x86: Adjust linker tests for --disable-separate-code
[binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34 #include "inferior.h"
35
36 static struct cp_abi_ops gnu_v3_abi_ops;
37
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
40
41 static struct gdbarch_data *std_type_info_gdbarch_data;
42
43
44 static int
45 gnuv3_is_vtable_name (const char *name)
46 {
47 return startswith (name, "_ZTV");
48 }
49
50 static int
51 gnuv3_is_operator_name (const char *name)
52 {
53 return startswith (name, CP_OPERATOR_STR);
54 }
55
56
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
60
61 struct gdb_gnu_v3_abi_vtable {
62
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
68
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
72
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
76 exactly right. * /
77 void *type_info;
78
79 / * Virtual table pointers in objects point here. * /
80
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
84
85 };
86
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
90
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static struct gdbarch_data *vtable_type_gdbarch_data;
95
96
97 /* Human-readable names for the numbers of the fields above. */
98 enum {
99 vtable_field_vcall_and_vbase_offsets,
100 vtable_field_offset_to_top,
101 vtable_field_type_info,
102 vtable_field_virtual_functions
103 };
104
105
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
108
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
111 static void *
112 build_gdb_vtable_type (struct gdbarch *arch)
113 {
114 struct type *t;
115 struct field *field_list, *field;
116 int offset;
117
118 struct type *void_ptr_type
119 = builtin_type (arch)->builtin_data_ptr;
120 struct type *ptr_to_void_fn_type
121 = builtin_type (arch)->builtin_func_ptr;
122
123 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
124 struct type *ptrdiff_type
125 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
126
127 /* We assume no padding is necessary, since GDB doesn't know
128 anything about alignment at the moment. If this assumption bites
129 us, we should add a gdbarch method which, given a type, returns
130 the alignment that type requires, and then use that here. */
131
132 /* Build the field list. */
133 field_list = XCNEWVEC (struct field, 4);
134 field = &field_list[0];
135 offset = 0;
136
137 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
138 field->set_name ("vcall_and_vbase_offsets");
139 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
140 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
141 offset += TYPE_LENGTH (field->type ());
142 field++;
143
144 /* ptrdiff_t offset_to_top; */
145 field->set_name ("offset_to_top");
146 field->set_type (ptrdiff_type);
147 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
148 offset += TYPE_LENGTH (field->type ());
149 field++;
150
151 /* void *type_info; */
152 field->set_name ("type_info");
153 field->set_type (void_ptr_type);
154 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
155 offset += TYPE_LENGTH (field->type ());
156 field++;
157
158 /* void (*virtual_functions[0]) (); */
159 field->set_name ("virtual_functions");
160 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
161 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
162 offset += TYPE_LENGTH (field->type ());
163 field++;
164
165 /* We assumed in the allocation above that there were four fields. */
166 gdb_assert (field == (field_list + 4));
167
168 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
169 t->set_num_fields (field - field_list);
170 t->set_fields (field_list);
171 t->set_name ("gdb_gnu_v3_abi_vtable");
172 INIT_CPLUS_SPECIFIC (t);
173
174 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
175 }
176
177
178 /* Return the ptrdiff_t type used in the vtable type. */
179 static struct type *
180 vtable_ptrdiff_type (struct gdbarch *gdbarch)
181 {
182 struct type *vtable_type
183 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
184
185 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
186 return vtable_type->field (vtable_field_offset_to_top).type ();
187 }
188
189 /* Return the offset from the start of the imaginary `struct
190 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
191 (i.e., where objects' virtual table pointers point). */
192 static int
193 vtable_address_point_offset (struct gdbarch *gdbarch)
194 {
195 struct type *vtable_type
196 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
197
198 return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos ()
199 / TARGET_CHAR_BIT);
200 }
201
202
203 /* Determine whether structure TYPE is a dynamic class. Cache the
204 result. */
205
206 static int
207 gnuv3_dynamic_class (struct type *type)
208 {
209 int fieldnum, fieldelem;
210
211 type = check_typedef (type);
212 gdb_assert (type->code () == TYPE_CODE_STRUCT
213 || type->code () == TYPE_CODE_UNION);
214
215 if (type->code () == TYPE_CODE_UNION)
216 return 0;
217
218 if (TYPE_CPLUS_DYNAMIC (type))
219 return TYPE_CPLUS_DYNAMIC (type) == 1;
220
221 ALLOCATE_CPLUS_STRUCT_TYPE (type);
222
223 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
224 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
225 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
226 {
227 TYPE_CPLUS_DYNAMIC (type) = 1;
228 return 1;
229 }
230
231 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
232 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
233 fieldelem++)
234 {
235 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
236
237 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
238 {
239 TYPE_CPLUS_DYNAMIC (type) = 1;
240 return 1;
241 }
242 }
243
244 TYPE_CPLUS_DYNAMIC (type) = -1;
245 return 0;
246 }
247
248 /* Find the vtable for a value of CONTAINER_TYPE located at
249 CONTAINER_ADDR. Return a value of the correct vtable type for this
250 architecture, or NULL if CONTAINER does not have a vtable. */
251
252 static struct value *
253 gnuv3_get_vtable (struct gdbarch *gdbarch,
254 struct type *container_type, CORE_ADDR container_addr)
255 {
256 struct type *vtable_type
257 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
258 struct type *vtable_pointer_type;
259 struct value *vtable_pointer;
260 CORE_ADDR vtable_address;
261
262 container_type = check_typedef (container_type);
263 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
264
265 /* If this type does not have a virtual table, don't read the first
266 field. */
267 if (!gnuv3_dynamic_class (container_type))
268 return NULL;
269
270 /* We do not consult the debug information to find the virtual table.
271 The ABI specifies that it is always at offset zero in any class,
272 and debug information may not represent it.
273
274 We avoid using value_contents on principle, because the object might
275 be large. */
276
277 /* Find the type "pointer to virtual table". */
278 vtable_pointer_type = lookup_pointer_type (vtable_type);
279
280 /* Load it from the start of the class. */
281 vtable_pointer = value_at (vtable_pointer_type, container_addr);
282 vtable_address = value_as_address (vtable_pointer);
283
284 /* Correct it to point at the start of the virtual table, rather
285 than the address point. */
286 return value_at_lazy (vtable_type,
287 vtable_address
288 - vtable_address_point_offset (gdbarch));
289 }
290
291
292 static struct type *
293 gnuv3_rtti_type (struct value *value,
294 int *full_p, LONGEST *top_p, int *using_enc_p)
295 {
296 struct gdbarch *gdbarch;
297 struct type *values_type = check_typedef (value_type (value));
298 struct value *vtable;
299 struct minimal_symbol *vtable_symbol;
300 const char *vtable_symbol_name;
301 const char *class_name;
302 struct type *run_time_type;
303 LONGEST offset_to_top;
304 const char *atsign;
305
306 /* We only have RTTI for dynamic class objects. */
307 if (values_type->code () != TYPE_CODE_STRUCT
308 || !gnuv3_dynamic_class (values_type))
309 return NULL;
310
311 /* Determine architecture. */
312 gdbarch = values_type->arch ();
313
314 if (using_enc_p)
315 *using_enc_p = 0;
316
317 vtable = gnuv3_get_vtable (gdbarch, values_type,
318 value_as_address (value_addr (value)));
319 if (vtable == NULL)
320 return NULL;
321
322 /* Find the linker symbol for this vtable. */
323 vtable_symbol
324 = lookup_minimal_symbol_by_pc (value_address (vtable)
325 + value_embedded_offset (vtable)).minsym;
326 if (! vtable_symbol)
327 return NULL;
328
329 /* The symbol's demangled name should be something like "vtable for
330 CLASS", where CLASS is the name of the run-time type of VALUE.
331 If we didn't like this approach, we could instead look in the
332 type_info object itself to get the class name. But this way
333 should work just as well, and doesn't read target memory. */
334 vtable_symbol_name = vtable_symbol->demangled_name ();
335 if (vtable_symbol_name == NULL
336 || !startswith (vtable_symbol_name, "vtable for "))
337 {
338 warning (_("can't find linker symbol for virtual table for `%s' value"),
339 TYPE_SAFE_NAME (values_type));
340 if (vtable_symbol_name)
341 warning (_(" found `%s' instead"), vtable_symbol_name);
342 return NULL;
343 }
344 class_name = vtable_symbol_name + 11;
345
346 /* Strip off @plt and version suffixes. */
347 atsign = strchr (class_name, '@');
348 if (atsign != NULL)
349 {
350 char *copy;
351
352 copy = (char *) alloca (atsign - class_name + 1);
353 memcpy (copy, class_name, atsign - class_name);
354 copy[atsign - class_name] = '\0';
355 class_name = copy;
356 }
357
358 /* Try to look up the class name as a type name. */
359 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
360 run_time_type = cp_lookup_rtti_type (class_name, NULL);
361 if (run_time_type == NULL)
362 return NULL;
363
364 /* Get the offset from VALUE to the top of the complete object.
365 NOTE: this is the reverse of the meaning of *TOP_P. */
366 offset_to_top
367 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
368
369 if (full_p)
370 *full_p = (- offset_to_top == value_embedded_offset (value)
371 && (TYPE_LENGTH (value_enclosing_type (value))
372 >= TYPE_LENGTH (run_time_type)));
373 if (top_p)
374 *top_p = - offset_to_top;
375 return run_time_type;
376 }
377
378 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
379 function, of type FNTYPE. */
380
381 static struct value *
382 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
383 struct type *fntype, int vtable_index)
384 {
385 struct value *vtable, *vfn;
386
387 /* Every class with virtual functions must have a vtable. */
388 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
389 value_as_address (value_addr (container)));
390 gdb_assert (vtable != NULL);
391
392 /* Fetch the appropriate function pointer from the vtable. */
393 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
394 vtable_index);
395
396 /* If this architecture uses function descriptors directly in the vtable,
397 then the address of the vtable entry is actually a "function pointer"
398 (i.e. points to the descriptor). We don't need to scale the index
399 by the size of a function descriptor; GCC does that before outputting
400 debug information. */
401 if (gdbarch_vtable_function_descriptors (gdbarch))
402 vfn = value_addr (vfn);
403
404 /* Cast the function pointer to the appropriate type. */
405 vfn = value_cast (lookup_pointer_type (fntype), vfn);
406
407 return vfn;
408 }
409
410 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
411 for a description of the arguments. */
412
413 static struct value *
414 gnuv3_virtual_fn_field (struct value **value_p,
415 struct fn_field *f, int j,
416 struct type *vfn_base, int offset)
417 {
418 struct type *values_type = check_typedef (value_type (*value_p));
419 struct gdbarch *gdbarch;
420
421 /* Some simple sanity checks. */
422 if (values_type->code () != TYPE_CODE_STRUCT)
423 error (_("Only classes can have virtual functions."));
424
425 /* Determine architecture. */
426 gdbarch = values_type->arch ();
427
428 /* Cast our value to the base class which defines this virtual
429 function. This takes care of any necessary `this'
430 adjustments. */
431 if (vfn_base != values_type)
432 *value_p = value_cast (vfn_base, *value_p);
433
434 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
435 TYPE_FN_FIELD_VOFFSET (f, j));
436 }
437
438 /* Compute the offset of the baseclass which is
439 the INDEXth baseclass of class TYPE,
440 for value at VALADDR (in host) at ADDRESS (in target).
441 The result is the offset of the baseclass value relative
442 to (the address of)(ARG) + OFFSET.
443
444 -1 is returned on error. */
445
446 static int
447 gnuv3_baseclass_offset (struct type *type, int index,
448 const bfd_byte *valaddr, LONGEST embedded_offset,
449 CORE_ADDR address, const struct value *val)
450 {
451 struct gdbarch *gdbarch;
452 struct type *ptr_type;
453 struct value *vtable;
454 struct value *vbase_array;
455 long int cur_base_offset, base_offset;
456
457 /* Determine architecture. */
458 gdbarch = type->arch ();
459 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
460
461 /* If it isn't a virtual base, this is easy. The offset is in the
462 type definition. */
463 if (!BASETYPE_VIA_VIRTUAL (type, index))
464 return TYPE_BASECLASS_BITPOS (type, index) / 8;
465
466 /* If we have a DWARF expression for the offset, evaluate it. */
467 if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
468 {
469 struct dwarf2_property_baton baton;
470 baton.property_type
471 = lookup_pointer_type (type->field (index).type ());
472 baton.locexpr = *type->field (index).loc_dwarf_block ();
473
474 struct dynamic_prop prop;
475 prop.set_locexpr (&baton);
476
477 struct property_addr_info addr_stack;
478 addr_stack.type = type;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack.addr = address + embedded_offset;
482 addr_stack.next = nullptr;
483
484 CORE_ADDR result;
485 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
486 true))
487 return (int) (result - addr_stack.addr);
488 }
489
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
494 worthwhile. */
495 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
496 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
497 error (_("Expected a negative vbase offset (old compiler?)"));
498
499 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
500 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
503
504 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
505 gdb_assert (vtable != NULL);
506 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
507 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
508 return base_offset;
509 }
510
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
514
515 static const char *
516 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
517 LONGEST adjustment)
518 {
519 int i;
520
521 /* Search this class first. */
522 if (adjustment == 0)
523 {
524 int len;
525
526 len = TYPE_NFN_FIELDS (domain);
527 for (i = 0; i < len; i++)
528 {
529 int len2, j;
530 struct fn_field *f;
531
532 f = TYPE_FN_FIELDLIST1 (domain, i);
533 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
534
535 check_stub_method_group (domain, i);
536 for (j = 0; j < len2; j++)
537 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
538 return TYPE_FN_FIELD_PHYSNAME (f, j);
539 }
540 }
541
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
545 {
546 int pos;
547 struct type *basetype;
548
549 if (BASETYPE_VIA_VIRTUAL (domain, i))
550 continue;
551
552 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
553 basetype = domain->field (i).type ();
554 /* Recurse with a modified adjustment. We don't need to adjust
555 voffset. */
556 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
557 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
558 }
559
560 return NULL;
561 }
562
563 /* Decode GNU v3 method pointer. */
564
565 static int
566 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
567 const gdb_byte *contents,
568 CORE_ADDR *value_p,
569 LONGEST *adjustment_p)
570 {
571 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
572 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 CORE_ADDR ptr_value;
575 LONGEST voffset, adjustment;
576 int vbit;
577
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value = extract_typed_address (contents, funcptr_type);
585 voffset = extract_signed_integer (contents,
586 TYPE_LENGTH (funcptr_type), byte_order);
587 contents += TYPE_LENGTH (funcptr_type);
588 adjustment = extract_signed_integer (contents,
589 TYPE_LENGTH (offset_type), byte_order);
590
591 if (!gdbarch_vbit_in_delta (gdbarch))
592 {
593 vbit = voffset & 1;
594 voffset = voffset ^ vbit;
595 }
596 else
597 {
598 vbit = adjustment & 1;
599 adjustment = adjustment >> 1;
600 }
601
602 *value_p = vbit? voffset : ptr_value;
603 *adjustment_p = adjustment;
604 return vbit;
605 }
606
607 /* GNU v3 implementation of cplus_print_method_ptr. */
608
609 static void
610 gnuv3_print_method_ptr (const gdb_byte *contents,
611 struct type *type,
612 struct ui_file *stream)
613 {
614 struct type *self_type = TYPE_SELF_TYPE (type);
615 struct gdbarch *gdbarch = self_type->arch ();
616 CORE_ADDR ptr_value;
617 LONGEST adjustment;
618 int vbit;
619
620 /* Extract the pointer to member. */
621 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
622
623 /* Check for NULL. */
624 if (ptr_value == 0 && vbit == 0)
625 {
626 fprintf_filtered (stream, "NULL");
627 return;
628 }
629
630 /* Search for a virtual method. */
631 if (vbit)
632 {
633 CORE_ADDR voffset;
634 const char *physname;
635
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
640
641 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
642
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
645 if (physname)
646 {
647 gdb::unique_xmalloc_ptr<char> demangled_name
648 = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS);
649
650 fprintf_filtered (stream, "&virtual ");
651 if (demangled_name == NULL)
652 fputs_filtered (physname, stream);
653 else
654 fputs_filtered (demangled_name.get (), stream);
655 return;
656 }
657 }
658 else if (ptr_value != 0)
659 {
660 /* Found a non-virtual function: print out the type. */
661 fputs_filtered ("(", stream);
662 c_print_type (type, "", stream, -1, 0, &type_print_raw_options);
663 fputs_filtered (") ", stream);
664 }
665
666 /* We didn't find it; print the raw data. */
667 if (vbit)
668 {
669 fprintf_filtered (stream, "&virtual table offset ");
670 print_longest (stream, 'd', 1, ptr_value);
671 }
672 else
673 {
674 struct value_print_options opts;
675
676 get_user_print_options (&opts);
677 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
678 }
679
680 if (adjustment)
681 {
682 fprintf_filtered (stream, ", this adjustment ");
683 print_longest (stream, 'd', 1, adjustment);
684 }
685 }
686
687 /* GNU v3 implementation of cplus_method_ptr_size. */
688
689 static int
690 gnuv3_method_ptr_size (struct type *type)
691 {
692 return 2 * TYPE_LENGTH (builtin_type (type->arch ())->builtin_data_ptr);
693 }
694
695 /* GNU v3 implementation of cplus_make_method_ptr. */
696
697 static void
698 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
699 CORE_ADDR value, int is_virtual)
700 {
701 struct gdbarch *gdbarch = type->arch ();
702 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
703 enum bfd_endian byte_order = type_byte_order (type);
704
705 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
706 always zero, since the method pointer is of the correct type.
707 But if the method pointer came from a base class, this is
708 incorrect - it should be the offset to the base. The best
709 fix might be to create the pointer to member pointing at the
710 base class and cast it to the derived class, but that requires
711 support for adjusting pointers to members when casting them -
712 not currently supported by GDB. */
713
714 if (!gdbarch_vbit_in_delta (gdbarch))
715 {
716 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
717 store_unsigned_integer (contents + size, size, byte_order, 0);
718 }
719 else
720 {
721 store_unsigned_integer (contents, size, byte_order, value);
722 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
723 }
724 }
725
726 /* GNU v3 implementation of cplus_method_ptr_to_value. */
727
728 static struct value *
729 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
730 {
731 struct gdbarch *gdbarch;
732 const gdb_byte *contents = value_contents (method_ptr).data ();
733 CORE_ADDR ptr_value;
734 struct type *self_type, *final_type, *method_type;
735 LONGEST adjustment;
736 int vbit;
737
738 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
739 final_type = lookup_pointer_type (self_type);
740
741 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
742
743 /* Extract the pointer to member. */
744 gdbarch = self_type->arch ();
745 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
746
747 /* First convert THIS to match the containing type of the pointer to
748 member. This cast may adjust the value of THIS. */
749 *this_p = value_cast (final_type, *this_p);
750
751 /* Then apply whatever adjustment is necessary. This creates a somewhat
752 strange pointer: it claims to have type FINAL_TYPE, but in fact it
753 might not be a valid FINAL_TYPE. For instance, it might be a
754 base class of FINAL_TYPE. And if it's not the primary base class,
755 then printing it out as a FINAL_TYPE object would produce some pretty
756 garbage.
757
758 But we don't really know the type of the first argument in
759 METHOD_TYPE either, which is why this happens. We can't
760 dereference this later as a FINAL_TYPE, but once we arrive in the
761 called method we'll have debugging information for the type of
762 "this" - and that'll match the value we produce here.
763
764 You can provoke this case by casting a Base::* to a Derived::*, for
765 instance. */
766 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
767 *this_p = value_ptradd (*this_p, adjustment);
768 *this_p = value_cast (final_type, *this_p);
769
770 if (vbit)
771 {
772 LONGEST voffset;
773
774 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
775 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
776 method_type, voffset);
777 }
778 else
779 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
780 }
781
782 /* Objects of this type are stored in a hash table and a vector when
783 printing the vtables for a class. */
784
785 struct value_and_voffset
786 {
787 /* The value representing the object. */
788 struct value *value;
789
790 /* The maximum vtable offset we've found for any object at this
791 offset in the outermost object. */
792 int max_voffset;
793 };
794
795 /* Hash function for value_and_voffset. */
796
797 static hashval_t
798 hash_value_and_voffset (const void *p)
799 {
800 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
801
802 return value_address (o->value) + value_embedded_offset (o->value);
803 }
804
805 /* Equality function for value_and_voffset. */
806
807 static int
808 eq_value_and_voffset (const void *a, const void *b)
809 {
810 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
811 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
812
813 return (value_address (ova->value) + value_embedded_offset (ova->value)
814 == value_address (ovb->value) + value_embedded_offset (ovb->value));
815 }
816
817 /* Comparison function for value_and_voffset. */
818
819 static bool
820 compare_value_and_voffset (const struct value_and_voffset *va,
821 const struct value_and_voffset *vb)
822 {
823 CORE_ADDR addra = (value_address (va->value)
824 + value_embedded_offset (va->value));
825 CORE_ADDR addrb = (value_address (vb->value)
826 + value_embedded_offset (vb->value));
827
828 return addra < addrb;
829 }
830
831 /* A helper function used when printing vtables. This determines the
832 key (most derived) sub-object at each address and also computes the
833 maximum vtable offset seen for the corresponding vtable. Updates
834 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
835 needed. VALUE is the object to examine. */
836
837 static void
838 compute_vtable_size (htab_t offset_hash,
839 std::vector<value_and_voffset *> *offset_vec,
840 struct value *value)
841 {
842 int i;
843 struct type *type = check_typedef (value_type (value));
844 void **slot;
845 struct value_and_voffset search_vo, *current_vo;
846
847 gdb_assert (type->code () == TYPE_CODE_STRUCT);
848
849 /* If the object is not dynamic, then we are done; as it cannot have
850 dynamic base types either. */
851 if (!gnuv3_dynamic_class (type))
852 return;
853
854 /* Update the hash and the vec, if needed. */
855 search_vo.value = value;
856 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
857 if (*slot)
858 current_vo = (struct value_and_voffset *) *slot;
859 else
860 {
861 current_vo = XNEW (struct value_and_voffset);
862 current_vo->value = value;
863 current_vo->max_voffset = -1;
864 *slot = current_vo;
865 offset_vec->push_back (current_vo);
866 }
867
868 /* Update the value_and_voffset object with the highest vtable
869 offset from this class. */
870 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
871 {
872 int j;
873 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
874
875 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
876 {
877 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
878 {
879 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
880
881 if (voffset > current_vo->max_voffset)
882 current_vo->max_voffset = voffset;
883 }
884 }
885 }
886
887 /* Recurse into base classes. */
888 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
889 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
890 }
891
892 /* Helper for gnuv3_print_vtable that prints a single vtable. */
893
894 static void
895 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
896 int max_voffset,
897 struct value_print_options *opts)
898 {
899 int i;
900 struct type *type = check_typedef (value_type (value));
901 struct value *vtable;
902 CORE_ADDR vt_addr;
903
904 vtable = gnuv3_get_vtable (gdbarch, type,
905 value_address (value)
906 + value_embedded_offset (value));
907 vt_addr = value_address (value_field (vtable,
908 vtable_field_virtual_functions));
909
910 printf_filtered (_("vtable for '%s' @ %s (subobject @ %s):\n"),
911 TYPE_SAFE_NAME (type),
912 paddress (gdbarch, vt_addr),
913 paddress (gdbarch, (value_address (value)
914 + value_embedded_offset (value))));
915
916 for (i = 0; i <= max_voffset; ++i)
917 {
918 /* Initialize it just to avoid a GCC false warning. */
919 CORE_ADDR addr = 0;
920 int got_error = 0;
921 struct value *vfn;
922
923 printf_filtered ("[%d]: ", i);
924
925 vfn = value_subscript (value_field (vtable,
926 vtable_field_virtual_functions),
927 i);
928
929 if (gdbarch_vtable_function_descriptors (gdbarch))
930 vfn = value_addr (vfn);
931
932 try
933 {
934 addr = value_as_address (vfn);
935 }
936 catch (const gdb_exception_error &ex)
937 {
938 fprintf_styled (gdb_stdout, metadata_style.style (),
939 _("<error: %s>"), ex.what ());
940 got_error = 1;
941 }
942
943 if (!got_error)
944 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
945 printf_filtered ("\n");
946 }
947 }
948
949 /* Implementation of the print_vtable method. */
950
951 static void
952 gnuv3_print_vtable (struct value *value)
953 {
954 struct gdbarch *gdbarch;
955 struct type *type;
956 struct value *vtable;
957 struct value_print_options opts;
958 int count;
959
960 value = coerce_ref (value);
961 type = check_typedef (value_type (value));
962 if (type->code () == TYPE_CODE_PTR)
963 {
964 value = value_ind (value);
965 type = check_typedef (value_type (value));
966 }
967
968 get_user_print_options (&opts);
969
970 /* Respect 'set print object'. */
971 if (opts.objectprint)
972 {
973 value = value_full_object (value, NULL, 0, 0, 0);
974 type = check_typedef (value_type (value));
975 }
976
977 gdbarch = type->arch ();
978
979 vtable = NULL;
980 if (type->code () == TYPE_CODE_STRUCT)
981 vtable = gnuv3_get_vtable (gdbarch, type,
982 value_as_address (value_addr (value)));
983
984 if (!vtable)
985 {
986 printf_filtered (_("This object does not have a virtual function table\n"));
987 return;
988 }
989
990 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
991 eq_value_and_voffset,
992 xfree, xcalloc, xfree));
993 std::vector<value_and_voffset *> result_vec;
994
995 compute_vtable_size (offset_hash.get (), &result_vec, value);
996 std::sort (result_vec.begin (), result_vec.end (),
997 compare_value_and_voffset);
998
999 count = 0;
1000 for (value_and_voffset *iter : result_vec)
1001 {
1002 if (iter->max_voffset >= 0)
1003 {
1004 if (count > 0)
1005 printf_filtered ("\n");
1006 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1007 ++count;
1008 }
1009 }
1010 }
1011
1012 /* Return a GDB type representing `struct std::type_info', laid out
1013 appropriately for ARCH.
1014
1015 We use this function as the gdbarch per-architecture data
1016 initialization function. */
1017
1018 static void *
1019 build_std_type_info_type (struct gdbarch *arch)
1020 {
1021 struct type *t;
1022 struct field *field_list, *field;
1023 int offset;
1024 struct type *void_ptr_type
1025 = builtin_type (arch)->builtin_data_ptr;
1026 struct type *char_type
1027 = builtin_type (arch)->builtin_char;
1028 struct type *char_ptr_type
1029 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1030
1031 field_list = XCNEWVEC (struct field, 2);
1032 field = &field_list[0];
1033 offset = 0;
1034
1035 /* The vtable. */
1036 field->set_name ("_vptr.type_info");
1037 field->set_type (void_ptr_type);
1038 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1039 offset += TYPE_LENGTH (field->type ());
1040 field++;
1041
1042 /* The name. */
1043 field->set_name ("__name");
1044 field->set_type (char_ptr_type);
1045 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1046 offset += TYPE_LENGTH (field->type ());
1047 field++;
1048
1049 gdb_assert (field == (field_list + 2));
1050
1051 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1052 t->set_num_fields (field - field_list);
1053 t->set_fields (field_list);
1054 t->set_name ("gdb_gnu_v3_type_info");
1055 INIT_CPLUS_SPECIFIC (t);
1056
1057 return t;
1058 }
1059
1060 /* Implement the 'get_typeid_type' method. */
1061
1062 static struct type *
1063 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1064 {
1065 struct symbol *typeinfo;
1066 struct type *typeinfo_type;
1067
1068 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1069 NULL).symbol;
1070 if (typeinfo == NULL)
1071 typeinfo_type
1072 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1073 else
1074 typeinfo_type = SYMBOL_TYPE (typeinfo);
1075
1076 return typeinfo_type;
1077 }
1078
1079 /* Implement the 'get_typeid' method. */
1080
1081 static struct value *
1082 gnuv3_get_typeid (struct value *value)
1083 {
1084 struct type *typeinfo_type;
1085 struct type *type;
1086 struct gdbarch *gdbarch;
1087 struct value *result;
1088 std::string type_name;
1089 gdb::unique_xmalloc_ptr<char> canonical;
1090
1091 /* We have to handle values a bit trickily here, to allow this code
1092 to work properly with non_lvalue values that are really just
1093 disguised types. */
1094 if (value_lval_const (value) == lval_memory)
1095 value = coerce_ref (value);
1096
1097 type = check_typedef (value_type (value));
1098
1099 /* In the non_lvalue case, a reference might have slipped through
1100 here. */
1101 if (type->code () == TYPE_CODE_REF)
1102 type = check_typedef (TYPE_TARGET_TYPE (type));
1103
1104 /* Ignore top-level cv-qualifiers. */
1105 type = make_cv_type (0, 0, type, NULL);
1106 gdbarch = type->arch ();
1107
1108 type_name = type_to_string (type);
1109 if (type_name.empty ())
1110 error (_("cannot find typeinfo for unnamed type"));
1111
1112 /* We need to canonicalize the type name here, because we do lookups
1113 using the demangled name, and so we must match the format it
1114 uses. E.g., GDB tends to use "const char *" as a type name, but
1115 the demangler uses "char const *". */
1116 canonical = cp_canonicalize_string (type_name.c_str ());
1117 const char *name = (canonical == nullptr
1118 ? type_name.c_str ()
1119 : canonical.get ());
1120
1121 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1122
1123 /* We check for lval_memory because in the "typeid (type-id)" case,
1124 the type is passed via a not_lval value object. */
1125 if (type->code () == TYPE_CODE_STRUCT
1126 && value_lval_const (value) == lval_memory
1127 && gnuv3_dynamic_class (type))
1128 {
1129 struct value *vtable, *typeinfo_value;
1130 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1131
1132 vtable = gnuv3_get_vtable (gdbarch, type, address);
1133 if (vtable == NULL)
1134 error (_("cannot find typeinfo for object of type '%s'"),
1135 name);
1136 typeinfo_value = value_field (vtable, vtable_field_type_info);
1137 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1138 typeinfo_value));
1139 }
1140 else
1141 {
1142 std::string sym_name = std::string ("typeinfo for ") + name;
1143 bound_minimal_symbol minsym
1144 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1145
1146 if (minsym.minsym == NULL)
1147 error (_("could not find typeinfo symbol for '%s'"), name);
1148
1149 result = value_at_lazy (typeinfo_type, BMSYMBOL_VALUE_ADDRESS (minsym));
1150 }
1151
1152 return result;
1153 }
1154
1155 /* Implement the 'get_typename_from_type_info' method. */
1156
1157 static std::string
1158 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1159 {
1160 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
1161 struct bound_minimal_symbol typeinfo_sym;
1162 CORE_ADDR addr;
1163 const char *symname;
1164 const char *class_name;
1165 const char *atsign;
1166
1167 addr = value_as_address (type_info_ptr);
1168 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1169 if (typeinfo_sym.minsym == NULL)
1170 error (_("could not find minimal symbol for typeinfo address %s"),
1171 paddress (gdbarch, addr));
1172
1173 #define TYPEINFO_PREFIX "typeinfo for "
1174 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1175 symname = typeinfo_sym.minsym->demangled_name ();
1176 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1177 TYPEINFO_PREFIX_LEN))
1178 error (_("typeinfo symbol '%s' has unexpected name"),
1179 typeinfo_sym.minsym->linkage_name ());
1180 class_name = symname + TYPEINFO_PREFIX_LEN;
1181
1182 /* Strip off @plt and version suffixes. */
1183 atsign = strchr (class_name, '@');
1184 if (atsign != NULL)
1185 return std::string (class_name, atsign - class_name);
1186 return class_name;
1187 }
1188
1189 /* Implement the 'get_type_from_type_info' method. */
1190
1191 static struct type *
1192 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1193 {
1194 /* We have to parse the type name, since in general there is not a
1195 symbol for a type. This is somewhat bogus since there may be a
1196 mis-parse. Another approach might be to re-use the demangler's
1197 internal form to reconstruct the type somehow. */
1198 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1199 expression_up expr (parse_expression (type_name.c_str ()));
1200 struct value *type_val = evaluate_type (expr.get ());
1201 return value_type (type_val);
1202 }
1203
1204 /* Determine if we are currently in a C++ thunk. If so, get the address
1205 of the routine we are thunking to and continue to there instead. */
1206
1207 static CORE_ADDR
1208 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1209 {
1210 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1211 struct gdbarch *gdbarch = get_frame_arch (frame);
1212 struct bound_minimal_symbol thunk_sym, fn_sym;
1213 struct obj_section *section;
1214 const char *thunk_name, *fn_name;
1215
1216 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1217 if (real_stop_pc == 0)
1218 real_stop_pc = stop_pc;
1219
1220 /* Find the linker symbol for this potential thunk. */
1221 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1222 section = find_pc_section (real_stop_pc);
1223 if (thunk_sym.minsym == NULL || section == NULL)
1224 return 0;
1225
1226 /* The symbol's demangled name should be something like "virtual
1227 thunk to FUNCTION", where FUNCTION is the name of the function
1228 being thunked to. */
1229 thunk_name = thunk_sym.minsym->demangled_name ();
1230 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1231 return 0;
1232
1233 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1234 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1235 if (fn_sym.minsym == NULL)
1236 return 0;
1237
1238 method_stop_pc = BMSYMBOL_VALUE_ADDRESS (fn_sym);
1239
1240 /* Some targets have minimal symbols pointing to function descriptors
1241 (powerpc 64 for example). Make sure to retrieve the address
1242 of the real function from the function descriptor before passing on
1243 the address to other layers of GDB. */
1244 func_addr = gdbarch_convert_from_func_ptr_addr
1245 (gdbarch, method_stop_pc, current_inferior ()->top_target ());
1246 if (func_addr != 0)
1247 method_stop_pc = func_addr;
1248
1249 real_stop_pc = gdbarch_skip_trampoline_code
1250 (gdbarch, frame, method_stop_pc);
1251 if (real_stop_pc == 0)
1252 real_stop_pc = method_stop_pc;
1253
1254 return real_stop_pc;
1255 }
1256
1257 /* A member function is in one these states. */
1258
1259 enum definition_style
1260 {
1261 DOES_NOT_EXIST_IN_SOURCE,
1262 DEFAULTED_INSIDE,
1263 DEFAULTED_OUTSIDE,
1264 DELETED,
1265 EXPLICIT,
1266 };
1267
1268 /* Return how the given field is defined. */
1269
1270 static definition_style
1271 get_def_style (struct fn_field *fn, int fieldelem)
1272 {
1273 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1274 return DELETED;
1275
1276 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1277 return DOES_NOT_EXIST_IN_SOURCE;
1278
1279 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1280 {
1281 case DW_DEFAULTED_no:
1282 return EXPLICIT;
1283 case DW_DEFAULTED_in_class:
1284 return DEFAULTED_INSIDE;
1285 case DW_DEFAULTED_out_of_class:
1286 return DEFAULTED_OUTSIDE;
1287 default:
1288 break;
1289 }
1290
1291 return EXPLICIT;
1292 }
1293
1294 /* Helper functions to determine whether the given definition style
1295 denotes that the definition is user-provided or implicit.
1296 Being defaulted outside the class decl counts as an explicit
1297 user-definition, while being defaulted inside is implicit. */
1298
1299 static bool
1300 is_user_provided_def (definition_style def)
1301 {
1302 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1303 }
1304
1305 static bool
1306 is_implicit_def (definition_style def)
1307 {
1308 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1309 }
1310
1311 /* Helper function to decide if METHOD_TYPE is a copy/move
1312 constructor type for CLASS_TYPE. EXPECTED is the expected
1313 type code for the "right-hand-side" argument.
1314 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1315 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1316 not need to call this directly. */
1317
1318 static bool
1319 is_copy_or_move_constructor_type (struct type *class_type,
1320 struct type *method_type,
1321 type_code expected)
1322 {
1323 /* The method should take at least two arguments... */
1324 if (method_type->num_fields () < 2)
1325 return false;
1326
1327 /* ...and the second argument should be the same as the class
1328 type, with the expected type code... */
1329 struct type *arg_type = method_type->field (1).type ();
1330
1331 if (arg_type->code () != expected)
1332 return false;
1333
1334 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1335 if (!(class_types_same_p (target, class_type)))
1336 return false;
1337
1338 /* ...and if any of the remaining arguments don't have a default value
1339 then this is not a copy or move constructor, but just a
1340 constructor. */
1341 for (int i = 2; i < method_type->num_fields (); i++)
1342 {
1343 arg_type = method_type->field (i).type ();
1344 /* FIXME aktemur/2019-10-31: As of this date, neither
1345 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1346 attribute. GDB is also not set to read this attribute, yet.
1347 Hence, we immediately return false if there are more than
1348 2 parameters.
1349 GCC bug link:
1350 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1351 */
1352 return false;
1353 }
1354
1355 return true;
1356 }
1357
1358 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1359
1360 static bool
1361 is_copy_constructor_type (struct type *class_type,
1362 struct type *method_type)
1363 {
1364 return is_copy_or_move_constructor_type (class_type, method_type,
1365 TYPE_CODE_REF);
1366 }
1367
1368 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1369
1370 static bool
1371 is_move_constructor_type (struct type *class_type,
1372 struct type *method_type)
1373 {
1374 return is_copy_or_move_constructor_type (class_type, method_type,
1375 TYPE_CODE_RVALUE_REF);
1376 }
1377
1378 /* Return pass-by-reference information for the given TYPE.
1379
1380 The rule in the v3 ABI document comes from section 3.1.1. If the
1381 type has a non-trivial copy constructor or destructor, then the
1382 caller must make a copy (by calling the copy constructor if there
1383 is one or perform the copy itself otherwise), pass the address of
1384 the copy, and then destroy the temporary (if necessary).
1385
1386 For return values with non-trivial copy/move constructors or
1387 destructors, space will be allocated in the caller, and a pointer
1388 will be passed as the first argument (preceding "this").
1389
1390 We don't have a bulletproof mechanism for determining whether a
1391 constructor or destructor is trivial. For GCC and DWARF5 debug
1392 information, we can check the calling_convention attribute,
1393 the 'artificial' flag, the 'defaulted' attribute, and the
1394 'deleted' attribute. */
1395
1396 static struct language_pass_by_ref_info
1397 gnuv3_pass_by_reference (struct type *type)
1398 {
1399 int fieldnum, fieldelem;
1400
1401 type = check_typedef (type);
1402
1403 /* Start with the default values. */
1404 struct language_pass_by_ref_info info;
1405
1406 bool has_cc_attr = false;
1407 bool is_pass_by_value = false;
1408 bool is_dynamic = false;
1409 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1410 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1411 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1412
1413 /* We're only interested in things that can have methods. */
1414 if (type->code () != TYPE_CODE_STRUCT
1415 && type->code () != TYPE_CODE_UNION)
1416 return info;
1417
1418 /* The compiler may have emitted the calling convention attribute.
1419 Note: GCC does not produce this attribute as of version 9.2.1.
1420 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1421 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1422 {
1423 has_cc_attr = true;
1424 is_pass_by_value = true;
1425 /* Do not return immediately. We have to find out if this type
1426 is copy_constructible and destructible. */
1427 }
1428
1429 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1430 {
1431 has_cc_attr = true;
1432 is_pass_by_value = false;
1433 }
1434
1435 /* A dynamic class has a non-trivial copy constructor.
1436 See c++98 section 12.8 Copying class objects [class.copy]. */
1437 if (gnuv3_dynamic_class (type))
1438 is_dynamic = true;
1439
1440 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1441 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1442 fieldelem++)
1443 {
1444 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1445 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1446 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1447
1448 if (name[0] == '~')
1449 {
1450 /* We've found a destructor.
1451 There should be at most one dtor definition. */
1452 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1453 dtor_def = get_def_style (fn, fieldelem);
1454 }
1455 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1456 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1457 {
1458 /* FIXME drow/2007-09-23: We could do this using the name of
1459 the method and the name of the class instead of dealing
1460 with the mangled name. We don't have a convenient function
1461 to strip off both leading scope qualifiers and trailing
1462 template arguments yet. */
1463 if (is_copy_constructor_type (type, fieldtype))
1464 {
1465 /* There may be more than one cctors. E.g.: one that
1466 take a const parameter and another that takes a
1467 non-const parameter. Such as:
1468
1469 class K {
1470 K (const K &k)...
1471 K (K &k)...
1472 };
1473
1474 It is sufficient for the type to be non-trivial
1475 even only one of the cctors is explicit.
1476 Therefore, update the cctor_def value in the
1477 implicit -> explicit direction, not backwards. */
1478
1479 if (is_implicit_def (cctor_def))
1480 cctor_def = get_def_style (fn, fieldelem);
1481 }
1482 else if (is_move_constructor_type (type, fieldtype))
1483 {
1484 /* Again, there may be multiple move ctors. Update the
1485 mctor_def value if we found an explicit def and the
1486 existing one is not explicit. Otherwise retain the
1487 existing value. */
1488 if (is_implicit_def (mctor_def))
1489 mctor_def = get_def_style (fn, fieldelem);
1490 }
1491 }
1492 }
1493
1494 bool cctor_implicitly_deleted
1495 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1496 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1497
1498 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1499
1500 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1501 info.copy_constructible = false;
1502
1503 if (dtor_def == DELETED)
1504 info.destructible = false;
1505
1506 info.trivially_destructible = is_implicit_def (dtor_def);
1507
1508 info.trivially_copy_constructible
1509 = (is_implicit_def (cctor_def)
1510 && !is_dynamic);
1511
1512 info.trivially_copyable
1513 = (info.trivially_copy_constructible
1514 && info.trivially_destructible
1515 && !is_user_provided_def (mctor_def));
1516
1517 /* Even if all the constructors and destructors were artificial, one
1518 of them may have invoked a non-artificial constructor or
1519 destructor in a base class. If any base class needs to be passed
1520 by reference, so does this class. Similarly for members, which
1521 are constructed whenever this class is. We do not need to worry
1522 about recursive loops here, since we are only looking at members
1523 of complete class type. Also ignore any static members. */
1524 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1525 if (!field_is_static (&type->field (fieldnum)))
1526 {
1527 struct type *field_type = type->field (fieldnum).type ();
1528
1529 /* For arrays, make the decision based on the element type. */
1530 if (field_type->code () == TYPE_CODE_ARRAY)
1531 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1532
1533 struct language_pass_by_ref_info field_info
1534 = gnuv3_pass_by_reference (field_type);
1535
1536 if (!field_info.copy_constructible)
1537 info.copy_constructible = false;
1538 if (!field_info.destructible)
1539 info.destructible = false;
1540 if (!field_info.trivially_copyable)
1541 info.trivially_copyable = false;
1542 if (!field_info.trivially_copy_constructible)
1543 info.trivially_copy_constructible = false;
1544 if (!field_info.trivially_destructible)
1545 info.trivially_destructible = false;
1546 }
1547
1548 /* Consistency check. */
1549 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1550 {
1551 /* DWARF CC attribute is not the same as the inferred value;
1552 use the DWARF attribute. */
1553 info.trivially_copyable = is_pass_by_value;
1554 }
1555
1556 return info;
1557 }
1558
1559 static void
1560 init_gnuv3_ops (void)
1561 {
1562 vtable_type_gdbarch_data
1563 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1564 std_type_info_gdbarch_data
1565 = gdbarch_data_register_post_init (build_std_type_info_type);
1566
1567 gnu_v3_abi_ops.shortname = "gnu-v3";
1568 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1569 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1570 gnu_v3_abi_ops.is_destructor_name =
1571 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1572 gnu_v3_abi_ops.is_constructor_name =
1573 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1574 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1575 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1576 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1577 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1578 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1579 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1580 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1581 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1582 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1583 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1584 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1585 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1586 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1587 gnu_v3_abi_ops.get_typename_from_type_info
1588 = gnuv3_get_typename_from_type_info;
1589 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1590 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1591 }
1592
1593 void _initialize_gnu_v3_abi ();
1594 void
1595 _initialize_gnu_v3_abi ()
1596 {
1597 init_gnuv3_ops ();
1598
1599 register_cp_abi (&gnu_v3_abi_ops);
1600 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1601 }