953645e7411fca3e86ebdd6fb5f66cbef764aa78
[binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001-2022 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "value.h"
23 #include "cp-abi.h"
24 #include "cp-support.h"
25 #include "demangle.h"
26 #include "dwarf2.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30 #include "typeprint.h"
31 #include <algorithm>
32 #include "cli/cli-style.h"
33 #include "dwarf2/loc.h"
34 #include "inferior.h"
35
36 static struct cp_abi_ops gnu_v3_abi_ops;
37
38 /* A gdbarch key for std::type_info, in the event that it can't be
39 found in the debug info. */
40
41 static struct gdbarch_data *std_type_info_gdbarch_data;
42
43
44 static int
45 gnuv3_is_vtable_name (const char *name)
46 {
47 return startswith (name, "_ZTV");
48 }
49
50 static int
51 gnuv3_is_operator_name (const char *name)
52 {
53 return startswith (name, CP_OPERATOR_STR);
54 }
55
56
57 /* To help us find the components of a vtable, we build ourselves a
58 GDB type object representing the vtable structure. Following the
59 V3 ABI, it goes something like this:
60
61 struct gdb_gnu_v3_abi_vtable {
62
63 / * An array of virtual call and virtual base offsets. The real
64 length of this array depends on the class hierarchy; we use
65 negative subscripts to access the elements. Yucky, but
66 better than the alternatives. * /
67 ptrdiff_t vcall_and_vbase_offsets[0];
68
69 / * The offset from a virtual pointer referring to this table
70 to the top of the complete object. * /
71 ptrdiff_t offset_to_top;
72
73 / * The type_info pointer for this class. This is really a
74 std::type_info *, but GDB doesn't really look at the
75 type_info object itself, so we don't bother to get the type
76 exactly right. * /
77 void *type_info;
78
79 / * Virtual table pointers in objects point here. * /
80
81 / * Virtual function pointers. Like the vcall/vbase array, the
82 real length of this table depends on the class hierarchy. * /
83 void (*virtual_functions[0]) ();
84
85 };
86
87 The catch, of course, is that the exact layout of this table
88 depends on the ABI --- word size, endianness, alignment, etc. So
89 the GDB type object is actually a per-architecture kind of thing.
90
91 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
92 which refers to the struct type * for this structure, laid out
93 appropriately for the architecture. */
94 static struct gdbarch_data *vtable_type_gdbarch_data;
95
96
97 /* Human-readable names for the numbers of the fields above. */
98 enum {
99 vtable_field_vcall_and_vbase_offsets,
100 vtable_field_offset_to_top,
101 vtable_field_type_info,
102 vtable_field_virtual_functions
103 };
104
105
106 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
107 described above, laid out appropriately for ARCH.
108
109 We use this function as the gdbarch per-architecture data
110 initialization function. */
111 static void *
112 build_gdb_vtable_type (struct gdbarch *arch)
113 {
114 struct type *t;
115 struct field *field_list, *field;
116 int offset;
117
118 struct type *void_ptr_type
119 = builtin_type (arch)->builtin_data_ptr;
120 struct type *ptr_to_void_fn_type
121 = builtin_type (arch)->builtin_func_ptr;
122
123 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
124 struct type *ptrdiff_type
125 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
126
127 /* We assume no padding is necessary, since GDB doesn't know
128 anything about alignment at the moment. If this assumption bites
129 us, we should add a gdbarch method which, given a type, returns
130 the alignment that type requires, and then use that here. */
131
132 /* Build the field list. */
133 field_list = XCNEWVEC (struct field, 4);
134 field = &field_list[0];
135 offset = 0;
136
137 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
138 field->set_name ("vcall_and_vbase_offsets");
139 field->set_type (lookup_array_range_type (ptrdiff_type, 0, -1));
140 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
141 offset += TYPE_LENGTH (field->type ());
142 field++;
143
144 /* ptrdiff_t offset_to_top; */
145 field->set_name ("offset_to_top");
146 field->set_type (ptrdiff_type);
147 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
148 offset += TYPE_LENGTH (field->type ());
149 field++;
150
151 /* void *type_info; */
152 field->set_name ("type_info");
153 field->set_type (void_ptr_type);
154 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
155 offset += TYPE_LENGTH (field->type ());
156 field++;
157
158 /* void (*virtual_functions[0]) (); */
159 field->set_name ("virtual_functions");
160 field->set_type (lookup_array_range_type (ptr_to_void_fn_type, 0, -1));
161 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
162 offset += TYPE_LENGTH (field->type ());
163 field++;
164
165 /* We assumed in the allocation above that there were four fields. */
166 gdb_assert (field == (field_list + 4));
167
168 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
169 t->set_num_fields (field - field_list);
170 t->set_fields (field_list);
171 t->set_name ("gdb_gnu_v3_abi_vtable");
172 INIT_CPLUS_SPECIFIC (t);
173
174 return make_type_with_address_space (t, TYPE_INSTANCE_FLAG_CODE_SPACE);
175 }
176
177
178 /* Return the ptrdiff_t type used in the vtable type. */
179 static struct type *
180 vtable_ptrdiff_type (struct gdbarch *gdbarch)
181 {
182 struct type *vtable_type
183 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
184
185 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
186 return vtable_type->field (vtable_field_offset_to_top).type ();
187 }
188
189 /* Return the offset from the start of the imaginary `struct
190 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
191 (i.e., where objects' virtual table pointers point). */
192 static int
193 vtable_address_point_offset (struct gdbarch *gdbarch)
194 {
195 struct type *vtable_type
196 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
197
198 return (vtable_type->field (vtable_field_virtual_functions).loc_bitpos ()
199 / TARGET_CHAR_BIT);
200 }
201
202
203 /* Determine whether structure TYPE is a dynamic class. Cache the
204 result. */
205
206 static int
207 gnuv3_dynamic_class (struct type *type)
208 {
209 int fieldnum, fieldelem;
210
211 type = check_typedef (type);
212 gdb_assert (type->code () == TYPE_CODE_STRUCT
213 || type->code () == TYPE_CODE_UNION);
214
215 if (type->code () == TYPE_CODE_UNION)
216 return 0;
217
218 if (TYPE_CPLUS_DYNAMIC (type))
219 return TYPE_CPLUS_DYNAMIC (type) == 1;
220
221 ALLOCATE_CPLUS_STRUCT_TYPE (type);
222
223 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
224 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
225 || gnuv3_dynamic_class (type->field (fieldnum).type ()))
226 {
227 TYPE_CPLUS_DYNAMIC (type) = 1;
228 return 1;
229 }
230
231 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
232 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
233 fieldelem++)
234 {
235 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
236
237 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
238 {
239 TYPE_CPLUS_DYNAMIC (type) = 1;
240 return 1;
241 }
242 }
243
244 TYPE_CPLUS_DYNAMIC (type) = -1;
245 return 0;
246 }
247
248 /* Find the vtable for a value of CONTAINER_TYPE located at
249 CONTAINER_ADDR. Return a value of the correct vtable type for this
250 architecture, or NULL if CONTAINER does not have a vtable. */
251
252 static struct value *
253 gnuv3_get_vtable (struct gdbarch *gdbarch,
254 struct type *container_type, CORE_ADDR container_addr)
255 {
256 struct type *vtable_type
257 = (struct type *) gdbarch_data (gdbarch, vtable_type_gdbarch_data);
258 struct type *vtable_pointer_type;
259 struct value *vtable_pointer;
260 CORE_ADDR vtable_address;
261
262 container_type = check_typedef (container_type);
263 gdb_assert (container_type->code () == TYPE_CODE_STRUCT);
264
265 /* If this type does not have a virtual table, don't read the first
266 field. */
267 if (!gnuv3_dynamic_class (container_type))
268 return NULL;
269
270 /* We do not consult the debug information to find the virtual table.
271 The ABI specifies that it is always at offset zero in any class,
272 and debug information may not represent it.
273
274 We avoid using value_contents on principle, because the object might
275 be large. */
276
277 /* Find the type "pointer to virtual table". */
278 vtable_pointer_type = lookup_pointer_type (vtable_type);
279
280 /* Load it from the start of the class. */
281 vtable_pointer = value_at (vtable_pointer_type, container_addr);
282 vtable_address = value_as_address (vtable_pointer);
283
284 /* Correct it to point at the start of the virtual table, rather
285 than the address point. */
286 return value_at_lazy (vtable_type,
287 vtable_address
288 - vtable_address_point_offset (gdbarch));
289 }
290
291
292 static struct type *
293 gnuv3_rtti_type (struct value *value,
294 int *full_p, LONGEST *top_p, int *using_enc_p)
295 {
296 struct gdbarch *gdbarch;
297 struct type *values_type = check_typedef (value_type (value));
298 struct value *vtable;
299 struct minimal_symbol *vtable_symbol;
300 const char *vtable_symbol_name;
301 const char *class_name;
302 struct type *run_time_type;
303 LONGEST offset_to_top;
304 const char *atsign;
305
306 /* We only have RTTI for dynamic class objects. */
307 if (values_type->code () != TYPE_CODE_STRUCT
308 || !gnuv3_dynamic_class (values_type))
309 return NULL;
310
311 /* Determine architecture. */
312 gdbarch = values_type->arch ();
313
314 if (using_enc_p)
315 *using_enc_p = 0;
316
317 vtable = gnuv3_get_vtable (gdbarch, values_type,
318 value_as_address (value_addr (value)));
319 if (vtable == NULL)
320 return NULL;
321
322 /* Find the linker symbol for this vtable. */
323 vtable_symbol
324 = lookup_minimal_symbol_by_pc (value_address (vtable)
325 + value_embedded_offset (vtable)).minsym;
326 if (! vtable_symbol)
327 return NULL;
328
329 /* The symbol's demangled name should be something like "vtable for
330 CLASS", where CLASS is the name of the run-time type of VALUE.
331 If we didn't like this approach, we could instead look in the
332 type_info object itself to get the class name. But this way
333 should work just as well, and doesn't read target memory. */
334 vtable_symbol_name = vtable_symbol->demangled_name ();
335 if (vtable_symbol_name == NULL
336 || !startswith (vtable_symbol_name, "vtable for "))
337 {
338 warning (_("can't find linker symbol for virtual table for `%s' value"),
339 TYPE_SAFE_NAME (values_type));
340 if (vtable_symbol_name)
341 warning (_(" found `%s' instead"), vtable_symbol_name);
342 return NULL;
343 }
344 class_name = vtable_symbol_name + 11;
345
346 /* Strip off @plt and version suffixes. */
347 atsign = strchr (class_name, '@');
348 if (atsign != NULL)
349 {
350 char *copy;
351
352 copy = (char *) alloca (atsign - class_name + 1);
353 memcpy (copy, class_name, atsign - class_name);
354 copy[atsign - class_name] = '\0';
355 class_name = copy;
356 }
357
358 /* Try to look up the class name as a type name. */
359 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
360 run_time_type = cp_lookup_rtti_type (class_name, NULL);
361 if (run_time_type == NULL)
362 return NULL;
363
364 /* Get the offset from VALUE to the top of the complete object.
365 NOTE: this is the reverse of the meaning of *TOP_P. */
366 offset_to_top
367 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
368
369 if (full_p)
370 *full_p = (- offset_to_top == value_embedded_offset (value)
371 && (TYPE_LENGTH (value_enclosing_type (value))
372 >= TYPE_LENGTH (run_time_type)));
373 if (top_p)
374 *top_p = - offset_to_top;
375 return run_time_type;
376 }
377
378 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
379 function, of type FNTYPE. */
380
381 static struct value *
382 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
383 struct type *fntype, int vtable_index)
384 {
385 struct value *vtable, *vfn;
386
387 /* Every class with virtual functions must have a vtable. */
388 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
389 value_as_address (value_addr (container)));
390 gdb_assert (vtable != NULL);
391
392 /* Fetch the appropriate function pointer from the vtable. */
393 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
394 vtable_index);
395
396 /* If this architecture uses function descriptors directly in the vtable,
397 then the address of the vtable entry is actually a "function pointer"
398 (i.e. points to the descriptor). We don't need to scale the index
399 by the size of a function descriptor; GCC does that before outputting
400 debug information. */
401 if (gdbarch_vtable_function_descriptors (gdbarch))
402 vfn = value_addr (vfn);
403
404 /* Cast the function pointer to the appropriate type. */
405 vfn = value_cast (lookup_pointer_type (fntype), vfn);
406
407 return vfn;
408 }
409
410 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
411 for a description of the arguments. */
412
413 static struct value *
414 gnuv3_virtual_fn_field (struct value **value_p,
415 struct fn_field *f, int j,
416 struct type *vfn_base, int offset)
417 {
418 struct type *values_type = check_typedef (value_type (*value_p));
419 struct gdbarch *gdbarch;
420
421 /* Some simple sanity checks. */
422 if (values_type->code () != TYPE_CODE_STRUCT)
423 error (_("Only classes can have virtual functions."));
424
425 /* Determine architecture. */
426 gdbarch = values_type->arch ();
427
428 /* Cast our value to the base class which defines this virtual
429 function. This takes care of any necessary `this'
430 adjustments. */
431 if (vfn_base != values_type)
432 *value_p = value_cast (vfn_base, *value_p);
433
434 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
435 TYPE_FN_FIELD_VOFFSET (f, j));
436 }
437
438 /* Compute the offset of the baseclass which is
439 the INDEXth baseclass of class TYPE,
440 for value at VALADDR (in host) at ADDRESS (in target).
441 The result is the offset of the baseclass value relative
442 to (the address of)(ARG) + OFFSET.
443
444 -1 is returned on error. */
445
446 static int
447 gnuv3_baseclass_offset (struct type *type, int index,
448 const bfd_byte *valaddr, LONGEST embedded_offset,
449 CORE_ADDR address, const struct value *val)
450 {
451 struct gdbarch *gdbarch;
452 struct type *ptr_type;
453 struct value *vtable;
454 struct value *vbase_array;
455 long int cur_base_offset, base_offset;
456
457 /* Determine architecture. */
458 gdbarch = type->arch ();
459 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
460
461 /* If it isn't a virtual base, this is easy. The offset is in the
462 type definition. */
463 if (!BASETYPE_VIA_VIRTUAL (type, index))
464 return TYPE_BASECLASS_BITPOS (type, index) / 8;
465
466 /* If we have a DWARF expression for the offset, evaluate it. */
467 if (type->field (index).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
468 {
469 struct dwarf2_property_baton baton;
470 baton.property_type
471 = lookup_pointer_type (type->field (index).type ());
472 baton.locexpr = *type->field (index).loc_dwarf_block ();
473
474 struct dynamic_prop prop;
475 prop.set_locexpr (&baton);
476
477 struct property_addr_info addr_stack;
478 addr_stack.type = type;
479 /* Note that we don't set "valaddr" here. Doing so causes
480 regressions. FIXME. */
481 addr_stack.addr = address + embedded_offset;
482 addr_stack.next = nullptr;
483
484 CORE_ADDR result;
485 if (dwarf2_evaluate_property (&prop, nullptr, &addr_stack, &result,
486 {addr_stack.addr}))
487 return (int) (result - addr_stack.addr);
488 }
489
490 /* To access a virtual base, we need to use the vbase offset stored in
491 our vtable. Recent GCC versions provide this information. If it isn't
492 available, we could get what we needed from RTTI, or from drawing the
493 complete inheritance graph based on the debug info. Neither is
494 worthwhile. */
495 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
496 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
497 error (_("Expected a negative vbase offset (old compiler?)"));
498
499 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
500 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
501 error (_("Misaligned vbase offset."));
502 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
503
504 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
505 gdb_assert (vtable != NULL);
506 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
507 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
508 return base_offset;
509 }
510
511 /* Locate a virtual method in DOMAIN or its non-virtual base classes
512 which has virtual table index VOFFSET. The method has an associated
513 "this" adjustment of ADJUSTMENT bytes. */
514
515 static const char *
516 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
517 LONGEST adjustment)
518 {
519 int i;
520
521 /* Search this class first. */
522 if (adjustment == 0)
523 {
524 int len;
525
526 len = TYPE_NFN_FIELDS (domain);
527 for (i = 0; i < len; i++)
528 {
529 int len2, j;
530 struct fn_field *f;
531
532 f = TYPE_FN_FIELDLIST1 (domain, i);
533 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
534
535 check_stub_method_group (domain, i);
536 for (j = 0; j < len2; j++)
537 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
538 return TYPE_FN_FIELD_PHYSNAME (f, j);
539 }
540 }
541
542 /* Next search non-virtual bases. If it's in a virtual base,
543 we're out of luck. */
544 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
545 {
546 int pos;
547 struct type *basetype;
548
549 if (BASETYPE_VIA_VIRTUAL (domain, i))
550 continue;
551
552 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
553 basetype = domain->field (i).type ();
554 /* Recurse with a modified adjustment. We don't need to adjust
555 voffset. */
556 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
557 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
558 }
559
560 return NULL;
561 }
562
563 /* Decode GNU v3 method pointer. */
564
565 static int
566 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
567 const gdb_byte *contents,
568 CORE_ADDR *value_p,
569 LONGEST *adjustment_p)
570 {
571 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
572 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
574 CORE_ADDR ptr_value;
575 LONGEST voffset, adjustment;
576 int vbit;
577
578 /* Extract the pointer to member. The first element is either a pointer
579 or a vtable offset. For pointers, we need to use extract_typed_address
580 to allow the back-end to convert the pointer to a GDB address -- but
581 vtable offsets we must handle as integers. At this point, we do not
582 yet know which case we have, so we extract the value under both
583 interpretations and choose the right one later on. */
584 ptr_value = extract_typed_address (contents, funcptr_type);
585 voffset = extract_signed_integer (contents,
586 TYPE_LENGTH (funcptr_type), byte_order);
587 contents += TYPE_LENGTH (funcptr_type);
588 adjustment = extract_signed_integer (contents,
589 TYPE_LENGTH (offset_type), byte_order);
590
591 if (!gdbarch_vbit_in_delta (gdbarch))
592 {
593 vbit = voffset & 1;
594 voffset = voffset ^ vbit;
595 }
596 else
597 {
598 vbit = adjustment & 1;
599 adjustment = adjustment >> 1;
600 }
601
602 *value_p = vbit? voffset : ptr_value;
603 *adjustment_p = adjustment;
604 return vbit;
605 }
606
607 /* GNU v3 implementation of cplus_print_method_ptr. */
608
609 static void
610 gnuv3_print_method_ptr (const gdb_byte *contents,
611 struct type *type,
612 struct ui_file *stream)
613 {
614 struct type *self_type = TYPE_SELF_TYPE (type);
615 struct gdbarch *gdbarch = self_type->arch ();
616 CORE_ADDR ptr_value;
617 LONGEST adjustment;
618 int vbit;
619
620 /* Extract the pointer to member. */
621 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
622
623 /* Check for NULL. */
624 if (ptr_value == 0 && vbit == 0)
625 {
626 gdb_printf (stream, "NULL");
627 return;
628 }
629
630 /* Search for a virtual method. */
631 if (vbit)
632 {
633 CORE_ADDR voffset;
634 const char *physname;
635
636 /* It's a virtual table offset, maybe in this class. Search
637 for a field with the correct vtable offset. First convert it
638 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
639 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
640
641 physname = gnuv3_find_method_in (self_type, voffset, adjustment);
642
643 /* If we found a method, print that. We don't bother to disambiguate
644 possible paths to the method based on the adjustment. */
645 if (physname)
646 {
647 gdb::unique_xmalloc_ptr<char> demangled_name
648 = gdb_demangle (physname, DMGL_ANSI | DMGL_PARAMS);
649
650 gdb_printf (stream, "&virtual ");
651 if (demangled_name == NULL)
652 gdb_puts (physname, stream);
653 else
654 gdb_puts (demangled_name.get (), stream);
655 return;
656 }
657 }
658 else if (ptr_value != 0)
659 {
660 /* Found a non-virtual function: print out the type. */
661 gdb_puts ("(", stream);
662 c_print_type (type, "", stream, -1, 0, current_language->la_language,
663 &type_print_raw_options);
664 gdb_puts (") ", stream);
665 }
666
667 /* We didn't find it; print the raw data. */
668 if (vbit)
669 {
670 gdb_printf (stream, "&virtual table offset ");
671 print_longest (stream, 'd', 1, ptr_value);
672 }
673 else
674 {
675 struct value_print_options opts;
676
677 get_user_print_options (&opts);
678 print_address_demangle (&opts, gdbarch, ptr_value, stream, demangle);
679 }
680
681 if (adjustment)
682 {
683 gdb_printf (stream, ", this adjustment ");
684 print_longest (stream, 'd', 1, adjustment);
685 }
686 }
687
688 /* GNU v3 implementation of cplus_method_ptr_size. */
689
690 static int
691 gnuv3_method_ptr_size (struct type *type)
692 {
693 return 2 * TYPE_LENGTH (builtin_type (type->arch ())->builtin_data_ptr);
694 }
695
696 /* GNU v3 implementation of cplus_make_method_ptr. */
697
698 static void
699 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
700 CORE_ADDR value, int is_virtual)
701 {
702 struct gdbarch *gdbarch = type->arch ();
703 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
704 enum bfd_endian byte_order = type_byte_order (type);
705
706 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
707 always zero, since the method pointer is of the correct type.
708 But if the method pointer came from a base class, this is
709 incorrect - it should be the offset to the base. The best
710 fix might be to create the pointer to member pointing at the
711 base class and cast it to the derived class, but that requires
712 support for adjusting pointers to members when casting them -
713 not currently supported by GDB. */
714
715 if (!gdbarch_vbit_in_delta (gdbarch))
716 {
717 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
718 store_unsigned_integer (contents + size, size, byte_order, 0);
719 }
720 else
721 {
722 store_unsigned_integer (contents, size, byte_order, value);
723 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
724 }
725 }
726
727 /* GNU v3 implementation of cplus_method_ptr_to_value. */
728
729 static struct value *
730 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
731 {
732 struct gdbarch *gdbarch;
733 const gdb_byte *contents = value_contents (method_ptr).data ();
734 CORE_ADDR ptr_value;
735 struct type *self_type, *final_type, *method_type;
736 LONGEST adjustment;
737 int vbit;
738
739 self_type = TYPE_SELF_TYPE (check_typedef (value_type (method_ptr)));
740 final_type = lookup_pointer_type (self_type);
741
742 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
743
744 /* Extract the pointer to member. */
745 gdbarch = self_type->arch ();
746 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
747
748 /* First convert THIS to match the containing type of the pointer to
749 member. This cast may adjust the value of THIS. */
750 *this_p = value_cast (final_type, *this_p);
751
752 /* Then apply whatever adjustment is necessary. This creates a somewhat
753 strange pointer: it claims to have type FINAL_TYPE, but in fact it
754 might not be a valid FINAL_TYPE. For instance, it might be a
755 base class of FINAL_TYPE. And if it's not the primary base class,
756 then printing it out as a FINAL_TYPE object would produce some pretty
757 garbage.
758
759 But we don't really know the type of the first argument in
760 METHOD_TYPE either, which is why this happens. We can't
761 dereference this later as a FINAL_TYPE, but once we arrive in the
762 called method we'll have debugging information for the type of
763 "this" - and that'll match the value we produce here.
764
765 You can provoke this case by casting a Base::* to a Derived::*, for
766 instance. */
767 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
768 *this_p = value_ptradd (*this_p, adjustment);
769 *this_p = value_cast (final_type, *this_p);
770
771 if (vbit)
772 {
773 LONGEST voffset;
774
775 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
776 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
777 method_type, voffset);
778 }
779 else
780 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
781 }
782
783 /* Objects of this type are stored in a hash table and a vector when
784 printing the vtables for a class. */
785
786 struct value_and_voffset
787 {
788 /* The value representing the object. */
789 struct value *value;
790
791 /* The maximum vtable offset we've found for any object at this
792 offset in the outermost object. */
793 int max_voffset;
794 };
795
796 /* Hash function for value_and_voffset. */
797
798 static hashval_t
799 hash_value_and_voffset (const void *p)
800 {
801 const struct value_and_voffset *o = (const struct value_and_voffset *) p;
802
803 return value_address (o->value) + value_embedded_offset (o->value);
804 }
805
806 /* Equality function for value_and_voffset. */
807
808 static int
809 eq_value_and_voffset (const void *a, const void *b)
810 {
811 const struct value_and_voffset *ova = (const struct value_and_voffset *) a;
812 const struct value_and_voffset *ovb = (const struct value_and_voffset *) b;
813
814 return (value_address (ova->value) + value_embedded_offset (ova->value)
815 == value_address (ovb->value) + value_embedded_offset (ovb->value));
816 }
817
818 /* Comparison function for value_and_voffset. */
819
820 static bool
821 compare_value_and_voffset (const struct value_and_voffset *va,
822 const struct value_and_voffset *vb)
823 {
824 CORE_ADDR addra = (value_address (va->value)
825 + value_embedded_offset (va->value));
826 CORE_ADDR addrb = (value_address (vb->value)
827 + value_embedded_offset (vb->value));
828
829 return addra < addrb;
830 }
831
832 /* A helper function used when printing vtables. This determines the
833 key (most derived) sub-object at each address and also computes the
834 maximum vtable offset seen for the corresponding vtable. Updates
835 OFFSET_HASH and OFFSET_VEC with a new value_and_voffset object, if
836 needed. VALUE is the object to examine. */
837
838 static void
839 compute_vtable_size (htab_t offset_hash,
840 std::vector<value_and_voffset *> *offset_vec,
841 struct value *value)
842 {
843 int i;
844 struct type *type = check_typedef (value_type (value));
845 void **slot;
846 struct value_and_voffset search_vo, *current_vo;
847
848 gdb_assert (type->code () == TYPE_CODE_STRUCT);
849
850 /* If the object is not dynamic, then we are done; as it cannot have
851 dynamic base types either. */
852 if (!gnuv3_dynamic_class (type))
853 return;
854
855 /* Update the hash and the vec, if needed. */
856 search_vo.value = value;
857 slot = htab_find_slot (offset_hash, &search_vo, INSERT);
858 if (*slot)
859 current_vo = (struct value_and_voffset *) *slot;
860 else
861 {
862 current_vo = XNEW (struct value_and_voffset);
863 current_vo->value = value;
864 current_vo->max_voffset = -1;
865 *slot = current_vo;
866 offset_vec->push_back (current_vo);
867 }
868
869 /* Update the value_and_voffset object with the highest vtable
870 offset from this class. */
871 for (i = 0; i < TYPE_NFN_FIELDS (type); ++i)
872 {
873 int j;
874 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, i);
875
876 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (type, i); ++j)
877 {
878 if (TYPE_FN_FIELD_VIRTUAL_P (fn, j))
879 {
880 int voffset = TYPE_FN_FIELD_VOFFSET (fn, j);
881
882 if (voffset > current_vo->max_voffset)
883 current_vo->max_voffset = voffset;
884 }
885 }
886 }
887
888 /* Recurse into base classes. */
889 for (i = 0; i < TYPE_N_BASECLASSES (type); ++i)
890 compute_vtable_size (offset_hash, offset_vec, value_field (value, i));
891 }
892
893 /* Helper for gnuv3_print_vtable that prints a single vtable. */
894
895 static void
896 print_one_vtable (struct gdbarch *gdbarch, struct value *value,
897 int max_voffset,
898 struct value_print_options *opts)
899 {
900 int i;
901 struct type *type = check_typedef (value_type (value));
902 struct value *vtable;
903 CORE_ADDR vt_addr;
904
905 vtable = gnuv3_get_vtable (gdbarch, type,
906 value_address (value)
907 + value_embedded_offset (value));
908 vt_addr = value_address (value_field (vtable,
909 vtable_field_virtual_functions));
910
911 gdb_printf (_("vtable for '%s' @ %s (subobject @ %s):\n"),
912 TYPE_SAFE_NAME (type),
913 paddress (gdbarch, vt_addr),
914 paddress (gdbarch, (value_address (value)
915 + value_embedded_offset (value))));
916
917 for (i = 0; i <= max_voffset; ++i)
918 {
919 /* Initialize it just to avoid a GCC false warning. */
920 CORE_ADDR addr = 0;
921 int got_error = 0;
922 struct value *vfn;
923
924 gdb_printf ("[%d]: ", i);
925
926 vfn = value_subscript (value_field (vtable,
927 vtable_field_virtual_functions),
928 i);
929
930 if (gdbarch_vtable_function_descriptors (gdbarch))
931 vfn = value_addr (vfn);
932
933 try
934 {
935 addr = value_as_address (vfn);
936 }
937 catch (const gdb_exception_error &ex)
938 {
939 fprintf_styled (gdb_stdout, metadata_style.style (),
940 _("<error: %s>"), ex.what ());
941 got_error = 1;
942 }
943
944 if (!got_error)
945 print_function_pointer_address (opts, gdbarch, addr, gdb_stdout);
946 gdb_printf ("\n");
947 }
948 }
949
950 /* Implementation of the print_vtable method. */
951
952 static void
953 gnuv3_print_vtable (struct value *value)
954 {
955 struct gdbarch *gdbarch;
956 struct type *type;
957 struct value *vtable;
958 struct value_print_options opts;
959 int count;
960
961 value = coerce_ref (value);
962 type = check_typedef (value_type (value));
963 if (type->code () == TYPE_CODE_PTR)
964 {
965 value = value_ind (value);
966 type = check_typedef (value_type (value));
967 }
968
969 get_user_print_options (&opts);
970
971 /* Respect 'set print object'. */
972 if (opts.objectprint)
973 {
974 value = value_full_object (value, NULL, 0, 0, 0);
975 type = check_typedef (value_type (value));
976 }
977
978 gdbarch = type->arch ();
979
980 vtable = NULL;
981 if (type->code () == TYPE_CODE_STRUCT)
982 vtable = gnuv3_get_vtable (gdbarch, type,
983 value_as_address (value_addr (value)));
984
985 if (!vtable)
986 {
987 gdb_printf (_("This object does not have a virtual function table\n"));
988 return;
989 }
990
991 htab_up offset_hash (htab_create_alloc (1, hash_value_and_voffset,
992 eq_value_and_voffset,
993 xfree, xcalloc, xfree));
994 std::vector<value_and_voffset *> result_vec;
995
996 compute_vtable_size (offset_hash.get (), &result_vec, value);
997 std::sort (result_vec.begin (), result_vec.end (),
998 compare_value_and_voffset);
999
1000 count = 0;
1001 for (value_and_voffset *iter : result_vec)
1002 {
1003 if (iter->max_voffset >= 0)
1004 {
1005 if (count > 0)
1006 gdb_printf ("\n");
1007 print_one_vtable (gdbarch, iter->value, iter->max_voffset, &opts);
1008 ++count;
1009 }
1010 }
1011 }
1012
1013 /* Return a GDB type representing `struct std::type_info', laid out
1014 appropriately for ARCH.
1015
1016 We use this function as the gdbarch per-architecture data
1017 initialization function. */
1018
1019 static void *
1020 build_std_type_info_type (struct gdbarch *arch)
1021 {
1022 struct type *t;
1023 struct field *field_list, *field;
1024 int offset;
1025 struct type *void_ptr_type
1026 = builtin_type (arch)->builtin_data_ptr;
1027 struct type *char_type
1028 = builtin_type (arch)->builtin_char;
1029 struct type *char_ptr_type
1030 = make_pointer_type (make_cv_type (1, 0, char_type, NULL), NULL);
1031
1032 field_list = XCNEWVEC (struct field, 2);
1033 field = &field_list[0];
1034 offset = 0;
1035
1036 /* The vtable. */
1037 field->set_name ("_vptr.type_info");
1038 field->set_type (void_ptr_type);
1039 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1040 offset += TYPE_LENGTH (field->type ());
1041 field++;
1042
1043 /* The name. */
1044 field->set_name ("__name");
1045 field->set_type (char_ptr_type);
1046 field->set_loc_bitpos (offset * TARGET_CHAR_BIT);
1047 offset += TYPE_LENGTH (field->type ());
1048 field++;
1049
1050 gdb_assert (field == (field_list + 2));
1051
1052 t = arch_type (arch, TYPE_CODE_STRUCT, offset * TARGET_CHAR_BIT, NULL);
1053 t->set_num_fields (field - field_list);
1054 t->set_fields (field_list);
1055 t->set_name ("gdb_gnu_v3_type_info");
1056 INIT_CPLUS_SPECIFIC (t);
1057
1058 return t;
1059 }
1060
1061 /* Implement the 'get_typeid_type' method. */
1062
1063 static struct type *
1064 gnuv3_get_typeid_type (struct gdbarch *gdbarch)
1065 {
1066 struct symbol *typeinfo;
1067 struct type *typeinfo_type;
1068
1069 typeinfo = lookup_symbol ("std::type_info", NULL, STRUCT_DOMAIN,
1070 NULL).symbol;
1071 if (typeinfo == NULL)
1072 typeinfo_type
1073 = (struct type *) gdbarch_data (gdbarch, std_type_info_gdbarch_data);
1074 else
1075 typeinfo_type = typeinfo->type ();
1076
1077 return typeinfo_type;
1078 }
1079
1080 /* Implement the 'get_typeid' method. */
1081
1082 static struct value *
1083 gnuv3_get_typeid (struct value *value)
1084 {
1085 struct type *typeinfo_type;
1086 struct type *type;
1087 struct gdbarch *gdbarch;
1088 struct value *result;
1089 std::string type_name;
1090 gdb::unique_xmalloc_ptr<char> canonical;
1091
1092 /* We have to handle values a bit trickily here, to allow this code
1093 to work properly with non_lvalue values that are really just
1094 disguised types. */
1095 if (value_lval_const (value) == lval_memory)
1096 value = coerce_ref (value);
1097
1098 type = check_typedef (value_type (value));
1099
1100 /* In the non_lvalue case, a reference might have slipped through
1101 here. */
1102 if (type->code () == TYPE_CODE_REF)
1103 type = check_typedef (TYPE_TARGET_TYPE (type));
1104
1105 /* Ignore top-level cv-qualifiers. */
1106 type = make_cv_type (0, 0, type, NULL);
1107 gdbarch = type->arch ();
1108
1109 type_name = type_to_string (type);
1110 if (type_name.empty ())
1111 error (_("cannot find typeinfo for unnamed type"));
1112
1113 /* We need to canonicalize the type name here, because we do lookups
1114 using the demangled name, and so we must match the format it
1115 uses. E.g., GDB tends to use "const char *" as a type name, but
1116 the demangler uses "char const *". */
1117 canonical = cp_canonicalize_string (type_name.c_str ());
1118 const char *name = (canonical == nullptr
1119 ? type_name.c_str ()
1120 : canonical.get ());
1121
1122 typeinfo_type = gnuv3_get_typeid_type (gdbarch);
1123
1124 /* We check for lval_memory because in the "typeid (type-id)" case,
1125 the type is passed via a not_lval value object. */
1126 if (type->code () == TYPE_CODE_STRUCT
1127 && value_lval_const (value) == lval_memory
1128 && gnuv3_dynamic_class (type))
1129 {
1130 struct value *vtable, *typeinfo_value;
1131 CORE_ADDR address = value_address (value) + value_embedded_offset (value);
1132
1133 vtable = gnuv3_get_vtable (gdbarch, type, address);
1134 if (vtable == NULL)
1135 error (_("cannot find typeinfo for object of type '%s'"),
1136 name);
1137 typeinfo_value = value_field (vtable, vtable_field_type_info);
1138 result = value_ind (value_cast (make_pointer_type (typeinfo_type, NULL),
1139 typeinfo_value));
1140 }
1141 else
1142 {
1143 std::string sym_name = std::string ("typeinfo for ") + name;
1144 bound_minimal_symbol minsym
1145 = lookup_minimal_symbol (sym_name.c_str (), NULL, NULL);
1146
1147 if (minsym.minsym == NULL)
1148 error (_("could not find typeinfo symbol for '%s'"), name);
1149
1150 result = value_at_lazy (typeinfo_type, minsym.value_address ());
1151 }
1152
1153 return result;
1154 }
1155
1156 /* Implement the 'get_typename_from_type_info' method. */
1157
1158 static std::string
1159 gnuv3_get_typename_from_type_info (struct value *type_info_ptr)
1160 {
1161 struct gdbarch *gdbarch = value_type (type_info_ptr)->arch ();
1162 struct bound_minimal_symbol typeinfo_sym;
1163 CORE_ADDR addr;
1164 const char *symname;
1165 const char *class_name;
1166 const char *atsign;
1167
1168 addr = value_as_address (type_info_ptr);
1169 typeinfo_sym = lookup_minimal_symbol_by_pc (addr);
1170 if (typeinfo_sym.minsym == NULL)
1171 error (_("could not find minimal symbol for typeinfo address %s"),
1172 paddress (gdbarch, addr));
1173
1174 #define TYPEINFO_PREFIX "typeinfo for "
1175 #define TYPEINFO_PREFIX_LEN (sizeof (TYPEINFO_PREFIX) - 1)
1176 symname = typeinfo_sym.minsym->demangled_name ();
1177 if (symname == NULL || strncmp (symname, TYPEINFO_PREFIX,
1178 TYPEINFO_PREFIX_LEN))
1179 error (_("typeinfo symbol '%s' has unexpected name"),
1180 typeinfo_sym.minsym->linkage_name ());
1181 class_name = symname + TYPEINFO_PREFIX_LEN;
1182
1183 /* Strip off @plt and version suffixes. */
1184 atsign = strchr (class_name, '@');
1185 if (atsign != NULL)
1186 return std::string (class_name, atsign - class_name);
1187 return class_name;
1188 }
1189
1190 /* Implement the 'get_type_from_type_info' method. */
1191
1192 static struct type *
1193 gnuv3_get_type_from_type_info (struct value *type_info_ptr)
1194 {
1195 /* We have to parse the type name, since in general there is not a
1196 symbol for a type. This is somewhat bogus since there may be a
1197 mis-parse. Another approach might be to re-use the demangler's
1198 internal form to reconstruct the type somehow. */
1199 std::string type_name = gnuv3_get_typename_from_type_info (type_info_ptr);
1200 expression_up expr (parse_expression (type_name.c_str ()));
1201 struct value *type_val = evaluate_type (expr.get ());
1202 return value_type (type_val);
1203 }
1204
1205 /* Determine if we are currently in a C++ thunk. If so, get the address
1206 of the routine we are thunking to and continue to there instead. */
1207
1208 static CORE_ADDR
1209 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
1210 {
1211 CORE_ADDR real_stop_pc, method_stop_pc, func_addr;
1212 struct gdbarch *gdbarch = get_frame_arch (frame);
1213 struct bound_minimal_symbol thunk_sym, fn_sym;
1214 struct obj_section *section;
1215 const char *thunk_name, *fn_name;
1216
1217 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
1218 if (real_stop_pc == 0)
1219 real_stop_pc = stop_pc;
1220
1221 /* Find the linker symbol for this potential thunk. */
1222 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
1223 section = find_pc_section (real_stop_pc);
1224 if (thunk_sym.minsym == NULL || section == NULL)
1225 return 0;
1226
1227 /* The symbol's demangled name should be something like "virtual
1228 thunk to FUNCTION", where FUNCTION is the name of the function
1229 being thunked to. */
1230 thunk_name = thunk_sym.minsym->demangled_name ();
1231 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
1232 return 0;
1233
1234 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
1235 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
1236 if (fn_sym.minsym == NULL)
1237 return 0;
1238
1239 method_stop_pc = fn_sym.value_address ();
1240
1241 /* Some targets have minimal symbols pointing to function descriptors
1242 (powerpc 64 for example). Make sure to retrieve the address
1243 of the real function from the function descriptor before passing on
1244 the address to other layers of GDB. */
1245 func_addr = gdbarch_convert_from_func_ptr_addr
1246 (gdbarch, method_stop_pc, current_inferior ()->top_target ());
1247 if (func_addr != 0)
1248 method_stop_pc = func_addr;
1249
1250 real_stop_pc = gdbarch_skip_trampoline_code
1251 (gdbarch, frame, method_stop_pc);
1252 if (real_stop_pc == 0)
1253 real_stop_pc = method_stop_pc;
1254
1255 return real_stop_pc;
1256 }
1257
1258 /* A member function is in one these states. */
1259
1260 enum definition_style
1261 {
1262 DOES_NOT_EXIST_IN_SOURCE,
1263 DEFAULTED_INSIDE,
1264 DEFAULTED_OUTSIDE,
1265 DELETED,
1266 EXPLICIT,
1267 };
1268
1269 /* Return how the given field is defined. */
1270
1271 static definition_style
1272 get_def_style (struct fn_field *fn, int fieldelem)
1273 {
1274 if (TYPE_FN_FIELD_DELETED (fn, fieldelem))
1275 return DELETED;
1276
1277 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
1278 return DOES_NOT_EXIST_IN_SOURCE;
1279
1280 switch (TYPE_FN_FIELD_DEFAULTED (fn, fieldelem))
1281 {
1282 case DW_DEFAULTED_no:
1283 return EXPLICIT;
1284 case DW_DEFAULTED_in_class:
1285 return DEFAULTED_INSIDE;
1286 case DW_DEFAULTED_out_of_class:
1287 return DEFAULTED_OUTSIDE;
1288 default:
1289 break;
1290 }
1291
1292 return EXPLICIT;
1293 }
1294
1295 /* Helper functions to determine whether the given definition style
1296 denotes that the definition is user-provided or implicit.
1297 Being defaulted outside the class decl counts as an explicit
1298 user-definition, while being defaulted inside is implicit. */
1299
1300 static bool
1301 is_user_provided_def (definition_style def)
1302 {
1303 return def == EXPLICIT || def == DEFAULTED_OUTSIDE;
1304 }
1305
1306 static bool
1307 is_implicit_def (definition_style def)
1308 {
1309 return def == DOES_NOT_EXIST_IN_SOURCE || def == DEFAULTED_INSIDE;
1310 }
1311
1312 /* Helper function to decide if METHOD_TYPE is a copy/move
1313 constructor type for CLASS_TYPE. EXPECTED is the expected
1314 type code for the "right-hand-side" argument.
1315 This function is supposed to be used by the IS_COPY_CONSTRUCTOR_TYPE
1316 and IS_MOVE_CONSTRUCTOR_TYPE functions below. Normally, you should
1317 not need to call this directly. */
1318
1319 static bool
1320 is_copy_or_move_constructor_type (struct type *class_type,
1321 struct type *method_type,
1322 type_code expected)
1323 {
1324 /* The method should take at least two arguments... */
1325 if (method_type->num_fields () < 2)
1326 return false;
1327
1328 /* ...and the second argument should be the same as the class
1329 type, with the expected type code... */
1330 struct type *arg_type = method_type->field (1).type ();
1331
1332 if (arg_type->code () != expected)
1333 return false;
1334
1335 struct type *target = check_typedef (TYPE_TARGET_TYPE (arg_type));
1336 if (!(class_types_same_p (target, class_type)))
1337 return false;
1338
1339 /* ...and if any of the remaining arguments don't have a default value
1340 then this is not a copy or move constructor, but just a
1341 constructor. */
1342 for (int i = 2; i < method_type->num_fields (); i++)
1343 {
1344 arg_type = method_type->field (i).type ();
1345 /* FIXME aktemur/2019-10-31: As of this date, neither
1346 clang++-7.0.0 nor g++-8.2.0 produce a DW_AT_default_value
1347 attribute. GDB is also not set to read this attribute, yet.
1348 Hence, we immediately return false if there are more than
1349 2 parameters.
1350 GCC bug link:
1351 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=42959
1352 */
1353 return false;
1354 }
1355
1356 return true;
1357 }
1358
1359 /* Return true if METHOD_TYPE is a copy ctor type for CLASS_TYPE. */
1360
1361 static bool
1362 is_copy_constructor_type (struct type *class_type,
1363 struct type *method_type)
1364 {
1365 return is_copy_or_move_constructor_type (class_type, method_type,
1366 TYPE_CODE_REF);
1367 }
1368
1369 /* Return true if METHOD_TYPE is a move ctor type for CLASS_TYPE. */
1370
1371 static bool
1372 is_move_constructor_type (struct type *class_type,
1373 struct type *method_type)
1374 {
1375 return is_copy_or_move_constructor_type (class_type, method_type,
1376 TYPE_CODE_RVALUE_REF);
1377 }
1378
1379 /* Return pass-by-reference information for the given TYPE.
1380
1381 The rule in the v3 ABI document comes from section 3.1.1. If the
1382 type has a non-trivial copy constructor or destructor, then the
1383 caller must make a copy (by calling the copy constructor if there
1384 is one or perform the copy itself otherwise), pass the address of
1385 the copy, and then destroy the temporary (if necessary).
1386
1387 For return values with non-trivial copy/move constructors or
1388 destructors, space will be allocated in the caller, and a pointer
1389 will be passed as the first argument (preceding "this").
1390
1391 We don't have a bulletproof mechanism for determining whether a
1392 constructor or destructor is trivial. For GCC and DWARF5 debug
1393 information, we can check the calling_convention attribute,
1394 the 'artificial' flag, the 'defaulted' attribute, and the
1395 'deleted' attribute. */
1396
1397 static struct language_pass_by_ref_info
1398 gnuv3_pass_by_reference (struct type *type)
1399 {
1400 int fieldnum, fieldelem;
1401
1402 type = check_typedef (type);
1403
1404 /* Start with the default values. */
1405 struct language_pass_by_ref_info info;
1406
1407 bool has_cc_attr = false;
1408 bool is_pass_by_value = false;
1409 bool is_dynamic = false;
1410 definition_style cctor_def = DOES_NOT_EXIST_IN_SOURCE;
1411 definition_style dtor_def = DOES_NOT_EXIST_IN_SOURCE;
1412 definition_style mctor_def = DOES_NOT_EXIST_IN_SOURCE;
1413
1414 /* We're only interested in things that can have methods. */
1415 if (type->code () != TYPE_CODE_STRUCT
1416 && type->code () != TYPE_CODE_UNION)
1417 return info;
1418
1419 /* The compiler may have emitted the calling convention attribute.
1420 Note: GCC does not produce this attribute as of version 9.2.1.
1421 Bug link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92418 */
1422 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_value)
1423 {
1424 has_cc_attr = true;
1425 is_pass_by_value = true;
1426 /* Do not return immediately. We have to find out if this type
1427 is copy_constructible and destructible. */
1428 }
1429
1430 if (TYPE_CPLUS_CALLING_CONVENTION (type) == DW_CC_pass_by_reference)
1431 {
1432 has_cc_attr = true;
1433 is_pass_by_value = false;
1434 }
1435
1436 /* A dynamic class has a non-trivial copy constructor.
1437 See c++98 section 12.8 Copying class objects [class.copy]. */
1438 if (gnuv3_dynamic_class (type))
1439 is_dynamic = true;
1440
1441 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
1442 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
1443 fieldelem++)
1444 {
1445 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
1446 const char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
1447 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
1448
1449 if (name[0] == '~')
1450 {
1451 /* We've found a destructor.
1452 There should be at most one dtor definition. */
1453 gdb_assert (dtor_def == DOES_NOT_EXIST_IN_SOURCE);
1454 dtor_def = get_def_style (fn, fieldelem);
1455 }
1456 else if (is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem))
1457 || TYPE_FN_FIELD_CONSTRUCTOR (fn, fieldelem))
1458 {
1459 /* FIXME drow/2007-09-23: We could do this using the name of
1460 the method and the name of the class instead of dealing
1461 with the mangled name. We don't have a convenient function
1462 to strip off both leading scope qualifiers and trailing
1463 template arguments yet. */
1464 if (is_copy_constructor_type (type, fieldtype))
1465 {
1466 /* There may be more than one cctors. E.g.: one that
1467 take a const parameter and another that takes a
1468 non-const parameter. Such as:
1469
1470 class K {
1471 K (const K &k)...
1472 K (K &k)...
1473 };
1474
1475 It is sufficient for the type to be non-trivial
1476 even only one of the cctors is explicit.
1477 Therefore, update the cctor_def value in the
1478 implicit -> explicit direction, not backwards. */
1479
1480 if (is_implicit_def (cctor_def))
1481 cctor_def = get_def_style (fn, fieldelem);
1482 }
1483 else if (is_move_constructor_type (type, fieldtype))
1484 {
1485 /* Again, there may be multiple move ctors. Update the
1486 mctor_def value if we found an explicit def and the
1487 existing one is not explicit. Otherwise retain the
1488 existing value. */
1489 if (is_implicit_def (mctor_def))
1490 mctor_def = get_def_style (fn, fieldelem);
1491 }
1492 }
1493 }
1494
1495 bool cctor_implicitly_deleted
1496 = (mctor_def != DOES_NOT_EXIST_IN_SOURCE
1497 && cctor_def == DOES_NOT_EXIST_IN_SOURCE);
1498
1499 bool cctor_explicitly_deleted = (cctor_def == DELETED);
1500
1501 if (cctor_implicitly_deleted || cctor_explicitly_deleted)
1502 info.copy_constructible = false;
1503
1504 if (dtor_def == DELETED)
1505 info.destructible = false;
1506
1507 info.trivially_destructible = is_implicit_def (dtor_def);
1508
1509 info.trivially_copy_constructible
1510 = (is_implicit_def (cctor_def)
1511 && !is_dynamic);
1512
1513 info.trivially_copyable
1514 = (info.trivially_copy_constructible
1515 && info.trivially_destructible
1516 && !is_user_provided_def (mctor_def));
1517
1518 /* Even if all the constructors and destructors were artificial, one
1519 of them may have invoked a non-artificial constructor or
1520 destructor in a base class. If any base class needs to be passed
1521 by reference, so does this class. Similarly for members, which
1522 are constructed whenever this class is. We do not need to worry
1523 about recursive loops here, since we are only looking at members
1524 of complete class type. Also ignore any static members. */
1525 for (fieldnum = 0; fieldnum < type->num_fields (); fieldnum++)
1526 if (!field_is_static (&type->field (fieldnum)))
1527 {
1528 struct type *field_type = type->field (fieldnum).type ();
1529
1530 /* For arrays, make the decision based on the element type. */
1531 if (field_type->code () == TYPE_CODE_ARRAY)
1532 field_type = check_typedef (TYPE_TARGET_TYPE (field_type));
1533
1534 struct language_pass_by_ref_info field_info
1535 = gnuv3_pass_by_reference (field_type);
1536
1537 if (!field_info.copy_constructible)
1538 info.copy_constructible = false;
1539 if (!field_info.destructible)
1540 info.destructible = false;
1541 if (!field_info.trivially_copyable)
1542 info.trivially_copyable = false;
1543 if (!field_info.trivially_copy_constructible)
1544 info.trivially_copy_constructible = false;
1545 if (!field_info.trivially_destructible)
1546 info.trivially_destructible = false;
1547 }
1548
1549 /* Consistency check. */
1550 if (has_cc_attr && info.trivially_copyable != is_pass_by_value)
1551 {
1552 /* DWARF CC attribute is not the same as the inferred value;
1553 use the DWARF attribute. */
1554 info.trivially_copyable = is_pass_by_value;
1555 }
1556
1557 return info;
1558 }
1559
1560 static void
1561 init_gnuv3_ops (void)
1562 {
1563 vtable_type_gdbarch_data
1564 = gdbarch_data_register_post_init (build_gdb_vtable_type);
1565 std_type_info_gdbarch_data
1566 = gdbarch_data_register_post_init (build_std_type_info_type);
1567
1568 gnu_v3_abi_ops.shortname = "gnu-v3";
1569 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
1570 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
1571 gnu_v3_abi_ops.is_destructor_name =
1572 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
1573 gnu_v3_abi_ops.is_constructor_name =
1574 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
1575 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
1576 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
1577 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
1578 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
1579 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
1580 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
1581 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
1582 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
1583 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
1584 gnu_v3_abi_ops.print_vtable = gnuv3_print_vtable;
1585 gnu_v3_abi_ops.get_typeid = gnuv3_get_typeid;
1586 gnu_v3_abi_ops.get_typeid_type = gnuv3_get_typeid_type;
1587 gnu_v3_abi_ops.get_type_from_type_info = gnuv3_get_type_from_type_info;
1588 gnu_v3_abi_ops.get_typename_from_type_info
1589 = gnuv3_get_typename_from_type_info;
1590 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
1591 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
1592 }
1593
1594 void _initialize_gnu_v3_abi ();
1595 void
1596 _initialize_gnu_v3_abi ()
1597 {
1598 init_gnuv3_ops ();
1599
1600 register_cp_abi (&gnu_v3_abi_ops);
1601 set_cp_abi_as_auto_default (gnu_v3_abi_ops.shortname);
1602 }