gdb: remove TYPE_STUB
[binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The target type of this type is a stub type, and this type needs
220 to be updated if it gets un-stubbed in check_typedef. Used for
221 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
222 based on the TYPE_LENGTH of the target type. Also, set for
223 TYPE_CODE_TYPEDEF. */
224
225 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
226
227 /* * This is a function type which appears to have a prototype. We
228 need this for function calls in order to tell us if it's necessary
229 to coerce the args, or to just do the standard conversions. This
230 is used with a short field. */
231
232 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
233
234 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
235 to functions. */
236
237 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
238
239 /* * Identify a vector type. Gcc is handling this by adding an extra
240 attribute to the array type. We slurp that in as a new flag of a
241 type. This is used only in dwarf2read.c. */
242 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
243
244 /* * The debugging formats (especially STABS) do not contain enough
245 information to represent all Ada types---especially those whose
246 size depends on dynamic quantities. Therefore, the GNAT Ada
247 compiler includes extra information in the form of additional type
248 definitions connected by naming conventions. This flag indicates
249 that the type is an ordinary (unencoded) GDB type that has been
250 created from the necessary run-time information, and does not need
251 further interpretation. Optionally marks ordinary, fixed-size GDB
252 type. */
253
254 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
255
256 /* * This debug target supports TYPE_STUB(t). In the unsupported case
257 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
258 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
259 guessed the TYPE_STUB(t) value (see dwarfread.c). */
260
261 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
262
263 /* * Not textual. By default, GDB treats all single byte integers as
264 characters (or elements of strings) unless this flag is set. */
265
266 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
267
268 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
269 address is returned by this function call. TYPE_TARGET_TYPE
270 determines the final returned function type to be presented to
271 user. */
272
273 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
274
275 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
276 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
277 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
278
279 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
280 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
281 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
282
283 /* * True if this type was declared using the "class" keyword. This is
284 only valid for C++ structure and enum types. If false, a structure
285 was declared as a "struct"; if true it was declared "class". For
286 enum types, this is true when "enum class" or "enum struct" was
287 used to declare the type.. */
288
289 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
290
291 /* * True if this type is a "flag" enum. A flag enum is one where all
292 the values are pairwise disjoint when "and"ed together. This
293 affects how enum values are printed. */
294
295 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
296
297 /* * Constant type. If this is set, the corresponding type has a
298 const modifier. */
299
300 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
301
302 /* * Volatile type. If this is set, the corresponding type has a
303 volatile modifier. */
304
305 #define TYPE_VOLATILE(t) \
306 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
307
308 /* * Restrict type. If this is set, the corresponding type has a
309 restrict modifier. */
310
311 #define TYPE_RESTRICT(t) \
312 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
313
314 /* * Atomic type. If this is set, the corresponding type has an
315 _Atomic modifier. */
316
317 #define TYPE_ATOMIC(t) \
318 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
319
320 /* * True if this type represents either an lvalue or lvalue reference type. */
321
322 #define TYPE_IS_REFERENCE(t) \
323 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
324
325 /* * True if this type is allocatable. */
326 #define TYPE_IS_ALLOCATABLE(t) \
327 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
328
329 /* * True if this type has variant parts. */
330 #define TYPE_HAS_VARIANT_PARTS(t) \
331 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
332
333 /* * True if this type has a dynamic length. */
334 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
335 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
336
337 /* * Instruction-space delimited type. This is for Harvard architectures
338 which have separate instruction and data address spaces (and perhaps
339 others).
340
341 GDB usually defines a flat address space that is a superset of the
342 architecture's two (or more) address spaces, but this is an extension
343 of the architecture's model.
344
345 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
346 resides in instruction memory, even if its address (in the extended
347 flat address space) does not reflect this.
348
349 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
350 corresponding type resides in the data memory space, even if
351 this is not indicated by its (flat address space) address.
352
353 If neither flag is set, the default space for functions / methods
354 is instruction space, and for data objects is data memory. */
355
356 #define TYPE_CODE_SPACE(t) \
357 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
358
359 #define TYPE_DATA_SPACE(t) \
360 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
361
362 /* * Address class flags. Some environments provide for pointers
363 whose size is different from that of a normal pointer or address
364 types where the bits are interpreted differently than normal
365 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
366 target specific ways to represent these different types of address
367 classes. */
368
369 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
370 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
371 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
372 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
373 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
374 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
375 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
376 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
377
378 /* * Information about a single discriminant. */
379
380 struct discriminant_range
381 {
382 /* * The range of values for the variant. This is an inclusive
383 range. */
384 ULONGEST low, high;
385
386 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
387 is true if this should be an unsigned comparison; false for
388 signed. */
389 bool contains (ULONGEST value, bool is_unsigned) const
390 {
391 if (is_unsigned)
392 return value >= low && value <= high;
393 LONGEST valuel = (LONGEST) value;
394 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
395 }
396 };
397
398 struct variant_part;
399
400 /* * A single variant. A variant has a list of discriminant values.
401 When the discriminator matches one of these, the variant is
402 enabled. Each variant controls zero or more fields; and may also
403 control other variant parts as well. This struct corresponds to
404 DW_TAG_variant in DWARF. */
405
406 struct variant : allocate_on_obstack
407 {
408 /* * The discriminant ranges for this variant. */
409 gdb::array_view<discriminant_range> discriminants;
410
411 /* * The fields controlled by this variant. This is inclusive on
412 the low end and exclusive on the high end. A variant may not
413 control any fields, in which case the two values will be equal.
414 These are indexes into the type's array of fields. */
415 int first_field;
416 int last_field;
417
418 /* * Variant parts controlled by this variant. */
419 gdb::array_view<variant_part> parts;
420
421 /* * Return true if this is the default variant. The default
422 variant can be recognized because it has no associated
423 discriminants. */
424 bool is_default () const
425 {
426 return discriminants.empty ();
427 }
428
429 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
430 if this should be an unsigned comparison; false for signed. */
431 bool matches (ULONGEST value, bool is_unsigned) const;
432 };
433
434 /* * A variant part. Each variant part has an optional discriminant
435 and holds an array of variants. This struct corresponds to
436 DW_TAG_variant_part in DWARF. */
437
438 struct variant_part : allocate_on_obstack
439 {
440 /* * The index of the discriminant field in the outer type. This is
441 an index into the type's array of fields. If this is -1, there
442 is no discriminant, and only the default variant can be
443 considered to be selected. */
444 int discriminant_index;
445
446 /* * True if this discriminant is unsigned; false if signed. This
447 comes from the type of the discriminant. */
448 bool is_unsigned;
449
450 /* * The variants that are controlled by this variant part. Note
451 that these will always be sorted by field number. */
452 gdb::array_view<variant> variants;
453 };
454
455
456 enum dynamic_prop_kind
457 {
458 PROP_UNDEFINED, /* Not defined. */
459 PROP_CONST, /* Constant. */
460 PROP_ADDR_OFFSET, /* Address offset. */
461 PROP_LOCEXPR, /* Location expression. */
462 PROP_LOCLIST, /* Location list. */
463 PROP_VARIANT_PARTS, /* Variant parts. */
464 PROP_TYPE, /* Type. */
465 };
466
467 union dynamic_prop_data
468 {
469 /* Storage for constant property. */
470
471 LONGEST const_val;
472
473 /* Storage for dynamic property. */
474
475 void *baton;
476
477 /* Storage of variant parts for a type. A type with variant parts
478 has all its fields "linearized" -- stored in a single field
479 array, just as if they had all been declared that way. The
480 variant parts are attached via a dynamic property, and then are
481 used to control which fields end up in the final type during
482 dynamic type resolution. */
483
484 const gdb::array_view<variant_part> *variant_parts;
485
486 /* Once a variant type is resolved, we may want to be able to go
487 from the resolved type to the original type. In this case we
488 rewrite the property's kind and set this field. */
489
490 struct type *original_type;
491 };
492
493 /* * Used to store a dynamic property. */
494
495 struct dynamic_prop
496 {
497 dynamic_prop_kind kind () const
498 {
499 return m_kind;
500 }
501
502 void set_undefined ()
503 {
504 m_kind = PROP_UNDEFINED;
505 }
506
507 LONGEST const_val () const
508 {
509 gdb_assert (m_kind == PROP_CONST);
510
511 return m_data.const_val;
512 }
513
514 void set_const_val (LONGEST const_val)
515 {
516 m_kind = PROP_CONST;
517 m_data.const_val = const_val;
518 }
519
520 void *baton () const
521 {
522 gdb_assert (m_kind == PROP_LOCEXPR
523 || m_kind == PROP_LOCLIST
524 || m_kind == PROP_ADDR_OFFSET);
525
526 return m_data.baton;
527 }
528
529 void set_locexpr (void *baton)
530 {
531 m_kind = PROP_LOCEXPR;
532 m_data.baton = baton;
533 }
534
535 void set_loclist (void *baton)
536 {
537 m_kind = PROP_LOCLIST;
538 m_data.baton = baton;
539 }
540
541 void set_addr_offset (void *baton)
542 {
543 m_kind = PROP_ADDR_OFFSET;
544 m_data.baton = baton;
545 }
546
547 const gdb::array_view<variant_part> *variant_parts () const
548 {
549 gdb_assert (m_kind == PROP_VARIANT_PARTS);
550
551 return m_data.variant_parts;
552 }
553
554 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
555 {
556 m_kind = PROP_VARIANT_PARTS;
557 m_data.variant_parts = variant_parts;
558 }
559
560 struct type *original_type () const
561 {
562 gdb_assert (m_kind == PROP_TYPE);
563
564 return m_data.original_type;
565 }
566
567 void set_original_type (struct type *original_type)
568 {
569 m_kind = PROP_TYPE;
570 m_data.original_type = original_type;
571 }
572
573 /* Determine which field of the union dynamic_prop.data is used. */
574 enum dynamic_prop_kind m_kind;
575
576 /* Storage for dynamic or static value. */
577 union dynamic_prop_data m_data;
578 };
579
580 /* Compare two dynamic_prop objects for equality. dynamic_prop
581 instances are equal iff they have the same type and storage. */
582 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
583
584 /* Compare two dynamic_prop objects for inequality. */
585 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
586 {
587 return !(l == r);
588 }
589
590 /* * Define a type's dynamic property node kind. */
591 enum dynamic_prop_node_kind
592 {
593 /* A property providing a type's data location.
594 Evaluating this field yields to the location of an object's data. */
595 DYN_PROP_DATA_LOCATION,
596
597 /* A property representing DW_AT_allocated. The presence of this attribute
598 indicates that the object of the type can be allocated/deallocated. */
599 DYN_PROP_ALLOCATED,
600
601 /* A property representing DW_AT_associated. The presence of this attribute
602 indicated that the object of the type can be associated. */
603 DYN_PROP_ASSOCIATED,
604
605 /* A property providing an array's byte stride. */
606 DYN_PROP_BYTE_STRIDE,
607
608 /* A property holding variant parts. */
609 DYN_PROP_VARIANT_PARTS,
610
611 /* A property holding the size of the type. */
612 DYN_PROP_BYTE_SIZE,
613 };
614
615 /* * List for dynamic type attributes. */
616 struct dynamic_prop_list
617 {
618 /* The kind of dynamic prop in this node. */
619 enum dynamic_prop_node_kind prop_kind;
620
621 /* The dynamic property itself. */
622 struct dynamic_prop prop;
623
624 /* A pointer to the next dynamic property. */
625 struct dynamic_prop_list *next;
626 };
627
628 /* * Determine which field of the union main_type.fields[x].loc is
629 used. */
630
631 enum field_loc_kind
632 {
633 FIELD_LOC_KIND_BITPOS, /**< bitpos */
634 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
635 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
636 FIELD_LOC_KIND_PHYSNAME, /**< physname */
637 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
638 };
639
640 /* * A discriminant to determine which field in the
641 main_type.type_specific union is being used, if any.
642
643 For types such as TYPE_CODE_FLT, the use of this
644 discriminant is really redundant, as we know from the type code
645 which field is going to be used. As such, it would be possible to
646 reduce the size of this enum in order to save a bit or two for
647 other fields of struct main_type. But, since we still have extra
648 room , and for the sake of clarity and consistency, we treat all fields
649 of the union the same way. */
650
651 enum type_specific_kind
652 {
653 TYPE_SPECIFIC_NONE,
654 TYPE_SPECIFIC_CPLUS_STUFF,
655 TYPE_SPECIFIC_GNAT_STUFF,
656 TYPE_SPECIFIC_FLOATFORMAT,
657 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
658 TYPE_SPECIFIC_FUNC,
659 TYPE_SPECIFIC_SELF_TYPE
660 };
661
662 union type_owner
663 {
664 struct objfile *objfile;
665 struct gdbarch *gdbarch;
666 };
667
668 union field_location
669 {
670 /* * Position of this field, counting in bits from start of
671 containing structure. For big-endian targets, it is the bit
672 offset to the MSB. For little-endian targets, it is the bit
673 offset to the LSB. */
674
675 LONGEST bitpos;
676
677 /* * Enum value. */
678 LONGEST enumval;
679
680 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
681 physaddr is the location (in the target) of the static
682 field. Otherwise, physname is the mangled label of the
683 static field. */
684
685 CORE_ADDR physaddr;
686 const char *physname;
687
688 /* * The field location can be computed by evaluating the
689 following DWARF block. Its DATA is allocated on
690 objfile_obstack - no CU load is needed to access it. */
691
692 struct dwarf2_locexpr_baton *dwarf_block;
693 };
694
695 struct field
696 {
697 struct type *type () const
698 {
699 return this->m_type;
700 }
701
702 void set_type (struct type *type)
703 {
704 this->m_type = type;
705 }
706
707 union field_location loc;
708
709 /* * For a function or member type, this is 1 if the argument is
710 marked artificial. Artificial arguments should not be shown
711 to the user. For TYPE_CODE_RANGE it is set if the specific
712 bound is not defined. */
713
714 unsigned int artificial : 1;
715
716 /* * Discriminant for union field_location. */
717
718 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
719
720 /* * Size of this field, in bits, or zero if not packed.
721 If non-zero in an array type, indicates the element size in
722 bits (used only in Ada at the moment).
723 For an unpacked field, the field's type's length
724 says how many bytes the field occupies. */
725
726 unsigned int bitsize : 28;
727
728 /* * In a struct or union type, type of this field.
729 - In a function or member type, type of this argument.
730 - In an array type, the domain-type of the array. */
731
732 struct type *m_type;
733
734 /* * Name of field, value or argument.
735 NULL for range bounds, array domains, and member function
736 arguments. */
737
738 const char *name;
739 };
740
741 struct range_bounds
742 {
743 ULONGEST bit_stride () const
744 {
745 if (this->flag_is_byte_stride)
746 return this->stride.const_val () * 8;
747 else
748 return this->stride.const_val ();
749 }
750
751 /* * Low bound of range. */
752
753 struct dynamic_prop low;
754
755 /* * High bound of range. */
756
757 struct dynamic_prop high;
758
759 /* The stride value for this range. This can be stored in bits or bytes
760 based on the value of BYTE_STRIDE_P. It is optional to have a stride
761 value, if this range has no stride value defined then this will be set
762 to the constant zero. */
763
764 struct dynamic_prop stride;
765
766 /* * The bias. Sometimes a range value is biased before storage.
767 The bias is added to the stored bits to form the true value. */
768
769 LONGEST bias;
770
771 /* True if HIGH range bound contains the number of elements in the
772 subrange. This affects how the final high bound is computed. */
773
774 unsigned int flag_upper_bound_is_count : 1;
775
776 /* True if LOW or/and HIGH are resolved into a static bound from
777 a dynamic one. */
778
779 unsigned int flag_bound_evaluated : 1;
780
781 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
782
783 unsigned int flag_is_byte_stride : 1;
784 };
785
786 /* Compare two range_bounds objects for equality. Simply does
787 memberwise comparison. */
788 extern bool operator== (const range_bounds &l, const range_bounds &r);
789
790 /* Compare two range_bounds objects for inequality. */
791 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
792 {
793 return !(l == r);
794 }
795
796 union type_specific
797 {
798 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
799 point to cplus_struct_default, a default static instance of a
800 struct cplus_struct_type. */
801
802 struct cplus_struct_type *cplus_stuff;
803
804 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
805 provides additional information. */
806
807 struct gnat_aux_type *gnat_stuff;
808
809 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
810 floatformat object that describes the floating-point value
811 that resides within the type. */
812
813 const struct floatformat *floatformat;
814
815 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
816
817 struct func_type *func_stuff;
818
819 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
820 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
821 is a member of. */
822
823 struct type *self_type;
824 };
825
826 /* * Main structure representing a type in GDB.
827
828 This structure is space-critical. Its layout has been tweaked to
829 reduce the space used. */
830
831 struct main_type
832 {
833 /* * Code for kind of type. */
834
835 ENUM_BITFIELD(type_code) code : 8;
836
837 /* * Flags about this type. These fields appear at this location
838 because they packs nicely here. See the TYPE_* macros for
839 documentation about these fields. */
840
841 unsigned int m_flag_unsigned : 1;
842 unsigned int m_flag_nosign : 1;
843 unsigned int m_flag_stub : 1;
844 unsigned int flag_target_stub : 1;
845 unsigned int flag_prototyped : 1;
846 unsigned int flag_varargs : 1;
847 unsigned int flag_vector : 1;
848 unsigned int flag_stub_supported : 1;
849 unsigned int flag_gnu_ifunc : 1;
850 unsigned int flag_fixed_instance : 1;
851 unsigned int flag_objfile_owned : 1;
852 unsigned int flag_endianity_not_default : 1;
853
854 /* * True if this type was declared with "class" rather than
855 "struct". */
856
857 unsigned int flag_declared_class : 1;
858
859 /* * True if this is an enum type with disjoint values. This
860 affects how the enum is printed. */
861
862 unsigned int flag_flag_enum : 1;
863
864 /* * A discriminant telling us which field of the type_specific
865 union is being used for this type, if any. */
866
867 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
868
869 /* * Number of fields described for this type. This field appears
870 at this location because it packs nicely here. */
871
872 short nfields;
873
874 /* * Name of this type, or NULL if none.
875
876 This is used for printing only. For looking up a name, look for
877 a symbol in the VAR_DOMAIN. This is generally allocated in the
878 objfile's obstack. However coffread.c uses malloc. */
879
880 const char *name;
881
882 /* * Every type is now associated with a particular objfile, and the
883 type is allocated on the objfile_obstack for that objfile. One
884 problem however, is that there are times when gdb allocates new
885 types while it is not in the process of reading symbols from a
886 particular objfile. Fortunately, these happen when the type
887 being created is a derived type of an existing type, such as in
888 lookup_pointer_type(). So we can just allocate the new type
889 using the same objfile as the existing type, but to do this we
890 need a backpointer to the objfile from the existing type. Yes
891 this is somewhat ugly, but without major overhaul of the internal
892 type system, it can't be avoided for now. */
893
894 union type_owner owner;
895
896 /* * For a pointer type, describes the type of object pointed to.
897 - For an array type, describes the type of the elements.
898 - For a function or method type, describes the type of the return value.
899 - For a range type, describes the type of the full range.
900 - For a complex type, describes the type of each coordinate.
901 - For a special record or union type encoding a dynamic-sized type
902 in GNAT, a memoized pointer to a corresponding static version of
903 the type.
904 - Unused otherwise. */
905
906 struct type *target_type;
907
908 /* * For structure and union types, a description of each field.
909 For set and pascal array types, there is one "field",
910 whose type is the domain type of the set or array.
911 For range types, there are two "fields",
912 the minimum and maximum values (both inclusive).
913 For enum types, each possible value is described by one "field".
914 For a function or method type, a "field" for each parameter.
915 For C++ classes, there is one field for each base class (if it is
916 a derived class) plus one field for each class data member. Member
917 functions are recorded elsewhere.
918
919 Using a pointer to a separate array of fields
920 allows all types to have the same size, which is useful
921 because we can allocate the space for a type before
922 we know what to put in it. */
923
924 union
925 {
926 struct field *fields;
927
928 /* * Union member used for range types. */
929
930 struct range_bounds *bounds;
931
932 /* If this is a scalar type, then this is its corresponding
933 complex type. */
934 struct type *complex_type;
935
936 } flds_bnds;
937
938 /* * Slot to point to additional language-specific fields of this
939 type. */
940
941 union type_specific type_specific;
942
943 /* * Contains all dynamic type properties. */
944 struct dynamic_prop_list *dyn_prop_list;
945 };
946
947 /* * Number of bits allocated for alignment. */
948
949 #define TYPE_ALIGN_BITS 8
950
951 /* * A ``struct type'' describes a particular instance of a type, with
952 some particular qualification. */
953
954 struct type
955 {
956 /* Get the type code of this type.
957
958 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
959 type, you need to do `check_typedef (type)->code ()`. */
960 type_code code () const
961 {
962 return this->main_type->code;
963 }
964
965 /* Set the type code of this type. */
966 void set_code (type_code code)
967 {
968 this->main_type->code = code;
969 }
970
971 /* Get the name of this type. */
972 const char *name () const
973 {
974 return this->main_type->name;
975 }
976
977 /* Set the name of this type. */
978 void set_name (const char *name)
979 {
980 this->main_type->name = name;
981 }
982
983 /* Get the number of fields of this type. */
984 int num_fields () const
985 {
986 return this->main_type->nfields;
987 }
988
989 /* Set the number of fields of this type. */
990 void set_num_fields (int num_fields)
991 {
992 this->main_type->nfields = num_fields;
993 }
994
995 /* Get the fields array of this type. */
996 struct field *fields () const
997 {
998 return this->main_type->flds_bnds.fields;
999 }
1000
1001 /* Get the field at index IDX. */
1002 struct field &field (int idx) const
1003 {
1004 return this->fields ()[idx];
1005 }
1006
1007 /* Set the fields array of this type. */
1008 void set_fields (struct field *fields)
1009 {
1010 this->main_type->flds_bnds.fields = fields;
1011 }
1012
1013 type *index_type () const
1014 {
1015 return this->field (0).type ();
1016 }
1017
1018 void set_index_type (type *index_type)
1019 {
1020 this->field (0).set_type (index_type);
1021 }
1022
1023 /* Get the bounds bounds of this type. The type must be a range type. */
1024 range_bounds *bounds () const
1025 {
1026 switch (this->code ())
1027 {
1028 case TYPE_CODE_RANGE:
1029 return this->main_type->flds_bnds.bounds;
1030
1031 case TYPE_CODE_ARRAY:
1032 case TYPE_CODE_STRING:
1033 return this->index_type ()->bounds ();
1034
1035 default:
1036 gdb_assert_not_reached
1037 ("type::bounds called on type with invalid code");
1038 }
1039 }
1040
1041 /* Set the bounds of this type. The type must be a range type. */
1042 void set_bounds (range_bounds *bounds)
1043 {
1044 gdb_assert (this->code () == TYPE_CODE_RANGE);
1045
1046 this->main_type->flds_bnds.bounds = bounds;
1047 }
1048
1049 ULONGEST bit_stride () const
1050 {
1051 return this->bounds ()->bit_stride ();
1052 }
1053
1054 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1055 the type is signed (unless TYPE_NOSIGN is set). */
1056
1057 bool is_unsigned () const
1058 {
1059 return this->main_type->m_flag_unsigned;
1060 }
1061
1062 void set_is_unsigned (bool is_unsigned)
1063 {
1064 this->main_type->m_flag_unsigned = is_unsigned;
1065 }
1066
1067 /* No sign for this type. In C++, "char", "signed char", and
1068 "unsigned char" are distinct types; so we need an extra flag to
1069 indicate the absence of a sign! */
1070
1071 bool has_no_signedness () const
1072 {
1073 return this->main_type->m_flag_nosign;
1074 }
1075
1076 void set_has_no_signedness (bool has_no_signedness)
1077 {
1078 this->main_type->m_flag_nosign = has_no_signedness;
1079 }
1080
1081 /* This appears in a type's flags word if it is a stub type (e.g.,
1082 if someone referenced a type that wasn't defined in a source file
1083 via (struct sir_not_appearing_in_this_film *)). */
1084
1085 bool is_stub () const
1086 {
1087 return this->main_type->m_flag_stub;
1088 }
1089
1090 void set_is_stub (bool is_stub)
1091 {
1092 this->main_type->m_flag_stub = is_stub;
1093 }
1094
1095 /* * Return the dynamic property of the requested KIND from this type's
1096 list of dynamic properties. */
1097 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1098
1099 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1100 property to this type.
1101
1102 This function assumes that this type is objfile-owned. */
1103 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1104
1105 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1106 void remove_dyn_prop (dynamic_prop_node_kind kind);
1107
1108 /* * Type that is a pointer to this type.
1109 NULL if no such pointer-to type is known yet.
1110 The debugger may add the address of such a type
1111 if it has to construct one later. */
1112
1113 struct type *pointer_type;
1114
1115 /* * C++: also need a reference type. */
1116
1117 struct type *reference_type;
1118
1119 /* * A C++ rvalue reference type added in C++11. */
1120
1121 struct type *rvalue_reference_type;
1122
1123 /* * Variant chain. This points to a type that differs from this
1124 one only in qualifiers and length. Currently, the possible
1125 qualifiers are const, volatile, code-space, data-space, and
1126 address class. The length may differ only when one of the
1127 address class flags are set. The variants are linked in a
1128 circular ring and share MAIN_TYPE. */
1129
1130 struct type *chain;
1131
1132 /* * The alignment for this type. Zero means that the alignment was
1133 not specified in the debug info. Note that this is stored in a
1134 funny way: as the log base 2 (plus 1) of the alignment; so a
1135 value of 1 means the alignment is 1, and a value of 9 means the
1136 alignment is 256. */
1137
1138 unsigned align_log2 : TYPE_ALIGN_BITS;
1139
1140 /* * Flags specific to this instance of the type, indicating where
1141 on the ring we are.
1142
1143 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1144 binary or-ed with the target type, with a special case for
1145 address class and space class. For example if this typedef does
1146 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1147 instance flags are completely inherited from the target type. No
1148 qualifiers can be cleared by the typedef. See also
1149 check_typedef. */
1150 unsigned instance_flags : 9;
1151
1152 /* * Length of storage for a value of this type. The value is the
1153 expression in host bytes of what sizeof(type) would return. This
1154 size includes padding. For example, an i386 extended-precision
1155 floating point value really only occupies ten bytes, but most
1156 ABI's declare its size to be 12 bytes, to preserve alignment.
1157 A `struct type' representing such a floating-point type would
1158 have a `length' value of 12, even though the last two bytes are
1159 unused.
1160
1161 Since this field is expressed in host bytes, its value is appropriate
1162 to pass to memcpy and such (it is assumed that GDB itself always runs
1163 on an 8-bits addressable architecture). However, when using it for
1164 target address arithmetic (e.g. adding it to a target address), the
1165 type_length_units function should be used in order to get the length
1166 expressed in target addressable memory units. */
1167
1168 ULONGEST length;
1169
1170 /* * Core type, shared by a group of qualified types. */
1171
1172 struct main_type *main_type;
1173 };
1174
1175 struct fn_fieldlist
1176 {
1177
1178 /* * The overloaded name.
1179 This is generally allocated in the objfile's obstack.
1180 However stabsread.c sometimes uses malloc. */
1181
1182 const char *name;
1183
1184 /* * The number of methods with this name. */
1185
1186 int length;
1187
1188 /* * The list of methods. */
1189
1190 struct fn_field *fn_fields;
1191 };
1192
1193
1194
1195 struct fn_field
1196 {
1197 /* * If is_stub is clear, this is the mangled name which we can look
1198 up to find the address of the method (FIXME: it would be cleaner
1199 to have a pointer to the struct symbol here instead).
1200
1201 If is_stub is set, this is the portion of the mangled name which
1202 specifies the arguments. For example, "ii", if there are two int
1203 arguments, or "" if there are no arguments. See gdb_mangle_name
1204 for the conversion from this format to the one used if is_stub is
1205 clear. */
1206
1207 const char *physname;
1208
1209 /* * The function type for the method.
1210
1211 (This comment used to say "The return value of the method", but
1212 that's wrong. The function type is expected here, i.e. something
1213 with TYPE_CODE_METHOD, and *not* the return-value type). */
1214
1215 struct type *type;
1216
1217 /* * For virtual functions. First baseclass that defines this
1218 virtual function. */
1219
1220 struct type *fcontext;
1221
1222 /* Attributes. */
1223
1224 unsigned int is_const:1;
1225 unsigned int is_volatile:1;
1226 unsigned int is_private:1;
1227 unsigned int is_protected:1;
1228 unsigned int is_artificial:1;
1229
1230 /* * A stub method only has some fields valid (but they are enough
1231 to reconstruct the rest of the fields). */
1232
1233 unsigned int is_stub:1;
1234
1235 /* * True if this function is a constructor, false otherwise. */
1236
1237 unsigned int is_constructor : 1;
1238
1239 /* * True if this function is deleted, false otherwise. */
1240
1241 unsigned int is_deleted : 1;
1242
1243 /* * DW_AT_defaulted attribute for this function. The value is one
1244 of the DW_DEFAULTED constants. */
1245
1246 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1247
1248 /* * Unused. */
1249
1250 unsigned int dummy:6;
1251
1252 /* * Index into that baseclass's virtual function table, minus 2;
1253 else if static: VOFFSET_STATIC; else: 0. */
1254
1255 unsigned int voffset:16;
1256
1257 #define VOFFSET_STATIC 1
1258
1259 };
1260
1261 struct decl_field
1262 {
1263 /* * Unqualified name to be prefixed by owning class qualified
1264 name. */
1265
1266 const char *name;
1267
1268 /* * Type this typedef named NAME represents. */
1269
1270 struct type *type;
1271
1272 /* * True if this field was declared protected, false otherwise. */
1273 unsigned int is_protected : 1;
1274
1275 /* * True if this field was declared private, false otherwise. */
1276 unsigned int is_private : 1;
1277 };
1278
1279 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1280 TYPE_CODE_UNION nodes. */
1281
1282 struct cplus_struct_type
1283 {
1284 /* * Number of base classes this type derives from. The
1285 baseclasses are stored in the first N_BASECLASSES fields
1286 (i.e. the `fields' field of the struct type). The only fields
1287 of struct field that are used are: type, name, loc.bitpos. */
1288
1289 short n_baseclasses;
1290
1291 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1292 All access to this field must be through TYPE_VPTR_FIELDNO as one
1293 thing it does is check whether the field has been initialized.
1294 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1295 which for portability reasons doesn't initialize this field.
1296 TYPE_VPTR_FIELDNO returns -1 for this case.
1297
1298 If -1, we were unable to find the virtual function table pointer in
1299 initial symbol reading, and get_vptr_fieldno should be called to find
1300 it if possible. get_vptr_fieldno will update this field if possible.
1301 Otherwise the value is left at -1.
1302
1303 Unused if this type does not have virtual functions. */
1304
1305 short vptr_fieldno;
1306
1307 /* * Number of methods with unique names. All overloaded methods
1308 with the same name count only once. */
1309
1310 short nfn_fields;
1311
1312 /* * Number of template arguments. */
1313
1314 unsigned short n_template_arguments;
1315
1316 /* * One if this struct is a dynamic class, as defined by the
1317 Itanium C++ ABI: if it requires a virtual table pointer,
1318 because it or any of its base classes have one or more virtual
1319 member functions or virtual base classes. Minus one if not
1320 dynamic. Zero if not yet computed. */
1321
1322 int is_dynamic : 2;
1323
1324 /* * The calling convention for this type, fetched from the
1325 DW_AT_calling_convention attribute. The value is one of the
1326 DW_CC constants. */
1327
1328 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1329
1330 /* * The base class which defined the virtual function table pointer. */
1331
1332 struct type *vptr_basetype;
1333
1334 /* * For derived classes, the number of base classes is given by
1335 n_baseclasses and virtual_field_bits is a bit vector containing
1336 one bit per base class. If the base class is virtual, the
1337 corresponding bit will be set.
1338 I.E, given:
1339
1340 class A{};
1341 class B{};
1342 class C : public B, public virtual A {};
1343
1344 B is a baseclass of C; A is a virtual baseclass for C.
1345 This is a C++ 2.0 language feature. */
1346
1347 B_TYPE *virtual_field_bits;
1348
1349 /* * For classes with private fields, the number of fields is
1350 given by nfields and private_field_bits is a bit vector
1351 containing one bit per field.
1352
1353 If the field is private, the corresponding bit will be set. */
1354
1355 B_TYPE *private_field_bits;
1356
1357 /* * For classes with protected fields, the number of fields is
1358 given by nfields and protected_field_bits is a bit vector
1359 containing one bit per field.
1360
1361 If the field is private, the corresponding bit will be set. */
1362
1363 B_TYPE *protected_field_bits;
1364
1365 /* * For classes with fields to be ignored, either this is
1366 optimized out or this field has length 0. */
1367
1368 B_TYPE *ignore_field_bits;
1369
1370 /* * For classes, structures, and unions, a description of each
1371 field, which consists of an overloaded name, followed by the
1372 types of arguments that the method expects, and then the name
1373 after it has been renamed to make it distinct.
1374
1375 fn_fieldlists points to an array of nfn_fields of these. */
1376
1377 struct fn_fieldlist *fn_fieldlists;
1378
1379 /* * typedefs defined inside this class. typedef_field points to
1380 an array of typedef_field_count elements. */
1381
1382 struct decl_field *typedef_field;
1383
1384 unsigned typedef_field_count;
1385
1386 /* * The nested types defined by this type. nested_types points to
1387 an array of nested_types_count elements. */
1388
1389 struct decl_field *nested_types;
1390
1391 unsigned nested_types_count;
1392
1393 /* * The template arguments. This is an array with
1394 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1395 classes. */
1396
1397 struct symbol **template_arguments;
1398 };
1399
1400 /* * Struct used to store conversion rankings. */
1401
1402 struct rank
1403 {
1404 short rank;
1405
1406 /* * When two conversions are of the same type and therefore have
1407 the same rank, subrank is used to differentiate the two.
1408
1409 Eg: Two derived-class-pointer to base-class-pointer conversions
1410 would both have base pointer conversion rank, but the
1411 conversion with the shorter distance to the ancestor is
1412 preferable. 'subrank' would be used to reflect that. */
1413
1414 short subrank;
1415 };
1416
1417 /* * Used for ranking a function for overload resolution. */
1418
1419 typedef std::vector<rank> badness_vector;
1420
1421 /* * GNAT Ada-specific information for various Ada types. */
1422
1423 struct gnat_aux_type
1424 {
1425 /* * Parallel type used to encode information about dynamic types
1426 used in Ada (such as variant records, variable-size array,
1427 etc). */
1428 struct type* descriptive_type;
1429 };
1430
1431 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1432
1433 struct func_type
1434 {
1435 /* * The calling convention for targets supporting multiple ABIs.
1436 Right now this is only fetched from the Dwarf-2
1437 DW_AT_calling_convention attribute. The value is one of the
1438 DW_CC constants. */
1439
1440 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1441
1442 /* * Whether this function normally returns to its caller. It is
1443 set from the DW_AT_noreturn attribute if set on the
1444 DW_TAG_subprogram. */
1445
1446 unsigned int is_noreturn : 1;
1447
1448 /* * Only those DW_TAG_call_site's in this function that have
1449 DW_AT_call_tail_call set are linked in this list. Function
1450 without its tail call list complete
1451 (DW_AT_call_all_tail_calls or its superset
1452 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1453 DW_TAG_call_site's exist in such function. */
1454
1455 struct call_site *tail_call_list;
1456
1457 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1458 contains the method. */
1459
1460 struct type *self_type;
1461 };
1462
1463 /* struct call_site_parameter can be referenced in callees by several ways. */
1464
1465 enum call_site_parameter_kind
1466 {
1467 /* * Use field call_site_parameter.u.dwarf_reg. */
1468 CALL_SITE_PARAMETER_DWARF_REG,
1469
1470 /* * Use field call_site_parameter.u.fb_offset. */
1471 CALL_SITE_PARAMETER_FB_OFFSET,
1472
1473 /* * Use field call_site_parameter.u.param_offset. */
1474 CALL_SITE_PARAMETER_PARAM_OFFSET
1475 };
1476
1477 struct call_site_target
1478 {
1479 union field_location loc;
1480
1481 /* * Discriminant for union field_location. */
1482
1483 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1484 };
1485
1486 union call_site_parameter_u
1487 {
1488 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1489 as DWARF register number, for register passed
1490 parameters. */
1491
1492 int dwarf_reg;
1493
1494 /* * Offset from the callee's frame base, for stack passed
1495 parameters. This equals offset from the caller's stack
1496 pointer. */
1497
1498 CORE_ADDR fb_offset;
1499
1500 /* * Offset relative to the start of this PER_CU to
1501 DW_TAG_formal_parameter which is referenced by both
1502 caller and the callee. */
1503
1504 cu_offset param_cu_off;
1505 };
1506
1507 struct call_site_parameter
1508 {
1509 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1510
1511 union call_site_parameter_u u;
1512
1513 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1514
1515 const gdb_byte *value;
1516 size_t value_size;
1517
1518 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1519 It may be NULL if not provided by DWARF. */
1520
1521 const gdb_byte *data_value;
1522 size_t data_value_size;
1523 };
1524
1525 /* * A place where a function gets called from, represented by
1526 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1527
1528 struct call_site
1529 {
1530 /* * Address of the first instruction after this call. It must be
1531 the first field as we overload core_addr_hash and core_addr_eq
1532 for it. */
1533
1534 CORE_ADDR pc;
1535
1536 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1537
1538 struct call_site *tail_call_next;
1539
1540 /* * Describe DW_AT_call_target. Missing attribute uses
1541 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1542
1543 struct call_site_target target;
1544
1545 /* * Size of the PARAMETER array. */
1546
1547 unsigned parameter_count;
1548
1549 /* * CU of the function where the call is located. It gets used
1550 for DWARF blocks execution in the parameter array below. */
1551
1552 dwarf2_per_cu_data *per_cu;
1553
1554 /* objfile of the function where the call is located. */
1555
1556 dwarf2_per_objfile *per_objfile;
1557
1558 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1559
1560 struct call_site_parameter parameter[1];
1561 };
1562
1563 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1564 static structure. */
1565
1566 extern const struct cplus_struct_type cplus_struct_default;
1567
1568 extern void allocate_cplus_struct_type (struct type *);
1569
1570 #define INIT_CPLUS_SPECIFIC(type) \
1571 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1572 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1573 &cplus_struct_default)
1574
1575 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1576
1577 #define HAVE_CPLUS_STRUCT(type) \
1578 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1579 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1580
1581 #define INIT_NONE_SPECIFIC(type) \
1582 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1583 TYPE_MAIN_TYPE (type)->type_specific = {})
1584
1585 extern const struct gnat_aux_type gnat_aux_default;
1586
1587 extern void allocate_gnat_aux_type (struct type *);
1588
1589 #define INIT_GNAT_SPECIFIC(type) \
1590 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1591 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1592 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1593 /* * A macro that returns non-zero if the type-specific data should be
1594 read as "gnat-stuff". */
1595 #define HAVE_GNAT_AUX_INFO(type) \
1596 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1597
1598 /* * True if TYPE is known to be an Ada type of some kind. */
1599 #define ADA_TYPE_P(type) \
1600 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1601 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1602 && TYPE_FIXED_INSTANCE (type)))
1603
1604 #define INIT_FUNC_SPECIFIC(type) \
1605 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1606 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1607 TYPE_ZALLOC (type, \
1608 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1609
1610 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1611 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1612 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1613 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1614 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1615 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1616 #define TYPE_CHAIN(thistype) (thistype)->chain
1617 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1618 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1619 so you only have to call check_typedef once. Since allocate_value
1620 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1621 #define TYPE_LENGTH(thistype) (thistype)->length
1622
1623 /* * Return the alignment of the type in target addressable memory
1624 units, or 0 if no alignment was specified. */
1625 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1626
1627 /* * Return the alignment of the type in target addressable memory
1628 units, or 0 if no alignment was specified. */
1629 extern unsigned type_raw_align (struct type *);
1630
1631 /* * Return the alignment of the type in target addressable memory
1632 units. Return 0 if the alignment cannot be determined; but note
1633 that this makes an effort to compute the alignment even it it was
1634 not specified in the debug info. */
1635 extern unsigned type_align (struct type *);
1636
1637 /* * Set the alignment of the type. The alignment must be a power of
1638 2. Returns false if the given value does not fit in the available
1639 space in struct type. */
1640 extern bool set_type_align (struct type *, ULONGEST);
1641
1642 /* Property accessors for the type data location. */
1643 #define TYPE_DATA_LOCATION(thistype) \
1644 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1645 #define TYPE_DATA_LOCATION_BATON(thistype) \
1646 TYPE_DATA_LOCATION (thistype)->data.baton
1647 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1648 (TYPE_DATA_LOCATION (thistype)->const_val ())
1649 #define TYPE_DATA_LOCATION_KIND(thistype) \
1650 (TYPE_DATA_LOCATION (thistype)->kind ())
1651 #define TYPE_DYNAMIC_LENGTH(thistype) \
1652 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1653
1654 /* Property accessors for the type allocated/associated. */
1655 #define TYPE_ALLOCATED_PROP(thistype) \
1656 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1657 #define TYPE_ASSOCIATED_PROP(thistype) \
1658 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1659
1660 /* C++ */
1661
1662 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1663 /* Do not call this, use TYPE_SELF_TYPE. */
1664 extern struct type *internal_type_self_type (struct type *);
1665 extern void set_type_self_type (struct type *, struct type *);
1666
1667 extern int internal_type_vptr_fieldno (struct type *);
1668 extern void set_type_vptr_fieldno (struct type *, int);
1669 extern struct type *internal_type_vptr_basetype (struct type *);
1670 extern void set_type_vptr_basetype (struct type *, struct type *);
1671 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1672 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1673
1674 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1675 #define TYPE_SPECIFIC_FIELD(thistype) \
1676 TYPE_MAIN_TYPE(thistype)->type_specific_field
1677 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1678 where we're trying to print an Ada array using the C language.
1679 In that case, there is no "cplus_stuff", but the C language assumes
1680 that there is. What we do, in that case, is pretend that there is
1681 an implicit one which is the default cplus stuff. */
1682 #define TYPE_CPLUS_SPECIFIC(thistype) \
1683 (!HAVE_CPLUS_STRUCT(thistype) \
1684 ? (struct cplus_struct_type*)&cplus_struct_default \
1685 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1686 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1687 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1688 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1689 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1690 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1691 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1692 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1693 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1694 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1695 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1696 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1697 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1698 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1699 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1700 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1701 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1702
1703 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1704 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1705 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1706
1707 #define FIELD_NAME(thisfld) ((thisfld).name)
1708 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1709 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1710 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1711 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1712 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1713 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1714 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1715 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1716 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1717 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1718 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1719 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1720 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1721 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1722 #define SET_FIELD_PHYSNAME(thisfld, name) \
1723 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1724 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1725 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1726 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1727 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1728 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1729 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1730 FIELD_DWARF_BLOCK (thisfld) = (addr))
1731 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1732 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1733
1734 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1735 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1736 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1737 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1738 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1739 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1740 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1741 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1742 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1743 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1744
1745 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1746 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1747 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1748 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1749 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1750 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1751 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1752 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1753 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1754 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1755 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1756 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1757 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1758 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1759 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1760 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1761 #define TYPE_FIELD_PRIVATE(thistype, n) \
1762 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1763 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1764 #define TYPE_FIELD_PROTECTED(thistype, n) \
1765 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1766 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1767 #define TYPE_FIELD_IGNORE(thistype, n) \
1768 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1769 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1770 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1771 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1772 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1773
1774 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1775 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1776 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1777 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1778 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1779
1780 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1781 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1782 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1783 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1784 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1785 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1786
1787 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1788 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1789 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1790 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1791 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1792 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1793 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1794 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1795 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1796 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1797 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1798 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1799 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1800 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1801 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1802 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1803 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1804
1805 /* Accessors for typedefs defined by a class. */
1806 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1807 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1808 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1809 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1810 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1811 TYPE_TYPEDEF_FIELD (thistype, n).name
1812 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1813 TYPE_TYPEDEF_FIELD (thistype, n).type
1814 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1815 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1816 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1817 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1818 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1819 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1820
1821 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1822 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1823 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1824 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1825 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1826 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1827 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1828 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1829 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1830 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1831 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1832 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1833 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1834 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1835
1836 #define TYPE_IS_OPAQUE(thistype) \
1837 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1838 || ((thistype)->code () == TYPE_CODE_UNION)) \
1839 && ((thistype)->num_fields () == 0) \
1840 && (!HAVE_CPLUS_STRUCT (thistype) \
1841 || TYPE_NFN_FIELDS (thistype) == 0) \
1842 && ((thistype)->is_stub () || !TYPE_STUB_SUPPORTED (thistype)))
1843
1844 /* * A helper macro that returns the name of a type or "unnamed type"
1845 if the type has no name. */
1846
1847 #define TYPE_SAFE_NAME(type) \
1848 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1849
1850 /* * A helper macro that returns the name of an error type. If the
1851 type has a name, it is used; otherwise, a default is used. */
1852
1853 #define TYPE_ERROR_NAME(type) \
1854 (type->name () ? type->name () : _("<error type>"))
1855
1856 /* Given TYPE, return its floatformat. */
1857 const struct floatformat *floatformat_from_type (const struct type *type);
1858
1859 struct builtin_type
1860 {
1861 /* Integral types. */
1862
1863 /* Implicit size/sign (based on the architecture's ABI). */
1864 struct type *builtin_void;
1865 struct type *builtin_char;
1866 struct type *builtin_short;
1867 struct type *builtin_int;
1868 struct type *builtin_long;
1869 struct type *builtin_signed_char;
1870 struct type *builtin_unsigned_char;
1871 struct type *builtin_unsigned_short;
1872 struct type *builtin_unsigned_int;
1873 struct type *builtin_unsigned_long;
1874 struct type *builtin_bfloat16;
1875 struct type *builtin_half;
1876 struct type *builtin_float;
1877 struct type *builtin_double;
1878 struct type *builtin_long_double;
1879 struct type *builtin_complex;
1880 struct type *builtin_double_complex;
1881 struct type *builtin_string;
1882 struct type *builtin_bool;
1883 struct type *builtin_long_long;
1884 struct type *builtin_unsigned_long_long;
1885 struct type *builtin_decfloat;
1886 struct type *builtin_decdouble;
1887 struct type *builtin_declong;
1888
1889 /* "True" character types.
1890 We use these for the '/c' print format, because c_char is just a
1891 one-byte integral type, which languages less laid back than C
1892 will print as ... well, a one-byte integral type. */
1893 struct type *builtin_true_char;
1894 struct type *builtin_true_unsigned_char;
1895
1896 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1897 is for when an architecture needs to describe a register that has
1898 no size. */
1899 struct type *builtin_int0;
1900 struct type *builtin_int8;
1901 struct type *builtin_uint8;
1902 struct type *builtin_int16;
1903 struct type *builtin_uint16;
1904 struct type *builtin_int24;
1905 struct type *builtin_uint24;
1906 struct type *builtin_int32;
1907 struct type *builtin_uint32;
1908 struct type *builtin_int64;
1909 struct type *builtin_uint64;
1910 struct type *builtin_int128;
1911 struct type *builtin_uint128;
1912
1913 /* Wide character types. */
1914 struct type *builtin_char16;
1915 struct type *builtin_char32;
1916 struct type *builtin_wchar;
1917
1918 /* Pointer types. */
1919
1920 /* * `pointer to data' type. Some target platforms use an implicitly
1921 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1922 struct type *builtin_data_ptr;
1923
1924 /* * `pointer to function (returning void)' type. Harvard
1925 architectures mean that ABI function and code pointers are not
1926 interconvertible. Similarly, since ANSI, C standards have
1927 explicitly said that pointers to functions and pointers to data
1928 are not interconvertible --- that is, you can't cast a function
1929 pointer to void * and back, and expect to get the same value.
1930 However, all function pointer types are interconvertible, so void
1931 (*) () can server as a generic function pointer. */
1932
1933 struct type *builtin_func_ptr;
1934
1935 /* * `function returning pointer to function (returning void)' type.
1936 The final void return type is not significant for it. */
1937
1938 struct type *builtin_func_func;
1939
1940 /* Special-purpose types. */
1941
1942 /* * This type is used to represent a GDB internal function. */
1943
1944 struct type *internal_fn;
1945
1946 /* * This type is used to represent an xmethod. */
1947 struct type *xmethod;
1948 };
1949
1950 /* * Return the type table for the specified architecture. */
1951
1952 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1953
1954 /* * Per-objfile types used by symbol readers. */
1955
1956 struct objfile_type
1957 {
1958 /* Basic types based on the objfile architecture. */
1959 struct type *builtin_void;
1960 struct type *builtin_char;
1961 struct type *builtin_short;
1962 struct type *builtin_int;
1963 struct type *builtin_long;
1964 struct type *builtin_long_long;
1965 struct type *builtin_signed_char;
1966 struct type *builtin_unsigned_char;
1967 struct type *builtin_unsigned_short;
1968 struct type *builtin_unsigned_int;
1969 struct type *builtin_unsigned_long;
1970 struct type *builtin_unsigned_long_long;
1971 struct type *builtin_half;
1972 struct type *builtin_float;
1973 struct type *builtin_double;
1974 struct type *builtin_long_double;
1975
1976 /* * This type is used to represent symbol addresses. */
1977 struct type *builtin_core_addr;
1978
1979 /* * This type represents a type that was unrecognized in symbol
1980 read-in. */
1981 struct type *builtin_error;
1982
1983 /* * Types used for symbols with no debug information. */
1984 struct type *nodebug_text_symbol;
1985 struct type *nodebug_text_gnu_ifunc_symbol;
1986 struct type *nodebug_got_plt_symbol;
1987 struct type *nodebug_data_symbol;
1988 struct type *nodebug_unknown_symbol;
1989 struct type *nodebug_tls_symbol;
1990 };
1991
1992 /* * Return the type table for the specified objfile. */
1993
1994 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1995
1996 /* Explicit floating-point formats. See "floatformat.h". */
1997 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1998 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1999 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2000 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2001 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2002 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2003 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2004 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2005 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2006 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2007 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2008 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2009 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2010
2011 /* Allocate space for storing data associated with a particular
2012 type. We ensure that the space is allocated using the same
2013 mechanism that was used to allocate the space for the type
2014 structure itself. I.e. if the type is on an objfile's
2015 objfile_obstack, then the space for data associated with that type
2016 will also be allocated on the objfile_obstack. If the type is
2017 associated with a gdbarch, then the space for data associated with that
2018 type will also be allocated on the gdbarch_obstack.
2019
2020 If a type is not associated with neither an objfile or a gdbarch then
2021 you should not use this macro to allocate space for data, instead you
2022 should call xmalloc directly, and ensure the memory is correctly freed
2023 when it is no longer needed. */
2024
2025 #define TYPE_ALLOC(t,size) \
2026 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2027 ? &TYPE_OBJFILE (t)->objfile_obstack \
2028 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2029 size))
2030
2031
2032 /* See comment on TYPE_ALLOC. */
2033
2034 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2035
2036 /* Use alloc_type to allocate a type owned by an objfile. Use
2037 alloc_type_arch to allocate a type owned by an architecture. Use
2038 alloc_type_copy to allocate a type with the same owner as a
2039 pre-existing template type, no matter whether objfile or
2040 gdbarch. */
2041 extern struct type *alloc_type (struct objfile *);
2042 extern struct type *alloc_type_arch (struct gdbarch *);
2043 extern struct type *alloc_type_copy (const struct type *);
2044
2045 /* * Return the type's architecture. For types owned by an
2046 architecture, that architecture is returned. For types owned by an
2047 objfile, that objfile's architecture is returned. */
2048
2049 extern struct gdbarch *get_type_arch (const struct type *);
2050
2051 /* * This returns the target type (or NULL) of TYPE, also skipping
2052 past typedefs. */
2053
2054 extern struct type *get_target_type (struct type *type);
2055
2056 /* Return the equivalent of TYPE_LENGTH, but in number of target
2057 addressable memory units of the associated gdbarch instead of bytes. */
2058
2059 extern unsigned int type_length_units (struct type *type);
2060
2061 /* * Helper function to construct objfile-owned types. */
2062
2063 extern struct type *init_type (struct objfile *, enum type_code, int,
2064 const char *);
2065 extern struct type *init_integer_type (struct objfile *, int, int,
2066 const char *);
2067 extern struct type *init_character_type (struct objfile *, int, int,
2068 const char *);
2069 extern struct type *init_boolean_type (struct objfile *, int, int,
2070 const char *);
2071 extern struct type *init_float_type (struct objfile *, int, const char *,
2072 const struct floatformat **,
2073 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2074 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2075 extern struct type *init_complex_type (const char *, struct type *);
2076 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2077 struct type *);
2078
2079 /* Helper functions to construct architecture-owned types. */
2080 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2081 const char *);
2082 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2083 const char *);
2084 extern struct type *arch_character_type (struct gdbarch *, int, int,
2085 const char *);
2086 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2087 const char *);
2088 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2089 const struct floatformat **);
2090 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2091 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2092 struct type *);
2093
2094 /* Helper functions to construct a struct or record type. An
2095 initially empty type is created using arch_composite_type().
2096 Fields are then added using append_composite_type_field*(). A union
2097 type has its size set to the largest field. A struct type has each
2098 field packed against the previous. */
2099
2100 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2101 const char *name, enum type_code code);
2102 extern void append_composite_type_field (struct type *t, const char *name,
2103 struct type *field);
2104 extern void append_composite_type_field_aligned (struct type *t,
2105 const char *name,
2106 struct type *field,
2107 int alignment);
2108 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2109 struct type *field);
2110
2111 /* Helper functions to construct a bit flags type. An initially empty
2112 type is created using arch_flag_type(). Flags are then added using
2113 append_flag_type_field() and append_flag_type_flag(). */
2114 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2115 const char *name, int bit);
2116 extern void append_flags_type_field (struct type *type,
2117 int start_bitpos, int nr_bits,
2118 struct type *field_type, const char *name);
2119 extern void append_flags_type_flag (struct type *type, int bitpos,
2120 const char *name);
2121
2122 extern void make_vector_type (struct type *array_type);
2123 extern struct type *init_vector_type (struct type *elt_type, int n);
2124
2125 extern struct type *lookup_reference_type (struct type *, enum type_code);
2126 extern struct type *lookup_lvalue_reference_type (struct type *);
2127 extern struct type *lookup_rvalue_reference_type (struct type *);
2128
2129
2130 extern struct type *make_reference_type (struct type *, struct type **,
2131 enum type_code);
2132
2133 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2134
2135 extern struct type *make_restrict_type (struct type *);
2136
2137 extern struct type *make_unqualified_type (struct type *);
2138
2139 extern struct type *make_atomic_type (struct type *);
2140
2141 extern void replace_type (struct type *, struct type *);
2142
2143 extern int address_space_name_to_int (struct gdbarch *, const char *);
2144
2145 extern const char *address_space_int_to_name (struct gdbarch *, int);
2146
2147 extern struct type *make_type_with_address_space (struct type *type,
2148 int space_identifier);
2149
2150 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2151
2152 extern struct type *lookup_methodptr_type (struct type *);
2153
2154 extern void smash_to_method_type (struct type *type, struct type *self_type,
2155 struct type *to_type, struct field *args,
2156 int nargs, int varargs);
2157
2158 extern void smash_to_memberptr_type (struct type *, struct type *,
2159 struct type *);
2160
2161 extern void smash_to_methodptr_type (struct type *, struct type *);
2162
2163 extern struct type *allocate_stub_method (struct type *);
2164
2165 extern const char *type_name_or_error (struct type *type);
2166
2167 struct struct_elt
2168 {
2169 /* The field of the element, or NULL if no element was found. */
2170 struct field *field;
2171
2172 /* The bit offset of the element in the parent structure. */
2173 LONGEST offset;
2174 };
2175
2176 /* Given a type TYPE, lookup the field and offset of the component named
2177 NAME.
2178
2179 TYPE can be either a struct or union, or a pointer or reference to
2180 a struct or union. If it is a pointer or reference, its target
2181 type is automatically used. Thus '.' and '->' are interchangable,
2182 as specified for the definitions of the expression element types
2183 STRUCTOP_STRUCT and STRUCTOP_PTR.
2184
2185 If NOERR is nonzero, the returned structure will have field set to
2186 NULL if there is no component named NAME.
2187
2188 If the component NAME is a field in an anonymous substructure of
2189 TYPE, the returned offset is a "global" offset relative to TYPE
2190 rather than an offset within the substructure. */
2191
2192 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2193
2194 /* Given a type TYPE, lookup the type of the component named NAME.
2195
2196 TYPE can be either a struct or union, or a pointer or reference to
2197 a struct or union. If it is a pointer or reference, its target
2198 type is automatically used. Thus '.' and '->' are interchangable,
2199 as specified for the definitions of the expression element types
2200 STRUCTOP_STRUCT and STRUCTOP_PTR.
2201
2202 If NOERR is nonzero, return NULL if there is no component named
2203 NAME. */
2204
2205 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2206
2207 extern struct type *make_pointer_type (struct type *, struct type **);
2208
2209 extern struct type *lookup_pointer_type (struct type *);
2210
2211 extern struct type *make_function_type (struct type *, struct type **);
2212
2213 extern struct type *lookup_function_type (struct type *);
2214
2215 extern struct type *lookup_function_type_with_arguments (struct type *,
2216 int,
2217 struct type **);
2218
2219 extern struct type *create_static_range_type (struct type *, struct type *,
2220 LONGEST, LONGEST);
2221
2222
2223 extern struct type *create_array_type_with_stride
2224 (struct type *, struct type *, struct type *,
2225 struct dynamic_prop *, unsigned int);
2226
2227 extern struct type *create_range_type (struct type *, struct type *,
2228 const struct dynamic_prop *,
2229 const struct dynamic_prop *,
2230 LONGEST);
2231
2232 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2233 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2234 stride. */
2235
2236 extern struct type * create_range_type_with_stride
2237 (struct type *result_type, struct type *index_type,
2238 const struct dynamic_prop *low_bound,
2239 const struct dynamic_prop *high_bound, LONGEST bias,
2240 const struct dynamic_prop *stride, bool byte_stride_p);
2241
2242 extern struct type *create_array_type (struct type *, struct type *,
2243 struct type *);
2244
2245 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2246
2247 extern struct type *create_string_type (struct type *, struct type *,
2248 struct type *);
2249 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2250
2251 extern struct type *create_set_type (struct type *, struct type *);
2252
2253 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2254 const char *);
2255
2256 extern struct type *lookup_signed_typename (const struct language_defn *,
2257 const char *);
2258
2259 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2260
2261 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2262
2263 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2264 ADDR specifies the location of the variable the type is bound to.
2265 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2266 static properties is returned. */
2267 extern struct type *resolve_dynamic_type
2268 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2269 CORE_ADDR addr);
2270
2271 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2272 extern int is_dynamic_type (struct type *type);
2273
2274 extern struct type *check_typedef (struct type *);
2275
2276 extern void check_stub_method_group (struct type *, int);
2277
2278 extern char *gdb_mangle_name (struct type *, int, int);
2279
2280 extern struct type *lookup_typename (const struct language_defn *,
2281 const char *, const struct block *, int);
2282
2283 extern struct type *lookup_template_type (const char *, struct type *,
2284 const struct block *);
2285
2286 extern int get_vptr_fieldno (struct type *, struct type **);
2287
2288 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2289
2290 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2291 LONGEST *high_bound);
2292
2293 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2294
2295 extern int class_types_same_p (const struct type *, const struct type *);
2296
2297 extern int is_ancestor (struct type *, struct type *);
2298
2299 extern int is_public_ancestor (struct type *, struct type *);
2300
2301 extern int is_unique_ancestor (struct type *, struct value *);
2302
2303 /* Overload resolution */
2304
2305 /* * Badness if parameter list length doesn't match arg list length. */
2306 extern const struct rank LENGTH_MISMATCH_BADNESS;
2307
2308 /* * Dummy badness value for nonexistent parameter positions. */
2309 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2310 /* * Badness if no conversion among types. */
2311 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2312
2313 /* * Badness of an exact match. */
2314 extern const struct rank EXACT_MATCH_BADNESS;
2315
2316 /* * Badness of integral promotion. */
2317 extern const struct rank INTEGER_PROMOTION_BADNESS;
2318 /* * Badness of floating promotion. */
2319 extern const struct rank FLOAT_PROMOTION_BADNESS;
2320 /* * Badness of converting a derived class pointer
2321 to a base class pointer. */
2322 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2323 /* * Badness of integral conversion. */
2324 extern const struct rank INTEGER_CONVERSION_BADNESS;
2325 /* * Badness of floating conversion. */
2326 extern const struct rank FLOAT_CONVERSION_BADNESS;
2327 /* * Badness of integer<->floating conversions. */
2328 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2329 /* * Badness of conversion of pointer to void pointer. */
2330 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2331 /* * Badness of conversion to boolean. */
2332 extern const struct rank BOOL_CONVERSION_BADNESS;
2333 /* * Badness of converting derived to base class. */
2334 extern const struct rank BASE_CONVERSION_BADNESS;
2335 /* * Badness of converting from non-reference to reference. Subrank
2336 is the type of reference conversion being done. */
2337 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2338 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2339 /* * Conversion to rvalue reference. */
2340 #define REFERENCE_CONVERSION_RVALUE 1
2341 /* * Conversion to const lvalue reference. */
2342 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2343
2344 /* * Badness of converting integer 0 to NULL pointer. */
2345 extern const struct rank NULL_POINTER_CONVERSION;
2346 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2347 being done. */
2348 extern const struct rank CV_CONVERSION_BADNESS;
2349 #define CV_CONVERSION_CONST 1
2350 #define CV_CONVERSION_VOLATILE 2
2351
2352 /* Non-standard conversions allowed by the debugger */
2353
2354 /* * Converting a pointer to an int is usually OK. */
2355 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2356
2357 /* * Badness of converting a (non-zero) integer constant
2358 to a pointer. */
2359 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2360
2361 extern struct rank sum_ranks (struct rank a, struct rank b);
2362 extern int compare_ranks (struct rank a, struct rank b);
2363
2364 extern int compare_badness (const badness_vector &,
2365 const badness_vector &);
2366
2367 extern badness_vector rank_function (gdb::array_view<type *> parms,
2368 gdb::array_view<value *> args);
2369
2370 extern struct rank rank_one_type (struct type *, struct type *,
2371 struct value *);
2372
2373 extern void recursive_dump_type (struct type *, int);
2374
2375 extern int field_is_static (struct field *);
2376
2377 /* printcmd.c */
2378
2379 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2380 const struct value_print_options *,
2381 int, struct ui_file *);
2382
2383 extern int can_dereference (struct type *);
2384
2385 extern int is_integral_type (struct type *);
2386
2387 extern int is_floating_type (struct type *);
2388
2389 extern int is_scalar_type (struct type *type);
2390
2391 extern int is_scalar_type_recursive (struct type *);
2392
2393 extern int class_or_union_p (const struct type *);
2394
2395 extern void maintenance_print_type (const char *, int);
2396
2397 extern htab_t create_copied_types_hash (struct objfile *objfile);
2398
2399 extern struct type *copy_type_recursive (struct objfile *objfile,
2400 struct type *type,
2401 htab_t copied_types);
2402
2403 extern struct type *copy_type (const struct type *type);
2404
2405 extern bool types_equal (struct type *, struct type *);
2406
2407 extern bool types_deeply_equal (struct type *, struct type *);
2408
2409 extern int type_not_allocated (const struct type *type);
2410
2411 extern int type_not_associated (const struct type *type);
2412
2413 /* * When the type includes explicit byte ordering, return that.
2414 Otherwise, the byte ordering from gdbarch_byte_order for
2415 get_type_arch is returned. */
2416
2417 extern enum bfd_endian type_byte_order (const struct type *type);
2418
2419 /* A flag to enable printing of debugging information of C++
2420 overloading. */
2421
2422 extern unsigned int overload_debug;
2423
2424 #endif /* GDBTYPES_H */