Add `set print repeats' tests for C/C++ arrays
[binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2022 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235
236 #define r_ofs(x) (offsetof(TSS,x))
237
238 static struct
239 {
240 size_t tss_ofs;
241 size_t size;
242 }
243 regno_mapping[] =
244 {
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
255 {r_ofs (tss_cs), 2},
256 {r_ofs (tss_ss), 2},
257 {r_ofs (tss_ds), 2},
258 {r_ofs (tss_es), 2},
259 {r_ofs (tss_fs), 2},
260 {r_ofs (tss_gs), 2},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
262 {1, 10},
263 {2, 10},
264 {3, 10},
265 {4, 10},
266 {5, 10},
267 {6, 10},
268 {7, 10},
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
279 };
280
281 static struct
282 {
283 int go32_sig;
284 enum gdb_signal gdb_sig;
285 }
286 sig_map[] =
287 {
288 {0, GDB_SIGNAL_FPE},
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
293 {2, GDB_SIGNAL_BUS},
294 {3, GDB_SIGNAL_TRAP},
295 {4, GDB_SIGNAL_FPE},
296 {5, GDB_SIGNAL_SEGV},
297 {6, GDB_SIGNAL_ILL},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
315 };
316
317 static struct {
318 enum gdb_signal gdb_sig;
319 int djgpp_excepno;
320 } excepn_map[] = {
321 {GDB_SIGNAL_0, -1},
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327 details. */
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
335 };
336
337 /* The go32 target. */
338
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
340 {
341 void attach (const char *, int) override;
342
343 void resume (ptid_t, int, enum gdb_signal) override;
344
345 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
346
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
349
350 enum target_xfer_status xfer_partial (enum target_object object,
351 const char *annex,
352 gdb_byte *readbuf,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
356
357 void files_info () override;
358
359 void terminal_init () override;
360
361 void terminal_inferior () override;
362
363 void terminal_ours_for_output () override;
364
365 void terminal_ours () override;
366
367 void terminal_info (const char *, int) override;
368
369 void pass_ctrlc () override;
370
371 void kill () override;
372
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
375
376 void mourn_inferior () override;
377
378 bool thread_alive (ptid_t ptid) override;
379
380 std::string pid_to_str (ptid_t) override;
381 };
382
383 static go32_nat_target the_go32_nat_target;
384
385 void
386 go32_nat_target::attach (const char *args, int from_tty)
387 {
388 error (_("\
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
391 }
392
393 static int resume_is_step;
394 static int resume_signal = -1;
395
396 void
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
398 {
399 int i;
400
401 resume_is_step = step;
402
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
404 {
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
408 {
409 resume_signal = excepn_map[i].djgpp_excepno;
410 break;
411 }
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
415 }
416 }
417
418 static char child_cwd[FILENAME_MAX];
419
420 ptid_t
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
422 target_wait_flags options)
423 {
424 int i;
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
428
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
430 if (resume_is_step)
431 {
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
439 SIGTRAP.
440
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448 {
449 unsigned char INT3_opcode = 0xCC;
450
451 INT3_addr
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
456 }
457 else
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459 }
460
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
464 {
465 a_tss.tss_trap = 0;
466 a_tss.tss_irqn = 0xff;
467 }
468 else
469 {
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
472 }
473
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
480 run it. */
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
484 if (!*child_cwd)
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
487
488 chdir (child_cwd);
489
490 #if __DJGPP_MINOR__ < 3
491 load_npx ();
492 #endif
493 run_child ();
494 #if __DJGPP_MINOR__ < 3
495 save_npx ();
496 #endif
497
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500 {
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
505 a_tss.tss_irqn = 1;
506 a_tss.tss_eflags |= 0x0100;
507 }
508
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 if (current_directory != NULL)
511 chdir (current_directory);
512
513 if (a_tss.tss_irqn == 0x21)
514 status->set_exited (a_tss.tss_eax & 0xff);
515 else
516 {
517 status->set_stopped (GDB_SIGNAL_UNKNOWN);
518 for (i = 0; sig_map[i].go32_sig != -1; i++)
519 {
520 if (a_tss.tss_irqn == sig_map[i].go32_sig)
521 {
522 #if __DJGPP_MINOR__ < 3
523 status->set_stopped (sig_map[i].gdb_sig);
524 if (status->sig () != GDB_SIGNAL_TRAP)
525 status->set_signalled (status->sig ());
526 #else
527 status->set_stopped (sig_map[i].gdb_sig);
528 #endif
529 break;
530 }
531 }
532 }
533 return ptid_t (SOME_PID);
534 }
535
536 static void
537 fetch_register (struct regcache *regcache, int regno)
538 {
539 struct gdbarch *gdbarch = regcache->arch ();
540 if (regno < gdbarch_fp0_regnum (gdbarch))
541 regcache->raw_supply (regno,
542 (char *) &a_tss + regno_mapping[regno].tss_ofs);
543 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
544 regno))
545 i387_supply_fsave (regcache, regno, &npx);
546 else
547 internal_error (__FILE__, __LINE__,
548 _("Invalid register no. %d in fetch_register."), regno);
549 }
550
551 void
552 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
553 {
554 if (regno >= 0)
555 fetch_register (regcache, regno);
556 else
557 {
558 for (regno = 0;
559 regno < gdbarch_fp0_regnum (regcache->arch ());
560 regno++)
561 fetch_register (regcache, regno);
562 i387_supply_fsave (regcache, -1, &npx);
563 }
564 }
565
566 static void
567 store_register (const struct regcache *regcache, int regno)
568 {
569 struct gdbarch *gdbarch = regcache->arch ();
570 if (regno < gdbarch_fp0_regnum (gdbarch))
571 regcache->raw_collect (regno,
572 (char *) &a_tss + regno_mapping[regno].tss_ofs);
573 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
574 regno))
575 i387_collect_fsave (regcache, regno, &npx);
576 else
577 internal_error (__FILE__, __LINE__,
578 _("Invalid register no. %d in store_register."), regno);
579 }
580
581 void
582 go32_nat_target::store_registers (struct regcache *regcache, int regno)
583 {
584 unsigned r;
585
586 if (regno >= 0)
587 store_register (regcache, regno);
588 else
589 {
590 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
591 store_register (regcache, r);
592 i387_collect_fsave (regcache, -1, &npx);
593 }
594 }
595
596 /* Const-correct version of DJGPP's write_child, which unfortunately
597 takes a non-const buffer pointer. */
598
599 static int
600 my_write_child (unsigned child_addr, const void *buf, unsigned len)
601 {
602 static void *buffer = NULL;
603 static unsigned buffer_len = 0;
604 int res;
605
606 if (buffer_len < len)
607 {
608 buffer = xrealloc (buffer, len);
609 buffer_len = len;
610 }
611
612 memcpy (buffer, buf, len);
613 res = write_child (child_addr, buffer, len);
614 return res;
615 }
616
617 /* Helper for go32_xfer_partial that handles memory transfers.
618 Arguments are like target_xfer_partial. */
619
620 static enum target_xfer_status
621 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
622 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
623 {
624 int res;
625
626 if (writebuf != NULL)
627 res = my_write_child (memaddr, writebuf, len);
628 else
629 res = read_child (memaddr, readbuf, len);
630
631 /* read_child and write_child return zero on success, non-zero on
632 failure. */
633 if (res != 0)
634 return TARGET_XFER_E_IO;
635
636 *xfered_len = len;
637 return TARGET_XFER_OK;
638 }
639
640 /* Target to_xfer_partial implementation. */
641
642 enum target_xfer_status
643 go32_nat_target::xfer_partial (enum target_object object,
644 const char *annex, gdb_byte *readbuf,
645 const gdb_byte *writebuf, ULONGEST offset,
646 ULONGEST len,
647 ULONGEST *xfered_len)
648 {
649 switch (object)
650 {
651 case TARGET_OBJECT_MEMORY:
652 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
653
654 default:
655 return this->beneath ()->xfer_partial (object, annex,
656 readbuf, writebuf, offset, len,
657 xfered_len);
658 }
659 }
660
661 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
662
663 void
664 go32_nat_target::files_info ()
665 {
666 printf_filtered ("You are running a DJGPP V2 program.\n");
667 }
668
669 void
670 go32_nat_target::kill_inferior ()
671 {
672 mourn_inferior ();
673 }
674
675 void
676 go32_nat_target::create_inferior (const char *exec_file,
677 const std::string &allargs,
678 char **env, int from_tty)
679 {
680 extern char **environ;
681 jmp_buf start_state;
682 char *cmdline;
683 char **env_save = environ;
684 size_t cmdlen;
685 struct inferior *inf;
686 int result;
687 const char *args = allargs.c_str ();
688
689 /* If no exec file handed to us, get it from the exec-file command -- with
690 a good, common error message if none is specified. */
691 if (exec_file == 0)
692 exec_file = get_exec_file (1);
693
694 resume_signal = -1;
695 resume_is_step = 0;
696
697 /* Initialize child's cwd as empty to be initialized when starting
698 the child. */
699 *child_cwd = 0;
700
701 /* Init command line storage. */
702 if (redir_debug_init (&child_cmd) == -1)
703 internal_error (__FILE__, __LINE__,
704 _("Cannot allocate redirection storage: "
705 "not enough memory.\n"));
706
707 /* Parse the command line and create redirections. */
708 if (strpbrk (args, "<>"))
709 {
710 if (redir_cmdline_parse (args, &child_cmd) == 0)
711 args = child_cmd.command;
712 else
713 error (_("Syntax error in command line."));
714 }
715 else
716 child_cmd.command = xstrdup (args);
717
718 cmdlen = strlen (args);
719 /* v2loadimage passes command lines via DOS memory, so it cannot
720 possibly handle commands longer than 1MB. */
721 if (cmdlen > 1024*1024)
722 error (_("Command line too long."));
723
724 cmdline = (char *) xmalloc (cmdlen + 4);
725 strcpy (cmdline + 1, args);
726 /* If the command-line length fits into DOS 126-char limits, use the
727 DOS command tail format; otherwise, tell v2loadimage to pass it
728 through a buffer in conventional memory. */
729 if (cmdlen < 127)
730 {
731 cmdline[0] = strlen (args);
732 cmdline[cmdlen + 1] = 13;
733 }
734 else
735 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
736
737 environ = env;
738
739 result = v2loadimage (exec_file, cmdline, start_state);
740
741 environ = env_save;
742 xfree (cmdline);
743
744 if (result != 0)
745 error (_("Load failed for image %s"), exec_file);
746
747 edi_init (start_state);
748 #if __DJGPP_MINOR__ < 3
749 save_npx ();
750 #endif
751
752 inf = current_inferior ();
753 inferior_appeared (inf, SOME_PID);
754
755 if (!inf->target_is_pushed (this))
756 inf->push_target (this);
757
758 thread_info *thr = add_thread_silent (ptid_t (SOME_PID));
759 switch_to_thread (thr);
760
761 clear_proceed_status (0);
762 insert_breakpoints ();
763 prog_has_started = 1;
764 }
765
766 void
767 go32_nat_target::mourn_inferior ()
768 {
769 redir_cmdline_delete (&child_cmd);
770 resume_signal = -1;
771 resume_is_step = 0;
772
773 cleanup_client ();
774
775 /* We need to make sure all the breakpoint enable bits in the DR7
776 register are reset when the inferior exits. Otherwise, if they
777 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
778 failure to set more watchpoints, and other calamities. It would
779 be nice if GDB itself would take care to remove all breakpoints
780 at all times, but it doesn't, probably under an assumption that
781 the OS cleans up when the debuggee exits. */
782 x86_cleanup_dregs ();
783
784 prog_has_started = 0;
785
786 generic_mourn_inferior ();
787 maybe_unpush_target ();
788 }
789
790 /* Hardware watchpoint support. */
791
792 #define D_REGS edi.dr
793 #define CONTROL D_REGS[7]
794 #define STATUS D_REGS[6]
795
796 /* Pass the address ADDR to the inferior in the I'th debug register.
797 Here we just store the address in D_REGS, the watchpoint will be
798 actually set up when go32_wait runs the debuggee. */
799 static void
800 go32_set_dr (int i, CORE_ADDR addr)
801 {
802 if (i < 0 || i > 3)
803 internal_error (__FILE__, __LINE__,
804 _("Invalid register %d in go32_set_dr.\n"), i);
805 D_REGS[i] = addr;
806 }
807
808 /* Pass the value VAL to the inferior in the DR7 debug control
809 register. Here we just store the address in D_REGS, the watchpoint
810 will be actually set up when go32_wait runs the debuggee. */
811 static void
812 go32_set_dr7 (unsigned long val)
813 {
814 CONTROL = val;
815 }
816
817 /* Get the value of the DR6 debug status register from the inferior.
818 Here we just return the value stored in D_REGS, as we've got it
819 from the last go32_wait call. */
820 static unsigned long
821 go32_get_dr6 (void)
822 {
823 return STATUS;
824 }
825
826 /* Get the value of the DR7 debug status register from the inferior.
827 Here we just return the value stored in D_REGS, as we've got it
828 from the last go32_wait call. */
829
830 static unsigned long
831 go32_get_dr7 (void)
832 {
833 return CONTROL;
834 }
835
836 /* Get the value of the DR debug register I from the inferior. Here
837 we just return the value stored in D_REGS, as we've got it from the
838 last go32_wait call. */
839
840 static CORE_ADDR
841 go32_get_dr (int i)
842 {
843 if (i < 0 || i > 3)
844 internal_error (__FILE__, __LINE__,
845 _("Invalid register %d in go32_get_dr.\n"), i);
846 return D_REGS[i];
847 }
848
849 /* Put the device open on handle FD into either raw or cooked
850 mode, return 1 if it was in raw mode, zero otherwise. */
851
852 static int
853 device_mode (int fd, int raw_p)
854 {
855 int oldmode, newmode;
856 __dpmi_regs regs;
857
858 regs.x.ax = 0x4400;
859 regs.x.bx = fd;
860 __dpmi_int (0x21, &regs);
861 if (regs.x.flags & 1)
862 return -1;
863 newmode = oldmode = regs.x.dx;
864
865 if (raw_p)
866 newmode |= 0x20;
867 else
868 newmode &= ~0x20;
869
870 if (oldmode & 0x80) /* Only for character dev. */
871 {
872 regs.x.ax = 0x4401;
873 regs.x.bx = fd;
874 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
875 __dpmi_int (0x21, &regs);
876 if (regs.x.flags & 1)
877 return -1;
878 }
879 return (oldmode & 0x20) == 0x20;
880 }
881
882
883 static int inf_mode_valid = 0;
884 static int inf_terminal_mode;
885
886 /* This semaphore is needed because, amazingly enough, GDB calls
887 target.to_terminal_ours more than once after the inferior stops.
888 But we need the information from the first call only, since the
889 second call will always see GDB's own cooked terminal. */
890 static int terminal_is_ours = 1;
891
892 void
893 go32_nat_target::terminal_init ()
894 {
895 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
896 terminal_is_ours = 1;
897 }
898
899 void
900 go32_nat_target::terminal_info (const char *args, int from_tty)
901 {
902 printf_filtered ("Inferior's terminal is in %s mode.\n",
903 !inf_mode_valid
904 ? "default" : inf_terminal_mode ? "raw" : "cooked");
905
906 #if __DJGPP_MINOR__ > 2
907 if (child_cmd.redirection)
908 {
909 int i;
910
911 for (i = 0; i < DBG_HANDLES; i++)
912 {
913 if (child_cmd.redirection[i]->file_name)
914 printf_filtered ("\tFile handle %d is redirected to `%s'.\n",
915 i, child_cmd.redirection[i]->file_name);
916 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
917 printf_filtered
918 ("\tFile handle %d appears to be closed by inferior.\n", i);
919 /* Mask off the raw/cooked bit when comparing device info words. */
920 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
921 != (_get_dev_info (i) & 0xdf))
922 printf_filtered
923 ("\tFile handle %d appears to be redirected by inferior.\n", i);
924 }
925 }
926 #endif
927 }
928
929 void
930 go32_nat_target::terminal_inferior ()
931 {
932 /* Redirect standard handles as child wants them. */
933 errno = 0;
934 if (redir_to_child (&child_cmd) == -1)
935 {
936 redir_to_debugger (&child_cmd);
937 error (_("Cannot redirect standard handles for program: %s."),
938 safe_strerror (errno));
939 }
940 /* Set the console device of the inferior to whatever mode
941 (raw or cooked) we found it last time. */
942 if (terminal_is_ours)
943 {
944 if (inf_mode_valid)
945 device_mode (0, inf_terminal_mode);
946 terminal_is_ours = 0;
947 }
948 }
949
950 void
951 go32_nat_target::terminal_ours ()
952 {
953 /* Switch to cooked mode on the gdb terminal and save the inferior
954 terminal mode to be restored when it is resumed. */
955 if (!terminal_is_ours)
956 {
957 inf_terminal_mode = device_mode (0, 0);
958 if (inf_terminal_mode != -1)
959 inf_mode_valid = 1;
960 else
961 /* If device_mode returned -1, we don't know what happens with
962 handle 0 anymore, so make the info invalid. */
963 inf_mode_valid = 0;
964 terminal_is_ours = 1;
965
966 /* Restore debugger's standard handles. */
967 errno = 0;
968 if (redir_to_debugger (&child_cmd) == -1)
969 {
970 redir_to_child (&child_cmd);
971 error (_("Cannot redirect standard handles for debugger: %s."),
972 safe_strerror (errno));
973 }
974 }
975 }
976
977 void
978 go32_nat_target::pass_ctrlc ()
979 {
980 }
981
982 bool
983 go32_nat_target::thread_alive (ptid_t ptid)
984 {
985 return ptid != null_ptid;
986 }
987
988 std::string
989 go32_nat_target::pid_to_str (ptid_t ptid)
990 {
991 return normal_pid_to_str (ptid);
992 }
993
994 /* Return the current DOS codepage number. */
995 static int
996 dos_codepage (void)
997 {
998 __dpmi_regs regs;
999
1000 regs.x.ax = 0x6601;
1001 __dpmi_int (0x21, &regs);
1002 if (!(regs.x.flags & 1))
1003 return regs.x.bx & 0xffff;
1004 else
1005 return 437; /* default */
1006 }
1007
1008 /* Limited emulation of `nl_langinfo', for charset.c. */
1009 char *
1010 nl_langinfo (nl_item item)
1011 {
1012 char *retval;
1013
1014 switch (item)
1015 {
1016 case CODESET:
1017 {
1018 /* 8 is enough for SHORT_MAX + "CP" + null. */
1019 char buf[8];
1020 int blen = sizeof (buf);
1021 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1022
1023 if (needed > blen) /* Should never happen. */
1024 buf[0] = 0;
1025 retval = xstrdup (buf);
1026 }
1027 break;
1028 default:
1029 retval = xstrdup ("");
1030 break;
1031 }
1032 return retval;
1033 }
1034
1035 unsigned short windows_major, windows_minor;
1036
1037 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1038 static void
1039 go32_get_windows_version(void)
1040 {
1041 __dpmi_regs r;
1042
1043 r.x.ax = 0x1600;
1044 __dpmi_int(0x2f, &r);
1045 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1046 && (r.h.al > 3 || r.h.ah > 0))
1047 {
1048 windows_major = r.h.al;
1049 windows_minor = r.h.ah;
1050 }
1051 else
1052 windows_major = 0xff; /* meaning no Windows */
1053 }
1054
1055 /* A subroutine of go32_sysinfo to display memory info. */
1056 static void
1057 print_mem (unsigned long datum, const char *header, int in_pages_p)
1058 {
1059 if (datum != 0xffffffffUL)
1060 {
1061 if (in_pages_p)
1062 datum <<= 12;
1063 puts_filtered (header);
1064 if (datum > 1024)
1065 {
1066 printf_filtered ("%lu KB", datum >> 10);
1067 if (datum > 1024 * 1024)
1068 printf_filtered (" (%lu MB)", datum >> 20);
1069 }
1070 else
1071 printf_filtered ("%lu Bytes", datum);
1072 puts_filtered ("\n");
1073 }
1074 }
1075
1076 /* Display assorted information about the underlying OS. */
1077 static void
1078 go32_sysinfo (const char *arg, int from_tty)
1079 {
1080 static const char test_pattern[] =
1081 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1082 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1083 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1084 struct utsname u;
1085 char cpuid_vendor[13];
1086 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1087 unsigned true_dos_version = _get_dos_version (1);
1088 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1089 int dpmi_flags;
1090 char dpmi_vendor_info[129];
1091 int dpmi_vendor_available;
1092 __dpmi_version_ret dpmi_version_data;
1093 long eflags;
1094 __dpmi_free_mem_info mem_info;
1095 __dpmi_regs regs;
1096
1097 cpuid_vendor[0] = '\0';
1098 if (uname (&u))
1099 strcpy (u.machine, "Unknown x86");
1100 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1101 {
1102 /* CPUID with EAX = 0 returns the Vendor ID. */
1103 #if 0
1104 /* Ideally we would use x86_cpuid(), but it needs someone to run
1105 native tests first to make sure things actually work. They should.
1106 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1107 unsigned int eax, ebx, ecx, edx;
1108
1109 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1110 {
1111 cpuid_max = eax;
1112 memcpy (&vendor[0], &ebx, 4);
1113 memcpy (&vendor[4], &ecx, 4);
1114 memcpy (&vendor[8], &edx, 4);
1115 cpuid_vendor[12] = '\0';
1116 }
1117 #else
1118 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1119 "xorl %%ecx, %%ecx;"
1120 "xorl %%edx, %%edx;"
1121 "movl $0, %%eax;"
1122 "cpuid;"
1123 "movl %%ebx, %0;"
1124 "movl %%edx, %1;"
1125 "movl %%ecx, %2;"
1126 "movl %%eax, %3;"
1127 : "=m" (cpuid_vendor[0]),
1128 "=m" (cpuid_vendor[4]),
1129 "=m" (cpuid_vendor[8]),
1130 "=m" (cpuid_max)
1131 :
1132 : "%eax", "%ebx", "%ecx", "%edx");
1133 cpuid_vendor[12] = '\0';
1134 #endif
1135 }
1136
1137 printf_filtered ("CPU Type.......................%s", u.machine);
1138 if (cpuid_vendor[0])
1139 printf_filtered (" (%s)", cpuid_vendor);
1140 puts_filtered ("\n");
1141
1142 /* CPUID with EAX = 1 returns processor signature and features. */
1143 if (cpuid_max >= 1)
1144 {
1145 static const char *brand_name[] = {
1146 "",
1147 " Celeron",
1148 " III",
1149 " III Xeon",
1150 "", "", "", "",
1151 " 4"
1152 };
1153 char cpu_string[80];
1154 char cpu_brand[20];
1155 unsigned brand_idx;
1156 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1157 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1158 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1159 unsigned cpu_family, cpu_model;
1160
1161 #if 0
1162 /* See comment above about cpuid usage. */
1163 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1164 #else
1165 __asm__ __volatile__ ("movl $1, %%eax;"
1166 "cpuid;"
1167 : "=a" (cpuid_eax),
1168 "=b" (cpuid_ebx),
1169 "=d" (cpuid_edx)
1170 :
1171 : "%ecx");
1172 #endif
1173 brand_idx = cpuid_ebx & 0xff;
1174 cpu_family = (cpuid_eax >> 8) & 0xf;
1175 cpu_model = (cpuid_eax >> 4) & 0xf;
1176 cpu_brand[0] = '\0';
1177 if (intel_p)
1178 {
1179 if (brand_idx > 0
1180 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1181 && *brand_name[brand_idx])
1182 strcpy (cpu_brand, brand_name[brand_idx]);
1183 else if (cpu_family == 5)
1184 {
1185 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1186 strcpy (cpu_brand, " MMX");
1187 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1188 strcpy (cpu_brand, " OverDrive");
1189 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1190 strcpy (cpu_brand, " Dual");
1191 }
1192 else if (cpu_family == 6 && cpu_model < 8)
1193 {
1194 switch (cpu_model)
1195 {
1196 case 1:
1197 strcpy (cpu_brand, " Pro");
1198 break;
1199 case 3:
1200 strcpy (cpu_brand, " II");
1201 break;
1202 case 5:
1203 strcpy (cpu_brand, " II Xeon");
1204 break;
1205 case 6:
1206 strcpy (cpu_brand, " Celeron");
1207 break;
1208 case 7:
1209 strcpy (cpu_brand, " III");
1210 break;
1211 }
1212 }
1213 }
1214 else if (amd_p)
1215 {
1216 switch (cpu_family)
1217 {
1218 case 4:
1219 strcpy (cpu_brand, "486/5x86");
1220 break;
1221 case 5:
1222 switch (cpu_model)
1223 {
1224 case 0:
1225 case 1:
1226 case 2:
1227 case 3:
1228 strcpy (cpu_brand, "-K5");
1229 break;
1230 case 6:
1231 case 7:
1232 strcpy (cpu_brand, "-K6");
1233 break;
1234 case 8:
1235 strcpy (cpu_brand, "-K6-2");
1236 break;
1237 case 9:
1238 strcpy (cpu_brand, "-K6-III");
1239 break;
1240 }
1241 break;
1242 case 6:
1243 switch (cpu_model)
1244 {
1245 case 1:
1246 case 2:
1247 case 4:
1248 strcpy (cpu_brand, " Athlon");
1249 break;
1250 case 3:
1251 strcpy (cpu_brand, " Duron");
1252 break;
1253 }
1254 break;
1255 }
1256 }
1257 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1258 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1259 cpu_brand, cpu_model, cpuid_eax & 0xf);
1260 printf_filtered ("%*s%s\n", 31, "", cpu_string);
1261 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1262 || ((cpuid_edx & 1) == 0)
1263 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1264 {
1265 puts_filtered ("CPU Features...................");
1266 /* We only list features which might be useful in the DPMI
1267 environment. */
1268 if ((cpuid_edx & 1) == 0)
1269 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1270 if ((cpuid_edx & (1 << 1)) != 0)
1271 puts_filtered ("VME ");
1272 if ((cpuid_edx & (1 << 2)) != 0)
1273 puts_filtered ("DE ");
1274 if ((cpuid_edx & (1 << 4)) != 0)
1275 puts_filtered ("TSC ");
1276 if ((cpuid_edx & (1 << 23)) != 0)
1277 puts_filtered ("MMX ");
1278 if ((cpuid_edx & (1 << 25)) != 0)
1279 puts_filtered ("SSE ");
1280 if ((cpuid_edx & (1 << 26)) != 0)
1281 puts_filtered ("SSE2 ");
1282 if (amd_p || hygon_p)
1283 {
1284 if ((cpuid_edx & (1 << 31)) != 0)
1285 puts_filtered ("3DNow! ");
1286 if ((cpuid_edx & (1 << 30)) != 0)
1287 puts_filtered ("3DNow!Ext");
1288 }
1289 puts_filtered ("\n");
1290 }
1291 }
1292 puts_filtered ("\n");
1293 printf_filtered ("DOS Version....................%s %s.%s",
1294 _os_flavor, u.release, u.version);
1295 if (true_dos_version != advertized_dos_version)
1296 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1297 puts_filtered ("\n");
1298 if (!windows_major)
1299 go32_get_windows_version ();
1300 if (windows_major != 0xff)
1301 {
1302 const char *windows_flavor;
1303
1304 printf_filtered ("Windows Version................%d.%02d (Windows ",
1305 windows_major, windows_minor);
1306 switch (windows_major)
1307 {
1308 case 3:
1309 windows_flavor = "3.X";
1310 break;
1311 case 4:
1312 switch (windows_minor)
1313 {
1314 case 0:
1315 windows_flavor = "95, 95A, or 95B";
1316 break;
1317 case 3:
1318 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1319 break;
1320 case 10:
1321 windows_flavor = "98 or 98 SE";
1322 break;
1323 case 90:
1324 windows_flavor = "ME";
1325 break;
1326 default:
1327 windows_flavor = "9X";
1328 break;
1329 }
1330 break;
1331 default:
1332 windows_flavor = "??";
1333 break;
1334 }
1335 printf_filtered ("%s)\n", windows_flavor);
1336 }
1337 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1338 printf_filtered ("Windows Version................"
1339 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1340 puts_filtered ("\n");
1341 /* On some versions of Windows, __dpmi_get_capabilities returns
1342 zero, but the buffer is not filled with info, so we fill the
1343 buffer with a known pattern and test for it afterwards. */
1344 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1345 dpmi_vendor_available =
1346 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1347 if (dpmi_vendor_available == 0
1348 && memcmp (dpmi_vendor_info, test_pattern,
1349 sizeof(dpmi_vendor_info)) != 0)
1350 {
1351 /* The DPMI spec says the vendor string should be ASCIIZ, but
1352 I don't trust the vendors to follow that... */
1353 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1354 dpmi_vendor_info[128] = '\0';
1355 printf_filtered ("DPMI Host......................"
1356 "%s v%d.%d (capabilities: %#x)\n",
1357 &dpmi_vendor_info[2],
1358 (unsigned)dpmi_vendor_info[0],
1359 (unsigned)dpmi_vendor_info[1],
1360 ((unsigned)dpmi_flags & 0x7f));
1361 }
1362 else
1363 printf_filtered ("DPMI Host......................(Info not available)\n");
1364 __dpmi_get_version (&dpmi_version_data);
1365 printf_filtered ("DPMI Version...................%d.%02d\n",
1366 dpmi_version_data.major, dpmi_version_data.minor);
1367 printf_filtered ("DPMI Info......................"
1368 "%s-bit DPMI, with%s Virtual Memory support\n",
1369 (dpmi_version_data.flags & 1) ? "32" : "16",
1370 (dpmi_version_data.flags & 4) ? "" : "out");
1371 printf_filtered ("%*sInterrupts reflected to %s mode\n", 31, "",
1372 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1373 printf_filtered ("%*sProcessor type: i%d86\n", 31, "",
1374 dpmi_version_data.cpu);
1375 printf_filtered ("%*sPIC base interrupt: Master: %#x Slave: %#x\n", 31, "",
1376 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1377
1378 /* a_tss is only initialized when the debuggee is first run. */
1379 if (prog_has_started)
1380 {
1381 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1382 printf_filtered ("Protection....................."
1383 "Ring %d (in %s), with%s I/O protection\n",
1384 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1385 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1386 }
1387 puts_filtered ("\n");
1388 __dpmi_get_free_memory_information (&mem_info);
1389 print_mem (mem_info.total_number_of_physical_pages,
1390 "DPMI Total Physical Memory.....", 1);
1391 print_mem (mem_info.total_number_of_free_pages,
1392 "DPMI Free Physical Memory......", 1);
1393 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1394 "DPMI Swap Space................", 1);
1395 print_mem (mem_info.linear_address_space_size_in_pages,
1396 "DPMI Total Linear Address Size.", 1);
1397 print_mem (mem_info.free_linear_address_space_in_pages,
1398 "DPMI Free Linear Address Size..", 1);
1399 print_mem (mem_info.largest_available_free_block_in_bytes,
1400 "DPMI Largest Free Memory Block.", 0);
1401
1402 regs.h.ah = 0x48;
1403 regs.x.bx = 0xffff;
1404 __dpmi_int (0x21, &regs);
1405 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1406 regs.x.ax = 0x5800;
1407 __dpmi_int (0x21, &regs);
1408 if ((regs.x.flags & 1) == 0)
1409 {
1410 static const char *dos_hilo[] = {
1411 "Low", "", "", "", "High", "", "", "", "High, then Low"
1412 };
1413 static const char *dos_fit[] = {
1414 "First", "Best", "Last"
1415 };
1416 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1417 int fit_idx = regs.x.ax & 0x0f;
1418
1419 if (hilo_idx > 8)
1420 hilo_idx = 0;
1421 if (fit_idx > 2)
1422 fit_idx = 0;
1423 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1424 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1425 regs.x.ax = 0x5802;
1426 __dpmi_int (0x21, &regs);
1427 if ((regs.x.flags & 1) != 0)
1428 regs.h.al = 0;
1429 printf_filtered ("%*sUMBs %sin DOS memory chain\n", 31, "",
1430 regs.h.al == 0 ? "not " : "");
1431 }
1432 }
1433
1434 struct seg_descr {
1435 unsigned short limit0;
1436 unsigned short base0;
1437 unsigned char base1;
1438 unsigned stype:5;
1439 unsigned dpl:2;
1440 unsigned present:1;
1441 unsigned limit1:4;
1442 unsigned available:1;
1443 unsigned dummy:1;
1444 unsigned bit32:1;
1445 unsigned page_granular:1;
1446 unsigned char base2;
1447 } __attribute__ ((packed));
1448
1449 struct gate_descr {
1450 unsigned short offset0;
1451 unsigned short selector;
1452 unsigned param_count:5;
1453 unsigned dummy:3;
1454 unsigned stype:5;
1455 unsigned dpl:2;
1456 unsigned present:1;
1457 unsigned short offset1;
1458 } __attribute__ ((packed));
1459
1460 /* Read LEN bytes starting at logical address ADDR, and put the result
1461 into DEST. Return 1 if success, zero if not. */
1462 static int
1463 read_memory_region (unsigned long addr, void *dest, size_t len)
1464 {
1465 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1466 int retval = 1;
1467
1468 /* For the low memory, we can simply use _dos_ds. */
1469 if (addr <= dos_ds_limit - len)
1470 dosmemget (addr, len, dest);
1471 else
1472 {
1473 /* For memory above 1MB we need to set up a special segment to
1474 be able to access that memory. */
1475 int sel = __dpmi_allocate_ldt_descriptors (1);
1476
1477 if (sel <= 0)
1478 retval = 0;
1479 else
1480 {
1481 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1482 size_t segment_limit = len - 1;
1483
1484 /* Make sure the crucial bits in the descriptor access
1485 rights are set correctly. Some DPMI providers might barf
1486 if we set the segment limit to something that is not an
1487 integral multiple of 4KB pages if the granularity bit is
1488 not set to byte-granular, even though the DPMI spec says
1489 it's the host's responsibility to set that bit correctly. */
1490 if (len > 1024 * 1024)
1491 {
1492 access_rights |= 0x8000;
1493 /* Page-granular segments should have the low 12 bits of
1494 the limit set. */
1495 segment_limit |= 0xfff;
1496 }
1497 else
1498 access_rights &= ~0x8000;
1499
1500 if (__dpmi_set_segment_base_address (sel, addr) != -1
1501 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1502 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1503 /* W2K silently fails to set the segment limit, leaving
1504 it at zero; this test avoids the resulting crash. */
1505 && __dpmi_get_segment_limit (sel) >= segment_limit)
1506 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1507 else
1508 retval = 0;
1509
1510 __dpmi_free_ldt_descriptor (sel);
1511 }
1512 }
1513 return retval;
1514 }
1515
1516 /* Get a segment descriptor stored at index IDX in the descriptor
1517 table whose base address is TABLE_BASE. Return the descriptor
1518 type, or -1 if failure. */
1519 static int
1520 get_descriptor (unsigned long table_base, int idx, void *descr)
1521 {
1522 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1523
1524 if (read_memory_region (addr, descr, 8))
1525 return (int)((struct seg_descr *)descr)->stype;
1526 return -1;
1527 }
1528
1529 struct dtr_reg {
1530 unsigned short limit __attribute__((packed));
1531 unsigned long base __attribute__((packed));
1532 };
1533
1534 /* Display a segment descriptor stored at index IDX in a descriptor
1535 table whose type is TYPE and whose base address is BASE_ADDR. If
1536 FORCE is non-zero, display even invalid descriptors. */
1537 static void
1538 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1539 {
1540 struct seg_descr descr;
1541 struct gate_descr gate;
1542
1543 /* Get the descriptor from the table. */
1544 if (idx == 0 && type == 0)
1545 puts_filtered ("0x000: null descriptor\n");
1546 else if (get_descriptor (base_addr, idx, &descr) != -1)
1547 {
1548 /* For each type of descriptor table, this has a bit set if the
1549 corresponding type of selectors is valid in that table. */
1550 static unsigned allowed_descriptors[] = {
1551 0xffffdafeL, /* GDT */
1552 0x0000c0e0L, /* IDT */
1553 0xffffdafaL /* LDT */
1554 };
1555
1556 /* If the program hasn't started yet, assume the debuggee will
1557 have the same CPL as the debugger. */
1558 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1559 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1560
1561 if (descr.present
1562 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1563 {
1564 printf_filtered ("0x%03x: ",
1565 type == 1
1566 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1567 if (descr.page_granular)
1568 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1569 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1570 || descr.stype == 9 || descr.stype == 11
1571 || (descr.stype >= 16 && descr.stype < 32))
1572 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1573 descr.base2, descr.base1, descr.base0, limit);
1574
1575 switch (descr.stype)
1576 {
1577 case 1:
1578 case 3:
1579 printf_filtered (" 16-bit TSS (task %sactive)",
1580 descr.stype == 3 ? "" : "in");
1581 break;
1582 case 2:
1583 puts_filtered (" LDT");
1584 break;
1585 case 4:
1586 memcpy (&gate, &descr, sizeof gate);
1587 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1588 gate.selector, gate.offset1, gate.offset0);
1589 printf_filtered (" 16-bit Call Gate (params=%d)",
1590 gate.param_count);
1591 break;
1592 case 5:
1593 printf_filtered ("TSS selector=0x%04x", descr.base0);
1594 printf_filtered ("%*sTask Gate", 16, "");
1595 break;
1596 case 6:
1597 case 7:
1598 memcpy (&gate, &descr, sizeof gate);
1599 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1600 gate.selector, gate.offset1, gate.offset0);
1601 printf_filtered (" 16-bit %s Gate",
1602 descr.stype == 6 ? "Interrupt" : "Trap");
1603 break;
1604 case 9:
1605 case 11:
1606 printf_filtered (" 32-bit TSS (task %sactive)",
1607 descr.stype == 3 ? "" : "in");
1608 break;
1609 case 12:
1610 memcpy (&gate, &descr, sizeof gate);
1611 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1612 gate.selector, gate.offset1, gate.offset0);
1613 printf_filtered (" 32-bit Call Gate (params=%d)",
1614 gate.param_count);
1615 break;
1616 case 14:
1617 case 15:
1618 memcpy (&gate, &descr, sizeof gate);
1619 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1620 gate.selector, gate.offset1, gate.offset0);
1621 printf_filtered (" 32-bit %s Gate",
1622 descr.stype == 14 ? "Interrupt" : "Trap");
1623 break;
1624 case 16: /* data segments */
1625 case 17:
1626 case 18:
1627 case 19:
1628 case 20:
1629 case 21:
1630 case 22:
1631 case 23:
1632 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1633 descr.bit32 ? "32" : "16",
1634 descr.stype & 2
1635 ? "Read/Write," : "Read-Only, ",
1636 descr.stype & 4 ? "down" : "up",
1637 descr.stype & 1 ? "" : ", N.Acc");
1638 break;
1639 case 24: /* code segments */
1640 case 25:
1641 case 26:
1642 case 27:
1643 case 28:
1644 case 29:
1645 case 30:
1646 case 31:
1647 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1648 descr.bit32 ? "32" : "16",
1649 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1650 descr.stype & 4 ? "" : "N.",
1651 descr.stype & 1 ? "" : ", N.Acc");
1652 break;
1653 default:
1654 printf_filtered ("Unknown type 0x%02x", descr.stype);
1655 break;
1656 }
1657 puts_filtered ("\n");
1658 }
1659 else if (force)
1660 {
1661 printf_filtered ("0x%03x: ",
1662 type == 1
1663 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1664 if (!descr.present)
1665 puts_filtered ("Segment not present\n");
1666 else
1667 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1668 descr.stype);
1669 }
1670 }
1671 else if (force)
1672 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1673 }
1674
1675 static void
1676 go32_sldt (const char *arg, int from_tty)
1677 {
1678 struct dtr_reg gdtr;
1679 unsigned short ldtr = 0;
1680 int ldt_idx;
1681 struct seg_descr ldt_descr;
1682 long ldt_entry = -1L;
1683 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1684
1685 if (arg && *arg)
1686 {
1687 arg = skip_spaces (arg);
1688
1689 if (*arg)
1690 {
1691 ldt_entry = parse_and_eval_long (arg);
1692 if (ldt_entry < 0
1693 || (ldt_entry & 4) == 0
1694 || (ldt_entry & 3) != (cpl & 3))
1695 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1696 }
1697 }
1698
1699 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1700 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1701 ldt_idx = ldtr / 8;
1702 if (ldt_idx == 0)
1703 puts_filtered ("There is no LDT.\n");
1704 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1705 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1706 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1707 ldt_descr.base0
1708 | (ldt_descr.base1 << 16)
1709 | (ldt_descr.base2 << 24));
1710 else
1711 {
1712 unsigned base =
1713 ldt_descr.base0
1714 | (ldt_descr.base1 << 16)
1715 | (ldt_descr.base2 << 24);
1716 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1717 int max_entry;
1718
1719 if (ldt_descr.page_granular)
1720 /* Page-granular segments must have the low 12 bits of their
1721 limit set. */
1722 limit = (limit << 12) | 0xfff;
1723 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1724 64KB. */
1725 if (limit > 0xffff)
1726 limit = 0xffff;
1727
1728 max_entry = (limit + 1) / 8;
1729
1730 if (ldt_entry >= 0)
1731 {
1732 if (ldt_entry > limit)
1733 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1734 (unsigned long)ldt_entry, limit);
1735
1736 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1737 }
1738 else
1739 {
1740 int i;
1741
1742 for (i = 0; i < max_entry; i++)
1743 display_descriptor (ldt_descr.stype, base, i, 0);
1744 }
1745 }
1746 }
1747
1748 static void
1749 go32_sgdt (const char *arg, int from_tty)
1750 {
1751 struct dtr_reg gdtr;
1752 long gdt_entry = -1L;
1753 int max_entry;
1754
1755 if (arg && *arg)
1756 {
1757 arg = skip_spaces (arg);
1758
1759 if (*arg)
1760 {
1761 gdt_entry = parse_and_eval_long (arg);
1762 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1763 error (_("Invalid GDT entry 0x%03lx: "
1764 "not an integral multiple of 8."),
1765 (unsigned long)gdt_entry);
1766 }
1767 }
1768
1769 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1770 max_entry = (gdtr.limit + 1) / 8;
1771
1772 if (gdt_entry >= 0)
1773 {
1774 if (gdt_entry > gdtr.limit)
1775 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1776 (unsigned long)gdt_entry, gdtr.limit);
1777
1778 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1779 }
1780 else
1781 {
1782 int i;
1783
1784 for (i = 0; i < max_entry; i++)
1785 display_descriptor (0, gdtr.base, i, 0);
1786 }
1787 }
1788
1789 static void
1790 go32_sidt (const char *arg, int from_tty)
1791 {
1792 struct dtr_reg idtr;
1793 long idt_entry = -1L;
1794 int max_entry;
1795
1796 if (arg && *arg)
1797 {
1798 arg = skip_spaces (arg);
1799
1800 if (*arg)
1801 {
1802 idt_entry = parse_and_eval_long (arg);
1803 if (idt_entry < 0)
1804 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1805 }
1806 }
1807
1808 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1809 max_entry = (idtr.limit + 1) / 8;
1810 if (max_entry > 0x100) /* No more than 256 entries. */
1811 max_entry = 0x100;
1812
1813 if (idt_entry >= 0)
1814 {
1815 if (idt_entry > idtr.limit)
1816 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1817 (unsigned long)idt_entry, idtr.limit);
1818
1819 display_descriptor (1, idtr.base, idt_entry, 1);
1820 }
1821 else
1822 {
1823 int i;
1824
1825 for (i = 0; i < max_entry; i++)
1826 display_descriptor (1, idtr.base, i, 0);
1827 }
1828 }
1829
1830 /* Cached linear address of the base of the page directory. For
1831 now, available only under CWSDPMI. Code based on ideas and
1832 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1833 static unsigned long pdbr;
1834
1835 static unsigned long
1836 get_cr3 (void)
1837 {
1838 unsigned offset;
1839 unsigned taskreg;
1840 unsigned long taskbase, cr3;
1841 struct dtr_reg gdtr;
1842
1843 if (pdbr > 0 && pdbr <= 0xfffff)
1844 return pdbr;
1845
1846 /* Get the linear address of GDT and the Task Register. */
1847 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1848 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1849
1850 /* Task Register is a segment selector for the TSS of the current
1851 task. Therefore, it can be used as an index into the GDT to get
1852 at the segment descriptor for the TSS. To get the index, reset
1853 the low 3 bits of the selector (which give the CPL). Add 2 to the
1854 offset to point to the 3 low bytes of the base address. */
1855 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1856
1857
1858 /* CWSDPMI's task base is always under the 1MB mark. */
1859 if (offset > 0xfffff)
1860 return 0;
1861
1862 _farsetsel (_dos_ds);
1863 taskbase = _farnspeekl (offset) & 0xffffffU;
1864 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1865 if (taskbase > 0xfffff)
1866 return 0;
1867
1868 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1869 offset 1Ch in the TSS. */
1870 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1871 if (cr3 > 0xfffff)
1872 {
1873 #if 0 /* Not fully supported yet. */
1874 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1875 the first Page Table right below the Page Directory. Thus,
1876 the first Page Table's entry for its own address and the Page
1877 Directory entry for that Page Table will hold the same
1878 physical address. The loop below searches the entire UMB
1879 range of addresses for such an occurrence. */
1880 unsigned long addr, pte_idx;
1881
1882 for (addr = 0xb0000, pte_idx = 0xb0;
1883 pte_idx < 0xff;
1884 addr += 0x1000, pte_idx++)
1885 {
1886 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1887 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1888 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1889 {
1890 cr3 = addr + 0x1000;
1891 break;
1892 }
1893 }
1894 #endif
1895
1896 if (cr3 > 0xfffff)
1897 cr3 = 0;
1898 }
1899
1900 return cr3;
1901 }
1902
1903 /* Return the N'th Page Directory entry. */
1904 static unsigned long
1905 get_pde (int n)
1906 {
1907 unsigned long pde = 0;
1908
1909 if (pdbr && n >= 0 && n < 1024)
1910 {
1911 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1912 }
1913 return pde;
1914 }
1915
1916 /* Return the N'th entry of the Page Table whose Page Directory entry
1917 is PDE. */
1918 static unsigned long
1919 get_pte (unsigned long pde, int n)
1920 {
1921 unsigned long pte = 0;
1922
1923 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1924 page tables, for now. */
1925 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1926 {
1927 pde &= ~0xfff; /* Clear non-address bits. */
1928 pte = _farpeekl (_dos_ds, pde + 4*n);
1929 }
1930 return pte;
1931 }
1932
1933 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1934 says this is a Page Directory entry. If FORCE is non-zero, display
1935 the entry even if its Present flag is off. OFF is the offset of the
1936 address from the page's base address. */
1937 static void
1938 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1939 {
1940 if ((entry & 1) != 0)
1941 {
1942 printf_filtered ("Base=0x%05lx000", entry >> 12);
1943 if ((entry & 0x100) && !is_dir)
1944 puts_filtered (" Global");
1945 if ((entry & 0x40) && !is_dir)
1946 puts_filtered (" Dirty");
1947 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1948 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1949 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1950 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1951 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1952 if (off)
1953 printf_filtered (" +0x%x", off);
1954 puts_filtered ("\n");
1955 }
1956 else if (force)
1957 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1958 is_dir ? " Table" : "", entry >> 1);
1959 }
1960
1961 static void
1962 go32_pde (const char *arg, int from_tty)
1963 {
1964 long pde_idx = -1, i;
1965
1966 if (arg && *arg)
1967 {
1968 arg = skip_spaces (arg);
1969
1970 if (*arg)
1971 {
1972 pde_idx = parse_and_eval_long (arg);
1973 if (pde_idx < 0 || pde_idx >= 1024)
1974 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1975 }
1976 }
1977
1978 pdbr = get_cr3 ();
1979 if (!pdbr)
1980 puts_filtered ("Access to Page Directories is "
1981 "not supported on this system.\n");
1982 else if (pde_idx >= 0)
1983 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1984 else
1985 for (i = 0; i < 1024; i++)
1986 display_ptable_entry (get_pde (i), 1, 0, 0);
1987 }
1988
1989 /* A helper function to display entries in a Page Table pointed to by
1990 the N'th entry in the Page Directory. If FORCE is non-zero, say
1991 something even if the Page Table is not accessible. */
1992 static void
1993 display_page_table (long n, int force)
1994 {
1995 unsigned long pde = get_pde (n);
1996
1997 if ((pde & 1) != 0)
1998 {
1999 int i;
2000
2001 printf_filtered ("Page Table pointed to by "
2002 "Page Directory entry 0x%lx:\n", n);
2003 for (i = 0; i < 1024; i++)
2004 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2005 puts_filtered ("\n");
2006 }
2007 else if (force)
2008 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2009 }
2010
2011 static void
2012 go32_pte (const char *arg, int from_tty)
2013 {
2014 long pde_idx = -1L, i;
2015
2016 if (arg && *arg)
2017 {
2018 arg = skip_spaces (arg);
2019
2020 if (*arg)
2021 {
2022 pde_idx = parse_and_eval_long (arg);
2023 if (pde_idx < 0 || pde_idx >= 1024)
2024 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2025 }
2026 }
2027
2028 pdbr = get_cr3 ();
2029 if (!pdbr)
2030 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2031 else if (pde_idx >= 0)
2032 display_page_table (pde_idx, 1);
2033 else
2034 for (i = 0; i < 1024; i++)
2035 display_page_table (i, 0);
2036 }
2037
2038 static void
2039 go32_pte_for_address (const char *arg, int from_tty)
2040 {
2041 CORE_ADDR addr = 0, i;
2042
2043 if (arg && *arg)
2044 {
2045 arg = skip_spaces (arg);
2046
2047 if (*arg)
2048 addr = parse_and_eval_address (arg);
2049 }
2050 if (!addr)
2051 error_no_arg (_("linear address"));
2052
2053 pdbr = get_cr3 ();
2054 if (!pdbr)
2055 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2056 else
2057 {
2058 int pde_idx = (addr >> 22) & 0x3ff;
2059 int pte_idx = (addr >> 12) & 0x3ff;
2060 unsigned offs = addr & 0xfff;
2061
2062 printf_filtered ("Page Table entry for address %s:\n",
2063 hex_string(addr));
2064 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2065 }
2066 }
2067
2068 static struct cmd_list_element *info_dos_cmdlist = NULL;
2069
2070 void _initialize_go32_nat ();
2071 void
2072 _initialize_go32_nat ()
2073 {
2074 x86_dr_low.set_control = go32_set_dr7;
2075 x86_dr_low.set_addr = go32_set_dr;
2076 x86_dr_low.get_status = go32_get_dr6;
2077 x86_dr_low.get_control = go32_get_dr7;
2078 x86_dr_low.get_addr = go32_get_dr;
2079 x86_set_debug_register_length (4);
2080
2081 add_inf_child_target (&the_go32_nat_target);
2082
2083 /* Initialize child's cwd as empty to be initialized when starting
2084 the child. */
2085 *child_cwd = 0;
2086
2087 /* Initialize child's command line storage. */
2088 if (redir_debug_init (&child_cmd) == -1)
2089 internal_error (__FILE__, __LINE__,
2090 _("Cannot allocate redirection storage: "
2091 "not enough memory.\n"));
2092
2093 /* We are always processing GCC-compiled programs. */
2094 processing_gcc_compilation = 2;
2095
2096 add_basic_prefix_cmd ("dos", class_info, _("\
2097 Print information specific to DJGPP (aka MS-DOS) debugging."),
2098 &info_dos_cmdlist, 0, &infolist);
2099
2100 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2101 Display information about the target system, including CPU, OS, DPMI, etc."),
2102 &info_dos_cmdlist);
2103 add_cmd ("ldt", class_info, go32_sldt, _("\
2104 Display entries in the LDT (Local Descriptor Table).\n\
2105 Entry number (an expression) as an argument means display only that entry."),
2106 &info_dos_cmdlist);
2107 add_cmd ("gdt", class_info, go32_sgdt, _("\
2108 Display entries in the GDT (Global Descriptor Table).\n\
2109 Entry number (an expression) as an argument means display only that entry."),
2110 &info_dos_cmdlist);
2111 add_cmd ("idt", class_info, go32_sidt, _("\
2112 Display entries in the IDT (Interrupt Descriptor Table).\n\
2113 Entry number (an expression) as an argument means display only that entry."),
2114 &info_dos_cmdlist);
2115 add_cmd ("pde", class_info, go32_pde, _("\
2116 Display entries in the Page Directory.\n\
2117 Entry number (an expression) as an argument means display only that entry."),
2118 &info_dos_cmdlist);
2119 add_cmd ("pte", class_info, go32_pte, _("\
2120 Display entries in Page Tables.\n\
2121 Entry number (an expression) as an argument means display only entries\n\
2122 from the Page Table pointed to by the specified Page Directory entry."),
2123 &info_dos_cmdlist);
2124 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2125 Display a Page Table entry for a linear address.\n\
2126 The address argument must be a linear address, after adding to\n\
2127 it the base address of the appropriate segment.\n\
2128 The base address of variables and functions in the debuggee's data\n\
2129 or code segment is stored in the variable __djgpp_base_address,\n\
2130 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2131 For other segments, look up their base address in the output of\n\
2132 the `info dos ldt' command."),
2133 &info_dos_cmdlist);
2134 }
2135
2136 pid_t
2137 tcgetpgrp (int fd)
2138 {
2139 if (isatty (fd))
2140 return SOME_PID;
2141 errno = ENOTTY;
2142 return -1;
2143 }
2144
2145 int
2146 tcsetpgrp (int fd, pid_t pgid)
2147 {
2148 if (isatty (fd) && pgid == SOME_PID)
2149 return 0;
2150 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2151 return -1;
2152 }