2008-09-08 Tristan Gingold <gingold@adacore.com>
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
465 paddr_nz (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
548 status = target_read_memory (pc, buf, 4);
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571 }
572
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
575 {
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579 }
580
581 /* Return the name of a register. */
582
583 static const char *
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
585 {
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624 }
625
626 static const char *
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
628 {
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659 }
660
661 static int
662 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
663 {
664 /* r0-r31 and sar map one-to-one. */
665 if (reg <= 32)
666 return reg;
667
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
671
672 error ("Invalid DWARF register num %d.", reg);
673 return -1;
674 }
675
676 /* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
678
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
682
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
685
686 static CORE_ADDR
687 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
691 {
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
718 int i;
719 int small_struct = 0;
720
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
727 char param_val[8];
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
736 if (write_pass)
737 write_memory (struct_end - struct_ptr, value_contents (arg),
738 TYPE_LENGTH (type));
739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
740 }
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
743 {
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
748 unpack_long (type,
749 value_contents (arg)));
750 }
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
752 {
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
755 memcpy (param_val, value_contents (arg), param_len);
756 }
757 else
758 {
759 param_len = align_up (TYPE_LENGTH (type), 4);
760
761 /* Small struct value are stored right-aligned. */
762 memcpy (param_val + param_len - TYPE_LENGTH (type),
763 value_contents (arg), TYPE_LENGTH (type));
764
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
769 if (param_len > 4 && param_len < 8)
770 small_struct = 1;
771 }
772
773 param_ptr += param_len;
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
776
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
780
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
783 stack boundary. */
784 if (write_pass)
785 {
786 write_memory (param_end - param_ptr, param_val, param_len);
787
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
791 if (param_ptr <= 48)
792 {
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
796
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
799
800 if (param_len > 4)
801 {
802 regcache_cooked_write (regcache, grreg + 1,
803 param_val + 4);
804
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
807 param_val + 4);
808 }
809 }
810 }
811 }
812
813 /* Update the various stack pointers. */
814 if (!write_pass)
815 {
816 struct_end = sp + align_up (struct_ptr, 64);
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
821 preserve. */
822 param_end = struct_end + align_up (param_ptr, 64);
823 }
824 }
825
826 /* If a structure has to be returned, set up register 28 to hold its
827 address */
828 if (struct_return)
829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
830
831 gp = tdep->find_global_pointer (gdbarch, function);
832
833 if (gp != 0)
834 regcache_cooked_write_unsigned (regcache, 19, gp);
835
836 /* Set the return address. */
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
839
840 /* Update the Stack Pointer. */
841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
842
843 return param_end;
844 }
845
846 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
850
851 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
852
853 static int
854 hppa64_integral_or_pointer_p (const struct type *type)
855 {
856 switch (TYPE_CODE (type))
857 {
858 case TYPE_CODE_INT:
859 case TYPE_CODE_BOOL:
860 case TYPE_CODE_CHAR:
861 case TYPE_CODE_ENUM:
862 case TYPE_CODE_RANGE:
863 {
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
866 }
867 case TYPE_CODE_PTR:
868 case TYPE_CODE_REF:
869 return (TYPE_LENGTH (type) == 8);
870 default:
871 break;
872 }
873
874 return 0;
875 }
876
877 /* Check whether TYPE is a "Floating Scalar Type". */
878
879 static int
880 hppa64_floating_p (const struct type *type)
881 {
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_FLT:
885 {
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
888 }
889 default:
890 break;
891 }
892
893 return 0;
894 }
895
896 /* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
899 static CORE_ADDR
900 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
901 {
902 struct obj_section *sec, *opd;
903
904 sec = find_pc_section (code);
905
906 if (!sec)
907 return code;
908
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
911 return code;
912
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
914 {
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
916 break;
917 }
918
919 if (opd < sec->objfile->sections_end)
920 {
921 CORE_ADDR addr;
922
923 for (addr = obj_section_addr (opd);
924 addr < obj_section_endaddr (opd);
925 addr += 2 * 8)
926 {
927 ULONGEST opdaddr;
928 char tmp[8];
929
930 if (target_read_memory (addr, tmp, sizeof (tmp)))
931 break;
932 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
933
934 if (opdaddr == code)
935 return addr - 16;
936 }
937 }
938
939 return code;
940 }
941
942 static CORE_ADDR
943 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
944 struct regcache *regcache, CORE_ADDR bp_addr,
945 int nargs, struct value **args, CORE_ADDR sp,
946 int struct_return, CORE_ADDR struct_addr)
947 {
948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
949 int i, offset = 0;
950 CORE_ADDR gp;
951
952 /* "The outgoing parameter area [...] must be aligned at a 16-byte
953 boundary." */
954 sp = align_up (sp, 16);
955
956 for (i = 0; i < nargs; i++)
957 {
958 struct value *arg = args[i];
959 struct type *type = value_type (arg);
960 int len = TYPE_LENGTH (type);
961 const bfd_byte *valbuf;
962 bfd_byte fptrbuf[8];
963 int regnum;
964
965 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
966 offset = align_up (offset, 8);
967
968 if (hppa64_integral_or_pointer_p (type))
969 {
970 /* "Integral scalar parameters smaller than 64 bits are
971 padded on the left (i.e., the value is in the
972 least-significant bits of the 64-bit storage unit, and
973 the high-order bits are undefined)." Therefore we can
974 safely sign-extend them. */
975 if (len < 8)
976 {
977 arg = value_cast (builtin_type_int64, arg);
978 len = 8;
979 }
980 }
981 else if (hppa64_floating_p (type))
982 {
983 if (len > 8)
984 {
985 /* "Quad-precision (128-bit) floating-point scalar
986 parameters are aligned on a 16-byte boundary." */
987 offset = align_up (offset, 16);
988
989 /* "Double-extended- and quad-precision floating-point
990 parameters within the first 64 bytes of the parameter
991 list are always passed in general registers." */
992 }
993 else
994 {
995 if (len == 4)
996 {
997 /* "Single-precision (32-bit) floating-point scalar
998 parameters are padded on the left with 32 bits of
999 garbage (i.e., the floating-point value is in the
1000 least-significant 32 bits of a 64-bit storage
1001 unit)." */
1002 offset += 4;
1003 }
1004
1005 /* "Single- and double-precision floating-point
1006 parameters in this area are passed according to the
1007 available formal parameter information in a function
1008 prototype. [...] If no prototype is in scope,
1009 floating-point parameters must be passed both in the
1010 corresponding general registers and in the
1011 corresponding floating-point registers." */
1012 regnum = HPPA64_FP4_REGNUM + offset / 8;
1013
1014 if (regnum < HPPA64_FP4_REGNUM + 8)
1015 {
1016 /* "Single-precision floating-point parameters, when
1017 passed in floating-point registers, are passed in
1018 the right halves of the floating point registers;
1019 the left halves are unused." */
1020 regcache_cooked_write_part (regcache, regnum, offset % 8,
1021 len, value_contents (arg));
1022 }
1023 }
1024 }
1025 else
1026 {
1027 if (len > 8)
1028 {
1029 /* "Aggregates larger than 8 bytes are aligned on a
1030 16-byte boundary, possibly leaving an unused argument
1031 slot, which is filled with garbage. If necessary,
1032 they are padded on the right (with garbage), to a
1033 multiple of 8 bytes." */
1034 offset = align_up (offset, 16);
1035 }
1036 }
1037
1038 /* If we are passing a function pointer, make sure we pass a function
1039 descriptor instead of the function entry address. */
1040 if (TYPE_CODE (type) == TYPE_CODE_PTR
1041 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1042 {
1043 ULONGEST codeptr, fptr;
1044
1045 codeptr = unpack_long (type, value_contents (arg));
1046 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1047 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1048 valbuf = fptrbuf;
1049 }
1050 else
1051 {
1052 valbuf = value_contents (arg);
1053 }
1054
1055 /* Always store the argument in memory. */
1056 write_memory (sp + offset, valbuf, len);
1057
1058 regnum = HPPA_ARG0_REGNUM - offset / 8;
1059 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1060 {
1061 regcache_cooked_write_part (regcache, regnum,
1062 offset % 8, min (len, 8), valbuf);
1063 offset += min (len, 8);
1064 valbuf += min (len, 8);
1065 len -= min (len, 8);
1066 regnum--;
1067 }
1068
1069 offset += len;
1070 }
1071
1072 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1073 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1074
1075 /* Allocate the outgoing parameter area. Make sure the outgoing
1076 parameter area is multiple of 16 bytes in length. */
1077 sp += max (align_up (offset, 16), 64);
1078
1079 /* Allocate 32-bytes of scratch space. The documentation doesn't
1080 mention this, but it seems to be needed. */
1081 sp += 32;
1082
1083 /* Allocate the frame marker area. */
1084 sp += 16;
1085
1086 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1087 its address. */
1088 if (struct_return)
1089 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1090
1091 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1092 gp = tdep->find_global_pointer (gdbarch, function);
1093 if (gp != 0)
1094 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1095
1096 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1097 if (!gdbarch_push_dummy_code_p (gdbarch))
1098 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1099
1100 /* Set up GR30 to hold the stack pointer (sp). */
1101 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1102
1103 return sp;
1104 }
1105 \f
1106
1107 /* Handle 32/64-bit struct return conventions. */
1108
1109 static enum return_value_convention
1110 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1111 struct type *type, struct regcache *regcache,
1112 gdb_byte *readbuf, const gdb_byte *writebuf)
1113 {
1114 if (TYPE_LENGTH (type) <= 2 * 4)
1115 {
1116 /* The value always lives in the right hand end of the register
1117 (or register pair)? */
1118 int b;
1119 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1120 int part = TYPE_LENGTH (type) % 4;
1121 /* The left hand register contains only part of the value,
1122 transfer that first so that the rest can be xfered as entire
1123 4-byte registers. */
1124 if (part > 0)
1125 {
1126 if (readbuf != NULL)
1127 regcache_cooked_read_part (regcache, reg, 4 - part,
1128 part, readbuf);
1129 if (writebuf != NULL)
1130 regcache_cooked_write_part (regcache, reg, 4 - part,
1131 part, writebuf);
1132 reg++;
1133 }
1134 /* Now transfer the remaining register values. */
1135 for (b = part; b < TYPE_LENGTH (type); b += 4)
1136 {
1137 if (readbuf != NULL)
1138 regcache_cooked_read (regcache, reg, readbuf + b);
1139 if (writebuf != NULL)
1140 regcache_cooked_write (regcache, reg, writebuf + b);
1141 reg++;
1142 }
1143 return RETURN_VALUE_REGISTER_CONVENTION;
1144 }
1145 else
1146 return RETURN_VALUE_STRUCT_CONVENTION;
1147 }
1148
1149 static enum return_value_convention
1150 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1151 struct type *type, struct regcache *regcache,
1152 gdb_byte *readbuf, const gdb_byte *writebuf)
1153 {
1154 int len = TYPE_LENGTH (type);
1155 int regnum, offset;
1156
1157 if (len > 16)
1158 {
1159 /* All return values larget than 128 bits must be aggregate
1160 return values. */
1161 gdb_assert (!hppa64_integral_or_pointer_p (type));
1162 gdb_assert (!hppa64_floating_p (type));
1163
1164 /* "Aggregate return values larger than 128 bits are returned in
1165 a buffer allocated by the caller. The address of the buffer
1166 must be passed in GR 28." */
1167 return RETURN_VALUE_STRUCT_CONVENTION;
1168 }
1169
1170 if (hppa64_integral_or_pointer_p (type))
1171 {
1172 /* "Integral return values are returned in GR 28. Values
1173 smaller than 64 bits are padded on the left (with garbage)." */
1174 regnum = HPPA_RET0_REGNUM;
1175 offset = 8 - len;
1176 }
1177 else if (hppa64_floating_p (type))
1178 {
1179 if (len > 8)
1180 {
1181 /* "Double-extended- and quad-precision floating-point
1182 values are returned in GRs 28 and 29. The sign,
1183 exponent, and most-significant bits of the mantissa are
1184 returned in GR 28; the least-significant bits of the
1185 mantissa are passed in GR 29. For double-extended
1186 precision values, GR 29 is padded on the right with 48
1187 bits of garbage." */
1188 regnum = HPPA_RET0_REGNUM;
1189 offset = 0;
1190 }
1191 else
1192 {
1193 /* "Single-precision and double-precision floating-point
1194 return values are returned in FR 4R (single precision) or
1195 FR 4 (double-precision)." */
1196 regnum = HPPA64_FP4_REGNUM;
1197 offset = 8 - len;
1198 }
1199 }
1200 else
1201 {
1202 /* "Aggregate return values up to 64 bits in size are returned
1203 in GR 28. Aggregates smaller than 64 bits are left aligned
1204 in the register; the pad bits on the right are undefined."
1205
1206 "Aggregate return values between 65 and 128 bits are returned
1207 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1208 the remaining bits are placed, left aligned, in GR 29. The
1209 pad bits on the right of GR 29 (if any) are undefined." */
1210 regnum = HPPA_RET0_REGNUM;
1211 offset = 0;
1212 }
1213
1214 if (readbuf)
1215 {
1216 while (len > 0)
1217 {
1218 regcache_cooked_read_part (regcache, regnum, offset,
1219 min (len, 8), readbuf);
1220 readbuf += min (len, 8);
1221 len -= min (len, 8);
1222 regnum++;
1223 }
1224 }
1225
1226 if (writebuf)
1227 {
1228 while (len > 0)
1229 {
1230 regcache_cooked_write_part (regcache, regnum, offset,
1231 min (len, 8), writebuf);
1232 writebuf += min (len, 8);
1233 len -= min (len, 8);
1234 regnum++;
1235 }
1236 }
1237
1238 return RETURN_VALUE_REGISTER_CONVENTION;
1239 }
1240 \f
1241
1242 static CORE_ADDR
1243 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1244 struct target_ops *targ)
1245 {
1246 if (addr & 2)
1247 {
1248 CORE_ADDR plabel = addr & ~3;
1249 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1250 }
1251
1252 return addr;
1253 }
1254
1255 static CORE_ADDR
1256 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1257 {
1258 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1259 and not _bit_)! */
1260 return align_up (addr, 64);
1261 }
1262
1263 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1264
1265 static CORE_ADDR
1266 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1267 {
1268 /* Just always 16-byte align. */
1269 return align_up (addr, 16);
1270 }
1271
1272 CORE_ADDR
1273 hppa_read_pc (struct regcache *regcache)
1274 {
1275 ULONGEST ipsw;
1276 ULONGEST pc;
1277
1278 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1279 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1280
1281 /* If the current instruction is nullified, then we are effectively
1282 still executing the previous instruction. Pretend we are still
1283 there. This is needed when single stepping; if the nullified
1284 instruction is on a different line, we don't want GDB to think
1285 we've stepped onto that line. */
1286 if (ipsw & 0x00200000)
1287 pc -= 4;
1288
1289 return pc & ~0x3;
1290 }
1291
1292 void
1293 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1294 {
1295 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1296 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1297 }
1298
1299 /* return the alignment of a type in bytes. Structures have the maximum
1300 alignment required by their fields. */
1301
1302 static int
1303 hppa_alignof (struct type *type)
1304 {
1305 int max_align, align, i;
1306 CHECK_TYPEDEF (type);
1307 switch (TYPE_CODE (type))
1308 {
1309 case TYPE_CODE_PTR:
1310 case TYPE_CODE_INT:
1311 case TYPE_CODE_FLT:
1312 return TYPE_LENGTH (type);
1313 case TYPE_CODE_ARRAY:
1314 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1315 case TYPE_CODE_STRUCT:
1316 case TYPE_CODE_UNION:
1317 max_align = 1;
1318 for (i = 0; i < TYPE_NFIELDS (type); i++)
1319 {
1320 /* Bit fields have no real alignment. */
1321 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1322 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1323 {
1324 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1325 max_align = max (max_align, align);
1326 }
1327 }
1328 return max_align;
1329 default:
1330 return 4;
1331 }
1332 }
1333
1334 /* For the given instruction (INST), return any adjustment it makes
1335 to the stack pointer or zero for no adjustment.
1336
1337 This only handles instructions commonly found in prologues. */
1338
1339 static int
1340 prologue_inst_adjust_sp (unsigned long inst)
1341 {
1342 /* This must persist across calls. */
1343 static int save_high21;
1344
1345 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1346 if ((inst & 0xffffc000) == 0x37de0000)
1347 return hppa_extract_14 (inst);
1348
1349 /* stwm X,D(sp) */
1350 if ((inst & 0xffe00000) == 0x6fc00000)
1351 return hppa_extract_14 (inst);
1352
1353 /* std,ma X,D(sp) */
1354 if ((inst & 0xffe00008) == 0x73c00008)
1355 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1356
1357 /* addil high21,%r30; ldo low11,(%r1),%r30)
1358 save high bits in save_high21 for later use. */
1359 if ((inst & 0xffe00000) == 0x2bc00000)
1360 {
1361 save_high21 = hppa_extract_21 (inst);
1362 return 0;
1363 }
1364
1365 if ((inst & 0xffff0000) == 0x343e0000)
1366 return save_high21 + hppa_extract_14 (inst);
1367
1368 /* fstws as used by the HP compilers. */
1369 if ((inst & 0xffffffe0) == 0x2fd01220)
1370 return hppa_extract_5_load (inst);
1371
1372 /* No adjustment. */
1373 return 0;
1374 }
1375
1376 /* Return nonzero if INST is a branch of some kind, else return zero. */
1377
1378 static int
1379 is_branch (unsigned long inst)
1380 {
1381 switch (inst >> 26)
1382 {
1383 case 0x20:
1384 case 0x21:
1385 case 0x22:
1386 case 0x23:
1387 case 0x27:
1388 case 0x28:
1389 case 0x29:
1390 case 0x2a:
1391 case 0x2b:
1392 case 0x2f:
1393 case 0x30:
1394 case 0x31:
1395 case 0x32:
1396 case 0x33:
1397 case 0x38:
1398 case 0x39:
1399 case 0x3a:
1400 case 0x3b:
1401 return 1;
1402
1403 default:
1404 return 0;
1405 }
1406 }
1407
1408 /* Return the register number for a GR which is saved by INST or
1409 zero it INST does not save a GR. */
1410
1411 static int
1412 inst_saves_gr (unsigned long inst)
1413 {
1414 /* Does it look like a stw? */
1415 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1416 || (inst >> 26) == 0x1f
1417 || ((inst >> 26) == 0x1f
1418 && ((inst >> 6) == 0xa)))
1419 return hppa_extract_5R_store (inst);
1420
1421 /* Does it look like a std? */
1422 if ((inst >> 26) == 0x1c
1423 || ((inst >> 26) == 0x03
1424 && ((inst >> 6) & 0xf) == 0xb))
1425 return hppa_extract_5R_store (inst);
1426
1427 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1428 if ((inst >> 26) == 0x1b)
1429 return hppa_extract_5R_store (inst);
1430
1431 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1432 too. */
1433 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1434 || ((inst >> 26) == 0x3
1435 && (((inst >> 6) & 0xf) == 0x8
1436 || (inst >> 6) & 0xf) == 0x9))
1437 return hppa_extract_5R_store (inst);
1438
1439 return 0;
1440 }
1441
1442 /* Return the register number for a FR which is saved by INST or
1443 zero it INST does not save a FR.
1444
1445 Note we only care about full 64bit register stores (that's the only
1446 kind of stores the prologue will use).
1447
1448 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1449
1450 static int
1451 inst_saves_fr (unsigned long inst)
1452 {
1453 /* is this an FSTD ? */
1454 if ((inst & 0xfc00dfc0) == 0x2c001200)
1455 return hppa_extract_5r_store (inst);
1456 if ((inst & 0xfc000002) == 0x70000002)
1457 return hppa_extract_5R_store (inst);
1458 /* is this an FSTW ? */
1459 if ((inst & 0xfc00df80) == 0x24001200)
1460 return hppa_extract_5r_store (inst);
1461 if ((inst & 0xfc000002) == 0x7c000000)
1462 return hppa_extract_5R_store (inst);
1463 return 0;
1464 }
1465
1466 /* Advance PC across any function entry prologue instructions
1467 to reach some "real" code.
1468
1469 Use information in the unwind table to determine what exactly should
1470 be in the prologue. */
1471
1472
1473 static CORE_ADDR
1474 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1475 int stop_before_branch)
1476 {
1477 char buf[4];
1478 CORE_ADDR orig_pc = pc;
1479 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1480 unsigned long args_stored, status, i, restart_gr, restart_fr;
1481 struct unwind_table_entry *u;
1482 int final_iteration;
1483
1484 restart_gr = 0;
1485 restart_fr = 0;
1486
1487 restart:
1488 u = find_unwind_entry (pc);
1489 if (!u)
1490 return pc;
1491
1492 /* If we are not at the beginning of a function, then return now. */
1493 if ((pc & ~0x3) != u->region_start)
1494 return pc;
1495
1496 /* This is how much of a frame adjustment we need to account for. */
1497 stack_remaining = u->Total_frame_size << 3;
1498
1499 /* Magic register saves we want to know about. */
1500 save_rp = u->Save_RP;
1501 save_sp = u->Save_SP;
1502
1503 /* An indication that args may be stored into the stack. Unfortunately
1504 the HPUX compilers tend to set this in cases where no args were
1505 stored too!. */
1506 args_stored = 1;
1507
1508 /* Turn the Entry_GR field into a bitmask. */
1509 save_gr = 0;
1510 for (i = 3; i < u->Entry_GR + 3; i++)
1511 {
1512 /* Frame pointer gets saved into a special location. */
1513 if (u->Save_SP && i == HPPA_FP_REGNUM)
1514 continue;
1515
1516 save_gr |= (1 << i);
1517 }
1518 save_gr &= ~restart_gr;
1519
1520 /* Turn the Entry_FR field into a bitmask too. */
1521 save_fr = 0;
1522 for (i = 12; i < u->Entry_FR + 12; i++)
1523 save_fr |= (1 << i);
1524 save_fr &= ~restart_fr;
1525
1526 final_iteration = 0;
1527
1528 /* Loop until we find everything of interest or hit a branch.
1529
1530 For unoptimized GCC code and for any HP CC code this will never ever
1531 examine any user instructions.
1532
1533 For optimzied GCC code we're faced with problems. GCC will schedule
1534 its prologue and make prologue instructions available for delay slot
1535 filling. The end result is user code gets mixed in with the prologue
1536 and a prologue instruction may be in the delay slot of the first branch
1537 or call.
1538
1539 Some unexpected things are expected with debugging optimized code, so
1540 we allow this routine to walk past user instructions in optimized
1541 GCC code. */
1542 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1543 || args_stored)
1544 {
1545 unsigned int reg_num;
1546 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1547 unsigned long old_save_rp, old_save_sp, next_inst;
1548
1549 /* Save copies of all the triggers so we can compare them later
1550 (only for HPC). */
1551 old_save_gr = save_gr;
1552 old_save_fr = save_fr;
1553 old_save_rp = save_rp;
1554 old_save_sp = save_sp;
1555 old_stack_remaining = stack_remaining;
1556
1557 status = target_read_memory (pc, buf, 4);
1558 inst = extract_unsigned_integer (buf, 4);
1559
1560 /* Yow! */
1561 if (status != 0)
1562 return pc;
1563
1564 /* Note the interesting effects of this instruction. */
1565 stack_remaining -= prologue_inst_adjust_sp (inst);
1566
1567 /* There are limited ways to store the return pointer into the
1568 stack. */
1569 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1570 save_rp = 0;
1571
1572 /* These are the only ways we save SP into the stack. At this time
1573 the HP compilers never bother to save SP into the stack. */
1574 if ((inst & 0xffffc000) == 0x6fc10000
1575 || (inst & 0xffffc00c) == 0x73c10008)
1576 save_sp = 0;
1577
1578 /* Are we loading some register with an offset from the argument
1579 pointer? */
1580 if ((inst & 0xffe00000) == 0x37a00000
1581 || (inst & 0xffffffe0) == 0x081d0240)
1582 {
1583 pc += 4;
1584 continue;
1585 }
1586
1587 /* Account for general and floating-point register saves. */
1588 reg_num = inst_saves_gr (inst);
1589 save_gr &= ~(1 << reg_num);
1590
1591 /* Ugh. Also account for argument stores into the stack.
1592 Unfortunately args_stored only tells us that some arguments
1593 where stored into the stack. Not how many or what kind!
1594
1595 This is a kludge as on the HP compiler sets this bit and it
1596 never does prologue scheduling. So once we see one, skip past
1597 all of them. We have similar code for the fp arg stores below.
1598
1599 FIXME. Can still die if we have a mix of GR and FR argument
1600 stores! */
1601 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1602 && reg_num <= 26)
1603 {
1604 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1605 && reg_num <= 26)
1606 {
1607 pc += 4;
1608 status = target_read_memory (pc, buf, 4);
1609 inst = extract_unsigned_integer (buf, 4);
1610 if (status != 0)
1611 return pc;
1612 reg_num = inst_saves_gr (inst);
1613 }
1614 args_stored = 0;
1615 continue;
1616 }
1617
1618 reg_num = inst_saves_fr (inst);
1619 save_fr &= ~(1 << reg_num);
1620
1621 status = target_read_memory (pc + 4, buf, 4);
1622 next_inst = extract_unsigned_integer (buf, 4);
1623
1624 /* Yow! */
1625 if (status != 0)
1626 return pc;
1627
1628 /* We've got to be read to handle the ldo before the fp register
1629 save. */
1630 if ((inst & 0xfc000000) == 0x34000000
1631 && inst_saves_fr (next_inst) >= 4
1632 && inst_saves_fr (next_inst)
1633 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1634 {
1635 /* So we drop into the code below in a reasonable state. */
1636 reg_num = inst_saves_fr (next_inst);
1637 pc -= 4;
1638 }
1639
1640 /* Ugh. Also account for argument stores into the stack.
1641 This is a kludge as on the HP compiler sets this bit and it
1642 never does prologue scheduling. So once we see one, skip past
1643 all of them. */
1644 if (reg_num >= 4
1645 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1646 {
1647 while (reg_num >= 4
1648 && reg_num
1649 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1650 {
1651 pc += 8;
1652 status = target_read_memory (pc, buf, 4);
1653 inst = extract_unsigned_integer (buf, 4);
1654 if (status != 0)
1655 return pc;
1656 if ((inst & 0xfc000000) != 0x34000000)
1657 break;
1658 status = target_read_memory (pc + 4, buf, 4);
1659 next_inst = extract_unsigned_integer (buf, 4);
1660 if (status != 0)
1661 return pc;
1662 reg_num = inst_saves_fr (next_inst);
1663 }
1664 args_stored = 0;
1665 continue;
1666 }
1667
1668 /* Quit if we hit any kind of branch. This can happen if a prologue
1669 instruction is in the delay slot of the first call/branch. */
1670 if (is_branch (inst) && stop_before_branch)
1671 break;
1672
1673 /* What a crock. The HP compilers set args_stored even if no
1674 arguments were stored into the stack (boo hiss). This could
1675 cause this code to then skip a bunch of user insns (up to the
1676 first branch).
1677
1678 To combat this we try to identify when args_stored was bogusly
1679 set and clear it. We only do this when args_stored is nonzero,
1680 all other resources are accounted for, and nothing changed on
1681 this pass. */
1682 if (args_stored
1683 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1684 && old_save_gr == save_gr && old_save_fr == save_fr
1685 && old_save_rp == save_rp && old_save_sp == save_sp
1686 && old_stack_remaining == stack_remaining)
1687 break;
1688
1689 /* Bump the PC. */
1690 pc += 4;
1691
1692 /* !stop_before_branch, so also look at the insn in the delay slot
1693 of the branch. */
1694 if (final_iteration)
1695 break;
1696 if (is_branch (inst))
1697 final_iteration = 1;
1698 }
1699
1700 /* We've got a tenative location for the end of the prologue. However
1701 because of limitations in the unwind descriptor mechanism we may
1702 have went too far into user code looking for the save of a register
1703 that does not exist. So, if there registers we expected to be saved
1704 but never were, mask them out and restart.
1705
1706 This should only happen in optimized code, and should be very rare. */
1707 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1708 {
1709 pc = orig_pc;
1710 restart_gr = save_gr;
1711 restart_fr = save_fr;
1712 goto restart;
1713 }
1714
1715 return pc;
1716 }
1717
1718
1719 /* Return the address of the PC after the last prologue instruction if
1720 we can determine it from the debug symbols. Else return zero. */
1721
1722 static CORE_ADDR
1723 after_prologue (CORE_ADDR pc)
1724 {
1725 struct symtab_and_line sal;
1726 CORE_ADDR func_addr, func_end;
1727 struct symbol *f;
1728
1729 /* If we can not find the symbol in the partial symbol table, then
1730 there is no hope we can determine the function's start address
1731 with this code. */
1732 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1733 return 0;
1734
1735 /* Get the line associated with FUNC_ADDR. */
1736 sal = find_pc_line (func_addr, 0);
1737
1738 /* There are only two cases to consider. First, the end of the source line
1739 is within the function bounds. In that case we return the end of the
1740 source line. Second is the end of the source line extends beyond the
1741 bounds of the current function. We need to use the slow code to
1742 examine instructions in that case.
1743
1744 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1745 the wrong thing to do. In fact, it should be entirely possible for this
1746 function to always return zero since the slow instruction scanning code
1747 is supposed to *always* work. If it does not, then it is a bug. */
1748 if (sal.end < func_end)
1749 return sal.end;
1750 else
1751 return 0;
1752 }
1753
1754 /* To skip prologues, I use this predicate. Returns either PC itself
1755 if the code at PC does not look like a function prologue; otherwise
1756 returns an address that (if we're lucky) follows the prologue.
1757
1758 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1759 It doesn't necessarily skips all the insns in the prologue. In fact
1760 we might not want to skip all the insns because a prologue insn may
1761 appear in the delay slot of the first branch, and we don't want to
1762 skip over the branch in that case. */
1763
1764 static CORE_ADDR
1765 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1766 {
1767 unsigned long inst;
1768 int offset;
1769 CORE_ADDR post_prologue_pc;
1770 char buf[4];
1771
1772 /* See if we can determine the end of the prologue via the symbol table.
1773 If so, then return either PC, or the PC after the prologue, whichever
1774 is greater. */
1775
1776 post_prologue_pc = after_prologue (pc);
1777
1778 /* If after_prologue returned a useful address, then use it. Else
1779 fall back on the instruction skipping code.
1780
1781 Some folks have claimed this causes problems because the breakpoint
1782 may be the first instruction of the prologue. If that happens, then
1783 the instruction skipping code has a bug that needs to be fixed. */
1784 if (post_prologue_pc != 0)
1785 return max (pc, post_prologue_pc);
1786 else
1787 return (skip_prologue_hard_way (gdbarch, pc, 1));
1788 }
1789
1790 /* Return an unwind entry that falls within the frame's code block. */
1791
1792 static struct unwind_table_entry *
1793 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1794 {
1795 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1796
1797 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1798 result of get_frame_address_in_block implies a problem.
1799 The bits should have been removed earlier, before the return
1800 value of frame_pc_unwind. That might be happening already;
1801 if it isn't, it should be fixed. Then this call can be
1802 removed. */
1803 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1804 return find_unwind_entry (pc);
1805 }
1806
1807 struct hppa_frame_cache
1808 {
1809 CORE_ADDR base;
1810 struct trad_frame_saved_reg *saved_regs;
1811 };
1812
1813 static struct hppa_frame_cache *
1814 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1815 {
1816 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1817 struct hppa_frame_cache *cache;
1818 long saved_gr_mask;
1819 long saved_fr_mask;
1820 CORE_ADDR this_sp;
1821 long frame_size;
1822 struct unwind_table_entry *u;
1823 CORE_ADDR prologue_end;
1824 int fp_in_r1 = 0;
1825 int i;
1826
1827 if (hppa_debug)
1828 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1829 frame_relative_level(this_frame));
1830
1831 if ((*this_cache) != NULL)
1832 {
1833 if (hppa_debug)
1834 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1835 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1836 return (*this_cache);
1837 }
1838 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1839 (*this_cache) = cache;
1840 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1841
1842 /* Yow! */
1843 u = hppa_find_unwind_entry_in_block (this_frame);
1844 if (!u)
1845 {
1846 if (hppa_debug)
1847 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1848 return (*this_cache);
1849 }
1850
1851 /* Turn the Entry_GR field into a bitmask. */
1852 saved_gr_mask = 0;
1853 for (i = 3; i < u->Entry_GR + 3; i++)
1854 {
1855 /* Frame pointer gets saved into a special location. */
1856 if (u->Save_SP && i == HPPA_FP_REGNUM)
1857 continue;
1858
1859 saved_gr_mask |= (1 << i);
1860 }
1861
1862 /* Turn the Entry_FR field into a bitmask too. */
1863 saved_fr_mask = 0;
1864 for (i = 12; i < u->Entry_FR + 12; i++)
1865 saved_fr_mask |= (1 << i);
1866
1867 /* Loop until we find everything of interest or hit a branch.
1868
1869 For unoptimized GCC code and for any HP CC code this will never ever
1870 examine any user instructions.
1871
1872 For optimized GCC code we're faced with problems. GCC will schedule
1873 its prologue and make prologue instructions available for delay slot
1874 filling. The end result is user code gets mixed in with the prologue
1875 and a prologue instruction may be in the delay slot of the first branch
1876 or call.
1877
1878 Some unexpected things are expected with debugging optimized code, so
1879 we allow this routine to walk past user instructions in optimized
1880 GCC code. */
1881 {
1882 int final_iteration = 0;
1883 CORE_ADDR pc, start_pc, end_pc;
1884 int looking_for_sp = u->Save_SP;
1885 int looking_for_rp = u->Save_RP;
1886 int fp_loc = -1;
1887
1888 /* We have to use skip_prologue_hard_way instead of just
1889 skip_prologue_using_sal, in case we stepped into a function without
1890 symbol information. hppa_skip_prologue also bounds the returned
1891 pc by the passed in pc, so it will not return a pc in the next
1892 function.
1893
1894 We used to call hppa_skip_prologue to find the end of the prologue,
1895 but if some non-prologue instructions get scheduled into the prologue,
1896 and the program is compiled with debug information, the "easy" way
1897 in hppa_skip_prologue will return a prologue end that is too early
1898 for us to notice any potential frame adjustments. */
1899
1900 /* We used to use get_frame_func to locate the beginning of the
1901 function to pass to skip_prologue. However, when objects are
1902 compiled without debug symbols, get_frame_func can return the wrong
1903 function (or 0). We can do better than that by using unwind records.
1904 This only works if the Region_description of the unwind record
1905 indicates that it includes the entry point of the function.
1906 HP compilers sometimes generate unwind records for regions that
1907 do not include the entry or exit point of a function. GNU tools
1908 do not do this. */
1909
1910 if ((u->Region_description & 0x2) == 0)
1911 start_pc = u->region_start;
1912 else
1913 start_pc = get_frame_func (this_frame);
1914
1915 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1916 end_pc = get_frame_pc (this_frame);
1917
1918 if (prologue_end != 0 && end_pc > prologue_end)
1919 end_pc = prologue_end;
1920
1921 frame_size = 0;
1922
1923 for (pc = start_pc;
1924 ((saved_gr_mask || saved_fr_mask
1925 || looking_for_sp || looking_for_rp
1926 || frame_size < (u->Total_frame_size << 3))
1927 && pc < end_pc);
1928 pc += 4)
1929 {
1930 int reg;
1931 char buf4[4];
1932 long inst;
1933
1934 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1935 {
1936 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1937 return (*this_cache);
1938 }
1939
1940 inst = extract_unsigned_integer (buf4, sizeof buf4);
1941
1942 /* Note the interesting effects of this instruction. */
1943 frame_size += prologue_inst_adjust_sp (inst);
1944
1945 /* There are limited ways to store the return pointer into the
1946 stack. */
1947 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1948 {
1949 looking_for_rp = 0;
1950 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1951 }
1952 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1953 {
1954 looking_for_rp = 0;
1955 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1956 }
1957 else if (inst == 0x0fc212c1
1958 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1959 {
1960 looking_for_rp = 0;
1961 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1962 }
1963
1964 /* Check to see if we saved SP into the stack. This also
1965 happens to indicate the location of the saved frame
1966 pointer. */
1967 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1968 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1969 {
1970 looking_for_sp = 0;
1971 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1972 }
1973 else if (inst == 0x08030241) /* copy %r3, %r1 */
1974 {
1975 fp_in_r1 = 1;
1976 }
1977
1978 /* Account for general and floating-point register saves. */
1979 reg = inst_saves_gr (inst);
1980 if (reg >= 3 && reg <= 18
1981 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1982 {
1983 saved_gr_mask &= ~(1 << reg);
1984 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1985 /* stwm with a positive displacement is a _post_
1986 _modify_. */
1987 cache->saved_regs[reg].addr = 0;
1988 else if ((inst & 0xfc00000c) == 0x70000008)
1989 /* A std has explicit post_modify forms. */
1990 cache->saved_regs[reg].addr = 0;
1991 else
1992 {
1993 CORE_ADDR offset;
1994
1995 if ((inst >> 26) == 0x1c)
1996 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1997 else if ((inst >> 26) == 0x03)
1998 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1999 else
2000 offset = hppa_extract_14 (inst);
2001
2002 /* Handle code with and without frame pointers. */
2003 if (u->Save_SP)
2004 cache->saved_regs[reg].addr = offset;
2005 else
2006 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2007 }
2008 }
2009
2010 /* GCC handles callee saved FP regs a little differently.
2011
2012 It emits an instruction to put the value of the start of
2013 the FP store area into %r1. It then uses fstds,ma with a
2014 basereg of %r1 for the stores.
2015
2016 HP CC emits them at the current stack pointer modifying the
2017 stack pointer as it stores each register. */
2018
2019 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2020 if ((inst & 0xffffc000) == 0x34610000
2021 || (inst & 0xffffc000) == 0x37c10000)
2022 fp_loc = hppa_extract_14 (inst);
2023
2024 reg = inst_saves_fr (inst);
2025 if (reg >= 12 && reg <= 21)
2026 {
2027 /* Note +4 braindamage below is necessary because the FP
2028 status registers are internally 8 registers rather than
2029 the expected 4 registers. */
2030 saved_fr_mask &= ~(1 << reg);
2031 if (fp_loc == -1)
2032 {
2033 /* 1st HP CC FP register store. After this
2034 instruction we've set enough state that the GCC and
2035 HPCC code are both handled in the same manner. */
2036 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2037 fp_loc = 8;
2038 }
2039 else
2040 {
2041 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2042 fp_loc += 8;
2043 }
2044 }
2045
2046 /* Quit if we hit any kind of branch the previous iteration. */
2047 if (final_iteration)
2048 break;
2049 /* We want to look precisely one instruction beyond the branch
2050 if we have not found everything yet. */
2051 if (is_branch (inst))
2052 final_iteration = 1;
2053 }
2054 }
2055
2056 {
2057 /* The frame base always represents the value of %sp at entry to
2058 the current function (and is thus equivalent to the "saved"
2059 stack pointer. */
2060 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2061 HPPA_SP_REGNUM);
2062 CORE_ADDR fp;
2063
2064 if (hppa_debug)
2065 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2066 "prologue_end=0x%s) ",
2067 paddr_nz (this_sp),
2068 paddr_nz (get_frame_pc (this_frame)),
2069 paddr_nz (prologue_end));
2070
2071 /* Check to see if a frame pointer is available, and use it for
2072 frame unwinding if it is.
2073
2074 There are some situations where we need to rely on the frame
2075 pointer to do stack unwinding. For example, if a function calls
2076 alloca (), the stack pointer can get adjusted inside the body of
2077 the function. In this case, the ABI requires that the compiler
2078 maintain a frame pointer for the function.
2079
2080 The unwind record has a flag (alloca_frame) that indicates that
2081 a function has a variable frame; unfortunately, gcc/binutils
2082 does not set this flag. Instead, whenever a frame pointer is used
2083 and saved on the stack, the Save_SP flag is set. We use this to
2084 decide whether to use the frame pointer for unwinding.
2085
2086 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2087 instead of Save_SP. */
2088
2089 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2090
2091 if (u->alloca_frame)
2092 fp -= u->Total_frame_size << 3;
2093
2094 if (get_frame_pc (this_frame) >= prologue_end
2095 && (u->Save_SP || u->alloca_frame) && fp != 0)
2096 {
2097 cache->base = fp;
2098
2099 if (hppa_debug)
2100 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2101 paddr_nz (cache->base));
2102 }
2103 else if (u->Save_SP
2104 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2105 {
2106 /* Both we're expecting the SP to be saved and the SP has been
2107 saved. The entry SP value is saved at this frame's SP
2108 address. */
2109 cache->base = read_memory_integer
2110 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2111
2112 if (hppa_debug)
2113 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2114 paddr_nz (cache->base));
2115 }
2116 else
2117 {
2118 /* The prologue has been slowly allocating stack space. Adjust
2119 the SP back. */
2120 cache->base = this_sp - frame_size;
2121 if (hppa_debug)
2122 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2123 paddr_nz (cache->base));
2124
2125 }
2126 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2127 }
2128
2129 /* The PC is found in the "return register", "Millicode" uses "r31"
2130 as the return register while normal code uses "rp". */
2131 if (u->Millicode)
2132 {
2133 if (trad_frame_addr_p (cache->saved_regs, 31))
2134 {
2135 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2136 if (hppa_debug)
2137 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2138 }
2139 else
2140 {
2141 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2142 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2143 if (hppa_debug)
2144 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2145 }
2146 }
2147 else
2148 {
2149 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2150 {
2151 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2152 cache->saved_regs[HPPA_RP_REGNUM];
2153 if (hppa_debug)
2154 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2155 }
2156 else
2157 {
2158 ULONGEST rp = get_frame_register_unsigned (this_frame,
2159 HPPA_RP_REGNUM);
2160 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2161 if (hppa_debug)
2162 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2163 }
2164 }
2165
2166 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2167 frame. However, there is a one-insn window where we haven't saved it
2168 yet, but we've already clobbered it. Detect this case and fix it up.
2169
2170 The prologue sequence for frame-pointer functions is:
2171 0: stw %rp, -20(%sp)
2172 4: copy %r3, %r1
2173 8: copy %sp, %r3
2174 c: stw,ma %r1, XX(%sp)
2175
2176 So if we are at offset c, the r3 value that we want is not yet saved
2177 on the stack, but it's been overwritten. The prologue analyzer will
2178 set fp_in_r1 when it sees the copy insn so we know to get the value
2179 from r1 instead. */
2180 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2181 && fp_in_r1)
2182 {
2183 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2184 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2185 }
2186
2187 {
2188 /* Convert all the offsets into addresses. */
2189 int reg;
2190 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2191 {
2192 if (trad_frame_addr_p (cache->saved_regs, reg))
2193 cache->saved_regs[reg].addr += cache->base;
2194 }
2195 }
2196
2197 {
2198 struct gdbarch_tdep *tdep;
2199
2200 tdep = gdbarch_tdep (gdbarch);
2201
2202 if (tdep->unwind_adjust_stub)
2203 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2204 }
2205
2206 if (hppa_debug)
2207 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2208 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2209 return (*this_cache);
2210 }
2211
2212 static void
2213 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2214 struct frame_id *this_id)
2215 {
2216 struct hppa_frame_cache *info;
2217 CORE_ADDR pc = get_frame_pc (this_frame);
2218 struct unwind_table_entry *u;
2219
2220 info = hppa_frame_cache (this_frame, this_cache);
2221 u = hppa_find_unwind_entry_in_block (this_frame);
2222
2223 (*this_id) = frame_id_build (info->base, u->region_start);
2224 }
2225
2226 static struct value *
2227 hppa_frame_prev_register (struct frame_info *this_frame,
2228 void **this_cache, int regnum)
2229 {
2230 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2231
2232 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2233 }
2234
2235 static int
2236 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame, void **this_cache)
2238 {
2239 if (hppa_find_unwind_entry_in_block (this_frame))
2240 return 1;
2241
2242 return 0;
2243 }
2244
2245 static const struct frame_unwind hppa_frame_unwind =
2246 {
2247 NORMAL_FRAME,
2248 hppa_frame_this_id,
2249 hppa_frame_prev_register,
2250 NULL,
2251 hppa_frame_unwind_sniffer
2252 };
2253
2254 /* This is a generic fallback frame unwinder that kicks in if we fail all
2255 the other ones. Normally we would expect the stub and regular unwinder
2256 to work, but in some cases we might hit a function that just doesn't
2257 have any unwind information available. In this case we try to do
2258 unwinding solely based on code reading. This is obviously going to be
2259 slow, so only use this as a last resort. Currently this will only
2260 identify the stack and pc for the frame. */
2261
2262 static struct hppa_frame_cache *
2263 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2264 {
2265 struct hppa_frame_cache *cache;
2266 unsigned int frame_size = 0;
2267 int found_rp = 0;
2268 CORE_ADDR start_pc;
2269
2270 if (hppa_debug)
2271 fprintf_unfiltered (gdb_stdlog,
2272 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2273 frame_relative_level (this_frame));
2274
2275 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2276 (*this_cache) = cache;
2277 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2278
2279 start_pc = get_frame_func (this_frame);
2280 if (start_pc)
2281 {
2282 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2283 CORE_ADDR pc;
2284
2285 for (pc = start_pc; pc < cur_pc; pc += 4)
2286 {
2287 unsigned int insn;
2288
2289 insn = read_memory_unsigned_integer (pc, 4);
2290 frame_size += prologue_inst_adjust_sp (insn);
2291
2292 /* There are limited ways to store the return pointer into the
2293 stack. */
2294 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2295 {
2296 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2297 found_rp = 1;
2298 }
2299 else if (insn == 0x0fc212c1
2300 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2301 {
2302 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2303 found_rp = 1;
2304 }
2305 }
2306 }
2307
2308 if (hppa_debug)
2309 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2310 frame_size, found_rp);
2311
2312 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2313 cache->base -= frame_size;
2314 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2315
2316 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2317 {
2318 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2319 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2320 cache->saved_regs[HPPA_RP_REGNUM];
2321 }
2322 else
2323 {
2324 ULONGEST rp;
2325 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2326 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2327 }
2328
2329 return cache;
2330 }
2331
2332 static void
2333 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2334 struct frame_id *this_id)
2335 {
2336 struct hppa_frame_cache *info =
2337 hppa_fallback_frame_cache (this_frame, this_cache);
2338
2339 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2340 }
2341
2342 static struct value *
2343 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2344 void **this_cache, int regnum)
2345 {
2346 struct hppa_frame_cache *info =
2347 hppa_fallback_frame_cache (this_frame, this_cache);
2348
2349 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2350 }
2351
2352 static const struct frame_unwind hppa_fallback_frame_unwind =
2353 {
2354 NORMAL_FRAME,
2355 hppa_fallback_frame_this_id,
2356 hppa_fallback_frame_prev_register,
2357 NULL,
2358 default_frame_sniffer
2359 };
2360
2361 /* Stub frames, used for all kinds of call stubs. */
2362 struct hppa_stub_unwind_cache
2363 {
2364 CORE_ADDR base;
2365 struct trad_frame_saved_reg *saved_regs;
2366 };
2367
2368 static struct hppa_stub_unwind_cache *
2369 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2370 void **this_cache)
2371 {
2372 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2373 struct hppa_stub_unwind_cache *info;
2374 struct unwind_table_entry *u;
2375
2376 if (*this_cache)
2377 return *this_cache;
2378
2379 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2380 *this_cache = info;
2381 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2382
2383 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2384
2385 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2386 {
2387 /* HPUX uses export stubs in function calls; the export stub clobbers
2388 the return value of the caller, and, later restores it from the
2389 stack. */
2390 u = find_unwind_entry (get_frame_pc (this_frame));
2391
2392 if (u && u->stub_unwind.stub_type == EXPORT)
2393 {
2394 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2395
2396 return info;
2397 }
2398 }
2399
2400 /* By default we assume that stubs do not change the rp. */
2401 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2402
2403 return info;
2404 }
2405
2406 static void
2407 hppa_stub_frame_this_id (struct frame_info *this_frame,
2408 void **this_prologue_cache,
2409 struct frame_id *this_id)
2410 {
2411 struct hppa_stub_unwind_cache *info
2412 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2413
2414 if (info)
2415 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2416 else
2417 *this_id = null_frame_id;
2418 }
2419
2420 static struct value *
2421 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2422 void **this_prologue_cache, int regnum)
2423 {
2424 struct hppa_stub_unwind_cache *info
2425 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2426
2427 if (info == NULL)
2428 error (_("Requesting registers from null frame."));
2429
2430 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2431 }
2432
2433 static int
2434 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2435 struct frame_info *this_frame,
2436 void **this_cache)
2437 {
2438 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2439 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2440 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2441
2442 if (pc == 0
2443 || (tdep->in_solib_call_trampoline != NULL
2444 && tdep->in_solib_call_trampoline (pc, NULL))
2445 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2446 return 1;
2447 return 0;
2448 }
2449
2450 static const struct frame_unwind hppa_stub_frame_unwind = {
2451 NORMAL_FRAME,
2452 hppa_stub_frame_this_id,
2453 hppa_stub_frame_prev_register,
2454 NULL,
2455 hppa_stub_unwind_sniffer
2456 };
2457
2458 static struct frame_id
2459 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2460 {
2461 return frame_id_build (get_frame_register_unsigned (this_frame,
2462 HPPA_SP_REGNUM),
2463 get_frame_pc (this_frame));
2464 }
2465
2466 CORE_ADDR
2467 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2468 {
2469 ULONGEST ipsw;
2470 CORE_ADDR pc;
2471
2472 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2473 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2474
2475 /* If the current instruction is nullified, then we are effectively
2476 still executing the previous instruction. Pretend we are still
2477 there. This is needed when single stepping; if the nullified
2478 instruction is on a different line, we don't want GDB to think
2479 we've stepped onto that line. */
2480 if (ipsw & 0x00200000)
2481 pc -= 4;
2482
2483 return pc & ~0x3;
2484 }
2485
2486 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2487 Return NULL if no such symbol was found. */
2488
2489 struct minimal_symbol *
2490 hppa_lookup_stub_minimal_symbol (const char *name,
2491 enum unwind_stub_types stub_type)
2492 {
2493 struct objfile *objfile;
2494 struct minimal_symbol *msym;
2495
2496 ALL_MSYMBOLS (objfile, msym)
2497 {
2498 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2499 {
2500 struct unwind_table_entry *u;
2501
2502 u = find_unwind_entry (SYMBOL_VALUE (msym));
2503 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2504 return msym;
2505 }
2506 }
2507
2508 return NULL;
2509 }
2510
2511 static void
2512 unwind_command (char *exp, int from_tty)
2513 {
2514 CORE_ADDR address;
2515 struct unwind_table_entry *u;
2516
2517 /* If we have an expression, evaluate it and use it as the address. */
2518
2519 if (exp != 0 && *exp != 0)
2520 address = parse_and_eval_address (exp);
2521 else
2522 return;
2523
2524 u = find_unwind_entry (address);
2525
2526 if (!u)
2527 {
2528 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2529 return;
2530 }
2531
2532 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2533
2534 printf_unfiltered ("\tregion_start = ");
2535 print_address (u->region_start, gdb_stdout);
2536 gdb_flush (gdb_stdout);
2537
2538 printf_unfiltered ("\n\tregion_end = ");
2539 print_address (u->region_end, gdb_stdout);
2540 gdb_flush (gdb_stdout);
2541
2542 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2543
2544 printf_unfiltered ("\n\tflags =");
2545 pif (Cannot_unwind);
2546 pif (Millicode);
2547 pif (Millicode_save_sr0);
2548 pif (Entry_SR);
2549 pif (Args_stored);
2550 pif (Variable_Frame);
2551 pif (Separate_Package_Body);
2552 pif (Frame_Extension_Millicode);
2553 pif (Stack_Overflow_Check);
2554 pif (Two_Instruction_SP_Increment);
2555 pif (sr4export);
2556 pif (cxx_info);
2557 pif (cxx_try_catch);
2558 pif (sched_entry_seq);
2559 pif (Save_SP);
2560 pif (Save_RP);
2561 pif (Save_MRP_in_frame);
2562 pif (save_r19);
2563 pif (Cleanup_defined);
2564 pif (MPE_XL_interrupt_marker);
2565 pif (HP_UX_interrupt_marker);
2566 pif (Large_frame);
2567 pif (alloca_frame);
2568
2569 putchar_unfiltered ('\n');
2570
2571 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2572
2573 pin (Region_description);
2574 pin (Entry_FR);
2575 pin (Entry_GR);
2576 pin (Total_frame_size);
2577
2578 if (u->stub_unwind.stub_type)
2579 {
2580 printf_unfiltered ("\tstub type = ");
2581 switch (u->stub_unwind.stub_type)
2582 {
2583 case LONG_BRANCH:
2584 printf_unfiltered ("long branch\n");
2585 break;
2586 case PARAMETER_RELOCATION:
2587 printf_unfiltered ("parameter relocation\n");
2588 break;
2589 case EXPORT:
2590 printf_unfiltered ("export\n");
2591 break;
2592 case IMPORT:
2593 printf_unfiltered ("import\n");
2594 break;
2595 case IMPORT_SHLIB:
2596 printf_unfiltered ("import shlib\n");
2597 break;
2598 default:
2599 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2600 }
2601 }
2602 }
2603
2604 /* Return the GDB type object for the "standard" data type of data in
2605 register REGNUM. */
2606
2607 static struct type *
2608 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2609 {
2610 if (regnum < HPPA_FP4_REGNUM)
2611 return builtin_type_uint32;
2612 else
2613 return builtin_type_ieee_single;
2614 }
2615
2616 static struct type *
2617 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2618 {
2619 if (regnum < HPPA64_FP4_REGNUM)
2620 return builtin_type_uint64;
2621 else
2622 return builtin_type_ieee_double;
2623 }
2624
2625 /* Return non-zero if REGNUM is not a register available to the user
2626 through ptrace/ttrace. */
2627
2628 static int
2629 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2630 {
2631 return (regnum == 0
2632 || regnum == HPPA_PCSQ_HEAD_REGNUM
2633 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2634 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2635 }
2636
2637 static int
2638 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2639 {
2640 /* cr26 and cr27 are readable (but not writable) from userspace. */
2641 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2642 return 0;
2643 else
2644 return hppa32_cannot_store_register (gdbarch, regnum);
2645 }
2646
2647 static int
2648 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2649 {
2650 return (regnum == 0
2651 || regnum == HPPA_PCSQ_HEAD_REGNUM
2652 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2653 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2654 }
2655
2656 static int
2657 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2658 {
2659 /* cr26 and cr27 are readable (but not writable) from userspace. */
2660 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2661 return 0;
2662 else
2663 return hppa64_cannot_store_register (gdbarch, regnum);
2664 }
2665
2666 static CORE_ADDR
2667 hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr)
2668 {
2669 /* The low two bits of the PC on the PA contain the privilege level.
2670 Some genius implementing a (non-GCC) compiler apparently decided
2671 this means that "addresses" in a text section therefore include a
2672 privilege level, and thus symbol tables should contain these bits.
2673 This seems like a bonehead thing to do--anyway, it seems to work
2674 for our purposes to just ignore those bits. */
2675
2676 return (addr &= ~0x3);
2677 }
2678
2679 /* Get the ARGIth function argument for the current function. */
2680
2681 static CORE_ADDR
2682 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2683 struct type *type)
2684 {
2685 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2686 }
2687
2688 static void
2689 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2690 int regnum, gdb_byte *buf)
2691 {
2692 ULONGEST tmp;
2693
2694 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2695 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2696 tmp &= ~0x3;
2697 store_unsigned_integer (buf, sizeof tmp, tmp);
2698 }
2699
2700 static CORE_ADDR
2701 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2702 {
2703 return 0;
2704 }
2705
2706 struct value *
2707 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2708 struct trad_frame_saved_reg saved_regs[],
2709 int regnum)
2710 {
2711 struct gdbarch *arch = get_frame_arch (this_frame);
2712
2713 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2714 {
2715 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2716 CORE_ADDR pc;
2717 struct value *pcoq_val =
2718 trad_frame_get_prev_register (this_frame, saved_regs,
2719 HPPA_PCOQ_HEAD_REGNUM);
2720
2721 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2722 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2723 }
2724
2725 /* Make sure the "flags" register is zero in all unwound frames.
2726 The "flags" registers is a HP-UX specific wart, and only the code
2727 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2728 with it here. This shouldn't affect other systems since those
2729 should provide zero for the "flags" register anyway. */
2730 if (regnum == HPPA_FLAGS_REGNUM)
2731 return frame_unwind_got_constant (this_frame, regnum, 0);
2732
2733 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2734 }
2735 \f
2736
2737 /* An instruction to match. */
2738 struct insn_pattern
2739 {
2740 unsigned int data; /* See if it matches this.... */
2741 unsigned int mask; /* ... with this mask. */
2742 };
2743
2744 /* See bfd/elf32-hppa.c */
2745 static struct insn_pattern hppa_long_branch_stub[] = {
2746 /* ldil LR'xxx,%r1 */
2747 { 0x20200000, 0xffe00000 },
2748 /* be,n RR'xxx(%sr4,%r1) */
2749 { 0xe0202002, 0xffe02002 },
2750 { 0, 0 }
2751 };
2752
2753 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2754 /* b,l .+8, %r1 */
2755 { 0xe8200000, 0xffe00000 },
2756 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2757 { 0x28200000, 0xffe00000 },
2758 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2759 { 0xe0202002, 0xffe02002 },
2760 { 0, 0 }
2761 };
2762
2763 static struct insn_pattern hppa_import_stub[] = {
2764 /* addil LR'xxx, %dp */
2765 { 0x2b600000, 0xffe00000 },
2766 /* ldw RR'xxx(%r1), %r21 */
2767 { 0x48350000, 0xffffb000 },
2768 /* bv %r0(%r21) */
2769 { 0xeaa0c000, 0xffffffff },
2770 /* ldw RR'xxx+4(%r1), %r19 */
2771 { 0x48330000, 0xffffb000 },
2772 { 0, 0 }
2773 };
2774
2775 static struct insn_pattern hppa_import_pic_stub[] = {
2776 /* addil LR'xxx,%r19 */
2777 { 0x2a600000, 0xffe00000 },
2778 /* ldw RR'xxx(%r1),%r21 */
2779 { 0x48350000, 0xffffb000 },
2780 /* bv %r0(%r21) */
2781 { 0xeaa0c000, 0xffffffff },
2782 /* ldw RR'xxx+4(%r1),%r19 */
2783 { 0x48330000, 0xffffb000 },
2784 { 0, 0 },
2785 };
2786
2787 static struct insn_pattern hppa_plt_stub[] = {
2788 /* b,l 1b, %r20 - 1b is 3 insns before here */
2789 { 0xea9f1fdd, 0xffffffff },
2790 /* depi 0,31,2,%r20 */
2791 { 0xd6801c1e, 0xffffffff },
2792 { 0, 0 }
2793 };
2794
2795 static struct insn_pattern hppa_sigtramp[] = {
2796 /* ldi 0, %r25 or ldi 1, %r25 */
2797 { 0x34190000, 0xfffffffd },
2798 /* ldi __NR_rt_sigreturn, %r20 */
2799 { 0x3414015a, 0xffffffff },
2800 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2801 { 0xe4008200, 0xffffffff },
2802 /* nop */
2803 { 0x08000240, 0xffffffff },
2804 { 0, 0 }
2805 };
2806
2807 /* Maximum number of instructions on the patterns above. */
2808 #define HPPA_MAX_INSN_PATTERN_LEN 4
2809
2810 /* Return non-zero if the instructions at PC match the series
2811 described in PATTERN, or zero otherwise. PATTERN is an array of
2812 'struct insn_pattern' objects, terminated by an entry whose mask is
2813 zero.
2814
2815 When the match is successful, fill INSN[i] with what PATTERN[i]
2816 matched. */
2817
2818 static int
2819 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2820 unsigned int *insn)
2821 {
2822 CORE_ADDR npc = pc;
2823 int i;
2824
2825 for (i = 0; pattern[i].mask; i++)
2826 {
2827 gdb_byte buf[HPPA_INSN_SIZE];
2828
2829 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2830 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2831 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2832 npc += 4;
2833 else
2834 return 0;
2835 }
2836
2837 return 1;
2838 }
2839
2840 /* This relaxed version of the insstruction matcher allows us to match
2841 from somewhere inside the pattern, by looking backwards in the
2842 instruction scheme. */
2843
2844 static int
2845 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2846 unsigned int *insn)
2847 {
2848 int offset, len = 0;
2849
2850 while (pattern[len].mask)
2851 len++;
2852
2853 for (offset = 0; offset < len; offset++)
2854 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2855 return 1;
2856
2857 return 0;
2858 }
2859
2860 static int
2861 hppa_in_dyncall (CORE_ADDR pc)
2862 {
2863 struct unwind_table_entry *u;
2864
2865 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2866 if (!u)
2867 return 0;
2868
2869 return (pc >= u->region_start && pc <= u->region_end);
2870 }
2871
2872 int
2873 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2874 {
2875 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2876 struct unwind_table_entry *u;
2877
2878 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2879 return 1;
2880
2881 /* The GNU toolchain produces linker stubs without unwind
2882 information. Since the pattern matching for linker stubs can be
2883 quite slow, so bail out if we do have an unwind entry. */
2884
2885 u = find_unwind_entry (pc);
2886 if (u != NULL)
2887 return 0;
2888
2889 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2890 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2891 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2892 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2893 }
2894
2895 /* This code skips several kind of "trampolines" used on PA-RISC
2896 systems: $$dyncall, import stubs and PLT stubs. */
2897
2898 CORE_ADDR
2899 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2900 {
2901 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2902 int dp_rel;
2903
2904 /* $$dyncall handles both PLABELs and direct addresses. */
2905 if (hppa_in_dyncall (pc))
2906 {
2907 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2908
2909 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2910 if (pc & 0x2)
2911 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2912
2913 return pc;
2914 }
2915
2916 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2917 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2918 {
2919 /* Extract the target address from the addil/ldw sequence. */
2920 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2921
2922 if (dp_rel)
2923 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2924 else
2925 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2926
2927 /* fallthrough */
2928 }
2929
2930 if (in_plt_section (pc, NULL))
2931 {
2932 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2933
2934 /* If the PLT slot has not yet been resolved, the target will be
2935 the PLT stub. */
2936 if (in_plt_section (pc, NULL))
2937 {
2938 /* Sanity check: are we pointing to the PLT stub? */
2939 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2940 {
2941 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2942 return 0;
2943 }
2944
2945 /* This should point to the fixup routine. */
2946 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2947 }
2948 }
2949
2950 return pc;
2951 }
2952 \f
2953
2954 /* Here is a table of C type sizes on hppa with various compiles
2955 and options. I measured this on PA 9000/800 with HP-UX 11.11
2956 and these compilers:
2957
2958 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2959 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2960 /opt/aCC/bin/aCC B3910B A.03.45
2961 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2962
2963 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2964 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2965 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2966 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2967 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2968 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2969 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2970 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2971
2972 Each line is:
2973
2974 compiler and options
2975 char, short, int, long, long long
2976 float, double, long double
2977 char *, void (*)()
2978
2979 So all these compilers use either ILP32 or LP64 model.
2980 TODO: gcc has more options so it needs more investigation.
2981
2982 For floating point types, see:
2983
2984 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2985 HP-UX floating-point guide, hpux 11.00
2986
2987 -- chastain 2003-12-18 */
2988
2989 static struct gdbarch *
2990 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2991 {
2992 struct gdbarch_tdep *tdep;
2993 struct gdbarch *gdbarch;
2994
2995 /* Try to determine the ABI of the object we are loading. */
2996 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2997 {
2998 /* If it's a SOM file, assume it's HP/UX SOM. */
2999 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3000 info.osabi = GDB_OSABI_HPUX_SOM;
3001 }
3002
3003 /* find a candidate among the list of pre-declared architectures. */
3004 arches = gdbarch_list_lookup_by_info (arches, &info);
3005 if (arches != NULL)
3006 return (arches->gdbarch);
3007
3008 /* If none found, then allocate and initialize one. */
3009 tdep = XZALLOC (struct gdbarch_tdep);
3010 gdbarch = gdbarch_alloc (&info, tdep);
3011
3012 /* Determine from the bfd_arch_info structure if we are dealing with
3013 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3014 then default to a 32bit machine. */
3015 if (info.bfd_arch_info != NULL)
3016 tdep->bytes_per_address =
3017 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3018 else
3019 tdep->bytes_per_address = 4;
3020
3021 tdep->find_global_pointer = hppa_find_global_pointer;
3022
3023 /* Some parts of the gdbarch vector depend on whether we are running
3024 on a 32 bits or 64 bits target. */
3025 switch (tdep->bytes_per_address)
3026 {
3027 case 4:
3028 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3029 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3030 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3031 set_gdbarch_cannot_store_register (gdbarch,
3032 hppa32_cannot_store_register);
3033 set_gdbarch_cannot_fetch_register (gdbarch,
3034 hppa32_cannot_fetch_register);
3035 break;
3036 case 8:
3037 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3038 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3039 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3040 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3041 set_gdbarch_cannot_store_register (gdbarch,
3042 hppa64_cannot_store_register);
3043 set_gdbarch_cannot_fetch_register (gdbarch,
3044 hppa64_cannot_fetch_register);
3045 break;
3046 default:
3047 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3048 tdep->bytes_per_address);
3049 }
3050
3051 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3052 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3053
3054 /* The following gdbarch vector elements are the same in both ILP32
3055 and LP64, but might show differences some day. */
3056 set_gdbarch_long_long_bit (gdbarch, 64);
3057 set_gdbarch_long_double_bit (gdbarch, 128);
3058 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3059
3060 /* The following gdbarch vector elements do not depend on the address
3061 size, or in any other gdbarch element previously set. */
3062 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3063 set_gdbarch_in_function_epilogue_p (gdbarch,
3064 hppa_in_function_epilogue_p);
3065 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3066 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3067 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3068 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3069 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3070 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3071 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3072 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3073
3074 /* Helper for function argument information. */
3075 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3076
3077 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3078
3079 /* When a hardware watchpoint triggers, we'll move the inferior past
3080 it by removing all eventpoints; stepping past the instruction
3081 that caused the trigger; reinserting eventpoints; and checking
3082 whether any watched location changed. */
3083 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3084
3085 /* Inferior function call methods. */
3086 switch (tdep->bytes_per_address)
3087 {
3088 case 4:
3089 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3090 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3091 set_gdbarch_convert_from_func_ptr_addr
3092 (gdbarch, hppa32_convert_from_func_ptr_addr);
3093 break;
3094 case 8:
3095 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3096 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3097 break;
3098 default:
3099 internal_error (__FILE__, __LINE__, _("bad switch"));
3100 }
3101
3102 /* Struct return methods. */
3103 switch (tdep->bytes_per_address)
3104 {
3105 case 4:
3106 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3107 break;
3108 case 8:
3109 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3110 break;
3111 default:
3112 internal_error (__FILE__, __LINE__, _("bad switch"));
3113 }
3114
3115 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3116 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3117
3118 /* Frame unwind methods. */
3119 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3120 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3121
3122 /* Hook in ABI-specific overrides, if they have been registered. */
3123 gdbarch_init_osabi (info, gdbarch);
3124
3125 /* Hook in the default unwinders. */
3126 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3127 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3128 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3129
3130 return gdbarch;
3131 }
3132
3133 static void
3134 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3135 {
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3139 tdep->bytes_per_address);
3140 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3141 }
3142
3143 void
3144 _initialize_hppa_tdep (void)
3145 {
3146 struct cmd_list_element *c;
3147
3148 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3149
3150 hppa_objfile_priv_data = register_objfile_data ();
3151
3152 add_cmd ("unwind", class_maintenance, unwind_command,
3153 _("Print unwind table entry at given address."),
3154 &maintenanceprintlist);
3155
3156 /* Debug this files internals. */
3157 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3158 Set whether hppa target specific debugging information should be displayed."),
3159 _("\
3160 Show whether hppa target specific debugging information is displayed."), _("\
3161 This flag controls whether hppa target specific debugging information is\n\
3162 displayed. This information is particularly useful for debugging frame\n\
3163 unwinding problems."),
3164 NULL,
3165 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3166 &setdebuglist, &showdebuglist);
3167 }