2002-04-21 David S. Miller <davem@redhat.com>
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33
34 /* For argument passing to the inferior */
35 #include "symtab.h"
36
37 #ifdef USG
38 #include <sys/types.h>
39 #endif
40
41 #include <dl.h>
42 #include <sys/param.h>
43 #include <signal.h>
44
45 #include <sys/ptrace.h>
46 #include <machine/save_state.h>
47
48 #ifdef COFF_ENCAPSULATE
49 #include "a.out.encap.h"
50 #else
51 #endif
52
53 /*#include <sys/user.h> After a.out.h */
54 #include <sys/file.h>
55 #include "gdb_stat.h"
56 #include "gdb_wait.h"
57
58 #include "gdbcore.h"
59 #include "gdbcmd.h"
60 #include "target.h"
61 #include "symfile.h"
62 #include "objfiles.h"
63
64 /* To support detection of the pseudo-initial frame
65 that threads have. */
66 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
67 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
68
69 static int extract_5_load (unsigned int);
70
71 static unsigned extract_5R_store (unsigned int);
72
73 static unsigned extract_5r_store (unsigned int);
74
75 static void find_dummy_frame_regs (struct frame_info *,
76 struct frame_saved_regs *);
77
78 static int find_proc_framesize (CORE_ADDR);
79
80 static int find_return_regnum (CORE_ADDR);
81
82 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
83
84 static int extract_17 (unsigned int);
85
86 static unsigned deposit_21 (unsigned int, unsigned int);
87
88 static int extract_21 (unsigned);
89
90 static unsigned deposit_14 (int, unsigned int);
91
92 static int extract_14 (unsigned);
93
94 static void unwind_command (char *, int);
95
96 static int low_sign_extend (unsigned int, unsigned int);
97
98 static int sign_extend (unsigned int, unsigned int);
99
100 static int restore_pc_queue (struct frame_saved_regs *);
101
102 static int hppa_alignof (struct type *);
103
104 /* To support multi-threading and stepping. */
105 int hppa_prepare_to_proceed ();
106
107 static int prologue_inst_adjust_sp (unsigned long);
108
109 static int is_branch (unsigned long);
110
111 static int inst_saves_gr (unsigned long);
112
113 static int inst_saves_fr (unsigned long);
114
115 static int pc_in_interrupt_handler (CORE_ADDR);
116
117 static int pc_in_linker_stub (CORE_ADDR);
118
119 static int compare_unwind_entries (const void *, const void *);
120
121 static void read_unwind_info (struct objfile *);
122
123 static void internalize_unwinds (struct objfile *,
124 struct unwind_table_entry *,
125 asection *, unsigned int,
126 unsigned int, CORE_ADDR);
127 static void pa_print_registers (char *, int, int);
128 static void pa_strcat_registers (char *, int, int, struct ui_file *);
129 static void pa_register_look_aside (char *, int, long *);
130 static void pa_print_fp_reg (int);
131 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
132 static void record_text_segment_lowaddr (bfd *, asection *, void *);
133
134 typedef struct
135 {
136 struct minimal_symbol *msym;
137 CORE_ADDR solib_handle;
138 CORE_ADDR return_val;
139 }
140 args_for_find_stub;
141
142 static int cover_find_stub_with_shl_get (PTR);
143
144 static int is_pa_2 = 0; /* False */
145
146 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
147 extern int hp_som_som_object_present;
148
149 /* In breakpoint.c */
150 extern int exception_catchpoints_are_fragile;
151
152 /* This is defined in valops.c. */
153 extern struct value *find_function_in_inferior (char *);
154
155 /* Should call_function allocate stack space for a struct return? */
156 int
157 hppa_use_struct_convention (int gcc_p, struct type *type)
158 {
159 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
160 }
161 \f
162
163 /* Routines to extract various sized constants out of hppa
164 instructions. */
165
166 /* This assumes that no garbage lies outside of the lower bits of
167 value. */
168
169 static int
170 sign_extend (unsigned val, unsigned bits)
171 {
172 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
173 }
174
175 /* For many immediate values the sign bit is the low bit! */
176
177 static int
178 low_sign_extend (unsigned val, unsigned bits)
179 {
180 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
181 }
182
183 /* extract the immediate field from a ld{bhw}s instruction */
184
185 static int
186 extract_5_load (unsigned word)
187 {
188 return low_sign_extend (word >> 16 & MASK_5, 5);
189 }
190
191 /* extract the immediate field from a break instruction */
192
193 static unsigned
194 extract_5r_store (unsigned word)
195 {
196 return (word & MASK_5);
197 }
198
199 /* extract the immediate field from a {sr}sm instruction */
200
201 static unsigned
202 extract_5R_store (unsigned word)
203 {
204 return (word >> 16 & MASK_5);
205 }
206
207 /* extract a 14 bit immediate field */
208
209 static int
210 extract_14 (unsigned word)
211 {
212 return low_sign_extend (word & MASK_14, 14);
213 }
214
215 /* deposit a 14 bit constant in a word */
216
217 static unsigned
218 deposit_14 (int opnd, unsigned word)
219 {
220 unsigned sign = (opnd < 0 ? 1 : 0);
221
222 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
223 }
224
225 /* extract a 21 bit constant */
226
227 static int
228 extract_21 (unsigned word)
229 {
230 int val;
231
232 word &= MASK_21;
233 word <<= 11;
234 val = GET_FIELD (word, 20, 20);
235 val <<= 11;
236 val |= GET_FIELD (word, 9, 19);
237 val <<= 2;
238 val |= GET_FIELD (word, 5, 6);
239 val <<= 5;
240 val |= GET_FIELD (word, 0, 4);
241 val <<= 2;
242 val |= GET_FIELD (word, 7, 8);
243 return sign_extend (val, 21) << 11;
244 }
245
246 /* deposit a 21 bit constant in a word. Although 21 bit constants are
247 usually the top 21 bits of a 32 bit constant, we assume that only
248 the low 21 bits of opnd are relevant */
249
250 static unsigned
251 deposit_21 (unsigned opnd, unsigned word)
252 {
253 unsigned val = 0;
254
255 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
256 val <<= 2;
257 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
258 val <<= 2;
259 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
260 val <<= 11;
261 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
262 val <<= 1;
263 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
264 return word | val;
265 }
266
267 /* extract a 17 bit constant from branch instructions, returning the
268 19 bit signed value. */
269
270 static int
271 extract_17 (unsigned word)
272 {
273 return sign_extend (GET_FIELD (word, 19, 28) |
274 GET_FIELD (word, 29, 29) << 10 |
275 GET_FIELD (word, 11, 15) << 11 |
276 (word & 0x1) << 16, 17) << 2;
277 }
278 \f
279
280 /* Compare the start address for two unwind entries returning 1 if
281 the first address is larger than the second, -1 if the second is
282 larger than the first, and zero if they are equal. */
283
284 static int
285 compare_unwind_entries (const void *arg1, const void *arg2)
286 {
287 const struct unwind_table_entry *a = arg1;
288 const struct unwind_table_entry *b = arg2;
289
290 if (a->region_start > b->region_start)
291 return 1;
292 else if (a->region_start < b->region_start)
293 return -1;
294 else
295 return 0;
296 }
297
298 static CORE_ADDR low_text_segment_address;
299
300 static void
301 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
302 {
303 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
304 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
305 && section->vma < low_text_segment_address)
306 low_text_segment_address = section->vma;
307 }
308
309 static void
310 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
311 asection *section, unsigned int entries, unsigned int size,
312 CORE_ADDR text_offset)
313 {
314 /* We will read the unwind entries into temporary memory, then
315 fill in the actual unwind table. */
316 if (size > 0)
317 {
318 unsigned long tmp;
319 unsigned i;
320 char *buf = alloca (size);
321
322 low_text_segment_address = -1;
323
324 /* If addresses are 64 bits wide, then unwinds are supposed to
325 be segment relative offsets instead of absolute addresses.
326
327 Note that when loading a shared library (text_offset != 0) the
328 unwinds are already relative to the text_offset that will be
329 passed in. */
330 if (TARGET_PTR_BIT == 64 && text_offset == 0)
331 {
332 bfd_map_over_sections (objfile->obfd,
333 record_text_segment_lowaddr, (PTR) NULL);
334
335 /* ?!? Mask off some low bits. Should this instead subtract
336 out the lowest section's filepos or something like that?
337 This looks very hokey to me. */
338 low_text_segment_address &= ~0xfff;
339 text_offset += low_text_segment_address;
340 }
341
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
345 endian issues. */
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
349 (bfd_byte *) buf);
350 table[i].region_start += text_offset;
351 buf += 4;
352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
353 table[i].region_end += text_offset;
354 buf += 4;
355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
390 /* Stub unwinds are handled elsewhere. */
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395 }
396
397 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403 static void
404 read_unwind_info (struct objfile *objfile)
405 {
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
411 struct obj_unwind_info *ui;
412 obj_private_data_t *obj_private;
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
415 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
416 sizeof (struct obj_unwind_info));
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
426
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
433 {
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
439
440 total_entries += unwind_entries;
441 }
442 }
443
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
460 total_entries += stub_entries;
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
465 obstack_alloc (&objfile->psymbol_obstack, total_size);
466 ui->last = total_entries - 1;
467
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
470 index = 0;
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
510 (bfd_byte *) buf);
511 buf += 2;
512 ui->table[index].region_end
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
525 if (objfile->obj_private == NULL)
526 {
527 obj_private = (obj_private_data_t *)
528 obstack_alloc (&objfile->psymbol_obstack,
529 sizeof (obj_private_data_t));
530 obj_private->unwind_info = NULL;
531 obj_private->so_info = NULL;
532 obj_private->dp = 0;
533
534 objfile->obj_private = (PTR) obj_private;
535 }
536 obj_private = (obj_private_data_t *) objfile->obj_private;
537 obj_private->unwind_info = ui;
538 }
539
540 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545 struct unwind_table_entry *
546 find_unwind_entry (CORE_ADDR pc)
547 {
548 int first, middle, last;
549 struct objfile *objfile;
550
551 /* A function at address 0? Not in HP-UX! */
552 if (pc == (CORE_ADDR) 0)
553 return NULL;
554
555 ALL_OBJFILES (objfile)
556 {
557 struct obj_unwind_info *ui;
558 ui = NULL;
559 if (objfile->obj_private)
560 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
561
562 if (!ui)
563 {
564 read_unwind_info (objfile);
565 if (objfile->obj_private == NULL)
566 error ("Internal error reading unwind information.");
567 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
568 }
569
570 /* First, check the cache */
571
572 if (ui->cache
573 && pc >= ui->cache->region_start
574 && pc <= ui->cache->region_end)
575 return ui->cache;
576
577 /* Not in the cache, do a binary search */
578
579 first = 0;
580 last = ui->last;
581
582 while (first <= last)
583 {
584 middle = (first + last) / 2;
585 if (pc >= ui->table[middle].region_start
586 && pc <= ui->table[middle].region_end)
587 {
588 ui->cache = &ui->table[middle];
589 return &ui->table[middle];
590 }
591
592 if (pc < ui->table[middle].region_start)
593 last = middle - 1;
594 else
595 first = middle + 1;
596 }
597 } /* ALL_OBJFILES() */
598 return NULL;
599 }
600
601 /* Return the adjustment necessary to make for addresses on the stack
602 as presented by hpread.c.
603
604 This is necessary because of the stack direction on the PA and the
605 bizarre way in which someone (?) decided they wanted to handle
606 frame pointerless code in GDB. */
607 int
608 hpread_adjust_stack_address (CORE_ADDR func_addr)
609 {
610 struct unwind_table_entry *u;
611
612 u = find_unwind_entry (func_addr);
613 if (!u)
614 return 0;
615 else
616 return u->Total_frame_size << 3;
617 }
618
619 /* Called to determine if PC is in an interrupt handler of some
620 kind. */
621
622 static int
623 pc_in_interrupt_handler (CORE_ADDR pc)
624 {
625 struct unwind_table_entry *u;
626 struct minimal_symbol *msym_us;
627
628 u = find_unwind_entry (pc);
629 if (!u)
630 return 0;
631
632 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
633 its frame isn't a pure interrupt frame. Deal with this. */
634 msym_us = lookup_minimal_symbol_by_pc (pc);
635
636 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
637 }
638
639 /* Called when no unwind descriptor was found for PC. Returns 1 if it
640 appears that PC is in a linker stub.
641
642 ?!? Need to handle stubs which appear in PA64 code. */
643
644 static int
645 pc_in_linker_stub (CORE_ADDR pc)
646 {
647 int found_magic_instruction = 0;
648 int i;
649 char buf[4];
650
651 /* If unable to read memory, assume pc is not in a linker stub. */
652 if (target_read_memory (pc, buf, 4) != 0)
653 return 0;
654
655 /* We are looking for something like
656
657 ; $$dyncall jams RP into this special spot in the frame (RP')
658 ; before calling the "call stub"
659 ldw -18(sp),rp
660
661 ldsid (rp),r1 ; Get space associated with RP into r1
662 mtsp r1,sp ; Move it into space register 0
663 be,n 0(sr0),rp) ; back to your regularly scheduled program */
664
665 /* Maximum known linker stub size is 4 instructions. Search forward
666 from the given PC, then backward. */
667 for (i = 0; i < 4; i++)
668 {
669 /* If we hit something with an unwind, stop searching this direction. */
670
671 if (find_unwind_entry (pc + i * 4) != 0)
672 break;
673
674 /* Check for ldsid (rp),r1 which is the magic instruction for a
675 return from a cross-space function call. */
676 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
677 {
678 found_magic_instruction = 1;
679 break;
680 }
681 /* Add code to handle long call/branch and argument relocation stubs
682 here. */
683 }
684
685 if (found_magic_instruction != 0)
686 return 1;
687
688 /* Now look backward. */
689 for (i = 0; i < 4; i++)
690 {
691 /* If we hit something with an unwind, stop searching this direction. */
692
693 if (find_unwind_entry (pc - i * 4) != 0)
694 break;
695
696 /* Check for ldsid (rp),r1 which is the magic instruction for a
697 return from a cross-space function call. */
698 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
699 {
700 found_magic_instruction = 1;
701 break;
702 }
703 /* Add code to handle long call/branch and argument relocation stubs
704 here. */
705 }
706 return found_magic_instruction;
707 }
708
709 static int
710 find_return_regnum (CORE_ADDR pc)
711 {
712 struct unwind_table_entry *u;
713
714 u = find_unwind_entry (pc);
715
716 if (!u)
717 return RP_REGNUM;
718
719 if (u->Millicode)
720 return 31;
721
722 return RP_REGNUM;
723 }
724
725 /* Return size of frame, or -1 if we should use a frame pointer. */
726 static int
727 find_proc_framesize (CORE_ADDR pc)
728 {
729 struct unwind_table_entry *u;
730 struct minimal_symbol *msym_us;
731
732 /* This may indicate a bug in our callers... */
733 if (pc == (CORE_ADDR) 0)
734 return -1;
735
736 u = find_unwind_entry (pc);
737
738 if (!u)
739 {
740 if (pc_in_linker_stub (pc))
741 /* Linker stubs have a zero size frame. */
742 return 0;
743 else
744 return -1;
745 }
746
747 msym_us = lookup_minimal_symbol_by_pc (pc);
748
749 /* If Save_SP is set, and we're not in an interrupt or signal caller,
750 then we have a frame pointer. Use it. */
751 if (u->Save_SP
752 && !pc_in_interrupt_handler (pc)
753 && msym_us
754 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
755 return -1;
756
757 return u->Total_frame_size << 3;
758 }
759
760 /* Return offset from sp at which rp is saved, or 0 if not saved. */
761 static int rp_saved (CORE_ADDR);
762
763 static int
764 rp_saved (CORE_ADDR pc)
765 {
766 struct unwind_table_entry *u;
767
768 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
769 if (pc == (CORE_ADDR) 0)
770 return 0;
771
772 u = find_unwind_entry (pc);
773
774 if (!u)
775 {
776 if (pc_in_linker_stub (pc))
777 /* This is the so-called RP'. */
778 return -24;
779 else
780 return 0;
781 }
782
783 if (u->Save_RP)
784 return (TARGET_PTR_BIT == 64 ? -16 : -20);
785 else if (u->stub_unwind.stub_type != 0)
786 {
787 switch (u->stub_unwind.stub_type)
788 {
789 case EXPORT:
790 case IMPORT:
791 return -24;
792 case PARAMETER_RELOCATION:
793 return -8;
794 default:
795 return 0;
796 }
797 }
798 else
799 return 0;
800 }
801 \f
802 int
803 frameless_function_invocation (struct frame_info *frame)
804 {
805 struct unwind_table_entry *u;
806
807 u = find_unwind_entry (frame->pc);
808
809 if (u == 0)
810 return 0;
811
812 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
813 }
814
815 CORE_ADDR
816 saved_pc_after_call (struct frame_info *frame)
817 {
818 int ret_regnum;
819 CORE_ADDR pc;
820 struct unwind_table_entry *u;
821
822 ret_regnum = find_return_regnum (get_frame_pc (frame));
823 pc = read_register (ret_regnum) & ~0x3;
824
825 /* If PC is in a linker stub, then we need to dig the address
826 the stub will return to out of the stack. */
827 u = find_unwind_entry (pc);
828 if (u && u->stub_unwind.stub_type != 0)
829 return FRAME_SAVED_PC (frame);
830 else
831 return pc;
832 }
833 \f
834 CORE_ADDR
835 hppa_frame_saved_pc (struct frame_info *frame)
836 {
837 CORE_ADDR pc = get_frame_pc (frame);
838 struct unwind_table_entry *u;
839 CORE_ADDR old_pc;
840 int spun_around_loop = 0;
841 int rp_offset = 0;
842
843 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
844 at the base of the frame in an interrupt handler. Registers within
845 are saved in the exact same order as GDB numbers registers. How
846 convienent. */
847 if (pc_in_interrupt_handler (pc))
848 return read_memory_integer (frame->frame + PC_REGNUM * 4,
849 TARGET_PTR_BIT / 8) & ~0x3;
850
851 if ((frame->pc >= frame->frame
852 && frame->pc <= (frame->frame
853 /* A call dummy is sized in words, but it is
854 actually a series of instructions. Account
855 for that scaling factor. */
856 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
857 * CALL_DUMMY_LENGTH)
858 /* Similarly we have to account for 64bit
859 wide register saves. */
860 + (32 * REGISTER_SIZE)
861 /* We always consider FP regs 8 bytes long. */
862 + (NUM_REGS - FP0_REGNUM) * 8
863 /* Similarly we have to account for 64bit
864 wide register saves. */
865 + (6 * REGISTER_SIZE))))
866 {
867 return read_memory_integer ((frame->frame
868 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
869 TARGET_PTR_BIT / 8) & ~0x3;
870 }
871
872 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
873 /* Deal with signal handler caller frames too. */
874 if (frame->signal_handler_caller)
875 {
876 CORE_ADDR rp;
877 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
878 return rp & ~0x3;
879 }
880 #endif
881
882 if (frameless_function_invocation (frame))
883 {
884 int ret_regnum;
885
886 ret_regnum = find_return_regnum (pc);
887
888 /* If the next frame is an interrupt frame or a signal
889 handler caller, then we need to look in the saved
890 register area to get the return pointer (the values
891 in the registers may not correspond to anything useful). */
892 if (frame->next
893 && (frame->next->signal_handler_caller
894 || pc_in_interrupt_handler (frame->next->pc)))
895 {
896 struct frame_saved_regs saved_regs;
897
898 get_frame_saved_regs (frame->next, &saved_regs);
899 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
900 TARGET_PTR_BIT / 8) & 0x2)
901 {
902 pc = read_memory_integer (saved_regs.regs[31],
903 TARGET_PTR_BIT / 8) & ~0x3;
904
905 /* Syscalls are really two frames. The syscall stub itself
906 with a return pointer in %rp and the kernel call with
907 a return pointer in %r31. We return the %rp variant
908 if %r31 is the same as frame->pc. */
909 if (pc == frame->pc)
910 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
911 TARGET_PTR_BIT / 8) & ~0x3;
912 }
913 else
914 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
915 TARGET_PTR_BIT / 8) & ~0x3;
916 }
917 else
918 pc = read_register (ret_regnum) & ~0x3;
919 }
920 else
921 {
922 spun_around_loop = 0;
923 old_pc = pc;
924
925 restart:
926 rp_offset = rp_saved (pc);
927
928 /* Similar to code in frameless function case. If the next
929 frame is a signal or interrupt handler, then dig the right
930 information out of the saved register info. */
931 if (rp_offset == 0
932 && frame->next
933 && (frame->next->signal_handler_caller
934 || pc_in_interrupt_handler (frame->next->pc)))
935 {
936 struct frame_saved_regs saved_regs;
937
938 get_frame_saved_regs (frame->next, &saved_regs);
939 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
940 TARGET_PTR_BIT / 8) & 0x2)
941 {
942 pc = read_memory_integer (saved_regs.regs[31],
943 TARGET_PTR_BIT / 8) & ~0x3;
944
945 /* Syscalls are really two frames. The syscall stub itself
946 with a return pointer in %rp and the kernel call with
947 a return pointer in %r31. We return the %rp variant
948 if %r31 is the same as frame->pc. */
949 if (pc == frame->pc)
950 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
951 TARGET_PTR_BIT / 8) & ~0x3;
952 }
953 else
954 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
955 TARGET_PTR_BIT / 8) & ~0x3;
956 }
957 else if (rp_offset == 0)
958 {
959 old_pc = pc;
960 pc = read_register (RP_REGNUM) & ~0x3;
961 }
962 else
963 {
964 old_pc = pc;
965 pc = read_memory_integer (frame->frame + rp_offset,
966 TARGET_PTR_BIT / 8) & ~0x3;
967 }
968 }
969
970 /* If PC is inside a linker stub, then dig out the address the stub
971 will return to.
972
973 Don't do this for long branch stubs. Why? For some unknown reason
974 _start is marked as a long branch stub in hpux10. */
975 u = find_unwind_entry (pc);
976 if (u && u->stub_unwind.stub_type != 0
977 && u->stub_unwind.stub_type != LONG_BRANCH)
978 {
979 unsigned int insn;
980
981 /* If this is a dynamic executable, and we're in a signal handler,
982 then the call chain will eventually point us into the stub for
983 _sigreturn. Unlike most cases, we'll be pointed to the branch
984 to the real sigreturn rather than the code after the real branch!.
985
986 Else, try to dig the address the stub will return to in the normal
987 fashion. */
988 insn = read_memory_integer (pc, 4);
989 if ((insn & 0xfc00e000) == 0xe8000000)
990 return (pc + extract_17 (insn) + 8) & ~0x3;
991 else
992 {
993 if (old_pc == pc)
994 spun_around_loop++;
995
996 if (spun_around_loop > 1)
997 {
998 /* We're just about to go around the loop again with
999 no more hope of success. Die. */
1000 error ("Unable to find return pc for this frame");
1001 }
1002 else
1003 goto restart;
1004 }
1005 }
1006
1007 return pc;
1008 }
1009 \f
1010 /* We need to correct the PC and the FP for the outermost frame when we are
1011 in a system call. */
1012
1013 void
1014 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1015 {
1016 int flags;
1017 int framesize;
1018
1019 if (frame->next && !fromleaf)
1020 return;
1021
1022 /* If the next frame represents a frameless function invocation
1023 then we have to do some adjustments that are normally done by
1024 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1025 if (fromleaf)
1026 {
1027 /* Find the framesize of *this* frame without peeking at the PC
1028 in the current frame structure (it isn't set yet). */
1029 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1030
1031 /* Now adjust our base frame accordingly. If we have a frame pointer
1032 use it, else subtract the size of this frame from the current
1033 frame. (we always want frame->frame to point at the lowest address
1034 in the frame). */
1035 if (framesize == -1)
1036 frame->frame = TARGET_READ_FP ();
1037 else
1038 frame->frame -= framesize;
1039 return;
1040 }
1041
1042 flags = read_register (FLAGS_REGNUM);
1043 if (flags & 2) /* In system call? */
1044 frame->pc = read_register (31) & ~0x3;
1045
1046 /* The outermost frame is always derived from PC-framesize
1047
1048 One might think frameless innermost frames should have
1049 a frame->frame that is the same as the parent's frame->frame.
1050 That is wrong; frame->frame in that case should be the *high*
1051 address of the parent's frame. It's complicated as hell to
1052 explain, but the parent *always* creates some stack space for
1053 the child. So the child actually does have a frame of some
1054 sorts, and its base is the high address in its parent's frame. */
1055 framesize = find_proc_framesize (frame->pc);
1056 if (framesize == -1)
1057 frame->frame = TARGET_READ_FP ();
1058 else
1059 frame->frame = read_register (SP_REGNUM) - framesize;
1060 }
1061 \f
1062 /* Given a GDB frame, determine the address of the calling function's frame.
1063 This will be used to create a new GDB frame struct, and then
1064 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1065
1066 This may involve searching through prologues for several functions
1067 at boundaries where GCC calls HP C code, or where code which has
1068 a frame pointer calls code without a frame pointer. */
1069
1070 CORE_ADDR
1071 frame_chain (struct frame_info *frame)
1072 {
1073 int my_framesize, caller_framesize;
1074 struct unwind_table_entry *u;
1075 CORE_ADDR frame_base;
1076 struct frame_info *tmp_frame;
1077
1078 /* A frame in the current frame list, or zero. */
1079 struct frame_info *saved_regs_frame = 0;
1080 /* Where the registers were saved in saved_regs_frame.
1081 If saved_regs_frame is zero, this is garbage. */
1082 struct frame_saved_regs saved_regs;
1083
1084 CORE_ADDR caller_pc;
1085
1086 struct minimal_symbol *min_frame_symbol;
1087 struct symbol *frame_symbol;
1088 char *frame_symbol_name;
1089
1090 /* If this is a threaded application, and we see the
1091 routine "__pthread_exit", treat it as the stack root
1092 for this thread. */
1093 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1094 frame_symbol = find_pc_function (frame->pc);
1095
1096 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1097 {
1098 /* The test above for "no user function name" would defend
1099 against the slim likelihood that a user might define a
1100 routine named "__pthread_exit" and then try to debug it.
1101
1102 If it weren't commented out, and you tried to debug the
1103 pthread library itself, you'd get errors.
1104
1105 So for today, we don't make that check. */
1106 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1107 if (frame_symbol_name != 0)
1108 {
1109 if (0 == strncmp (frame_symbol_name,
1110 THREAD_INITIAL_FRAME_SYMBOL,
1111 THREAD_INITIAL_FRAME_SYM_LEN))
1112 {
1113 /* Pretend we've reached the bottom of the stack. */
1114 return (CORE_ADDR) 0;
1115 }
1116 }
1117 } /* End of hacky code for threads. */
1118
1119 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1120 are easy; at *sp we have a full save state strucutre which we can
1121 pull the old stack pointer from. Also see frame_saved_pc for
1122 code to dig a saved PC out of the save state structure. */
1123 if (pc_in_interrupt_handler (frame->pc))
1124 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1125 TARGET_PTR_BIT / 8);
1126 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1127 else if (frame->signal_handler_caller)
1128 {
1129 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1130 }
1131 #endif
1132 else
1133 frame_base = frame->frame;
1134
1135 /* Get frame sizes for the current frame and the frame of the
1136 caller. */
1137 my_framesize = find_proc_framesize (frame->pc);
1138 caller_pc = FRAME_SAVED_PC (frame);
1139
1140 /* If we can't determine the caller's PC, then it's not likely we can
1141 really determine anything meaningful about its frame. We'll consider
1142 this to be stack bottom. */
1143 if (caller_pc == (CORE_ADDR) 0)
1144 return (CORE_ADDR) 0;
1145
1146 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1147
1148 /* If caller does not have a frame pointer, then its frame
1149 can be found at current_frame - caller_framesize. */
1150 if (caller_framesize != -1)
1151 {
1152 return frame_base - caller_framesize;
1153 }
1154 /* Both caller and callee have frame pointers and are GCC compiled
1155 (SAVE_SP bit in unwind descriptor is on for both functions.
1156 The previous frame pointer is found at the top of the current frame. */
1157 if (caller_framesize == -1 && my_framesize == -1)
1158 {
1159 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1160 }
1161 /* Caller has a frame pointer, but callee does not. This is a little
1162 more difficult as GCC and HP C lay out locals and callee register save
1163 areas very differently.
1164
1165 The previous frame pointer could be in a register, or in one of
1166 several areas on the stack.
1167
1168 Walk from the current frame to the innermost frame examining
1169 unwind descriptors to determine if %r3 ever gets saved into the
1170 stack. If so return whatever value got saved into the stack.
1171 If it was never saved in the stack, then the value in %r3 is still
1172 valid, so use it.
1173
1174 We use information from unwind descriptors to determine if %r3
1175 is saved into the stack (Entry_GR field has this information). */
1176
1177 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1178 {
1179 u = find_unwind_entry (tmp_frame->pc);
1180
1181 if (!u)
1182 {
1183 /* We could find this information by examining prologues. I don't
1184 think anyone has actually written any tools (not even "strip")
1185 which leave them out of an executable, so maybe this is a moot
1186 point. */
1187 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1188 code that doesn't have unwind entries. For example, stepping into
1189 the dynamic linker will give you a PC that has none. Thus, I've
1190 disabled this warning. */
1191 #if 0
1192 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1193 #endif
1194 return (CORE_ADDR) 0;
1195 }
1196
1197 if (u->Save_SP
1198 || tmp_frame->signal_handler_caller
1199 || pc_in_interrupt_handler (tmp_frame->pc))
1200 break;
1201
1202 /* Entry_GR specifies the number of callee-saved general registers
1203 saved in the stack. It starts at %r3, so %r3 would be 1. */
1204 if (u->Entry_GR >= 1)
1205 {
1206 /* The unwind entry claims that r3 is saved here. However,
1207 in optimized code, GCC often doesn't actually save r3.
1208 We'll discover this if we look at the prologue. */
1209 get_frame_saved_regs (tmp_frame, &saved_regs);
1210 saved_regs_frame = tmp_frame;
1211
1212 /* If we have an address for r3, that's good. */
1213 if (saved_regs.regs[FP_REGNUM])
1214 break;
1215 }
1216 }
1217
1218 if (tmp_frame)
1219 {
1220 /* We may have walked down the chain into a function with a frame
1221 pointer. */
1222 if (u->Save_SP
1223 && !tmp_frame->signal_handler_caller
1224 && !pc_in_interrupt_handler (tmp_frame->pc))
1225 {
1226 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1227 }
1228 /* %r3 was saved somewhere in the stack. Dig it out. */
1229 else
1230 {
1231 /* Sick.
1232
1233 For optimization purposes many kernels don't have the
1234 callee saved registers into the save_state structure upon
1235 entry into the kernel for a syscall; the optimization
1236 is usually turned off if the process is being traced so
1237 that the debugger can get full register state for the
1238 process.
1239
1240 This scheme works well except for two cases:
1241
1242 * Attaching to a process when the process is in the
1243 kernel performing a system call (debugger can't get
1244 full register state for the inferior process since
1245 the process wasn't being traced when it entered the
1246 system call).
1247
1248 * Register state is not complete if the system call
1249 causes the process to core dump.
1250
1251
1252 The following heinous code is an attempt to deal with
1253 the lack of register state in a core dump. It will
1254 fail miserably if the function which performs the
1255 system call has a variable sized stack frame. */
1256
1257 if (tmp_frame != saved_regs_frame)
1258 get_frame_saved_regs (tmp_frame, &saved_regs);
1259
1260 /* Abominable hack. */
1261 if (current_target.to_has_execution == 0
1262 && ((saved_regs.regs[FLAGS_REGNUM]
1263 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1264 TARGET_PTR_BIT / 8)
1265 & 0x2))
1266 || (saved_regs.regs[FLAGS_REGNUM] == 0
1267 && read_register (FLAGS_REGNUM) & 0x2)))
1268 {
1269 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1270 if (!u)
1271 {
1272 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1273 TARGET_PTR_BIT / 8);
1274 }
1275 else
1276 {
1277 return frame_base - (u->Total_frame_size << 3);
1278 }
1279 }
1280
1281 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1282 TARGET_PTR_BIT / 8);
1283 }
1284 }
1285 else
1286 {
1287 /* Get the innermost frame. */
1288 tmp_frame = frame;
1289 while (tmp_frame->next != NULL)
1290 tmp_frame = tmp_frame->next;
1291
1292 if (tmp_frame != saved_regs_frame)
1293 get_frame_saved_regs (tmp_frame, &saved_regs);
1294
1295 /* Abominable hack. See above. */
1296 if (current_target.to_has_execution == 0
1297 && ((saved_regs.regs[FLAGS_REGNUM]
1298 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1299 TARGET_PTR_BIT / 8)
1300 & 0x2))
1301 || (saved_regs.regs[FLAGS_REGNUM] == 0
1302 && read_register (FLAGS_REGNUM) & 0x2)))
1303 {
1304 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1305 if (!u)
1306 {
1307 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1308 TARGET_PTR_BIT / 8);
1309 }
1310 else
1311 {
1312 return frame_base - (u->Total_frame_size << 3);
1313 }
1314 }
1315
1316 /* The value in %r3 was never saved into the stack (thus %r3 still
1317 holds the value of the previous frame pointer). */
1318 return TARGET_READ_FP ();
1319 }
1320 }
1321 \f
1322
1323 /* To see if a frame chain is valid, see if the caller looks like it
1324 was compiled with gcc. */
1325
1326 int
1327 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1328 {
1329 struct minimal_symbol *msym_us;
1330 struct minimal_symbol *msym_start;
1331 struct unwind_table_entry *u, *next_u = NULL;
1332 struct frame_info *next;
1333
1334 if (!chain)
1335 return 0;
1336
1337 u = find_unwind_entry (thisframe->pc);
1338
1339 if (u == NULL)
1340 return 1;
1341
1342 /* We can't just check that the same of msym_us is "_start", because
1343 someone idiotically decided that they were going to make a Ltext_end
1344 symbol with the same address. This Ltext_end symbol is totally
1345 indistinguishable (as nearly as I can tell) from the symbol for a function
1346 which is (legitimately, since it is in the user's namespace)
1347 named Ltext_end, so we can't just ignore it. */
1348 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1349 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1350 if (msym_us
1351 && msym_start
1352 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1353 return 0;
1354
1355 /* Grrrr. Some new idiot decided that they don't want _start for the
1356 PRO configurations; $START$ calls main directly.... Deal with it. */
1357 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1358 if (msym_us
1359 && msym_start
1360 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1361 return 0;
1362
1363 next = get_next_frame (thisframe);
1364 if (next)
1365 next_u = find_unwind_entry (next->pc);
1366
1367 /* If this frame does not save SP, has no stack, isn't a stub,
1368 and doesn't "call" an interrupt routine or signal handler caller,
1369 then its not valid. */
1370 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1371 || (thisframe->next && thisframe->next->signal_handler_caller)
1372 || (next_u && next_u->HP_UX_interrupt_marker))
1373 return 1;
1374
1375 if (pc_in_linker_stub (thisframe->pc))
1376 return 1;
1377
1378 return 0;
1379 }
1380
1381 /*
1382 These functions deal with saving and restoring register state
1383 around a function call in the inferior. They keep the stack
1384 double-word aligned; eventually, on an hp700, the stack will have
1385 to be aligned to a 64-byte boundary. */
1386
1387 void
1388 push_dummy_frame (struct inferior_status *inf_status)
1389 {
1390 CORE_ADDR sp, pc, pcspace;
1391 register int regnum;
1392 CORE_ADDR int_buffer;
1393 double freg_buffer;
1394
1395 /* Oh, what a hack. If we're trying to perform an inferior call
1396 while the inferior is asleep, we have to make sure to clear
1397 the "in system call" bit in the flag register (the call will
1398 start after the syscall returns, so we're no longer in the system
1399 call!) This state is kept in "inf_status", change it there.
1400
1401 We also need a number of horrid hacks to deal with lossage in the
1402 PC queue registers (apparently they're not valid when the in syscall
1403 bit is set). */
1404 pc = target_read_pc (inferior_ptid);
1405 int_buffer = read_register (FLAGS_REGNUM);
1406 if (int_buffer & 0x2)
1407 {
1408 unsigned int sid;
1409 int_buffer &= ~0x2;
1410 write_inferior_status_register (inf_status, 0, int_buffer);
1411 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1412 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1413 sid = (pc >> 30) & 0x3;
1414 if (sid == 0)
1415 pcspace = read_register (SR4_REGNUM);
1416 else
1417 pcspace = read_register (SR4_REGNUM + 4 + sid);
1418 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1419 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1420 }
1421 else
1422 pcspace = read_register (PCSQ_HEAD_REGNUM);
1423
1424 /* Space for "arguments"; the RP goes in here. */
1425 sp = read_register (SP_REGNUM) + 48;
1426 int_buffer = read_register (RP_REGNUM) | 0x3;
1427
1428 /* The 32bit and 64bit ABIs save the return pointer into different
1429 stack slots. */
1430 if (REGISTER_SIZE == 8)
1431 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1432 else
1433 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1434
1435 int_buffer = TARGET_READ_FP ();
1436 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1437
1438 write_register (FP_REGNUM, sp);
1439
1440 sp += 2 * REGISTER_SIZE;
1441
1442 for (regnum = 1; regnum < 32; regnum++)
1443 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1444 sp = push_word (sp, read_register (regnum));
1445
1446 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1447 if (REGISTER_SIZE != 8)
1448 sp += 4;
1449
1450 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1451 {
1452 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1453 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1454 }
1455 sp = push_word (sp, read_register (IPSW_REGNUM));
1456 sp = push_word (sp, read_register (SAR_REGNUM));
1457 sp = push_word (sp, pc);
1458 sp = push_word (sp, pcspace);
1459 sp = push_word (sp, pc + 4);
1460 sp = push_word (sp, pcspace);
1461 write_register (SP_REGNUM, sp);
1462 }
1463
1464 static void
1465 find_dummy_frame_regs (struct frame_info *frame,
1466 struct frame_saved_regs *frame_saved_regs)
1467 {
1468 CORE_ADDR fp = frame->frame;
1469 int i;
1470
1471 /* The 32bit and 64bit ABIs save RP into different locations. */
1472 if (REGISTER_SIZE == 8)
1473 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1474 else
1475 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1476
1477 frame_saved_regs->regs[FP_REGNUM] = fp;
1478
1479 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1480
1481 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1482 {
1483 if (i != FP_REGNUM)
1484 {
1485 frame_saved_regs->regs[i] = fp;
1486 fp += REGISTER_SIZE;
1487 }
1488 }
1489
1490 /* This is not necessary or desirable for the 64bit ABI. */
1491 if (REGISTER_SIZE != 8)
1492 fp += 4;
1493
1494 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1495 frame_saved_regs->regs[i] = fp;
1496
1497 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1498 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1499 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1500 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1501 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1502 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1503 }
1504
1505 void
1506 hppa_pop_frame (void)
1507 {
1508 register struct frame_info *frame = get_current_frame ();
1509 register CORE_ADDR fp, npc, target_pc;
1510 register int regnum;
1511 struct frame_saved_regs fsr;
1512 double freg_buffer;
1513
1514 fp = FRAME_FP (frame);
1515 get_frame_saved_regs (frame, &fsr);
1516
1517 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1518 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1519 restore_pc_queue (&fsr);
1520 #endif
1521
1522 for (regnum = 31; regnum > 0; regnum--)
1523 if (fsr.regs[regnum])
1524 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1525 REGISTER_SIZE));
1526
1527 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1528 if (fsr.regs[regnum])
1529 {
1530 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1531 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1532 }
1533
1534 if (fsr.regs[IPSW_REGNUM])
1535 write_register (IPSW_REGNUM,
1536 read_memory_integer (fsr.regs[IPSW_REGNUM],
1537 REGISTER_SIZE));
1538
1539 if (fsr.regs[SAR_REGNUM])
1540 write_register (SAR_REGNUM,
1541 read_memory_integer (fsr.regs[SAR_REGNUM],
1542 REGISTER_SIZE));
1543
1544 /* If the PC was explicitly saved, then just restore it. */
1545 if (fsr.regs[PCOQ_TAIL_REGNUM])
1546 {
1547 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1548 REGISTER_SIZE);
1549 write_register (PCOQ_TAIL_REGNUM, npc);
1550 }
1551 /* Else use the value in %rp to set the new PC. */
1552 else
1553 {
1554 npc = read_register (RP_REGNUM);
1555 write_pc (npc);
1556 }
1557
1558 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1559
1560 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1561 write_register (SP_REGNUM, fp - 48);
1562 else
1563 write_register (SP_REGNUM, fp);
1564
1565 /* The PC we just restored may be inside a return trampoline. If so
1566 we want to restart the inferior and run it through the trampoline.
1567
1568 Do this by setting a momentary breakpoint at the location the
1569 trampoline returns to.
1570
1571 Don't skip through the trampoline if we're popping a dummy frame. */
1572 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1573 if (target_pc && !fsr.regs[IPSW_REGNUM])
1574 {
1575 struct symtab_and_line sal;
1576 struct breakpoint *breakpoint;
1577 struct cleanup *old_chain;
1578
1579 /* Set up our breakpoint. Set it to be silent as the MI code
1580 for "return_command" will print the frame we returned to. */
1581 sal = find_pc_line (target_pc, 0);
1582 sal.pc = target_pc;
1583 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1584 breakpoint->silent = 1;
1585
1586 /* So we can clean things up. */
1587 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1588
1589 /* Start up the inferior. */
1590 clear_proceed_status ();
1591 proceed_to_finish = 1;
1592 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1593
1594 /* Perform our cleanups. */
1595 do_cleanups (old_chain);
1596 }
1597 flush_cached_frames ();
1598 }
1599
1600 /* After returning to a dummy on the stack, restore the instruction
1601 queue space registers. */
1602
1603 static int
1604 restore_pc_queue (struct frame_saved_regs *fsr)
1605 {
1606 CORE_ADDR pc = read_pc ();
1607 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1608 TARGET_PTR_BIT / 8);
1609 struct target_waitstatus w;
1610 int insn_count;
1611
1612 /* Advance past break instruction in the call dummy. */
1613 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1614 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1615
1616 /* HPUX doesn't let us set the space registers or the space
1617 registers of the PC queue through ptrace. Boo, hiss.
1618 Conveniently, the call dummy has this sequence of instructions
1619 after the break:
1620 mtsp r21, sr0
1621 ble,n 0(sr0, r22)
1622
1623 So, load up the registers and single step until we are in the
1624 right place. */
1625
1626 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1627 REGISTER_SIZE));
1628 write_register (22, new_pc);
1629
1630 for (insn_count = 0; insn_count < 3; insn_count++)
1631 {
1632 /* FIXME: What if the inferior gets a signal right now? Want to
1633 merge this into wait_for_inferior (as a special kind of
1634 watchpoint? By setting a breakpoint at the end? Is there
1635 any other choice? Is there *any* way to do this stuff with
1636 ptrace() or some equivalent?). */
1637 resume (1, 0);
1638 target_wait (inferior_ptid, &w);
1639
1640 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1641 {
1642 stop_signal = w.value.sig;
1643 terminal_ours_for_output ();
1644 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1645 target_signal_to_name (stop_signal),
1646 target_signal_to_string (stop_signal));
1647 gdb_flush (gdb_stdout);
1648 return 0;
1649 }
1650 }
1651 target_terminal_ours ();
1652 target_fetch_registers (-1);
1653 return 1;
1654 }
1655
1656
1657 #ifdef PA20W_CALLING_CONVENTIONS
1658
1659 /* This function pushes a stack frame with arguments as part of the
1660 inferior function calling mechanism.
1661
1662 This is the version for the PA64, in which later arguments appear
1663 at higher addresses. (The stack always grows towards higher
1664 addresses.)
1665
1666 We simply allocate the appropriate amount of stack space and put
1667 arguments into their proper slots. The call dummy code will copy
1668 arguments into registers as needed by the ABI.
1669
1670 This ABI also requires that the caller provide an argument pointer
1671 to the callee, so we do that too. */
1672
1673 CORE_ADDR
1674 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1675 int struct_return, CORE_ADDR struct_addr)
1676 {
1677 /* array of arguments' offsets */
1678 int *offset = (int *) alloca (nargs * sizeof (int));
1679
1680 /* array of arguments' lengths: real lengths in bytes, not aligned to
1681 word size */
1682 int *lengths = (int *) alloca (nargs * sizeof (int));
1683
1684 /* The value of SP as it was passed into this function after
1685 aligning. */
1686 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1687
1688 /* The number of stack bytes occupied by the current argument. */
1689 int bytes_reserved;
1690
1691 /* The total number of bytes reserved for the arguments. */
1692 int cum_bytes_reserved = 0;
1693
1694 /* Similarly, but aligned. */
1695 int cum_bytes_aligned = 0;
1696 int i;
1697
1698 /* Iterate over each argument provided by the user. */
1699 for (i = 0; i < nargs; i++)
1700 {
1701 struct type *arg_type = VALUE_TYPE (args[i]);
1702
1703 /* Integral scalar values smaller than a register are padded on
1704 the left. We do this by promoting them to full-width,
1705 although the ABI says to pad them with garbage. */
1706 if (is_integral_type (arg_type)
1707 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1708 {
1709 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1710 ? builtin_type_unsigned_long
1711 : builtin_type_long),
1712 args[i]);
1713 arg_type = VALUE_TYPE (args[i]);
1714 }
1715
1716 lengths[i] = TYPE_LENGTH (arg_type);
1717
1718 /* Align the size of the argument to the word size for this
1719 target. */
1720 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1721
1722 offset[i] = cum_bytes_reserved;
1723
1724 /* Aggregates larger than eight bytes (the only types larger
1725 than eight bytes we have) are aligned on a 16-byte boundary,
1726 possibly padded on the right with garbage. This may leave an
1727 empty word on the stack, and thus an unused register, as per
1728 the ABI. */
1729 if (bytes_reserved > 8)
1730 {
1731 /* Round up the offset to a multiple of two slots. */
1732 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1733 & -(2*REGISTER_SIZE));
1734
1735 /* Note the space we've wasted, if any. */
1736 bytes_reserved += new_offset - offset[i];
1737 offset[i] = new_offset;
1738 }
1739
1740 cum_bytes_reserved += bytes_reserved;
1741 }
1742
1743 /* CUM_BYTES_RESERVED already accounts for all the arguments
1744 passed by the user. However, the ABIs mandate minimum stack space
1745 allocations for outgoing arguments.
1746
1747 The ABIs also mandate minimum stack alignments which we must
1748 preserve. */
1749 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1750 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1751
1752 /* Now write each of the args at the proper offset down the stack. */
1753 for (i = 0; i < nargs; i++)
1754 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1755
1756 /* If a structure has to be returned, set up register 28 to hold its
1757 address */
1758 if (struct_return)
1759 write_register (28, struct_addr);
1760
1761 /* For the PA64 we must pass a pointer to the outgoing argument list.
1762 The ABI mandates that the pointer should point to the first byte of
1763 storage beyond the register flushback area.
1764
1765 However, the call dummy expects the outgoing argument pointer to
1766 be passed in register %r4. */
1767 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1768
1769 /* ?!? This needs further work. We need to set up the global data
1770 pointer for this procedure. This assumes the same global pointer
1771 for every procedure. The call dummy expects the dp value to
1772 be passed in register %r6. */
1773 write_register (6, read_register (27));
1774
1775 /* The stack will have 64 bytes of additional space for a frame marker. */
1776 return sp + 64;
1777 }
1778
1779 #else
1780
1781 /* This function pushes a stack frame with arguments as part of the
1782 inferior function calling mechanism.
1783
1784 This is the version of the function for the 32-bit PA machines, in
1785 which later arguments appear at lower addresses. (The stack always
1786 grows towards higher addresses.)
1787
1788 We simply allocate the appropriate amount of stack space and put
1789 arguments into their proper slots. The call dummy code will copy
1790 arguments into registers as needed by the ABI. */
1791
1792 CORE_ADDR
1793 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1794 int struct_return, CORE_ADDR struct_addr)
1795 {
1796 /* array of arguments' offsets */
1797 int *offset = (int *) alloca (nargs * sizeof (int));
1798
1799 /* array of arguments' lengths: real lengths in bytes, not aligned to
1800 word size */
1801 int *lengths = (int *) alloca (nargs * sizeof (int));
1802
1803 /* The number of stack bytes occupied by the current argument. */
1804 int bytes_reserved;
1805
1806 /* The total number of bytes reserved for the arguments. */
1807 int cum_bytes_reserved = 0;
1808
1809 /* Similarly, but aligned. */
1810 int cum_bytes_aligned = 0;
1811 int i;
1812
1813 /* Iterate over each argument provided by the user. */
1814 for (i = 0; i < nargs; i++)
1815 {
1816 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1817
1818 /* Align the size of the argument to the word size for this
1819 target. */
1820 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1821
1822 offset[i] = (cum_bytes_reserved
1823 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1824
1825 /* If the argument is a double word argument, then it needs to be
1826 double word aligned. */
1827 if ((bytes_reserved == 2 * REGISTER_SIZE)
1828 && (offset[i] % 2 * REGISTER_SIZE))
1829 {
1830 int new_offset = 0;
1831 /* BYTES_RESERVED is already aligned to the word, so we put
1832 the argument at one word more down the stack.
1833
1834 This will leave one empty word on the stack, and one unused
1835 register as mandated by the ABI. */
1836 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1837 & -(2 * REGISTER_SIZE));
1838
1839 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1840 {
1841 bytes_reserved += REGISTER_SIZE;
1842 offset[i] += REGISTER_SIZE;
1843 }
1844 }
1845
1846 cum_bytes_reserved += bytes_reserved;
1847
1848 }
1849
1850 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1851 by the user. However, the ABI mandates minimum stack space
1852 allocations for outgoing arguments.
1853
1854 The ABI also mandates minimum stack alignments which we must
1855 preserve. */
1856 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1857 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1858
1859 /* Now write each of the args at the proper offset down the stack.
1860 ?!? We need to promote values to a full register instead of skipping
1861 words in the stack. */
1862 for (i = 0; i < nargs; i++)
1863 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1864
1865 /* If a structure has to be returned, set up register 28 to hold its
1866 address */
1867 if (struct_return)
1868 write_register (28, struct_addr);
1869
1870 /* The stack will have 32 bytes of additional space for a frame marker. */
1871 return sp + 32;
1872 }
1873
1874 #endif
1875
1876 /* elz: this function returns a value which is built looking at the given address.
1877 It is called from call_function_by_hand, in case we need to return a
1878 value which is larger than 64 bits, and it is stored in the stack rather than
1879 in the registers r28 and r29 or fr4.
1880 This function does the same stuff as value_being_returned in values.c, but
1881 gets the value from the stack rather than from the buffer where all the
1882 registers were saved when the function called completed. */
1883 struct value *
1884 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1885 {
1886 register struct value *val;
1887
1888 val = allocate_value (valtype);
1889 CHECK_TYPEDEF (valtype);
1890 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1891
1892 return val;
1893 }
1894
1895
1896
1897 /* elz: Used to lookup a symbol in the shared libraries.
1898 This function calls shl_findsym, indirectly through a
1899 call to __d_shl_get. __d_shl_get is in end.c, which is always
1900 linked in by the hp compilers/linkers.
1901 The call to shl_findsym cannot be made directly because it needs
1902 to be active in target address space.
1903 inputs: - minimal symbol pointer for the function we want to look up
1904 - address in target space of the descriptor for the library
1905 where we want to look the symbol up.
1906 This address is retrieved using the
1907 som_solib_get_solib_by_pc function (somsolib.c).
1908 output: - real address in the library of the function.
1909 note: the handle can be null, in which case shl_findsym will look for
1910 the symbol in all the loaded shared libraries.
1911 files to look at if you need reference on this stuff:
1912 dld.c, dld_shl_findsym.c
1913 end.c
1914 man entry for shl_findsym */
1915
1916 CORE_ADDR
1917 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1918 {
1919 struct symbol *get_sym, *symbol2;
1920 struct minimal_symbol *buff_minsym, *msymbol;
1921 struct type *ftype;
1922 struct value **args;
1923 struct value *funcval;
1924 struct value *val;
1925
1926 int x, namelen, err_value, tmp = -1;
1927 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1928 CORE_ADDR stub_addr;
1929
1930
1931 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1932 funcval = find_function_in_inferior ("__d_shl_get");
1933 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1934 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1935 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1936 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1937 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1938 namelen = strlen (SYMBOL_NAME (function));
1939 value_return_addr = endo_buff_addr + namelen;
1940 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1941
1942 /* do alignment */
1943 if ((x = value_return_addr % 64) != 0)
1944 value_return_addr = value_return_addr + 64 - x;
1945
1946 errno_return_addr = value_return_addr + 64;
1947
1948
1949 /* set up stuff needed by __d_shl_get in buffer in end.o */
1950
1951 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1952
1953 target_write_memory (value_return_addr, (char *) &tmp, 4);
1954
1955 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1956
1957 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1958 (char *) &handle, 4);
1959
1960 /* now prepare the arguments for the call */
1961
1962 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1963 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1964 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1965 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1966 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1967 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1968
1969 /* now call the function */
1970
1971 val = call_function_by_hand (funcval, 6, args);
1972
1973 /* now get the results */
1974
1975 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1976
1977 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1978 if (stub_addr <= 0)
1979 error ("call to __d_shl_get failed, error code is %d", err_value);
1980
1981 return (stub_addr);
1982 }
1983
1984 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1985 static int
1986 cover_find_stub_with_shl_get (PTR args_untyped)
1987 {
1988 args_for_find_stub *args = args_untyped;
1989 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1990 return 0;
1991 }
1992
1993 /* Insert the specified number of args and function address
1994 into a call sequence of the above form stored at DUMMYNAME.
1995
1996 On the hppa we need to call the stack dummy through $$dyncall.
1997 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1998 real_pc, which is the location where gdb should start up the
1999 inferior to do the function call.
2000
2001 This has to work across several versions of hpux, bsd, osf1. It has to
2002 work regardless of what compiler was used to build the inferior program.
2003 It should work regardless of whether or not end.o is available. It has
2004 to work even if gdb can not call into the dynamic loader in the inferior
2005 to query it for symbol names and addresses.
2006
2007 Yes, all those cases should work. Luckily code exists to handle most
2008 of them. The complexity is in selecting exactly what scheme should
2009 be used to perform the inferior call.
2010
2011 At the current time this routine is known not to handle cases where
2012 the program was linked with HP's compiler without including end.o.
2013
2014 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2015
2016 CORE_ADDR
2017 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2018 struct value **args, struct type *type, int gcc_p)
2019 {
2020 CORE_ADDR dyncall_addr;
2021 struct minimal_symbol *msymbol;
2022 struct minimal_symbol *trampoline;
2023 int flags = read_register (FLAGS_REGNUM);
2024 struct unwind_table_entry *u = NULL;
2025 CORE_ADDR new_stub = 0;
2026 CORE_ADDR solib_handle = 0;
2027
2028 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2029 passed an import stub, not a PLABEL. It is also necessary to set %r19
2030 (the PIC register) before performing the call.
2031
2032 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2033 are calling the target directly. When using __d_plt_call we want to
2034 use a PLABEL instead of an import stub. */
2035 int using_gcc_plt_call = 1;
2036
2037 #ifdef GDB_TARGET_IS_HPPA_20W
2038 /* We currently use completely different code for the PA2.0W inferior
2039 function call sequences. This needs to be cleaned up. */
2040 {
2041 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2042 struct target_waitstatus w;
2043 int inst1, inst2;
2044 char buf[4];
2045 int status;
2046 struct objfile *objfile;
2047
2048 /* We can not modify the PC space queues directly, so we start
2049 up the inferior and execute a couple instructions to set the
2050 space queues so that they point to the call dummy in the stack. */
2051 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2052 sr5 = read_register (SR5_REGNUM);
2053 if (1)
2054 {
2055 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2056 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2057 if (target_read_memory (pcoqh, buf, 4) != 0)
2058 error ("Couldn't modify space queue\n");
2059 inst1 = extract_unsigned_integer (buf, 4);
2060
2061 if (target_read_memory (pcoqt, buf, 4) != 0)
2062 error ("Couldn't modify space queue\n");
2063 inst2 = extract_unsigned_integer (buf, 4);
2064
2065 /* BVE (r1) */
2066 *((int *) buf) = 0xe820d000;
2067 if (target_write_memory (pcoqh, buf, 4) != 0)
2068 error ("Couldn't modify space queue\n");
2069
2070 /* NOP */
2071 *((int *) buf) = 0x08000240;
2072 if (target_write_memory (pcoqt, buf, 4) != 0)
2073 {
2074 *((int *) buf) = inst1;
2075 target_write_memory (pcoqh, buf, 4);
2076 error ("Couldn't modify space queue\n");
2077 }
2078
2079 write_register (1, pc);
2080
2081 /* Single step twice, the BVE instruction will set the space queue
2082 such that it points to the PC value written immediately above
2083 (ie the call dummy). */
2084 resume (1, 0);
2085 target_wait (inferior_ptid, &w);
2086 resume (1, 0);
2087 target_wait (inferior_ptid, &w);
2088
2089 /* Restore the two instructions at the old PC locations. */
2090 *((int *) buf) = inst1;
2091 target_write_memory (pcoqh, buf, 4);
2092 *((int *) buf) = inst2;
2093 target_write_memory (pcoqt, buf, 4);
2094 }
2095
2096 /* The call dummy wants the ultimate destination address initially
2097 in register %r5. */
2098 write_register (5, fun);
2099
2100 /* We need to see if this objfile has a different DP value than our
2101 own (it could be a shared library for example). */
2102 ALL_OBJFILES (objfile)
2103 {
2104 struct obj_section *s;
2105 obj_private_data_t *obj_private;
2106
2107 /* See if FUN is in any section within this shared library. */
2108 for (s = objfile->sections; s < objfile->sections_end; s++)
2109 if (s->addr <= fun && fun < s->endaddr)
2110 break;
2111
2112 if (s >= objfile->sections_end)
2113 continue;
2114
2115 obj_private = (obj_private_data_t *) objfile->obj_private;
2116
2117 /* The DP value may be different for each objfile. But within an
2118 objfile each function uses the same dp value. Thus we do not need
2119 to grope around the opd section looking for dp values.
2120
2121 ?!? This is not strictly correct since we may be in a shared library
2122 and want to call back into the main program. To make that case
2123 work correctly we need to set obj_private->dp for the main program's
2124 objfile, then remove this conditional. */
2125 if (obj_private->dp)
2126 write_register (27, obj_private->dp);
2127 break;
2128 }
2129 return pc;
2130 }
2131 #endif
2132
2133 #ifndef GDB_TARGET_IS_HPPA_20W
2134 /* Prefer __gcc_plt_call over the HP supplied routine because
2135 __gcc_plt_call works for any number of arguments. */
2136 trampoline = NULL;
2137 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2138 using_gcc_plt_call = 0;
2139
2140 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2141 if (msymbol == NULL)
2142 error ("Can't find an address for $$dyncall trampoline");
2143
2144 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2145
2146 /* FUN could be a procedure label, in which case we have to get
2147 its real address and the value of its GOT/DP if we plan to
2148 call the routine via gcc_plt_call. */
2149 if ((fun & 0x2) && using_gcc_plt_call)
2150 {
2151 /* Get the GOT/DP value for the target function. It's
2152 at *(fun+4). Note the call dummy is *NOT* allowed to
2153 trash %r19 before calling the target function. */
2154 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2155 REGISTER_SIZE));
2156
2157 /* Now get the real address for the function we are calling, it's
2158 at *fun. */
2159 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2160 TARGET_PTR_BIT / 8);
2161 }
2162 else
2163 {
2164
2165 #ifndef GDB_TARGET_IS_PA_ELF
2166 /* FUN could be an export stub, the real address of a function, or
2167 a PLABEL. When using gcc's PLT call routine we must call an import
2168 stub rather than the export stub or real function for lazy binding
2169 to work correctly
2170
2171 If we are using the gcc PLT call routine, then we need to
2172 get the import stub for the target function. */
2173 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2174 {
2175 struct objfile *objfile;
2176 struct minimal_symbol *funsymbol, *stub_symbol;
2177 CORE_ADDR newfun = 0;
2178
2179 funsymbol = lookup_minimal_symbol_by_pc (fun);
2180 if (!funsymbol)
2181 error ("Unable to find minimal symbol for target function.\n");
2182
2183 /* Search all the object files for an import symbol with the
2184 right name. */
2185 ALL_OBJFILES (objfile)
2186 {
2187 stub_symbol
2188 = lookup_minimal_symbol_solib_trampoline
2189 (SYMBOL_NAME (funsymbol), NULL, objfile);
2190
2191 if (!stub_symbol)
2192 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2193 NULL, objfile);
2194
2195 /* Found a symbol with the right name. */
2196 if (stub_symbol)
2197 {
2198 struct unwind_table_entry *u;
2199 /* It must be a shared library trampoline. */
2200 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2201 continue;
2202
2203 /* It must also be an import stub. */
2204 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2205 if (u == NULL
2206 || (u->stub_unwind.stub_type != IMPORT
2207 #ifdef GDB_NATIVE_HPUX_11
2208 /* Sigh. The hpux 10.20 dynamic linker will blow
2209 chunks if we perform a call to an unbound function
2210 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2211 linker will blow chunks if we do not call the
2212 unbound function via the IMPORT_SHLIB stub.
2213
2214 We currently have no way to select bevahior on just
2215 the target. However, we only support HPUX/SOM in
2216 native mode. So we conditinalize on a native
2217 #ifdef. Ugly. Ugly. Ugly */
2218 && u->stub_unwind.stub_type != IMPORT_SHLIB
2219 #endif
2220 ))
2221 continue;
2222
2223 /* OK. Looks like the correct import stub. */
2224 newfun = SYMBOL_VALUE (stub_symbol);
2225 fun = newfun;
2226
2227 /* If we found an IMPORT stub, then we want to stop
2228 searching now. If we found an IMPORT_SHLIB, we want
2229 to continue the search in the hopes that we will find
2230 an IMPORT stub. */
2231 if (u->stub_unwind.stub_type == IMPORT)
2232 break;
2233 }
2234 }
2235
2236 /* Ouch. We did not find an import stub. Make an attempt to
2237 do the right thing instead of just croaking. Most of the
2238 time this will actually work. */
2239 if (newfun == 0)
2240 write_register (19, som_solib_get_got_by_pc (fun));
2241
2242 u = find_unwind_entry (fun);
2243 if (u
2244 && (u->stub_unwind.stub_type == IMPORT
2245 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2246 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2247
2248 /* If we found the import stub in the shared library, then we have
2249 to set %r19 before we call the stub. */
2250 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2251 write_register (19, som_solib_get_got_by_pc (fun));
2252 }
2253 #endif
2254 }
2255
2256 /* If we are calling into another load module then have sr4export call the
2257 magic __d_plt_call routine which is linked in from end.o.
2258
2259 You can't use _sr4export to make the call as the value in sp-24 will get
2260 fried and you end up returning to the wrong location. You can't call the
2261 target as the code to bind the PLT entry to a function can't return to a
2262 stack address.
2263
2264 Also, query the dynamic linker in the inferior to provide a suitable
2265 PLABEL for the target function. */
2266 if (!using_gcc_plt_call)
2267 {
2268 CORE_ADDR new_fun;
2269
2270 /* Get a handle for the shared library containing FUN. Given the
2271 handle we can query the shared library for a PLABEL. */
2272 solib_handle = som_solib_get_solib_by_pc (fun);
2273
2274 if (solib_handle)
2275 {
2276 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2277
2278 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2279
2280 if (trampoline == NULL)
2281 {
2282 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2283 }
2284
2285 /* This is where sr4export will jump to. */
2286 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2287
2288 /* If the function is in a shared library, then call __d_shl_get to
2289 get a PLABEL for the target function. */
2290 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2291
2292 if (new_stub == 0)
2293 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2294
2295 /* We have to store the address of the stub in __shlib_funcptr. */
2296 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2297 (struct objfile *) NULL);
2298
2299 if (msymbol == NULL)
2300 error ("Can't find an address for __shlib_funcptr");
2301 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2302 (char *) &new_stub, 4);
2303
2304 /* We want sr4export to call __d_plt_call, so we claim it is
2305 the final target. Clear trampoline. */
2306 fun = new_fun;
2307 trampoline = NULL;
2308 }
2309 }
2310
2311 /* Store upper 21 bits of function address into ldil. fun will either be
2312 the final target (most cases) or __d_plt_call when calling into a shared
2313 library and __gcc_plt_call is not available. */
2314 store_unsigned_integer
2315 (&dummy[FUNC_LDIL_OFFSET],
2316 INSTRUCTION_SIZE,
2317 deposit_21 (fun >> 11,
2318 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2319 INSTRUCTION_SIZE)));
2320
2321 /* Store lower 11 bits of function address into ldo */
2322 store_unsigned_integer
2323 (&dummy[FUNC_LDO_OFFSET],
2324 INSTRUCTION_SIZE,
2325 deposit_14 (fun & MASK_11,
2326 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2327 INSTRUCTION_SIZE)));
2328 #ifdef SR4EXPORT_LDIL_OFFSET
2329
2330 {
2331 CORE_ADDR trampoline_addr;
2332
2333 /* We may still need sr4export's address too. */
2334
2335 if (trampoline == NULL)
2336 {
2337 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2338 if (msymbol == NULL)
2339 error ("Can't find an address for _sr4export trampoline");
2340
2341 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2342 }
2343 else
2344 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2345
2346
2347 /* Store upper 21 bits of trampoline's address into ldil */
2348 store_unsigned_integer
2349 (&dummy[SR4EXPORT_LDIL_OFFSET],
2350 INSTRUCTION_SIZE,
2351 deposit_21 (trampoline_addr >> 11,
2352 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2353 INSTRUCTION_SIZE)));
2354
2355 /* Store lower 11 bits of trampoline's address into ldo */
2356 store_unsigned_integer
2357 (&dummy[SR4EXPORT_LDO_OFFSET],
2358 INSTRUCTION_SIZE,
2359 deposit_14 (trampoline_addr & MASK_11,
2360 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2361 INSTRUCTION_SIZE)));
2362 }
2363 #endif
2364
2365 write_register (22, pc);
2366
2367 /* If we are in a syscall, then we should call the stack dummy
2368 directly. $$dyncall is not needed as the kernel sets up the
2369 space id registers properly based on the value in %r31. In
2370 fact calling $$dyncall will not work because the value in %r22
2371 will be clobbered on the syscall exit path.
2372
2373 Similarly if the current PC is in a shared library. Note however,
2374 this scheme won't work if the shared library isn't mapped into
2375 the same space as the stack. */
2376 if (flags & 2)
2377 return pc;
2378 #ifndef GDB_TARGET_IS_PA_ELF
2379 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2380 return pc;
2381 #endif
2382 else
2383 return dyncall_addr;
2384 #endif
2385 }
2386
2387
2388
2389
2390 /* If the pid is in a syscall, then the FP register is not readable.
2391 We'll return zero in that case, rather than attempting to read it
2392 and cause a warning. */
2393 CORE_ADDR
2394 target_read_fp (int pid)
2395 {
2396 int flags = read_register (FLAGS_REGNUM);
2397
2398 if (flags & 2)
2399 {
2400 return (CORE_ADDR) 0;
2401 }
2402
2403 /* This is the only site that may directly read_register () the FP
2404 register. All others must use TARGET_READ_FP (). */
2405 return read_register (FP_REGNUM);
2406 }
2407
2408
2409 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2410 bits. */
2411
2412 CORE_ADDR
2413 target_read_pc (ptid_t ptid)
2414 {
2415 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2416
2417 /* The following test does not belong here. It is OS-specific, and belongs
2418 in native code. */
2419 /* Test SS_INSYSCALL */
2420 if (flags & 2)
2421 return read_register_pid (31, ptid) & ~0x3;
2422
2423 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2424 }
2425
2426 /* Write out the PC. If currently in a syscall, then also write the new
2427 PC value into %r31. */
2428
2429 void
2430 target_write_pc (CORE_ADDR v, ptid_t ptid)
2431 {
2432 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2433
2434 /* The following test does not belong here. It is OS-specific, and belongs
2435 in native code. */
2436 /* If in a syscall, then set %r31. Also make sure to get the
2437 privilege bits set correctly. */
2438 /* Test SS_INSYSCALL */
2439 if (flags & 2)
2440 write_register_pid (31, v | 0x3, ptid);
2441
2442 write_register_pid (PC_REGNUM, v, ptid);
2443 write_register_pid (NPC_REGNUM, v + 4, ptid);
2444 }
2445
2446 /* return the alignment of a type in bytes. Structures have the maximum
2447 alignment required by their fields. */
2448
2449 static int
2450 hppa_alignof (struct type *type)
2451 {
2452 int max_align, align, i;
2453 CHECK_TYPEDEF (type);
2454 switch (TYPE_CODE (type))
2455 {
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_INT:
2458 case TYPE_CODE_FLT:
2459 return TYPE_LENGTH (type);
2460 case TYPE_CODE_ARRAY:
2461 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2462 case TYPE_CODE_STRUCT:
2463 case TYPE_CODE_UNION:
2464 max_align = 1;
2465 for (i = 0; i < TYPE_NFIELDS (type); i++)
2466 {
2467 /* Bit fields have no real alignment. */
2468 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2469 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2470 {
2471 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2472 max_align = max (max_align, align);
2473 }
2474 }
2475 return max_align;
2476 default:
2477 return 4;
2478 }
2479 }
2480
2481 /* Print the register regnum, or all registers if regnum is -1 */
2482
2483 void
2484 pa_do_registers_info (int regnum, int fpregs)
2485 {
2486 char raw_regs[REGISTER_BYTES];
2487 int i;
2488
2489 /* Make a copy of gdb's save area (may cause actual
2490 reads from the target). */
2491 for (i = 0; i < NUM_REGS; i++)
2492 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
2493
2494 if (regnum == -1)
2495 pa_print_registers (raw_regs, regnum, fpregs);
2496 else if (regnum < FP4_REGNUM)
2497 {
2498 long reg_val[2];
2499
2500 /* Why is the value not passed through "extract_signed_integer"
2501 as in "pa_print_registers" below? */
2502 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2503
2504 if (!is_pa_2)
2505 {
2506 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2507 }
2508 else
2509 {
2510 /* Fancy % formats to prevent leading zeros. */
2511 if (reg_val[0] == 0)
2512 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2513 else
2514 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2515 reg_val[0], reg_val[1]);
2516 }
2517 }
2518 else
2519 /* Note that real floating point values only start at
2520 FP4_REGNUM. FP0 and up are just status and error
2521 registers, which have integral (bit) values. */
2522 pa_print_fp_reg (regnum);
2523 }
2524
2525 /********** new function ********************/
2526 void
2527 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2528 enum precision_type precision)
2529 {
2530 char raw_regs[REGISTER_BYTES];
2531 int i;
2532
2533 /* Make a copy of gdb's save area (may cause actual
2534 reads from the target). */
2535 for (i = 0; i < NUM_REGS; i++)
2536 frame_register_read (selected_frame, i, raw_regs + REGISTER_BYTE (i));
2537
2538 if (regnum == -1)
2539 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2540
2541 else if (regnum < FP4_REGNUM)
2542 {
2543 long reg_val[2];
2544
2545 /* Why is the value not passed through "extract_signed_integer"
2546 as in "pa_print_registers" below? */
2547 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2548
2549 if (!is_pa_2)
2550 {
2551 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2552 }
2553 else
2554 {
2555 /* Fancy % formats to prevent leading zeros. */
2556 if (reg_val[0] == 0)
2557 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2558 reg_val[1]);
2559 else
2560 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2561 reg_val[0], reg_val[1]);
2562 }
2563 }
2564 else
2565 /* Note that real floating point values only start at
2566 FP4_REGNUM. FP0 and up are just status and error
2567 registers, which have integral (bit) values. */
2568 pa_strcat_fp_reg (regnum, stream, precision);
2569 }
2570
2571 /* If this is a PA2.0 machine, fetch the real 64-bit register
2572 value. Otherwise use the info from gdb's saved register area.
2573
2574 Note that reg_val is really expected to be an array of longs,
2575 with two elements. */
2576 static void
2577 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2578 {
2579 static int know_which = 0; /* False */
2580
2581 int regaddr;
2582 unsigned int offset;
2583 register int i;
2584 int start;
2585
2586
2587 char buf[MAX_REGISTER_RAW_SIZE];
2588 long long reg_val;
2589
2590 if (!know_which)
2591 {
2592 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2593 {
2594 is_pa_2 = (1 == 1);
2595 }
2596
2597 know_which = 1; /* True */
2598 }
2599
2600 raw_val[0] = 0;
2601 raw_val[1] = 0;
2602
2603 if (!is_pa_2)
2604 {
2605 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2606 return;
2607 }
2608
2609 /* Code below copied from hppah-nat.c, with fixes for wide
2610 registers, using different area of save_state, etc. */
2611 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2612 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2613 {
2614 /* Use narrow regs area of save_state and default macro. */
2615 offset = U_REGS_OFFSET;
2616 regaddr = register_addr (regnum, offset);
2617 start = 1;
2618 }
2619 else
2620 {
2621 /* Use wide regs area, and calculate registers as 8 bytes wide.
2622
2623 We'd like to do this, but current version of "C" doesn't
2624 permit "offsetof":
2625
2626 offset = offsetof(save_state_t, ss_wide);
2627
2628 Note that to avoid "C" doing typed pointer arithmetic, we
2629 have to cast away the type in our offset calculation:
2630 otherwise we get an offset of 1! */
2631
2632 /* NB: save_state_t is not available before HPUX 9.
2633 The ss_wide field is not available previous to HPUX 10.20,
2634 so to avoid compile-time warnings, we only compile this for
2635 PA 2.0 processors. This control path should only be followed
2636 if we're debugging a PA 2.0 processor, so this should not cause
2637 problems. */
2638
2639 /* #if the following code out so that this file can still be
2640 compiled on older HPUX boxes (< 10.20) which don't have
2641 this structure/structure member. */
2642 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2643 save_state_t temp;
2644
2645 offset = ((int) &temp.ss_wide) - ((int) &temp);
2646 regaddr = offset + regnum * 8;
2647 start = 0;
2648 #endif
2649 }
2650
2651 for (i = start; i < 2; i++)
2652 {
2653 errno = 0;
2654 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2655 (PTRACE_ARG3_TYPE) regaddr, 0);
2656 if (errno != 0)
2657 {
2658 /* Warning, not error, in case we are attached; sometimes the
2659 kernel doesn't let us at the registers. */
2660 char *err = safe_strerror (errno);
2661 char *msg = alloca (strlen (err) + 128);
2662 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2663 warning (msg);
2664 goto error_exit;
2665 }
2666
2667 regaddr += sizeof (long);
2668 }
2669
2670 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2671 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2672
2673 error_exit:
2674 ;
2675 }
2676
2677 /* "Info all-reg" command */
2678
2679 static void
2680 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2681 {
2682 int i, j;
2683 /* Alas, we are compiled so that "long long" is 32 bits */
2684 long raw_val[2];
2685 long long_val;
2686 int rows = 48, columns = 2;
2687
2688 for (i = 0; i < rows; i++)
2689 {
2690 for (j = 0; j < columns; j++)
2691 {
2692 /* We display registers in column-major order. */
2693 int regnum = i + j * rows;
2694
2695 /* Q: Why is the value passed through "extract_signed_integer",
2696 while above, in "pa_do_registers_info" it isn't?
2697 A: ? */
2698 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2699
2700 /* Even fancier % formats to prevent leading zeros
2701 and still maintain the output in columns. */
2702 if (!is_pa_2)
2703 {
2704 /* Being big-endian, on this machine the low bits
2705 (the ones we want to look at) are in the second longword. */
2706 long_val = extract_signed_integer (&raw_val[1], 4);
2707 printf_filtered ("%10.10s: %8lx ",
2708 REGISTER_NAME (regnum), long_val);
2709 }
2710 else
2711 {
2712 /* raw_val = extract_signed_integer(&raw_val, 8); */
2713 if (raw_val[0] == 0)
2714 printf_filtered ("%10.10s: %8lx ",
2715 REGISTER_NAME (regnum), raw_val[1]);
2716 else
2717 printf_filtered ("%10.10s: %8lx%8.8lx ",
2718 REGISTER_NAME (regnum),
2719 raw_val[0], raw_val[1]);
2720 }
2721 }
2722 printf_unfiltered ("\n");
2723 }
2724
2725 if (fpregs)
2726 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2727 pa_print_fp_reg (i);
2728 }
2729
2730 /************* new function ******************/
2731 static void
2732 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2733 struct ui_file *stream)
2734 {
2735 int i, j;
2736 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2737 long long_val;
2738 enum precision_type precision;
2739
2740 precision = unspecified_precision;
2741
2742 for (i = 0; i < 18; i++)
2743 {
2744 for (j = 0; j < 4; j++)
2745 {
2746 /* Q: Why is the value passed through "extract_signed_integer",
2747 while above, in "pa_do_registers_info" it isn't?
2748 A: ? */
2749 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2750
2751 /* Even fancier % formats to prevent leading zeros
2752 and still maintain the output in columns. */
2753 if (!is_pa_2)
2754 {
2755 /* Being big-endian, on this machine the low bits
2756 (the ones we want to look at) are in the second longword. */
2757 long_val = extract_signed_integer (&raw_val[1], 4);
2758 fprintf_filtered (stream, "%8.8s: %8lx ",
2759 REGISTER_NAME (i + (j * 18)), long_val);
2760 }
2761 else
2762 {
2763 /* raw_val = extract_signed_integer(&raw_val, 8); */
2764 if (raw_val[0] == 0)
2765 fprintf_filtered (stream, "%8.8s: %8lx ",
2766 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2767 else
2768 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2769 REGISTER_NAME (i + (j * 18)), raw_val[0],
2770 raw_val[1]);
2771 }
2772 }
2773 fprintf_unfiltered (stream, "\n");
2774 }
2775
2776 if (fpregs)
2777 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2778 pa_strcat_fp_reg (i, stream, precision);
2779 }
2780
2781 static void
2782 pa_print_fp_reg (int i)
2783 {
2784 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2785 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2786
2787 /* Get 32bits of data. */
2788 frame_register_read (selected_frame, i, raw_buffer);
2789
2790 /* Put it in the buffer. No conversions are ever necessary. */
2791 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2792
2793 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2794 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2795 fputs_filtered ("(single precision) ", gdb_stdout);
2796
2797 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2798 1, 0, Val_pretty_default);
2799 printf_filtered ("\n");
2800
2801 /* If "i" is even, then this register can also be a double-precision
2802 FP register. Dump it out as such. */
2803 if ((i % 2) == 0)
2804 {
2805 /* Get the data in raw format for the 2nd half. */
2806 frame_register_read (selected_frame, i + 1, raw_buffer);
2807
2808 /* Copy it into the appropriate part of the virtual buffer. */
2809 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2810 REGISTER_RAW_SIZE (i));
2811
2812 /* Dump it as a double. */
2813 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2814 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2815 fputs_filtered ("(double precision) ", gdb_stdout);
2816
2817 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2818 1, 0, Val_pretty_default);
2819 printf_filtered ("\n");
2820 }
2821 }
2822
2823 /*************** new function ***********************/
2824 static void
2825 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2826 {
2827 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2828 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2829
2830 fputs_filtered (REGISTER_NAME (i), stream);
2831 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2832
2833 /* Get 32bits of data. */
2834 frame_register_read (selected_frame, i, raw_buffer);
2835
2836 /* Put it in the buffer. No conversions are ever necessary. */
2837 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2838
2839 if (precision == double_precision && (i % 2) == 0)
2840 {
2841
2842 char raw_buf[MAX_REGISTER_RAW_SIZE];
2843
2844 /* Get the data in raw format for the 2nd half. */
2845 frame_register_read (selected_frame, i + 1, raw_buf);
2846
2847 /* Copy it into the appropriate part of the virtual buffer. */
2848 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2849
2850 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2851 1, 0, Val_pretty_default);
2852
2853 }
2854 else
2855 {
2856 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2857 1, 0, Val_pretty_default);
2858 }
2859
2860 }
2861
2862 /* Return one if PC is in the call path of a trampoline, else return zero.
2863
2864 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2865 just shared library trampolines (import, export). */
2866
2867 int
2868 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2869 {
2870 struct minimal_symbol *minsym;
2871 struct unwind_table_entry *u;
2872 static CORE_ADDR dyncall = 0;
2873 static CORE_ADDR sr4export = 0;
2874
2875 #ifdef GDB_TARGET_IS_HPPA_20W
2876 /* PA64 has a completely different stub/trampoline scheme. Is it
2877 better? Maybe. It's certainly harder to determine with any
2878 certainty that we are in a stub because we can not refer to the
2879 unwinders to help.
2880
2881 The heuristic is simple. Try to lookup the current PC value in th
2882 minimal symbol table. If that fails, then assume we are not in a
2883 stub and return.
2884
2885 Then see if the PC value falls within the section bounds for the
2886 section containing the minimal symbol we found in the first
2887 step. If it does, then assume we are not in a stub and return.
2888
2889 Finally peek at the instructions to see if they look like a stub. */
2890 {
2891 struct minimal_symbol *minsym;
2892 asection *sec;
2893 CORE_ADDR addr;
2894 int insn, i;
2895
2896 minsym = lookup_minimal_symbol_by_pc (pc);
2897 if (! minsym)
2898 return 0;
2899
2900 sec = SYMBOL_BFD_SECTION (minsym);
2901
2902 if (sec->vma <= pc
2903 && sec->vma + sec->_cooked_size < pc)
2904 return 0;
2905
2906 /* We might be in a stub. Peek at the instructions. Stubs are 3
2907 instructions long. */
2908 insn = read_memory_integer (pc, 4);
2909
2910 /* Find out where we think we are within the stub. */
2911 if ((insn & 0xffffc00e) == 0x53610000)
2912 addr = pc;
2913 else if ((insn & 0xffffffff) == 0xe820d000)
2914 addr = pc - 4;
2915 else if ((insn & 0xffffc00e) == 0x537b0000)
2916 addr = pc - 8;
2917 else
2918 return 0;
2919
2920 /* Now verify each insn in the range looks like a stub instruction. */
2921 insn = read_memory_integer (addr, 4);
2922 if ((insn & 0xffffc00e) != 0x53610000)
2923 return 0;
2924
2925 /* Now verify each insn in the range looks like a stub instruction. */
2926 insn = read_memory_integer (addr + 4, 4);
2927 if ((insn & 0xffffffff) != 0xe820d000)
2928 return 0;
2929
2930 /* Now verify each insn in the range looks like a stub instruction. */
2931 insn = read_memory_integer (addr + 8, 4);
2932 if ((insn & 0xffffc00e) != 0x537b0000)
2933 return 0;
2934
2935 /* Looks like a stub. */
2936 return 1;
2937 }
2938 #endif
2939
2940 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2941 new exec file */
2942
2943 /* First see if PC is in one of the two C-library trampolines. */
2944 if (!dyncall)
2945 {
2946 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2947 if (minsym)
2948 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2949 else
2950 dyncall = -1;
2951 }
2952
2953 if (!sr4export)
2954 {
2955 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2956 if (minsym)
2957 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2958 else
2959 sr4export = -1;
2960 }
2961
2962 if (pc == dyncall || pc == sr4export)
2963 return 1;
2964
2965 minsym = lookup_minimal_symbol_by_pc (pc);
2966 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2967 return 1;
2968
2969 /* Get the unwind descriptor corresponding to PC, return zero
2970 if no unwind was found. */
2971 u = find_unwind_entry (pc);
2972 if (!u)
2973 return 0;
2974
2975 /* If this isn't a linker stub, then return now. */
2976 if (u->stub_unwind.stub_type == 0)
2977 return 0;
2978
2979 /* By definition a long-branch stub is a call stub. */
2980 if (u->stub_unwind.stub_type == LONG_BRANCH)
2981 return 1;
2982
2983 /* The call and return path execute the same instructions within
2984 an IMPORT stub! So an IMPORT stub is both a call and return
2985 trampoline. */
2986 if (u->stub_unwind.stub_type == IMPORT)
2987 return 1;
2988
2989 /* Parameter relocation stubs always have a call path and may have a
2990 return path. */
2991 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2992 || u->stub_unwind.stub_type == EXPORT)
2993 {
2994 CORE_ADDR addr;
2995
2996 /* Search forward from the current PC until we hit a branch
2997 or the end of the stub. */
2998 for (addr = pc; addr <= u->region_end; addr += 4)
2999 {
3000 unsigned long insn;
3001
3002 insn = read_memory_integer (addr, 4);
3003
3004 /* Does it look like a bl? If so then it's the call path, if
3005 we find a bv or be first, then we're on the return path. */
3006 if ((insn & 0xfc00e000) == 0xe8000000)
3007 return 1;
3008 else if ((insn & 0xfc00e001) == 0xe800c000
3009 || (insn & 0xfc000000) == 0xe0000000)
3010 return 0;
3011 }
3012
3013 /* Should never happen. */
3014 warning ("Unable to find branch in parameter relocation stub.\n");
3015 return 0;
3016 }
3017
3018 /* Unknown stub type. For now, just return zero. */
3019 return 0;
3020 }
3021
3022 /* Return one if PC is in the return path of a trampoline, else return zero.
3023
3024 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3025 just shared library trampolines (import, export). */
3026
3027 int
3028 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3029 {
3030 struct unwind_table_entry *u;
3031
3032 /* Get the unwind descriptor corresponding to PC, return zero
3033 if no unwind was found. */
3034 u = find_unwind_entry (pc);
3035 if (!u)
3036 return 0;
3037
3038 /* If this isn't a linker stub or it's just a long branch stub, then
3039 return zero. */
3040 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3041 return 0;
3042
3043 /* The call and return path execute the same instructions within
3044 an IMPORT stub! So an IMPORT stub is both a call and return
3045 trampoline. */
3046 if (u->stub_unwind.stub_type == IMPORT)
3047 return 1;
3048
3049 /* Parameter relocation stubs always have a call path and may have a
3050 return path. */
3051 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3052 || u->stub_unwind.stub_type == EXPORT)
3053 {
3054 CORE_ADDR addr;
3055
3056 /* Search forward from the current PC until we hit a branch
3057 or the end of the stub. */
3058 for (addr = pc; addr <= u->region_end; addr += 4)
3059 {
3060 unsigned long insn;
3061
3062 insn = read_memory_integer (addr, 4);
3063
3064 /* Does it look like a bl? If so then it's the call path, if
3065 we find a bv or be first, then we're on the return path. */
3066 if ((insn & 0xfc00e000) == 0xe8000000)
3067 return 0;
3068 else if ((insn & 0xfc00e001) == 0xe800c000
3069 || (insn & 0xfc000000) == 0xe0000000)
3070 return 1;
3071 }
3072
3073 /* Should never happen. */
3074 warning ("Unable to find branch in parameter relocation stub.\n");
3075 return 0;
3076 }
3077
3078 /* Unknown stub type. For now, just return zero. */
3079 return 0;
3080
3081 }
3082
3083 /* Figure out if PC is in a trampoline, and if so find out where
3084 the trampoline will jump to. If not in a trampoline, return zero.
3085
3086 Simple code examination probably is not a good idea since the code
3087 sequences in trampolines can also appear in user code.
3088
3089 We use unwinds and information from the minimal symbol table to
3090 determine when we're in a trampoline. This won't work for ELF
3091 (yet) since it doesn't create stub unwind entries. Whether or
3092 not ELF will create stub unwinds or normal unwinds for linker
3093 stubs is still being debated.
3094
3095 This should handle simple calls through dyncall or sr4export,
3096 long calls, argument relocation stubs, and dyncall/sr4export
3097 calling an argument relocation stub. It even handles some stubs
3098 used in dynamic executables. */
3099
3100 CORE_ADDR
3101 skip_trampoline_code (CORE_ADDR pc, char *name)
3102 {
3103 long orig_pc = pc;
3104 long prev_inst, curr_inst, loc;
3105 static CORE_ADDR dyncall = 0;
3106 static CORE_ADDR dyncall_external = 0;
3107 static CORE_ADDR sr4export = 0;
3108 struct minimal_symbol *msym;
3109 struct unwind_table_entry *u;
3110
3111 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3112 new exec file */
3113
3114 if (!dyncall)
3115 {
3116 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3117 if (msym)
3118 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3119 else
3120 dyncall = -1;
3121 }
3122
3123 if (!dyncall_external)
3124 {
3125 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3126 if (msym)
3127 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3128 else
3129 dyncall_external = -1;
3130 }
3131
3132 if (!sr4export)
3133 {
3134 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3135 if (msym)
3136 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3137 else
3138 sr4export = -1;
3139 }
3140
3141 /* Addresses passed to dyncall may *NOT* be the actual address
3142 of the function. So we may have to do something special. */
3143 if (pc == dyncall)
3144 {
3145 pc = (CORE_ADDR) read_register (22);
3146
3147 /* If bit 30 (counting from the left) is on, then pc is the address of
3148 the PLT entry for this function, not the address of the function
3149 itself. Bit 31 has meaning too, but only for MPE. */
3150 if (pc & 0x2)
3151 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3152 }
3153 if (pc == dyncall_external)
3154 {
3155 pc = (CORE_ADDR) read_register (22);
3156 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3157 }
3158 else if (pc == sr4export)
3159 pc = (CORE_ADDR) (read_register (22));
3160
3161 /* Get the unwind descriptor corresponding to PC, return zero
3162 if no unwind was found. */
3163 u = find_unwind_entry (pc);
3164 if (!u)
3165 return 0;
3166
3167 /* If this isn't a linker stub, then return now. */
3168 /* elz: attention here! (FIXME) because of a compiler/linker
3169 error, some stubs which should have a non zero stub_unwind.stub_type
3170 have unfortunately a value of zero. So this function would return here
3171 as if we were not in a trampoline. To fix this, we go look at the partial
3172 symbol information, which reports this guy as a stub.
3173 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3174 partial symbol information is also wrong sometimes. This is because
3175 when it is entered (somread.c::som_symtab_read()) it can happen that
3176 if the type of the symbol (from the som) is Entry, and the symbol is
3177 in a shared library, then it can also be a trampoline. This would
3178 be OK, except that I believe the way they decide if we are ina shared library
3179 does not work. SOOOO..., even if we have a regular function w/o trampolines
3180 its minimal symbol can be assigned type mst_solib_trampoline.
3181 Also, if we find that the symbol is a real stub, then we fix the unwind
3182 descriptor, and define the stub type to be EXPORT.
3183 Hopefully this is correct most of the times. */
3184 if (u->stub_unwind.stub_type == 0)
3185 {
3186
3187 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3188 we can delete all the code which appears between the lines */
3189 /*--------------------------------------------------------------------------*/
3190 msym = lookup_minimal_symbol_by_pc (pc);
3191
3192 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3193 return orig_pc == pc ? 0 : pc & ~0x3;
3194
3195 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3196 {
3197 struct objfile *objfile;
3198 struct minimal_symbol *msymbol;
3199 int function_found = 0;
3200
3201 /* go look if there is another minimal symbol with the same name as
3202 this one, but with type mst_text. This would happen if the msym
3203 is an actual trampoline, in which case there would be another
3204 symbol with the same name corresponding to the real function */
3205
3206 ALL_MSYMBOLS (objfile, msymbol)
3207 {
3208 if (MSYMBOL_TYPE (msymbol) == mst_text
3209 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3210 {
3211 function_found = 1;
3212 break;
3213 }
3214 }
3215
3216 if (function_found)
3217 /* the type of msym is correct (mst_solib_trampoline), but
3218 the unwind info is wrong, so set it to the correct value */
3219 u->stub_unwind.stub_type = EXPORT;
3220 else
3221 /* the stub type info in the unwind is correct (this is not a
3222 trampoline), but the msym type information is wrong, it
3223 should be mst_text. So we need to fix the msym, and also
3224 get out of this function */
3225 {
3226 MSYMBOL_TYPE (msym) = mst_text;
3227 return orig_pc == pc ? 0 : pc & ~0x3;
3228 }
3229 }
3230
3231 /*--------------------------------------------------------------------------*/
3232 }
3233
3234 /* It's a stub. Search for a branch and figure out where it goes.
3235 Note we have to handle multi insn branch sequences like ldil;ble.
3236 Most (all?) other branches can be determined by examining the contents
3237 of certain registers and the stack. */
3238
3239 loc = pc;
3240 curr_inst = 0;
3241 prev_inst = 0;
3242 while (1)
3243 {
3244 /* Make sure we haven't walked outside the range of this stub. */
3245 if (u != find_unwind_entry (loc))
3246 {
3247 warning ("Unable to find branch in linker stub");
3248 return orig_pc == pc ? 0 : pc & ~0x3;
3249 }
3250
3251 prev_inst = curr_inst;
3252 curr_inst = read_memory_integer (loc, 4);
3253
3254 /* Does it look like a branch external using %r1? Then it's the
3255 branch from the stub to the actual function. */
3256 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3257 {
3258 /* Yup. See if the previous instruction loaded
3259 a value into %r1. If so compute and return the jump address. */
3260 if ((prev_inst & 0xffe00000) == 0x20200000)
3261 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3262 else
3263 {
3264 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3265 return orig_pc == pc ? 0 : pc & ~0x3;
3266 }
3267 }
3268
3269 /* Does it look like a be 0(sr0,%r21)? OR
3270 Does it look like a be, n 0(sr0,%r21)? OR
3271 Does it look like a bve (r21)? (this is on PA2.0)
3272 Does it look like a bve, n(r21)? (this is also on PA2.0)
3273 That's the branch from an
3274 import stub to an export stub.
3275
3276 It is impossible to determine the target of the branch via
3277 simple examination of instructions and/or data (consider
3278 that the address in the plabel may be the address of the
3279 bind-on-reference routine in the dynamic loader).
3280
3281 So we have try an alternative approach.
3282
3283 Get the name of the symbol at our current location; it should
3284 be a stub symbol with the same name as the symbol in the
3285 shared library.
3286
3287 Then lookup a minimal symbol with the same name; we should
3288 get the minimal symbol for the target routine in the shared
3289 library as those take precedence of import/export stubs. */
3290 if ((curr_inst == 0xe2a00000) ||
3291 (curr_inst == 0xe2a00002) ||
3292 (curr_inst == 0xeaa0d000) ||
3293 (curr_inst == 0xeaa0d002))
3294 {
3295 struct minimal_symbol *stubsym, *libsym;
3296
3297 stubsym = lookup_minimal_symbol_by_pc (loc);
3298 if (stubsym == NULL)
3299 {
3300 warning ("Unable to find symbol for 0x%lx", loc);
3301 return orig_pc == pc ? 0 : pc & ~0x3;
3302 }
3303
3304 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3305 if (libsym == NULL)
3306 {
3307 warning ("Unable to find library symbol for %s\n",
3308 SYMBOL_NAME (stubsym));
3309 return orig_pc == pc ? 0 : pc & ~0x3;
3310 }
3311
3312 return SYMBOL_VALUE (libsym);
3313 }
3314
3315 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3316 branch from the stub to the actual function. */
3317 /*elz */
3318 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3319 || (curr_inst & 0xffe0e000) == 0xe8000000
3320 || (curr_inst & 0xffe0e000) == 0xe800A000)
3321 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3322
3323 /* Does it look like bv (rp)? Note this depends on the
3324 current stack pointer being the same as the stack
3325 pointer in the stub itself! This is a branch on from the
3326 stub back to the original caller. */
3327 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3328 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3329 {
3330 /* Yup. See if the previous instruction loaded
3331 rp from sp - 8. */
3332 if (prev_inst == 0x4bc23ff1)
3333 return (read_memory_integer
3334 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3335 else
3336 {
3337 warning ("Unable to find restore of %%rp before bv (%%rp).");
3338 return orig_pc == pc ? 0 : pc & ~0x3;
3339 }
3340 }
3341
3342 /* elz: added this case to capture the new instruction
3343 at the end of the return part of an export stub used by
3344 the PA2.0: BVE, n (rp) */
3345 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3346 {
3347 return (read_memory_integer
3348 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3349 }
3350
3351 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3352 the original caller from the stub. Used in dynamic executables. */
3353 else if (curr_inst == 0xe0400002)
3354 {
3355 /* The value we jump to is sitting in sp - 24. But that's
3356 loaded several instructions before the be instruction.
3357 I guess we could check for the previous instruction being
3358 mtsp %r1,%sr0 if we want to do sanity checking. */
3359 return (read_memory_integer
3360 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3361 }
3362
3363 /* Haven't found the branch yet, but we're still in the stub.
3364 Keep looking. */
3365 loc += 4;
3366 }
3367 }
3368
3369
3370 /* For the given instruction (INST), return any adjustment it makes
3371 to the stack pointer or zero for no adjustment.
3372
3373 This only handles instructions commonly found in prologues. */
3374
3375 static int
3376 prologue_inst_adjust_sp (unsigned long inst)
3377 {
3378 /* This must persist across calls. */
3379 static int save_high21;
3380
3381 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3382 if ((inst & 0xffffc000) == 0x37de0000)
3383 return extract_14 (inst);
3384
3385 /* stwm X,D(sp) */
3386 if ((inst & 0xffe00000) == 0x6fc00000)
3387 return extract_14 (inst);
3388
3389 /* std,ma X,D(sp) */
3390 if ((inst & 0xffe00008) == 0x73c00008)
3391 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3392
3393 /* addil high21,%r1; ldo low11,(%r1),%r30)
3394 save high bits in save_high21 for later use. */
3395 if ((inst & 0xffe00000) == 0x28200000)
3396 {
3397 save_high21 = extract_21 (inst);
3398 return 0;
3399 }
3400
3401 if ((inst & 0xffff0000) == 0x343e0000)
3402 return save_high21 + extract_14 (inst);
3403
3404 /* fstws as used by the HP compilers. */
3405 if ((inst & 0xffffffe0) == 0x2fd01220)
3406 return extract_5_load (inst);
3407
3408 /* No adjustment. */
3409 return 0;
3410 }
3411
3412 /* Return nonzero if INST is a branch of some kind, else return zero. */
3413
3414 static int
3415 is_branch (unsigned long inst)
3416 {
3417 switch (inst >> 26)
3418 {
3419 case 0x20:
3420 case 0x21:
3421 case 0x22:
3422 case 0x23:
3423 case 0x27:
3424 case 0x28:
3425 case 0x29:
3426 case 0x2a:
3427 case 0x2b:
3428 case 0x2f:
3429 case 0x30:
3430 case 0x31:
3431 case 0x32:
3432 case 0x33:
3433 case 0x38:
3434 case 0x39:
3435 case 0x3a:
3436 case 0x3b:
3437 return 1;
3438
3439 default:
3440 return 0;
3441 }
3442 }
3443
3444 /* Return the register number for a GR which is saved by INST or
3445 zero it INST does not save a GR. */
3446
3447 static int
3448 inst_saves_gr (unsigned long inst)
3449 {
3450 /* Does it look like a stw? */
3451 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3452 || (inst >> 26) == 0x1f
3453 || ((inst >> 26) == 0x1f
3454 && ((inst >> 6) == 0xa)))
3455 return extract_5R_store (inst);
3456
3457 /* Does it look like a std? */
3458 if ((inst >> 26) == 0x1c
3459 || ((inst >> 26) == 0x03
3460 && ((inst >> 6) & 0xf) == 0xb))
3461 return extract_5R_store (inst);
3462
3463 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3464 if ((inst >> 26) == 0x1b)
3465 return extract_5R_store (inst);
3466
3467 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3468 too. */
3469 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3470 || ((inst >> 26) == 0x3
3471 && (((inst >> 6) & 0xf) == 0x8
3472 || (inst >> 6) & 0xf) == 0x9))
3473 return extract_5R_store (inst);
3474
3475 return 0;
3476 }
3477
3478 /* Return the register number for a FR which is saved by INST or
3479 zero it INST does not save a FR.
3480
3481 Note we only care about full 64bit register stores (that's the only
3482 kind of stores the prologue will use).
3483
3484 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3485
3486 static int
3487 inst_saves_fr (unsigned long inst)
3488 {
3489 /* is this an FSTD ? */
3490 if ((inst & 0xfc00dfc0) == 0x2c001200)
3491 return extract_5r_store (inst);
3492 if ((inst & 0xfc000002) == 0x70000002)
3493 return extract_5R_store (inst);
3494 /* is this an FSTW ? */
3495 if ((inst & 0xfc00df80) == 0x24001200)
3496 return extract_5r_store (inst);
3497 if ((inst & 0xfc000002) == 0x7c000000)
3498 return extract_5R_store (inst);
3499 return 0;
3500 }
3501
3502 /* Advance PC across any function entry prologue instructions
3503 to reach some "real" code.
3504
3505 Use information in the unwind table to determine what exactly should
3506 be in the prologue. */
3507
3508
3509 CORE_ADDR
3510 skip_prologue_hard_way (CORE_ADDR pc)
3511 {
3512 char buf[4];
3513 CORE_ADDR orig_pc = pc;
3514 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3515 unsigned long args_stored, status, i, restart_gr, restart_fr;
3516 struct unwind_table_entry *u;
3517
3518 restart_gr = 0;
3519 restart_fr = 0;
3520
3521 restart:
3522 u = find_unwind_entry (pc);
3523 if (!u)
3524 return pc;
3525
3526 /* If we are not at the beginning of a function, then return now. */
3527 if ((pc & ~0x3) != u->region_start)
3528 return pc;
3529
3530 /* This is how much of a frame adjustment we need to account for. */
3531 stack_remaining = u->Total_frame_size << 3;
3532
3533 /* Magic register saves we want to know about. */
3534 save_rp = u->Save_RP;
3535 save_sp = u->Save_SP;
3536
3537 /* An indication that args may be stored into the stack. Unfortunately
3538 the HPUX compilers tend to set this in cases where no args were
3539 stored too!. */
3540 args_stored = 1;
3541
3542 /* Turn the Entry_GR field into a bitmask. */
3543 save_gr = 0;
3544 for (i = 3; i < u->Entry_GR + 3; i++)
3545 {
3546 /* Frame pointer gets saved into a special location. */
3547 if (u->Save_SP && i == FP_REGNUM)
3548 continue;
3549
3550 save_gr |= (1 << i);
3551 }
3552 save_gr &= ~restart_gr;
3553
3554 /* Turn the Entry_FR field into a bitmask too. */
3555 save_fr = 0;
3556 for (i = 12; i < u->Entry_FR + 12; i++)
3557 save_fr |= (1 << i);
3558 save_fr &= ~restart_fr;
3559
3560 /* Loop until we find everything of interest or hit a branch.
3561
3562 For unoptimized GCC code and for any HP CC code this will never ever
3563 examine any user instructions.
3564
3565 For optimzied GCC code we're faced with problems. GCC will schedule
3566 its prologue and make prologue instructions available for delay slot
3567 filling. The end result is user code gets mixed in with the prologue
3568 and a prologue instruction may be in the delay slot of the first branch
3569 or call.
3570
3571 Some unexpected things are expected with debugging optimized code, so
3572 we allow this routine to walk past user instructions in optimized
3573 GCC code. */
3574 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3575 || args_stored)
3576 {
3577 unsigned int reg_num;
3578 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3579 unsigned long old_save_rp, old_save_sp, next_inst;
3580
3581 /* Save copies of all the triggers so we can compare them later
3582 (only for HPC). */
3583 old_save_gr = save_gr;
3584 old_save_fr = save_fr;
3585 old_save_rp = save_rp;
3586 old_save_sp = save_sp;
3587 old_stack_remaining = stack_remaining;
3588
3589 status = target_read_memory (pc, buf, 4);
3590 inst = extract_unsigned_integer (buf, 4);
3591
3592 /* Yow! */
3593 if (status != 0)
3594 return pc;
3595
3596 /* Note the interesting effects of this instruction. */
3597 stack_remaining -= prologue_inst_adjust_sp (inst);
3598
3599 /* There are limited ways to store the return pointer into the
3600 stack. */
3601 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3602 save_rp = 0;
3603
3604 /* These are the only ways we save SP into the stack. At this time
3605 the HP compilers never bother to save SP into the stack. */
3606 if ((inst & 0xffffc000) == 0x6fc10000
3607 || (inst & 0xffffc00c) == 0x73c10008)
3608 save_sp = 0;
3609
3610 /* Are we loading some register with an offset from the argument
3611 pointer? */
3612 if ((inst & 0xffe00000) == 0x37a00000
3613 || (inst & 0xffffffe0) == 0x081d0240)
3614 {
3615 pc += 4;
3616 continue;
3617 }
3618
3619 /* Account for general and floating-point register saves. */
3620 reg_num = inst_saves_gr (inst);
3621 save_gr &= ~(1 << reg_num);
3622
3623 /* Ugh. Also account for argument stores into the stack.
3624 Unfortunately args_stored only tells us that some arguments
3625 where stored into the stack. Not how many or what kind!
3626
3627 This is a kludge as on the HP compiler sets this bit and it
3628 never does prologue scheduling. So once we see one, skip past
3629 all of them. We have similar code for the fp arg stores below.
3630
3631 FIXME. Can still die if we have a mix of GR and FR argument
3632 stores! */
3633 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3634 {
3635 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3636 {
3637 pc += 4;
3638 status = target_read_memory (pc, buf, 4);
3639 inst = extract_unsigned_integer (buf, 4);
3640 if (status != 0)
3641 return pc;
3642 reg_num = inst_saves_gr (inst);
3643 }
3644 args_stored = 0;
3645 continue;
3646 }
3647
3648 reg_num = inst_saves_fr (inst);
3649 save_fr &= ~(1 << reg_num);
3650
3651 status = target_read_memory (pc + 4, buf, 4);
3652 next_inst = extract_unsigned_integer (buf, 4);
3653
3654 /* Yow! */
3655 if (status != 0)
3656 return pc;
3657
3658 /* We've got to be read to handle the ldo before the fp register
3659 save. */
3660 if ((inst & 0xfc000000) == 0x34000000
3661 && inst_saves_fr (next_inst) >= 4
3662 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3663 {
3664 /* So we drop into the code below in a reasonable state. */
3665 reg_num = inst_saves_fr (next_inst);
3666 pc -= 4;
3667 }
3668
3669 /* Ugh. Also account for argument stores into the stack.
3670 This is a kludge as on the HP compiler sets this bit and it
3671 never does prologue scheduling. So once we see one, skip past
3672 all of them. */
3673 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3674 {
3675 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3676 {
3677 pc += 8;
3678 status = target_read_memory (pc, buf, 4);
3679 inst = extract_unsigned_integer (buf, 4);
3680 if (status != 0)
3681 return pc;
3682 if ((inst & 0xfc000000) != 0x34000000)
3683 break;
3684 status = target_read_memory (pc + 4, buf, 4);
3685 next_inst = extract_unsigned_integer (buf, 4);
3686 if (status != 0)
3687 return pc;
3688 reg_num = inst_saves_fr (next_inst);
3689 }
3690 args_stored = 0;
3691 continue;
3692 }
3693
3694 /* Quit if we hit any kind of branch. This can happen if a prologue
3695 instruction is in the delay slot of the first call/branch. */
3696 if (is_branch (inst))
3697 break;
3698
3699 /* What a crock. The HP compilers set args_stored even if no
3700 arguments were stored into the stack (boo hiss). This could
3701 cause this code to then skip a bunch of user insns (up to the
3702 first branch).
3703
3704 To combat this we try to identify when args_stored was bogusly
3705 set and clear it. We only do this when args_stored is nonzero,
3706 all other resources are accounted for, and nothing changed on
3707 this pass. */
3708 if (args_stored
3709 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3710 && old_save_gr == save_gr && old_save_fr == save_fr
3711 && old_save_rp == save_rp && old_save_sp == save_sp
3712 && old_stack_remaining == stack_remaining)
3713 break;
3714
3715 /* Bump the PC. */
3716 pc += 4;
3717 }
3718
3719 /* We've got a tenative location for the end of the prologue. However
3720 because of limitations in the unwind descriptor mechanism we may
3721 have went too far into user code looking for the save of a register
3722 that does not exist. So, if there registers we expected to be saved
3723 but never were, mask them out and restart.
3724
3725 This should only happen in optimized code, and should be very rare. */
3726 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3727 {
3728 pc = orig_pc;
3729 restart_gr = save_gr;
3730 restart_fr = save_fr;
3731 goto restart;
3732 }
3733
3734 return pc;
3735 }
3736
3737
3738 /* Return the address of the PC after the last prologue instruction if
3739 we can determine it from the debug symbols. Else return zero. */
3740
3741 static CORE_ADDR
3742 after_prologue (CORE_ADDR pc)
3743 {
3744 struct symtab_and_line sal;
3745 CORE_ADDR func_addr, func_end;
3746 struct symbol *f;
3747
3748 /* If we can not find the symbol in the partial symbol table, then
3749 there is no hope we can determine the function's start address
3750 with this code. */
3751 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3752 return 0;
3753
3754 /* Get the line associated with FUNC_ADDR. */
3755 sal = find_pc_line (func_addr, 0);
3756
3757 /* There are only two cases to consider. First, the end of the source line
3758 is within the function bounds. In that case we return the end of the
3759 source line. Second is the end of the source line extends beyond the
3760 bounds of the current function. We need to use the slow code to
3761 examine instructions in that case.
3762
3763 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3764 the wrong thing to do. In fact, it should be entirely possible for this
3765 function to always return zero since the slow instruction scanning code
3766 is supposed to *always* work. If it does not, then it is a bug. */
3767 if (sal.end < func_end)
3768 return sal.end;
3769 else
3770 return 0;
3771 }
3772
3773 /* To skip prologues, I use this predicate. Returns either PC itself
3774 if the code at PC does not look like a function prologue; otherwise
3775 returns an address that (if we're lucky) follows the prologue. If
3776 LENIENT, then we must skip everything which is involved in setting
3777 up the frame (it's OK to skip more, just so long as we don't skip
3778 anything which might clobber the registers which are being saved.
3779 Currently we must not skip more on the alpha, but we might the lenient
3780 stuff some day. */
3781
3782 CORE_ADDR
3783 hppa_skip_prologue (CORE_ADDR pc)
3784 {
3785 unsigned long inst;
3786 int offset;
3787 CORE_ADDR post_prologue_pc;
3788 char buf[4];
3789
3790 /* See if we can determine the end of the prologue via the symbol table.
3791 If so, then return either PC, or the PC after the prologue, whichever
3792 is greater. */
3793
3794 post_prologue_pc = after_prologue (pc);
3795
3796 /* If after_prologue returned a useful address, then use it. Else
3797 fall back on the instruction skipping code.
3798
3799 Some folks have claimed this causes problems because the breakpoint
3800 may be the first instruction of the prologue. If that happens, then
3801 the instruction skipping code has a bug that needs to be fixed. */
3802 if (post_prologue_pc != 0)
3803 return max (pc, post_prologue_pc);
3804 else
3805 return (skip_prologue_hard_way (pc));
3806 }
3807
3808 /* Put here the code to store, into a struct frame_saved_regs,
3809 the addresses of the saved registers of frame described by FRAME_INFO.
3810 This includes special registers such as pc and fp saved in special
3811 ways in the stack frame. sp is even more special:
3812 the address we return for it IS the sp for the next frame. */
3813
3814 void
3815 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3816 struct frame_saved_regs *frame_saved_regs)
3817 {
3818 CORE_ADDR pc;
3819 struct unwind_table_entry *u;
3820 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3821 int status, i, reg;
3822 char buf[4];
3823 int fp_loc = -1;
3824 int final_iteration;
3825
3826 /* Zero out everything. */
3827 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3828
3829 /* Call dummy frames always look the same, so there's no need to
3830 examine the dummy code to determine locations of saved registers;
3831 instead, let find_dummy_frame_regs fill in the correct offsets
3832 for the saved registers. */
3833 if ((frame_info->pc >= frame_info->frame
3834 && frame_info->pc <= (frame_info->frame
3835 /* A call dummy is sized in words, but it is
3836 actually a series of instructions. Account
3837 for that scaling factor. */
3838 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3839 * CALL_DUMMY_LENGTH)
3840 /* Similarly we have to account for 64bit
3841 wide register saves. */
3842 + (32 * REGISTER_SIZE)
3843 /* We always consider FP regs 8 bytes long. */
3844 + (NUM_REGS - FP0_REGNUM) * 8
3845 /* Similarly we have to account for 64bit
3846 wide register saves. */
3847 + (6 * REGISTER_SIZE))))
3848 find_dummy_frame_regs (frame_info, frame_saved_regs);
3849
3850 /* Interrupt handlers are special too. They lay out the register
3851 state in the exact same order as the register numbers in GDB. */
3852 if (pc_in_interrupt_handler (frame_info->pc))
3853 {
3854 for (i = 0; i < NUM_REGS; i++)
3855 {
3856 /* SP is a little special. */
3857 if (i == SP_REGNUM)
3858 frame_saved_regs->regs[SP_REGNUM]
3859 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3860 TARGET_PTR_BIT / 8);
3861 else
3862 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3863 }
3864 return;
3865 }
3866
3867 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3868 /* Handle signal handler callers. */
3869 if (frame_info->signal_handler_caller)
3870 {
3871 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3872 return;
3873 }
3874 #endif
3875
3876 /* Get the starting address of the function referred to by the PC
3877 saved in frame. */
3878 pc = get_pc_function_start (frame_info->pc);
3879
3880 /* Yow! */
3881 u = find_unwind_entry (pc);
3882 if (!u)
3883 return;
3884
3885 /* This is how much of a frame adjustment we need to account for. */
3886 stack_remaining = u->Total_frame_size << 3;
3887
3888 /* Magic register saves we want to know about. */
3889 save_rp = u->Save_RP;
3890 save_sp = u->Save_SP;
3891
3892 /* Turn the Entry_GR field into a bitmask. */
3893 save_gr = 0;
3894 for (i = 3; i < u->Entry_GR + 3; i++)
3895 {
3896 /* Frame pointer gets saved into a special location. */
3897 if (u->Save_SP && i == FP_REGNUM)
3898 continue;
3899
3900 save_gr |= (1 << i);
3901 }
3902
3903 /* Turn the Entry_FR field into a bitmask too. */
3904 save_fr = 0;
3905 for (i = 12; i < u->Entry_FR + 12; i++)
3906 save_fr |= (1 << i);
3907
3908 /* The frame always represents the value of %sp at entry to the
3909 current function (and is thus equivalent to the "saved" stack
3910 pointer. */
3911 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3912
3913 /* Loop until we find everything of interest or hit a branch.
3914
3915 For unoptimized GCC code and for any HP CC code this will never ever
3916 examine any user instructions.
3917
3918 For optimized GCC code we're faced with problems. GCC will schedule
3919 its prologue and make prologue instructions available for delay slot
3920 filling. The end result is user code gets mixed in with the prologue
3921 and a prologue instruction may be in the delay slot of the first branch
3922 or call.
3923
3924 Some unexpected things are expected with debugging optimized code, so
3925 we allow this routine to walk past user instructions in optimized
3926 GCC code. */
3927 final_iteration = 0;
3928 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3929 && pc <= frame_info->pc)
3930 {
3931 status = target_read_memory (pc, buf, 4);
3932 inst = extract_unsigned_integer (buf, 4);
3933
3934 /* Yow! */
3935 if (status != 0)
3936 return;
3937
3938 /* Note the interesting effects of this instruction. */
3939 stack_remaining -= prologue_inst_adjust_sp (inst);
3940
3941 /* There are limited ways to store the return pointer into the
3942 stack. */
3943 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3944 {
3945 save_rp = 0;
3946 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3947 }
3948 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3949 {
3950 save_rp = 0;
3951 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3952 }
3953
3954 /* Note if we saved SP into the stack. This also happens to indicate
3955 the location of the saved frame pointer. */
3956 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3957 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3958 {
3959 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3960 save_sp = 0;
3961 }
3962
3963 /* Account for general and floating-point register saves. */
3964 reg = inst_saves_gr (inst);
3965 if (reg >= 3 && reg <= 18
3966 && (!u->Save_SP || reg != FP_REGNUM))
3967 {
3968 save_gr &= ~(1 << reg);
3969
3970 /* stwm with a positive displacement is a *post modify*. */
3971 if ((inst >> 26) == 0x1b
3972 && extract_14 (inst) >= 0)
3973 frame_saved_regs->regs[reg] = frame_info->frame;
3974 /* A std has explicit post_modify forms. */
3975 else if ((inst & 0xfc00000c0) == 0x70000008)
3976 frame_saved_regs->regs[reg] = frame_info->frame;
3977 else
3978 {
3979 CORE_ADDR offset;
3980
3981 if ((inst >> 26) == 0x1c)
3982 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3983 else if ((inst >> 26) == 0x03)
3984 offset = low_sign_extend (inst & 0x1f, 5);
3985 else
3986 offset = extract_14 (inst);
3987
3988 /* Handle code with and without frame pointers. */
3989 if (u->Save_SP)
3990 frame_saved_regs->regs[reg]
3991 = frame_info->frame + offset;
3992 else
3993 frame_saved_regs->regs[reg]
3994 = (frame_info->frame + (u->Total_frame_size << 3)
3995 + offset);
3996 }
3997 }
3998
3999
4000 /* GCC handles callee saved FP regs a little differently.
4001
4002 It emits an instruction to put the value of the start of
4003 the FP store area into %r1. It then uses fstds,ma with
4004 a basereg of %r1 for the stores.
4005
4006 HP CC emits them at the current stack pointer modifying
4007 the stack pointer as it stores each register. */
4008
4009 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4010 if ((inst & 0xffffc000) == 0x34610000
4011 || (inst & 0xffffc000) == 0x37c10000)
4012 fp_loc = extract_14 (inst);
4013
4014 reg = inst_saves_fr (inst);
4015 if (reg >= 12 && reg <= 21)
4016 {
4017 /* Note +4 braindamage below is necessary because the FP status
4018 registers are internally 8 registers rather than the expected
4019 4 registers. */
4020 save_fr &= ~(1 << reg);
4021 if (fp_loc == -1)
4022 {
4023 /* 1st HP CC FP register store. After this instruction
4024 we've set enough state that the GCC and HPCC code are
4025 both handled in the same manner. */
4026 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4027 fp_loc = 8;
4028 }
4029 else
4030 {
4031 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4032 = frame_info->frame + fp_loc;
4033 fp_loc += 8;
4034 }
4035 }
4036
4037 /* Quit if we hit any kind of branch the previous iteration. */
4038 if (final_iteration)
4039 break;
4040
4041 /* We want to look precisely one instruction beyond the branch
4042 if we have not found everything yet. */
4043 if (is_branch (inst))
4044 final_iteration = 1;
4045
4046 /* Bump the PC. */
4047 pc += 4;
4048 }
4049 }
4050
4051
4052 /* Exception handling support for the HP-UX ANSI C++ compiler.
4053 The compiler (aCC) provides a callback for exception events;
4054 GDB can set a breakpoint on this callback and find out what
4055 exception event has occurred. */
4056
4057 /* The name of the hook to be set to point to the callback function */
4058 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4059 /* The name of the function to be used to set the hook value */
4060 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4061 /* The name of the callback function in end.o */
4062 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4063 /* Name of function in end.o on which a break is set (called by above) */
4064 static char HP_ACC_EH_break[] = "__d_eh_break";
4065 /* Name of flag (in end.o) that enables catching throws */
4066 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4067 /* Name of flag (in end.o) that enables catching catching */
4068 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4069 /* The enum used by aCC */
4070 typedef enum
4071 {
4072 __EH_NOTIFY_THROW,
4073 __EH_NOTIFY_CATCH
4074 }
4075 __eh_notification;
4076
4077 /* Is exception-handling support available with this executable? */
4078 static int hp_cxx_exception_support = 0;
4079 /* Has the initialize function been run? */
4080 int hp_cxx_exception_support_initialized = 0;
4081 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4082 extern int exception_support_initialized;
4083 /* Address of __eh_notify_hook */
4084 static CORE_ADDR eh_notify_hook_addr = 0;
4085 /* Address of __d_eh_notify_callback */
4086 static CORE_ADDR eh_notify_callback_addr = 0;
4087 /* Address of __d_eh_break */
4088 static CORE_ADDR eh_break_addr = 0;
4089 /* Address of __d_eh_catch_catch */
4090 static CORE_ADDR eh_catch_catch_addr = 0;
4091 /* Address of __d_eh_catch_throw */
4092 static CORE_ADDR eh_catch_throw_addr = 0;
4093 /* Sal for __d_eh_break */
4094 static struct symtab_and_line *break_callback_sal = 0;
4095
4096 /* Code in end.c expects __d_pid to be set in the inferior,
4097 otherwise __d_eh_notify_callback doesn't bother to call
4098 __d_eh_break! So we poke the pid into this symbol
4099 ourselves.
4100 0 => success
4101 1 => failure */
4102 int
4103 setup_d_pid_in_inferior (void)
4104 {
4105 CORE_ADDR anaddr;
4106 struct minimal_symbol *msymbol;
4107 char buf[4]; /* FIXME 32x64? */
4108
4109 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4110 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4111 if (msymbol == NULL)
4112 {
4113 warning ("Unable to find __d_pid symbol in object file.");
4114 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4115 return 1;
4116 }
4117
4118 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4119 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4120 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4121 {
4122 warning ("Unable to write __d_pid");
4123 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4124 return 1;
4125 }
4126 return 0;
4127 }
4128
4129 /* Initialize exception catchpoint support by looking for the
4130 necessary hooks/callbacks in end.o, etc., and set the hook value to
4131 point to the required debug function
4132
4133 Return 0 => failure
4134 1 => success */
4135
4136 static int
4137 initialize_hp_cxx_exception_support (void)
4138 {
4139 struct symtabs_and_lines sals;
4140 struct cleanup *old_chain;
4141 struct cleanup *canonical_strings_chain = NULL;
4142 int i;
4143 char *addr_start;
4144 char *addr_end = NULL;
4145 char **canonical = (char **) NULL;
4146 int thread = -1;
4147 struct symbol *sym = NULL;
4148 struct minimal_symbol *msym = NULL;
4149 struct objfile *objfile;
4150 asection *shlib_info;
4151
4152 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4153 recursion is a possibility because finding the hook for exception
4154 callbacks involves making a call in the inferior, which means
4155 re-inserting breakpoints which can re-invoke this code */
4156
4157 static int recurse = 0;
4158 if (recurse > 0)
4159 {
4160 hp_cxx_exception_support_initialized = 0;
4161 exception_support_initialized = 0;
4162 return 0;
4163 }
4164
4165 hp_cxx_exception_support = 0;
4166
4167 /* First check if we have seen any HP compiled objects; if not,
4168 it is very unlikely that HP's idiosyncratic callback mechanism
4169 for exception handling debug support will be available!
4170 This will percolate back up to breakpoint.c, where our callers
4171 will decide to try the g++ exception-handling support instead. */
4172 if (!hp_som_som_object_present)
4173 return 0;
4174
4175 /* We have a SOM executable with SOM debug info; find the hooks */
4176
4177 /* First look for the notify hook provided by aCC runtime libs */
4178 /* If we find this symbol, we conclude that the executable must
4179 have HP aCC exception support built in. If this symbol is not
4180 found, even though we're a HP SOM-SOM file, we may have been
4181 built with some other compiler (not aCC). This results percolates
4182 back up to our callers in breakpoint.c which can decide to
4183 try the g++ style of exception support instead.
4184 If this symbol is found but the other symbols we require are
4185 not found, there is something weird going on, and g++ support
4186 should *not* be tried as an alternative.
4187
4188 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4189 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4190
4191 /* libCsup has this hook; it'll usually be non-debuggable */
4192 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4193 if (msym)
4194 {
4195 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4196 hp_cxx_exception_support = 1;
4197 }
4198 else
4199 {
4200 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4201 warning ("Executable may not have been compiled debuggable with HP aCC.");
4202 warning ("GDB will be unable to intercept exception events.");
4203 eh_notify_hook_addr = 0;
4204 hp_cxx_exception_support = 0;
4205 return 0;
4206 }
4207
4208 /* Next look for the notify callback routine in end.o */
4209 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4210 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4211 if (msym)
4212 {
4213 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4214 hp_cxx_exception_support = 1;
4215 }
4216 else
4217 {
4218 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4219 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4220 warning ("GDB will be unable to intercept exception events.");
4221 eh_notify_callback_addr = 0;
4222 return 0;
4223 }
4224
4225 #ifndef GDB_TARGET_IS_HPPA_20W
4226 /* Check whether the executable is dynamically linked or archive bound */
4227 /* With an archive-bound executable we can use the raw addresses we find
4228 for the callback function, etc. without modification. For an executable
4229 with shared libraries, we have to do more work to find the plabel, which
4230 can be the target of a call through $$dyncall from the aCC runtime support
4231 library (libCsup) which is linked shared by default by aCC. */
4232 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4233 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4234 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4235 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4236 {
4237 /* The minsym we have has the local code address, but that's not the
4238 plabel that can be used by an inter-load-module call. */
4239 /* Find solib handle for main image (which has end.o), and use that
4240 and the min sym as arguments to __d_shl_get() (which does the equivalent
4241 of shl_findsym()) to find the plabel. */
4242
4243 args_for_find_stub args;
4244 static char message[] = "Error while finding exception callback hook:\n";
4245
4246 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4247 args.msym = msym;
4248 args.return_val = 0;
4249
4250 recurse++;
4251 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4252 RETURN_MASK_ALL);
4253 eh_notify_callback_addr = args.return_val;
4254 recurse--;
4255
4256 exception_catchpoints_are_fragile = 1;
4257
4258 if (!eh_notify_callback_addr)
4259 {
4260 /* We can get here either if there is no plabel in the export list
4261 for the main image, or if something strange happened (?) */
4262 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4263 warning ("GDB will not be able to intercept exception events.");
4264 return 0;
4265 }
4266 }
4267 else
4268 exception_catchpoints_are_fragile = 0;
4269 #endif
4270
4271 /* Now, look for the breakpointable routine in end.o */
4272 /* This should also be available in the SOM symbol dict. if end.o linked in */
4273 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4274 if (msym)
4275 {
4276 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4277 hp_cxx_exception_support = 1;
4278 }
4279 else
4280 {
4281 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4282 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4283 warning ("GDB will be unable to intercept exception events.");
4284 eh_break_addr = 0;
4285 return 0;
4286 }
4287
4288 /* Next look for the catch enable flag provided in end.o */
4289 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4290 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4291 if (sym) /* sometimes present in debug info */
4292 {
4293 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4294 hp_cxx_exception_support = 1;
4295 }
4296 else
4297 /* otherwise look in SOM symbol dict. */
4298 {
4299 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4300 if (msym)
4301 {
4302 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4303 hp_cxx_exception_support = 1;
4304 }
4305 else
4306 {
4307 warning ("Unable to enable interception of exception catches.");
4308 warning ("Executable may not have been compiled debuggable with HP aCC.");
4309 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4310 return 0;
4311 }
4312 }
4313
4314 /* Next look for the catch enable flag provided end.o */
4315 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4316 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4317 if (sym) /* sometimes present in debug info */
4318 {
4319 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4320 hp_cxx_exception_support = 1;
4321 }
4322 else
4323 /* otherwise look in SOM symbol dict. */
4324 {
4325 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4326 if (msym)
4327 {
4328 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4329 hp_cxx_exception_support = 1;
4330 }
4331 else
4332 {
4333 warning ("Unable to enable interception of exception throws.");
4334 warning ("Executable may not have been compiled debuggable with HP aCC.");
4335 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4336 return 0;
4337 }
4338 }
4339
4340 /* Set the flags */
4341 hp_cxx_exception_support = 2; /* everything worked so far */
4342 hp_cxx_exception_support_initialized = 1;
4343 exception_support_initialized = 1;
4344
4345 return 1;
4346 }
4347
4348 /* Target operation for enabling or disabling interception of
4349 exception events.
4350 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4351 ENABLE is either 0 (disable) or 1 (enable).
4352 Return value is NULL if no support found;
4353 -1 if something went wrong,
4354 or a pointer to a symtab/line struct if the breakpointable
4355 address was found. */
4356
4357 struct symtab_and_line *
4358 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4359 {
4360 char buf[4];
4361
4362 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4363 if (!initialize_hp_cxx_exception_support ())
4364 return NULL;
4365
4366 switch (hp_cxx_exception_support)
4367 {
4368 case 0:
4369 /* Assuming no HP support at all */
4370 return NULL;
4371 case 1:
4372 /* HP support should be present, but something went wrong */
4373 return (struct symtab_and_line *) -1; /* yuck! */
4374 /* there may be other cases in the future */
4375 }
4376
4377 /* Set the EH hook to point to the callback routine */
4378 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4379 /* pai: (temp) FIXME should there be a pack operation first? */
4380 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4381 {
4382 warning ("Could not write to target memory for exception event callback.");
4383 warning ("Interception of exception events may not work.");
4384 return (struct symtab_and_line *) -1;
4385 }
4386 if (enable)
4387 {
4388 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4389 if (PIDGET (inferior_ptid) > 0)
4390 {
4391 if (setup_d_pid_in_inferior ())
4392 return (struct symtab_and_line *) -1;
4393 }
4394 else
4395 {
4396 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4397 return (struct symtab_and_line *) -1;
4398 }
4399 }
4400
4401 switch (kind)
4402 {
4403 case EX_EVENT_THROW:
4404 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4405 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4406 {
4407 warning ("Couldn't enable exception throw interception.");
4408 return (struct symtab_and_line *) -1;
4409 }
4410 break;
4411 case EX_EVENT_CATCH:
4412 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4413 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4414 {
4415 warning ("Couldn't enable exception catch interception.");
4416 return (struct symtab_and_line *) -1;
4417 }
4418 break;
4419 default:
4420 error ("Request to enable unknown or unsupported exception event.");
4421 }
4422
4423 /* Copy break address into new sal struct, malloc'ing if needed. */
4424 if (!break_callback_sal)
4425 {
4426 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4427 }
4428 INIT_SAL (break_callback_sal);
4429 break_callback_sal->symtab = NULL;
4430 break_callback_sal->pc = eh_break_addr;
4431 break_callback_sal->line = 0;
4432 break_callback_sal->end = eh_break_addr;
4433
4434 return break_callback_sal;
4435 }
4436
4437 /* Record some information about the current exception event */
4438 static struct exception_event_record current_ex_event;
4439 /* Convenience struct */
4440 static struct symtab_and_line null_symtab_and_line =
4441 {NULL, 0, 0, 0};
4442
4443 /* Report current exception event. Returns a pointer to a record
4444 that describes the kind of the event, where it was thrown from,
4445 and where it will be caught. More information may be reported
4446 in the future */
4447 struct exception_event_record *
4448 child_get_current_exception_event (void)
4449 {
4450 CORE_ADDR event_kind;
4451 CORE_ADDR throw_addr;
4452 CORE_ADDR catch_addr;
4453 struct frame_info *fi, *curr_frame;
4454 int level = 1;
4455
4456 curr_frame = get_current_frame ();
4457 if (!curr_frame)
4458 return (struct exception_event_record *) NULL;
4459
4460 /* Go up one frame to __d_eh_notify_callback, because at the
4461 point when this code is executed, there's garbage in the
4462 arguments of __d_eh_break. */
4463 fi = find_relative_frame (curr_frame, &level);
4464 if (level != 0)
4465 return (struct exception_event_record *) NULL;
4466
4467 select_frame (fi, -1);
4468
4469 /* Read in the arguments */
4470 /* __d_eh_notify_callback() is called with 3 arguments:
4471 1. event kind catch or throw
4472 2. the target address if known
4473 3. a flag -- not sure what this is. pai/1997-07-17 */
4474 event_kind = read_register (ARG0_REGNUM);
4475 catch_addr = read_register (ARG1_REGNUM);
4476
4477 /* Now go down to a user frame */
4478 /* For a throw, __d_eh_break is called by
4479 __d_eh_notify_callback which is called by
4480 __notify_throw which is called
4481 from user code.
4482 For a catch, __d_eh_break is called by
4483 __d_eh_notify_callback which is called by
4484 <stackwalking stuff> which is called by
4485 __throw__<stuff> or __rethrow_<stuff> which is called
4486 from user code. */
4487 /* FIXME: Don't use such magic numbers; search for the frames */
4488 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4489 fi = find_relative_frame (curr_frame, &level);
4490 if (level != 0)
4491 return (struct exception_event_record *) NULL;
4492
4493 select_frame (fi, -1);
4494 throw_addr = fi->pc;
4495
4496 /* Go back to original (top) frame */
4497 select_frame (curr_frame, -1);
4498
4499 current_ex_event.kind = (enum exception_event_kind) event_kind;
4500 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4501 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4502
4503 return &current_ex_event;
4504 }
4505
4506 static void
4507 unwind_command (char *exp, int from_tty)
4508 {
4509 CORE_ADDR address;
4510 struct unwind_table_entry *u;
4511
4512 /* If we have an expression, evaluate it and use it as the address. */
4513
4514 if (exp != 0 && *exp != 0)
4515 address = parse_and_eval_address (exp);
4516 else
4517 return;
4518
4519 u = find_unwind_entry (address);
4520
4521 if (!u)
4522 {
4523 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4524 return;
4525 }
4526
4527 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4528 paddr_nz (host_pointer_to_address (u)));
4529
4530 printf_unfiltered ("\tregion_start = ");
4531 print_address (u->region_start, gdb_stdout);
4532
4533 printf_unfiltered ("\n\tregion_end = ");
4534 print_address (u->region_end, gdb_stdout);
4535
4536 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4537
4538 printf_unfiltered ("\n\tflags =");
4539 pif (Cannot_unwind);
4540 pif (Millicode);
4541 pif (Millicode_save_sr0);
4542 pif (Entry_SR);
4543 pif (Args_stored);
4544 pif (Variable_Frame);
4545 pif (Separate_Package_Body);
4546 pif (Frame_Extension_Millicode);
4547 pif (Stack_Overflow_Check);
4548 pif (Two_Instruction_SP_Increment);
4549 pif (Ada_Region);
4550 pif (Save_SP);
4551 pif (Save_RP);
4552 pif (Save_MRP_in_frame);
4553 pif (extn_ptr_defined);
4554 pif (Cleanup_defined);
4555 pif (MPE_XL_interrupt_marker);
4556 pif (HP_UX_interrupt_marker);
4557 pif (Large_frame);
4558
4559 putchar_unfiltered ('\n');
4560
4561 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4562
4563 pin (Region_description);
4564 pin (Entry_FR);
4565 pin (Entry_GR);
4566 pin (Total_frame_size);
4567 }
4568
4569 #ifdef PREPARE_TO_PROCEED
4570
4571 /* If the user has switched threads, and there is a breakpoint
4572 at the old thread's pc location, then switch to that thread
4573 and return TRUE, else return FALSE and don't do a thread
4574 switch (or rather, don't seem to have done a thread switch).
4575
4576 Ptrace-based gdb will always return FALSE to the thread-switch
4577 query, and thus also to PREPARE_TO_PROCEED.
4578
4579 The important thing is whether there is a BPT instruction,
4580 not how many user breakpoints there are. So we have to worry
4581 about things like these:
4582
4583 o Non-bp stop -- NO
4584
4585 o User hits bp, no switch -- NO
4586
4587 o User hits bp, switches threads -- YES
4588
4589 o User hits bp, deletes bp, switches threads -- NO
4590
4591 o User hits bp, deletes one of two or more bps
4592 at that PC, user switches threads -- YES
4593
4594 o Plus, since we're buffering events, the user may have hit a
4595 breakpoint, deleted the breakpoint and then gotten another
4596 hit on that same breakpoint on another thread which
4597 actually hit before the delete. (FIXME in breakpoint.c
4598 so that "dead" breakpoints are ignored?) -- NO
4599
4600 For these reasons, we have to violate information hiding and
4601 call "breakpoint_here_p". If core gdb thinks there is a bpt
4602 here, that's what counts, as core gdb is the one which is
4603 putting the BPT instruction in and taking it out.
4604
4605 Note that this implementation is potentially redundant now that
4606 default_prepare_to_proceed() has been added.
4607
4608 FIXME This may not support switching threads after Ctrl-C
4609 correctly. The default implementation does support this. */
4610 int
4611 hppa_prepare_to_proceed (void)
4612 {
4613 pid_t old_thread;
4614 pid_t current_thread;
4615
4616 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4617 if (old_thread != 0)
4618 {
4619 /* Switched over from "old_thread". Try to do
4620 as little work as possible, 'cause mostly
4621 we're going to switch back. */
4622 CORE_ADDR new_pc;
4623 CORE_ADDR old_pc = read_pc ();
4624
4625 /* Yuk, shouldn't use global to specify current
4626 thread. But that's how gdb does it. */
4627 current_thread = PIDGET (inferior_ptid);
4628 inferior_ptid = pid_to_ptid (old_thread);
4629
4630 new_pc = read_pc ();
4631 if (new_pc != old_pc /* If at same pc, no need */
4632 && breakpoint_here_p (new_pc))
4633 {
4634 /* User hasn't deleted the BP.
4635 Return TRUE, finishing switch to "old_thread". */
4636 flush_cached_frames ();
4637 registers_changed ();
4638 #if 0
4639 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4640 current_thread, PIDGET (inferior_ptid));
4641 #endif
4642
4643 return 1;
4644 }
4645
4646 /* Otherwise switch back to the user-chosen thread. */
4647 inferior_ptid = pid_to_ptid (current_thread);
4648 new_pc = read_pc (); /* Re-prime register cache */
4649 }
4650
4651 return 0;
4652 }
4653 #endif /* PREPARE_TO_PROCEED */
4654
4655 void
4656 hppa_skip_permanent_breakpoint (void)
4657 {
4658 /* To step over a breakpoint instruction on the PA takes some
4659 fiddling with the instruction address queue.
4660
4661 When we stop at a breakpoint, the IA queue front (the instruction
4662 we're executing now) points at the breakpoint instruction, and
4663 the IA queue back (the next instruction to execute) points to
4664 whatever instruction we would execute after the breakpoint, if it
4665 were an ordinary instruction. This is the case even if the
4666 breakpoint is in the delay slot of a branch instruction.
4667
4668 Clearly, to step past the breakpoint, we need to set the queue
4669 front to the back. But what do we put in the back? What
4670 instruction comes after that one? Because of the branch delay
4671 slot, the next insn is always at the back + 4. */
4672 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4673 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4674
4675 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4676 /* We can leave the tail's space the same, since there's no jump. */
4677 }
4678
4679 void
4680 _initialize_hppa_tdep (void)
4681 {
4682 struct cmd_list_element *c;
4683 void break_at_finish_command (char *arg, int from_tty);
4684 void tbreak_at_finish_command (char *arg, int from_tty);
4685 void break_at_finish_at_depth_command (char *arg, int from_tty);
4686
4687 tm_print_insn = print_insn_hppa;
4688
4689 add_cmd ("unwind", class_maintenance, unwind_command,
4690 "Print unwind table entry at given address.",
4691 &maintenanceprintlist);
4692
4693 deprecate_cmd (add_com ("xbreak", class_breakpoint,
4694 break_at_finish_command,
4695 concat ("Set breakpoint at procedure exit. \n\
4696 Argument may be function name, or \"*\" and an address.\n\
4697 If function is specified, break at end of code for that function.\n\
4698 If an address is specified, break at the end of the function that contains \n\
4699 that exact address.\n",
4700 "With no arg, uses current execution address of selected stack frame.\n\
4701 This is useful for breaking on return to a stack frame.\n\
4702 \n\
4703 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
4704 \n\
4705 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
4706 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
4707 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
4708 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
4709 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
4710
4711 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
4712 tbreak_at_finish_command,
4713 "Set temporary breakpoint at procedure exit. Either there should\n\
4714 be no argument or the argument must be a depth.\n"), NULL);
4715 set_cmd_completer (c, location_completer);
4716
4717 if (xdb_commands)
4718 deprecate_cmd (add_com ("bx", class_breakpoint,
4719 break_at_finish_at_depth_command,
4720 "Set breakpoint at procedure exit. Either there should\n\
4721 be no argument or the argument must be a depth.\n"), NULL);
4722 }
4723
4724 /* Copy the function value from VALBUF into the proper location
4725 for a function return.
4726
4727 Called only in the context of the "return" command. */
4728
4729 void
4730 hppa_store_return_value (struct type *type, char *valbuf)
4731 {
4732 /* For software floating point, the return value goes into the
4733 integer registers. But we do not have any flag to key this on,
4734 so we always store the value into the integer registers.
4735
4736 If its a float value, then we also store it into the floating
4737 point registers. */
4738 write_register_bytes (REGISTER_BYTE (28)
4739 + (TYPE_LENGTH (type) > 4
4740 ? (8 - TYPE_LENGTH (type))
4741 : (4 - TYPE_LENGTH (type))),
4742 valbuf,
4743 TYPE_LENGTH (type));
4744 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4745 write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4746 valbuf,
4747 TYPE_LENGTH (type));
4748 }
4749
4750 /* Copy the function's return value into VALBUF.
4751
4752 This function is called only in the context of "target function calls",
4753 ie. when the debugger forces a function to be called in the child, and
4754 when the debugger forces a fucntion to return prematurely via the
4755 "return" command. */
4756
4757 void
4758 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4759 {
4760 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4761 memcpy (valbuf,
4762 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4763 TYPE_LENGTH (type));
4764 else
4765 memcpy (valbuf,
4766 ((char *)regbuf
4767 + REGISTER_BYTE (28)
4768 + (TYPE_LENGTH (type) > 4
4769 ? (8 - TYPE_LENGTH (type))
4770 : (4 - TYPE_LENGTH (type)))),
4771 TYPE_LENGTH (type));
4772 }