Various changes to support building shared lib{g,stdc}++
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39
40 #ifdef COFF_ENCAPSULATE
41 #include "a.out.encap.h"
42 #else
43 #endif
44 #ifndef N_SET_MAGIC
45 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
46 #endif
47
48 /*#include <sys/user.h> After a.out.h */
49 #include <sys/file.h>
50 #include <sys/stat.h>
51 #include "wait.h"
52
53 #include "gdbcore.h"
54 #include "gdbcmd.h"
55 #include "target.h"
56 #include "symfile.h"
57 #include "objfiles.h"
58
59 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60
61 static int hppa_alignof PARAMS ((struct type *));
62
63 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66
67 static int is_branch PARAMS ((unsigned long));
68
69 static int inst_saves_gr PARAMS ((unsigned long));
70
71 static int inst_saves_fr PARAMS ((unsigned long));
72
73 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
74
75 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
76
77 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
78 const struct unwind_table_entry *));
79
80 static void read_unwind_info PARAMS ((struct objfile *));
81
82 static void internalize_unwinds PARAMS ((struct objfile *,
83 struct unwind_table_entry *,
84 asection *, unsigned int,
85 unsigned int));
86
87 \f
88 /* Routines to extract various sized constants out of hppa
89 instructions. */
90
91 /* This assumes that no garbage lies outside of the lower bits of
92 value. */
93
94 int
95 sign_extend (val, bits)
96 unsigned val, bits;
97 {
98 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
99 }
100
101 /* For many immediate values the sign bit is the low bit! */
102
103 int
104 low_sign_extend (val, bits)
105 unsigned val, bits;
106 {
107 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
108 }
109 /* extract the immediate field from a ld{bhw}s instruction */
110
111 unsigned
112 get_field (val, from, to)
113 unsigned val, from, to;
114 {
115 val = val >> 31 - to;
116 return val & ((1 << 32 - from) - 1);
117 }
118
119 unsigned
120 set_field (val, from, to, new_val)
121 unsigned *val, from, to;
122 {
123 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
124 return *val = *val & mask | (new_val << (31 - from));
125 }
126
127 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
128
129 extract_3 (word)
130 unsigned word;
131 {
132 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
133 }
134
135 extract_5_load (word)
136 unsigned word;
137 {
138 return low_sign_extend (word >> 16 & MASK_5, 5);
139 }
140
141 /* extract the immediate field from a st{bhw}s instruction */
142
143 int
144 extract_5_store (word)
145 unsigned word;
146 {
147 return low_sign_extend (word & MASK_5, 5);
148 }
149
150 /* extract the immediate field from a break instruction */
151
152 unsigned
153 extract_5r_store (word)
154 unsigned word;
155 {
156 return (word & MASK_5);
157 }
158
159 /* extract the immediate field from a {sr}sm instruction */
160
161 unsigned
162 extract_5R_store (word)
163 unsigned word;
164 {
165 return (word >> 16 & MASK_5);
166 }
167
168 /* extract an 11 bit immediate field */
169
170 int
171 extract_11 (word)
172 unsigned word;
173 {
174 return low_sign_extend (word & MASK_11, 11);
175 }
176
177 /* extract a 14 bit immediate field */
178
179 int
180 extract_14 (word)
181 unsigned word;
182 {
183 return low_sign_extend (word & MASK_14, 14);
184 }
185
186 /* deposit a 14 bit constant in a word */
187
188 unsigned
189 deposit_14 (opnd, word)
190 int opnd;
191 unsigned word;
192 {
193 unsigned sign = (opnd < 0 ? 1 : 0);
194
195 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
196 }
197
198 /* extract a 21 bit constant */
199
200 int
201 extract_21 (word)
202 unsigned word;
203 {
204 int val;
205
206 word &= MASK_21;
207 word <<= 11;
208 val = GET_FIELD (word, 20, 20);
209 val <<= 11;
210 val |= GET_FIELD (word, 9, 19);
211 val <<= 2;
212 val |= GET_FIELD (word, 5, 6);
213 val <<= 5;
214 val |= GET_FIELD (word, 0, 4);
215 val <<= 2;
216 val |= GET_FIELD (word, 7, 8);
217 return sign_extend (val, 21) << 11;
218 }
219
220 /* deposit a 21 bit constant in a word. Although 21 bit constants are
221 usually the top 21 bits of a 32 bit constant, we assume that only
222 the low 21 bits of opnd are relevant */
223
224 unsigned
225 deposit_21 (opnd, word)
226 unsigned opnd, word;
227 {
228 unsigned val = 0;
229
230 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
231 val <<= 2;
232 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
233 val <<= 2;
234 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
235 val <<= 11;
236 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
237 val <<= 1;
238 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
239 return word | val;
240 }
241
242 /* extract a 12 bit constant from branch instructions */
243
244 int
245 extract_12 (word)
246 unsigned word;
247 {
248 return sign_extend (GET_FIELD (word, 19, 28) |
249 GET_FIELD (word, 29, 29) << 10 |
250 (word & 0x1) << 11, 12) << 2;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 extract_17 (word)
258 unsigned word;
259 {
260 return sign_extend (GET_FIELD (word, 19, 28) |
261 GET_FIELD (word, 29, 29) << 10 |
262 GET_FIELD (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265 \f
266
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271 static int
272 compare_unwind_entries (a, b)
273 const struct unwind_table_entry *a;
274 const struct unwind_table_entry *b;
275 {
276 if (a->region_start > b->region_start)
277 return 1;
278 else if (a->region_start < b->region_start)
279 return -1;
280 else
281 return 0;
282 }
283
284 static void
285 internalize_unwinds (objfile, table, section, entries, size)
286 struct objfile *objfile;
287 struct unwind_table_entry *table;
288 asection *section;
289 unsigned int entries, size;
290 {
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
307 buf += 4;
308 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
309 buf += 4;
310 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
311 buf += 4;
312 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
313 table[i].Millicode = (tmp >> 30) & 0x1;
314 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
315 table[i].Region_description = (tmp >> 27) & 0x3;
316 table[i].reserved1 = (tmp >> 26) & 0x1;
317 table[i].Entry_SR = (tmp >> 25) & 0x1;
318 table[i].Entry_FR = (tmp >> 21) & 0xf;
319 table[i].Entry_GR = (tmp >> 16) & 0x1f;
320 table[i].Args_stored = (tmp >> 15) & 0x1;
321 table[i].Variable_Frame = (tmp >> 14) & 0x1;
322 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
323 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
324 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
325 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
326 table[i].Ada_Region = (tmp >> 9) & 0x1;
327 table[i].reserved2 = (tmp >> 5) & 0xf;
328 table[i].Save_SP = (tmp >> 4) & 0x1;
329 table[i].Save_RP = (tmp >> 3) & 0x1;
330 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
331 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
332 table[i].Cleanup_defined = tmp & 0x1;
333 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
334 buf += 4;
335 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
336 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
337 table[i].Large_frame = (tmp >> 29) & 0x1;
338 table[i].reserved4 = (tmp >> 27) & 0x3;
339 table[i].Total_frame_size = tmp & 0x7ffffff;
340 }
341 }
342 }
343
344 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
349
350 static void
351 read_unwind_info (objfile)
352 struct objfile *objfile;
353 {
354 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
355 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
356 unsigned index, unwind_entries, elf_unwind_entries;
357 unsigned stub_entries, total_entries;
358 struct obj_unwind_info *ui;
359
360 ui = obstack_alloc (&objfile->psymbol_obstack,
361 sizeof (struct obj_unwind_info));
362
363 ui->table = NULL;
364 ui->cache = NULL;
365 ui->last = -1;
366
367 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
368 section in ELF at the moment. */
369 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
370 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
371 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
372
373 /* Get sizes and unwind counts for all sections. */
374 if (unwind_sec)
375 {
376 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
377 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
378 }
379 else
380 {
381 unwind_size = 0;
382 unwind_entries = 0;
383 }
384
385 if (elf_unwind_sec)
386 {
387 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
388 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
389 }
390 else
391 {
392 elf_unwind_size = 0;
393 elf_unwind_entries = 0;
394 }
395
396 if (stub_unwind_sec)
397 {
398 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
399 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
400 }
401 else
402 {
403 stub_unwind_size = 0;
404 stub_entries = 0;
405 }
406
407 /* Compute total number of unwind entries and their total size. */
408 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
409 total_size = total_entries * sizeof (struct unwind_table_entry);
410
411 /* Allocate memory for the unwind table. */
412 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
413 ui->last = total_entries - 1;
414
415 /* Internalize the standard unwind entries. */
416 index = 0;
417 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
418 unwind_entries, unwind_size);
419 index += unwind_entries;
420 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
421 elf_unwind_entries, elf_unwind_size);
422 index += elf_unwind_entries;
423
424 /* Now internalize the stub unwind entries. */
425 if (stub_unwind_size > 0)
426 {
427 unsigned int i;
428 char *buf = alloca (stub_unwind_size);
429
430 /* Read in the stub unwind entries. */
431 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
432 0, stub_unwind_size);
433
434 /* Now convert them into regular unwind entries. */
435 for (i = 0; i < stub_entries; i++, index++)
436 {
437 /* Clear out the next unwind entry. */
438 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
439
440 /* Convert offset & size into region_start and region_end.
441 Stuff away the stub type into "reserved" fields. */
442 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
443 (bfd_byte *) buf);
444 buf += 4;
445 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
446 (bfd_byte *) buf);
447 buf += 2;
448 ui->table[index].region_end
449 = ui->table[index].region_start + 4 *
450 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
451 buf += 2;
452 }
453
454 }
455
456 /* Unwind table needs to be kept sorted. */
457 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
458 compare_unwind_entries);
459
460 /* Keep a pointer to the unwind information. */
461 objfile->obj_private = (PTR) ui;
462 }
463
464 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
465 of the objfiles seeking the unwind table entry for this PC. Each objfile
466 contains a sorted list of struct unwind_table_entry. Since we do a binary
467 search of the unwind tables, we depend upon them to be sorted. */
468
469 static struct unwind_table_entry *
470 find_unwind_entry(pc)
471 CORE_ADDR pc;
472 {
473 int first, middle, last;
474 struct objfile *objfile;
475
476 ALL_OBJFILES (objfile)
477 {
478 struct obj_unwind_info *ui;
479
480 ui = OBJ_UNWIND_INFO (objfile);
481
482 if (!ui)
483 {
484 read_unwind_info (objfile);
485 ui = OBJ_UNWIND_INFO (objfile);
486 }
487
488 /* First, check the cache */
489
490 if (ui->cache
491 && pc >= ui->cache->region_start
492 && pc <= ui->cache->region_end)
493 return ui->cache;
494
495 /* Not in the cache, do a binary search */
496
497 first = 0;
498 last = ui->last;
499
500 while (first <= last)
501 {
502 middle = (first + last) / 2;
503 if (pc >= ui->table[middle].region_start
504 && pc <= ui->table[middle].region_end)
505 {
506 ui->cache = &ui->table[middle];
507 return &ui->table[middle];
508 }
509
510 if (pc < ui->table[middle].region_start)
511 last = middle - 1;
512 else
513 first = middle + 1;
514 }
515 } /* ALL_OBJFILES() */
516 return NULL;
517 }
518
519 /* start-sanitize-hpread */
520 /* Return the adjustment necessary to make for addresses on the stack
521 as presented by hpread.c.
522
523 This is necessary because of the stack direction on the PA and the
524 bizarre way in which someone (?) decided they wanted to handle
525 frame pointerless code in GDB. */
526 int
527 hpread_adjust_stack_address (func_addr)
528 CORE_ADDR func_addr;
529 {
530 struct unwind_table_entry *u;
531
532 u = find_unwind_entry (func_addr);
533 if (!u)
534 return 0;
535 else
536 return u->Total_frame_size << 3;
537 }
538 /* end-sanitize-hpread */
539
540 /* Called to determine if PC is in an interrupt handler of some
541 kind. */
542
543 static int
544 pc_in_interrupt_handler (pc)
545 CORE_ADDR pc;
546 {
547 struct unwind_table_entry *u;
548 struct minimal_symbol *msym_us;
549
550 u = find_unwind_entry (pc);
551 if (!u)
552 return 0;
553
554 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
555 its frame isn't a pure interrupt frame. Deal with this. */
556 msym_us = lookup_minimal_symbol_by_pc (pc);
557
558 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
559 }
560
561 /* Called when no unwind descriptor was found for PC. Returns 1 if it
562 appears that PC is in a linker stub. */
563
564 static int
565 pc_in_linker_stub (pc)
566 CORE_ADDR pc;
567 {
568 int found_magic_instruction = 0;
569 int i;
570 char buf[4];
571
572 /* If unable to read memory, assume pc is not in a linker stub. */
573 if (target_read_memory (pc, buf, 4) != 0)
574 return 0;
575
576 /* We are looking for something like
577
578 ; $$dyncall jams RP into this special spot in the frame (RP')
579 ; before calling the "call stub"
580 ldw -18(sp),rp
581
582 ldsid (rp),r1 ; Get space associated with RP into r1
583 mtsp r1,sp ; Move it into space register 0
584 be,n 0(sr0),rp) ; back to your regularly scheduled program
585 */
586
587 /* Maximum known linker stub size is 4 instructions. Search forward
588 from the given PC, then backward. */
589 for (i = 0; i < 4; i++)
590 {
591 /* If we hit something with an unwind, stop searching this direction. */
592
593 if (find_unwind_entry (pc + i * 4) != 0)
594 break;
595
596 /* Check for ldsid (rp),r1 which is the magic instruction for a
597 return from a cross-space function call. */
598 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
599 {
600 found_magic_instruction = 1;
601 break;
602 }
603 /* Add code to handle long call/branch and argument relocation stubs
604 here. */
605 }
606
607 if (found_magic_instruction != 0)
608 return 1;
609
610 /* Now look backward. */
611 for (i = 0; i < 4; i++)
612 {
613 /* If we hit something with an unwind, stop searching this direction. */
614
615 if (find_unwind_entry (pc - i * 4) != 0)
616 break;
617
618 /* Check for ldsid (rp),r1 which is the magic instruction for a
619 return from a cross-space function call. */
620 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
621 {
622 found_magic_instruction = 1;
623 break;
624 }
625 /* Add code to handle long call/branch and argument relocation stubs
626 here. */
627 }
628 return found_magic_instruction;
629 }
630
631 static int
632 find_return_regnum(pc)
633 CORE_ADDR pc;
634 {
635 struct unwind_table_entry *u;
636
637 u = find_unwind_entry (pc);
638
639 if (!u)
640 return RP_REGNUM;
641
642 if (u->Millicode)
643 return 31;
644
645 return RP_REGNUM;
646 }
647
648 /* Return size of frame, or -1 if we should use a frame pointer. */
649 int
650 find_proc_framesize (pc)
651 CORE_ADDR pc;
652 {
653 struct unwind_table_entry *u;
654 struct minimal_symbol *msym_us;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 {
660 if (pc_in_linker_stub (pc))
661 /* Linker stubs have a zero size frame. */
662 return 0;
663 else
664 return -1;
665 }
666
667 msym_us = lookup_minimal_symbol_by_pc (pc);
668
669 /* If Save_SP is set, and we're not in an interrupt or signal caller,
670 then we have a frame pointer. Use it. */
671 if (u->Save_SP && !pc_in_interrupt_handler (pc)
672 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
673 return -1;
674
675 return u->Total_frame_size << 3;
676 }
677
678 /* Return offset from sp at which rp is saved, or 0 if not saved. */
679 static int rp_saved PARAMS ((CORE_ADDR));
680
681 static int
682 rp_saved (pc)
683 CORE_ADDR pc;
684 {
685 struct unwind_table_entry *u;
686
687 u = find_unwind_entry (pc);
688
689 if (!u)
690 {
691 if (pc_in_linker_stub (pc))
692 /* This is the so-called RP'. */
693 return -24;
694 else
695 return 0;
696 }
697
698 if (u->Save_RP)
699 return -20;
700 else if (u->stub_type != 0)
701 {
702 switch (u->stub_type)
703 {
704 case EXPORT:
705 return -24;
706 case PARAMETER_RELOCATION:
707 return -8;
708 default:
709 return 0;
710 }
711 }
712 else
713 return 0;
714 }
715 \f
716 int
717 frameless_function_invocation (frame)
718 struct frame_info *frame;
719 {
720 struct unwind_table_entry *u;
721
722 u = find_unwind_entry (frame->pc);
723
724 if (u == 0)
725 return 0;
726
727 return (u->Total_frame_size == 0 && u->stub_type == 0);
728 }
729
730 CORE_ADDR
731 saved_pc_after_call (frame)
732 struct frame_info *frame;
733 {
734 int ret_regnum;
735 CORE_ADDR pc;
736 struct unwind_table_entry *u;
737
738 ret_regnum = find_return_regnum (get_frame_pc (frame));
739 pc = read_register (ret_regnum) & ~0x3;
740
741 /* If PC is in a linker stub, then we need to dig the address
742 the stub will return to out of the stack. */
743 u = find_unwind_entry (pc);
744 if (u && u->stub_type != 0)
745 return frame_saved_pc (frame);
746 else
747 return pc;
748 }
749 \f
750 CORE_ADDR
751 frame_saved_pc (frame)
752 struct frame_info *frame;
753 {
754 CORE_ADDR pc = get_frame_pc (frame);
755 struct unwind_table_entry *u;
756
757 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
758 at the base of the frame in an interrupt handler. Registers within
759 are saved in the exact same order as GDB numbers registers. How
760 convienent. */
761 if (pc_in_interrupt_handler (pc))
762 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
763
764 /* Deal with signal handler caller frames too. */
765 if (frame->signal_handler_caller)
766 {
767 CORE_ADDR rp;
768 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
769 return rp & ~0x3;
770 }
771
772 if (frameless_function_invocation (frame))
773 {
774 int ret_regnum;
775
776 ret_regnum = find_return_regnum (pc);
777
778 /* If the next frame is an interrupt frame or a signal
779 handler caller, then we need to look in the saved
780 register area to get the return pointer (the values
781 in the registers may not correspond to anything useful). */
782 if (frame->next
783 && (frame->next->signal_handler_caller
784 || pc_in_interrupt_handler (frame->next->pc)))
785 {
786 struct frame_saved_regs saved_regs;
787
788 get_frame_saved_regs (frame->next, &saved_regs);
789 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
790 {
791 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
792
793 /* Syscalls are really two frames. The syscall stub itself
794 with a return pointer in %rp and the kernel call with
795 a return pointer in %r31. We return the %rp variant
796 if %r31 is the same as frame->pc. */
797 if (pc == frame->pc)
798 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
799 }
800 else
801 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
802 }
803 else
804 pc = read_register (ret_regnum) & ~0x3;
805 }
806 else
807 {
808 int rp_offset;
809
810 restart:
811 rp_offset = rp_saved (pc);
812 /* Similar to code in frameless function case. If the next
813 frame is a signal or interrupt handler, then dig the right
814 information out of the saved register info. */
815 if (rp_offset == 0
816 && frame->next
817 && (frame->next->signal_handler_caller
818 || pc_in_interrupt_handler (frame->next->pc)))
819 {
820 struct frame_saved_regs saved_regs;
821
822 get_frame_saved_regs (frame->next, &saved_regs);
823 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
824 {
825 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
826
827 /* Syscalls are really two frames. The syscall stub itself
828 with a return pointer in %rp and the kernel call with
829 a return pointer in %r31. We return the %rp variant
830 if %r31 is the same as frame->pc. */
831 if (pc == frame->pc)
832 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
833 }
834 else
835 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
836 }
837 else if (rp_offset == 0)
838 pc = read_register (RP_REGNUM) & ~0x3;
839 else
840 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
841 }
842
843 /* If PC is inside a linker stub, then dig out the address the stub
844 will return to. */
845 u = find_unwind_entry (pc);
846 if (u && u->stub_type != 0)
847 goto restart;
848
849 return pc;
850 }
851 \f
852 /* We need to correct the PC and the FP for the outermost frame when we are
853 in a system call. */
854
855 void
856 init_extra_frame_info (fromleaf, frame)
857 int fromleaf;
858 struct frame_info *frame;
859 {
860 int flags;
861 int framesize;
862
863 if (frame->next && !fromleaf)
864 return;
865
866 /* If the next frame represents a frameless function invocation
867 then we have to do some adjustments that are normally done by
868 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
869 if (fromleaf)
870 {
871 /* Find the framesize of *this* frame without peeking at the PC
872 in the current frame structure (it isn't set yet). */
873 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
874
875 /* Now adjust our base frame accordingly. If we have a frame pointer
876 use it, else subtract the size of this frame from the current
877 frame. (we always want frame->frame to point at the lowest address
878 in the frame). */
879 if (framesize == -1)
880 frame->frame = read_register (FP_REGNUM);
881 else
882 frame->frame -= framesize;
883 return;
884 }
885
886 flags = read_register (FLAGS_REGNUM);
887 if (flags & 2) /* In system call? */
888 frame->pc = read_register (31) & ~0x3;
889
890 /* The outermost frame is always derived from PC-framesize
891
892 One might think frameless innermost frames should have
893 a frame->frame that is the same as the parent's frame->frame.
894 That is wrong; frame->frame in that case should be the *high*
895 address of the parent's frame. It's complicated as hell to
896 explain, but the parent *always* creates some stack space for
897 the child. So the child actually does have a frame of some
898 sorts, and its base is the high address in its parent's frame. */
899 framesize = find_proc_framesize(frame->pc);
900 if (framesize == -1)
901 frame->frame = read_register (FP_REGNUM);
902 else
903 frame->frame = read_register (SP_REGNUM) - framesize;
904 }
905 \f
906 /* Given a GDB frame, determine the address of the calling function's frame.
907 This will be used to create a new GDB frame struct, and then
908 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
909
910 This may involve searching through prologues for several functions
911 at boundaries where GCC calls HP C code, or where code which has
912 a frame pointer calls code without a frame pointer. */
913
914 CORE_ADDR
915 frame_chain (frame)
916 struct frame_info *frame;
917 {
918 int my_framesize, caller_framesize;
919 struct unwind_table_entry *u;
920 CORE_ADDR frame_base;
921
922 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
923 are easy; at *sp we have a full save state strucutre which we can
924 pull the old stack pointer from. Also see frame_saved_pc for
925 code to dig a saved PC out of the save state structure. */
926 if (pc_in_interrupt_handler (frame->pc))
927 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
928 else if (frame->signal_handler_caller)
929 {
930 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
931 }
932 else
933 frame_base = frame->frame;
934
935 /* Get frame sizes for the current frame and the frame of the
936 caller. */
937 my_framesize = find_proc_framesize (frame->pc);
938 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
939
940 /* If caller does not have a frame pointer, then its frame
941 can be found at current_frame - caller_framesize. */
942 if (caller_framesize != -1)
943 return frame_base - caller_framesize;
944
945 /* Both caller and callee have frame pointers and are GCC compiled
946 (SAVE_SP bit in unwind descriptor is on for both functions.
947 The previous frame pointer is found at the top of the current frame. */
948 if (caller_framesize == -1 && my_framesize == -1)
949 return read_memory_integer (frame_base, 4);
950
951 /* Caller has a frame pointer, but callee does not. This is a little
952 more difficult as GCC and HP C lay out locals and callee register save
953 areas very differently.
954
955 The previous frame pointer could be in a register, or in one of
956 several areas on the stack.
957
958 Walk from the current frame to the innermost frame examining
959 unwind descriptors to determine if %r3 ever gets saved into the
960 stack. If so return whatever value got saved into the stack.
961 If it was never saved in the stack, then the value in %r3 is still
962 valid, so use it.
963
964 We use information from unwind descriptors to determine if %r3
965 is saved into the stack (Entry_GR field has this information). */
966
967 while (frame)
968 {
969 u = find_unwind_entry (frame->pc);
970
971 if (!u)
972 {
973 /* We could find this information by examining prologues. I don't
974 think anyone has actually written any tools (not even "strip")
975 which leave them out of an executable, so maybe this is a moot
976 point. */
977 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
978 return 0;
979 }
980
981 /* Entry_GR specifies the number of callee-saved general registers
982 saved in the stack. It starts at %r3, so %r3 would be 1. */
983 if (u->Entry_GR >= 1 || u->Save_SP
984 || frame->signal_handler_caller
985 || pc_in_interrupt_handler (frame->pc))
986 break;
987 else
988 frame = frame->next;
989 }
990
991 if (frame)
992 {
993 /* We may have walked down the chain into a function with a frame
994 pointer. */
995 if (u->Save_SP
996 && !frame->signal_handler_caller
997 && !pc_in_interrupt_handler (frame->pc))
998 return read_memory_integer (frame->frame, 4);
999 /* %r3 was saved somewhere in the stack. Dig it out. */
1000 else
1001 {
1002 struct frame_saved_regs saved_regs;
1003
1004 get_frame_saved_regs (frame, &saved_regs);
1005 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1006 }
1007 }
1008 else
1009 {
1010 /* The value in %r3 was never saved into the stack (thus %r3 still
1011 holds the value of the previous frame pointer). */
1012 return read_register (FP_REGNUM);
1013 }
1014 }
1015
1016 \f
1017 /* To see if a frame chain is valid, see if the caller looks like it
1018 was compiled with gcc. */
1019
1020 int
1021 frame_chain_valid (chain, thisframe)
1022 CORE_ADDR chain;
1023 struct frame_info *thisframe;
1024 {
1025 struct minimal_symbol *msym_us;
1026 struct minimal_symbol *msym_start;
1027 struct unwind_table_entry *u, *next_u = NULL;
1028 struct frame_info *next;
1029
1030 if (!chain)
1031 return 0;
1032
1033 u = find_unwind_entry (thisframe->pc);
1034
1035 if (u == NULL)
1036 return 1;
1037
1038 /* We can't just check that the same of msym_us is "_start", because
1039 someone idiotically decided that they were going to make a Ltext_end
1040 symbol with the same address. This Ltext_end symbol is totally
1041 indistinguishable (as nearly as I can tell) from the symbol for a function
1042 which is (legitimately, since it is in the user's namespace)
1043 named Ltext_end, so we can't just ignore it. */
1044 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1045 msym_start = lookup_minimal_symbol ("_start", NULL);
1046 if (msym_us
1047 && msym_start
1048 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1049 return 0;
1050
1051 next = get_next_frame (thisframe);
1052 if (next)
1053 next_u = find_unwind_entry (next->pc);
1054
1055 /* If this frame does not save SP, has no stack, isn't a stub,
1056 and doesn't "call" an interrupt routine or signal handler caller,
1057 then its not valid. */
1058 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1059 || (thisframe->next && thisframe->next->signal_handler_caller)
1060 || (next_u && next_u->HP_UX_interrupt_marker))
1061 return 1;
1062
1063 if (pc_in_linker_stub (thisframe->pc))
1064 return 1;
1065
1066 return 0;
1067 }
1068
1069 /*
1070 * These functions deal with saving and restoring register state
1071 * around a function call in the inferior. They keep the stack
1072 * double-word aligned; eventually, on an hp700, the stack will have
1073 * to be aligned to a 64-byte boundary.
1074 */
1075
1076 int
1077 push_dummy_frame ()
1078 {
1079 register CORE_ADDR sp;
1080 register int regnum;
1081 int int_buffer;
1082 double freg_buffer;
1083
1084 /* Space for "arguments"; the RP goes in here. */
1085 sp = read_register (SP_REGNUM) + 48;
1086 int_buffer = read_register (RP_REGNUM) | 0x3;
1087 write_memory (sp - 20, (char *)&int_buffer, 4);
1088
1089 int_buffer = read_register (FP_REGNUM);
1090 write_memory (sp, (char *)&int_buffer, 4);
1091
1092 write_register (FP_REGNUM, sp);
1093
1094 sp += 8;
1095
1096 for (regnum = 1; regnum < 32; regnum++)
1097 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1098 sp = push_word (sp, read_register (regnum));
1099
1100 sp += 4;
1101
1102 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1103 {
1104 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1105 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1106 }
1107 sp = push_word (sp, read_register (IPSW_REGNUM));
1108 sp = push_word (sp, read_register (SAR_REGNUM));
1109 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1110 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1111 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1112 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1113 write_register (SP_REGNUM, sp);
1114 }
1115
1116 find_dummy_frame_regs (frame, frame_saved_regs)
1117 struct frame_info *frame;
1118 struct frame_saved_regs *frame_saved_regs;
1119 {
1120 CORE_ADDR fp = frame->frame;
1121 int i;
1122
1123 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1124 frame_saved_regs->regs[FP_REGNUM] = fp;
1125 frame_saved_regs->regs[1] = fp + 8;
1126
1127 for (fp += 12, i = 3; i < 32; i++)
1128 {
1129 if (i != FP_REGNUM)
1130 {
1131 frame_saved_regs->regs[i] = fp;
1132 fp += 4;
1133 }
1134 }
1135
1136 fp += 4;
1137 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1138 frame_saved_regs->regs[i] = fp;
1139
1140 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1141 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1142 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1143 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1144 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1145 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1146 }
1147
1148 int
1149 hppa_pop_frame ()
1150 {
1151 register struct frame_info *frame = get_current_frame ();
1152 register CORE_ADDR fp;
1153 register int regnum;
1154 struct frame_saved_regs fsr;
1155 double freg_buffer;
1156
1157 fp = FRAME_FP (frame);
1158 get_frame_saved_regs (frame, &fsr);
1159
1160 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1161 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1162 restore_pc_queue (&fsr);
1163 #endif
1164
1165 for (regnum = 31; regnum > 0; regnum--)
1166 if (fsr.regs[regnum])
1167 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1168
1169 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1170 if (fsr.regs[regnum])
1171 {
1172 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1173 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1174 }
1175
1176 if (fsr.regs[IPSW_REGNUM])
1177 write_register (IPSW_REGNUM,
1178 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1179
1180 if (fsr.regs[SAR_REGNUM])
1181 write_register (SAR_REGNUM,
1182 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1183
1184 /* If the PC was explicitly saved, then just restore it. */
1185 if (fsr.regs[PCOQ_TAIL_REGNUM])
1186 write_register (PCOQ_TAIL_REGNUM,
1187 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1188
1189 /* Else use the value in %rp to set the new PC. */
1190 else
1191 target_write_pc (read_register (RP_REGNUM), 0);
1192
1193 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1194
1195 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1196 write_register (SP_REGNUM, fp - 48);
1197 else
1198 write_register (SP_REGNUM, fp);
1199
1200 flush_cached_frames ();
1201 }
1202
1203 /*
1204 * After returning to a dummy on the stack, restore the instruction
1205 * queue space registers. */
1206
1207 static int
1208 restore_pc_queue (fsr)
1209 struct frame_saved_regs *fsr;
1210 {
1211 CORE_ADDR pc = read_pc ();
1212 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1213 int pid;
1214 struct target_waitstatus w;
1215 int insn_count;
1216
1217 /* Advance past break instruction in the call dummy. */
1218 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1219 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1220
1221 /*
1222 * HPUX doesn't let us set the space registers or the space
1223 * registers of the PC queue through ptrace. Boo, hiss.
1224 * Conveniently, the call dummy has this sequence of instructions
1225 * after the break:
1226 * mtsp r21, sr0
1227 * ble,n 0(sr0, r22)
1228 *
1229 * So, load up the registers and single step until we are in the
1230 * right place.
1231 */
1232
1233 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1234 write_register (22, new_pc);
1235
1236 for (insn_count = 0; insn_count < 3; insn_count++)
1237 {
1238 /* FIXME: What if the inferior gets a signal right now? Want to
1239 merge this into wait_for_inferior (as a special kind of
1240 watchpoint? By setting a breakpoint at the end? Is there
1241 any other choice? Is there *any* way to do this stuff with
1242 ptrace() or some equivalent?). */
1243 resume (1, 0);
1244 target_wait (inferior_pid, &w);
1245
1246 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1247 {
1248 stop_signal = w.value.sig;
1249 terminal_ours_for_output ();
1250 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1251 target_signal_to_name (stop_signal),
1252 target_signal_to_string (stop_signal));
1253 gdb_flush (gdb_stdout);
1254 return 0;
1255 }
1256 }
1257 target_terminal_ours ();
1258 target_fetch_registers (-1);
1259 return 1;
1260 }
1261
1262 CORE_ADDR
1263 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1264 int nargs;
1265 value_ptr *args;
1266 CORE_ADDR sp;
1267 int struct_return;
1268 CORE_ADDR struct_addr;
1269 {
1270 /* array of arguments' offsets */
1271 int *offset = (int *)alloca(nargs * sizeof (int));
1272 int cum = 0;
1273 int i, alignment;
1274
1275 for (i = 0; i < nargs; i++)
1276 {
1277 /* Coerce chars to int & float to double if necessary */
1278 args[i] = value_arg_coerce (args[i]);
1279
1280 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1281
1282 /* value must go at proper alignment. Assume alignment is a
1283 power of two.*/
1284 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1285 if (cum % alignment)
1286 cum = (cum + alignment) & -alignment;
1287 offset[i] = -cum;
1288 }
1289 sp += max ((cum + 7) & -8, 16);
1290
1291 for (i = 0; i < nargs; i++)
1292 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1293 TYPE_LENGTH (VALUE_TYPE (args[i])));
1294
1295 if (struct_return)
1296 write_register (28, struct_addr);
1297 return sp + 32;
1298 }
1299
1300 /*
1301 * Insert the specified number of args and function address
1302 * into a call sequence of the above form stored at DUMMYNAME.
1303 *
1304 * On the hppa we need to call the stack dummy through $$dyncall.
1305 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1306 * real_pc, which is the location where gdb should start up the
1307 * inferior to do the function call.
1308 */
1309
1310 CORE_ADDR
1311 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1312 char *dummy;
1313 CORE_ADDR pc;
1314 CORE_ADDR fun;
1315 int nargs;
1316 value_ptr *args;
1317 struct type *type;
1318 int gcc_p;
1319 {
1320 CORE_ADDR dyncall_addr, sr4export_addr;
1321 struct minimal_symbol *msymbol;
1322 int flags = read_register (FLAGS_REGNUM);
1323 struct unwind_table_entry *u;
1324
1325 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1326 if (msymbol == NULL)
1327 error ("Can't find an address for $$dyncall trampoline");
1328
1329 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1330
1331 /* FUN could be a procedure label, in which case we have to get
1332 its real address and the value of its GOT/DP. */
1333 if (fun & 0x2)
1334 {
1335 /* Get the GOT/DP value for the target function. It's
1336 at *(fun+4). Note the call dummy is *NOT* allowed to
1337 trash %r19 before calling the target function. */
1338 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1339
1340 /* Now get the real address for the function we are calling, it's
1341 at *fun. */
1342 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1343 }
1344
1345 /* If we are calling an import stub (eg calling into a dynamic library)
1346 then have sr4export call the magic __d_plt_call routine which is linked
1347 in from end.o. (You can't use _sr4export to call the import stub as
1348 the value in sp-24 will get fried and you end up returning to the
1349 wrong location. You can't call the import stub directly as the code
1350 to bind the PLT entry to a function can't return to a stack address.) */
1351 u = find_unwind_entry (fun);
1352 if (u && u->stub_type == IMPORT)
1353 {
1354 CORE_ADDR new_fun;
1355 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1356 if (msymbol == NULL)
1357 error ("Can't find an address for __d_plt_call trampoline");
1358
1359 /* This is where sr4export will jump to. */
1360 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1361
1362 /* We have to store the address of the stub in __shlib_funcptr. */
1363 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1364 (struct objfile *)NULL);
1365 if (msymbol == NULL)
1366 error ("Can't find an address for __shlib_funcptr");
1367
1368 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1369 fun = new_fun;
1370
1371 }
1372
1373 /* We still need sr4export's address too. */
1374 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1375 if (msymbol == NULL)
1376 error ("Can't find an address for _sr4export trampoline");
1377
1378 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1379
1380 store_unsigned_integer
1381 (&dummy[9*REGISTER_SIZE],
1382 REGISTER_SIZE,
1383 deposit_21 (fun >> 11,
1384 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1385 REGISTER_SIZE)));
1386 store_unsigned_integer
1387 (&dummy[10*REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 deposit_14 (fun & MASK_11,
1390 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1391 REGISTER_SIZE)));
1392 store_unsigned_integer
1393 (&dummy[12*REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 deposit_21 (sr4export_addr >> 11,
1396 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1397 REGISTER_SIZE)));
1398 store_unsigned_integer
1399 (&dummy[13*REGISTER_SIZE],
1400 REGISTER_SIZE,
1401 deposit_14 (sr4export_addr & MASK_11,
1402 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1403 REGISTER_SIZE)));
1404
1405 write_register (22, pc);
1406
1407 /* If we are in a syscall, then we should call the stack dummy
1408 directly. $$dyncall is not needed as the kernel sets up the
1409 space id registers properly based on the value in %r31. In
1410 fact calling $$dyncall will not work because the value in %r22
1411 will be clobbered on the syscall exit path. */
1412 if (flags & 2)
1413 return pc;
1414 else
1415 return dyncall_addr;
1416
1417 }
1418
1419 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1420 bits. */
1421
1422 CORE_ADDR
1423 target_read_pc (pid)
1424 int pid;
1425 {
1426 int flags = read_register (FLAGS_REGNUM);
1427
1428 if (flags & 2)
1429 return read_register (31) & ~0x3;
1430 return read_register (PC_REGNUM) & ~0x3;
1431 }
1432
1433 /* Write out the PC. If currently in a syscall, then also write the new
1434 PC value into %r31. */
1435
1436 void
1437 target_write_pc (v, pid)
1438 CORE_ADDR v;
1439 int pid;
1440 {
1441 int flags = read_register (FLAGS_REGNUM);
1442
1443 /* If in a syscall, then set %r31. Also make sure to get the
1444 privilege bits set correctly. */
1445 if (flags & 2)
1446 write_register (31, (long) (v | 0x3));
1447
1448 write_register (PC_REGNUM, (long) v);
1449 write_register (NPC_REGNUM, (long) v + 4);
1450 }
1451
1452 /* return the alignment of a type in bytes. Structures have the maximum
1453 alignment required by their fields. */
1454
1455 static int
1456 hppa_alignof (arg)
1457 struct type *arg;
1458 {
1459 int max_align, align, i;
1460 switch (TYPE_CODE (arg))
1461 {
1462 case TYPE_CODE_PTR:
1463 case TYPE_CODE_INT:
1464 case TYPE_CODE_FLT:
1465 return TYPE_LENGTH (arg);
1466 case TYPE_CODE_ARRAY:
1467 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1468 case TYPE_CODE_STRUCT:
1469 case TYPE_CODE_UNION:
1470 max_align = 2;
1471 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1472 {
1473 /* Bit fields have no real alignment. */
1474 if (!TYPE_FIELD_BITPOS (arg, i))
1475 {
1476 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1477 max_align = max (max_align, align);
1478 }
1479 }
1480 return max_align;
1481 default:
1482 return 4;
1483 }
1484 }
1485
1486 /* Print the register regnum, or all registers if regnum is -1 */
1487
1488 pa_do_registers_info (regnum, fpregs)
1489 int regnum;
1490 int fpregs;
1491 {
1492 char raw_regs [REGISTER_BYTES];
1493 int i;
1494
1495 for (i = 0; i < NUM_REGS; i++)
1496 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1497 if (regnum == -1)
1498 pa_print_registers (raw_regs, regnum, fpregs);
1499 else if (regnum < FP0_REGNUM)
1500 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1501 REGISTER_BYTE (regnum)));
1502 else
1503 pa_print_fp_reg (regnum);
1504 }
1505
1506 pa_print_registers (raw_regs, regnum, fpregs)
1507 char *raw_regs;
1508 int regnum;
1509 int fpregs;
1510 {
1511 int i;
1512
1513 for (i = 0; i < 18; i++)
1514 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1515 reg_names[i],
1516 *(int *)(raw_regs + REGISTER_BYTE (i)),
1517 reg_names[i + 18],
1518 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1519 reg_names[i + 36],
1520 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1521 reg_names[i + 54],
1522 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1523
1524 if (fpregs)
1525 for (i = 72; i < NUM_REGS; i++)
1526 pa_print_fp_reg (i);
1527 }
1528
1529 pa_print_fp_reg (i)
1530 int i;
1531 {
1532 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1533 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1534
1535 /* Get 32bits of data. */
1536 read_relative_register_raw_bytes (i, raw_buffer);
1537
1538 /* Put it in the buffer. No conversions are ever necessary. */
1539 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1540
1541 fputs_filtered (reg_names[i], gdb_stdout);
1542 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1543 fputs_filtered ("(single precision) ", gdb_stdout);
1544
1545 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1546 1, 0, Val_pretty_default);
1547 printf_filtered ("\n");
1548
1549 /* If "i" is even, then this register can also be a double-precision
1550 FP register. Dump it out as such. */
1551 if ((i % 2) == 0)
1552 {
1553 /* Get the data in raw format for the 2nd half. */
1554 read_relative_register_raw_bytes (i + 1, raw_buffer);
1555
1556 /* Copy it into the appropriate part of the virtual buffer. */
1557 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1558 REGISTER_RAW_SIZE (i));
1559
1560 /* Dump it as a double. */
1561 fputs_filtered (reg_names[i], gdb_stdout);
1562 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1563 fputs_filtered ("(double precision) ", gdb_stdout);
1564
1565 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1566 1, 0, Val_pretty_default);
1567 printf_filtered ("\n");
1568 }
1569 }
1570
1571 /* Figure out if PC is in a trampoline, and if so find out where
1572 the trampoline will jump to. If not in a trampoline, return zero.
1573
1574 Simple code examination probably is not a good idea since the code
1575 sequences in trampolines can also appear in user code.
1576
1577 We use unwinds and information from the minimal symbol table to
1578 determine when we're in a trampoline. This won't work for ELF
1579 (yet) since it doesn't create stub unwind entries. Whether or
1580 not ELF will create stub unwinds or normal unwinds for linker
1581 stubs is still being debated.
1582
1583 This should handle simple calls through dyncall or sr4export,
1584 long calls, argument relocation stubs, and dyncall/sr4export
1585 calling an argument relocation stub. It even handles some stubs
1586 used in dynamic executables. */
1587
1588 CORE_ADDR
1589 skip_trampoline_code (pc, name)
1590 CORE_ADDR pc;
1591 char *name;
1592 {
1593 long orig_pc = pc;
1594 long prev_inst, curr_inst, loc;
1595 static CORE_ADDR dyncall = 0;
1596 static CORE_ADDR sr4export = 0;
1597 struct minimal_symbol *msym;
1598 struct unwind_table_entry *u;
1599
1600 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1601 new exec file */
1602
1603 if (!dyncall)
1604 {
1605 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1606 if (msym)
1607 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1608 else
1609 dyncall = -1;
1610 }
1611
1612 if (!sr4export)
1613 {
1614 msym = lookup_minimal_symbol ("_sr4export", NULL);
1615 if (msym)
1616 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1617 else
1618 sr4export = -1;
1619 }
1620
1621 /* Addresses passed to dyncall may *NOT* be the actual address
1622 of the function. So we may have to do something special. */
1623 if (pc == dyncall)
1624 {
1625 pc = (CORE_ADDR) read_register (22);
1626
1627 /* If bit 30 (counting from the left) is on, then pc is the address of
1628 the PLT entry for this function, not the address of the function
1629 itself. Bit 31 has meaning too, but only for MPE. */
1630 if (pc & 0x2)
1631 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1632 }
1633 else if (pc == sr4export)
1634 pc = (CORE_ADDR) (read_register (22));
1635
1636 /* Get the unwind descriptor corresponding to PC, return zero
1637 if no unwind was found. */
1638 u = find_unwind_entry (pc);
1639 if (!u)
1640 return 0;
1641
1642 /* If this isn't a linker stub, then return now. */
1643 if (u->stub_type == 0)
1644 return orig_pc == pc ? 0 : pc & ~0x3;
1645
1646 /* It's a stub. Search for a branch and figure out where it goes.
1647 Note we have to handle multi insn branch sequences like ldil;ble.
1648 Most (all?) other branches can be determined by examining the contents
1649 of certain registers and the stack. */
1650 loc = pc;
1651 curr_inst = 0;
1652 prev_inst = 0;
1653 while (1)
1654 {
1655 /* Make sure we haven't walked outside the range of this stub. */
1656 if (u != find_unwind_entry (loc))
1657 {
1658 warning ("Unable to find branch in linker stub");
1659 return orig_pc == pc ? 0 : pc & ~0x3;
1660 }
1661
1662 prev_inst = curr_inst;
1663 curr_inst = read_memory_integer (loc, 4);
1664
1665 /* Does it look like a branch external using %r1? Then it's the
1666 branch from the stub to the actual function. */
1667 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1668 {
1669 /* Yup. See if the previous instruction loaded
1670 a value into %r1. If so compute and return the jump address. */
1671 if ((prev_inst & 0xffe00000) == 0x20200000)
1672 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1673 else
1674 {
1675 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1676 return orig_pc == pc ? 0 : pc & ~0x3;
1677 }
1678 }
1679
1680 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1681 branch from the stub to the actual function. */
1682 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1683 || (curr_inst & 0xffe0e000) == 0xe8000000)
1684 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1685
1686 /* Does it look like bv (rp)? Note this depends on the
1687 current stack pointer being the same as the stack
1688 pointer in the stub itself! This is a branch on from the
1689 stub back to the original caller. */
1690 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1691 {
1692 /* Yup. See if the previous instruction loaded
1693 rp from sp - 8. */
1694 if (prev_inst == 0x4bc23ff1)
1695 return (read_memory_integer
1696 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1697 else
1698 {
1699 warning ("Unable to find restore of %%rp before bv (%%rp).");
1700 return orig_pc == pc ? 0 : pc & ~0x3;
1701 }
1702 }
1703
1704 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1705 the original caller from the stub. Used in dynamic executables. */
1706 else if (curr_inst == 0xe0400002)
1707 {
1708 /* The value we jump to is sitting in sp - 24. But that's
1709 loaded several instructions before the be instruction.
1710 I guess we could check for the previous instruction being
1711 mtsp %r1,%sr0 if we want to do sanity checking. */
1712 return (read_memory_integer
1713 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1714 }
1715
1716 /* Haven't found the branch yet, but we're still in the stub.
1717 Keep looking. */
1718 loc += 4;
1719 }
1720 }
1721
1722 /* For the given instruction (INST), return any adjustment it makes
1723 to the stack pointer or zero for no adjustment.
1724
1725 This only handles instructions commonly found in prologues. */
1726
1727 static int
1728 prologue_inst_adjust_sp (inst)
1729 unsigned long inst;
1730 {
1731 /* This must persist across calls. */
1732 static int save_high21;
1733
1734 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1735 if ((inst & 0xffffc000) == 0x37de0000)
1736 return extract_14 (inst);
1737
1738 /* stwm X,D(sp) */
1739 if ((inst & 0xffe00000) == 0x6fc00000)
1740 return extract_14 (inst);
1741
1742 /* addil high21,%r1; ldo low11,(%r1),%r30)
1743 save high bits in save_high21 for later use. */
1744 if ((inst & 0xffe00000) == 0x28200000)
1745 {
1746 save_high21 = extract_21 (inst);
1747 return 0;
1748 }
1749
1750 if ((inst & 0xffff0000) == 0x343e0000)
1751 return save_high21 + extract_14 (inst);
1752
1753 /* fstws as used by the HP compilers. */
1754 if ((inst & 0xffffffe0) == 0x2fd01220)
1755 return extract_5_load (inst);
1756
1757 /* No adjustment. */
1758 return 0;
1759 }
1760
1761 /* Return nonzero if INST is a branch of some kind, else return zero. */
1762
1763 static int
1764 is_branch (inst)
1765 unsigned long inst;
1766 {
1767 switch (inst >> 26)
1768 {
1769 case 0x20:
1770 case 0x21:
1771 case 0x22:
1772 case 0x23:
1773 case 0x28:
1774 case 0x29:
1775 case 0x2a:
1776 case 0x2b:
1777 case 0x30:
1778 case 0x31:
1779 case 0x32:
1780 case 0x33:
1781 case 0x38:
1782 case 0x39:
1783 case 0x3a:
1784 return 1;
1785
1786 default:
1787 return 0;
1788 }
1789 }
1790
1791 /* Return the register number for a GR which is saved by INST or
1792 zero it INST does not save a GR. */
1793
1794 static int
1795 inst_saves_gr (inst)
1796 unsigned long inst;
1797 {
1798 /* Does it look like a stw? */
1799 if ((inst >> 26) == 0x1a)
1800 return extract_5R_store (inst);
1801
1802 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1803 if ((inst >> 26) == 0x1b)
1804 return extract_5R_store (inst);
1805
1806 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1807 too. */
1808 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1809 return extract_5R_store (inst);
1810
1811 return 0;
1812 }
1813
1814 /* Return the register number for a FR which is saved by INST or
1815 zero it INST does not save a FR.
1816
1817 Note we only care about full 64bit register stores (that's the only
1818 kind of stores the prologue will use).
1819
1820 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1821
1822 static int
1823 inst_saves_fr (inst)
1824 unsigned long inst;
1825 {
1826 if ((inst & 0xfc00dfc0) == 0x2c001200)
1827 return extract_5r_store (inst);
1828 return 0;
1829 }
1830
1831 /* Advance PC across any function entry prologue instructions
1832 to reach some "real" code.
1833
1834 Use information in the unwind table to determine what exactly should
1835 be in the prologue. */
1836
1837 CORE_ADDR
1838 skip_prologue (pc)
1839 CORE_ADDR pc;
1840 {
1841 char buf[4];
1842 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1843 unsigned long args_stored, status, i;
1844 struct unwind_table_entry *u;
1845
1846 u = find_unwind_entry (pc);
1847 if (!u)
1848 return pc;
1849
1850 /* If we are not at the beginning of a function, then return now. */
1851 if ((pc & ~0x3) != u->region_start)
1852 return pc;
1853
1854 /* This is how much of a frame adjustment we need to account for. */
1855 stack_remaining = u->Total_frame_size << 3;
1856
1857 /* Magic register saves we want to know about. */
1858 save_rp = u->Save_RP;
1859 save_sp = u->Save_SP;
1860
1861 /* An indication that args may be stored into the stack. Unfortunately
1862 the HPUX compilers tend to set this in cases where no args were
1863 stored too!. */
1864 args_stored = u->Args_stored;
1865
1866 /* Turn the Entry_GR field into a bitmask. */
1867 save_gr = 0;
1868 for (i = 3; i < u->Entry_GR + 3; i++)
1869 {
1870 /* Frame pointer gets saved into a special location. */
1871 if (u->Save_SP && i == FP_REGNUM)
1872 continue;
1873
1874 save_gr |= (1 << i);
1875 }
1876
1877 /* Turn the Entry_FR field into a bitmask too. */
1878 save_fr = 0;
1879 for (i = 12; i < u->Entry_FR + 12; i++)
1880 save_fr |= (1 << i);
1881
1882 /* Loop until we find everything of interest or hit a branch.
1883
1884 For unoptimized GCC code and for any HP CC code this will never ever
1885 examine any user instructions.
1886
1887 For optimzied GCC code we're faced with problems. GCC will schedule
1888 its prologue and make prologue instructions available for delay slot
1889 filling. The end result is user code gets mixed in with the prologue
1890 and a prologue instruction may be in the delay slot of the first branch
1891 or call.
1892
1893 Some unexpected things are expected with debugging optimized code, so
1894 we allow this routine to walk past user instructions in optimized
1895 GCC code. */
1896 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1897 || args_stored)
1898 {
1899 unsigned int reg_num;
1900 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1901 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1902
1903 /* Save copies of all the triggers so we can compare them later
1904 (only for HPC). */
1905 old_save_gr = save_gr;
1906 old_save_fr = save_fr;
1907 old_save_rp = save_rp;
1908 old_save_sp = save_sp;
1909 old_stack_remaining = stack_remaining;
1910
1911 status = target_read_memory (pc, buf, 4);
1912 inst = extract_unsigned_integer (buf, 4);
1913
1914 /* Yow! */
1915 if (status != 0)
1916 return pc;
1917
1918 /* Note the interesting effects of this instruction. */
1919 stack_remaining -= prologue_inst_adjust_sp (inst);
1920
1921 /* There is only one instruction used for saving RP into the stack. */
1922 if (inst == 0x6bc23fd9)
1923 save_rp = 0;
1924
1925 /* This is the only way we save SP into the stack. At this time
1926 the HP compilers never bother to save SP into the stack. */
1927 if ((inst & 0xffffc000) == 0x6fc10000)
1928 save_sp = 0;
1929
1930 /* Account for general and floating-point register saves. */
1931 reg_num = inst_saves_gr (inst);
1932 save_gr &= ~(1 << reg_num);
1933
1934 /* Ugh. Also account for argument stores into the stack.
1935 Unfortunately args_stored only tells us that some arguments
1936 where stored into the stack. Not how many or what kind!
1937
1938 This is a kludge as on the HP compiler sets this bit and it
1939 never does prologue scheduling. So once we see one, skip past
1940 all of them. We have similar code for the fp arg stores below.
1941
1942 FIXME. Can still die if we have a mix of GR and FR argument
1943 stores! */
1944 if (reg_num >= 23 && reg_num <= 26)
1945 {
1946 while (reg_num >= 23 && reg_num <= 26)
1947 {
1948 pc += 4;
1949 status = target_read_memory (pc, buf, 4);
1950 inst = extract_unsigned_integer (buf, 4);
1951 if (status != 0)
1952 return pc;
1953 reg_num = inst_saves_gr (inst);
1954 }
1955 args_stored = 0;
1956 continue;
1957 }
1958
1959 reg_num = inst_saves_fr (inst);
1960 save_fr &= ~(1 << reg_num);
1961
1962 status = target_read_memory (pc + 4, buf, 4);
1963 next_inst = extract_unsigned_integer (buf, 4);
1964
1965 /* Yow! */
1966 if (status != 0)
1967 return pc;
1968
1969 /* We've got to be read to handle the ldo before the fp register
1970 save. */
1971 if ((inst & 0xfc000000) == 0x34000000
1972 && inst_saves_fr (next_inst) >= 4
1973 && inst_saves_fr (next_inst) <= 7)
1974 {
1975 /* So we drop into the code below in a reasonable state. */
1976 reg_num = inst_saves_fr (next_inst);
1977 pc -= 4;
1978 }
1979
1980 /* Ugh. Also account for argument stores into the stack.
1981 This is a kludge as on the HP compiler sets this bit and it
1982 never does prologue scheduling. So once we see one, skip past
1983 all of them. */
1984 if (reg_num >= 4 && reg_num <= 7)
1985 {
1986 while (reg_num >= 4 && reg_num <= 7)
1987 {
1988 pc += 8;
1989 status = target_read_memory (pc, buf, 4);
1990 inst = extract_unsigned_integer (buf, 4);
1991 if (status != 0)
1992 return pc;
1993 if ((inst & 0xfc000000) != 0x34000000)
1994 break;
1995 status = target_read_memory (pc + 4, buf, 4);
1996 next_inst = extract_unsigned_integer (buf, 4);
1997 if (status != 0)
1998 return pc;
1999 reg_num = inst_saves_fr (next_inst);
2000 }
2001 args_stored = 0;
2002 continue;
2003 }
2004
2005 /* Quit if we hit any kind of branch. This can happen if a prologue
2006 instruction is in the delay slot of the first call/branch. */
2007 if (is_branch (inst))
2008 break;
2009
2010 /* What a crock. The HP compilers set args_stored even if no
2011 arguments were stored into the stack (boo hiss). This could
2012 cause this code to then skip a bunch of user insns (up to the
2013 first branch).
2014
2015 To combat this we try to identify when args_stored was bogusly
2016 set and clear it. We only do this when args_stored is nonzero,
2017 all other resources are accounted for, and nothing changed on
2018 this pass. */
2019 if (args_stored
2020 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2021 && old_save_gr == save_gr && old_save_fr == save_fr
2022 && old_save_rp == save_rp && old_save_sp == save_sp
2023 && old_stack_remaining == stack_remaining)
2024 break;
2025
2026 /* Bump the PC. */
2027 pc += 4;
2028 }
2029
2030 return pc;
2031 }
2032
2033 /* Put here the code to store, into a struct frame_saved_regs,
2034 the addresses of the saved registers of frame described by FRAME_INFO.
2035 This includes special registers such as pc and fp saved in special
2036 ways in the stack frame. sp is even more special:
2037 the address we return for it IS the sp for the next frame. */
2038
2039 void
2040 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2041 struct frame_info *frame_info;
2042 struct frame_saved_regs *frame_saved_regs;
2043 {
2044 CORE_ADDR pc;
2045 struct unwind_table_entry *u;
2046 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2047 int status, i, reg;
2048 char buf[4];
2049 int fp_loc = -1;
2050
2051 /* Zero out everything. */
2052 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2053
2054 /* Call dummy frames always look the same, so there's no need to
2055 examine the dummy code to determine locations of saved registers;
2056 instead, let find_dummy_frame_regs fill in the correct offsets
2057 for the saved registers. */
2058 if ((frame_info->pc >= frame_info->frame
2059 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2060 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2061 + 6 * 4)))
2062 find_dummy_frame_regs (frame_info, frame_saved_regs);
2063
2064 /* Interrupt handlers are special too. They lay out the register
2065 state in the exact same order as the register numbers in GDB. */
2066 if (pc_in_interrupt_handler (frame_info->pc))
2067 {
2068 for (i = 0; i < NUM_REGS; i++)
2069 {
2070 /* SP is a little special. */
2071 if (i == SP_REGNUM)
2072 frame_saved_regs->regs[SP_REGNUM]
2073 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2074 else
2075 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2076 }
2077 return;
2078 }
2079
2080 /* Handle signal handler callers. */
2081 if (frame_info->signal_handler_caller)
2082 {
2083 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2084 return;
2085 }
2086
2087 /* Get the starting address of the function referred to by the PC
2088 saved in frame. */
2089 pc = get_pc_function_start (frame_info->pc);
2090
2091 /* Yow! */
2092 u = find_unwind_entry (pc);
2093 if (!u)
2094 return;
2095
2096 /* This is how much of a frame adjustment we need to account for. */
2097 stack_remaining = u->Total_frame_size << 3;
2098
2099 /* Magic register saves we want to know about. */
2100 save_rp = u->Save_RP;
2101 save_sp = u->Save_SP;
2102
2103 /* Turn the Entry_GR field into a bitmask. */
2104 save_gr = 0;
2105 for (i = 3; i < u->Entry_GR + 3; i++)
2106 {
2107 /* Frame pointer gets saved into a special location. */
2108 if (u->Save_SP && i == FP_REGNUM)
2109 continue;
2110
2111 save_gr |= (1 << i);
2112 }
2113
2114 /* Turn the Entry_FR field into a bitmask too. */
2115 save_fr = 0;
2116 for (i = 12; i < u->Entry_FR + 12; i++)
2117 save_fr |= (1 << i);
2118
2119 /* The frame always represents the value of %sp at entry to the
2120 current function (and is thus equivalent to the "saved" stack
2121 pointer. */
2122 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2123
2124 /* Loop until we find everything of interest or hit a branch.
2125
2126 For unoptimized GCC code and for any HP CC code this will never ever
2127 examine any user instructions.
2128
2129 For optimzied GCC code we're faced with problems. GCC will schedule
2130 its prologue and make prologue instructions available for delay slot
2131 filling. The end result is user code gets mixed in with the prologue
2132 and a prologue instruction may be in the delay slot of the first branch
2133 or call.
2134
2135 Some unexpected things are expected with debugging optimized code, so
2136 we allow this routine to walk past user instructions in optimized
2137 GCC code. */
2138 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2139 {
2140 status = target_read_memory (pc, buf, 4);
2141 inst = extract_unsigned_integer (buf, 4);
2142
2143 /* Yow! */
2144 if (status != 0)
2145 return;
2146
2147 /* Note the interesting effects of this instruction. */
2148 stack_remaining -= prologue_inst_adjust_sp (inst);
2149
2150 /* There is only one instruction used for saving RP into the stack. */
2151 if (inst == 0x6bc23fd9)
2152 {
2153 save_rp = 0;
2154 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2155 }
2156
2157 /* Just note that we found the save of SP into the stack. The
2158 value for frame_saved_regs was computed above. */
2159 if ((inst & 0xffffc000) == 0x6fc10000)
2160 save_sp = 0;
2161
2162 /* Account for general and floating-point register saves. */
2163 reg = inst_saves_gr (inst);
2164 if (reg >= 3 && reg <= 18
2165 && (!u->Save_SP || reg != FP_REGNUM))
2166 {
2167 save_gr &= ~(1 << reg);
2168
2169 /* stwm with a positive displacement is a *post modify*. */
2170 if ((inst >> 26) == 0x1b
2171 && extract_14 (inst) >= 0)
2172 frame_saved_regs->regs[reg] = frame_info->frame;
2173 else
2174 {
2175 /* Handle code with and without frame pointers. */
2176 if (u->Save_SP)
2177 frame_saved_regs->regs[reg]
2178 = frame_info->frame + extract_14 (inst);
2179 else
2180 frame_saved_regs->regs[reg]
2181 = frame_info->frame + (u->Total_frame_size << 3)
2182 + extract_14 (inst);
2183 }
2184 }
2185
2186
2187 /* GCC handles callee saved FP regs a little differently.
2188
2189 It emits an instruction to put the value of the start of
2190 the FP store area into %r1. It then uses fstds,ma with
2191 a basereg of %r1 for the stores.
2192
2193 HP CC emits them at the current stack pointer modifying
2194 the stack pointer as it stores each register. */
2195
2196 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2197 if ((inst & 0xffffc000) == 0x34610000
2198 || (inst & 0xffffc000) == 0x37c10000)
2199 fp_loc = extract_14 (inst);
2200
2201 reg = inst_saves_fr (inst);
2202 if (reg >= 12 && reg <= 21)
2203 {
2204 /* Note +4 braindamage below is necessary because the FP status
2205 registers are internally 8 registers rather than the expected
2206 4 registers. */
2207 save_fr &= ~(1 << reg);
2208 if (fp_loc == -1)
2209 {
2210 /* 1st HP CC FP register store. After this instruction
2211 we've set enough state that the GCC and HPCC code are
2212 both handled in the same manner. */
2213 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2214 fp_loc = 8;
2215 }
2216 else
2217 {
2218 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2219 = frame_info->frame + fp_loc;
2220 fp_loc += 8;
2221 }
2222 }
2223
2224 /* Quit if we hit any kind of branch. This can happen if a prologue
2225 instruction is in the delay slot of the first call/branch. */
2226 if (is_branch (inst))
2227 break;
2228
2229 /* Bump the PC. */
2230 pc += 4;
2231 }
2232 }
2233
2234 #ifdef MAINTENANCE_CMDS
2235
2236 static void
2237 unwind_command (exp, from_tty)
2238 char *exp;
2239 int from_tty;
2240 {
2241 CORE_ADDR address;
2242 union
2243 {
2244 int *foo;
2245 struct unwind_table_entry *u;
2246 } xxx;
2247
2248 /* If we have an expression, evaluate it and use it as the address. */
2249
2250 if (exp != 0 && *exp != 0)
2251 address = parse_and_eval_address (exp);
2252 else
2253 return;
2254
2255 xxx.u = find_unwind_entry (address);
2256
2257 if (!xxx.u)
2258 {
2259 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2260 return;
2261 }
2262
2263 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2264 xxx.foo[3]);
2265 }
2266 #endif /* MAINTENANCE_CMDS */
2267
2268 void
2269 _initialize_hppa_tdep ()
2270 {
2271 #ifdef MAINTENANCE_CMDS
2272 add_cmd ("unwind", class_maintenance, unwind_command,
2273 "Print unwind table entry at given address.",
2274 &maintenanceprintlist);
2275 #endif /* MAINTENANCE_CMDS */
2276 }