d6fa71cbf12a565d9b93f018b23f8861dfd8b96a
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "bfd.h"
28 #include "inferior.h"
29 #include "value.h"
30 #include "regcache.h"
31
32 /* For argument passing to the inferior */
33 #include "symtab.h"
34
35 #ifdef USG
36 #include <sys/types.h>
37 #endif
38
39 #include <dl.h>
40 #include <sys/param.h>
41 #include <signal.h>
42
43 #include <sys/ptrace.h>
44 #include <machine/save_state.h>
45
46 #ifdef COFF_ENCAPSULATE
47 #include "a.out.encap.h"
48 #else
49 #endif
50
51 /*#include <sys/user.h> After a.out.h */
52 #include <sys/file.h>
53 #include "gdb_stat.h"
54 #include "gdb_wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 /* To support detection of the pseudo-initial frame
63 that threads have. */
64 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
65 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
66
67 static int extract_5_load (unsigned int);
68
69 static unsigned extract_5R_store (unsigned int);
70
71 static unsigned extract_5r_store (unsigned int);
72
73 static void find_dummy_frame_regs (struct frame_info *,
74 struct frame_saved_regs *);
75
76 static int find_proc_framesize (CORE_ADDR);
77
78 static int find_return_regnum (CORE_ADDR);
79
80 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
81
82 static int extract_17 (unsigned int);
83
84 static unsigned deposit_21 (unsigned int, unsigned int);
85
86 static int extract_21 (unsigned);
87
88 static unsigned deposit_14 (int, unsigned int);
89
90 static int extract_14 (unsigned);
91
92 static void unwind_command (char *, int);
93
94 static int low_sign_extend (unsigned int, unsigned int);
95
96 static int sign_extend (unsigned int, unsigned int);
97
98 static int restore_pc_queue (struct frame_saved_regs *);
99
100 static int hppa_alignof (struct type *);
101
102 /* To support multi-threading and stepping. */
103 int hppa_prepare_to_proceed ();
104
105 static int prologue_inst_adjust_sp (unsigned long);
106
107 static int is_branch (unsigned long);
108
109 static int inst_saves_gr (unsigned long);
110
111 static int inst_saves_fr (unsigned long);
112
113 static int pc_in_interrupt_handler (CORE_ADDR);
114
115 static int pc_in_linker_stub (CORE_ADDR);
116
117 static int compare_unwind_entries (const void *, const void *);
118
119 static void read_unwind_info (struct objfile *);
120
121 static void internalize_unwinds (struct objfile *,
122 struct unwind_table_entry *,
123 asection *, unsigned int,
124 unsigned int, CORE_ADDR);
125 static void pa_print_registers (char *, int, int);
126 static void pa_strcat_registers (char *, int, int, struct ui_file *);
127 static void pa_register_look_aside (char *, int, long *);
128 static void pa_print_fp_reg (int);
129 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
130 static void record_text_segment_lowaddr (bfd *, asection *, void *);
131
132 typedef struct
133 {
134 struct minimal_symbol *msym;
135 CORE_ADDR solib_handle;
136 CORE_ADDR return_val;
137 }
138 args_for_find_stub;
139
140 static int cover_find_stub_with_shl_get (PTR);
141
142 static int is_pa_2 = 0; /* False */
143
144 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
145 extern int hp_som_som_object_present;
146
147 /* In breakpoint.c */
148 extern int exception_catchpoints_are_fragile;
149
150 /* This is defined in valops.c. */
151 extern value_ptr find_function_in_inferior (char *);
152
153 /* Should call_function allocate stack space for a struct return? */
154 int
155 hppa_use_struct_convention (int gcc_p, struct type *type)
156 {
157 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
158 }
159 \f
160
161 /* Routines to extract various sized constants out of hppa
162 instructions. */
163
164 /* This assumes that no garbage lies outside of the lower bits of
165 value. */
166
167 static int
168 sign_extend (unsigned val, unsigned bits)
169 {
170 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
171 }
172
173 /* For many immediate values the sign bit is the low bit! */
174
175 static int
176 low_sign_extend (unsigned val, unsigned bits)
177 {
178 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
179 }
180
181 /* extract the immediate field from a ld{bhw}s instruction */
182
183 static int
184 extract_5_load (unsigned word)
185 {
186 return low_sign_extend (word >> 16 & MASK_5, 5);
187 }
188
189 /* extract the immediate field from a break instruction */
190
191 static unsigned
192 extract_5r_store (unsigned word)
193 {
194 return (word & MASK_5);
195 }
196
197 /* extract the immediate field from a {sr}sm instruction */
198
199 static unsigned
200 extract_5R_store (unsigned word)
201 {
202 return (word >> 16 & MASK_5);
203 }
204
205 /* extract a 14 bit immediate field */
206
207 static int
208 extract_14 (unsigned word)
209 {
210 return low_sign_extend (word & MASK_14, 14);
211 }
212
213 /* deposit a 14 bit constant in a word */
214
215 static unsigned
216 deposit_14 (int opnd, unsigned word)
217 {
218 unsigned sign = (opnd < 0 ? 1 : 0);
219
220 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
221 }
222
223 /* extract a 21 bit constant */
224
225 static int
226 extract_21 (unsigned word)
227 {
228 int val;
229
230 word &= MASK_21;
231 word <<= 11;
232 val = GET_FIELD (word, 20, 20);
233 val <<= 11;
234 val |= GET_FIELD (word, 9, 19);
235 val <<= 2;
236 val |= GET_FIELD (word, 5, 6);
237 val <<= 5;
238 val |= GET_FIELD (word, 0, 4);
239 val <<= 2;
240 val |= GET_FIELD (word, 7, 8);
241 return sign_extend (val, 21) << 11;
242 }
243
244 /* deposit a 21 bit constant in a word. Although 21 bit constants are
245 usually the top 21 bits of a 32 bit constant, we assume that only
246 the low 21 bits of opnd are relevant */
247
248 static unsigned
249 deposit_21 (unsigned opnd, unsigned word)
250 {
251 unsigned val = 0;
252
253 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
254 val <<= 2;
255 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
256 val <<= 2;
257 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
258 val <<= 11;
259 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
260 val <<= 1;
261 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
262 return word | val;
263 }
264
265 /* extract a 17 bit constant from branch instructions, returning the
266 19 bit signed value. */
267
268 static int
269 extract_17 (unsigned word)
270 {
271 return sign_extend (GET_FIELD (word, 19, 28) |
272 GET_FIELD (word, 29, 29) << 10 |
273 GET_FIELD (word, 11, 15) << 11 |
274 (word & 0x1) << 16, 17) << 2;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static CORE_ADDR low_text_segment_address;
297
298 static void
299 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
300 {
301 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)
302 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
303 && section->vma < low_text_segment_address)
304 low_text_segment_address = section->vma;
305 }
306
307 static void
308 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
309 asection *section, unsigned int entries, unsigned int size,
310 CORE_ADDR text_offset)
311 {
312 /* We will read the unwind entries into temporary memory, then
313 fill in the actual unwind table. */
314 if (size > 0)
315 {
316 unsigned long tmp;
317 unsigned i;
318 char *buf = alloca (size);
319
320 low_text_segment_address = -1;
321
322 /* If addresses are 64 bits wide, then unwinds are supposed to
323 be segment relative offsets instead of absolute addresses.
324
325 Note that when loading a shared library (text_offset != 0) the
326 unwinds are already relative to the text_offset that will be
327 passed in. */
328 if (TARGET_PTR_BIT == 64 && text_offset == 0)
329 {
330 bfd_map_over_sections (objfile->obfd,
331 record_text_segment_lowaddr, (PTR) NULL);
332
333 /* ?!? Mask off some low bits. Should this instead subtract
334 out the lowest section's filepos or something like that?
335 This looks very hokey to me. */
336 low_text_segment_address &= ~0xfff;
337 text_offset += low_text_segment_address;
338 }
339
340 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
341
342 /* Now internalize the information being careful to handle host/target
343 endian issues. */
344 for (i = 0; i < entries; i++)
345 {
346 table[i].region_start = bfd_get_32 (objfile->obfd,
347 (bfd_byte *) buf);
348 table[i].region_start += text_offset;
349 buf += 4;
350 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
351 table[i].region_end += text_offset;
352 buf += 4;
353 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 buf += 4;
355 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
356 table[i].Millicode = (tmp >> 30) & 0x1;
357 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
358 table[i].Region_description = (tmp >> 27) & 0x3;
359 table[i].reserved1 = (tmp >> 26) & 0x1;
360 table[i].Entry_SR = (tmp >> 25) & 0x1;
361 table[i].Entry_FR = (tmp >> 21) & 0xf;
362 table[i].Entry_GR = (tmp >> 16) & 0x1f;
363 table[i].Args_stored = (tmp >> 15) & 0x1;
364 table[i].Variable_Frame = (tmp >> 14) & 0x1;
365 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
366 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
367 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
368 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
369 table[i].Ada_Region = (tmp >> 9) & 0x1;
370 table[i].cxx_info = (tmp >> 8) & 0x1;
371 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
372 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
373 table[i].reserved2 = (tmp >> 5) & 0x1;
374 table[i].Save_SP = (tmp >> 4) & 0x1;
375 table[i].Save_RP = (tmp >> 3) & 0x1;
376 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
377 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
378 table[i].Cleanup_defined = tmp & 0x1;
379 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
380 buf += 4;
381 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
382 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
383 table[i].Large_frame = (tmp >> 29) & 0x1;
384 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
385 table[i].reserved4 = (tmp >> 27) & 0x1;
386 table[i].Total_frame_size = tmp & 0x7ffffff;
387
388 /* Stub unwinds are handled elsewhere. */
389 table[i].stub_unwind.stub_type = 0;
390 table[i].stub_unwind.padding = 0;
391 }
392 }
393 }
394
395 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
396 the object file. This info is used mainly by find_unwind_entry() to find
397 out the stack frame size and frame pointer used by procedures. We put
398 everything on the psymbol obstack in the objfile so that it automatically
399 gets freed when the objfile is destroyed. */
400
401 static void
402 read_unwind_info (struct objfile *objfile)
403 {
404 asection *unwind_sec, *stub_unwind_sec;
405 unsigned unwind_size, stub_unwind_size, total_size;
406 unsigned index, unwind_entries;
407 unsigned stub_entries, total_entries;
408 CORE_ADDR text_offset;
409 struct obj_unwind_info *ui;
410 obj_private_data_t *obj_private;
411
412 text_offset = ANOFFSET (objfile->section_offsets, 0);
413 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
414 sizeof (struct obj_unwind_info));
415
416 ui->table = NULL;
417 ui->cache = NULL;
418 ui->last = -1;
419
420 /* For reasons unknown the HP PA64 tools generate multiple unwinder
421 sections in a single executable. So we just iterate over every
422 section in the BFD looking for unwinder sections intead of trying
423 to do a lookup with bfd_get_section_by_name.
424
425 First determine the total size of the unwind tables so that we
426 can allocate memory in a nice big hunk. */
427 total_entries = 0;
428 for (unwind_sec = objfile->obfd->sections;
429 unwind_sec;
430 unwind_sec = unwind_sec->next)
431 {
432 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
433 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
434 {
435 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
436 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
437
438 total_entries += unwind_entries;
439 }
440 }
441
442 /* Now compute the size of the stub unwinds. Note the ELF tools do not
443 use stub unwinds at the curren time. */
444 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
445
446 if (stub_unwind_sec)
447 {
448 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
449 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
450 }
451 else
452 {
453 stub_unwind_size = 0;
454 stub_entries = 0;
455 }
456
457 /* Compute total number of unwind entries and their total size. */
458 total_entries += stub_entries;
459 total_size = total_entries * sizeof (struct unwind_table_entry);
460
461 /* Allocate memory for the unwind table. */
462 ui->table = (struct unwind_table_entry *)
463 obstack_alloc (&objfile->psymbol_obstack, total_size);
464 ui->last = total_entries - 1;
465
466 /* Now read in each unwind section and internalize the standard unwind
467 entries. */
468 index = 0;
469 for (unwind_sec = objfile->obfd->sections;
470 unwind_sec;
471 unwind_sec = unwind_sec->next)
472 {
473 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
474 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
475 {
476 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
477 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
478
479 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
480 unwind_entries, unwind_size, text_offset);
481 index += unwind_entries;
482 }
483 }
484
485 /* Now read in and internalize the stub unwind entries. */
486 if (stub_unwind_size > 0)
487 {
488 unsigned int i;
489 char *buf = alloca (stub_unwind_size);
490
491 /* Read in the stub unwind entries. */
492 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
493 0, stub_unwind_size);
494
495 /* Now convert them into regular unwind entries. */
496 for (i = 0; i < stub_entries; i++, index++)
497 {
498 /* Clear out the next unwind entry. */
499 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
500
501 /* Convert offset & size into region_start and region_end.
502 Stuff away the stub type into "reserved" fields. */
503 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
504 (bfd_byte *) buf);
505 ui->table[index].region_start += text_offset;
506 buf += 4;
507 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
508 (bfd_byte *) buf);
509 buf += 2;
510 ui->table[index].region_end
511 = ui->table[index].region_start + 4 *
512 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
513 buf += 2;
514 }
515
516 }
517
518 /* Unwind table needs to be kept sorted. */
519 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
520 compare_unwind_entries);
521
522 /* Keep a pointer to the unwind information. */
523 if (objfile->obj_private == NULL)
524 {
525 obj_private = (obj_private_data_t *)
526 obstack_alloc (&objfile->psymbol_obstack,
527 sizeof (obj_private_data_t));
528 obj_private->unwind_info = NULL;
529 obj_private->so_info = NULL;
530 obj_private->dp = 0;
531
532 objfile->obj_private = (PTR) obj_private;
533 }
534 obj_private = (obj_private_data_t *) objfile->obj_private;
535 obj_private->unwind_info = ui;
536 }
537
538 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
539 of the objfiles seeking the unwind table entry for this PC. Each objfile
540 contains a sorted list of struct unwind_table_entry. Since we do a binary
541 search of the unwind tables, we depend upon them to be sorted. */
542
543 struct unwind_table_entry *
544 find_unwind_entry (CORE_ADDR pc)
545 {
546 int first, middle, last;
547 struct objfile *objfile;
548
549 /* A function at address 0? Not in HP-UX! */
550 if (pc == (CORE_ADDR) 0)
551 return NULL;
552
553 ALL_OBJFILES (objfile)
554 {
555 struct obj_unwind_info *ui;
556 ui = NULL;
557 if (objfile->obj_private)
558 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
559
560 if (!ui)
561 {
562 read_unwind_info (objfile);
563 if (objfile->obj_private == NULL)
564 error ("Internal error reading unwind information.");
565 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
566 }
567
568 /* First, check the cache */
569
570 if (ui->cache
571 && pc >= ui->cache->region_start
572 && pc <= ui->cache->region_end)
573 return ui->cache;
574
575 /* Not in the cache, do a binary search */
576
577 first = 0;
578 last = ui->last;
579
580 while (first <= last)
581 {
582 middle = (first + last) / 2;
583 if (pc >= ui->table[middle].region_start
584 && pc <= ui->table[middle].region_end)
585 {
586 ui->cache = &ui->table[middle];
587 return &ui->table[middle];
588 }
589
590 if (pc < ui->table[middle].region_start)
591 last = middle - 1;
592 else
593 first = middle + 1;
594 }
595 } /* ALL_OBJFILES() */
596 return NULL;
597 }
598
599 /* Return the adjustment necessary to make for addresses on the stack
600 as presented by hpread.c.
601
602 This is necessary because of the stack direction on the PA and the
603 bizarre way in which someone (?) decided they wanted to handle
604 frame pointerless code in GDB. */
605 int
606 hpread_adjust_stack_address (CORE_ADDR func_addr)
607 {
608 struct unwind_table_entry *u;
609
610 u = find_unwind_entry (func_addr);
611 if (!u)
612 return 0;
613 else
614 return u->Total_frame_size << 3;
615 }
616
617 /* Called to determine if PC is in an interrupt handler of some
618 kind. */
619
620 static int
621 pc_in_interrupt_handler (CORE_ADDR pc)
622 {
623 struct unwind_table_entry *u;
624 struct minimal_symbol *msym_us;
625
626 u = find_unwind_entry (pc);
627 if (!u)
628 return 0;
629
630 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
631 its frame isn't a pure interrupt frame. Deal with this. */
632 msym_us = lookup_minimal_symbol_by_pc (pc);
633
634 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
635 }
636
637 /* Called when no unwind descriptor was found for PC. Returns 1 if it
638 appears that PC is in a linker stub.
639
640 ?!? Need to handle stubs which appear in PA64 code. */
641
642 static int
643 pc_in_linker_stub (CORE_ADDR pc)
644 {
645 int found_magic_instruction = 0;
646 int i;
647 char buf[4];
648
649 /* If unable to read memory, assume pc is not in a linker stub. */
650 if (target_read_memory (pc, buf, 4) != 0)
651 return 0;
652
653 /* We are looking for something like
654
655 ; $$dyncall jams RP into this special spot in the frame (RP')
656 ; before calling the "call stub"
657 ldw -18(sp),rp
658
659 ldsid (rp),r1 ; Get space associated with RP into r1
660 mtsp r1,sp ; Move it into space register 0
661 be,n 0(sr0),rp) ; back to your regularly scheduled program */
662
663 /* Maximum known linker stub size is 4 instructions. Search forward
664 from the given PC, then backward. */
665 for (i = 0; i < 4; i++)
666 {
667 /* If we hit something with an unwind, stop searching this direction. */
668
669 if (find_unwind_entry (pc + i * 4) != 0)
670 break;
671
672 /* Check for ldsid (rp),r1 which is the magic instruction for a
673 return from a cross-space function call. */
674 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
675 {
676 found_magic_instruction = 1;
677 break;
678 }
679 /* Add code to handle long call/branch and argument relocation stubs
680 here. */
681 }
682
683 if (found_magic_instruction != 0)
684 return 1;
685
686 /* Now look backward. */
687 for (i = 0; i < 4; i++)
688 {
689 /* If we hit something with an unwind, stop searching this direction. */
690
691 if (find_unwind_entry (pc - i * 4) != 0)
692 break;
693
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
697 {
698 found_magic_instruction = 1;
699 break;
700 }
701 /* Add code to handle long call/branch and argument relocation stubs
702 here. */
703 }
704 return found_magic_instruction;
705 }
706
707 static int
708 find_return_regnum (CORE_ADDR pc)
709 {
710 struct unwind_table_entry *u;
711
712 u = find_unwind_entry (pc);
713
714 if (!u)
715 return RP_REGNUM;
716
717 if (u->Millicode)
718 return 31;
719
720 return RP_REGNUM;
721 }
722
723 /* Return size of frame, or -1 if we should use a frame pointer. */
724 static int
725 find_proc_framesize (CORE_ADDR pc)
726 {
727 struct unwind_table_entry *u;
728 struct minimal_symbol *msym_us;
729
730 /* This may indicate a bug in our callers... */
731 if (pc == (CORE_ADDR) 0)
732 return -1;
733
734 u = find_unwind_entry (pc);
735
736 if (!u)
737 {
738 if (pc_in_linker_stub (pc))
739 /* Linker stubs have a zero size frame. */
740 return 0;
741 else
742 return -1;
743 }
744
745 msym_us = lookup_minimal_symbol_by_pc (pc);
746
747 /* If Save_SP is set, and we're not in an interrupt or signal caller,
748 then we have a frame pointer. Use it. */
749 if (u->Save_SP && !pc_in_interrupt_handler (pc)
750 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
751 return -1;
752
753 return u->Total_frame_size << 3;
754 }
755
756 /* Return offset from sp at which rp is saved, or 0 if not saved. */
757 static int rp_saved (CORE_ADDR);
758
759 static int
760 rp_saved (CORE_ADDR pc)
761 {
762 struct unwind_table_entry *u;
763
764 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
765 if (pc == (CORE_ADDR) 0)
766 return 0;
767
768 u = find_unwind_entry (pc);
769
770 if (!u)
771 {
772 if (pc_in_linker_stub (pc))
773 /* This is the so-called RP'. */
774 return -24;
775 else
776 return 0;
777 }
778
779 if (u->Save_RP)
780 return (TARGET_PTR_BIT == 64 ? -16 : -20);
781 else if (u->stub_unwind.stub_type != 0)
782 {
783 switch (u->stub_unwind.stub_type)
784 {
785 case EXPORT:
786 case IMPORT:
787 return -24;
788 case PARAMETER_RELOCATION:
789 return -8;
790 default:
791 return 0;
792 }
793 }
794 else
795 return 0;
796 }
797 \f
798 int
799 frameless_function_invocation (struct frame_info *frame)
800 {
801 struct unwind_table_entry *u;
802
803 u = find_unwind_entry (frame->pc);
804
805 if (u == 0)
806 return 0;
807
808 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
809 }
810
811 CORE_ADDR
812 saved_pc_after_call (struct frame_info *frame)
813 {
814 int ret_regnum;
815 CORE_ADDR pc;
816 struct unwind_table_entry *u;
817
818 ret_regnum = find_return_regnum (get_frame_pc (frame));
819 pc = read_register (ret_regnum) & ~0x3;
820
821 /* If PC is in a linker stub, then we need to dig the address
822 the stub will return to out of the stack. */
823 u = find_unwind_entry (pc);
824 if (u && u->stub_unwind.stub_type != 0)
825 return FRAME_SAVED_PC (frame);
826 else
827 return pc;
828 }
829 \f
830 CORE_ADDR
831 hppa_frame_saved_pc (struct frame_info *frame)
832 {
833 CORE_ADDR pc = get_frame_pc (frame);
834 struct unwind_table_entry *u;
835 CORE_ADDR old_pc;
836 int spun_around_loop = 0;
837 int rp_offset = 0;
838
839 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
840 at the base of the frame in an interrupt handler. Registers within
841 are saved in the exact same order as GDB numbers registers. How
842 convienent. */
843 if (pc_in_interrupt_handler (pc))
844 return read_memory_integer (frame->frame + PC_REGNUM * 4,
845 TARGET_PTR_BIT / 8) & ~0x3;
846
847 if ((frame->pc >= frame->frame
848 && frame->pc <= (frame->frame
849 /* A call dummy is sized in words, but it is
850 actually a series of instructions. Account
851 for that scaling factor. */
852 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
853 * CALL_DUMMY_LENGTH)
854 /* Similarly we have to account for 64bit
855 wide register saves. */
856 + (32 * REGISTER_SIZE)
857 /* We always consider FP regs 8 bytes long. */
858 + (NUM_REGS - FP0_REGNUM) * 8
859 /* Similarly we have to account for 64bit
860 wide register saves. */
861 + (6 * REGISTER_SIZE))))
862 {
863 return read_memory_integer ((frame->frame
864 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
865 TARGET_PTR_BIT / 8) & ~0x3;
866 }
867
868 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
869 /* Deal with signal handler caller frames too. */
870 if (frame->signal_handler_caller)
871 {
872 CORE_ADDR rp;
873 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
874 return rp & ~0x3;
875 }
876 #endif
877
878 if (frameless_function_invocation (frame))
879 {
880 int ret_regnum;
881
882 ret_regnum = find_return_regnum (pc);
883
884 /* If the next frame is an interrupt frame or a signal
885 handler caller, then we need to look in the saved
886 register area to get the return pointer (the values
887 in the registers may not correspond to anything useful). */
888 if (frame->next
889 && (frame->next->signal_handler_caller
890 || pc_in_interrupt_handler (frame->next->pc)))
891 {
892 struct frame_saved_regs saved_regs;
893
894 get_frame_saved_regs (frame->next, &saved_regs);
895 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
896 TARGET_PTR_BIT / 8) & 0x2)
897 {
898 pc = read_memory_integer (saved_regs.regs[31],
899 TARGET_PTR_BIT / 8) & ~0x3;
900
901 /* Syscalls are really two frames. The syscall stub itself
902 with a return pointer in %rp and the kernel call with
903 a return pointer in %r31. We return the %rp variant
904 if %r31 is the same as frame->pc. */
905 if (pc == frame->pc)
906 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
907 TARGET_PTR_BIT / 8) & ~0x3;
908 }
909 else
910 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
911 TARGET_PTR_BIT / 8) & ~0x3;
912 }
913 else
914 pc = read_register (ret_regnum) & ~0x3;
915 }
916 else
917 {
918 spun_around_loop = 0;
919 old_pc = pc;
920
921 restart:
922 rp_offset = rp_saved (pc);
923
924 /* Similar to code in frameless function case. If the next
925 frame is a signal or interrupt handler, then dig the right
926 information out of the saved register info. */
927 if (rp_offset == 0
928 && frame->next
929 && (frame->next->signal_handler_caller
930 || pc_in_interrupt_handler (frame->next->pc)))
931 {
932 struct frame_saved_regs saved_regs;
933
934 get_frame_saved_regs (frame->next, &saved_regs);
935 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
936 TARGET_PTR_BIT / 8) & 0x2)
937 {
938 pc = read_memory_integer (saved_regs.regs[31],
939 TARGET_PTR_BIT / 8) & ~0x3;
940
941 /* Syscalls are really two frames. The syscall stub itself
942 with a return pointer in %rp and the kernel call with
943 a return pointer in %r31. We return the %rp variant
944 if %r31 is the same as frame->pc. */
945 if (pc == frame->pc)
946 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
947 TARGET_PTR_BIT / 8) & ~0x3;
948 }
949 else
950 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
951 TARGET_PTR_BIT / 8) & ~0x3;
952 }
953 else if (rp_offset == 0)
954 {
955 old_pc = pc;
956 pc = read_register (RP_REGNUM) & ~0x3;
957 }
958 else
959 {
960 old_pc = pc;
961 pc = read_memory_integer (frame->frame + rp_offset,
962 TARGET_PTR_BIT / 8) & ~0x3;
963 }
964 }
965
966 /* If PC is inside a linker stub, then dig out the address the stub
967 will return to.
968
969 Don't do this for long branch stubs. Why? For some unknown reason
970 _start is marked as a long branch stub in hpux10. */
971 u = find_unwind_entry (pc);
972 if (u && u->stub_unwind.stub_type != 0
973 && u->stub_unwind.stub_type != LONG_BRANCH)
974 {
975 unsigned int insn;
976
977 /* If this is a dynamic executable, and we're in a signal handler,
978 then the call chain will eventually point us into the stub for
979 _sigreturn. Unlike most cases, we'll be pointed to the branch
980 to the real sigreturn rather than the code after the real branch!.
981
982 Else, try to dig the address the stub will return to in the normal
983 fashion. */
984 insn = read_memory_integer (pc, 4);
985 if ((insn & 0xfc00e000) == 0xe8000000)
986 return (pc + extract_17 (insn) + 8) & ~0x3;
987 else
988 {
989 if (old_pc == pc)
990 spun_around_loop++;
991
992 if (spun_around_loop > 1)
993 {
994 /* We're just about to go around the loop again with
995 no more hope of success. Die. */
996 error ("Unable to find return pc for this frame");
997 }
998 else
999 goto restart;
1000 }
1001 }
1002
1003 return pc;
1004 }
1005 \f
1006 /* We need to correct the PC and the FP for the outermost frame when we are
1007 in a system call. */
1008
1009 void
1010 init_extra_frame_info (int fromleaf, struct frame_info *frame)
1011 {
1012 int flags;
1013 int framesize;
1014
1015 if (frame->next && !fromleaf)
1016 return;
1017
1018 /* If the next frame represents a frameless function invocation
1019 then we have to do some adjustments that are normally done by
1020 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1021 if (fromleaf)
1022 {
1023 /* Find the framesize of *this* frame without peeking at the PC
1024 in the current frame structure (it isn't set yet). */
1025 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1026
1027 /* Now adjust our base frame accordingly. If we have a frame pointer
1028 use it, else subtract the size of this frame from the current
1029 frame. (we always want frame->frame to point at the lowest address
1030 in the frame). */
1031 if (framesize == -1)
1032 frame->frame = TARGET_READ_FP ();
1033 else
1034 frame->frame -= framesize;
1035 return;
1036 }
1037
1038 flags = read_register (FLAGS_REGNUM);
1039 if (flags & 2) /* In system call? */
1040 frame->pc = read_register (31) & ~0x3;
1041
1042 /* The outermost frame is always derived from PC-framesize
1043
1044 One might think frameless innermost frames should have
1045 a frame->frame that is the same as the parent's frame->frame.
1046 That is wrong; frame->frame in that case should be the *high*
1047 address of the parent's frame. It's complicated as hell to
1048 explain, but the parent *always* creates some stack space for
1049 the child. So the child actually does have a frame of some
1050 sorts, and its base is the high address in its parent's frame. */
1051 framesize = find_proc_framesize (frame->pc);
1052 if (framesize == -1)
1053 frame->frame = TARGET_READ_FP ();
1054 else
1055 frame->frame = read_register (SP_REGNUM) - framesize;
1056 }
1057 \f
1058 /* Given a GDB frame, determine the address of the calling function's frame.
1059 This will be used to create a new GDB frame struct, and then
1060 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1061
1062 This may involve searching through prologues for several functions
1063 at boundaries where GCC calls HP C code, or where code which has
1064 a frame pointer calls code without a frame pointer. */
1065
1066 CORE_ADDR
1067 frame_chain (struct frame_info *frame)
1068 {
1069 int my_framesize, caller_framesize;
1070 struct unwind_table_entry *u;
1071 CORE_ADDR frame_base;
1072 struct frame_info *tmp_frame;
1073
1074 /* A frame in the current frame list, or zero. */
1075 struct frame_info *saved_regs_frame = 0;
1076 /* Where the registers were saved in saved_regs_frame.
1077 If saved_regs_frame is zero, this is garbage. */
1078 struct frame_saved_regs saved_regs;
1079
1080 CORE_ADDR caller_pc;
1081
1082 struct minimal_symbol *min_frame_symbol;
1083 struct symbol *frame_symbol;
1084 char *frame_symbol_name;
1085
1086 /* If this is a threaded application, and we see the
1087 routine "__pthread_exit", treat it as the stack root
1088 for this thread. */
1089 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1090 frame_symbol = find_pc_function (frame->pc);
1091
1092 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1093 {
1094 /* The test above for "no user function name" would defend
1095 against the slim likelihood that a user might define a
1096 routine named "__pthread_exit" and then try to debug it.
1097
1098 If it weren't commented out, and you tried to debug the
1099 pthread library itself, you'd get errors.
1100
1101 So for today, we don't make that check. */
1102 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1103 if (frame_symbol_name != 0)
1104 {
1105 if (0 == strncmp (frame_symbol_name,
1106 THREAD_INITIAL_FRAME_SYMBOL,
1107 THREAD_INITIAL_FRAME_SYM_LEN))
1108 {
1109 /* Pretend we've reached the bottom of the stack. */
1110 return (CORE_ADDR) 0;
1111 }
1112 }
1113 } /* End of hacky code for threads. */
1114
1115 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1116 are easy; at *sp we have a full save state strucutre which we can
1117 pull the old stack pointer from. Also see frame_saved_pc for
1118 code to dig a saved PC out of the save state structure. */
1119 if (pc_in_interrupt_handler (frame->pc))
1120 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1121 TARGET_PTR_BIT / 8);
1122 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1123 else if (frame->signal_handler_caller)
1124 {
1125 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1126 }
1127 #endif
1128 else
1129 frame_base = frame->frame;
1130
1131 /* Get frame sizes for the current frame and the frame of the
1132 caller. */
1133 my_framesize = find_proc_framesize (frame->pc);
1134 caller_pc = FRAME_SAVED_PC (frame);
1135
1136 /* If we can't determine the caller's PC, then it's not likely we can
1137 really determine anything meaningful about its frame. We'll consider
1138 this to be stack bottom. */
1139 if (caller_pc == (CORE_ADDR) 0)
1140 return (CORE_ADDR) 0;
1141
1142 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1143
1144 /* If caller does not have a frame pointer, then its frame
1145 can be found at current_frame - caller_framesize. */
1146 if (caller_framesize != -1)
1147 {
1148 return frame_base - caller_framesize;
1149 }
1150 /* Both caller and callee have frame pointers and are GCC compiled
1151 (SAVE_SP bit in unwind descriptor is on for both functions.
1152 The previous frame pointer is found at the top of the current frame. */
1153 if (caller_framesize == -1 && my_framesize == -1)
1154 {
1155 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1156 }
1157 /* Caller has a frame pointer, but callee does not. This is a little
1158 more difficult as GCC and HP C lay out locals and callee register save
1159 areas very differently.
1160
1161 The previous frame pointer could be in a register, or in one of
1162 several areas on the stack.
1163
1164 Walk from the current frame to the innermost frame examining
1165 unwind descriptors to determine if %r3 ever gets saved into the
1166 stack. If so return whatever value got saved into the stack.
1167 If it was never saved in the stack, then the value in %r3 is still
1168 valid, so use it.
1169
1170 We use information from unwind descriptors to determine if %r3
1171 is saved into the stack (Entry_GR field has this information). */
1172
1173 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1174 {
1175 u = find_unwind_entry (tmp_frame->pc);
1176
1177 if (!u)
1178 {
1179 /* We could find this information by examining prologues. I don't
1180 think anyone has actually written any tools (not even "strip")
1181 which leave them out of an executable, so maybe this is a moot
1182 point. */
1183 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1184 code that doesn't have unwind entries. For example, stepping into
1185 the dynamic linker will give you a PC that has none. Thus, I've
1186 disabled this warning. */
1187 #if 0
1188 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1189 #endif
1190 return (CORE_ADDR) 0;
1191 }
1192
1193 if (u->Save_SP
1194 || tmp_frame->signal_handler_caller
1195 || pc_in_interrupt_handler (tmp_frame->pc))
1196 break;
1197
1198 /* Entry_GR specifies the number of callee-saved general registers
1199 saved in the stack. It starts at %r3, so %r3 would be 1. */
1200 if (u->Entry_GR >= 1)
1201 {
1202 /* The unwind entry claims that r3 is saved here. However,
1203 in optimized code, GCC often doesn't actually save r3.
1204 We'll discover this if we look at the prologue. */
1205 get_frame_saved_regs (tmp_frame, &saved_regs);
1206 saved_regs_frame = tmp_frame;
1207
1208 /* If we have an address for r3, that's good. */
1209 if (saved_regs.regs[FP_REGNUM])
1210 break;
1211 }
1212 }
1213
1214 if (tmp_frame)
1215 {
1216 /* We may have walked down the chain into a function with a frame
1217 pointer. */
1218 if (u->Save_SP
1219 && !tmp_frame->signal_handler_caller
1220 && !pc_in_interrupt_handler (tmp_frame->pc))
1221 {
1222 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1223 }
1224 /* %r3 was saved somewhere in the stack. Dig it out. */
1225 else
1226 {
1227 /* Sick.
1228
1229 For optimization purposes many kernels don't have the
1230 callee saved registers into the save_state structure upon
1231 entry into the kernel for a syscall; the optimization
1232 is usually turned off if the process is being traced so
1233 that the debugger can get full register state for the
1234 process.
1235
1236 This scheme works well except for two cases:
1237
1238 * Attaching to a process when the process is in the
1239 kernel performing a system call (debugger can't get
1240 full register state for the inferior process since
1241 the process wasn't being traced when it entered the
1242 system call).
1243
1244 * Register state is not complete if the system call
1245 causes the process to core dump.
1246
1247
1248 The following heinous code is an attempt to deal with
1249 the lack of register state in a core dump. It will
1250 fail miserably if the function which performs the
1251 system call has a variable sized stack frame. */
1252
1253 if (tmp_frame != saved_regs_frame)
1254 get_frame_saved_regs (tmp_frame, &saved_regs);
1255
1256 /* Abominable hack. */
1257 if (current_target.to_has_execution == 0
1258 && ((saved_regs.regs[FLAGS_REGNUM]
1259 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1260 TARGET_PTR_BIT / 8)
1261 & 0x2))
1262 || (saved_regs.regs[FLAGS_REGNUM] == 0
1263 && read_register (FLAGS_REGNUM) & 0x2)))
1264 {
1265 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1266 if (!u)
1267 {
1268 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1269 TARGET_PTR_BIT / 8);
1270 }
1271 else
1272 {
1273 return frame_base - (u->Total_frame_size << 3);
1274 }
1275 }
1276
1277 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1278 TARGET_PTR_BIT / 8);
1279 }
1280 }
1281 else
1282 {
1283 /* Get the innermost frame. */
1284 tmp_frame = frame;
1285 while (tmp_frame->next != NULL)
1286 tmp_frame = tmp_frame->next;
1287
1288 if (tmp_frame != saved_regs_frame)
1289 get_frame_saved_regs (tmp_frame, &saved_regs);
1290
1291 /* Abominable hack. See above. */
1292 if (current_target.to_has_execution == 0
1293 && ((saved_regs.regs[FLAGS_REGNUM]
1294 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1295 TARGET_PTR_BIT / 8)
1296 & 0x2))
1297 || (saved_regs.regs[FLAGS_REGNUM] == 0
1298 && read_register (FLAGS_REGNUM) & 0x2)))
1299 {
1300 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1301 if (!u)
1302 {
1303 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1304 TARGET_PTR_BIT / 8);
1305 }
1306 else
1307 {
1308 return frame_base - (u->Total_frame_size << 3);
1309 }
1310 }
1311
1312 /* The value in %r3 was never saved into the stack (thus %r3 still
1313 holds the value of the previous frame pointer). */
1314 return TARGET_READ_FP ();
1315 }
1316 }
1317 \f
1318
1319 /* To see if a frame chain is valid, see if the caller looks like it
1320 was compiled with gcc. */
1321
1322 int
1323 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1324 {
1325 struct minimal_symbol *msym_us;
1326 struct minimal_symbol *msym_start;
1327 struct unwind_table_entry *u, *next_u = NULL;
1328 struct frame_info *next;
1329
1330 if (!chain)
1331 return 0;
1332
1333 u = find_unwind_entry (thisframe->pc);
1334
1335 if (u == NULL)
1336 return 1;
1337
1338 /* We can't just check that the same of msym_us is "_start", because
1339 someone idiotically decided that they were going to make a Ltext_end
1340 symbol with the same address. This Ltext_end symbol is totally
1341 indistinguishable (as nearly as I can tell) from the symbol for a function
1342 which is (legitimately, since it is in the user's namespace)
1343 named Ltext_end, so we can't just ignore it. */
1344 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1345 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1346 if (msym_us
1347 && msym_start
1348 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1349 return 0;
1350
1351 /* Grrrr. Some new idiot decided that they don't want _start for the
1352 PRO configurations; $START$ calls main directly.... Deal with it. */
1353 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1354 if (msym_us
1355 && msym_start
1356 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1357 return 0;
1358
1359 next = get_next_frame (thisframe);
1360 if (next)
1361 next_u = find_unwind_entry (next->pc);
1362
1363 /* If this frame does not save SP, has no stack, isn't a stub,
1364 and doesn't "call" an interrupt routine or signal handler caller,
1365 then its not valid. */
1366 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1367 || (thisframe->next && thisframe->next->signal_handler_caller)
1368 || (next_u && next_u->HP_UX_interrupt_marker))
1369 return 1;
1370
1371 if (pc_in_linker_stub (thisframe->pc))
1372 return 1;
1373
1374 return 0;
1375 }
1376
1377 /*
1378 These functions deal with saving and restoring register state
1379 around a function call in the inferior. They keep the stack
1380 double-word aligned; eventually, on an hp700, the stack will have
1381 to be aligned to a 64-byte boundary. */
1382
1383 void
1384 push_dummy_frame (struct inferior_status *inf_status)
1385 {
1386 CORE_ADDR sp, pc, pcspace;
1387 register int regnum;
1388 CORE_ADDR int_buffer;
1389 double freg_buffer;
1390
1391 /* Oh, what a hack. If we're trying to perform an inferior call
1392 while the inferior is asleep, we have to make sure to clear
1393 the "in system call" bit in the flag register (the call will
1394 start after the syscall returns, so we're no longer in the system
1395 call!) This state is kept in "inf_status", change it there.
1396
1397 We also need a number of horrid hacks to deal with lossage in the
1398 PC queue registers (apparently they're not valid when the in syscall
1399 bit is set). */
1400 pc = target_read_pc (inferior_ptid);
1401 int_buffer = read_register (FLAGS_REGNUM);
1402 if (int_buffer & 0x2)
1403 {
1404 unsigned int sid;
1405 int_buffer &= ~0x2;
1406 write_inferior_status_register (inf_status, 0, int_buffer);
1407 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1408 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1409 sid = (pc >> 30) & 0x3;
1410 if (sid == 0)
1411 pcspace = read_register (SR4_REGNUM);
1412 else
1413 pcspace = read_register (SR4_REGNUM + 4 + sid);
1414 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1415 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1416 }
1417 else
1418 pcspace = read_register (PCSQ_HEAD_REGNUM);
1419
1420 /* Space for "arguments"; the RP goes in here. */
1421 sp = read_register (SP_REGNUM) + 48;
1422 int_buffer = read_register (RP_REGNUM) | 0x3;
1423
1424 /* The 32bit and 64bit ABIs save the return pointer into different
1425 stack slots. */
1426 if (REGISTER_SIZE == 8)
1427 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1428 else
1429 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1430
1431 int_buffer = TARGET_READ_FP ();
1432 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1433
1434 write_register (FP_REGNUM, sp);
1435
1436 sp += 2 * REGISTER_SIZE;
1437
1438 for (regnum = 1; regnum < 32; regnum++)
1439 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1440 sp = push_word (sp, read_register (regnum));
1441
1442 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1443 if (REGISTER_SIZE != 8)
1444 sp += 4;
1445
1446 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1447 {
1448 read_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1449 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1450 }
1451 sp = push_word (sp, read_register (IPSW_REGNUM));
1452 sp = push_word (sp, read_register (SAR_REGNUM));
1453 sp = push_word (sp, pc);
1454 sp = push_word (sp, pcspace);
1455 sp = push_word (sp, pc + 4);
1456 sp = push_word (sp, pcspace);
1457 write_register (SP_REGNUM, sp);
1458 }
1459
1460 static void
1461 find_dummy_frame_regs (struct frame_info *frame,
1462 struct frame_saved_regs *frame_saved_regs)
1463 {
1464 CORE_ADDR fp = frame->frame;
1465 int i;
1466
1467 /* The 32bit and 64bit ABIs save RP into different locations. */
1468 if (REGISTER_SIZE == 8)
1469 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1470 else
1471 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1472
1473 frame_saved_regs->regs[FP_REGNUM] = fp;
1474
1475 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1476
1477 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1478 {
1479 if (i != FP_REGNUM)
1480 {
1481 frame_saved_regs->regs[i] = fp;
1482 fp += REGISTER_SIZE;
1483 }
1484 }
1485
1486 /* This is not necessary or desirable for the 64bit ABI. */
1487 if (REGISTER_SIZE != 8)
1488 fp += 4;
1489
1490 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1491 frame_saved_regs->regs[i] = fp;
1492
1493 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1494 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1495 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1496 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1497 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1498 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1499 }
1500
1501 void
1502 hppa_pop_frame (void)
1503 {
1504 register struct frame_info *frame = get_current_frame ();
1505 register CORE_ADDR fp, npc, target_pc;
1506 register int regnum;
1507 struct frame_saved_regs fsr;
1508 double freg_buffer;
1509
1510 fp = FRAME_FP (frame);
1511 get_frame_saved_regs (frame, &fsr);
1512
1513 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1514 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1515 restore_pc_queue (&fsr);
1516 #endif
1517
1518 for (regnum = 31; regnum > 0; regnum--)
1519 if (fsr.regs[regnum])
1520 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1521 REGISTER_SIZE));
1522
1523 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1524 if (fsr.regs[regnum])
1525 {
1526 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1527 write_register_bytes (REGISTER_BYTE (regnum), (char *) &freg_buffer, 8);
1528 }
1529
1530 if (fsr.regs[IPSW_REGNUM])
1531 write_register (IPSW_REGNUM,
1532 read_memory_integer (fsr.regs[IPSW_REGNUM],
1533 REGISTER_SIZE));
1534
1535 if (fsr.regs[SAR_REGNUM])
1536 write_register (SAR_REGNUM,
1537 read_memory_integer (fsr.regs[SAR_REGNUM],
1538 REGISTER_SIZE));
1539
1540 /* If the PC was explicitly saved, then just restore it. */
1541 if (fsr.regs[PCOQ_TAIL_REGNUM])
1542 {
1543 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1544 REGISTER_SIZE);
1545 write_register (PCOQ_TAIL_REGNUM, npc);
1546 }
1547 /* Else use the value in %rp to set the new PC. */
1548 else
1549 {
1550 npc = read_register (RP_REGNUM);
1551 write_pc (npc);
1552 }
1553
1554 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1555
1556 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1557 write_register (SP_REGNUM, fp - 48);
1558 else
1559 write_register (SP_REGNUM, fp);
1560
1561 /* The PC we just restored may be inside a return trampoline. If so
1562 we want to restart the inferior and run it through the trampoline.
1563
1564 Do this by setting a momentary breakpoint at the location the
1565 trampoline returns to.
1566
1567 Don't skip through the trampoline if we're popping a dummy frame. */
1568 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1569 if (target_pc && !fsr.regs[IPSW_REGNUM])
1570 {
1571 struct symtab_and_line sal;
1572 struct breakpoint *breakpoint;
1573 struct cleanup *old_chain;
1574
1575 /* Set up our breakpoint. Set it to be silent as the MI code
1576 for "return_command" will print the frame we returned to. */
1577 sal = find_pc_line (target_pc, 0);
1578 sal.pc = target_pc;
1579 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1580 breakpoint->silent = 1;
1581
1582 /* So we can clean things up. */
1583 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1584
1585 /* Start up the inferior. */
1586 clear_proceed_status ();
1587 proceed_to_finish = 1;
1588 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1589
1590 /* Perform our cleanups. */
1591 do_cleanups (old_chain);
1592 }
1593 flush_cached_frames ();
1594 }
1595
1596 /* After returning to a dummy on the stack, restore the instruction
1597 queue space registers. */
1598
1599 static int
1600 restore_pc_queue (struct frame_saved_regs *fsr)
1601 {
1602 CORE_ADDR pc = read_pc ();
1603 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1604 TARGET_PTR_BIT / 8);
1605 struct target_waitstatus w;
1606 int insn_count;
1607
1608 /* Advance past break instruction in the call dummy. */
1609 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1610 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1611
1612 /* HPUX doesn't let us set the space registers or the space
1613 registers of the PC queue through ptrace. Boo, hiss.
1614 Conveniently, the call dummy has this sequence of instructions
1615 after the break:
1616 mtsp r21, sr0
1617 ble,n 0(sr0, r22)
1618
1619 So, load up the registers and single step until we are in the
1620 right place. */
1621
1622 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1623 REGISTER_SIZE));
1624 write_register (22, new_pc);
1625
1626 for (insn_count = 0; insn_count < 3; insn_count++)
1627 {
1628 /* FIXME: What if the inferior gets a signal right now? Want to
1629 merge this into wait_for_inferior (as a special kind of
1630 watchpoint? By setting a breakpoint at the end? Is there
1631 any other choice? Is there *any* way to do this stuff with
1632 ptrace() or some equivalent?). */
1633 resume (1, 0);
1634 target_wait (inferior_ptid, &w);
1635
1636 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1637 {
1638 stop_signal = w.value.sig;
1639 terminal_ours_for_output ();
1640 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1641 target_signal_to_name (stop_signal),
1642 target_signal_to_string (stop_signal));
1643 gdb_flush (gdb_stdout);
1644 return 0;
1645 }
1646 }
1647 target_terminal_ours ();
1648 target_fetch_registers (-1);
1649 return 1;
1650 }
1651
1652
1653 #ifdef PA20W_CALLING_CONVENTIONS
1654
1655 /* This function pushes a stack frame with arguments as part of the
1656 inferior function calling mechanism.
1657
1658 This is the version for the PA64, in which later arguments appear
1659 at higher addresses. (The stack always grows towards higher
1660 addresses.)
1661
1662 We simply allocate the appropriate amount of stack space and put
1663 arguments into their proper slots. The call dummy code will copy
1664 arguments into registers as needed by the ABI.
1665
1666 This ABI also requires that the caller provide an argument pointer
1667 to the callee, so we do that too. */
1668
1669 CORE_ADDR
1670 hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1671 int struct_return, CORE_ADDR struct_addr)
1672 {
1673 /* array of arguments' offsets */
1674 int *offset = (int *) alloca (nargs * sizeof (int));
1675
1676 /* array of arguments' lengths: real lengths in bytes, not aligned to
1677 word size */
1678 int *lengths = (int *) alloca (nargs * sizeof (int));
1679
1680 /* The value of SP as it was passed into this function after
1681 aligning. */
1682 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1683
1684 /* The number of stack bytes occupied by the current argument. */
1685 int bytes_reserved;
1686
1687 /* The total number of bytes reserved for the arguments. */
1688 int cum_bytes_reserved = 0;
1689
1690 /* Similarly, but aligned. */
1691 int cum_bytes_aligned = 0;
1692 int i;
1693
1694 /* Iterate over each argument provided by the user. */
1695 for (i = 0; i < nargs; i++)
1696 {
1697 struct type *arg_type = VALUE_TYPE (args[i]);
1698
1699 /* Integral scalar values smaller than a register are padded on
1700 the left. We do this by promoting them to full-width,
1701 although the ABI says to pad them with garbage. */
1702 if (is_integral_type (arg_type)
1703 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1704 {
1705 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1706 ? builtin_type_unsigned_long
1707 : builtin_type_long),
1708 args[i]);
1709 arg_type = VALUE_TYPE (args[i]);
1710 }
1711
1712 lengths[i] = TYPE_LENGTH (arg_type);
1713
1714 /* Align the size of the argument to the word size for this
1715 target. */
1716 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1717
1718 offset[i] = cum_bytes_reserved;
1719
1720 /* Aggregates larger than eight bytes (the only types larger
1721 than eight bytes we have) are aligned on a 16-byte boundary,
1722 possibly padded on the right with garbage. This may leave an
1723 empty word on the stack, and thus an unused register, as per
1724 the ABI. */
1725 if (bytes_reserved > 8)
1726 {
1727 /* Round up the offset to a multiple of two slots. */
1728 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1729 & -(2*REGISTER_SIZE));
1730
1731 /* Note the space we've wasted, if any. */
1732 bytes_reserved += new_offset - offset[i];
1733 offset[i] = new_offset;
1734 }
1735
1736 cum_bytes_reserved += bytes_reserved;
1737 }
1738
1739 /* CUM_BYTES_RESERVED already accounts for all the arguments
1740 passed by the user. However, the ABIs mandate minimum stack space
1741 allocations for outgoing arguments.
1742
1743 The ABIs also mandate minimum stack alignments which we must
1744 preserve. */
1745 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1746 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1747
1748 /* Now write each of the args at the proper offset down the stack. */
1749 for (i = 0; i < nargs; i++)
1750 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1751
1752 /* If a structure has to be returned, set up register 28 to hold its
1753 address */
1754 if (struct_return)
1755 write_register (28, struct_addr);
1756
1757 /* For the PA64 we must pass a pointer to the outgoing argument list.
1758 The ABI mandates that the pointer should point to the first byte of
1759 storage beyond the register flushback area.
1760
1761 However, the call dummy expects the outgoing argument pointer to
1762 be passed in register %r4. */
1763 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1764
1765 /* ?!? This needs further work. We need to set up the global data
1766 pointer for this procedure. This assumes the same global pointer
1767 for every procedure. The call dummy expects the dp value to
1768 be passed in register %r6. */
1769 write_register (6, read_register (27));
1770
1771 /* The stack will have 64 bytes of additional space for a frame marker. */
1772 return sp + 64;
1773 }
1774
1775 #else
1776
1777 /* This function pushes a stack frame with arguments as part of the
1778 inferior function calling mechanism.
1779
1780 This is the version of the function for the 32-bit PA machines, in
1781 which later arguments appear at lower addresses. (The stack always
1782 grows towards higher addresses.)
1783
1784 We simply allocate the appropriate amount of stack space and put
1785 arguments into their proper slots. The call dummy code will copy
1786 arguments into registers as needed by the ABI. */
1787
1788 CORE_ADDR
1789 hppa_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp,
1790 int struct_return, CORE_ADDR struct_addr)
1791 {
1792 /* array of arguments' offsets */
1793 int *offset = (int *) alloca (nargs * sizeof (int));
1794
1795 /* array of arguments' lengths: real lengths in bytes, not aligned to
1796 word size */
1797 int *lengths = (int *) alloca (nargs * sizeof (int));
1798
1799 /* The number of stack bytes occupied by the current argument. */
1800 int bytes_reserved;
1801
1802 /* The total number of bytes reserved for the arguments. */
1803 int cum_bytes_reserved = 0;
1804
1805 /* Similarly, but aligned. */
1806 int cum_bytes_aligned = 0;
1807 int i;
1808
1809 /* Iterate over each argument provided by the user. */
1810 for (i = 0; i < nargs; i++)
1811 {
1812 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1813
1814 /* Align the size of the argument to the word size for this
1815 target. */
1816 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1817
1818 offset[i] = cum_bytes_reserved + lengths[i];
1819
1820 /* If the argument is a double word argument, then it needs to be
1821 double word aligned. */
1822 if ((bytes_reserved == 2 * REGISTER_SIZE)
1823 && (offset[i] % 2 * REGISTER_SIZE))
1824 {
1825 int new_offset = 0;
1826 /* BYTES_RESERVED is already aligned to the word, so we put
1827 the argument at one word more down the stack.
1828
1829 This will leave one empty word on the stack, and one unused
1830 register as mandated by the ABI. */
1831 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1832 & -(2 * REGISTER_SIZE));
1833
1834 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1835 {
1836 bytes_reserved += REGISTER_SIZE;
1837 offset[i] += REGISTER_SIZE;
1838 }
1839 }
1840
1841 cum_bytes_reserved += bytes_reserved;
1842
1843 }
1844
1845 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1846 by the user. However, the ABI mandates minimum stack space
1847 allocations for outgoing arguments.
1848
1849 The ABI also mandates minimum stack alignments which we must
1850 preserve. */
1851 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1852 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1853
1854 /* Now write each of the args at the proper offset down the stack.
1855 ?!? We need to promote values to a full register instead of skipping
1856 words in the stack. */
1857 for (i = 0; i < nargs; i++)
1858 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1859
1860 /* If a structure has to be returned, set up register 28 to hold its
1861 address */
1862 if (struct_return)
1863 write_register (28, struct_addr);
1864
1865 /* The stack will have 32 bytes of additional space for a frame marker. */
1866 return sp + 32;
1867 }
1868
1869 #endif
1870
1871 /* elz: this function returns a value which is built looking at the given address.
1872 It is called from call_function_by_hand, in case we need to return a
1873 value which is larger than 64 bits, and it is stored in the stack rather than
1874 in the registers r28 and r29 or fr4.
1875 This function does the same stuff as value_being_returned in values.c, but
1876 gets the value from the stack rather than from the buffer where all the
1877 registers were saved when the function called completed. */
1878 value_ptr
1879 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1880 {
1881 register value_ptr val;
1882
1883 val = allocate_value (valtype);
1884 CHECK_TYPEDEF (valtype);
1885 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1886
1887 return val;
1888 }
1889
1890
1891
1892 /* elz: Used to lookup a symbol in the shared libraries.
1893 This function calls shl_findsym, indirectly through a
1894 call to __d_shl_get. __d_shl_get is in end.c, which is always
1895 linked in by the hp compilers/linkers.
1896 The call to shl_findsym cannot be made directly because it needs
1897 to be active in target address space.
1898 inputs: - minimal symbol pointer for the function we want to look up
1899 - address in target space of the descriptor for the library
1900 where we want to look the symbol up.
1901 This address is retrieved using the
1902 som_solib_get_solib_by_pc function (somsolib.c).
1903 output: - real address in the library of the function.
1904 note: the handle can be null, in which case shl_findsym will look for
1905 the symbol in all the loaded shared libraries.
1906 files to look at if you need reference on this stuff:
1907 dld.c, dld_shl_findsym.c
1908 end.c
1909 man entry for shl_findsym */
1910
1911 CORE_ADDR
1912 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1913 {
1914 struct symbol *get_sym, *symbol2;
1915 struct minimal_symbol *buff_minsym, *msymbol;
1916 struct type *ftype;
1917 value_ptr *args;
1918 value_ptr funcval, val;
1919
1920 int x, namelen, err_value, tmp = -1;
1921 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1922 CORE_ADDR stub_addr;
1923
1924
1925 args = (value_ptr *) alloca (sizeof (value_ptr) * 8); /* 6 for the arguments and one null one??? */
1926 funcval = find_function_in_inferior ("__d_shl_get");
1927 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1928 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1929 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1930 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1931 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1932 namelen = strlen (SYMBOL_NAME (function));
1933 value_return_addr = endo_buff_addr + namelen;
1934 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1935
1936 /* do alignment */
1937 if ((x = value_return_addr % 64) != 0)
1938 value_return_addr = value_return_addr + 64 - x;
1939
1940 errno_return_addr = value_return_addr + 64;
1941
1942
1943 /* set up stuff needed by __d_shl_get in buffer in end.o */
1944
1945 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
1946
1947 target_write_memory (value_return_addr, (char *) &tmp, 4);
1948
1949 target_write_memory (errno_return_addr, (char *) &tmp, 4);
1950
1951 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
1952 (char *) &handle, 4);
1953
1954 /* now prepare the arguments for the call */
1955
1956 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
1957 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
1958 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
1959 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
1960 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
1961 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
1962
1963 /* now call the function */
1964
1965 val = call_function_by_hand (funcval, 6, args);
1966
1967 /* now get the results */
1968
1969 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
1970
1971 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
1972 if (stub_addr <= 0)
1973 error ("call to __d_shl_get failed, error code is %d", err_value);
1974
1975 return (stub_addr);
1976 }
1977
1978 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1979 static int
1980 cover_find_stub_with_shl_get (PTR args_untyped)
1981 {
1982 args_for_find_stub *args = args_untyped;
1983 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
1984 return 0;
1985 }
1986
1987 /* Insert the specified number of args and function address
1988 into a call sequence of the above form stored at DUMMYNAME.
1989
1990 On the hppa we need to call the stack dummy through $$dyncall.
1991 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1992 real_pc, which is the location where gdb should start up the
1993 inferior to do the function call.
1994
1995 This has to work across several versions of hpux, bsd, osf1. It has to
1996 work regardless of what compiler was used to build the inferior program.
1997 It should work regardless of whether or not end.o is available. It has
1998 to work even if gdb can not call into the dynamic loader in the inferior
1999 to query it for symbol names and addresses.
2000
2001 Yes, all those cases should work. Luckily code exists to handle most
2002 of them. The complexity is in selecting exactly what scheme should
2003 be used to perform the inferior call.
2004
2005 At the current time this routine is known not to handle cases where
2006 the program was linked with HP's compiler without including end.o.
2007
2008 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2009
2010 CORE_ADDR
2011 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2012 value_ptr *args, struct type *type, int gcc_p)
2013 {
2014 CORE_ADDR dyncall_addr;
2015 struct minimal_symbol *msymbol;
2016 struct minimal_symbol *trampoline;
2017 int flags = read_register (FLAGS_REGNUM);
2018 struct unwind_table_entry *u = NULL;
2019 CORE_ADDR new_stub = 0;
2020 CORE_ADDR solib_handle = 0;
2021
2022 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2023 passed an import stub, not a PLABEL. It is also necessary to set %r19
2024 (the PIC register) before performing the call.
2025
2026 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2027 are calling the target directly. When using __d_plt_call we want to
2028 use a PLABEL instead of an import stub. */
2029 int using_gcc_plt_call = 1;
2030
2031 #ifdef GDB_TARGET_IS_HPPA_20W
2032 /* We currently use completely different code for the PA2.0W inferior
2033 function call sequences. This needs to be cleaned up. */
2034 {
2035 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2036 struct target_waitstatus w;
2037 int inst1, inst2;
2038 char buf[4];
2039 int status;
2040 struct objfile *objfile;
2041
2042 /* We can not modify the PC space queues directly, so we start
2043 up the inferior and execute a couple instructions to set the
2044 space queues so that they point to the call dummy in the stack. */
2045 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2046 sr5 = read_register (SR5_REGNUM);
2047 if (1)
2048 {
2049 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2050 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2051 if (target_read_memory (pcoqh, buf, 4) != 0)
2052 error ("Couldn't modify space queue\n");
2053 inst1 = extract_unsigned_integer (buf, 4);
2054
2055 if (target_read_memory (pcoqt, buf, 4) != 0)
2056 error ("Couldn't modify space queue\n");
2057 inst2 = extract_unsigned_integer (buf, 4);
2058
2059 /* BVE (r1) */
2060 *((int *) buf) = 0xe820d000;
2061 if (target_write_memory (pcoqh, buf, 4) != 0)
2062 error ("Couldn't modify space queue\n");
2063
2064 /* NOP */
2065 *((int *) buf) = 0x08000240;
2066 if (target_write_memory (pcoqt, buf, 4) != 0)
2067 {
2068 *((int *) buf) = inst1;
2069 target_write_memory (pcoqh, buf, 4);
2070 error ("Couldn't modify space queue\n");
2071 }
2072
2073 write_register (1, pc);
2074
2075 /* Single step twice, the BVE instruction will set the space queue
2076 such that it points to the PC value written immediately above
2077 (ie the call dummy). */
2078 resume (1, 0);
2079 target_wait (inferior_ptid, &w);
2080 resume (1, 0);
2081 target_wait (inferior_ptid, &w);
2082
2083 /* Restore the two instructions at the old PC locations. */
2084 *((int *) buf) = inst1;
2085 target_write_memory (pcoqh, buf, 4);
2086 *((int *) buf) = inst2;
2087 target_write_memory (pcoqt, buf, 4);
2088 }
2089
2090 /* The call dummy wants the ultimate destination address initially
2091 in register %r5. */
2092 write_register (5, fun);
2093
2094 /* We need to see if this objfile has a different DP value than our
2095 own (it could be a shared library for example). */
2096 ALL_OBJFILES (objfile)
2097 {
2098 struct obj_section *s;
2099 obj_private_data_t *obj_private;
2100
2101 /* See if FUN is in any section within this shared library. */
2102 for (s = objfile->sections; s < objfile->sections_end; s++)
2103 if (s->addr <= fun && fun < s->endaddr)
2104 break;
2105
2106 if (s >= objfile->sections_end)
2107 continue;
2108
2109 obj_private = (obj_private_data_t *) objfile->obj_private;
2110
2111 /* The DP value may be different for each objfile. But within an
2112 objfile each function uses the same dp value. Thus we do not need
2113 to grope around the opd section looking for dp values.
2114
2115 ?!? This is not strictly correct since we may be in a shared library
2116 and want to call back into the main program. To make that case
2117 work correctly we need to set obj_private->dp for the main program's
2118 objfile, then remove this conditional. */
2119 if (obj_private->dp)
2120 write_register (27, obj_private->dp);
2121 break;
2122 }
2123 return pc;
2124 }
2125 #endif
2126
2127 #ifndef GDB_TARGET_IS_HPPA_20W
2128 /* Prefer __gcc_plt_call over the HP supplied routine because
2129 __gcc_plt_call works for any number of arguments. */
2130 trampoline = NULL;
2131 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2132 using_gcc_plt_call = 0;
2133
2134 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2135 if (msymbol == NULL)
2136 error ("Can't find an address for $$dyncall trampoline");
2137
2138 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2139
2140 /* FUN could be a procedure label, in which case we have to get
2141 its real address and the value of its GOT/DP if we plan to
2142 call the routine via gcc_plt_call. */
2143 if ((fun & 0x2) && using_gcc_plt_call)
2144 {
2145 /* Get the GOT/DP value for the target function. It's
2146 at *(fun+4). Note the call dummy is *NOT* allowed to
2147 trash %r19 before calling the target function. */
2148 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2149 REGISTER_SIZE));
2150
2151 /* Now get the real address for the function we are calling, it's
2152 at *fun. */
2153 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2154 TARGET_PTR_BIT / 8);
2155 }
2156 else
2157 {
2158
2159 #ifndef GDB_TARGET_IS_PA_ELF
2160 /* FUN could be an export stub, the real address of a function, or
2161 a PLABEL. When using gcc's PLT call routine we must call an import
2162 stub rather than the export stub or real function for lazy binding
2163 to work correctly
2164
2165 If we are using the gcc PLT call routine, then we need to
2166 get the import stub for the target function. */
2167 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2168 {
2169 struct objfile *objfile;
2170 struct minimal_symbol *funsymbol, *stub_symbol;
2171 CORE_ADDR newfun = 0;
2172
2173 funsymbol = lookup_minimal_symbol_by_pc (fun);
2174 if (!funsymbol)
2175 error ("Unable to find minimal symbol for target function.\n");
2176
2177 /* Search all the object files for an import symbol with the
2178 right name. */
2179 ALL_OBJFILES (objfile)
2180 {
2181 stub_symbol
2182 = lookup_minimal_symbol_solib_trampoline
2183 (SYMBOL_NAME (funsymbol), NULL, objfile);
2184
2185 if (!stub_symbol)
2186 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2187 NULL, objfile);
2188
2189 /* Found a symbol with the right name. */
2190 if (stub_symbol)
2191 {
2192 struct unwind_table_entry *u;
2193 /* It must be a shared library trampoline. */
2194 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2195 continue;
2196
2197 /* It must also be an import stub. */
2198 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2199 if (u == NULL
2200 || (u->stub_unwind.stub_type != IMPORT
2201 #ifdef GDB_NATIVE_HPUX_11
2202 /* Sigh. The hpux 10.20 dynamic linker will blow
2203 chunks if we perform a call to an unbound function
2204 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2205 linker will blow chunks if we do not call the
2206 unbound function via the IMPORT_SHLIB stub.
2207
2208 We currently have no way to select bevahior on just
2209 the target. However, we only support HPUX/SOM in
2210 native mode. So we conditinalize on a native
2211 #ifdef. Ugly. Ugly. Ugly */
2212 && u->stub_unwind.stub_type != IMPORT_SHLIB
2213 #endif
2214 ))
2215 continue;
2216
2217 /* OK. Looks like the correct import stub. */
2218 newfun = SYMBOL_VALUE (stub_symbol);
2219 fun = newfun;
2220
2221 /* If we found an IMPORT stub, then we want to stop
2222 searching now. If we found an IMPORT_SHLIB, we want
2223 to continue the search in the hopes that we will find
2224 an IMPORT stub. */
2225 if (u->stub_unwind.stub_type == IMPORT)
2226 break;
2227 }
2228 }
2229
2230 /* Ouch. We did not find an import stub. Make an attempt to
2231 do the right thing instead of just croaking. Most of the
2232 time this will actually work. */
2233 if (newfun == 0)
2234 write_register (19, som_solib_get_got_by_pc (fun));
2235
2236 u = find_unwind_entry (fun);
2237 if (u
2238 && (u->stub_unwind.stub_type == IMPORT
2239 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2240 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2241
2242 /* If we found the import stub in the shared library, then we have
2243 to set %r19 before we call the stub. */
2244 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2245 write_register (19, som_solib_get_got_by_pc (fun));
2246 }
2247 #endif
2248 }
2249
2250 /* If we are calling into another load module then have sr4export call the
2251 magic __d_plt_call routine which is linked in from end.o.
2252
2253 You can't use _sr4export to make the call as the value in sp-24 will get
2254 fried and you end up returning to the wrong location. You can't call the
2255 target as the code to bind the PLT entry to a function can't return to a
2256 stack address.
2257
2258 Also, query the dynamic linker in the inferior to provide a suitable
2259 PLABEL for the target function. */
2260 if (!using_gcc_plt_call)
2261 {
2262 CORE_ADDR new_fun;
2263
2264 /* Get a handle for the shared library containing FUN. Given the
2265 handle we can query the shared library for a PLABEL. */
2266 solib_handle = som_solib_get_solib_by_pc (fun);
2267
2268 if (solib_handle)
2269 {
2270 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2271
2272 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2273
2274 if (trampoline == NULL)
2275 {
2276 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2277 }
2278
2279 /* This is where sr4export will jump to. */
2280 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2281
2282 /* If the function is in a shared library, then call __d_shl_get to
2283 get a PLABEL for the target function. */
2284 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2285
2286 if (new_stub == 0)
2287 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2288
2289 /* We have to store the address of the stub in __shlib_funcptr. */
2290 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2291 (struct objfile *) NULL);
2292
2293 if (msymbol == NULL)
2294 error ("Can't find an address for __shlib_funcptr");
2295 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2296 (char *) &new_stub, 4);
2297
2298 /* We want sr4export to call __d_plt_call, so we claim it is
2299 the final target. Clear trampoline. */
2300 fun = new_fun;
2301 trampoline = NULL;
2302 }
2303 }
2304
2305 /* Store upper 21 bits of function address into ldil. fun will either be
2306 the final target (most cases) or __d_plt_call when calling into a shared
2307 library and __gcc_plt_call is not available. */
2308 store_unsigned_integer
2309 (&dummy[FUNC_LDIL_OFFSET],
2310 INSTRUCTION_SIZE,
2311 deposit_21 (fun >> 11,
2312 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2313 INSTRUCTION_SIZE)));
2314
2315 /* Store lower 11 bits of function address into ldo */
2316 store_unsigned_integer
2317 (&dummy[FUNC_LDO_OFFSET],
2318 INSTRUCTION_SIZE,
2319 deposit_14 (fun & MASK_11,
2320 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2321 INSTRUCTION_SIZE)));
2322 #ifdef SR4EXPORT_LDIL_OFFSET
2323
2324 {
2325 CORE_ADDR trampoline_addr;
2326
2327 /* We may still need sr4export's address too. */
2328
2329 if (trampoline == NULL)
2330 {
2331 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2332 if (msymbol == NULL)
2333 error ("Can't find an address for _sr4export trampoline");
2334
2335 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2336 }
2337 else
2338 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2339
2340
2341 /* Store upper 21 bits of trampoline's address into ldil */
2342 store_unsigned_integer
2343 (&dummy[SR4EXPORT_LDIL_OFFSET],
2344 INSTRUCTION_SIZE,
2345 deposit_21 (trampoline_addr >> 11,
2346 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2347 INSTRUCTION_SIZE)));
2348
2349 /* Store lower 11 bits of trampoline's address into ldo */
2350 store_unsigned_integer
2351 (&dummy[SR4EXPORT_LDO_OFFSET],
2352 INSTRUCTION_SIZE,
2353 deposit_14 (trampoline_addr & MASK_11,
2354 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2355 INSTRUCTION_SIZE)));
2356 }
2357 #endif
2358
2359 write_register (22, pc);
2360
2361 /* If we are in a syscall, then we should call the stack dummy
2362 directly. $$dyncall is not needed as the kernel sets up the
2363 space id registers properly based on the value in %r31. In
2364 fact calling $$dyncall will not work because the value in %r22
2365 will be clobbered on the syscall exit path.
2366
2367 Similarly if the current PC is in a shared library. Note however,
2368 this scheme won't work if the shared library isn't mapped into
2369 the same space as the stack. */
2370 if (flags & 2)
2371 return pc;
2372 #ifndef GDB_TARGET_IS_PA_ELF
2373 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid)))
2374 return pc;
2375 #endif
2376 else
2377 return dyncall_addr;
2378 #endif
2379 }
2380
2381
2382
2383
2384 /* If the pid is in a syscall, then the FP register is not readable.
2385 We'll return zero in that case, rather than attempting to read it
2386 and cause a warning. */
2387 CORE_ADDR
2388 target_read_fp (int pid)
2389 {
2390 int flags = read_register (FLAGS_REGNUM);
2391
2392 if (flags & 2)
2393 {
2394 return (CORE_ADDR) 0;
2395 }
2396
2397 /* This is the only site that may directly read_register () the FP
2398 register. All others must use TARGET_READ_FP (). */
2399 return read_register (FP_REGNUM);
2400 }
2401
2402
2403 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2404 bits. */
2405
2406 CORE_ADDR
2407 target_read_pc (ptid_t ptid)
2408 {
2409 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2410
2411 /* The following test does not belong here. It is OS-specific, and belongs
2412 in native code. */
2413 /* Test SS_INSYSCALL */
2414 if (flags & 2)
2415 return read_register_pid (31, ptid) & ~0x3;
2416
2417 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2418 }
2419
2420 /* Write out the PC. If currently in a syscall, then also write the new
2421 PC value into %r31. */
2422
2423 void
2424 target_write_pc (CORE_ADDR v, ptid_t ptid)
2425 {
2426 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2427
2428 /* The following test does not belong here. It is OS-specific, and belongs
2429 in native code. */
2430 /* If in a syscall, then set %r31. Also make sure to get the
2431 privilege bits set correctly. */
2432 /* Test SS_INSYSCALL */
2433 if (flags & 2)
2434 write_register_pid (31, v | 0x3, ptid);
2435
2436 write_register_pid (PC_REGNUM, v, ptid);
2437 write_register_pid (NPC_REGNUM, v + 4, ptid);
2438 }
2439
2440 /* return the alignment of a type in bytes. Structures have the maximum
2441 alignment required by their fields. */
2442
2443 static int
2444 hppa_alignof (struct type *type)
2445 {
2446 int max_align, align, i;
2447 CHECK_TYPEDEF (type);
2448 switch (TYPE_CODE (type))
2449 {
2450 case TYPE_CODE_PTR:
2451 case TYPE_CODE_INT:
2452 case TYPE_CODE_FLT:
2453 return TYPE_LENGTH (type);
2454 case TYPE_CODE_ARRAY:
2455 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2456 case TYPE_CODE_STRUCT:
2457 case TYPE_CODE_UNION:
2458 max_align = 1;
2459 for (i = 0; i < TYPE_NFIELDS (type); i++)
2460 {
2461 /* Bit fields have no real alignment. */
2462 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2463 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2464 {
2465 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2466 max_align = max (max_align, align);
2467 }
2468 }
2469 return max_align;
2470 default:
2471 return 4;
2472 }
2473 }
2474
2475 /* Print the register regnum, or all registers if regnum is -1 */
2476
2477 void
2478 pa_do_registers_info (int regnum, int fpregs)
2479 {
2480 char raw_regs[REGISTER_BYTES];
2481 int i;
2482
2483 /* Make a copy of gdb's save area (may cause actual
2484 reads from the target). */
2485 for (i = 0; i < NUM_REGS; i++)
2486 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2487
2488 if (regnum == -1)
2489 pa_print_registers (raw_regs, regnum, fpregs);
2490 else if (regnum < FP4_REGNUM)
2491 {
2492 long reg_val[2];
2493
2494 /* Why is the value not passed through "extract_signed_integer"
2495 as in "pa_print_registers" below? */
2496 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2497
2498 if (!is_pa_2)
2499 {
2500 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2501 }
2502 else
2503 {
2504 /* Fancy % formats to prevent leading zeros. */
2505 if (reg_val[0] == 0)
2506 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum), reg_val[1]);
2507 else
2508 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum),
2509 reg_val[0], reg_val[1]);
2510 }
2511 }
2512 else
2513 /* Note that real floating point values only start at
2514 FP4_REGNUM. FP0 and up are just status and error
2515 registers, which have integral (bit) values. */
2516 pa_print_fp_reg (regnum);
2517 }
2518
2519 /********** new function ********************/
2520 void
2521 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2522 enum precision_type precision)
2523 {
2524 char raw_regs[REGISTER_BYTES];
2525 int i;
2526
2527 /* Make a copy of gdb's save area (may cause actual
2528 reads from the target). */
2529 for (i = 0; i < NUM_REGS; i++)
2530 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
2531
2532 if (regnum == -1)
2533 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2534
2535 else if (regnum < FP4_REGNUM)
2536 {
2537 long reg_val[2];
2538
2539 /* Why is the value not passed through "extract_signed_integer"
2540 as in "pa_print_registers" below? */
2541 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2542
2543 if (!is_pa_2)
2544 {
2545 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum), reg_val[1]);
2546 }
2547 else
2548 {
2549 /* Fancy % formats to prevent leading zeros. */
2550 if (reg_val[0] == 0)
2551 fprintf_unfiltered (stream, "%s %x", REGISTER_NAME (regnum),
2552 reg_val[1]);
2553 else
2554 fprintf_unfiltered (stream, "%s %x%8.8x", REGISTER_NAME (regnum),
2555 reg_val[0], reg_val[1]);
2556 }
2557 }
2558 else
2559 /* Note that real floating point values only start at
2560 FP4_REGNUM. FP0 and up are just status and error
2561 registers, which have integral (bit) values. */
2562 pa_strcat_fp_reg (regnum, stream, precision);
2563 }
2564
2565 /* If this is a PA2.0 machine, fetch the real 64-bit register
2566 value. Otherwise use the info from gdb's saved register area.
2567
2568 Note that reg_val is really expected to be an array of longs,
2569 with two elements. */
2570 static void
2571 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2572 {
2573 static int know_which = 0; /* False */
2574
2575 int regaddr;
2576 unsigned int offset;
2577 register int i;
2578 int start;
2579
2580
2581 char buf[MAX_REGISTER_RAW_SIZE];
2582 long long reg_val;
2583
2584 if (!know_which)
2585 {
2586 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2587 {
2588 is_pa_2 = (1 == 1);
2589 }
2590
2591 know_which = 1; /* True */
2592 }
2593
2594 raw_val[0] = 0;
2595 raw_val[1] = 0;
2596
2597 if (!is_pa_2)
2598 {
2599 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2600 return;
2601 }
2602
2603 /* Code below copied from hppah-nat.c, with fixes for wide
2604 registers, using different area of save_state, etc. */
2605 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2606 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2607 {
2608 /* Use narrow regs area of save_state and default macro. */
2609 offset = U_REGS_OFFSET;
2610 regaddr = register_addr (regnum, offset);
2611 start = 1;
2612 }
2613 else
2614 {
2615 /* Use wide regs area, and calculate registers as 8 bytes wide.
2616
2617 We'd like to do this, but current version of "C" doesn't
2618 permit "offsetof":
2619
2620 offset = offsetof(save_state_t, ss_wide);
2621
2622 Note that to avoid "C" doing typed pointer arithmetic, we
2623 have to cast away the type in our offset calculation:
2624 otherwise we get an offset of 1! */
2625
2626 /* NB: save_state_t is not available before HPUX 9.
2627 The ss_wide field is not available previous to HPUX 10.20,
2628 so to avoid compile-time warnings, we only compile this for
2629 PA 2.0 processors. This control path should only be followed
2630 if we're debugging a PA 2.0 processor, so this should not cause
2631 problems. */
2632
2633 /* #if the following code out so that this file can still be
2634 compiled on older HPUX boxes (< 10.20) which don't have
2635 this structure/structure member. */
2636 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2637 save_state_t temp;
2638
2639 offset = ((int) &temp.ss_wide) - ((int) &temp);
2640 regaddr = offset + regnum * 8;
2641 start = 0;
2642 #endif
2643 }
2644
2645 for (i = start; i < 2; i++)
2646 {
2647 errno = 0;
2648 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2649 (PTRACE_ARG3_TYPE) regaddr, 0);
2650 if (errno != 0)
2651 {
2652 /* Warning, not error, in case we are attached; sometimes the
2653 kernel doesn't let us at the registers. */
2654 char *err = safe_strerror (errno);
2655 char *msg = alloca (strlen (err) + 128);
2656 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2657 warning (msg);
2658 goto error_exit;
2659 }
2660
2661 regaddr += sizeof (long);
2662 }
2663
2664 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2665 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2666
2667 error_exit:
2668 ;
2669 }
2670
2671 /* "Info all-reg" command */
2672
2673 static void
2674 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2675 {
2676 int i, j;
2677 /* Alas, we are compiled so that "long long" is 32 bits */
2678 long raw_val[2];
2679 long long_val;
2680 int rows = 48, columns = 2;
2681
2682 for (i = 0; i < rows; i++)
2683 {
2684 for (j = 0; j < columns; j++)
2685 {
2686 /* We display registers in column-major order. */
2687 int regnum = i + j * rows;
2688
2689 /* Q: Why is the value passed through "extract_signed_integer",
2690 while above, in "pa_do_registers_info" it isn't?
2691 A: ? */
2692 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2693
2694 /* Even fancier % formats to prevent leading zeros
2695 and still maintain the output in columns. */
2696 if (!is_pa_2)
2697 {
2698 /* Being big-endian, on this machine the low bits
2699 (the ones we want to look at) are in the second longword. */
2700 long_val = extract_signed_integer (&raw_val[1], 4);
2701 printf_filtered ("%10.10s: %8x ",
2702 REGISTER_NAME (regnum), long_val);
2703 }
2704 else
2705 {
2706 /* raw_val = extract_signed_integer(&raw_val, 8); */
2707 if (raw_val[0] == 0)
2708 printf_filtered ("%10.10s: %8x ",
2709 REGISTER_NAME (regnum), raw_val[1]);
2710 else
2711 printf_filtered ("%10.10s: %8x%8.8x ",
2712 REGISTER_NAME (regnum),
2713 raw_val[0], raw_val[1]);
2714 }
2715 }
2716 printf_unfiltered ("\n");
2717 }
2718
2719 if (fpregs)
2720 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2721 pa_print_fp_reg (i);
2722 }
2723
2724 /************* new function ******************/
2725 static void
2726 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2727 struct ui_file *stream)
2728 {
2729 int i, j;
2730 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2731 long long_val;
2732 enum precision_type precision;
2733
2734 precision = unspecified_precision;
2735
2736 for (i = 0; i < 18; i++)
2737 {
2738 for (j = 0; j < 4; j++)
2739 {
2740 /* Q: Why is the value passed through "extract_signed_integer",
2741 while above, in "pa_do_registers_info" it isn't?
2742 A: ? */
2743 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2744
2745 /* Even fancier % formats to prevent leading zeros
2746 and still maintain the output in columns. */
2747 if (!is_pa_2)
2748 {
2749 /* Being big-endian, on this machine the low bits
2750 (the ones we want to look at) are in the second longword. */
2751 long_val = extract_signed_integer (&raw_val[1], 4);
2752 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)), long_val);
2753 }
2754 else
2755 {
2756 /* raw_val = extract_signed_integer(&raw_val, 8); */
2757 if (raw_val[0] == 0)
2758 fprintf_filtered (stream, "%8.8s: %8x ", REGISTER_NAME (i + (j * 18)),
2759 raw_val[1]);
2760 else
2761 fprintf_filtered (stream, "%8.8s: %8x%8.8x ", REGISTER_NAME (i + (j * 18)),
2762 raw_val[0], raw_val[1]);
2763 }
2764 }
2765 fprintf_unfiltered (stream, "\n");
2766 }
2767
2768 if (fpregs)
2769 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2770 pa_strcat_fp_reg (i, stream, precision);
2771 }
2772
2773 static void
2774 pa_print_fp_reg (int i)
2775 {
2776 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2777 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2778
2779 /* Get 32bits of data. */
2780 read_relative_register_raw_bytes (i, raw_buffer);
2781
2782 /* Put it in the buffer. No conversions are ever necessary. */
2783 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2784
2785 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2786 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2787 fputs_filtered ("(single precision) ", gdb_stdout);
2788
2789 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2790 1, 0, Val_pretty_default);
2791 printf_filtered ("\n");
2792
2793 /* If "i" is even, then this register can also be a double-precision
2794 FP register. Dump it out as such. */
2795 if ((i % 2) == 0)
2796 {
2797 /* Get the data in raw format for the 2nd half. */
2798 read_relative_register_raw_bytes (i + 1, raw_buffer);
2799
2800 /* Copy it into the appropriate part of the virtual buffer. */
2801 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2802 REGISTER_RAW_SIZE (i));
2803
2804 /* Dump it as a double. */
2805 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2806 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2807 fputs_filtered ("(double precision) ", gdb_stdout);
2808
2809 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2810 1, 0, Val_pretty_default);
2811 printf_filtered ("\n");
2812 }
2813 }
2814
2815 /*************** new function ***********************/
2816 static void
2817 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2818 {
2819 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2820 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2821
2822 fputs_filtered (REGISTER_NAME (i), stream);
2823 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2824
2825 /* Get 32bits of data. */
2826 read_relative_register_raw_bytes (i, raw_buffer);
2827
2828 /* Put it in the buffer. No conversions are ever necessary. */
2829 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2830
2831 if (precision == double_precision && (i % 2) == 0)
2832 {
2833
2834 char raw_buf[MAX_REGISTER_RAW_SIZE];
2835
2836 /* Get the data in raw format for the 2nd half. */
2837 read_relative_register_raw_bytes (i + 1, raw_buf);
2838
2839 /* Copy it into the appropriate part of the virtual buffer. */
2840 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2841
2842 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2843 1, 0, Val_pretty_default);
2844
2845 }
2846 else
2847 {
2848 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2849 1, 0, Val_pretty_default);
2850 }
2851
2852 }
2853
2854 /* Return one if PC is in the call path of a trampoline, else return zero.
2855
2856 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2857 just shared library trampolines (import, export). */
2858
2859 int
2860 in_solib_call_trampoline (CORE_ADDR pc, char *name)
2861 {
2862 struct minimal_symbol *minsym;
2863 struct unwind_table_entry *u;
2864 static CORE_ADDR dyncall = 0;
2865 static CORE_ADDR sr4export = 0;
2866
2867 #ifdef GDB_TARGET_IS_HPPA_20W
2868 /* PA64 has a completely different stub/trampoline scheme. Is it
2869 better? Maybe. It's certainly harder to determine with any
2870 certainty that we are in a stub because we can not refer to the
2871 unwinders to help.
2872
2873 The heuristic is simple. Try to lookup the current PC value in th
2874 minimal symbol table. If that fails, then assume we are not in a
2875 stub and return.
2876
2877 Then see if the PC value falls within the section bounds for the
2878 section containing the minimal symbol we found in the first
2879 step. If it does, then assume we are not in a stub and return.
2880
2881 Finally peek at the instructions to see if they look like a stub. */
2882 {
2883 struct minimal_symbol *minsym;
2884 asection *sec;
2885 CORE_ADDR addr;
2886 int insn, i;
2887
2888 minsym = lookup_minimal_symbol_by_pc (pc);
2889 if (! minsym)
2890 return 0;
2891
2892 sec = SYMBOL_BFD_SECTION (minsym);
2893
2894 if (sec->vma <= pc
2895 && sec->vma + sec->_cooked_size < pc)
2896 return 0;
2897
2898 /* We might be in a stub. Peek at the instructions. Stubs are 3
2899 instructions long. */
2900 insn = read_memory_integer (pc, 4);
2901
2902 /* Find out where we think we are within the stub. */
2903 if ((insn & 0xffffc00e) == 0x53610000)
2904 addr = pc;
2905 else if ((insn & 0xffffffff) == 0xe820d000)
2906 addr = pc - 4;
2907 else if ((insn & 0xffffc00e) == 0x537b0000)
2908 addr = pc - 8;
2909 else
2910 return 0;
2911
2912 /* Now verify each insn in the range looks like a stub instruction. */
2913 insn = read_memory_integer (addr, 4);
2914 if ((insn & 0xffffc00e) != 0x53610000)
2915 return 0;
2916
2917 /* Now verify each insn in the range looks like a stub instruction. */
2918 insn = read_memory_integer (addr + 4, 4);
2919 if ((insn & 0xffffffff) != 0xe820d000)
2920 return 0;
2921
2922 /* Now verify each insn in the range looks like a stub instruction. */
2923 insn = read_memory_integer (addr + 8, 4);
2924 if ((insn & 0xffffc00e) != 0x537b0000)
2925 return 0;
2926
2927 /* Looks like a stub. */
2928 return 1;
2929 }
2930 #endif
2931
2932 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2933 new exec file */
2934
2935 /* First see if PC is in one of the two C-library trampolines. */
2936 if (!dyncall)
2937 {
2938 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2939 if (minsym)
2940 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
2941 else
2942 dyncall = -1;
2943 }
2944
2945 if (!sr4export)
2946 {
2947 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2948 if (minsym)
2949 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
2950 else
2951 sr4export = -1;
2952 }
2953
2954 if (pc == dyncall || pc == sr4export)
2955 return 1;
2956
2957 minsym = lookup_minimal_symbol_by_pc (pc);
2958 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
2959 return 1;
2960
2961 /* Get the unwind descriptor corresponding to PC, return zero
2962 if no unwind was found. */
2963 u = find_unwind_entry (pc);
2964 if (!u)
2965 return 0;
2966
2967 /* If this isn't a linker stub, then return now. */
2968 if (u->stub_unwind.stub_type == 0)
2969 return 0;
2970
2971 /* By definition a long-branch stub is a call stub. */
2972 if (u->stub_unwind.stub_type == LONG_BRANCH)
2973 return 1;
2974
2975 /* The call and return path execute the same instructions within
2976 an IMPORT stub! So an IMPORT stub is both a call and return
2977 trampoline. */
2978 if (u->stub_unwind.stub_type == IMPORT)
2979 return 1;
2980
2981 /* Parameter relocation stubs always have a call path and may have a
2982 return path. */
2983 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
2984 || u->stub_unwind.stub_type == EXPORT)
2985 {
2986 CORE_ADDR addr;
2987
2988 /* Search forward from the current PC until we hit a branch
2989 or the end of the stub. */
2990 for (addr = pc; addr <= u->region_end; addr += 4)
2991 {
2992 unsigned long insn;
2993
2994 insn = read_memory_integer (addr, 4);
2995
2996 /* Does it look like a bl? If so then it's the call path, if
2997 we find a bv or be first, then we're on the return path. */
2998 if ((insn & 0xfc00e000) == 0xe8000000)
2999 return 1;
3000 else if ((insn & 0xfc00e001) == 0xe800c000
3001 || (insn & 0xfc000000) == 0xe0000000)
3002 return 0;
3003 }
3004
3005 /* Should never happen. */
3006 warning ("Unable to find branch in parameter relocation stub.\n");
3007 return 0;
3008 }
3009
3010 /* Unknown stub type. For now, just return zero. */
3011 return 0;
3012 }
3013
3014 /* Return one if PC is in the return path of a trampoline, else return zero.
3015
3016 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3017 just shared library trampolines (import, export). */
3018
3019 int
3020 in_solib_return_trampoline (CORE_ADDR pc, char *name)
3021 {
3022 struct unwind_table_entry *u;
3023
3024 /* Get the unwind descriptor corresponding to PC, return zero
3025 if no unwind was found. */
3026 u = find_unwind_entry (pc);
3027 if (!u)
3028 return 0;
3029
3030 /* If this isn't a linker stub or it's just a long branch stub, then
3031 return zero. */
3032 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3033 return 0;
3034
3035 /* The call and return path execute the same instructions within
3036 an IMPORT stub! So an IMPORT stub is both a call and return
3037 trampoline. */
3038 if (u->stub_unwind.stub_type == IMPORT)
3039 return 1;
3040
3041 /* Parameter relocation stubs always have a call path and may have a
3042 return path. */
3043 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3044 || u->stub_unwind.stub_type == EXPORT)
3045 {
3046 CORE_ADDR addr;
3047
3048 /* Search forward from the current PC until we hit a branch
3049 or the end of the stub. */
3050 for (addr = pc; addr <= u->region_end; addr += 4)
3051 {
3052 unsigned long insn;
3053
3054 insn = read_memory_integer (addr, 4);
3055
3056 /* Does it look like a bl? If so then it's the call path, if
3057 we find a bv or be first, then we're on the return path. */
3058 if ((insn & 0xfc00e000) == 0xe8000000)
3059 return 0;
3060 else if ((insn & 0xfc00e001) == 0xe800c000
3061 || (insn & 0xfc000000) == 0xe0000000)
3062 return 1;
3063 }
3064
3065 /* Should never happen. */
3066 warning ("Unable to find branch in parameter relocation stub.\n");
3067 return 0;
3068 }
3069
3070 /* Unknown stub type. For now, just return zero. */
3071 return 0;
3072
3073 }
3074
3075 /* Figure out if PC is in a trampoline, and if so find out where
3076 the trampoline will jump to. If not in a trampoline, return zero.
3077
3078 Simple code examination probably is not a good idea since the code
3079 sequences in trampolines can also appear in user code.
3080
3081 We use unwinds and information from the minimal symbol table to
3082 determine when we're in a trampoline. This won't work for ELF
3083 (yet) since it doesn't create stub unwind entries. Whether or
3084 not ELF will create stub unwinds or normal unwinds for linker
3085 stubs is still being debated.
3086
3087 This should handle simple calls through dyncall or sr4export,
3088 long calls, argument relocation stubs, and dyncall/sr4export
3089 calling an argument relocation stub. It even handles some stubs
3090 used in dynamic executables. */
3091
3092 CORE_ADDR
3093 skip_trampoline_code (CORE_ADDR pc, char *name)
3094 {
3095 long orig_pc = pc;
3096 long prev_inst, curr_inst, loc;
3097 static CORE_ADDR dyncall = 0;
3098 static CORE_ADDR dyncall_external = 0;
3099 static CORE_ADDR sr4export = 0;
3100 struct minimal_symbol *msym;
3101 struct unwind_table_entry *u;
3102
3103 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3104 new exec file */
3105
3106 if (!dyncall)
3107 {
3108 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3109 if (msym)
3110 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3111 else
3112 dyncall = -1;
3113 }
3114
3115 if (!dyncall_external)
3116 {
3117 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3118 if (msym)
3119 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3120 else
3121 dyncall_external = -1;
3122 }
3123
3124 if (!sr4export)
3125 {
3126 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3127 if (msym)
3128 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3129 else
3130 sr4export = -1;
3131 }
3132
3133 /* Addresses passed to dyncall may *NOT* be the actual address
3134 of the function. So we may have to do something special. */
3135 if (pc == dyncall)
3136 {
3137 pc = (CORE_ADDR) read_register (22);
3138
3139 /* If bit 30 (counting from the left) is on, then pc is the address of
3140 the PLT entry for this function, not the address of the function
3141 itself. Bit 31 has meaning too, but only for MPE. */
3142 if (pc & 0x2)
3143 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3144 }
3145 if (pc == dyncall_external)
3146 {
3147 pc = (CORE_ADDR) read_register (22);
3148 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3149 }
3150 else if (pc == sr4export)
3151 pc = (CORE_ADDR) (read_register (22));
3152
3153 /* Get the unwind descriptor corresponding to PC, return zero
3154 if no unwind was found. */
3155 u = find_unwind_entry (pc);
3156 if (!u)
3157 return 0;
3158
3159 /* If this isn't a linker stub, then return now. */
3160 /* elz: attention here! (FIXME) because of a compiler/linker
3161 error, some stubs which should have a non zero stub_unwind.stub_type
3162 have unfortunately a value of zero. So this function would return here
3163 as if we were not in a trampoline. To fix this, we go look at the partial
3164 symbol information, which reports this guy as a stub.
3165 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3166 partial symbol information is also wrong sometimes. This is because
3167 when it is entered (somread.c::som_symtab_read()) it can happen that
3168 if the type of the symbol (from the som) is Entry, and the symbol is
3169 in a shared library, then it can also be a trampoline. This would
3170 be OK, except that I believe the way they decide if we are ina shared library
3171 does not work. SOOOO..., even if we have a regular function w/o trampolines
3172 its minimal symbol can be assigned type mst_solib_trampoline.
3173 Also, if we find that the symbol is a real stub, then we fix the unwind
3174 descriptor, and define the stub type to be EXPORT.
3175 Hopefully this is correct most of the times. */
3176 if (u->stub_unwind.stub_type == 0)
3177 {
3178
3179 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3180 we can delete all the code which appears between the lines */
3181 /*--------------------------------------------------------------------------*/
3182 msym = lookup_minimal_symbol_by_pc (pc);
3183
3184 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3185 return orig_pc == pc ? 0 : pc & ~0x3;
3186
3187 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3188 {
3189 struct objfile *objfile;
3190 struct minimal_symbol *msymbol;
3191 int function_found = 0;
3192
3193 /* go look if there is another minimal symbol with the same name as
3194 this one, but with type mst_text. This would happen if the msym
3195 is an actual trampoline, in which case there would be another
3196 symbol with the same name corresponding to the real function */
3197
3198 ALL_MSYMBOLS (objfile, msymbol)
3199 {
3200 if (MSYMBOL_TYPE (msymbol) == mst_text
3201 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3202 {
3203 function_found = 1;
3204 break;
3205 }
3206 }
3207
3208 if (function_found)
3209 /* the type of msym is correct (mst_solib_trampoline), but
3210 the unwind info is wrong, so set it to the correct value */
3211 u->stub_unwind.stub_type = EXPORT;
3212 else
3213 /* the stub type info in the unwind is correct (this is not a
3214 trampoline), but the msym type information is wrong, it
3215 should be mst_text. So we need to fix the msym, and also
3216 get out of this function */
3217 {
3218 MSYMBOL_TYPE (msym) = mst_text;
3219 return orig_pc == pc ? 0 : pc & ~0x3;
3220 }
3221 }
3222
3223 /*--------------------------------------------------------------------------*/
3224 }
3225
3226 /* It's a stub. Search for a branch and figure out where it goes.
3227 Note we have to handle multi insn branch sequences like ldil;ble.
3228 Most (all?) other branches can be determined by examining the contents
3229 of certain registers and the stack. */
3230
3231 loc = pc;
3232 curr_inst = 0;
3233 prev_inst = 0;
3234 while (1)
3235 {
3236 /* Make sure we haven't walked outside the range of this stub. */
3237 if (u != find_unwind_entry (loc))
3238 {
3239 warning ("Unable to find branch in linker stub");
3240 return orig_pc == pc ? 0 : pc & ~0x3;
3241 }
3242
3243 prev_inst = curr_inst;
3244 curr_inst = read_memory_integer (loc, 4);
3245
3246 /* Does it look like a branch external using %r1? Then it's the
3247 branch from the stub to the actual function. */
3248 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3249 {
3250 /* Yup. See if the previous instruction loaded
3251 a value into %r1. If so compute and return the jump address. */
3252 if ((prev_inst & 0xffe00000) == 0x20200000)
3253 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3254 else
3255 {
3256 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3257 return orig_pc == pc ? 0 : pc & ~0x3;
3258 }
3259 }
3260
3261 /* Does it look like a be 0(sr0,%r21)? OR
3262 Does it look like a be, n 0(sr0,%r21)? OR
3263 Does it look like a bve (r21)? (this is on PA2.0)
3264 Does it look like a bve, n(r21)? (this is also on PA2.0)
3265 That's the branch from an
3266 import stub to an export stub.
3267
3268 It is impossible to determine the target of the branch via
3269 simple examination of instructions and/or data (consider
3270 that the address in the plabel may be the address of the
3271 bind-on-reference routine in the dynamic loader).
3272
3273 So we have try an alternative approach.
3274
3275 Get the name of the symbol at our current location; it should
3276 be a stub symbol with the same name as the symbol in the
3277 shared library.
3278
3279 Then lookup a minimal symbol with the same name; we should
3280 get the minimal symbol for the target routine in the shared
3281 library as those take precedence of import/export stubs. */
3282 if ((curr_inst == 0xe2a00000) ||
3283 (curr_inst == 0xe2a00002) ||
3284 (curr_inst == 0xeaa0d000) ||
3285 (curr_inst == 0xeaa0d002))
3286 {
3287 struct minimal_symbol *stubsym, *libsym;
3288
3289 stubsym = lookup_minimal_symbol_by_pc (loc);
3290 if (stubsym == NULL)
3291 {
3292 warning ("Unable to find symbol for 0x%x", loc);
3293 return orig_pc == pc ? 0 : pc & ~0x3;
3294 }
3295
3296 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3297 if (libsym == NULL)
3298 {
3299 warning ("Unable to find library symbol for %s\n",
3300 SYMBOL_NAME (stubsym));
3301 return orig_pc == pc ? 0 : pc & ~0x3;
3302 }
3303
3304 return SYMBOL_VALUE (libsym);
3305 }
3306
3307 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3308 branch from the stub to the actual function. */
3309 /*elz */
3310 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3311 || (curr_inst & 0xffe0e000) == 0xe8000000
3312 || (curr_inst & 0xffe0e000) == 0xe800A000)
3313 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3314
3315 /* Does it look like bv (rp)? Note this depends on the
3316 current stack pointer being the same as the stack
3317 pointer in the stub itself! This is a branch on from the
3318 stub back to the original caller. */
3319 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3320 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3321 {
3322 /* Yup. See if the previous instruction loaded
3323 rp from sp - 8. */
3324 if (prev_inst == 0x4bc23ff1)
3325 return (read_memory_integer
3326 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3327 else
3328 {
3329 warning ("Unable to find restore of %%rp before bv (%%rp).");
3330 return orig_pc == pc ? 0 : pc & ~0x3;
3331 }
3332 }
3333
3334 /* elz: added this case to capture the new instruction
3335 at the end of the return part of an export stub used by
3336 the PA2.0: BVE, n (rp) */
3337 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3338 {
3339 return (read_memory_integer
3340 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3341 }
3342
3343 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3344 the original caller from the stub. Used in dynamic executables. */
3345 else if (curr_inst == 0xe0400002)
3346 {
3347 /* The value we jump to is sitting in sp - 24. But that's
3348 loaded several instructions before the be instruction.
3349 I guess we could check for the previous instruction being
3350 mtsp %r1,%sr0 if we want to do sanity checking. */
3351 return (read_memory_integer
3352 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3353 }
3354
3355 /* Haven't found the branch yet, but we're still in the stub.
3356 Keep looking. */
3357 loc += 4;
3358 }
3359 }
3360
3361
3362 /* For the given instruction (INST), return any adjustment it makes
3363 to the stack pointer or zero for no adjustment.
3364
3365 This only handles instructions commonly found in prologues. */
3366
3367 static int
3368 prologue_inst_adjust_sp (unsigned long inst)
3369 {
3370 /* This must persist across calls. */
3371 static int save_high21;
3372
3373 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3374 if ((inst & 0xffffc000) == 0x37de0000)
3375 return extract_14 (inst);
3376
3377 /* stwm X,D(sp) */
3378 if ((inst & 0xffe00000) == 0x6fc00000)
3379 return extract_14 (inst);
3380
3381 /* std,ma X,D(sp) */
3382 if ((inst & 0xffe00008) == 0x73c00008)
3383 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3384
3385 /* addil high21,%r1; ldo low11,(%r1),%r30)
3386 save high bits in save_high21 for later use. */
3387 if ((inst & 0xffe00000) == 0x28200000)
3388 {
3389 save_high21 = extract_21 (inst);
3390 return 0;
3391 }
3392
3393 if ((inst & 0xffff0000) == 0x343e0000)
3394 return save_high21 + extract_14 (inst);
3395
3396 /* fstws as used by the HP compilers. */
3397 if ((inst & 0xffffffe0) == 0x2fd01220)
3398 return extract_5_load (inst);
3399
3400 /* No adjustment. */
3401 return 0;
3402 }
3403
3404 /* Return nonzero if INST is a branch of some kind, else return zero. */
3405
3406 static int
3407 is_branch (unsigned long inst)
3408 {
3409 switch (inst >> 26)
3410 {
3411 case 0x20:
3412 case 0x21:
3413 case 0x22:
3414 case 0x23:
3415 case 0x27:
3416 case 0x28:
3417 case 0x29:
3418 case 0x2a:
3419 case 0x2b:
3420 case 0x2f:
3421 case 0x30:
3422 case 0x31:
3423 case 0x32:
3424 case 0x33:
3425 case 0x38:
3426 case 0x39:
3427 case 0x3a:
3428 case 0x3b:
3429 return 1;
3430
3431 default:
3432 return 0;
3433 }
3434 }
3435
3436 /* Return the register number for a GR which is saved by INST or
3437 zero it INST does not save a GR. */
3438
3439 static int
3440 inst_saves_gr (unsigned long inst)
3441 {
3442 /* Does it look like a stw? */
3443 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3444 || (inst >> 26) == 0x1f
3445 || ((inst >> 26) == 0x1f
3446 && ((inst >> 6) == 0xa)))
3447 return extract_5R_store (inst);
3448
3449 /* Does it look like a std? */
3450 if ((inst >> 26) == 0x1c
3451 || ((inst >> 26) == 0x03
3452 && ((inst >> 6) & 0xf) == 0xb))
3453 return extract_5R_store (inst);
3454
3455 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3456 if ((inst >> 26) == 0x1b)
3457 return extract_5R_store (inst);
3458
3459 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3460 too. */
3461 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3462 || ((inst >> 26) == 0x3
3463 && (((inst >> 6) & 0xf) == 0x8
3464 || (inst >> 6) & 0xf) == 0x9))
3465 return extract_5R_store (inst);
3466
3467 return 0;
3468 }
3469
3470 /* Return the register number for a FR which is saved by INST or
3471 zero it INST does not save a FR.
3472
3473 Note we only care about full 64bit register stores (that's the only
3474 kind of stores the prologue will use).
3475
3476 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3477
3478 static int
3479 inst_saves_fr (unsigned long inst)
3480 {
3481 /* is this an FSTD ? */
3482 if ((inst & 0xfc00dfc0) == 0x2c001200)
3483 return extract_5r_store (inst);
3484 if ((inst & 0xfc000002) == 0x70000002)
3485 return extract_5R_store (inst);
3486 /* is this an FSTW ? */
3487 if ((inst & 0xfc00df80) == 0x24001200)
3488 return extract_5r_store (inst);
3489 if ((inst & 0xfc000002) == 0x7c000000)
3490 return extract_5R_store (inst);
3491 return 0;
3492 }
3493
3494 /* Advance PC across any function entry prologue instructions
3495 to reach some "real" code.
3496
3497 Use information in the unwind table to determine what exactly should
3498 be in the prologue. */
3499
3500
3501 CORE_ADDR
3502 skip_prologue_hard_way (CORE_ADDR pc)
3503 {
3504 char buf[4];
3505 CORE_ADDR orig_pc = pc;
3506 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3507 unsigned long args_stored, status, i, restart_gr, restart_fr;
3508 struct unwind_table_entry *u;
3509
3510 restart_gr = 0;
3511 restart_fr = 0;
3512
3513 restart:
3514 u = find_unwind_entry (pc);
3515 if (!u)
3516 return pc;
3517
3518 /* If we are not at the beginning of a function, then return now. */
3519 if ((pc & ~0x3) != u->region_start)
3520 return pc;
3521
3522 /* This is how much of a frame adjustment we need to account for. */
3523 stack_remaining = u->Total_frame_size << 3;
3524
3525 /* Magic register saves we want to know about. */
3526 save_rp = u->Save_RP;
3527 save_sp = u->Save_SP;
3528
3529 /* An indication that args may be stored into the stack. Unfortunately
3530 the HPUX compilers tend to set this in cases where no args were
3531 stored too!. */
3532 args_stored = 1;
3533
3534 /* Turn the Entry_GR field into a bitmask. */
3535 save_gr = 0;
3536 for (i = 3; i < u->Entry_GR + 3; i++)
3537 {
3538 /* Frame pointer gets saved into a special location. */
3539 if (u->Save_SP && i == FP_REGNUM)
3540 continue;
3541
3542 save_gr |= (1 << i);
3543 }
3544 save_gr &= ~restart_gr;
3545
3546 /* Turn the Entry_FR field into a bitmask too. */
3547 save_fr = 0;
3548 for (i = 12; i < u->Entry_FR + 12; i++)
3549 save_fr |= (1 << i);
3550 save_fr &= ~restart_fr;
3551
3552 /* Loop until we find everything of interest or hit a branch.
3553
3554 For unoptimized GCC code and for any HP CC code this will never ever
3555 examine any user instructions.
3556
3557 For optimzied GCC code we're faced with problems. GCC will schedule
3558 its prologue and make prologue instructions available for delay slot
3559 filling. The end result is user code gets mixed in with the prologue
3560 and a prologue instruction may be in the delay slot of the first branch
3561 or call.
3562
3563 Some unexpected things are expected with debugging optimized code, so
3564 we allow this routine to walk past user instructions in optimized
3565 GCC code. */
3566 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3567 || args_stored)
3568 {
3569 unsigned int reg_num;
3570 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3571 unsigned long old_save_rp, old_save_sp, next_inst;
3572
3573 /* Save copies of all the triggers so we can compare them later
3574 (only for HPC). */
3575 old_save_gr = save_gr;
3576 old_save_fr = save_fr;
3577 old_save_rp = save_rp;
3578 old_save_sp = save_sp;
3579 old_stack_remaining = stack_remaining;
3580
3581 status = target_read_memory (pc, buf, 4);
3582 inst = extract_unsigned_integer (buf, 4);
3583
3584 /* Yow! */
3585 if (status != 0)
3586 return pc;
3587
3588 /* Note the interesting effects of this instruction. */
3589 stack_remaining -= prologue_inst_adjust_sp (inst);
3590
3591 /* There are limited ways to store the return pointer into the
3592 stack. */
3593 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3594 save_rp = 0;
3595
3596 /* These are the only ways we save SP into the stack. At this time
3597 the HP compilers never bother to save SP into the stack. */
3598 if ((inst & 0xffffc000) == 0x6fc10000
3599 || (inst & 0xffffc00c) == 0x73c10008)
3600 save_sp = 0;
3601
3602 /* Are we loading some register with an offset from the argument
3603 pointer? */
3604 if ((inst & 0xffe00000) == 0x37a00000
3605 || (inst & 0xffffffe0) == 0x081d0240)
3606 {
3607 pc += 4;
3608 continue;
3609 }
3610
3611 /* Account for general and floating-point register saves. */
3612 reg_num = inst_saves_gr (inst);
3613 save_gr &= ~(1 << reg_num);
3614
3615 /* Ugh. Also account for argument stores into the stack.
3616 Unfortunately args_stored only tells us that some arguments
3617 where stored into the stack. Not how many or what kind!
3618
3619 This is a kludge as on the HP compiler sets this bit and it
3620 never does prologue scheduling. So once we see one, skip past
3621 all of them. We have similar code for the fp arg stores below.
3622
3623 FIXME. Can still die if we have a mix of GR and FR argument
3624 stores! */
3625 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3626 {
3627 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3628 {
3629 pc += 4;
3630 status = target_read_memory (pc, buf, 4);
3631 inst = extract_unsigned_integer (buf, 4);
3632 if (status != 0)
3633 return pc;
3634 reg_num = inst_saves_gr (inst);
3635 }
3636 args_stored = 0;
3637 continue;
3638 }
3639
3640 reg_num = inst_saves_fr (inst);
3641 save_fr &= ~(1 << reg_num);
3642
3643 status = target_read_memory (pc + 4, buf, 4);
3644 next_inst = extract_unsigned_integer (buf, 4);
3645
3646 /* Yow! */
3647 if (status != 0)
3648 return pc;
3649
3650 /* We've got to be read to handle the ldo before the fp register
3651 save. */
3652 if ((inst & 0xfc000000) == 0x34000000
3653 && inst_saves_fr (next_inst) >= 4
3654 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3655 {
3656 /* So we drop into the code below in a reasonable state. */
3657 reg_num = inst_saves_fr (next_inst);
3658 pc -= 4;
3659 }
3660
3661 /* Ugh. Also account for argument stores into the stack.
3662 This is a kludge as on the HP compiler sets this bit and it
3663 never does prologue scheduling. So once we see one, skip past
3664 all of them. */
3665 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3666 {
3667 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3668 {
3669 pc += 8;
3670 status = target_read_memory (pc, buf, 4);
3671 inst = extract_unsigned_integer (buf, 4);
3672 if (status != 0)
3673 return pc;
3674 if ((inst & 0xfc000000) != 0x34000000)
3675 break;
3676 status = target_read_memory (pc + 4, buf, 4);
3677 next_inst = extract_unsigned_integer (buf, 4);
3678 if (status != 0)
3679 return pc;
3680 reg_num = inst_saves_fr (next_inst);
3681 }
3682 args_stored = 0;
3683 continue;
3684 }
3685
3686 /* Quit if we hit any kind of branch. This can happen if a prologue
3687 instruction is in the delay slot of the first call/branch. */
3688 if (is_branch (inst))
3689 break;
3690
3691 /* What a crock. The HP compilers set args_stored even if no
3692 arguments were stored into the stack (boo hiss). This could
3693 cause this code to then skip a bunch of user insns (up to the
3694 first branch).
3695
3696 To combat this we try to identify when args_stored was bogusly
3697 set and clear it. We only do this when args_stored is nonzero,
3698 all other resources are accounted for, and nothing changed on
3699 this pass. */
3700 if (args_stored
3701 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3702 && old_save_gr == save_gr && old_save_fr == save_fr
3703 && old_save_rp == save_rp && old_save_sp == save_sp
3704 && old_stack_remaining == stack_remaining)
3705 break;
3706
3707 /* Bump the PC. */
3708 pc += 4;
3709 }
3710
3711 /* We've got a tenative location for the end of the prologue. However
3712 because of limitations in the unwind descriptor mechanism we may
3713 have went too far into user code looking for the save of a register
3714 that does not exist. So, if there registers we expected to be saved
3715 but never were, mask them out and restart.
3716
3717 This should only happen in optimized code, and should be very rare. */
3718 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3719 {
3720 pc = orig_pc;
3721 restart_gr = save_gr;
3722 restart_fr = save_fr;
3723 goto restart;
3724 }
3725
3726 return pc;
3727 }
3728
3729
3730 /* Return the address of the PC after the last prologue instruction if
3731 we can determine it from the debug symbols. Else return zero. */
3732
3733 static CORE_ADDR
3734 after_prologue (CORE_ADDR pc)
3735 {
3736 struct symtab_and_line sal;
3737 CORE_ADDR func_addr, func_end;
3738 struct symbol *f;
3739
3740 /* If we can not find the symbol in the partial symbol table, then
3741 there is no hope we can determine the function's start address
3742 with this code. */
3743 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3744 return 0;
3745
3746 /* Get the line associated with FUNC_ADDR. */
3747 sal = find_pc_line (func_addr, 0);
3748
3749 /* There are only two cases to consider. First, the end of the source line
3750 is within the function bounds. In that case we return the end of the
3751 source line. Second is the end of the source line extends beyond the
3752 bounds of the current function. We need to use the slow code to
3753 examine instructions in that case.
3754
3755 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3756 the wrong thing to do. In fact, it should be entirely possible for this
3757 function to always return zero since the slow instruction scanning code
3758 is supposed to *always* work. If it does not, then it is a bug. */
3759 if (sal.end < func_end)
3760 return sal.end;
3761 else
3762 return 0;
3763 }
3764
3765 /* To skip prologues, I use this predicate. Returns either PC itself
3766 if the code at PC does not look like a function prologue; otherwise
3767 returns an address that (if we're lucky) follows the prologue. If
3768 LENIENT, then we must skip everything which is involved in setting
3769 up the frame (it's OK to skip more, just so long as we don't skip
3770 anything which might clobber the registers which are being saved.
3771 Currently we must not skip more on the alpha, but we might the lenient
3772 stuff some day. */
3773
3774 CORE_ADDR
3775 hppa_skip_prologue (CORE_ADDR pc)
3776 {
3777 unsigned long inst;
3778 int offset;
3779 CORE_ADDR post_prologue_pc;
3780 char buf[4];
3781
3782 /* See if we can determine the end of the prologue via the symbol table.
3783 If so, then return either PC, or the PC after the prologue, whichever
3784 is greater. */
3785
3786 post_prologue_pc = after_prologue (pc);
3787
3788 /* If after_prologue returned a useful address, then use it. Else
3789 fall back on the instruction skipping code.
3790
3791 Some folks have claimed this causes problems because the breakpoint
3792 may be the first instruction of the prologue. If that happens, then
3793 the instruction skipping code has a bug that needs to be fixed. */
3794 if (post_prologue_pc != 0)
3795 return max (pc, post_prologue_pc);
3796 else
3797 return (skip_prologue_hard_way (pc));
3798 }
3799
3800 /* Put here the code to store, into a struct frame_saved_regs,
3801 the addresses of the saved registers of frame described by FRAME_INFO.
3802 This includes special registers such as pc and fp saved in special
3803 ways in the stack frame. sp is even more special:
3804 the address we return for it IS the sp for the next frame. */
3805
3806 void
3807 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3808 struct frame_saved_regs *frame_saved_regs)
3809 {
3810 CORE_ADDR pc;
3811 struct unwind_table_entry *u;
3812 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3813 int status, i, reg;
3814 char buf[4];
3815 int fp_loc = -1;
3816 int final_iteration;
3817
3818 /* Zero out everything. */
3819 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3820
3821 /* Call dummy frames always look the same, so there's no need to
3822 examine the dummy code to determine locations of saved registers;
3823 instead, let find_dummy_frame_regs fill in the correct offsets
3824 for the saved registers. */
3825 if ((frame_info->pc >= frame_info->frame
3826 && frame_info->pc <= (frame_info->frame
3827 /* A call dummy is sized in words, but it is
3828 actually a series of instructions. Account
3829 for that scaling factor. */
3830 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3831 * CALL_DUMMY_LENGTH)
3832 /* Similarly we have to account for 64bit
3833 wide register saves. */
3834 + (32 * REGISTER_SIZE)
3835 /* We always consider FP regs 8 bytes long. */
3836 + (NUM_REGS - FP0_REGNUM) * 8
3837 /* Similarly we have to account for 64bit
3838 wide register saves. */
3839 + (6 * REGISTER_SIZE))))
3840 find_dummy_frame_regs (frame_info, frame_saved_regs);
3841
3842 /* Interrupt handlers are special too. They lay out the register
3843 state in the exact same order as the register numbers in GDB. */
3844 if (pc_in_interrupt_handler (frame_info->pc))
3845 {
3846 for (i = 0; i < NUM_REGS; i++)
3847 {
3848 /* SP is a little special. */
3849 if (i == SP_REGNUM)
3850 frame_saved_regs->regs[SP_REGNUM]
3851 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3852 TARGET_PTR_BIT / 8);
3853 else
3854 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3855 }
3856 return;
3857 }
3858
3859 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3860 /* Handle signal handler callers. */
3861 if (frame_info->signal_handler_caller)
3862 {
3863 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3864 return;
3865 }
3866 #endif
3867
3868 /* Get the starting address of the function referred to by the PC
3869 saved in frame. */
3870 pc = get_pc_function_start (frame_info->pc);
3871
3872 /* Yow! */
3873 u = find_unwind_entry (pc);
3874 if (!u)
3875 return;
3876
3877 /* This is how much of a frame adjustment we need to account for. */
3878 stack_remaining = u->Total_frame_size << 3;
3879
3880 /* Magic register saves we want to know about. */
3881 save_rp = u->Save_RP;
3882 save_sp = u->Save_SP;
3883
3884 /* Turn the Entry_GR field into a bitmask. */
3885 save_gr = 0;
3886 for (i = 3; i < u->Entry_GR + 3; i++)
3887 {
3888 /* Frame pointer gets saved into a special location. */
3889 if (u->Save_SP && i == FP_REGNUM)
3890 continue;
3891
3892 save_gr |= (1 << i);
3893 }
3894
3895 /* Turn the Entry_FR field into a bitmask too. */
3896 save_fr = 0;
3897 for (i = 12; i < u->Entry_FR + 12; i++)
3898 save_fr |= (1 << i);
3899
3900 /* The frame always represents the value of %sp at entry to the
3901 current function (and is thus equivalent to the "saved" stack
3902 pointer. */
3903 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3904
3905 /* Loop until we find everything of interest or hit a branch.
3906
3907 For unoptimized GCC code and for any HP CC code this will never ever
3908 examine any user instructions.
3909
3910 For optimized GCC code we're faced with problems. GCC will schedule
3911 its prologue and make prologue instructions available for delay slot
3912 filling. The end result is user code gets mixed in with the prologue
3913 and a prologue instruction may be in the delay slot of the first branch
3914 or call.
3915
3916 Some unexpected things are expected with debugging optimized code, so
3917 we allow this routine to walk past user instructions in optimized
3918 GCC code. */
3919 final_iteration = 0;
3920 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3921 && pc <= frame_info->pc)
3922 {
3923 status = target_read_memory (pc, buf, 4);
3924 inst = extract_unsigned_integer (buf, 4);
3925
3926 /* Yow! */
3927 if (status != 0)
3928 return;
3929
3930 /* Note the interesting effects of this instruction. */
3931 stack_remaining -= prologue_inst_adjust_sp (inst);
3932
3933 /* There are limited ways to store the return pointer into the
3934 stack. */
3935 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3936 {
3937 save_rp = 0;
3938 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
3939 }
3940 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3941 {
3942 save_rp = 0;
3943 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
3944 }
3945
3946 /* Note if we saved SP into the stack. This also happens to indicate
3947 the location of the saved frame pointer. */
3948 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3949 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3950 {
3951 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
3952 save_sp = 0;
3953 }
3954
3955 /* Account for general and floating-point register saves. */
3956 reg = inst_saves_gr (inst);
3957 if (reg >= 3 && reg <= 18
3958 && (!u->Save_SP || reg != FP_REGNUM))
3959 {
3960 save_gr &= ~(1 << reg);
3961
3962 /* stwm with a positive displacement is a *post modify*. */
3963 if ((inst >> 26) == 0x1b
3964 && extract_14 (inst) >= 0)
3965 frame_saved_regs->regs[reg] = frame_info->frame;
3966 /* A std has explicit post_modify forms. */
3967 else if ((inst & 0xfc00000c0) == 0x70000008)
3968 frame_saved_regs->regs[reg] = frame_info->frame;
3969 else
3970 {
3971 CORE_ADDR offset;
3972
3973 if ((inst >> 26) == 0x1c)
3974 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3975 else if ((inst >> 26) == 0x03)
3976 offset = low_sign_extend (inst & 0x1f, 5);
3977 else
3978 offset = extract_14 (inst);
3979
3980 /* Handle code with and without frame pointers. */
3981 if (u->Save_SP)
3982 frame_saved_regs->regs[reg]
3983 = frame_info->frame + offset;
3984 else
3985 frame_saved_regs->regs[reg]
3986 = (frame_info->frame + (u->Total_frame_size << 3)
3987 + offset);
3988 }
3989 }
3990
3991
3992 /* GCC handles callee saved FP regs a little differently.
3993
3994 It emits an instruction to put the value of the start of
3995 the FP store area into %r1. It then uses fstds,ma with
3996 a basereg of %r1 for the stores.
3997
3998 HP CC emits them at the current stack pointer modifying
3999 the stack pointer as it stores each register. */
4000
4001 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4002 if ((inst & 0xffffc000) == 0x34610000
4003 || (inst & 0xffffc000) == 0x37c10000)
4004 fp_loc = extract_14 (inst);
4005
4006 reg = inst_saves_fr (inst);
4007 if (reg >= 12 && reg <= 21)
4008 {
4009 /* Note +4 braindamage below is necessary because the FP status
4010 registers are internally 8 registers rather than the expected
4011 4 registers. */
4012 save_fr &= ~(1 << reg);
4013 if (fp_loc == -1)
4014 {
4015 /* 1st HP CC FP register store. After this instruction
4016 we've set enough state that the GCC and HPCC code are
4017 both handled in the same manner. */
4018 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4019 fp_loc = 8;
4020 }
4021 else
4022 {
4023 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4024 = frame_info->frame + fp_loc;
4025 fp_loc += 8;
4026 }
4027 }
4028
4029 /* Quit if we hit any kind of branch the previous iteration. */
4030 if (final_iteration)
4031 break;
4032
4033 /* We want to look precisely one instruction beyond the branch
4034 if we have not found everything yet. */
4035 if (is_branch (inst))
4036 final_iteration = 1;
4037
4038 /* Bump the PC. */
4039 pc += 4;
4040 }
4041 }
4042
4043
4044 /* Exception handling support for the HP-UX ANSI C++ compiler.
4045 The compiler (aCC) provides a callback for exception events;
4046 GDB can set a breakpoint on this callback and find out what
4047 exception event has occurred. */
4048
4049 /* The name of the hook to be set to point to the callback function */
4050 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4051 /* The name of the function to be used to set the hook value */
4052 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4053 /* The name of the callback function in end.o */
4054 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4055 /* Name of function in end.o on which a break is set (called by above) */
4056 static char HP_ACC_EH_break[] = "__d_eh_break";
4057 /* Name of flag (in end.o) that enables catching throws */
4058 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4059 /* Name of flag (in end.o) that enables catching catching */
4060 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4061 /* The enum used by aCC */
4062 typedef enum
4063 {
4064 __EH_NOTIFY_THROW,
4065 __EH_NOTIFY_CATCH
4066 }
4067 __eh_notification;
4068
4069 /* Is exception-handling support available with this executable? */
4070 static int hp_cxx_exception_support = 0;
4071 /* Has the initialize function been run? */
4072 int hp_cxx_exception_support_initialized = 0;
4073 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4074 extern int exception_support_initialized;
4075 /* Address of __eh_notify_hook */
4076 static CORE_ADDR eh_notify_hook_addr = 0;
4077 /* Address of __d_eh_notify_callback */
4078 static CORE_ADDR eh_notify_callback_addr = 0;
4079 /* Address of __d_eh_break */
4080 static CORE_ADDR eh_break_addr = 0;
4081 /* Address of __d_eh_catch_catch */
4082 static CORE_ADDR eh_catch_catch_addr = 0;
4083 /* Address of __d_eh_catch_throw */
4084 static CORE_ADDR eh_catch_throw_addr = 0;
4085 /* Sal for __d_eh_break */
4086 static struct symtab_and_line *break_callback_sal = 0;
4087
4088 /* Code in end.c expects __d_pid to be set in the inferior,
4089 otherwise __d_eh_notify_callback doesn't bother to call
4090 __d_eh_break! So we poke the pid into this symbol
4091 ourselves.
4092 0 => success
4093 1 => failure */
4094 int
4095 setup_d_pid_in_inferior (void)
4096 {
4097 CORE_ADDR anaddr;
4098 struct minimal_symbol *msymbol;
4099 char buf[4]; /* FIXME 32x64? */
4100
4101 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4102 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4103 if (msymbol == NULL)
4104 {
4105 warning ("Unable to find __d_pid symbol in object file.");
4106 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4107 return 1;
4108 }
4109
4110 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4111 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4112 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4113 {
4114 warning ("Unable to write __d_pid");
4115 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4116 return 1;
4117 }
4118 return 0;
4119 }
4120
4121 /* Initialize exception catchpoint support by looking for the
4122 necessary hooks/callbacks in end.o, etc., and set the hook value to
4123 point to the required debug function
4124
4125 Return 0 => failure
4126 1 => success */
4127
4128 static int
4129 initialize_hp_cxx_exception_support (void)
4130 {
4131 struct symtabs_and_lines sals;
4132 struct cleanup *old_chain;
4133 struct cleanup *canonical_strings_chain = NULL;
4134 int i;
4135 char *addr_start;
4136 char *addr_end = NULL;
4137 char **canonical = (char **) NULL;
4138 int thread = -1;
4139 struct symbol *sym = NULL;
4140 struct minimal_symbol *msym = NULL;
4141 struct objfile *objfile;
4142 asection *shlib_info;
4143
4144 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4145 recursion is a possibility because finding the hook for exception
4146 callbacks involves making a call in the inferior, which means
4147 re-inserting breakpoints which can re-invoke this code */
4148
4149 static int recurse = 0;
4150 if (recurse > 0)
4151 {
4152 hp_cxx_exception_support_initialized = 0;
4153 exception_support_initialized = 0;
4154 return 0;
4155 }
4156
4157 hp_cxx_exception_support = 0;
4158
4159 /* First check if we have seen any HP compiled objects; if not,
4160 it is very unlikely that HP's idiosyncratic callback mechanism
4161 for exception handling debug support will be available!
4162 This will percolate back up to breakpoint.c, where our callers
4163 will decide to try the g++ exception-handling support instead. */
4164 if (!hp_som_som_object_present)
4165 return 0;
4166
4167 /* We have a SOM executable with SOM debug info; find the hooks */
4168
4169 /* First look for the notify hook provided by aCC runtime libs */
4170 /* If we find this symbol, we conclude that the executable must
4171 have HP aCC exception support built in. If this symbol is not
4172 found, even though we're a HP SOM-SOM file, we may have been
4173 built with some other compiler (not aCC). This results percolates
4174 back up to our callers in breakpoint.c which can decide to
4175 try the g++ style of exception support instead.
4176 If this symbol is found but the other symbols we require are
4177 not found, there is something weird going on, and g++ support
4178 should *not* be tried as an alternative.
4179
4180 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4181 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4182
4183 /* libCsup has this hook; it'll usually be non-debuggable */
4184 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4185 if (msym)
4186 {
4187 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4188 hp_cxx_exception_support = 1;
4189 }
4190 else
4191 {
4192 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4193 warning ("Executable may not have been compiled debuggable with HP aCC.");
4194 warning ("GDB will be unable to intercept exception events.");
4195 eh_notify_hook_addr = 0;
4196 hp_cxx_exception_support = 0;
4197 return 0;
4198 }
4199
4200 /* Next look for the notify callback routine in end.o */
4201 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4202 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4203 if (msym)
4204 {
4205 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4206 hp_cxx_exception_support = 1;
4207 }
4208 else
4209 {
4210 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4211 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4212 warning ("GDB will be unable to intercept exception events.");
4213 eh_notify_callback_addr = 0;
4214 return 0;
4215 }
4216
4217 #ifndef GDB_TARGET_IS_HPPA_20W
4218 /* Check whether the executable is dynamically linked or archive bound */
4219 /* With an archive-bound executable we can use the raw addresses we find
4220 for the callback function, etc. without modification. For an executable
4221 with shared libraries, we have to do more work to find the plabel, which
4222 can be the target of a call through $$dyncall from the aCC runtime support
4223 library (libCsup) which is linked shared by default by aCC. */
4224 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4225 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4226 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4227 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4228 {
4229 /* The minsym we have has the local code address, but that's not the
4230 plabel that can be used by an inter-load-module call. */
4231 /* Find solib handle for main image (which has end.o), and use that
4232 and the min sym as arguments to __d_shl_get() (which does the equivalent
4233 of shl_findsym()) to find the plabel. */
4234
4235 args_for_find_stub args;
4236 static char message[] = "Error while finding exception callback hook:\n";
4237
4238 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4239 args.msym = msym;
4240 args.return_val = 0;
4241
4242 recurse++;
4243 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4244 RETURN_MASK_ALL);
4245 eh_notify_callback_addr = args.return_val;
4246 recurse--;
4247
4248 exception_catchpoints_are_fragile = 1;
4249
4250 if (!eh_notify_callback_addr)
4251 {
4252 /* We can get here either if there is no plabel in the export list
4253 for the main image, or if something strange happened (??) */
4254 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4255 warning ("GDB will not be able to intercept exception events.");
4256 return 0;
4257 }
4258 }
4259 else
4260 exception_catchpoints_are_fragile = 0;
4261 #endif
4262
4263 /* Now, look for the breakpointable routine in end.o */
4264 /* This should also be available in the SOM symbol dict. if end.o linked in */
4265 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4266 if (msym)
4267 {
4268 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4269 hp_cxx_exception_support = 1;
4270 }
4271 else
4272 {
4273 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4274 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4275 warning ("GDB will be unable to intercept exception events.");
4276 eh_break_addr = 0;
4277 return 0;
4278 }
4279
4280 /* Next look for the catch enable flag provided in end.o */
4281 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4282 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4283 if (sym) /* sometimes present in debug info */
4284 {
4285 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4286 hp_cxx_exception_support = 1;
4287 }
4288 else
4289 /* otherwise look in SOM symbol dict. */
4290 {
4291 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4292 if (msym)
4293 {
4294 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4295 hp_cxx_exception_support = 1;
4296 }
4297 else
4298 {
4299 warning ("Unable to enable interception of exception catches.");
4300 warning ("Executable may not have been compiled debuggable with HP aCC.");
4301 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4302 return 0;
4303 }
4304 }
4305
4306 /* Next look for the catch enable flag provided end.o */
4307 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4308 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4309 if (sym) /* sometimes present in debug info */
4310 {
4311 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4312 hp_cxx_exception_support = 1;
4313 }
4314 else
4315 /* otherwise look in SOM symbol dict. */
4316 {
4317 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4318 if (msym)
4319 {
4320 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4321 hp_cxx_exception_support = 1;
4322 }
4323 else
4324 {
4325 warning ("Unable to enable interception of exception throws.");
4326 warning ("Executable may not have been compiled debuggable with HP aCC.");
4327 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4328 return 0;
4329 }
4330 }
4331
4332 /* Set the flags */
4333 hp_cxx_exception_support = 2; /* everything worked so far */
4334 hp_cxx_exception_support_initialized = 1;
4335 exception_support_initialized = 1;
4336
4337 return 1;
4338 }
4339
4340 /* Target operation for enabling or disabling interception of
4341 exception events.
4342 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4343 ENABLE is either 0 (disable) or 1 (enable).
4344 Return value is NULL if no support found;
4345 -1 if something went wrong,
4346 or a pointer to a symtab/line struct if the breakpointable
4347 address was found. */
4348
4349 struct symtab_and_line *
4350 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4351 {
4352 char buf[4];
4353
4354 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4355 if (!initialize_hp_cxx_exception_support ())
4356 return NULL;
4357
4358 switch (hp_cxx_exception_support)
4359 {
4360 case 0:
4361 /* Assuming no HP support at all */
4362 return NULL;
4363 case 1:
4364 /* HP support should be present, but something went wrong */
4365 return (struct symtab_and_line *) -1; /* yuck! */
4366 /* there may be other cases in the future */
4367 }
4368
4369 /* Set the EH hook to point to the callback routine */
4370 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4371 /* pai: (temp) FIXME should there be a pack operation first? */
4372 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4373 {
4374 warning ("Could not write to target memory for exception event callback.");
4375 warning ("Interception of exception events may not work.");
4376 return (struct symtab_and_line *) -1;
4377 }
4378 if (enable)
4379 {
4380 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4381 if (PIDGET (inferior_ptid) > 0)
4382 {
4383 if (setup_d_pid_in_inferior ())
4384 return (struct symtab_and_line *) -1;
4385 }
4386 else
4387 {
4388 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4389 return (struct symtab_and_line *) -1;
4390 }
4391 }
4392
4393 switch (kind)
4394 {
4395 case EX_EVENT_THROW:
4396 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4397 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4398 {
4399 warning ("Couldn't enable exception throw interception.");
4400 return (struct symtab_and_line *) -1;
4401 }
4402 break;
4403 case EX_EVENT_CATCH:
4404 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4405 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4406 {
4407 warning ("Couldn't enable exception catch interception.");
4408 return (struct symtab_and_line *) -1;
4409 }
4410 break;
4411 default:
4412 error ("Request to enable unknown or unsupported exception event.");
4413 }
4414
4415 /* Copy break address into new sal struct, malloc'ing if needed. */
4416 if (!break_callback_sal)
4417 {
4418 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4419 }
4420 INIT_SAL (break_callback_sal);
4421 break_callback_sal->symtab = NULL;
4422 break_callback_sal->pc = eh_break_addr;
4423 break_callback_sal->line = 0;
4424 break_callback_sal->end = eh_break_addr;
4425
4426 return break_callback_sal;
4427 }
4428
4429 /* Record some information about the current exception event */
4430 static struct exception_event_record current_ex_event;
4431 /* Convenience struct */
4432 static struct symtab_and_line null_symtab_and_line =
4433 {NULL, 0, 0, 0};
4434
4435 /* Report current exception event. Returns a pointer to a record
4436 that describes the kind of the event, where it was thrown from,
4437 and where it will be caught. More information may be reported
4438 in the future */
4439 struct exception_event_record *
4440 child_get_current_exception_event (void)
4441 {
4442 CORE_ADDR event_kind;
4443 CORE_ADDR throw_addr;
4444 CORE_ADDR catch_addr;
4445 struct frame_info *fi, *curr_frame;
4446 int level = 1;
4447
4448 curr_frame = get_current_frame ();
4449 if (!curr_frame)
4450 return (struct exception_event_record *) NULL;
4451
4452 /* Go up one frame to __d_eh_notify_callback, because at the
4453 point when this code is executed, there's garbage in the
4454 arguments of __d_eh_break. */
4455 fi = find_relative_frame (curr_frame, &level);
4456 if (level != 0)
4457 return (struct exception_event_record *) NULL;
4458
4459 select_frame (fi, -1);
4460
4461 /* Read in the arguments */
4462 /* __d_eh_notify_callback() is called with 3 arguments:
4463 1. event kind catch or throw
4464 2. the target address if known
4465 3. a flag -- not sure what this is. pai/1997-07-17 */
4466 event_kind = read_register (ARG0_REGNUM);
4467 catch_addr = read_register (ARG1_REGNUM);
4468
4469 /* Now go down to a user frame */
4470 /* For a throw, __d_eh_break is called by
4471 __d_eh_notify_callback which is called by
4472 __notify_throw which is called
4473 from user code.
4474 For a catch, __d_eh_break is called by
4475 __d_eh_notify_callback which is called by
4476 <stackwalking stuff> which is called by
4477 __throw__<stuff> or __rethrow_<stuff> which is called
4478 from user code. */
4479 /* FIXME: Don't use such magic numbers; search for the frames */
4480 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4481 fi = find_relative_frame (curr_frame, &level);
4482 if (level != 0)
4483 return (struct exception_event_record *) NULL;
4484
4485 select_frame (fi, -1);
4486 throw_addr = fi->pc;
4487
4488 /* Go back to original (top) frame */
4489 select_frame (curr_frame, -1);
4490
4491 current_ex_event.kind = (enum exception_event_kind) event_kind;
4492 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4493 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4494
4495 return &current_ex_event;
4496 }
4497
4498 static void
4499 unwind_command (char *exp, int from_tty)
4500 {
4501 CORE_ADDR address;
4502 struct unwind_table_entry *u;
4503
4504 /* If we have an expression, evaluate it and use it as the address. */
4505
4506 if (exp != 0 && *exp != 0)
4507 address = parse_and_eval_address (exp);
4508 else
4509 return;
4510
4511 u = find_unwind_entry (address);
4512
4513 if (!u)
4514 {
4515 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4516 return;
4517 }
4518
4519 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
4520
4521 printf_unfiltered ("\tregion_start = ");
4522 print_address (u->region_start, gdb_stdout);
4523
4524 printf_unfiltered ("\n\tregion_end = ");
4525 print_address (u->region_end, gdb_stdout);
4526
4527 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4528
4529 printf_unfiltered ("\n\tflags =");
4530 pif (Cannot_unwind);
4531 pif (Millicode);
4532 pif (Millicode_save_sr0);
4533 pif (Entry_SR);
4534 pif (Args_stored);
4535 pif (Variable_Frame);
4536 pif (Separate_Package_Body);
4537 pif (Frame_Extension_Millicode);
4538 pif (Stack_Overflow_Check);
4539 pif (Two_Instruction_SP_Increment);
4540 pif (Ada_Region);
4541 pif (Save_SP);
4542 pif (Save_RP);
4543 pif (Save_MRP_in_frame);
4544 pif (extn_ptr_defined);
4545 pif (Cleanup_defined);
4546 pif (MPE_XL_interrupt_marker);
4547 pif (HP_UX_interrupt_marker);
4548 pif (Large_frame);
4549
4550 putchar_unfiltered ('\n');
4551
4552 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4553
4554 pin (Region_description);
4555 pin (Entry_FR);
4556 pin (Entry_GR);
4557 pin (Total_frame_size);
4558 }
4559
4560 #ifdef PREPARE_TO_PROCEED
4561
4562 /* If the user has switched threads, and there is a breakpoint
4563 at the old thread's pc location, then switch to that thread
4564 and return TRUE, else return FALSE and don't do a thread
4565 switch (or rather, don't seem to have done a thread switch).
4566
4567 Ptrace-based gdb will always return FALSE to the thread-switch
4568 query, and thus also to PREPARE_TO_PROCEED.
4569
4570 The important thing is whether there is a BPT instruction,
4571 not how many user breakpoints there are. So we have to worry
4572 about things like these:
4573
4574 o Non-bp stop -- NO
4575
4576 o User hits bp, no switch -- NO
4577
4578 o User hits bp, switches threads -- YES
4579
4580 o User hits bp, deletes bp, switches threads -- NO
4581
4582 o User hits bp, deletes one of two or more bps
4583 at that PC, user switches threads -- YES
4584
4585 o Plus, since we're buffering events, the user may have hit a
4586 breakpoint, deleted the breakpoint and then gotten another
4587 hit on that same breakpoint on another thread which
4588 actually hit before the delete. (FIXME in breakpoint.c
4589 so that "dead" breakpoints are ignored?) -- NO
4590
4591 For these reasons, we have to violate information hiding and
4592 call "breakpoint_here_p". If core gdb thinks there is a bpt
4593 here, that's what counts, as core gdb is the one which is
4594 putting the BPT instruction in and taking it out.
4595
4596 Note that this implementation is potentially redundant now that
4597 default_prepare_to_proceed() has been added. */
4598 int
4599 hppa_prepare_to_proceed (void)
4600 {
4601 pid_t old_thread;
4602 pid_t current_thread;
4603
4604 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4605 if (old_thread != 0)
4606 {
4607 /* Switched over from "old_thread". Try to do
4608 as little work as possible, 'cause mostly
4609 we're going to switch back. */
4610 CORE_ADDR new_pc;
4611 CORE_ADDR old_pc = read_pc ();
4612
4613 /* Yuk, shouldn't use global to specify current
4614 thread. But that's how gdb does it. */
4615 current_thread = PIDGET (inferior_ptid);
4616 inferior_ptid = pid_to_ptid (old_thread);
4617
4618 new_pc = read_pc ();
4619 if (new_pc != old_pc /* If at same pc, no need */
4620 && breakpoint_here_p (new_pc))
4621 {
4622 /* User hasn't deleted the BP.
4623 Return TRUE, finishing switch to "old_thread". */
4624 flush_cached_frames ();
4625 registers_changed ();
4626 #if 0
4627 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4628 current_thread, PIDGET (inferior_ptid));
4629 #endif
4630
4631 return 1;
4632 }
4633
4634 /* Otherwise switch back to the user-chosen thread. */
4635 inferior_ptid = pid_to_ptid (current_thread);
4636 new_pc = read_pc (); /* Re-prime register cache */
4637 }
4638
4639 return 0;
4640 }
4641 #endif /* PREPARE_TO_PROCEED */
4642
4643 void
4644 hppa_skip_permanent_breakpoint (void)
4645 {
4646 /* To step over a breakpoint instruction on the PA takes some
4647 fiddling with the instruction address queue.
4648
4649 When we stop at a breakpoint, the IA queue front (the instruction
4650 we're executing now) points at the breakpoint instruction, and
4651 the IA queue back (the next instruction to execute) points to
4652 whatever instruction we would execute after the breakpoint, if it
4653 were an ordinary instruction. This is the case even if the
4654 breakpoint is in the delay slot of a branch instruction.
4655
4656 Clearly, to step past the breakpoint, we need to set the queue
4657 front to the back. But what do we put in the back? What
4658 instruction comes after that one? Because of the branch delay
4659 slot, the next insn is always at the back + 4. */
4660 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4661 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4662
4663 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4664 /* We can leave the tail's space the same, since there's no jump. */
4665 }
4666
4667 void
4668 _initialize_hppa_tdep (void)
4669 {
4670 tm_print_insn = print_insn_hppa;
4671
4672 add_cmd ("unwind", class_maintenance, unwind_command,
4673 "Print unwind table entry at given address.",
4674 &maintenanceprintlist);
4675 }