daily update
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
465 paddr_nz (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
500 paddr_nz ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
518 paddr_nz ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
548 status = target_read_memory (pc, buf, 4);
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571 }
572
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
575 {
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579 }
580
581 /* Return the name of a register. */
582
583 static const char *
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
585 {
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624 }
625
626 static const char *
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
628 {
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659 }
660
661 static int
662 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
663 {
664 /* r0-r31 and sar map one-to-one. */
665 if (reg <= 32)
666 return reg;
667
668 /* fr4-fr31 are mapped from 72 in steps of 2. */
669 if (reg >= 72 || reg < 72 + 28 * 2)
670 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
671
672 error ("Invalid DWARF register num %d.", reg);
673 return -1;
674 }
675
676 /* This function pushes a stack frame with arguments as part of the
677 inferior function calling mechanism.
678
679 This is the version of the function for the 32-bit PA machines, in
680 which later arguments appear at lower addresses. (The stack always
681 grows towards higher addresses.)
682
683 We simply allocate the appropriate amount of stack space and put
684 arguments into their proper slots. */
685
686 static CORE_ADDR
687 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
688 struct regcache *regcache, CORE_ADDR bp_addr,
689 int nargs, struct value **args, CORE_ADDR sp,
690 int struct_return, CORE_ADDR struct_addr)
691 {
692 /* Stack base address at which any pass-by-reference parameters are
693 stored. */
694 CORE_ADDR struct_end = 0;
695 /* Stack base address at which the first parameter is stored. */
696 CORE_ADDR param_end = 0;
697
698 /* The inner most end of the stack after all the parameters have
699 been pushed. */
700 CORE_ADDR new_sp = 0;
701
702 /* Two passes. First pass computes the location of everything,
703 second pass writes the bytes out. */
704 int write_pass;
705
706 /* Global pointer (r19) of the function we are trying to call. */
707 CORE_ADDR gp;
708
709 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
710
711 for (write_pass = 0; write_pass < 2; write_pass++)
712 {
713 CORE_ADDR struct_ptr = 0;
714 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
715 struct_ptr is adjusted for each argument below, so the first
716 argument will end up at sp-36. */
717 CORE_ADDR param_ptr = 32;
718 int i;
719 int small_struct = 0;
720
721 for (i = 0; i < nargs; i++)
722 {
723 struct value *arg = args[i];
724 struct type *type = check_typedef (value_type (arg));
725 /* The corresponding parameter that is pushed onto the
726 stack, and [possibly] passed in a register. */
727 char param_val[8];
728 int param_len;
729 memset (param_val, 0, sizeof param_val);
730 if (TYPE_LENGTH (type) > 8)
731 {
732 /* Large parameter, pass by reference. Store the value
733 in "struct" area and then pass its address. */
734 param_len = 4;
735 struct_ptr += align_up (TYPE_LENGTH (type), 8);
736 if (write_pass)
737 write_memory (struct_end - struct_ptr, value_contents (arg),
738 TYPE_LENGTH (type));
739 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
740 }
741 else if (TYPE_CODE (type) == TYPE_CODE_INT
742 || TYPE_CODE (type) == TYPE_CODE_ENUM)
743 {
744 /* Integer value store, right aligned. "unpack_long"
745 takes care of any sign-extension problems. */
746 param_len = align_up (TYPE_LENGTH (type), 4);
747 store_unsigned_integer (param_val, param_len,
748 unpack_long (type,
749 value_contents (arg)));
750 }
751 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
752 {
753 /* Floating point value store, right aligned. */
754 param_len = align_up (TYPE_LENGTH (type), 4);
755 memcpy (param_val, value_contents (arg), param_len);
756 }
757 else
758 {
759 param_len = align_up (TYPE_LENGTH (type), 4);
760
761 /* Small struct value are stored right-aligned. */
762 memcpy (param_val + param_len - TYPE_LENGTH (type),
763 value_contents (arg), TYPE_LENGTH (type));
764
765 /* Structures of size 5, 6 and 7 bytes are special in that
766 the higher-ordered word is stored in the lower-ordered
767 argument, and even though it is a 8-byte quantity the
768 registers need not be 8-byte aligned. */
769 if (param_len > 4 && param_len < 8)
770 small_struct = 1;
771 }
772
773 param_ptr += param_len;
774 if (param_len == 8 && !small_struct)
775 param_ptr = align_up (param_ptr, 8);
776
777 /* First 4 non-FP arguments are passed in gr26-gr23.
778 First 4 32-bit FP arguments are passed in fr4L-fr7L.
779 First 2 64-bit FP arguments are passed in fr5 and fr7.
780
781 The rest go on the stack, starting at sp-36, towards lower
782 addresses. 8-byte arguments must be aligned to a 8-byte
783 stack boundary. */
784 if (write_pass)
785 {
786 write_memory (param_end - param_ptr, param_val, param_len);
787
788 /* There are some cases when we don't know the type
789 expected by the callee (e.g. for variadic functions), so
790 pass the parameters in both general and fp regs. */
791 if (param_ptr <= 48)
792 {
793 int grreg = 26 - (param_ptr - 36) / 4;
794 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
795 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
796
797 regcache_cooked_write (regcache, grreg, param_val);
798 regcache_cooked_write (regcache, fpLreg, param_val);
799
800 if (param_len > 4)
801 {
802 regcache_cooked_write (regcache, grreg + 1,
803 param_val + 4);
804
805 regcache_cooked_write (regcache, fpreg, param_val);
806 regcache_cooked_write (regcache, fpreg + 1,
807 param_val + 4);
808 }
809 }
810 }
811 }
812
813 /* Update the various stack pointers. */
814 if (!write_pass)
815 {
816 struct_end = sp + align_up (struct_ptr, 64);
817 /* PARAM_PTR already accounts for all the arguments passed
818 by the user. However, the ABI mandates minimum stack
819 space allocations for outgoing arguments. The ABI also
820 mandates minimum stack alignments which we must
821 preserve. */
822 param_end = struct_end + align_up (param_ptr, 64);
823 }
824 }
825
826 /* If a structure has to be returned, set up register 28 to hold its
827 address */
828 if (struct_return)
829 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
830
831 gp = tdep->find_global_pointer (gdbarch, function);
832
833 if (gp != 0)
834 regcache_cooked_write_unsigned (regcache, 19, gp);
835
836 /* Set the return address. */
837 if (!gdbarch_push_dummy_code_p (gdbarch))
838 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
839
840 /* Update the Stack Pointer. */
841 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
842
843 return param_end;
844 }
845
846 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
847 Runtime Architecture for PA-RISC 2.0", which is distributed as part
848 as of the HP-UX Software Transition Kit (STK). This implementation
849 is based on version 3.3, dated October 6, 1997. */
850
851 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
852
853 static int
854 hppa64_integral_or_pointer_p (const struct type *type)
855 {
856 switch (TYPE_CODE (type))
857 {
858 case TYPE_CODE_INT:
859 case TYPE_CODE_BOOL:
860 case TYPE_CODE_CHAR:
861 case TYPE_CODE_ENUM:
862 case TYPE_CODE_RANGE:
863 {
864 int len = TYPE_LENGTH (type);
865 return (len == 1 || len == 2 || len == 4 || len == 8);
866 }
867 case TYPE_CODE_PTR:
868 case TYPE_CODE_REF:
869 return (TYPE_LENGTH (type) == 8);
870 default:
871 break;
872 }
873
874 return 0;
875 }
876
877 /* Check whether TYPE is a "Floating Scalar Type". */
878
879 static int
880 hppa64_floating_p (const struct type *type)
881 {
882 switch (TYPE_CODE (type))
883 {
884 case TYPE_CODE_FLT:
885 {
886 int len = TYPE_LENGTH (type);
887 return (len == 4 || len == 8 || len == 16);
888 }
889 default:
890 break;
891 }
892
893 return 0;
894 }
895
896 /* If CODE points to a function entry address, try to look up the corresponding
897 function descriptor and return its address instead. If CODE is not a
898 function entry address, then just return it unchanged. */
899 static CORE_ADDR
900 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
901 {
902 struct obj_section *sec, *opd;
903
904 sec = find_pc_section (code);
905
906 if (!sec)
907 return code;
908
909 /* If CODE is in a data section, assume it's already a fptr. */
910 if (!(sec->the_bfd_section->flags & SEC_CODE))
911 return code;
912
913 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
914 {
915 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
916 break;
917 }
918
919 if (opd < sec->objfile->sections_end)
920 {
921 CORE_ADDR addr;
922
923 for (addr = obj_section_addr (opd);
924 addr < obj_section_endaddr (opd);
925 addr += 2 * 8)
926 {
927 ULONGEST opdaddr;
928 char tmp[8];
929
930 if (target_read_memory (addr, tmp, sizeof (tmp)))
931 break;
932 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
933
934 if (opdaddr == code)
935 return addr - 16;
936 }
937 }
938
939 return code;
940 }
941
942 static CORE_ADDR
943 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
944 struct regcache *regcache, CORE_ADDR bp_addr,
945 int nargs, struct value **args, CORE_ADDR sp,
946 int struct_return, CORE_ADDR struct_addr)
947 {
948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
949 int i, offset = 0;
950 CORE_ADDR gp;
951
952 /* "The outgoing parameter area [...] must be aligned at a 16-byte
953 boundary." */
954 sp = align_up (sp, 16);
955
956 for (i = 0; i < nargs; i++)
957 {
958 struct value *arg = args[i];
959 struct type *type = value_type (arg);
960 int len = TYPE_LENGTH (type);
961 const bfd_byte *valbuf;
962 bfd_byte fptrbuf[8];
963 int regnum;
964
965 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
966 offset = align_up (offset, 8);
967
968 if (hppa64_integral_or_pointer_p (type))
969 {
970 /* "Integral scalar parameters smaller than 64 bits are
971 padded on the left (i.e., the value is in the
972 least-significant bits of the 64-bit storage unit, and
973 the high-order bits are undefined)." Therefore we can
974 safely sign-extend them. */
975 if (len < 8)
976 {
977 arg = value_cast (builtin_type_int64, arg);
978 len = 8;
979 }
980 }
981 else if (hppa64_floating_p (type))
982 {
983 if (len > 8)
984 {
985 /* "Quad-precision (128-bit) floating-point scalar
986 parameters are aligned on a 16-byte boundary." */
987 offset = align_up (offset, 16);
988
989 /* "Double-extended- and quad-precision floating-point
990 parameters within the first 64 bytes of the parameter
991 list are always passed in general registers." */
992 }
993 else
994 {
995 if (len == 4)
996 {
997 /* "Single-precision (32-bit) floating-point scalar
998 parameters are padded on the left with 32 bits of
999 garbage (i.e., the floating-point value is in the
1000 least-significant 32 bits of a 64-bit storage
1001 unit)." */
1002 offset += 4;
1003 }
1004
1005 /* "Single- and double-precision floating-point
1006 parameters in this area are passed according to the
1007 available formal parameter information in a function
1008 prototype. [...] If no prototype is in scope,
1009 floating-point parameters must be passed both in the
1010 corresponding general registers and in the
1011 corresponding floating-point registers." */
1012 regnum = HPPA64_FP4_REGNUM + offset / 8;
1013
1014 if (regnum < HPPA64_FP4_REGNUM + 8)
1015 {
1016 /* "Single-precision floating-point parameters, when
1017 passed in floating-point registers, are passed in
1018 the right halves of the floating point registers;
1019 the left halves are unused." */
1020 regcache_cooked_write_part (regcache, regnum, offset % 8,
1021 len, value_contents (arg));
1022 }
1023 }
1024 }
1025 else
1026 {
1027 if (len > 8)
1028 {
1029 /* "Aggregates larger than 8 bytes are aligned on a
1030 16-byte boundary, possibly leaving an unused argument
1031 slot, which is filled with garbage. If necessary,
1032 they are padded on the right (with garbage), to a
1033 multiple of 8 bytes." */
1034 offset = align_up (offset, 16);
1035 }
1036 }
1037
1038 /* If we are passing a function pointer, make sure we pass a function
1039 descriptor instead of the function entry address. */
1040 if (TYPE_CODE (type) == TYPE_CODE_PTR
1041 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1042 {
1043 ULONGEST codeptr, fptr;
1044
1045 codeptr = unpack_long (type, value_contents (arg));
1046 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1047 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1048 valbuf = fptrbuf;
1049 }
1050 else
1051 {
1052 valbuf = value_contents (arg);
1053 }
1054
1055 /* Always store the argument in memory. */
1056 write_memory (sp + offset, valbuf, len);
1057
1058 regnum = HPPA_ARG0_REGNUM - offset / 8;
1059 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1060 {
1061 regcache_cooked_write_part (regcache, regnum,
1062 offset % 8, min (len, 8), valbuf);
1063 offset += min (len, 8);
1064 valbuf += min (len, 8);
1065 len -= min (len, 8);
1066 regnum--;
1067 }
1068
1069 offset += len;
1070 }
1071
1072 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1073 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1074
1075 /* Allocate the outgoing parameter area. Make sure the outgoing
1076 parameter area is multiple of 16 bytes in length. */
1077 sp += max (align_up (offset, 16), 64);
1078
1079 /* Allocate 32-bytes of scratch space. The documentation doesn't
1080 mention this, but it seems to be needed. */
1081 sp += 32;
1082
1083 /* Allocate the frame marker area. */
1084 sp += 16;
1085
1086 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1087 its address. */
1088 if (struct_return)
1089 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1090
1091 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1092 gp = tdep->find_global_pointer (gdbarch, function);
1093 if (gp != 0)
1094 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1095
1096 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1097 if (!gdbarch_push_dummy_code_p (gdbarch))
1098 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1099
1100 /* Set up GR30 to hold the stack pointer (sp). */
1101 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1102
1103 return sp;
1104 }
1105 \f
1106
1107 /* Handle 32/64-bit struct return conventions. */
1108
1109 static enum return_value_convention
1110 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1111 struct type *type, struct regcache *regcache,
1112 gdb_byte *readbuf, const gdb_byte *writebuf)
1113 {
1114 if (TYPE_LENGTH (type) <= 2 * 4)
1115 {
1116 /* The value always lives in the right hand end of the register
1117 (or register pair)? */
1118 int b;
1119 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1120 int part = TYPE_LENGTH (type) % 4;
1121 /* The left hand register contains only part of the value,
1122 transfer that first so that the rest can be xfered as entire
1123 4-byte registers. */
1124 if (part > 0)
1125 {
1126 if (readbuf != NULL)
1127 regcache_cooked_read_part (regcache, reg, 4 - part,
1128 part, readbuf);
1129 if (writebuf != NULL)
1130 regcache_cooked_write_part (regcache, reg, 4 - part,
1131 part, writebuf);
1132 reg++;
1133 }
1134 /* Now transfer the remaining register values. */
1135 for (b = part; b < TYPE_LENGTH (type); b += 4)
1136 {
1137 if (readbuf != NULL)
1138 regcache_cooked_read (regcache, reg, readbuf + b);
1139 if (writebuf != NULL)
1140 regcache_cooked_write (regcache, reg, writebuf + b);
1141 reg++;
1142 }
1143 return RETURN_VALUE_REGISTER_CONVENTION;
1144 }
1145 else
1146 return RETURN_VALUE_STRUCT_CONVENTION;
1147 }
1148
1149 static enum return_value_convention
1150 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1151 struct type *type, struct regcache *regcache,
1152 gdb_byte *readbuf, const gdb_byte *writebuf)
1153 {
1154 int len = TYPE_LENGTH (type);
1155 int regnum, offset;
1156
1157 if (len > 16)
1158 {
1159 /* All return values larget than 128 bits must be aggregate
1160 return values. */
1161 gdb_assert (!hppa64_integral_or_pointer_p (type));
1162 gdb_assert (!hppa64_floating_p (type));
1163
1164 /* "Aggregate return values larger than 128 bits are returned in
1165 a buffer allocated by the caller. The address of the buffer
1166 must be passed in GR 28." */
1167 return RETURN_VALUE_STRUCT_CONVENTION;
1168 }
1169
1170 if (hppa64_integral_or_pointer_p (type))
1171 {
1172 /* "Integral return values are returned in GR 28. Values
1173 smaller than 64 bits are padded on the left (with garbage)." */
1174 regnum = HPPA_RET0_REGNUM;
1175 offset = 8 - len;
1176 }
1177 else if (hppa64_floating_p (type))
1178 {
1179 if (len > 8)
1180 {
1181 /* "Double-extended- and quad-precision floating-point
1182 values are returned in GRs 28 and 29. The sign,
1183 exponent, and most-significant bits of the mantissa are
1184 returned in GR 28; the least-significant bits of the
1185 mantissa are passed in GR 29. For double-extended
1186 precision values, GR 29 is padded on the right with 48
1187 bits of garbage." */
1188 regnum = HPPA_RET0_REGNUM;
1189 offset = 0;
1190 }
1191 else
1192 {
1193 /* "Single-precision and double-precision floating-point
1194 return values are returned in FR 4R (single precision) or
1195 FR 4 (double-precision)." */
1196 regnum = HPPA64_FP4_REGNUM;
1197 offset = 8 - len;
1198 }
1199 }
1200 else
1201 {
1202 /* "Aggregate return values up to 64 bits in size are returned
1203 in GR 28. Aggregates smaller than 64 bits are left aligned
1204 in the register; the pad bits on the right are undefined."
1205
1206 "Aggregate return values between 65 and 128 bits are returned
1207 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1208 the remaining bits are placed, left aligned, in GR 29. The
1209 pad bits on the right of GR 29 (if any) are undefined." */
1210 regnum = HPPA_RET0_REGNUM;
1211 offset = 0;
1212 }
1213
1214 if (readbuf)
1215 {
1216 while (len > 0)
1217 {
1218 regcache_cooked_read_part (regcache, regnum, offset,
1219 min (len, 8), readbuf);
1220 readbuf += min (len, 8);
1221 len -= min (len, 8);
1222 regnum++;
1223 }
1224 }
1225
1226 if (writebuf)
1227 {
1228 while (len > 0)
1229 {
1230 regcache_cooked_write_part (regcache, regnum, offset,
1231 min (len, 8), writebuf);
1232 writebuf += min (len, 8);
1233 len -= min (len, 8);
1234 regnum++;
1235 }
1236 }
1237
1238 return RETURN_VALUE_REGISTER_CONVENTION;
1239 }
1240 \f
1241
1242 static CORE_ADDR
1243 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1244 struct target_ops *targ)
1245 {
1246 if (addr & 2)
1247 {
1248 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1249 CORE_ADDR plabel = addr & ~3;
1250 return read_memory_typed_address (plabel, func_ptr_type);
1251 }
1252
1253 return addr;
1254 }
1255
1256 static CORE_ADDR
1257 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1258 {
1259 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1260 and not _bit_)! */
1261 return align_up (addr, 64);
1262 }
1263
1264 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1265
1266 static CORE_ADDR
1267 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1268 {
1269 /* Just always 16-byte align. */
1270 return align_up (addr, 16);
1271 }
1272
1273 CORE_ADDR
1274 hppa_read_pc (struct regcache *regcache)
1275 {
1276 ULONGEST ipsw;
1277 ULONGEST pc;
1278
1279 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1280 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1281
1282 /* If the current instruction is nullified, then we are effectively
1283 still executing the previous instruction. Pretend we are still
1284 there. This is needed when single stepping; if the nullified
1285 instruction is on a different line, we don't want GDB to think
1286 we've stepped onto that line. */
1287 if (ipsw & 0x00200000)
1288 pc -= 4;
1289
1290 return pc & ~0x3;
1291 }
1292
1293 void
1294 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1295 {
1296 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1297 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1298 }
1299
1300 /* return the alignment of a type in bytes. Structures have the maximum
1301 alignment required by their fields. */
1302
1303 static int
1304 hppa_alignof (struct type *type)
1305 {
1306 int max_align, align, i;
1307 CHECK_TYPEDEF (type);
1308 switch (TYPE_CODE (type))
1309 {
1310 case TYPE_CODE_PTR:
1311 case TYPE_CODE_INT:
1312 case TYPE_CODE_FLT:
1313 return TYPE_LENGTH (type);
1314 case TYPE_CODE_ARRAY:
1315 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1316 case TYPE_CODE_STRUCT:
1317 case TYPE_CODE_UNION:
1318 max_align = 1;
1319 for (i = 0; i < TYPE_NFIELDS (type); i++)
1320 {
1321 /* Bit fields have no real alignment. */
1322 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1323 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1324 {
1325 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1326 max_align = max (max_align, align);
1327 }
1328 }
1329 return max_align;
1330 default:
1331 return 4;
1332 }
1333 }
1334
1335 /* For the given instruction (INST), return any adjustment it makes
1336 to the stack pointer or zero for no adjustment.
1337
1338 This only handles instructions commonly found in prologues. */
1339
1340 static int
1341 prologue_inst_adjust_sp (unsigned long inst)
1342 {
1343 /* This must persist across calls. */
1344 static int save_high21;
1345
1346 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1347 if ((inst & 0xffffc000) == 0x37de0000)
1348 return hppa_extract_14 (inst);
1349
1350 /* stwm X,D(sp) */
1351 if ((inst & 0xffe00000) == 0x6fc00000)
1352 return hppa_extract_14 (inst);
1353
1354 /* std,ma X,D(sp) */
1355 if ((inst & 0xffe00008) == 0x73c00008)
1356 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1357
1358 /* addil high21,%r30; ldo low11,(%r1),%r30)
1359 save high bits in save_high21 for later use. */
1360 if ((inst & 0xffe00000) == 0x2bc00000)
1361 {
1362 save_high21 = hppa_extract_21 (inst);
1363 return 0;
1364 }
1365
1366 if ((inst & 0xffff0000) == 0x343e0000)
1367 return save_high21 + hppa_extract_14 (inst);
1368
1369 /* fstws as used by the HP compilers. */
1370 if ((inst & 0xffffffe0) == 0x2fd01220)
1371 return hppa_extract_5_load (inst);
1372
1373 /* No adjustment. */
1374 return 0;
1375 }
1376
1377 /* Return nonzero if INST is a branch of some kind, else return zero. */
1378
1379 static int
1380 is_branch (unsigned long inst)
1381 {
1382 switch (inst >> 26)
1383 {
1384 case 0x20:
1385 case 0x21:
1386 case 0x22:
1387 case 0x23:
1388 case 0x27:
1389 case 0x28:
1390 case 0x29:
1391 case 0x2a:
1392 case 0x2b:
1393 case 0x2f:
1394 case 0x30:
1395 case 0x31:
1396 case 0x32:
1397 case 0x33:
1398 case 0x38:
1399 case 0x39:
1400 case 0x3a:
1401 case 0x3b:
1402 return 1;
1403
1404 default:
1405 return 0;
1406 }
1407 }
1408
1409 /* Return the register number for a GR which is saved by INST or
1410 zero it INST does not save a GR. */
1411
1412 static int
1413 inst_saves_gr (unsigned long inst)
1414 {
1415 /* Does it look like a stw? */
1416 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1417 || (inst >> 26) == 0x1f
1418 || ((inst >> 26) == 0x1f
1419 && ((inst >> 6) == 0xa)))
1420 return hppa_extract_5R_store (inst);
1421
1422 /* Does it look like a std? */
1423 if ((inst >> 26) == 0x1c
1424 || ((inst >> 26) == 0x03
1425 && ((inst >> 6) & 0xf) == 0xb))
1426 return hppa_extract_5R_store (inst);
1427
1428 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1429 if ((inst >> 26) == 0x1b)
1430 return hppa_extract_5R_store (inst);
1431
1432 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1433 too. */
1434 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1435 || ((inst >> 26) == 0x3
1436 && (((inst >> 6) & 0xf) == 0x8
1437 || (inst >> 6) & 0xf) == 0x9))
1438 return hppa_extract_5R_store (inst);
1439
1440 return 0;
1441 }
1442
1443 /* Return the register number for a FR which is saved by INST or
1444 zero it INST does not save a FR.
1445
1446 Note we only care about full 64bit register stores (that's the only
1447 kind of stores the prologue will use).
1448
1449 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1450
1451 static int
1452 inst_saves_fr (unsigned long inst)
1453 {
1454 /* is this an FSTD ? */
1455 if ((inst & 0xfc00dfc0) == 0x2c001200)
1456 return hppa_extract_5r_store (inst);
1457 if ((inst & 0xfc000002) == 0x70000002)
1458 return hppa_extract_5R_store (inst);
1459 /* is this an FSTW ? */
1460 if ((inst & 0xfc00df80) == 0x24001200)
1461 return hppa_extract_5r_store (inst);
1462 if ((inst & 0xfc000002) == 0x7c000000)
1463 return hppa_extract_5R_store (inst);
1464 return 0;
1465 }
1466
1467 /* Advance PC across any function entry prologue instructions
1468 to reach some "real" code.
1469
1470 Use information in the unwind table to determine what exactly should
1471 be in the prologue. */
1472
1473
1474 static CORE_ADDR
1475 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1476 int stop_before_branch)
1477 {
1478 char buf[4];
1479 CORE_ADDR orig_pc = pc;
1480 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1481 unsigned long args_stored, status, i, restart_gr, restart_fr;
1482 struct unwind_table_entry *u;
1483 int final_iteration;
1484
1485 restart_gr = 0;
1486 restart_fr = 0;
1487
1488 restart:
1489 u = find_unwind_entry (pc);
1490 if (!u)
1491 return pc;
1492
1493 /* If we are not at the beginning of a function, then return now. */
1494 if ((pc & ~0x3) != u->region_start)
1495 return pc;
1496
1497 /* This is how much of a frame adjustment we need to account for. */
1498 stack_remaining = u->Total_frame_size << 3;
1499
1500 /* Magic register saves we want to know about. */
1501 save_rp = u->Save_RP;
1502 save_sp = u->Save_SP;
1503
1504 /* An indication that args may be stored into the stack. Unfortunately
1505 the HPUX compilers tend to set this in cases where no args were
1506 stored too!. */
1507 args_stored = 1;
1508
1509 /* Turn the Entry_GR field into a bitmask. */
1510 save_gr = 0;
1511 for (i = 3; i < u->Entry_GR + 3; i++)
1512 {
1513 /* Frame pointer gets saved into a special location. */
1514 if (u->Save_SP && i == HPPA_FP_REGNUM)
1515 continue;
1516
1517 save_gr |= (1 << i);
1518 }
1519 save_gr &= ~restart_gr;
1520
1521 /* Turn the Entry_FR field into a bitmask too. */
1522 save_fr = 0;
1523 for (i = 12; i < u->Entry_FR + 12; i++)
1524 save_fr |= (1 << i);
1525 save_fr &= ~restart_fr;
1526
1527 final_iteration = 0;
1528
1529 /* Loop until we find everything of interest or hit a branch.
1530
1531 For unoptimized GCC code and for any HP CC code this will never ever
1532 examine any user instructions.
1533
1534 For optimzied GCC code we're faced with problems. GCC will schedule
1535 its prologue and make prologue instructions available for delay slot
1536 filling. The end result is user code gets mixed in with the prologue
1537 and a prologue instruction may be in the delay slot of the first branch
1538 or call.
1539
1540 Some unexpected things are expected with debugging optimized code, so
1541 we allow this routine to walk past user instructions in optimized
1542 GCC code. */
1543 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1544 || args_stored)
1545 {
1546 unsigned int reg_num;
1547 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1548 unsigned long old_save_rp, old_save_sp, next_inst;
1549
1550 /* Save copies of all the triggers so we can compare them later
1551 (only for HPC). */
1552 old_save_gr = save_gr;
1553 old_save_fr = save_fr;
1554 old_save_rp = save_rp;
1555 old_save_sp = save_sp;
1556 old_stack_remaining = stack_remaining;
1557
1558 status = target_read_memory (pc, buf, 4);
1559 inst = extract_unsigned_integer (buf, 4);
1560
1561 /* Yow! */
1562 if (status != 0)
1563 return pc;
1564
1565 /* Note the interesting effects of this instruction. */
1566 stack_remaining -= prologue_inst_adjust_sp (inst);
1567
1568 /* There are limited ways to store the return pointer into the
1569 stack. */
1570 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1571 save_rp = 0;
1572
1573 /* These are the only ways we save SP into the stack. At this time
1574 the HP compilers never bother to save SP into the stack. */
1575 if ((inst & 0xffffc000) == 0x6fc10000
1576 || (inst & 0xffffc00c) == 0x73c10008)
1577 save_sp = 0;
1578
1579 /* Are we loading some register with an offset from the argument
1580 pointer? */
1581 if ((inst & 0xffe00000) == 0x37a00000
1582 || (inst & 0xffffffe0) == 0x081d0240)
1583 {
1584 pc += 4;
1585 continue;
1586 }
1587
1588 /* Account for general and floating-point register saves. */
1589 reg_num = inst_saves_gr (inst);
1590 save_gr &= ~(1 << reg_num);
1591
1592 /* Ugh. Also account for argument stores into the stack.
1593 Unfortunately args_stored only tells us that some arguments
1594 where stored into the stack. Not how many or what kind!
1595
1596 This is a kludge as on the HP compiler sets this bit and it
1597 never does prologue scheduling. So once we see one, skip past
1598 all of them. We have similar code for the fp arg stores below.
1599
1600 FIXME. Can still die if we have a mix of GR and FR argument
1601 stores! */
1602 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1603 && reg_num <= 26)
1604 {
1605 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1606 && reg_num <= 26)
1607 {
1608 pc += 4;
1609 status = target_read_memory (pc, buf, 4);
1610 inst = extract_unsigned_integer (buf, 4);
1611 if (status != 0)
1612 return pc;
1613 reg_num = inst_saves_gr (inst);
1614 }
1615 args_stored = 0;
1616 continue;
1617 }
1618
1619 reg_num = inst_saves_fr (inst);
1620 save_fr &= ~(1 << reg_num);
1621
1622 status = target_read_memory (pc + 4, buf, 4);
1623 next_inst = extract_unsigned_integer (buf, 4);
1624
1625 /* Yow! */
1626 if (status != 0)
1627 return pc;
1628
1629 /* We've got to be read to handle the ldo before the fp register
1630 save. */
1631 if ((inst & 0xfc000000) == 0x34000000
1632 && inst_saves_fr (next_inst) >= 4
1633 && inst_saves_fr (next_inst)
1634 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1635 {
1636 /* So we drop into the code below in a reasonable state. */
1637 reg_num = inst_saves_fr (next_inst);
1638 pc -= 4;
1639 }
1640
1641 /* Ugh. Also account for argument stores into the stack.
1642 This is a kludge as on the HP compiler sets this bit and it
1643 never does prologue scheduling. So once we see one, skip past
1644 all of them. */
1645 if (reg_num >= 4
1646 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1647 {
1648 while (reg_num >= 4
1649 && reg_num
1650 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1651 {
1652 pc += 8;
1653 status = target_read_memory (pc, buf, 4);
1654 inst = extract_unsigned_integer (buf, 4);
1655 if (status != 0)
1656 return pc;
1657 if ((inst & 0xfc000000) != 0x34000000)
1658 break;
1659 status = target_read_memory (pc + 4, buf, 4);
1660 next_inst = extract_unsigned_integer (buf, 4);
1661 if (status != 0)
1662 return pc;
1663 reg_num = inst_saves_fr (next_inst);
1664 }
1665 args_stored = 0;
1666 continue;
1667 }
1668
1669 /* Quit if we hit any kind of branch. This can happen if a prologue
1670 instruction is in the delay slot of the first call/branch. */
1671 if (is_branch (inst) && stop_before_branch)
1672 break;
1673
1674 /* What a crock. The HP compilers set args_stored even if no
1675 arguments were stored into the stack (boo hiss). This could
1676 cause this code to then skip a bunch of user insns (up to the
1677 first branch).
1678
1679 To combat this we try to identify when args_stored was bogusly
1680 set and clear it. We only do this when args_stored is nonzero,
1681 all other resources are accounted for, and nothing changed on
1682 this pass. */
1683 if (args_stored
1684 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1685 && old_save_gr == save_gr && old_save_fr == save_fr
1686 && old_save_rp == save_rp && old_save_sp == save_sp
1687 && old_stack_remaining == stack_remaining)
1688 break;
1689
1690 /* Bump the PC. */
1691 pc += 4;
1692
1693 /* !stop_before_branch, so also look at the insn in the delay slot
1694 of the branch. */
1695 if (final_iteration)
1696 break;
1697 if (is_branch (inst))
1698 final_iteration = 1;
1699 }
1700
1701 /* We've got a tenative location for the end of the prologue. However
1702 because of limitations in the unwind descriptor mechanism we may
1703 have went too far into user code looking for the save of a register
1704 that does not exist. So, if there registers we expected to be saved
1705 but never were, mask them out and restart.
1706
1707 This should only happen in optimized code, and should be very rare. */
1708 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1709 {
1710 pc = orig_pc;
1711 restart_gr = save_gr;
1712 restart_fr = save_fr;
1713 goto restart;
1714 }
1715
1716 return pc;
1717 }
1718
1719
1720 /* Return the address of the PC after the last prologue instruction if
1721 we can determine it from the debug symbols. Else return zero. */
1722
1723 static CORE_ADDR
1724 after_prologue (CORE_ADDR pc)
1725 {
1726 struct symtab_and_line sal;
1727 CORE_ADDR func_addr, func_end;
1728 struct symbol *f;
1729
1730 /* If we can not find the symbol in the partial symbol table, then
1731 there is no hope we can determine the function's start address
1732 with this code. */
1733 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1734 return 0;
1735
1736 /* Get the line associated with FUNC_ADDR. */
1737 sal = find_pc_line (func_addr, 0);
1738
1739 /* There are only two cases to consider. First, the end of the source line
1740 is within the function bounds. In that case we return the end of the
1741 source line. Second is the end of the source line extends beyond the
1742 bounds of the current function. We need to use the slow code to
1743 examine instructions in that case.
1744
1745 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1746 the wrong thing to do. In fact, it should be entirely possible for this
1747 function to always return zero since the slow instruction scanning code
1748 is supposed to *always* work. If it does not, then it is a bug. */
1749 if (sal.end < func_end)
1750 return sal.end;
1751 else
1752 return 0;
1753 }
1754
1755 /* To skip prologues, I use this predicate. Returns either PC itself
1756 if the code at PC does not look like a function prologue; otherwise
1757 returns an address that (if we're lucky) follows the prologue.
1758
1759 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1760 It doesn't necessarily skips all the insns in the prologue. In fact
1761 we might not want to skip all the insns because a prologue insn may
1762 appear in the delay slot of the first branch, and we don't want to
1763 skip over the branch in that case. */
1764
1765 static CORE_ADDR
1766 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1767 {
1768 unsigned long inst;
1769 int offset;
1770 CORE_ADDR post_prologue_pc;
1771 char buf[4];
1772
1773 /* See if we can determine the end of the prologue via the symbol table.
1774 If so, then return either PC, or the PC after the prologue, whichever
1775 is greater. */
1776
1777 post_prologue_pc = after_prologue (pc);
1778
1779 /* If after_prologue returned a useful address, then use it. Else
1780 fall back on the instruction skipping code.
1781
1782 Some folks have claimed this causes problems because the breakpoint
1783 may be the first instruction of the prologue. If that happens, then
1784 the instruction skipping code has a bug that needs to be fixed. */
1785 if (post_prologue_pc != 0)
1786 return max (pc, post_prologue_pc);
1787 else
1788 return (skip_prologue_hard_way (gdbarch, pc, 1));
1789 }
1790
1791 /* Return an unwind entry that falls within the frame's code block. */
1792
1793 static struct unwind_table_entry *
1794 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1795 {
1796 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1797
1798 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1799 result of get_frame_address_in_block implies a problem.
1800 The bits should have been removed earlier, before the return
1801 value of frame_pc_unwind. That might be happening already;
1802 if it isn't, it should be fixed. Then this call can be
1803 removed. */
1804 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1805 return find_unwind_entry (pc);
1806 }
1807
1808 struct hppa_frame_cache
1809 {
1810 CORE_ADDR base;
1811 struct trad_frame_saved_reg *saved_regs;
1812 };
1813
1814 static struct hppa_frame_cache *
1815 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1816 {
1817 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1818 struct hppa_frame_cache *cache;
1819 long saved_gr_mask;
1820 long saved_fr_mask;
1821 CORE_ADDR this_sp;
1822 long frame_size;
1823 struct unwind_table_entry *u;
1824 CORE_ADDR prologue_end;
1825 int fp_in_r1 = 0;
1826 int i;
1827
1828 if (hppa_debug)
1829 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1830 frame_relative_level(this_frame));
1831
1832 if ((*this_cache) != NULL)
1833 {
1834 if (hppa_debug)
1835 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1836 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1837 return (*this_cache);
1838 }
1839 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1840 (*this_cache) = cache;
1841 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1842
1843 /* Yow! */
1844 u = hppa_find_unwind_entry_in_block (this_frame);
1845 if (!u)
1846 {
1847 if (hppa_debug)
1848 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1849 return (*this_cache);
1850 }
1851
1852 /* Turn the Entry_GR field into a bitmask. */
1853 saved_gr_mask = 0;
1854 for (i = 3; i < u->Entry_GR + 3; i++)
1855 {
1856 /* Frame pointer gets saved into a special location. */
1857 if (u->Save_SP && i == HPPA_FP_REGNUM)
1858 continue;
1859
1860 saved_gr_mask |= (1 << i);
1861 }
1862
1863 /* Turn the Entry_FR field into a bitmask too. */
1864 saved_fr_mask = 0;
1865 for (i = 12; i < u->Entry_FR + 12; i++)
1866 saved_fr_mask |= (1 << i);
1867
1868 /* Loop until we find everything of interest or hit a branch.
1869
1870 For unoptimized GCC code and for any HP CC code this will never ever
1871 examine any user instructions.
1872
1873 For optimized GCC code we're faced with problems. GCC will schedule
1874 its prologue and make prologue instructions available for delay slot
1875 filling. The end result is user code gets mixed in with the prologue
1876 and a prologue instruction may be in the delay slot of the first branch
1877 or call.
1878
1879 Some unexpected things are expected with debugging optimized code, so
1880 we allow this routine to walk past user instructions in optimized
1881 GCC code. */
1882 {
1883 int final_iteration = 0;
1884 CORE_ADDR pc, start_pc, end_pc;
1885 int looking_for_sp = u->Save_SP;
1886 int looking_for_rp = u->Save_RP;
1887 int fp_loc = -1;
1888
1889 /* We have to use skip_prologue_hard_way instead of just
1890 skip_prologue_using_sal, in case we stepped into a function without
1891 symbol information. hppa_skip_prologue also bounds the returned
1892 pc by the passed in pc, so it will not return a pc in the next
1893 function.
1894
1895 We used to call hppa_skip_prologue to find the end of the prologue,
1896 but if some non-prologue instructions get scheduled into the prologue,
1897 and the program is compiled with debug information, the "easy" way
1898 in hppa_skip_prologue will return a prologue end that is too early
1899 for us to notice any potential frame adjustments. */
1900
1901 /* We used to use get_frame_func to locate the beginning of the
1902 function to pass to skip_prologue. However, when objects are
1903 compiled without debug symbols, get_frame_func can return the wrong
1904 function (or 0). We can do better than that by using unwind records.
1905 This only works if the Region_description of the unwind record
1906 indicates that it includes the entry point of the function.
1907 HP compilers sometimes generate unwind records for regions that
1908 do not include the entry or exit point of a function. GNU tools
1909 do not do this. */
1910
1911 if ((u->Region_description & 0x2) == 0)
1912 start_pc = u->region_start;
1913 else
1914 start_pc = get_frame_func (this_frame);
1915
1916 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1917 end_pc = get_frame_pc (this_frame);
1918
1919 if (prologue_end != 0 && end_pc > prologue_end)
1920 end_pc = prologue_end;
1921
1922 frame_size = 0;
1923
1924 for (pc = start_pc;
1925 ((saved_gr_mask || saved_fr_mask
1926 || looking_for_sp || looking_for_rp
1927 || frame_size < (u->Total_frame_size << 3))
1928 && pc < end_pc);
1929 pc += 4)
1930 {
1931 int reg;
1932 char buf4[4];
1933 long inst;
1934
1935 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1936 {
1937 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1938 return (*this_cache);
1939 }
1940
1941 inst = extract_unsigned_integer (buf4, sizeof buf4);
1942
1943 /* Note the interesting effects of this instruction. */
1944 frame_size += prologue_inst_adjust_sp (inst);
1945
1946 /* There are limited ways to store the return pointer into the
1947 stack. */
1948 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1949 {
1950 looking_for_rp = 0;
1951 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1952 }
1953 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1954 {
1955 looking_for_rp = 0;
1956 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1957 }
1958 else if (inst == 0x0fc212c1
1959 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1960 {
1961 looking_for_rp = 0;
1962 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1963 }
1964
1965 /* Check to see if we saved SP into the stack. This also
1966 happens to indicate the location of the saved frame
1967 pointer. */
1968 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1969 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1970 {
1971 looking_for_sp = 0;
1972 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1973 }
1974 else if (inst == 0x08030241) /* copy %r3, %r1 */
1975 {
1976 fp_in_r1 = 1;
1977 }
1978
1979 /* Account for general and floating-point register saves. */
1980 reg = inst_saves_gr (inst);
1981 if (reg >= 3 && reg <= 18
1982 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1983 {
1984 saved_gr_mask &= ~(1 << reg);
1985 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1986 /* stwm with a positive displacement is a _post_
1987 _modify_. */
1988 cache->saved_regs[reg].addr = 0;
1989 else if ((inst & 0xfc00000c) == 0x70000008)
1990 /* A std has explicit post_modify forms. */
1991 cache->saved_regs[reg].addr = 0;
1992 else
1993 {
1994 CORE_ADDR offset;
1995
1996 if ((inst >> 26) == 0x1c)
1997 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1998 else if ((inst >> 26) == 0x03)
1999 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2000 else
2001 offset = hppa_extract_14 (inst);
2002
2003 /* Handle code with and without frame pointers. */
2004 if (u->Save_SP)
2005 cache->saved_regs[reg].addr = offset;
2006 else
2007 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2008 }
2009 }
2010
2011 /* GCC handles callee saved FP regs a little differently.
2012
2013 It emits an instruction to put the value of the start of
2014 the FP store area into %r1. It then uses fstds,ma with a
2015 basereg of %r1 for the stores.
2016
2017 HP CC emits them at the current stack pointer modifying the
2018 stack pointer as it stores each register. */
2019
2020 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2021 if ((inst & 0xffffc000) == 0x34610000
2022 || (inst & 0xffffc000) == 0x37c10000)
2023 fp_loc = hppa_extract_14 (inst);
2024
2025 reg = inst_saves_fr (inst);
2026 if (reg >= 12 && reg <= 21)
2027 {
2028 /* Note +4 braindamage below is necessary because the FP
2029 status registers are internally 8 registers rather than
2030 the expected 4 registers. */
2031 saved_fr_mask &= ~(1 << reg);
2032 if (fp_loc == -1)
2033 {
2034 /* 1st HP CC FP register store. After this
2035 instruction we've set enough state that the GCC and
2036 HPCC code are both handled in the same manner. */
2037 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2038 fp_loc = 8;
2039 }
2040 else
2041 {
2042 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2043 fp_loc += 8;
2044 }
2045 }
2046
2047 /* Quit if we hit any kind of branch the previous iteration. */
2048 if (final_iteration)
2049 break;
2050 /* We want to look precisely one instruction beyond the branch
2051 if we have not found everything yet. */
2052 if (is_branch (inst))
2053 final_iteration = 1;
2054 }
2055 }
2056
2057 {
2058 /* The frame base always represents the value of %sp at entry to
2059 the current function (and is thus equivalent to the "saved"
2060 stack pointer. */
2061 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2062 HPPA_SP_REGNUM);
2063 CORE_ADDR fp;
2064
2065 if (hppa_debug)
2066 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2067 "prologue_end=0x%s) ",
2068 paddr_nz (this_sp),
2069 paddr_nz (get_frame_pc (this_frame)),
2070 paddr_nz (prologue_end));
2071
2072 /* Check to see if a frame pointer is available, and use it for
2073 frame unwinding if it is.
2074
2075 There are some situations where we need to rely on the frame
2076 pointer to do stack unwinding. For example, if a function calls
2077 alloca (), the stack pointer can get adjusted inside the body of
2078 the function. In this case, the ABI requires that the compiler
2079 maintain a frame pointer for the function.
2080
2081 The unwind record has a flag (alloca_frame) that indicates that
2082 a function has a variable frame; unfortunately, gcc/binutils
2083 does not set this flag. Instead, whenever a frame pointer is used
2084 and saved on the stack, the Save_SP flag is set. We use this to
2085 decide whether to use the frame pointer for unwinding.
2086
2087 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2088 instead of Save_SP. */
2089
2090 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2091
2092 if (u->alloca_frame)
2093 fp -= u->Total_frame_size << 3;
2094
2095 if (get_frame_pc (this_frame) >= prologue_end
2096 && (u->Save_SP || u->alloca_frame) && fp != 0)
2097 {
2098 cache->base = fp;
2099
2100 if (hppa_debug)
2101 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2102 paddr_nz (cache->base));
2103 }
2104 else if (u->Save_SP
2105 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2106 {
2107 /* Both we're expecting the SP to be saved and the SP has been
2108 saved. The entry SP value is saved at this frame's SP
2109 address. */
2110 cache->base = read_memory_integer
2111 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2112
2113 if (hppa_debug)
2114 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2115 paddr_nz (cache->base));
2116 }
2117 else
2118 {
2119 /* The prologue has been slowly allocating stack space. Adjust
2120 the SP back. */
2121 cache->base = this_sp - frame_size;
2122 if (hppa_debug)
2123 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2124 paddr_nz (cache->base));
2125
2126 }
2127 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2128 }
2129
2130 /* The PC is found in the "return register", "Millicode" uses "r31"
2131 as the return register while normal code uses "rp". */
2132 if (u->Millicode)
2133 {
2134 if (trad_frame_addr_p (cache->saved_regs, 31))
2135 {
2136 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2137 if (hppa_debug)
2138 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2139 }
2140 else
2141 {
2142 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2143 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2144 if (hppa_debug)
2145 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2146 }
2147 }
2148 else
2149 {
2150 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2151 {
2152 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2153 cache->saved_regs[HPPA_RP_REGNUM];
2154 if (hppa_debug)
2155 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2156 }
2157 else
2158 {
2159 ULONGEST rp = get_frame_register_unsigned (this_frame,
2160 HPPA_RP_REGNUM);
2161 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2162 if (hppa_debug)
2163 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2164 }
2165 }
2166
2167 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2168 frame. However, there is a one-insn window where we haven't saved it
2169 yet, but we've already clobbered it. Detect this case and fix it up.
2170
2171 The prologue sequence for frame-pointer functions is:
2172 0: stw %rp, -20(%sp)
2173 4: copy %r3, %r1
2174 8: copy %sp, %r3
2175 c: stw,ma %r1, XX(%sp)
2176
2177 So if we are at offset c, the r3 value that we want is not yet saved
2178 on the stack, but it's been overwritten. The prologue analyzer will
2179 set fp_in_r1 when it sees the copy insn so we know to get the value
2180 from r1 instead. */
2181 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2182 && fp_in_r1)
2183 {
2184 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2185 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2186 }
2187
2188 {
2189 /* Convert all the offsets into addresses. */
2190 int reg;
2191 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2192 {
2193 if (trad_frame_addr_p (cache->saved_regs, reg))
2194 cache->saved_regs[reg].addr += cache->base;
2195 }
2196 }
2197
2198 {
2199 struct gdbarch_tdep *tdep;
2200
2201 tdep = gdbarch_tdep (gdbarch);
2202
2203 if (tdep->unwind_adjust_stub)
2204 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2205 }
2206
2207 if (hppa_debug)
2208 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2209 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2210 return (*this_cache);
2211 }
2212
2213 static void
2214 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2215 struct frame_id *this_id)
2216 {
2217 struct hppa_frame_cache *info;
2218 CORE_ADDR pc = get_frame_pc (this_frame);
2219 struct unwind_table_entry *u;
2220
2221 info = hppa_frame_cache (this_frame, this_cache);
2222 u = hppa_find_unwind_entry_in_block (this_frame);
2223
2224 (*this_id) = frame_id_build (info->base, u->region_start);
2225 }
2226
2227 static struct value *
2228 hppa_frame_prev_register (struct frame_info *this_frame,
2229 void **this_cache, int regnum)
2230 {
2231 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2232
2233 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2234 }
2235
2236 static int
2237 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2238 struct frame_info *this_frame, void **this_cache)
2239 {
2240 if (hppa_find_unwind_entry_in_block (this_frame))
2241 return 1;
2242
2243 return 0;
2244 }
2245
2246 static const struct frame_unwind hppa_frame_unwind =
2247 {
2248 NORMAL_FRAME,
2249 hppa_frame_this_id,
2250 hppa_frame_prev_register,
2251 NULL,
2252 hppa_frame_unwind_sniffer
2253 };
2254
2255 /* This is a generic fallback frame unwinder that kicks in if we fail all
2256 the other ones. Normally we would expect the stub and regular unwinder
2257 to work, but in some cases we might hit a function that just doesn't
2258 have any unwind information available. In this case we try to do
2259 unwinding solely based on code reading. This is obviously going to be
2260 slow, so only use this as a last resort. Currently this will only
2261 identify the stack and pc for the frame. */
2262
2263 static struct hppa_frame_cache *
2264 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2265 {
2266 struct hppa_frame_cache *cache;
2267 unsigned int frame_size = 0;
2268 int found_rp = 0;
2269 CORE_ADDR start_pc;
2270
2271 if (hppa_debug)
2272 fprintf_unfiltered (gdb_stdlog,
2273 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2274 frame_relative_level (this_frame));
2275
2276 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2277 (*this_cache) = cache;
2278 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2279
2280 start_pc = get_frame_func (this_frame);
2281 if (start_pc)
2282 {
2283 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2284 CORE_ADDR pc;
2285
2286 for (pc = start_pc; pc < cur_pc; pc += 4)
2287 {
2288 unsigned int insn;
2289
2290 insn = read_memory_unsigned_integer (pc, 4);
2291 frame_size += prologue_inst_adjust_sp (insn);
2292
2293 /* There are limited ways to store the return pointer into the
2294 stack. */
2295 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2296 {
2297 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2298 found_rp = 1;
2299 }
2300 else if (insn == 0x0fc212c1
2301 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2302 {
2303 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2304 found_rp = 1;
2305 }
2306 }
2307 }
2308
2309 if (hppa_debug)
2310 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2311 frame_size, found_rp);
2312
2313 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2314 cache->base -= frame_size;
2315 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2316
2317 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2318 {
2319 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2320 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2321 cache->saved_regs[HPPA_RP_REGNUM];
2322 }
2323 else
2324 {
2325 ULONGEST rp;
2326 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2327 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2328 }
2329
2330 return cache;
2331 }
2332
2333 static void
2334 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2335 struct frame_id *this_id)
2336 {
2337 struct hppa_frame_cache *info =
2338 hppa_fallback_frame_cache (this_frame, this_cache);
2339
2340 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2341 }
2342
2343 static struct value *
2344 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2345 void **this_cache, int regnum)
2346 {
2347 struct hppa_frame_cache *info =
2348 hppa_fallback_frame_cache (this_frame, this_cache);
2349
2350 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2351 }
2352
2353 static const struct frame_unwind hppa_fallback_frame_unwind =
2354 {
2355 NORMAL_FRAME,
2356 hppa_fallback_frame_this_id,
2357 hppa_fallback_frame_prev_register,
2358 NULL,
2359 default_frame_sniffer
2360 };
2361
2362 /* Stub frames, used for all kinds of call stubs. */
2363 struct hppa_stub_unwind_cache
2364 {
2365 CORE_ADDR base;
2366 struct trad_frame_saved_reg *saved_regs;
2367 };
2368
2369 static struct hppa_stub_unwind_cache *
2370 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2371 void **this_cache)
2372 {
2373 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2374 struct hppa_stub_unwind_cache *info;
2375 struct unwind_table_entry *u;
2376
2377 if (*this_cache)
2378 return *this_cache;
2379
2380 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2381 *this_cache = info;
2382 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2383
2384 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2385
2386 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2387 {
2388 /* HPUX uses export stubs in function calls; the export stub clobbers
2389 the return value of the caller, and, later restores it from the
2390 stack. */
2391 u = find_unwind_entry (get_frame_pc (this_frame));
2392
2393 if (u && u->stub_unwind.stub_type == EXPORT)
2394 {
2395 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2396
2397 return info;
2398 }
2399 }
2400
2401 /* By default we assume that stubs do not change the rp. */
2402 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2403
2404 return info;
2405 }
2406
2407 static void
2408 hppa_stub_frame_this_id (struct frame_info *this_frame,
2409 void **this_prologue_cache,
2410 struct frame_id *this_id)
2411 {
2412 struct hppa_stub_unwind_cache *info
2413 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2414
2415 if (info)
2416 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2417 else
2418 *this_id = null_frame_id;
2419 }
2420
2421 static struct value *
2422 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2423 void **this_prologue_cache, int regnum)
2424 {
2425 struct hppa_stub_unwind_cache *info
2426 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2427
2428 if (info == NULL)
2429 error (_("Requesting registers from null frame."));
2430
2431 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2432 }
2433
2434 static int
2435 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2436 struct frame_info *this_frame,
2437 void **this_cache)
2438 {
2439 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2440 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2441 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2442
2443 if (pc == 0
2444 || (tdep->in_solib_call_trampoline != NULL
2445 && tdep->in_solib_call_trampoline (pc, NULL))
2446 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2447 return 1;
2448 return 0;
2449 }
2450
2451 static const struct frame_unwind hppa_stub_frame_unwind = {
2452 NORMAL_FRAME,
2453 hppa_stub_frame_this_id,
2454 hppa_stub_frame_prev_register,
2455 NULL,
2456 hppa_stub_unwind_sniffer
2457 };
2458
2459 static struct frame_id
2460 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2461 {
2462 return frame_id_build (get_frame_register_unsigned (this_frame,
2463 HPPA_SP_REGNUM),
2464 get_frame_pc (this_frame));
2465 }
2466
2467 CORE_ADDR
2468 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2469 {
2470 ULONGEST ipsw;
2471 CORE_ADDR pc;
2472
2473 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2474 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2475
2476 /* If the current instruction is nullified, then we are effectively
2477 still executing the previous instruction. Pretend we are still
2478 there. This is needed when single stepping; if the nullified
2479 instruction is on a different line, we don't want GDB to think
2480 we've stepped onto that line. */
2481 if (ipsw & 0x00200000)
2482 pc -= 4;
2483
2484 return pc & ~0x3;
2485 }
2486
2487 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2488 Return NULL if no such symbol was found. */
2489
2490 struct minimal_symbol *
2491 hppa_lookup_stub_minimal_symbol (const char *name,
2492 enum unwind_stub_types stub_type)
2493 {
2494 struct objfile *objfile;
2495 struct minimal_symbol *msym;
2496
2497 ALL_MSYMBOLS (objfile, msym)
2498 {
2499 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2500 {
2501 struct unwind_table_entry *u;
2502
2503 u = find_unwind_entry (SYMBOL_VALUE (msym));
2504 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2505 return msym;
2506 }
2507 }
2508
2509 return NULL;
2510 }
2511
2512 static void
2513 unwind_command (char *exp, int from_tty)
2514 {
2515 CORE_ADDR address;
2516 struct unwind_table_entry *u;
2517
2518 /* If we have an expression, evaluate it and use it as the address. */
2519
2520 if (exp != 0 && *exp != 0)
2521 address = parse_and_eval_address (exp);
2522 else
2523 return;
2524
2525 u = find_unwind_entry (address);
2526
2527 if (!u)
2528 {
2529 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2530 return;
2531 }
2532
2533 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2534
2535 printf_unfiltered ("\tregion_start = ");
2536 print_address (u->region_start, gdb_stdout);
2537 gdb_flush (gdb_stdout);
2538
2539 printf_unfiltered ("\n\tregion_end = ");
2540 print_address (u->region_end, gdb_stdout);
2541 gdb_flush (gdb_stdout);
2542
2543 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2544
2545 printf_unfiltered ("\n\tflags =");
2546 pif (Cannot_unwind);
2547 pif (Millicode);
2548 pif (Millicode_save_sr0);
2549 pif (Entry_SR);
2550 pif (Args_stored);
2551 pif (Variable_Frame);
2552 pif (Separate_Package_Body);
2553 pif (Frame_Extension_Millicode);
2554 pif (Stack_Overflow_Check);
2555 pif (Two_Instruction_SP_Increment);
2556 pif (sr4export);
2557 pif (cxx_info);
2558 pif (cxx_try_catch);
2559 pif (sched_entry_seq);
2560 pif (Save_SP);
2561 pif (Save_RP);
2562 pif (Save_MRP_in_frame);
2563 pif (save_r19);
2564 pif (Cleanup_defined);
2565 pif (MPE_XL_interrupt_marker);
2566 pif (HP_UX_interrupt_marker);
2567 pif (Large_frame);
2568 pif (alloca_frame);
2569
2570 putchar_unfiltered ('\n');
2571
2572 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2573
2574 pin (Region_description);
2575 pin (Entry_FR);
2576 pin (Entry_GR);
2577 pin (Total_frame_size);
2578
2579 if (u->stub_unwind.stub_type)
2580 {
2581 printf_unfiltered ("\tstub type = ");
2582 switch (u->stub_unwind.stub_type)
2583 {
2584 case LONG_BRANCH:
2585 printf_unfiltered ("long branch\n");
2586 break;
2587 case PARAMETER_RELOCATION:
2588 printf_unfiltered ("parameter relocation\n");
2589 break;
2590 case EXPORT:
2591 printf_unfiltered ("export\n");
2592 break;
2593 case IMPORT:
2594 printf_unfiltered ("import\n");
2595 break;
2596 case IMPORT_SHLIB:
2597 printf_unfiltered ("import shlib\n");
2598 break;
2599 default:
2600 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2601 }
2602 }
2603 }
2604
2605 /* Return the GDB type object for the "standard" data type of data in
2606 register REGNUM. */
2607
2608 static struct type *
2609 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2610 {
2611 if (regnum < HPPA_FP4_REGNUM)
2612 return builtin_type_uint32;
2613 else
2614 return builtin_type_ieee_single;
2615 }
2616
2617 static struct type *
2618 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2619 {
2620 if (regnum < HPPA64_FP4_REGNUM)
2621 return builtin_type_uint64;
2622 else
2623 return builtin_type_ieee_double;
2624 }
2625
2626 /* Return non-zero if REGNUM is not a register available to the user
2627 through ptrace/ttrace. */
2628
2629 static int
2630 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2631 {
2632 return (regnum == 0
2633 || regnum == HPPA_PCSQ_HEAD_REGNUM
2634 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2635 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2636 }
2637
2638 static int
2639 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2640 {
2641 /* cr26 and cr27 are readable (but not writable) from userspace. */
2642 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2643 return 0;
2644 else
2645 return hppa32_cannot_store_register (gdbarch, regnum);
2646 }
2647
2648 static int
2649 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2650 {
2651 return (regnum == 0
2652 || regnum == HPPA_PCSQ_HEAD_REGNUM
2653 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2654 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2655 }
2656
2657 static int
2658 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2659 {
2660 /* cr26 and cr27 are readable (but not writable) from userspace. */
2661 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2662 return 0;
2663 else
2664 return hppa64_cannot_store_register (gdbarch, regnum);
2665 }
2666
2667 static CORE_ADDR
2668 hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr)
2669 {
2670 /* The low two bits of the PC on the PA contain the privilege level.
2671 Some genius implementing a (non-GCC) compiler apparently decided
2672 this means that "addresses" in a text section therefore include a
2673 privilege level, and thus symbol tables should contain these bits.
2674 This seems like a bonehead thing to do--anyway, it seems to work
2675 for our purposes to just ignore those bits. */
2676
2677 return (addr &= ~0x3);
2678 }
2679
2680 /* Get the ARGIth function argument for the current function. */
2681
2682 static CORE_ADDR
2683 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2684 struct type *type)
2685 {
2686 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2687 }
2688
2689 static void
2690 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2691 int regnum, gdb_byte *buf)
2692 {
2693 ULONGEST tmp;
2694
2695 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2696 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2697 tmp &= ~0x3;
2698 store_unsigned_integer (buf, sizeof tmp, tmp);
2699 }
2700
2701 static CORE_ADDR
2702 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2703 {
2704 return 0;
2705 }
2706
2707 struct value *
2708 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2709 struct trad_frame_saved_reg saved_regs[],
2710 int regnum)
2711 {
2712 struct gdbarch *arch = get_frame_arch (this_frame);
2713
2714 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2715 {
2716 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2717 CORE_ADDR pc;
2718 struct value *pcoq_val =
2719 trad_frame_get_prev_register (this_frame, saved_regs,
2720 HPPA_PCOQ_HEAD_REGNUM);
2721
2722 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2723 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2724 }
2725
2726 /* Make sure the "flags" register is zero in all unwound frames.
2727 The "flags" registers is a HP-UX specific wart, and only the code
2728 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2729 with it here. This shouldn't affect other systems since those
2730 should provide zero for the "flags" register anyway. */
2731 if (regnum == HPPA_FLAGS_REGNUM)
2732 return frame_unwind_got_constant (this_frame, regnum, 0);
2733
2734 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2735 }
2736 \f
2737
2738 /* An instruction to match. */
2739 struct insn_pattern
2740 {
2741 unsigned int data; /* See if it matches this.... */
2742 unsigned int mask; /* ... with this mask. */
2743 };
2744
2745 /* See bfd/elf32-hppa.c */
2746 static struct insn_pattern hppa_long_branch_stub[] = {
2747 /* ldil LR'xxx,%r1 */
2748 { 0x20200000, 0xffe00000 },
2749 /* be,n RR'xxx(%sr4,%r1) */
2750 { 0xe0202002, 0xffe02002 },
2751 { 0, 0 }
2752 };
2753
2754 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2755 /* b,l .+8, %r1 */
2756 { 0xe8200000, 0xffe00000 },
2757 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2758 { 0x28200000, 0xffe00000 },
2759 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2760 { 0xe0202002, 0xffe02002 },
2761 { 0, 0 }
2762 };
2763
2764 static struct insn_pattern hppa_import_stub[] = {
2765 /* addil LR'xxx, %dp */
2766 { 0x2b600000, 0xffe00000 },
2767 /* ldw RR'xxx(%r1), %r21 */
2768 { 0x48350000, 0xffffb000 },
2769 /* bv %r0(%r21) */
2770 { 0xeaa0c000, 0xffffffff },
2771 /* ldw RR'xxx+4(%r1), %r19 */
2772 { 0x48330000, 0xffffb000 },
2773 { 0, 0 }
2774 };
2775
2776 static struct insn_pattern hppa_import_pic_stub[] = {
2777 /* addil LR'xxx,%r19 */
2778 { 0x2a600000, 0xffe00000 },
2779 /* ldw RR'xxx(%r1),%r21 */
2780 { 0x48350000, 0xffffb000 },
2781 /* bv %r0(%r21) */
2782 { 0xeaa0c000, 0xffffffff },
2783 /* ldw RR'xxx+4(%r1),%r19 */
2784 { 0x48330000, 0xffffb000 },
2785 { 0, 0 },
2786 };
2787
2788 static struct insn_pattern hppa_plt_stub[] = {
2789 /* b,l 1b, %r20 - 1b is 3 insns before here */
2790 { 0xea9f1fdd, 0xffffffff },
2791 /* depi 0,31,2,%r20 */
2792 { 0xd6801c1e, 0xffffffff },
2793 { 0, 0 }
2794 };
2795
2796 static struct insn_pattern hppa_sigtramp[] = {
2797 /* ldi 0, %r25 or ldi 1, %r25 */
2798 { 0x34190000, 0xfffffffd },
2799 /* ldi __NR_rt_sigreturn, %r20 */
2800 { 0x3414015a, 0xffffffff },
2801 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2802 { 0xe4008200, 0xffffffff },
2803 /* nop */
2804 { 0x08000240, 0xffffffff },
2805 { 0, 0 }
2806 };
2807
2808 /* Maximum number of instructions on the patterns above. */
2809 #define HPPA_MAX_INSN_PATTERN_LEN 4
2810
2811 /* Return non-zero if the instructions at PC match the series
2812 described in PATTERN, or zero otherwise. PATTERN is an array of
2813 'struct insn_pattern' objects, terminated by an entry whose mask is
2814 zero.
2815
2816 When the match is successful, fill INSN[i] with what PATTERN[i]
2817 matched. */
2818
2819 static int
2820 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2821 unsigned int *insn)
2822 {
2823 CORE_ADDR npc = pc;
2824 int i;
2825
2826 for (i = 0; pattern[i].mask; i++)
2827 {
2828 gdb_byte buf[HPPA_INSN_SIZE];
2829
2830 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2831 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2832 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2833 npc += 4;
2834 else
2835 return 0;
2836 }
2837
2838 return 1;
2839 }
2840
2841 /* This relaxed version of the insstruction matcher allows us to match
2842 from somewhere inside the pattern, by looking backwards in the
2843 instruction scheme. */
2844
2845 static int
2846 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2847 unsigned int *insn)
2848 {
2849 int offset, len = 0;
2850
2851 while (pattern[len].mask)
2852 len++;
2853
2854 for (offset = 0; offset < len; offset++)
2855 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2856 return 1;
2857
2858 return 0;
2859 }
2860
2861 static int
2862 hppa_in_dyncall (CORE_ADDR pc)
2863 {
2864 struct unwind_table_entry *u;
2865
2866 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2867 if (!u)
2868 return 0;
2869
2870 return (pc >= u->region_start && pc <= u->region_end);
2871 }
2872
2873 int
2874 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2875 {
2876 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2877 struct unwind_table_entry *u;
2878
2879 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2880 return 1;
2881
2882 /* The GNU toolchain produces linker stubs without unwind
2883 information. Since the pattern matching for linker stubs can be
2884 quite slow, so bail out if we do have an unwind entry. */
2885
2886 u = find_unwind_entry (pc);
2887 if (u != NULL)
2888 return 0;
2889
2890 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2891 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2892 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2893 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2894 }
2895
2896 /* This code skips several kind of "trampolines" used on PA-RISC
2897 systems: $$dyncall, import stubs and PLT stubs. */
2898
2899 CORE_ADDR
2900 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2901 {
2902 struct gdbarch *gdbarch = get_frame_arch (frame);
2903 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2904
2905 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2906 int dp_rel;
2907
2908 /* $$dyncall handles both PLABELs and direct addresses. */
2909 if (hppa_in_dyncall (pc))
2910 {
2911 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2912
2913 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2914 if (pc & 0x2)
2915 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2916
2917 return pc;
2918 }
2919
2920 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2921 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2922 {
2923 /* Extract the target address from the addil/ldw sequence. */
2924 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2925
2926 if (dp_rel)
2927 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2928 else
2929 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2930
2931 /* fallthrough */
2932 }
2933
2934 if (in_plt_section (pc, NULL))
2935 {
2936 pc = read_memory_typed_address (pc, func_ptr_type);
2937
2938 /* If the PLT slot has not yet been resolved, the target will be
2939 the PLT stub. */
2940 if (in_plt_section (pc, NULL))
2941 {
2942 /* Sanity check: are we pointing to the PLT stub? */
2943 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2944 {
2945 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2946 return 0;
2947 }
2948
2949 /* This should point to the fixup routine. */
2950 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2951 }
2952 }
2953
2954 return pc;
2955 }
2956 \f
2957
2958 /* Here is a table of C type sizes on hppa with various compiles
2959 and options. I measured this on PA 9000/800 with HP-UX 11.11
2960 and these compilers:
2961
2962 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2963 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2964 /opt/aCC/bin/aCC B3910B A.03.45
2965 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2966
2967 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2968 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2969 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2970 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2971 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2972 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2973 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2974 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2975
2976 Each line is:
2977
2978 compiler and options
2979 char, short, int, long, long long
2980 float, double, long double
2981 char *, void (*)()
2982
2983 So all these compilers use either ILP32 or LP64 model.
2984 TODO: gcc has more options so it needs more investigation.
2985
2986 For floating point types, see:
2987
2988 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2989 HP-UX floating-point guide, hpux 11.00
2990
2991 -- chastain 2003-12-18 */
2992
2993 static struct gdbarch *
2994 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2995 {
2996 struct gdbarch_tdep *tdep;
2997 struct gdbarch *gdbarch;
2998
2999 /* Try to determine the ABI of the object we are loading. */
3000 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3001 {
3002 /* If it's a SOM file, assume it's HP/UX SOM. */
3003 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3004 info.osabi = GDB_OSABI_HPUX_SOM;
3005 }
3006
3007 /* find a candidate among the list of pre-declared architectures. */
3008 arches = gdbarch_list_lookup_by_info (arches, &info);
3009 if (arches != NULL)
3010 return (arches->gdbarch);
3011
3012 /* If none found, then allocate and initialize one. */
3013 tdep = XZALLOC (struct gdbarch_tdep);
3014 gdbarch = gdbarch_alloc (&info, tdep);
3015
3016 /* Determine from the bfd_arch_info structure if we are dealing with
3017 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3018 then default to a 32bit machine. */
3019 if (info.bfd_arch_info != NULL)
3020 tdep->bytes_per_address =
3021 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3022 else
3023 tdep->bytes_per_address = 4;
3024
3025 tdep->find_global_pointer = hppa_find_global_pointer;
3026
3027 /* Some parts of the gdbarch vector depend on whether we are running
3028 on a 32 bits or 64 bits target. */
3029 switch (tdep->bytes_per_address)
3030 {
3031 case 4:
3032 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3033 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3034 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3035 set_gdbarch_cannot_store_register (gdbarch,
3036 hppa32_cannot_store_register);
3037 set_gdbarch_cannot_fetch_register (gdbarch,
3038 hppa32_cannot_fetch_register);
3039 break;
3040 case 8:
3041 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3042 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3043 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3044 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3045 set_gdbarch_cannot_store_register (gdbarch,
3046 hppa64_cannot_store_register);
3047 set_gdbarch_cannot_fetch_register (gdbarch,
3048 hppa64_cannot_fetch_register);
3049 break;
3050 default:
3051 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3052 tdep->bytes_per_address);
3053 }
3054
3055 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3056 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3057
3058 /* The following gdbarch vector elements are the same in both ILP32
3059 and LP64, but might show differences some day. */
3060 set_gdbarch_long_long_bit (gdbarch, 64);
3061 set_gdbarch_long_double_bit (gdbarch, 128);
3062 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3063
3064 /* The following gdbarch vector elements do not depend on the address
3065 size, or in any other gdbarch element previously set. */
3066 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3067 set_gdbarch_in_function_epilogue_p (gdbarch,
3068 hppa_in_function_epilogue_p);
3069 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3070 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3071 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3072 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3073 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3074 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3075 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3076 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3077
3078 /* Helper for function argument information. */
3079 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3080
3081 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3082
3083 /* When a hardware watchpoint triggers, we'll move the inferior past
3084 it by removing all eventpoints; stepping past the instruction
3085 that caused the trigger; reinserting eventpoints; and checking
3086 whether any watched location changed. */
3087 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3088
3089 /* Inferior function call methods. */
3090 switch (tdep->bytes_per_address)
3091 {
3092 case 4:
3093 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3094 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3095 set_gdbarch_convert_from_func_ptr_addr
3096 (gdbarch, hppa32_convert_from_func_ptr_addr);
3097 break;
3098 case 8:
3099 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3100 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3101 break;
3102 default:
3103 internal_error (__FILE__, __LINE__, _("bad switch"));
3104 }
3105
3106 /* Struct return methods. */
3107 switch (tdep->bytes_per_address)
3108 {
3109 case 4:
3110 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3111 break;
3112 case 8:
3113 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3114 break;
3115 default:
3116 internal_error (__FILE__, __LINE__, _("bad switch"));
3117 }
3118
3119 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3120 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3121
3122 /* Frame unwind methods. */
3123 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3124 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3125
3126 /* Hook in ABI-specific overrides, if they have been registered. */
3127 gdbarch_init_osabi (info, gdbarch);
3128
3129 /* Hook in the default unwinders. */
3130 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3131 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3132 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3133
3134 return gdbarch;
3135 }
3136
3137 static void
3138 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
3142 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3143 tdep->bytes_per_address);
3144 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3145 }
3146
3147 void
3148 _initialize_hppa_tdep (void)
3149 {
3150 struct cmd_list_element *c;
3151
3152 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3153
3154 hppa_objfile_priv_data = register_objfile_data ();
3155
3156 add_cmd ("unwind", class_maintenance, unwind_command,
3157 _("Print unwind table entry at given address."),
3158 &maintenanceprintlist);
3159
3160 /* Debug this files internals. */
3161 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3162 Set whether hppa target specific debugging information should be displayed."),
3163 _("\
3164 Show whether hppa target specific debugging information is displayed."), _("\
3165 This flag controls whether hppa target specific debugging information is\n\
3166 displayed. This information is particularly useful for debugging frame\n\
3167 unwinding problems."),
3168 NULL,
3169 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3170 &setdebuglist, &showdebuglist);
3171 }