gdb: remove TYPE_TARGET_STUB
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * This is a function type which appears to have a prototype. We
220 need this for function calls in order to tell us if it's necessary
221 to coerce the args, or to just do the standard conversions. This
222 is used with a short field. */
223
224 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
225
226 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
227 to functions. */
228
229 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
230
231 /* * Identify a vector type. Gcc is handling this by adding an extra
232 attribute to the array type. We slurp that in as a new flag of a
233 type. This is used only in dwarf2read.c. */
234 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
235
236 /* * The debugging formats (especially STABS) do not contain enough
237 information to represent all Ada types---especially those whose
238 size depends on dynamic quantities. Therefore, the GNAT Ada
239 compiler includes extra information in the form of additional type
240 definitions connected by naming conventions. This flag indicates
241 that the type is an ordinary (unencoded) GDB type that has been
242 created from the necessary run-time information, and does not need
243 further interpretation. Optionally marks ordinary, fixed-size GDB
244 type. */
245
246 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
247
248 /* * This debug target supports TYPE_STUB(t). In the unsupported case
249 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
250 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
251 guessed the TYPE_STUB(t) value (see dwarfread.c). */
252
253 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
254
255 /* * Not textual. By default, GDB treats all single byte integers as
256 characters (or elements of strings) unless this flag is set. */
257
258 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
259
260 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
261 address is returned by this function call. TYPE_TARGET_TYPE
262 determines the final returned function type to be presented to
263 user. */
264
265 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
266
267 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
268 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
269 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
270
271 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
272 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
273 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
274
275 /* * True if this type was declared using the "class" keyword. This is
276 only valid for C++ structure and enum types. If false, a structure
277 was declared as a "struct"; if true it was declared "class". For
278 enum types, this is true when "enum class" or "enum struct" was
279 used to declare the type.. */
280
281 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
282
283 /* * True if this type is a "flag" enum. A flag enum is one where all
284 the values are pairwise disjoint when "and"ed together. This
285 affects how enum values are printed. */
286
287 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
288
289 /* * Constant type. If this is set, the corresponding type has a
290 const modifier. */
291
292 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
293
294 /* * Volatile type. If this is set, the corresponding type has a
295 volatile modifier. */
296
297 #define TYPE_VOLATILE(t) \
298 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
299
300 /* * Restrict type. If this is set, the corresponding type has a
301 restrict modifier. */
302
303 #define TYPE_RESTRICT(t) \
304 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
305
306 /* * Atomic type. If this is set, the corresponding type has an
307 _Atomic modifier. */
308
309 #define TYPE_ATOMIC(t) \
310 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
311
312 /* * True if this type represents either an lvalue or lvalue reference type. */
313
314 #define TYPE_IS_REFERENCE(t) \
315 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
316
317 /* * True if this type is allocatable. */
318 #define TYPE_IS_ALLOCATABLE(t) \
319 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
320
321 /* * True if this type has variant parts. */
322 #define TYPE_HAS_VARIANT_PARTS(t) \
323 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
324
325 /* * True if this type has a dynamic length. */
326 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
327 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
328
329 /* * Instruction-space delimited type. This is for Harvard architectures
330 which have separate instruction and data address spaces (and perhaps
331 others).
332
333 GDB usually defines a flat address space that is a superset of the
334 architecture's two (or more) address spaces, but this is an extension
335 of the architecture's model.
336
337 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
338 resides in instruction memory, even if its address (in the extended
339 flat address space) does not reflect this.
340
341 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
342 corresponding type resides in the data memory space, even if
343 this is not indicated by its (flat address space) address.
344
345 If neither flag is set, the default space for functions / methods
346 is instruction space, and for data objects is data memory. */
347
348 #define TYPE_CODE_SPACE(t) \
349 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
350
351 #define TYPE_DATA_SPACE(t) \
352 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
353
354 /* * Address class flags. Some environments provide for pointers
355 whose size is different from that of a normal pointer or address
356 types where the bits are interpreted differently than normal
357 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
358 target specific ways to represent these different types of address
359 classes. */
360
361 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
362 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
363 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
364 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
365 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
366 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
367 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
368 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
369
370 /* * Information about a single discriminant. */
371
372 struct discriminant_range
373 {
374 /* * The range of values for the variant. This is an inclusive
375 range. */
376 ULONGEST low, high;
377
378 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
379 is true if this should be an unsigned comparison; false for
380 signed. */
381 bool contains (ULONGEST value, bool is_unsigned) const
382 {
383 if (is_unsigned)
384 return value >= low && value <= high;
385 LONGEST valuel = (LONGEST) value;
386 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
387 }
388 };
389
390 struct variant_part;
391
392 /* * A single variant. A variant has a list of discriminant values.
393 When the discriminator matches one of these, the variant is
394 enabled. Each variant controls zero or more fields; and may also
395 control other variant parts as well. This struct corresponds to
396 DW_TAG_variant in DWARF. */
397
398 struct variant : allocate_on_obstack
399 {
400 /* * The discriminant ranges for this variant. */
401 gdb::array_view<discriminant_range> discriminants;
402
403 /* * The fields controlled by this variant. This is inclusive on
404 the low end and exclusive on the high end. A variant may not
405 control any fields, in which case the two values will be equal.
406 These are indexes into the type's array of fields. */
407 int first_field;
408 int last_field;
409
410 /* * Variant parts controlled by this variant. */
411 gdb::array_view<variant_part> parts;
412
413 /* * Return true if this is the default variant. The default
414 variant can be recognized because it has no associated
415 discriminants. */
416 bool is_default () const
417 {
418 return discriminants.empty ();
419 }
420
421 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
422 if this should be an unsigned comparison; false for signed. */
423 bool matches (ULONGEST value, bool is_unsigned) const;
424 };
425
426 /* * A variant part. Each variant part has an optional discriminant
427 and holds an array of variants. This struct corresponds to
428 DW_TAG_variant_part in DWARF. */
429
430 struct variant_part : allocate_on_obstack
431 {
432 /* * The index of the discriminant field in the outer type. This is
433 an index into the type's array of fields. If this is -1, there
434 is no discriminant, and only the default variant can be
435 considered to be selected. */
436 int discriminant_index;
437
438 /* * True if this discriminant is unsigned; false if signed. This
439 comes from the type of the discriminant. */
440 bool is_unsigned;
441
442 /* * The variants that are controlled by this variant part. Note
443 that these will always be sorted by field number. */
444 gdb::array_view<variant> variants;
445 };
446
447
448 enum dynamic_prop_kind
449 {
450 PROP_UNDEFINED, /* Not defined. */
451 PROP_CONST, /* Constant. */
452 PROP_ADDR_OFFSET, /* Address offset. */
453 PROP_LOCEXPR, /* Location expression. */
454 PROP_LOCLIST, /* Location list. */
455 PROP_VARIANT_PARTS, /* Variant parts. */
456 PROP_TYPE, /* Type. */
457 };
458
459 union dynamic_prop_data
460 {
461 /* Storage for constant property. */
462
463 LONGEST const_val;
464
465 /* Storage for dynamic property. */
466
467 void *baton;
468
469 /* Storage of variant parts for a type. A type with variant parts
470 has all its fields "linearized" -- stored in a single field
471 array, just as if they had all been declared that way. The
472 variant parts are attached via a dynamic property, and then are
473 used to control which fields end up in the final type during
474 dynamic type resolution. */
475
476 const gdb::array_view<variant_part> *variant_parts;
477
478 /* Once a variant type is resolved, we may want to be able to go
479 from the resolved type to the original type. In this case we
480 rewrite the property's kind and set this field. */
481
482 struct type *original_type;
483 };
484
485 /* * Used to store a dynamic property. */
486
487 struct dynamic_prop
488 {
489 dynamic_prop_kind kind () const
490 {
491 return m_kind;
492 }
493
494 void set_undefined ()
495 {
496 m_kind = PROP_UNDEFINED;
497 }
498
499 LONGEST const_val () const
500 {
501 gdb_assert (m_kind == PROP_CONST);
502
503 return m_data.const_val;
504 }
505
506 void set_const_val (LONGEST const_val)
507 {
508 m_kind = PROP_CONST;
509 m_data.const_val = const_val;
510 }
511
512 void *baton () const
513 {
514 gdb_assert (m_kind == PROP_LOCEXPR
515 || m_kind == PROP_LOCLIST
516 || m_kind == PROP_ADDR_OFFSET);
517
518 return m_data.baton;
519 }
520
521 void set_locexpr (void *baton)
522 {
523 m_kind = PROP_LOCEXPR;
524 m_data.baton = baton;
525 }
526
527 void set_loclist (void *baton)
528 {
529 m_kind = PROP_LOCLIST;
530 m_data.baton = baton;
531 }
532
533 void set_addr_offset (void *baton)
534 {
535 m_kind = PROP_ADDR_OFFSET;
536 m_data.baton = baton;
537 }
538
539 const gdb::array_view<variant_part> *variant_parts () const
540 {
541 gdb_assert (m_kind == PROP_VARIANT_PARTS);
542
543 return m_data.variant_parts;
544 }
545
546 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
547 {
548 m_kind = PROP_VARIANT_PARTS;
549 m_data.variant_parts = variant_parts;
550 }
551
552 struct type *original_type () const
553 {
554 gdb_assert (m_kind == PROP_TYPE);
555
556 return m_data.original_type;
557 }
558
559 void set_original_type (struct type *original_type)
560 {
561 m_kind = PROP_TYPE;
562 m_data.original_type = original_type;
563 }
564
565 /* Determine which field of the union dynamic_prop.data is used. */
566 enum dynamic_prop_kind m_kind;
567
568 /* Storage for dynamic or static value. */
569 union dynamic_prop_data m_data;
570 };
571
572 /* Compare two dynamic_prop objects for equality. dynamic_prop
573 instances are equal iff they have the same type and storage. */
574 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
575
576 /* Compare two dynamic_prop objects for inequality. */
577 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
578 {
579 return !(l == r);
580 }
581
582 /* * Define a type's dynamic property node kind. */
583 enum dynamic_prop_node_kind
584 {
585 /* A property providing a type's data location.
586 Evaluating this field yields to the location of an object's data. */
587 DYN_PROP_DATA_LOCATION,
588
589 /* A property representing DW_AT_allocated. The presence of this attribute
590 indicates that the object of the type can be allocated/deallocated. */
591 DYN_PROP_ALLOCATED,
592
593 /* A property representing DW_AT_associated. The presence of this attribute
594 indicated that the object of the type can be associated. */
595 DYN_PROP_ASSOCIATED,
596
597 /* A property providing an array's byte stride. */
598 DYN_PROP_BYTE_STRIDE,
599
600 /* A property holding variant parts. */
601 DYN_PROP_VARIANT_PARTS,
602
603 /* A property holding the size of the type. */
604 DYN_PROP_BYTE_SIZE,
605 };
606
607 /* * List for dynamic type attributes. */
608 struct dynamic_prop_list
609 {
610 /* The kind of dynamic prop in this node. */
611 enum dynamic_prop_node_kind prop_kind;
612
613 /* The dynamic property itself. */
614 struct dynamic_prop prop;
615
616 /* A pointer to the next dynamic property. */
617 struct dynamic_prop_list *next;
618 };
619
620 /* * Determine which field of the union main_type.fields[x].loc is
621 used. */
622
623 enum field_loc_kind
624 {
625 FIELD_LOC_KIND_BITPOS, /**< bitpos */
626 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
627 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
628 FIELD_LOC_KIND_PHYSNAME, /**< physname */
629 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
630 };
631
632 /* * A discriminant to determine which field in the
633 main_type.type_specific union is being used, if any.
634
635 For types such as TYPE_CODE_FLT, the use of this
636 discriminant is really redundant, as we know from the type code
637 which field is going to be used. As such, it would be possible to
638 reduce the size of this enum in order to save a bit or two for
639 other fields of struct main_type. But, since we still have extra
640 room , and for the sake of clarity and consistency, we treat all fields
641 of the union the same way. */
642
643 enum type_specific_kind
644 {
645 TYPE_SPECIFIC_NONE,
646 TYPE_SPECIFIC_CPLUS_STUFF,
647 TYPE_SPECIFIC_GNAT_STUFF,
648 TYPE_SPECIFIC_FLOATFORMAT,
649 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
650 TYPE_SPECIFIC_FUNC,
651 TYPE_SPECIFIC_SELF_TYPE
652 };
653
654 union type_owner
655 {
656 struct objfile *objfile;
657 struct gdbarch *gdbarch;
658 };
659
660 union field_location
661 {
662 /* * Position of this field, counting in bits from start of
663 containing structure. For big-endian targets, it is the bit
664 offset to the MSB. For little-endian targets, it is the bit
665 offset to the LSB. */
666
667 LONGEST bitpos;
668
669 /* * Enum value. */
670 LONGEST enumval;
671
672 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
673 physaddr is the location (in the target) of the static
674 field. Otherwise, physname is the mangled label of the
675 static field. */
676
677 CORE_ADDR physaddr;
678 const char *physname;
679
680 /* * The field location can be computed by evaluating the
681 following DWARF block. Its DATA is allocated on
682 objfile_obstack - no CU load is needed to access it. */
683
684 struct dwarf2_locexpr_baton *dwarf_block;
685 };
686
687 struct field
688 {
689 struct type *type () const
690 {
691 return this->m_type;
692 }
693
694 void set_type (struct type *type)
695 {
696 this->m_type = type;
697 }
698
699 union field_location loc;
700
701 /* * For a function or member type, this is 1 if the argument is
702 marked artificial. Artificial arguments should not be shown
703 to the user. For TYPE_CODE_RANGE it is set if the specific
704 bound is not defined. */
705
706 unsigned int artificial : 1;
707
708 /* * Discriminant for union field_location. */
709
710 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
711
712 /* * Size of this field, in bits, or zero if not packed.
713 If non-zero in an array type, indicates the element size in
714 bits (used only in Ada at the moment).
715 For an unpacked field, the field's type's length
716 says how many bytes the field occupies. */
717
718 unsigned int bitsize : 28;
719
720 /* * In a struct or union type, type of this field.
721 - In a function or member type, type of this argument.
722 - In an array type, the domain-type of the array. */
723
724 struct type *m_type;
725
726 /* * Name of field, value or argument.
727 NULL for range bounds, array domains, and member function
728 arguments. */
729
730 const char *name;
731 };
732
733 struct range_bounds
734 {
735 ULONGEST bit_stride () const
736 {
737 if (this->flag_is_byte_stride)
738 return this->stride.const_val () * 8;
739 else
740 return this->stride.const_val ();
741 }
742
743 /* * Low bound of range. */
744
745 struct dynamic_prop low;
746
747 /* * High bound of range. */
748
749 struct dynamic_prop high;
750
751 /* The stride value for this range. This can be stored in bits or bytes
752 based on the value of BYTE_STRIDE_P. It is optional to have a stride
753 value, if this range has no stride value defined then this will be set
754 to the constant zero. */
755
756 struct dynamic_prop stride;
757
758 /* * The bias. Sometimes a range value is biased before storage.
759 The bias is added to the stored bits to form the true value. */
760
761 LONGEST bias;
762
763 /* True if HIGH range bound contains the number of elements in the
764 subrange. This affects how the final high bound is computed. */
765
766 unsigned int flag_upper_bound_is_count : 1;
767
768 /* True if LOW or/and HIGH are resolved into a static bound from
769 a dynamic one. */
770
771 unsigned int flag_bound_evaluated : 1;
772
773 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
774
775 unsigned int flag_is_byte_stride : 1;
776 };
777
778 /* Compare two range_bounds objects for equality. Simply does
779 memberwise comparison. */
780 extern bool operator== (const range_bounds &l, const range_bounds &r);
781
782 /* Compare two range_bounds objects for inequality. */
783 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
784 {
785 return !(l == r);
786 }
787
788 union type_specific
789 {
790 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
791 point to cplus_struct_default, a default static instance of a
792 struct cplus_struct_type. */
793
794 struct cplus_struct_type *cplus_stuff;
795
796 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
797 provides additional information. */
798
799 struct gnat_aux_type *gnat_stuff;
800
801 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
802 floatformat object that describes the floating-point value
803 that resides within the type. */
804
805 const struct floatformat *floatformat;
806
807 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
808
809 struct func_type *func_stuff;
810
811 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
812 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
813 is a member of. */
814
815 struct type *self_type;
816 };
817
818 /* * Main structure representing a type in GDB.
819
820 This structure is space-critical. Its layout has been tweaked to
821 reduce the space used. */
822
823 struct main_type
824 {
825 /* * Code for kind of type. */
826
827 ENUM_BITFIELD(type_code) code : 8;
828
829 /* * Flags about this type. These fields appear at this location
830 because they packs nicely here. See the TYPE_* macros for
831 documentation about these fields. */
832
833 unsigned int m_flag_unsigned : 1;
834 unsigned int m_flag_nosign : 1;
835 unsigned int m_flag_stub : 1;
836 unsigned int m_flag_target_stub : 1;
837 unsigned int flag_prototyped : 1;
838 unsigned int flag_varargs : 1;
839 unsigned int flag_vector : 1;
840 unsigned int flag_stub_supported : 1;
841 unsigned int flag_gnu_ifunc : 1;
842 unsigned int flag_fixed_instance : 1;
843 unsigned int flag_objfile_owned : 1;
844 unsigned int flag_endianity_not_default : 1;
845
846 /* * True if this type was declared with "class" rather than
847 "struct". */
848
849 unsigned int flag_declared_class : 1;
850
851 /* * True if this is an enum type with disjoint values. This
852 affects how the enum is printed. */
853
854 unsigned int flag_flag_enum : 1;
855
856 /* * A discriminant telling us which field of the type_specific
857 union is being used for this type, if any. */
858
859 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
860
861 /* * Number of fields described for this type. This field appears
862 at this location because it packs nicely here. */
863
864 short nfields;
865
866 /* * Name of this type, or NULL if none.
867
868 This is used for printing only. For looking up a name, look for
869 a symbol in the VAR_DOMAIN. This is generally allocated in the
870 objfile's obstack. However coffread.c uses malloc. */
871
872 const char *name;
873
874 /* * Every type is now associated with a particular objfile, and the
875 type is allocated on the objfile_obstack for that objfile. One
876 problem however, is that there are times when gdb allocates new
877 types while it is not in the process of reading symbols from a
878 particular objfile. Fortunately, these happen when the type
879 being created is a derived type of an existing type, such as in
880 lookup_pointer_type(). So we can just allocate the new type
881 using the same objfile as the existing type, but to do this we
882 need a backpointer to the objfile from the existing type. Yes
883 this is somewhat ugly, but without major overhaul of the internal
884 type system, it can't be avoided for now. */
885
886 union type_owner owner;
887
888 /* * For a pointer type, describes the type of object pointed to.
889 - For an array type, describes the type of the elements.
890 - For a function or method type, describes the type of the return value.
891 - For a range type, describes the type of the full range.
892 - For a complex type, describes the type of each coordinate.
893 - For a special record or union type encoding a dynamic-sized type
894 in GNAT, a memoized pointer to a corresponding static version of
895 the type.
896 - Unused otherwise. */
897
898 struct type *target_type;
899
900 /* * For structure and union types, a description of each field.
901 For set and pascal array types, there is one "field",
902 whose type is the domain type of the set or array.
903 For range types, there are two "fields",
904 the minimum and maximum values (both inclusive).
905 For enum types, each possible value is described by one "field".
906 For a function or method type, a "field" for each parameter.
907 For C++ classes, there is one field for each base class (if it is
908 a derived class) plus one field for each class data member. Member
909 functions are recorded elsewhere.
910
911 Using a pointer to a separate array of fields
912 allows all types to have the same size, which is useful
913 because we can allocate the space for a type before
914 we know what to put in it. */
915
916 union
917 {
918 struct field *fields;
919
920 /* * Union member used for range types. */
921
922 struct range_bounds *bounds;
923
924 /* If this is a scalar type, then this is its corresponding
925 complex type. */
926 struct type *complex_type;
927
928 } flds_bnds;
929
930 /* * Slot to point to additional language-specific fields of this
931 type. */
932
933 union type_specific type_specific;
934
935 /* * Contains all dynamic type properties. */
936 struct dynamic_prop_list *dyn_prop_list;
937 };
938
939 /* * Number of bits allocated for alignment. */
940
941 #define TYPE_ALIGN_BITS 8
942
943 /* * A ``struct type'' describes a particular instance of a type, with
944 some particular qualification. */
945
946 struct type
947 {
948 /* Get the type code of this type.
949
950 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
951 type, you need to do `check_typedef (type)->code ()`. */
952 type_code code () const
953 {
954 return this->main_type->code;
955 }
956
957 /* Set the type code of this type. */
958 void set_code (type_code code)
959 {
960 this->main_type->code = code;
961 }
962
963 /* Get the name of this type. */
964 const char *name () const
965 {
966 return this->main_type->name;
967 }
968
969 /* Set the name of this type. */
970 void set_name (const char *name)
971 {
972 this->main_type->name = name;
973 }
974
975 /* Get the number of fields of this type. */
976 int num_fields () const
977 {
978 return this->main_type->nfields;
979 }
980
981 /* Set the number of fields of this type. */
982 void set_num_fields (int num_fields)
983 {
984 this->main_type->nfields = num_fields;
985 }
986
987 /* Get the fields array of this type. */
988 struct field *fields () const
989 {
990 return this->main_type->flds_bnds.fields;
991 }
992
993 /* Get the field at index IDX. */
994 struct field &field (int idx) const
995 {
996 return this->fields ()[idx];
997 }
998
999 /* Set the fields array of this type. */
1000 void set_fields (struct field *fields)
1001 {
1002 this->main_type->flds_bnds.fields = fields;
1003 }
1004
1005 type *index_type () const
1006 {
1007 return this->field (0).type ();
1008 }
1009
1010 void set_index_type (type *index_type)
1011 {
1012 this->field (0).set_type (index_type);
1013 }
1014
1015 /* Get the bounds bounds of this type. The type must be a range type. */
1016 range_bounds *bounds () const
1017 {
1018 switch (this->code ())
1019 {
1020 case TYPE_CODE_RANGE:
1021 return this->main_type->flds_bnds.bounds;
1022
1023 case TYPE_CODE_ARRAY:
1024 case TYPE_CODE_STRING:
1025 return this->index_type ()->bounds ();
1026
1027 default:
1028 gdb_assert_not_reached
1029 ("type::bounds called on type with invalid code");
1030 }
1031 }
1032
1033 /* Set the bounds of this type. The type must be a range type. */
1034 void set_bounds (range_bounds *bounds)
1035 {
1036 gdb_assert (this->code () == TYPE_CODE_RANGE);
1037
1038 this->main_type->flds_bnds.bounds = bounds;
1039 }
1040
1041 ULONGEST bit_stride () const
1042 {
1043 return this->bounds ()->bit_stride ();
1044 }
1045
1046 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1047 the type is signed (unless TYPE_NOSIGN is set). */
1048
1049 bool is_unsigned () const
1050 {
1051 return this->main_type->m_flag_unsigned;
1052 }
1053
1054 void set_is_unsigned (bool is_unsigned)
1055 {
1056 this->main_type->m_flag_unsigned = is_unsigned;
1057 }
1058
1059 /* No sign for this type. In C++, "char", "signed char", and
1060 "unsigned char" are distinct types; so we need an extra flag to
1061 indicate the absence of a sign! */
1062
1063 bool has_no_signedness () const
1064 {
1065 return this->main_type->m_flag_nosign;
1066 }
1067
1068 void set_has_no_signedness (bool has_no_signedness)
1069 {
1070 this->main_type->m_flag_nosign = has_no_signedness;
1071 }
1072
1073 /* This appears in a type's flags word if it is a stub type (e.g.,
1074 if someone referenced a type that wasn't defined in a source file
1075 via (struct sir_not_appearing_in_this_film *)). */
1076
1077 bool is_stub () const
1078 {
1079 return this->main_type->m_flag_stub;
1080 }
1081
1082 void set_is_stub (bool is_stub)
1083 {
1084 this->main_type->m_flag_stub = is_stub;
1085 }
1086
1087 /* The target type of this type is a stub type, and this type needs
1088 to be updated if it gets un-stubbed in check_typedef. Used for
1089 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1090 based on the TYPE_LENGTH of the target type. Also, set for
1091 TYPE_CODE_TYPEDEF. */
1092
1093 bool target_is_stub () const
1094 {
1095 return this->main_type->m_flag_target_stub;
1096 }
1097
1098 void set_target_is_stub (bool target_is_stub)
1099 {
1100 this->main_type->m_flag_target_stub = target_is_stub;
1101 }
1102
1103 /* * Return the dynamic property of the requested KIND from this type's
1104 list of dynamic properties. */
1105 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1106
1107 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1108 property to this type.
1109
1110 This function assumes that this type is objfile-owned. */
1111 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1112
1113 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1114 void remove_dyn_prop (dynamic_prop_node_kind kind);
1115
1116 /* * Type that is a pointer to this type.
1117 NULL if no such pointer-to type is known yet.
1118 The debugger may add the address of such a type
1119 if it has to construct one later. */
1120
1121 struct type *pointer_type;
1122
1123 /* * C++: also need a reference type. */
1124
1125 struct type *reference_type;
1126
1127 /* * A C++ rvalue reference type added in C++11. */
1128
1129 struct type *rvalue_reference_type;
1130
1131 /* * Variant chain. This points to a type that differs from this
1132 one only in qualifiers and length. Currently, the possible
1133 qualifiers are const, volatile, code-space, data-space, and
1134 address class. The length may differ only when one of the
1135 address class flags are set. The variants are linked in a
1136 circular ring and share MAIN_TYPE. */
1137
1138 struct type *chain;
1139
1140 /* * The alignment for this type. Zero means that the alignment was
1141 not specified in the debug info. Note that this is stored in a
1142 funny way: as the log base 2 (plus 1) of the alignment; so a
1143 value of 1 means the alignment is 1, and a value of 9 means the
1144 alignment is 256. */
1145
1146 unsigned align_log2 : TYPE_ALIGN_BITS;
1147
1148 /* * Flags specific to this instance of the type, indicating where
1149 on the ring we are.
1150
1151 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1152 binary or-ed with the target type, with a special case for
1153 address class and space class. For example if this typedef does
1154 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1155 instance flags are completely inherited from the target type. No
1156 qualifiers can be cleared by the typedef. See also
1157 check_typedef. */
1158 unsigned instance_flags : 9;
1159
1160 /* * Length of storage for a value of this type. The value is the
1161 expression in host bytes of what sizeof(type) would return. This
1162 size includes padding. For example, an i386 extended-precision
1163 floating point value really only occupies ten bytes, but most
1164 ABI's declare its size to be 12 bytes, to preserve alignment.
1165 A `struct type' representing such a floating-point type would
1166 have a `length' value of 12, even though the last two bytes are
1167 unused.
1168
1169 Since this field is expressed in host bytes, its value is appropriate
1170 to pass to memcpy and such (it is assumed that GDB itself always runs
1171 on an 8-bits addressable architecture). However, when using it for
1172 target address arithmetic (e.g. adding it to a target address), the
1173 type_length_units function should be used in order to get the length
1174 expressed in target addressable memory units. */
1175
1176 ULONGEST length;
1177
1178 /* * Core type, shared by a group of qualified types. */
1179
1180 struct main_type *main_type;
1181 };
1182
1183 struct fn_fieldlist
1184 {
1185
1186 /* * The overloaded name.
1187 This is generally allocated in the objfile's obstack.
1188 However stabsread.c sometimes uses malloc. */
1189
1190 const char *name;
1191
1192 /* * The number of methods with this name. */
1193
1194 int length;
1195
1196 /* * The list of methods. */
1197
1198 struct fn_field *fn_fields;
1199 };
1200
1201
1202
1203 struct fn_field
1204 {
1205 /* * If is_stub is clear, this is the mangled name which we can look
1206 up to find the address of the method (FIXME: it would be cleaner
1207 to have a pointer to the struct symbol here instead).
1208
1209 If is_stub is set, this is the portion of the mangled name which
1210 specifies the arguments. For example, "ii", if there are two int
1211 arguments, or "" if there are no arguments. See gdb_mangle_name
1212 for the conversion from this format to the one used if is_stub is
1213 clear. */
1214
1215 const char *physname;
1216
1217 /* * The function type for the method.
1218
1219 (This comment used to say "The return value of the method", but
1220 that's wrong. The function type is expected here, i.e. something
1221 with TYPE_CODE_METHOD, and *not* the return-value type). */
1222
1223 struct type *type;
1224
1225 /* * For virtual functions. First baseclass that defines this
1226 virtual function. */
1227
1228 struct type *fcontext;
1229
1230 /* Attributes. */
1231
1232 unsigned int is_const:1;
1233 unsigned int is_volatile:1;
1234 unsigned int is_private:1;
1235 unsigned int is_protected:1;
1236 unsigned int is_artificial:1;
1237
1238 /* * A stub method only has some fields valid (but they are enough
1239 to reconstruct the rest of the fields). */
1240
1241 unsigned int is_stub:1;
1242
1243 /* * True if this function is a constructor, false otherwise. */
1244
1245 unsigned int is_constructor : 1;
1246
1247 /* * True if this function is deleted, false otherwise. */
1248
1249 unsigned int is_deleted : 1;
1250
1251 /* * DW_AT_defaulted attribute for this function. The value is one
1252 of the DW_DEFAULTED constants. */
1253
1254 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1255
1256 /* * Unused. */
1257
1258 unsigned int dummy:6;
1259
1260 /* * Index into that baseclass's virtual function table, minus 2;
1261 else if static: VOFFSET_STATIC; else: 0. */
1262
1263 unsigned int voffset:16;
1264
1265 #define VOFFSET_STATIC 1
1266
1267 };
1268
1269 struct decl_field
1270 {
1271 /* * Unqualified name to be prefixed by owning class qualified
1272 name. */
1273
1274 const char *name;
1275
1276 /* * Type this typedef named NAME represents. */
1277
1278 struct type *type;
1279
1280 /* * True if this field was declared protected, false otherwise. */
1281 unsigned int is_protected : 1;
1282
1283 /* * True if this field was declared private, false otherwise. */
1284 unsigned int is_private : 1;
1285 };
1286
1287 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1288 TYPE_CODE_UNION nodes. */
1289
1290 struct cplus_struct_type
1291 {
1292 /* * Number of base classes this type derives from. The
1293 baseclasses are stored in the first N_BASECLASSES fields
1294 (i.e. the `fields' field of the struct type). The only fields
1295 of struct field that are used are: type, name, loc.bitpos. */
1296
1297 short n_baseclasses;
1298
1299 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1300 All access to this field must be through TYPE_VPTR_FIELDNO as one
1301 thing it does is check whether the field has been initialized.
1302 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1303 which for portability reasons doesn't initialize this field.
1304 TYPE_VPTR_FIELDNO returns -1 for this case.
1305
1306 If -1, we were unable to find the virtual function table pointer in
1307 initial symbol reading, and get_vptr_fieldno should be called to find
1308 it if possible. get_vptr_fieldno will update this field if possible.
1309 Otherwise the value is left at -1.
1310
1311 Unused if this type does not have virtual functions. */
1312
1313 short vptr_fieldno;
1314
1315 /* * Number of methods with unique names. All overloaded methods
1316 with the same name count only once. */
1317
1318 short nfn_fields;
1319
1320 /* * Number of template arguments. */
1321
1322 unsigned short n_template_arguments;
1323
1324 /* * One if this struct is a dynamic class, as defined by the
1325 Itanium C++ ABI: if it requires a virtual table pointer,
1326 because it or any of its base classes have one or more virtual
1327 member functions or virtual base classes. Minus one if not
1328 dynamic. Zero if not yet computed. */
1329
1330 int is_dynamic : 2;
1331
1332 /* * The calling convention for this type, fetched from the
1333 DW_AT_calling_convention attribute. The value is one of the
1334 DW_CC constants. */
1335
1336 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1337
1338 /* * The base class which defined the virtual function table pointer. */
1339
1340 struct type *vptr_basetype;
1341
1342 /* * For derived classes, the number of base classes is given by
1343 n_baseclasses and virtual_field_bits is a bit vector containing
1344 one bit per base class. If the base class is virtual, the
1345 corresponding bit will be set.
1346 I.E, given:
1347
1348 class A{};
1349 class B{};
1350 class C : public B, public virtual A {};
1351
1352 B is a baseclass of C; A is a virtual baseclass for C.
1353 This is a C++ 2.0 language feature. */
1354
1355 B_TYPE *virtual_field_bits;
1356
1357 /* * For classes with private fields, the number of fields is
1358 given by nfields and private_field_bits is a bit vector
1359 containing one bit per field.
1360
1361 If the field is private, the corresponding bit will be set. */
1362
1363 B_TYPE *private_field_bits;
1364
1365 /* * For classes with protected fields, the number of fields is
1366 given by nfields and protected_field_bits is a bit vector
1367 containing one bit per field.
1368
1369 If the field is private, the corresponding bit will be set. */
1370
1371 B_TYPE *protected_field_bits;
1372
1373 /* * For classes with fields to be ignored, either this is
1374 optimized out or this field has length 0. */
1375
1376 B_TYPE *ignore_field_bits;
1377
1378 /* * For classes, structures, and unions, a description of each
1379 field, which consists of an overloaded name, followed by the
1380 types of arguments that the method expects, and then the name
1381 after it has been renamed to make it distinct.
1382
1383 fn_fieldlists points to an array of nfn_fields of these. */
1384
1385 struct fn_fieldlist *fn_fieldlists;
1386
1387 /* * typedefs defined inside this class. typedef_field points to
1388 an array of typedef_field_count elements. */
1389
1390 struct decl_field *typedef_field;
1391
1392 unsigned typedef_field_count;
1393
1394 /* * The nested types defined by this type. nested_types points to
1395 an array of nested_types_count elements. */
1396
1397 struct decl_field *nested_types;
1398
1399 unsigned nested_types_count;
1400
1401 /* * The template arguments. This is an array with
1402 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1403 classes. */
1404
1405 struct symbol **template_arguments;
1406 };
1407
1408 /* * Struct used to store conversion rankings. */
1409
1410 struct rank
1411 {
1412 short rank;
1413
1414 /* * When two conversions are of the same type and therefore have
1415 the same rank, subrank is used to differentiate the two.
1416
1417 Eg: Two derived-class-pointer to base-class-pointer conversions
1418 would both have base pointer conversion rank, but the
1419 conversion with the shorter distance to the ancestor is
1420 preferable. 'subrank' would be used to reflect that. */
1421
1422 short subrank;
1423 };
1424
1425 /* * Used for ranking a function for overload resolution. */
1426
1427 typedef std::vector<rank> badness_vector;
1428
1429 /* * GNAT Ada-specific information for various Ada types. */
1430
1431 struct gnat_aux_type
1432 {
1433 /* * Parallel type used to encode information about dynamic types
1434 used in Ada (such as variant records, variable-size array,
1435 etc). */
1436 struct type* descriptive_type;
1437 };
1438
1439 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1440
1441 struct func_type
1442 {
1443 /* * The calling convention for targets supporting multiple ABIs.
1444 Right now this is only fetched from the Dwarf-2
1445 DW_AT_calling_convention attribute. The value is one of the
1446 DW_CC constants. */
1447
1448 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1449
1450 /* * Whether this function normally returns to its caller. It is
1451 set from the DW_AT_noreturn attribute if set on the
1452 DW_TAG_subprogram. */
1453
1454 unsigned int is_noreturn : 1;
1455
1456 /* * Only those DW_TAG_call_site's in this function that have
1457 DW_AT_call_tail_call set are linked in this list. Function
1458 without its tail call list complete
1459 (DW_AT_call_all_tail_calls or its superset
1460 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1461 DW_TAG_call_site's exist in such function. */
1462
1463 struct call_site *tail_call_list;
1464
1465 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1466 contains the method. */
1467
1468 struct type *self_type;
1469 };
1470
1471 /* struct call_site_parameter can be referenced in callees by several ways. */
1472
1473 enum call_site_parameter_kind
1474 {
1475 /* * Use field call_site_parameter.u.dwarf_reg. */
1476 CALL_SITE_PARAMETER_DWARF_REG,
1477
1478 /* * Use field call_site_parameter.u.fb_offset. */
1479 CALL_SITE_PARAMETER_FB_OFFSET,
1480
1481 /* * Use field call_site_parameter.u.param_offset. */
1482 CALL_SITE_PARAMETER_PARAM_OFFSET
1483 };
1484
1485 struct call_site_target
1486 {
1487 union field_location loc;
1488
1489 /* * Discriminant for union field_location. */
1490
1491 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1492 };
1493
1494 union call_site_parameter_u
1495 {
1496 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1497 as DWARF register number, for register passed
1498 parameters. */
1499
1500 int dwarf_reg;
1501
1502 /* * Offset from the callee's frame base, for stack passed
1503 parameters. This equals offset from the caller's stack
1504 pointer. */
1505
1506 CORE_ADDR fb_offset;
1507
1508 /* * Offset relative to the start of this PER_CU to
1509 DW_TAG_formal_parameter which is referenced by both
1510 caller and the callee. */
1511
1512 cu_offset param_cu_off;
1513 };
1514
1515 struct call_site_parameter
1516 {
1517 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1518
1519 union call_site_parameter_u u;
1520
1521 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1522
1523 const gdb_byte *value;
1524 size_t value_size;
1525
1526 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1527 It may be NULL if not provided by DWARF. */
1528
1529 const gdb_byte *data_value;
1530 size_t data_value_size;
1531 };
1532
1533 /* * A place where a function gets called from, represented by
1534 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1535
1536 struct call_site
1537 {
1538 /* * Address of the first instruction after this call. It must be
1539 the first field as we overload core_addr_hash and core_addr_eq
1540 for it. */
1541
1542 CORE_ADDR pc;
1543
1544 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1545
1546 struct call_site *tail_call_next;
1547
1548 /* * Describe DW_AT_call_target. Missing attribute uses
1549 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1550
1551 struct call_site_target target;
1552
1553 /* * Size of the PARAMETER array. */
1554
1555 unsigned parameter_count;
1556
1557 /* * CU of the function where the call is located. It gets used
1558 for DWARF blocks execution in the parameter array below. */
1559
1560 dwarf2_per_cu_data *per_cu;
1561
1562 /* objfile of the function where the call is located. */
1563
1564 dwarf2_per_objfile *per_objfile;
1565
1566 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1567
1568 struct call_site_parameter parameter[1];
1569 };
1570
1571 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1572 static structure. */
1573
1574 extern const struct cplus_struct_type cplus_struct_default;
1575
1576 extern void allocate_cplus_struct_type (struct type *);
1577
1578 #define INIT_CPLUS_SPECIFIC(type) \
1579 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1580 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1581 &cplus_struct_default)
1582
1583 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1584
1585 #define HAVE_CPLUS_STRUCT(type) \
1586 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1587 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1588
1589 #define INIT_NONE_SPECIFIC(type) \
1590 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1591 TYPE_MAIN_TYPE (type)->type_specific = {})
1592
1593 extern const struct gnat_aux_type gnat_aux_default;
1594
1595 extern void allocate_gnat_aux_type (struct type *);
1596
1597 #define INIT_GNAT_SPECIFIC(type) \
1598 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1599 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1600 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1601 /* * A macro that returns non-zero if the type-specific data should be
1602 read as "gnat-stuff". */
1603 #define HAVE_GNAT_AUX_INFO(type) \
1604 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1605
1606 /* * True if TYPE is known to be an Ada type of some kind. */
1607 #define ADA_TYPE_P(type) \
1608 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1609 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1610 && TYPE_FIXED_INSTANCE (type)))
1611
1612 #define INIT_FUNC_SPECIFIC(type) \
1613 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1614 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1615 TYPE_ZALLOC (type, \
1616 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1617
1618 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1619 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1620 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1621 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1622 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1623 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1624 #define TYPE_CHAIN(thistype) (thistype)->chain
1625 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1626 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1627 so you only have to call check_typedef once. Since allocate_value
1628 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1629 #define TYPE_LENGTH(thistype) (thistype)->length
1630
1631 /* * Return the alignment of the type in target addressable memory
1632 units, or 0 if no alignment was specified. */
1633 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1634
1635 /* * Return the alignment of the type in target addressable memory
1636 units, or 0 if no alignment was specified. */
1637 extern unsigned type_raw_align (struct type *);
1638
1639 /* * Return the alignment of the type in target addressable memory
1640 units. Return 0 if the alignment cannot be determined; but note
1641 that this makes an effort to compute the alignment even it it was
1642 not specified in the debug info. */
1643 extern unsigned type_align (struct type *);
1644
1645 /* * Set the alignment of the type. The alignment must be a power of
1646 2. Returns false if the given value does not fit in the available
1647 space in struct type. */
1648 extern bool set_type_align (struct type *, ULONGEST);
1649
1650 /* Property accessors for the type data location. */
1651 #define TYPE_DATA_LOCATION(thistype) \
1652 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1653 #define TYPE_DATA_LOCATION_BATON(thistype) \
1654 TYPE_DATA_LOCATION (thistype)->data.baton
1655 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1656 (TYPE_DATA_LOCATION (thistype)->const_val ())
1657 #define TYPE_DATA_LOCATION_KIND(thistype) \
1658 (TYPE_DATA_LOCATION (thistype)->kind ())
1659 #define TYPE_DYNAMIC_LENGTH(thistype) \
1660 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1661
1662 /* Property accessors for the type allocated/associated. */
1663 #define TYPE_ALLOCATED_PROP(thistype) \
1664 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1665 #define TYPE_ASSOCIATED_PROP(thistype) \
1666 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1667
1668 /* C++ */
1669
1670 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1671 /* Do not call this, use TYPE_SELF_TYPE. */
1672 extern struct type *internal_type_self_type (struct type *);
1673 extern void set_type_self_type (struct type *, struct type *);
1674
1675 extern int internal_type_vptr_fieldno (struct type *);
1676 extern void set_type_vptr_fieldno (struct type *, int);
1677 extern struct type *internal_type_vptr_basetype (struct type *);
1678 extern void set_type_vptr_basetype (struct type *, struct type *);
1679 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1680 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1681
1682 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1683 #define TYPE_SPECIFIC_FIELD(thistype) \
1684 TYPE_MAIN_TYPE(thistype)->type_specific_field
1685 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1686 where we're trying to print an Ada array using the C language.
1687 In that case, there is no "cplus_stuff", but the C language assumes
1688 that there is. What we do, in that case, is pretend that there is
1689 an implicit one which is the default cplus stuff. */
1690 #define TYPE_CPLUS_SPECIFIC(thistype) \
1691 (!HAVE_CPLUS_STRUCT(thistype) \
1692 ? (struct cplus_struct_type*)&cplus_struct_default \
1693 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1694 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1695 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1696 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1697 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1698 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1699 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1700 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1701 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1702 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1703 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1704 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1705 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1706 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1707 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1708 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1709 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1710
1711 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1712 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1713 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1714
1715 #define FIELD_NAME(thisfld) ((thisfld).name)
1716 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1717 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1718 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1719 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1720 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1721 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1722 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1723 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1724 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1725 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1726 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1727 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1728 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1729 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1730 #define SET_FIELD_PHYSNAME(thisfld, name) \
1731 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1732 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1733 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1734 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1735 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1736 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1737 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1738 FIELD_DWARF_BLOCK (thisfld) = (addr))
1739 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1740 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1741
1742 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1743 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1744 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1745 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1746 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1747 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1748 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1749 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1750 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1751 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1752
1753 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1754 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1755 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1756 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1757 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1758 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1759 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1760 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1761 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1762 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1763 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1764 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1765 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1766 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1767 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1768 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1769 #define TYPE_FIELD_PRIVATE(thistype, n) \
1770 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1771 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1772 #define TYPE_FIELD_PROTECTED(thistype, n) \
1773 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1774 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1775 #define TYPE_FIELD_IGNORE(thistype, n) \
1776 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1777 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1778 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1779 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1780 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1781
1782 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1783 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1784 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1785 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1786 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1787
1788 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1789 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1790 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1791 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1792 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1793 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1794
1795 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1796 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1797 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1798 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1799 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1800 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1801 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1802 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1803 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1804 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1805 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1806 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1807 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1808 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1809 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1810 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1811 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1812
1813 /* Accessors for typedefs defined by a class. */
1814 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1815 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1816 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1817 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1818 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1819 TYPE_TYPEDEF_FIELD (thistype, n).name
1820 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1821 TYPE_TYPEDEF_FIELD (thistype, n).type
1822 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1823 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1824 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1825 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1826 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1827 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1828
1829 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1830 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1831 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1832 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1833 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1834 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1835 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1836 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1837 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1838 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1839 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1840 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1841 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1842 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1843
1844 #define TYPE_IS_OPAQUE(thistype) \
1845 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1846 || ((thistype)->code () == TYPE_CODE_UNION)) \
1847 && ((thistype)->num_fields () == 0) \
1848 && (!HAVE_CPLUS_STRUCT (thistype) \
1849 || TYPE_NFN_FIELDS (thistype) == 0) \
1850 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1851
1852 /* * A helper macro that returns the name of a type or "unnamed type"
1853 if the type has no name. */
1854
1855 #define TYPE_SAFE_NAME(type) \
1856 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1857
1858 /* * A helper macro that returns the name of an error type. If the
1859 type has a name, it is used; otherwise, a default is used. */
1860
1861 #define TYPE_ERROR_NAME(type) \
1862 (type->name () ? type->name () : _("<error type>"))
1863
1864 /* Given TYPE, return its floatformat. */
1865 const struct floatformat *floatformat_from_type (const struct type *type);
1866
1867 struct builtin_type
1868 {
1869 /* Integral types. */
1870
1871 /* Implicit size/sign (based on the architecture's ABI). */
1872 struct type *builtin_void;
1873 struct type *builtin_char;
1874 struct type *builtin_short;
1875 struct type *builtin_int;
1876 struct type *builtin_long;
1877 struct type *builtin_signed_char;
1878 struct type *builtin_unsigned_char;
1879 struct type *builtin_unsigned_short;
1880 struct type *builtin_unsigned_int;
1881 struct type *builtin_unsigned_long;
1882 struct type *builtin_bfloat16;
1883 struct type *builtin_half;
1884 struct type *builtin_float;
1885 struct type *builtin_double;
1886 struct type *builtin_long_double;
1887 struct type *builtin_complex;
1888 struct type *builtin_double_complex;
1889 struct type *builtin_string;
1890 struct type *builtin_bool;
1891 struct type *builtin_long_long;
1892 struct type *builtin_unsigned_long_long;
1893 struct type *builtin_decfloat;
1894 struct type *builtin_decdouble;
1895 struct type *builtin_declong;
1896
1897 /* "True" character types.
1898 We use these for the '/c' print format, because c_char is just a
1899 one-byte integral type, which languages less laid back than C
1900 will print as ... well, a one-byte integral type. */
1901 struct type *builtin_true_char;
1902 struct type *builtin_true_unsigned_char;
1903
1904 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1905 is for when an architecture needs to describe a register that has
1906 no size. */
1907 struct type *builtin_int0;
1908 struct type *builtin_int8;
1909 struct type *builtin_uint8;
1910 struct type *builtin_int16;
1911 struct type *builtin_uint16;
1912 struct type *builtin_int24;
1913 struct type *builtin_uint24;
1914 struct type *builtin_int32;
1915 struct type *builtin_uint32;
1916 struct type *builtin_int64;
1917 struct type *builtin_uint64;
1918 struct type *builtin_int128;
1919 struct type *builtin_uint128;
1920
1921 /* Wide character types. */
1922 struct type *builtin_char16;
1923 struct type *builtin_char32;
1924 struct type *builtin_wchar;
1925
1926 /* Pointer types. */
1927
1928 /* * `pointer to data' type. Some target platforms use an implicitly
1929 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1930 struct type *builtin_data_ptr;
1931
1932 /* * `pointer to function (returning void)' type. Harvard
1933 architectures mean that ABI function and code pointers are not
1934 interconvertible. Similarly, since ANSI, C standards have
1935 explicitly said that pointers to functions and pointers to data
1936 are not interconvertible --- that is, you can't cast a function
1937 pointer to void * and back, and expect to get the same value.
1938 However, all function pointer types are interconvertible, so void
1939 (*) () can server as a generic function pointer. */
1940
1941 struct type *builtin_func_ptr;
1942
1943 /* * `function returning pointer to function (returning void)' type.
1944 The final void return type is not significant for it. */
1945
1946 struct type *builtin_func_func;
1947
1948 /* Special-purpose types. */
1949
1950 /* * This type is used to represent a GDB internal function. */
1951
1952 struct type *internal_fn;
1953
1954 /* * This type is used to represent an xmethod. */
1955 struct type *xmethod;
1956 };
1957
1958 /* * Return the type table for the specified architecture. */
1959
1960 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1961
1962 /* * Per-objfile types used by symbol readers. */
1963
1964 struct objfile_type
1965 {
1966 /* Basic types based on the objfile architecture. */
1967 struct type *builtin_void;
1968 struct type *builtin_char;
1969 struct type *builtin_short;
1970 struct type *builtin_int;
1971 struct type *builtin_long;
1972 struct type *builtin_long_long;
1973 struct type *builtin_signed_char;
1974 struct type *builtin_unsigned_char;
1975 struct type *builtin_unsigned_short;
1976 struct type *builtin_unsigned_int;
1977 struct type *builtin_unsigned_long;
1978 struct type *builtin_unsigned_long_long;
1979 struct type *builtin_half;
1980 struct type *builtin_float;
1981 struct type *builtin_double;
1982 struct type *builtin_long_double;
1983
1984 /* * This type is used to represent symbol addresses. */
1985 struct type *builtin_core_addr;
1986
1987 /* * This type represents a type that was unrecognized in symbol
1988 read-in. */
1989 struct type *builtin_error;
1990
1991 /* * Types used for symbols with no debug information. */
1992 struct type *nodebug_text_symbol;
1993 struct type *nodebug_text_gnu_ifunc_symbol;
1994 struct type *nodebug_got_plt_symbol;
1995 struct type *nodebug_data_symbol;
1996 struct type *nodebug_unknown_symbol;
1997 struct type *nodebug_tls_symbol;
1998 };
1999
2000 /* * Return the type table for the specified objfile. */
2001
2002 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2003
2004 /* Explicit floating-point formats. See "floatformat.h". */
2005 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2006 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2007 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2008 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2009 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2010 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2011 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2012 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2013 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2014 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2015 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2016 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2017 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2018
2019 /* Allocate space for storing data associated with a particular
2020 type. We ensure that the space is allocated using the same
2021 mechanism that was used to allocate the space for the type
2022 structure itself. I.e. if the type is on an objfile's
2023 objfile_obstack, then the space for data associated with that type
2024 will also be allocated on the objfile_obstack. If the type is
2025 associated with a gdbarch, then the space for data associated with that
2026 type will also be allocated on the gdbarch_obstack.
2027
2028 If a type is not associated with neither an objfile or a gdbarch then
2029 you should not use this macro to allocate space for data, instead you
2030 should call xmalloc directly, and ensure the memory is correctly freed
2031 when it is no longer needed. */
2032
2033 #define TYPE_ALLOC(t,size) \
2034 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2035 ? &TYPE_OBJFILE (t)->objfile_obstack \
2036 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2037 size))
2038
2039
2040 /* See comment on TYPE_ALLOC. */
2041
2042 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2043
2044 /* Use alloc_type to allocate a type owned by an objfile. Use
2045 alloc_type_arch to allocate a type owned by an architecture. Use
2046 alloc_type_copy to allocate a type with the same owner as a
2047 pre-existing template type, no matter whether objfile or
2048 gdbarch. */
2049 extern struct type *alloc_type (struct objfile *);
2050 extern struct type *alloc_type_arch (struct gdbarch *);
2051 extern struct type *alloc_type_copy (const struct type *);
2052
2053 /* * Return the type's architecture. For types owned by an
2054 architecture, that architecture is returned. For types owned by an
2055 objfile, that objfile's architecture is returned. */
2056
2057 extern struct gdbarch *get_type_arch (const struct type *);
2058
2059 /* * This returns the target type (or NULL) of TYPE, also skipping
2060 past typedefs. */
2061
2062 extern struct type *get_target_type (struct type *type);
2063
2064 /* Return the equivalent of TYPE_LENGTH, but in number of target
2065 addressable memory units of the associated gdbarch instead of bytes. */
2066
2067 extern unsigned int type_length_units (struct type *type);
2068
2069 /* * Helper function to construct objfile-owned types. */
2070
2071 extern struct type *init_type (struct objfile *, enum type_code, int,
2072 const char *);
2073 extern struct type *init_integer_type (struct objfile *, int, int,
2074 const char *);
2075 extern struct type *init_character_type (struct objfile *, int, int,
2076 const char *);
2077 extern struct type *init_boolean_type (struct objfile *, int, int,
2078 const char *);
2079 extern struct type *init_float_type (struct objfile *, int, const char *,
2080 const struct floatformat **,
2081 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2082 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2083 extern struct type *init_complex_type (const char *, struct type *);
2084 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2085 struct type *);
2086
2087 /* Helper functions to construct architecture-owned types. */
2088 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2089 const char *);
2090 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2091 const char *);
2092 extern struct type *arch_character_type (struct gdbarch *, int, int,
2093 const char *);
2094 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2095 const char *);
2096 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2097 const struct floatformat **);
2098 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2099 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2100 struct type *);
2101
2102 /* Helper functions to construct a struct or record type. An
2103 initially empty type is created using arch_composite_type().
2104 Fields are then added using append_composite_type_field*(). A union
2105 type has its size set to the largest field. A struct type has each
2106 field packed against the previous. */
2107
2108 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2109 const char *name, enum type_code code);
2110 extern void append_composite_type_field (struct type *t, const char *name,
2111 struct type *field);
2112 extern void append_composite_type_field_aligned (struct type *t,
2113 const char *name,
2114 struct type *field,
2115 int alignment);
2116 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2117 struct type *field);
2118
2119 /* Helper functions to construct a bit flags type. An initially empty
2120 type is created using arch_flag_type(). Flags are then added using
2121 append_flag_type_field() and append_flag_type_flag(). */
2122 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2123 const char *name, int bit);
2124 extern void append_flags_type_field (struct type *type,
2125 int start_bitpos, int nr_bits,
2126 struct type *field_type, const char *name);
2127 extern void append_flags_type_flag (struct type *type, int bitpos,
2128 const char *name);
2129
2130 extern void make_vector_type (struct type *array_type);
2131 extern struct type *init_vector_type (struct type *elt_type, int n);
2132
2133 extern struct type *lookup_reference_type (struct type *, enum type_code);
2134 extern struct type *lookup_lvalue_reference_type (struct type *);
2135 extern struct type *lookup_rvalue_reference_type (struct type *);
2136
2137
2138 extern struct type *make_reference_type (struct type *, struct type **,
2139 enum type_code);
2140
2141 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2142
2143 extern struct type *make_restrict_type (struct type *);
2144
2145 extern struct type *make_unqualified_type (struct type *);
2146
2147 extern struct type *make_atomic_type (struct type *);
2148
2149 extern void replace_type (struct type *, struct type *);
2150
2151 extern int address_space_name_to_int (struct gdbarch *, const char *);
2152
2153 extern const char *address_space_int_to_name (struct gdbarch *, int);
2154
2155 extern struct type *make_type_with_address_space (struct type *type,
2156 int space_identifier);
2157
2158 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2159
2160 extern struct type *lookup_methodptr_type (struct type *);
2161
2162 extern void smash_to_method_type (struct type *type, struct type *self_type,
2163 struct type *to_type, struct field *args,
2164 int nargs, int varargs);
2165
2166 extern void smash_to_memberptr_type (struct type *, struct type *,
2167 struct type *);
2168
2169 extern void smash_to_methodptr_type (struct type *, struct type *);
2170
2171 extern struct type *allocate_stub_method (struct type *);
2172
2173 extern const char *type_name_or_error (struct type *type);
2174
2175 struct struct_elt
2176 {
2177 /* The field of the element, or NULL if no element was found. */
2178 struct field *field;
2179
2180 /* The bit offset of the element in the parent structure. */
2181 LONGEST offset;
2182 };
2183
2184 /* Given a type TYPE, lookup the field and offset of the component named
2185 NAME.
2186
2187 TYPE can be either a struct or union, or a pointer or reference to
2188 a struct or union. If it is a pointer or reference, its target
2189 type is automatically used. Thus '.' and '->' are interchangable,
2190 as specified for the definitions of the expression element types
2191 STRUCTOP_STRUCT and STRUCTOP_PTR.
2192
2193 If NOERR is nonzero, the returned structure will have field set to
2194 NULL if there is no component named NAME.
2195
2196 If the component NAME is a field in an anonymous substructure of
2197 TYPE, the returned offset is a "global" offset relative to TYPE
2198 rather than an offset within the substructure. */
2199
2200 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2201
2202 /* Given a type TYPE, lookup the type of the component named NAME.
2203
2204 TYPE can be either a struct or union, or a pointer or reference to
2205 a struct or union. If it is a pointer or reference, its target
2206 type is automatically used. Thus '.' and '->' are interchangable,
2207 as specified for the definitions of the expression element types
2208 STRUCTOP_STRUCT and STRUCTOP_PTR.
2209
2210 If NOERR is nonzero, return NULL if there is no component named
2211 NAME. */
2212
2213 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2214
2215 extern struct type *make_pointer_type (struct type *, struct type **);
2216
2217 extern struct type *lookup_pointer_type (struct type *);
2218
2219 extern struct type *make_function_type (struct type *, struct type **);
2220
2221 extern struct type *lookup_function_type (struct type *);
2222
2223 extern struct type *lookup_function_type_with_arguments (struct type *,
2224 int,
2225 struct type **);
2226
2227 extern struct type *create_static_range_type (struct type *, struct type *,
2228 LONGEST, LONGEST);
2229
2230
2231 extern struct type *create_array_type_with_stride
2232 (struct type *, struct type *, struct type *,
2233 struct dynamic_prop *, unsigned int);
2234
2235 extern struct type *create_range_type (struct type *, struct type *,
2236 const struct dynamic_prop *,
2237 const struct dynamic_prop *,
2238 LONGEST);
2239
2240 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2241 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2242 stride. */
2243
2244 extern struct type * create_range_type_with_stride
2245 (struct type *result_type, struct type *index_type,
2246 const struct dynamic_prop *low_bound,
2247 const struct dynamic_prop *high_bound, LONGEST bias,
2248 const struct dynamic_prop *stride, bool byte_stride_p);
2249
2250 extern struct type *create_array_type (struct type *, struct type *,
2251 struct type *);
2252
2253 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2254
2255 extern struct type *create_string_type (struct type *, struct type *,
2256 struct type *);
2257 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2258
2259 extern struct type *create_set_type (struct type *, struct type *);
2260
2261 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2262 const char *);
2263
2264 extern struct type *lookup_signed_typename (const struct language_defn *,
2265 const char *);
2266
2267 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2268
2269 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2270
2271 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2272 ADDR specifies the location of the variable the type is bound to.
2273 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2274 static properties is returned. */
2275 extern struct type *resolve_dynamic_type
2276 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2277 CORE_ADDR addr);
2278
2279 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2280 extern int is_dynamic_type (struct type *type);
2281
2282 extern struct type *check_typedef (struct type *);
2283
2284 extern void check_stub_method_group (struct type *, int);
2285
2286 extern char *gdb_mangle_name (struct type *, int, int);
2287
2288 extern struct type *lookup_typename (const struct language_defn *,
2289 const char *, const struct block *, int);
2290
2291 extern struct type *lookup_template_type (const char *, struct type *,
2292 const struct block *);
2293
2294 extern int get_vptr_fieldno (struct type *, struct type **);
2295
2296 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2297
2298 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2299 LONGEST *high_bound);
2300
2301 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2302
2303 extern int class_types_same_p (const struct type *, const struct type *);
2304
2305 extern int is_ancestor (struct type *, struct type *);
2306
2307 extern int is_public_ancestor (struct type *, struct type *);
2308
2309 extern int is_unique_ancestor (struct type *, struct value *);
2310
2311 /* Overload resolution */
2312
2313 /* * Badness if parameter list length doesn't match arg list length. */
2314 extern const struct rank LENGTH_MISMATCH_BADNESS;
2315
2316 /* * Dummy badness value for nonexistent parameter positions. */
2317 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2318 /* * Badness if no conversion among types. */
2319 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2320
2321 /* * Badness of an exact match. */
2322 extern const struct rank EXACT_MATCH_BADNESS;
2323
2324 /* * Badness of integral promotion. */
2325 extern const struct rank INTEGER_PROMOTION_BADNESS;
2326 /* * Badness of floating promotion. */
2327 extern const struct rank FLOAT_PROMOTION_BADNESS;
2328 /* * Badness of converting a derived class pointer
2329 to a base class pointer. */
2330 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2331 /* * Badness of integral conversion. */
2332 extern const struct rank INTEGER_CONVERSION_BADNESS;
2333 /* * Badness of floating conversion. */
2334 extern const struct rank FLOAT_CONVERSION_BADNESS;
2335 /* * Badness of integer<->floating conversions. */
2336 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2337 /* * Badness of conversion of pointer to void pointer. */
2338 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2339 /* * Badness of conversion to boolean. */
2340 extern const struct rank BOOL_CONVERSION_BADNESS;
2341 /* * Badness of converting derived to base class. */
2342 extern const struct rank BASE_CONVERSION_BADNESS;
2343 /* * Badness of converting from non-reference to reference. Subrank
2344 is the type of reference conversion being done. */
2345 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2346 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2347 /* * Conversion to rvalue reference. */
2348 #define REFERENCE_CONVERSION_RVALUE 1
2349 /* * Conversion to const lvalue reference. */
2350 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2351
2352 /* * Badness of converting integer 0 to NULL pointer. */
2353 extern const struct rank NULL_POINTER_CONVERSION;
2354 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2355 being done. */
2356 extern const struct rank CV_CONVERSION_BADNESS;
2357 #define CV_CONVERSION_CONST 1
2358 #define CV_CONVERSION_VOLATILE 2
2359
2360 /* Non-standard conversions allowed by the debugger */
2361
2362 /* * Converting a pointer to an int is usually OK. */
2363 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2364
2365 /* * Badness of converting a (non-zero) integer constant
2366 to a pointer. */
2367 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2368
2369 extern struct rank sum_ranks (struct rank a, struct rank b);
2370 extern int compare_ranks (struct rank a, struct rank b);
2371
2372 extern int compare_badness (const badness_vector &,
2373 const badness_vector &);
2374
2375 extern badness_vector rank_function (gdb::array_view<type *> parms,
2376 gdb::array_view<value *> args);
2377
2378 extern struct rank rank_one_type (struct type *, struct type *,
2379 struct value *);
2380
2381 extern void recursive_dump_type (struct type *, int);
2382
2383 extern int field_is_static (struct field *);
2384
2385 /* printcmd.c */
2386
2387 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2388 const struct value_print_options *,
2389 int, struct ui_file *);
2390
2391 extern int can_dereference (struct type *);
2392
2393 extern int is_integral_type (struct type *);
2394
2395 extern int is_floating_type (struct type *);
2396
2397 extern int is_scalar_type (struct type *type);
2398
2399 extern int is_scalar_type_recursive (struct type *);
2400
2401 extern int class_or_union_p (const struct type *);
2402
2403 extern void maintenance_print_type (const char *, int);
2404
2405 extern htab_t create_copied_types_hash (struct objfile *objfile);
2406
2407 extern struct type *copy_type_recursive (struct objfile *objfile,
2408 struct type *type,
2409 htab_t copied_types);
2410
2411 extern struct type *copy_type (const struct type *type);
2412
2413 extern bool types_equal (struct type *, struct type *);
2414
2415 extern bool types_deeply_equal (struct type *, struct type *);
2416
2417 extern int type_not_allocated (const struct type *type);
2418
2419 extern int type_not_associated (const struct type *type);
2420
2421 /* * When the type includes explicit byte ordering, return that.
2422 Otherwise, the byte ordering from gdbarch_byte_order for
2423 get_type_arch is returned. */
2424
2425 extern enum bfd_endian type_byte_order (const struct type *type);
2426
2427 /* A flag to enable printing of debugging information of C++
2428 overloading. */
2429
2430 extern unsigned int overload_debug;
2431
2432 #endif /* GDBTYPES_H */