;
2087 struct type *builtin_wchar;
2088
2089 /* Pointer types. */
2090
2091 /* * `pointer to data' type. Some target platforms use an implicitly
2092 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2093 struct type *builtin_data_ptr;
2094
2095 /* * `pointer to function (returning void)' type. Harvard
2096 architectures mean that ABI function and code pointers are not
2097 interconvertible. Similarly, since ANSI, C standards have
2098 explicitly said that pointers to functions and pointers to data
2099 are not interconvertible --- that is, you can't cast a function
2100 pointer to void * and back, and expect to get the same value.
2101 However, all function pointer types are interconvertible, so void
2102 (*) () can server as a generic function pointer. */
2103
2104 struct type *builtin_func_ptr;
2105
2106 /* * `function returning pointer to function (returning void)' type.
2107 The final void return type is not significant for it. */
2108
2109 struct type *builtin_func_func;
2110
2111 /* Special-purpose types. */
2112
2113 /* * This type is used to represent a GDB internal function. */
2114
2115 struct type *internal_fn;
2116
2117 /* * This type is used to represent an xmethod. */
2118 struct type *xmethod;
2119 };
2120
2121 /* * Return the type table for the specified architecture. */
2122
2123 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2124
2125 /* * Per-objfile types used by symbol readers. */
2126
2127 struct objfile_type
2128 {
2129 /* Basic types based on the objfile architecture. */
2130 struct type *builtin_void;
2131 struct type *builtin_char;
2132 struct type *builtin_short;
2133 struct type *builtin_int;
2134 struct type *builtin_long;
2135 struct type *builtin_long_long;
2136 struct type *builtin_signed_char;
2137 struct type *builtin_unsigned_char;
2138 struct type *builtin_unsigned_short;
2139 struct type *builtin_unsigned_int;
2140 struct type *builtin_unsigned_long;
2141 struct type *builtin_unsigned_long_long;
2142 struct type *builtin_half;
2143 struct type *builtin_float;
2144 struct type *builtin_double;
2145 struct type *builtin_long_double;
2146
2147 /* * This type is used to represent symbol addresses. */
2148 struct type *builtin_core_addr;
2149
2150 /* * This type represents a type that was unrecognized in symbol
2151 read-in. */
2152 struct type *builtin_error;
2153
2154 /* * Types used for symbols with no debug information. */
2155 struct type *nodebug_text_symbol;
2156 struct type *nodebug_text_gnu_ifunc_symbol;
2157 struct type *nodebug_got_plt_symbol;
2158 struct type *nodebug_data_symbol;
2159 struct type *nodebug_unknown_symbol;
2160 struct type *nodebug_tls_symbol;
2161 };
2162
2163 /* * Return the type table for the specified objfile. */
2164
2165 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2166
2167 /* Explicit floating-point formats. See "floatformat.h". */
2168 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2169 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2170 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2171 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2172 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2173 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2174 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2175 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2176 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2177 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2178 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2179 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2180 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2181
2182 /* Allocate space for storing data associated with a particular
2183 type. We ensure that the space is allocated using the same
2184 mechanism that was used to allocate the space for the type
2185 structure itself. I.e. if the type is on an objfile's
2186 objfile_obstack, then the space for data associated with that type
2187 will also be allocated on the objfile_obstack. If the type is
2188 associated with a gdbarch, then the space for data associated with that
2189 type will also be allocated on the gdbarch_obstack.
2190
2191 If a type is not associated with neither an objfile or a gdbarch then
2192 you should not use this macro to allocate space for data, instead you
2193 should call xmalloc directly, and ensure the memory is correctly freed
2194 when it is no longer needed. */
2195
2196 #define TYPE_ALLOC(t,size) \
2197 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2198 ? &TYPE_OBJFILE (t)->objfile_obstack \
2199 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2200 size))
2201
2202
2203 /* See comment on TYPE_ALLOC. */
2204
2205 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2206
2207 /* Use alloc_type to allocate a type owned by an objfile. Use
2208 alloc_type_arch to allocate a type owned by an architecture. Use
2209 alloc_type_copy to allocate a type with the same owner as a
2210 pre-existing template type, no matter whether objfile or
2211 gdbarch. */
2212 extern struct type *alloc_type (struct objfile *);
2213 extern struct type *alloc_type_arch (struct gdbarch *);
2214 extern struct type *alloc_type_copy (const struct type *);
2215
2216 /* * Return the type's architecture. For types owned by an
2217 architecture, that architecture is returned. For types owned by an
2218 objfile, that objfile's architecture is returned. */
2219
2220 extern struct gdbarch *get_type_arch (const struct type *);
2221
2222 /* * This returns the target type (or NULL) of TYPE, also skipping
2223 past typedefs. */
2224
2225 extern struct type *get_target_type (struct type *type);
2226
2227 /* Return the equivalent of TYPE_LENGTH, but in number of target
2228 addressable memory units of the associated gdbarch instead of bytes. */
2229
2230 extern unsigned int type_length_units (struct type *type);
2231
2232 /* * Helper function to construct objfile-owned types. */
2233
2234 extern struct type *init_type (struct objfile *, enum type_code, int,
2235 const char *);
2236 extern struct type *init_integer_type (struct objfile *, int, int,
2237 const char *);
2238 extern struct type *init_character_type (struct objfile *, int, int,
2239 const char *);
2240 extern struct type *init_boolean_type (struct objfile *, int, int,
2241 const char *);
2242 extern struct type *init_float_type (struct objfile *, int, const char *,
2243 const struct floatformat **,
2244 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2245 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2246 extern struct type *init_complex_type (const char *, struct type *);
2247 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2248 struct type *);
2249 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2250 const char *);
2251
2252 /* Helper functions to construct architecture-owned types. */
2253 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2254 const char *);
2255 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2256 const char *);
2257 extern struct type *arch_character_type (struct gdbarch *, int, int,
2258 const char *);
2259 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2260 const char *);
2261 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2262 const struct floatformat **);
2263 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2264 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2265 struct type *);
2266
2267 /* Helper functions to construct a struct or record type. An
2268 initially empty type is created using arch_composite_type().
2269 Fields are then added using append_composite_type_field*(). A union
2270 type has its size set to the largest field. A struct type has each
2271 field packed against the previous. */
2272
2273 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2274 const char *name, enum type_code code);
2275 extern void append_composite_type_field (struct type *t, const char *name,
2276 struct type *field);
2277 extern void append_composite_type_field_aligned (struct type *t,
2278 const char *name,
2279 struct type *field,
2280 int alignment);
2281 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2282 struct type *field);
2283
2284 /* Helper functions to construct a bit flags type. An initially empty
2285 type is created using arch_flag_type(). Flags are then added using
2286 append_flag_type_field() and append_flag_type_flag(). */
2287 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2288 const char *name, int bit);
2289 extern void append_flags_type_field (struct type *type,
2290 int start_bitpos, int nr_bits,
2291 struct type *field_type, const char *name);
2292 extern void append_flags_type_flag (struct type *type, int bitpos,
2293 const char *name);
2294
2295 extern void make_vector_type (struct type *array_type);
2296 extern struct type *init_vector_type (struct type *elt_type, int n);
2297
2298 extern struct type *lookup_reference_type (struct type *, enum type_code);
2299 extern struct type *lookup_lvalue_reference_type (struct type *);
2300 extern struct type *lookup_rvalue_reference_type (struct type *);
2301
2302
2303 extern struct type *make_reference_type (struct type *, struct type **,
2304 enum type_code);
2305
2306 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2307
2308 extern struct type *make_restrict_type (struct type *);
2309
2310 extern struct type *make_unqualified_type (struct type *);
2311
2312 extern struct type *make_atomic_type (struct type *);
2313
2314 extern void replace_type (struct type *, struct type *);
2315
2316 extern type_instance_flags address_space_name_to_type_instance_flags
2317 (struct gdbarch *, const char *);
2318
2319 extern const char *address_space_type_instance_flags_to_name
2320 (struct gdbarch *, type_instance_flags);
2321
2322 extern struct type *make_type_with_address_space
2323 (struct type *type, type_instance_flags space_identifier);
2324
2325 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2326
2327 extern struct type *lookup_methodptr_type (struct type *);
2328
2329 extern void smash_to_method_type (struct type *type, struct type *self_type,
2330 struct type *to_type, struct field *args,
2331 int nargs, int varargs);
2332
2333 extern void smash_to_memberptr_type (struct type *, struct type *,
2334 struct type *);
2335
2336 extern void smash_to_methodptr_type (struct type *, struct type *);
2337
2338 extern struct type *allocate_stub_method (struct type *);
2339
2340 extern const char *type_name_or_error (struct type *type);
2341
2342 struct struct_elt
2343 {
2344 /* The field of the element, or NULL if no element was found. */
2345 struct field *field;
2346
2347 /* The bit offset of the element in the parent structure. */
2348 LONGEST offset;
2349 };
2350
2351 /* Given a type TYPE, lookup the field and offset of the component named
2352 NAME.
2353
2354 TYPE can be either a struct or union, or a pointer or reference to
2355 a struct or union. If it is a pointer or reference, its target
2356 type is automatically used. Thus '.' and '->' are interchangable,
2357 as specified for the definitions of the expression element types
2358 STRUCTOP_STRUCT and STRUCTOP_PTR.
2359
2360 If NOERR is nonzero, the returned structure will have field set to
2361 NULL if there is no component named NAME.
2362
2363 If the component NAME is a field in an anonymous substructure of
2364 TYPE, the returned offset is a "global" offset relative to TYPE
2365 rather than an offset within the substructure. */
2366
2367 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2368
2369 /* Given a type TYPE, lookup the type of the component named NAME.
2370
2371 TYPE can be either a struct or union, or a pointer or reference to
2372 a struct or union. If it is a pointer or reference, its target
2373 type is automatically used. Thus '.' and '->' are interchangable,
2374 as specified for the definitions of the expression element types
2375 STRUCTOP_STRUCT and STRUCTOP_PTR.
2376
2377 If NOERR is nonzero, return NULL if there is no component named
2378 NAME. */
2379
2380 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2381
2382 extern struct type *make_pointer_type (struct type *, struct type **);
2383
2384 extern struct type *lookup_pointer_type (struct type *);
2385
2386 extern struct type *make_function_type (struct type *, struct type **);
2387
2388 extern struct type *lookup_function_type (struct type *);
2389
2390 extern struct type *lookup_function_type_with_arguments (struct type *,
2391 int,
2392 struct type **);
2393
2394 extern struct type *create_static_range_type (struct type *, struct type *,
2395 LONGEST, LONGEST);
2396
2397
2398 extern struct type *create_array_type_with_stride
2399 (struct type *, struct type *, struct type *,
2400 struct dynamic_prop *, unsigned int);
2401
2402 extern struct type *create_range_type (struct type *, struct type *,
2403 const struct dynamic_prop *,
2404 const struct dynamic_prop *,
2405 LONGEST);
2406
2407 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2408 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2409 stride. */
2410
2411 extern struct type * create_range_type_with_stride
2412 (struct type *result_type, struct type *index_type,
2413 const struct dynamic_prop *low_bound,
2414 const struct dynamic_prop *high_bound, LONGEST bias,
2415 const struct dynamic_prop *stride, bool byte_stride_p);
2416
2417 extern struct type *create_array_type (struct type *, struct type *,
2418 struct type *);
2419
2420 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2421
2422 extern struct type *create_string_type (struct type *, struct type *,
2423 struct type *);
2424 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2425
2426 extern struct type *create_set_type (struct type *, struct type *);
2427
2428 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2429 const char *);
2430
2431 extern struct type *lookup_signed_typename (const struct language_defn *,
2432 const char *);
2433
2434 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2435
2436 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2437
2438 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2439 ADDR specifies the location of the variable the type is bound to.
2440 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2441 static properties is returned. */
2442 extern struct type *resolve_dynamic_type
2443 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2444 CORE_ADDR addr);
2445
2446 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2447 extern int is_dynamic_type (struct type *type);
2448
2449 extern struct type *check_typedef (struct type *);
2450
2451 extern void check_stub_method_group (struct type *, int);
2452
2453 extern char *gdb_mangle_name (struct type *, int, int);
2454
2455 extern struct type *lookup_typename (const struct language_defn *,
2456 const char *, const struct block *, int);
2457
2458 extern struct type *lookup_template_type (const char *, struct type *,
2459 const struct block *);
2460
2461 extern int get_vptr_fieldno (struct type *, struct type **);
2462
2463 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2464
2465 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2466 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2467 Save the high bound into HIGH_BOUND if not NULL.
2468
2469 Return true if the operation was successful. Return false otherwise,
2470 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2471
2472 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2473 LONGEST *high_bound);
2474
2475 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2476
2477 extern int class_types_same_p (const struct type *, const struct type *);
2478
2479 extern int is_ancestor (struct type *, struct type *);
2480
2481 extern int is_public_ancestor (struct type *, struct type *);
2482
2483 extern int is_unique_ancestor (struct type *, struct value *);
2484
2485 /* Overload resolution */
2486
2487 /* * Badness if parameter list length doesn't match arg list length. */
2488 extern const struct rank LENGTH_MISMATCH_BADNESS;
2489
2490 /* * Dummy badness value for nonexistent parameter positions. */
2491 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2492 /* * Badness if no conversion among types. */
2493 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2494
2495 /* * Badness of an exact match. */
2496 extern const struct rank EXACT_MATCH_BADNESS;
2497
2498 /* * Badness of integral promotion. */
2499 extern const struct rank INTEGER_PROMOTION_BADNESS;
2500 /* * Badness of floating promotion. */
2501 extern const struct rank FLOAT_PROMOTION_BADNESS;
2502 /* * Badness of converting a derived class pointer
2503 to a base class pointer. */
2504 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2505 /* * Badness of integral conversion. */
2506 extern const struct rank INTEGER_CONVERSION_BADNESS;
2507 /* * Badness of floating conversion. */
2508 extern const struct rank FLOAT_CONVERSION_BADNESS;
2509 /* * Badness of integer<->floating conversions. */
2510 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2511 /* * Badness of conversion of pointer to void pointer. */
2512 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2513 /* * Badness of conversion to boolean. */
2514 extern const struct rank BOOL_CONVERSION_BADNESS;
2515 /* * Badness of converting derived to base class. */
2516 extern const struct rank BASE_CONVERSION_BADNESS;
2517 /* * Badness of converting from non-reference to reference. Subrank
2518 is the type of reference conversion being done. */
2519 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2520 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2521 /* * Conversion to rvalue reference. */
2522 #define REFERENCE_CONVERSION_RVALUE 1
2523 /* * Conversion to const lvalue reference. */
2524 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2525
2526 /* * Badness of converting integer 0 to NULL pointer. */
2527 extern const struct rank NULL_POINTER_CONVERSION;
2528 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2529 being done. */
2530 extern const struct rank CV_CONVERSION_BADNESS;
2531 #define CV_CONVERSION_CONST 1
2532 #define CV_CONVERSION_VOLATILE 2
2533
2534 /* Non-standard conversions allowed by the debugger */
2535
2536 /* * Converting a pointer to an int is usually OK. */
2537 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2538
2539 /* * Badness of converting a (non-zero) integer constant
2540 to a pointer. */
2541 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2542
2543 extern struct rank sum_ranks (struct rank a, struct rank b);
2544 extern int compare_ranks (struct rank a, struct rank b);
2545
2546 extern int compare_badness (const badness_vector &,
2547 const badness_vector &);
2548
2549 extern badness_vector rank_function (gdb::array_view<type *> parms,
2550 gdb::array_view<value *> args);
2551
2552 extern struct rank rank_one_type (struct type *, struct type *,
2553 struct value *);
2554
2555 extern void recursive_dump_type (struct type *, int);
2556
2557 extern int field_is_static (struct field *);
2558
2559 /* printcmd.c */
2560
2561 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2562 const struct value_print_options *,
2563 int, struct ui_file *);
2564
2565 extern int can_dereference (struct type *);
2566
2567 extern int is_integral_type (struct type *);
2568
2569 extern int is_floating_type (struct type *);
2570
2571 extern int is_scalar_type (struct type *type);
2572
2573 extern int is_scalar_type_recursive (struct type *);
2574
2575 extern int class_or_union_p (const struct type *);
2576
2577 extern void maintenance_print_type (const char *, int);
2578
2579 extern htab_up create_copied_types_hash (struct objfile *objfile);
2580
2581 extern struct type *copy_type_recursive (struct objfile *objfile,
2582 struct type *type,
2583 htab_t copied_types);
2584
2585 extern struct type *copy_type (const struct type *type);
2586
2587 extern bool types_equal (struct type *, struct type *);
2588
2589 extern bool types_deeply_equal (struct type *, struct type *);
2590
2591 extern int type_not_allocated (const struct type *type);
2592
2593 extern int type_not_associated (const struct type *type);
2594
2595 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2596 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2597 extern bool is_fixed_point_type (struct type *type);
2598
2599 /* Given TYPE, which is a fixed point type, return its scaling factor. */
2600 extern const gdb_mpq &fixed_point_scaling_factor (struct type *type);
2601
2602 /* Allocate a fixed-point type info for TYPE. This should only be
2603 called by INIT_FIXED_POINT_SPECIFIC. */
2604 extern void allocate_fixed_point_type_info (struct type *type);
2605
2606 /* * When the type includes explicit byte ordering, return that.
2607 Otherwise, the byte ordering from gdbarch_byte_order for
2608 get_type_arch is returned. */
2609
2610 extern enum bfd_endian type_byte_order (const struct type *type);
2611
2612 /* A flag to enable printing of debugging information of C++
2613 overloading. */
2614
2615 extern unsigned int overload_debug;
2616
2617 #endif /* GDBTYPES_H */