1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
32 /* For argument passing to the inferior */
36 #include <sys/types.h>
40 #include <sys/param.h>
43 #include <sys/ptrace.h>
44 #include <machine/save_state.h>
46 #ifdef COFF_ENCAPSULATE
47 #include "a.out.encap.h"
51 /*#include <sys/user.h> After a.out.h */
62 /* To support detection of the pseudo-initial frame
64 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
65 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
67 static int extract_5_load (unsigned int);
69 static unsigned extract_5R_store (unsigned int);
71 static unsigned extract_5r_store (unsigned int);
73 static void find_dummy_frame_regs (struct frame_info
*,
74 struct frame_saved_regs
*);
76 static int find_proc_framesize (CORE_ADDR
);
78 static int find_return_regnum (CORE_ADDR
);
80 struct unwind_table_entry
*find_unwind_entry (CORE_ADDR
);
82 static int extract_17 (unsigned int);
84 static unsigned deposit_21 (unsigned int, unsigned int);
86 static int extract_21 (unsigned);
88 static unsigned deposit_14 (int, unsigned int);
90 static int extract_14 (unsigned);
92 static void unwind_command (char *, int);
94 static int low_sign_extend (unsigned int, unsigned int);
96 static int sign_extend (unsigned int, unsigned int);
98 static int restore_pc_queue (struct frame_saved_regs
*);
100 static int hppa_alignof (struct type
*);
102 /* To support multi-threading and stepping. */
103 int hppa_prepare_to_proceed ();
105 static int prologue_inst_adjust_sp (unsigned long);
107 static int is_branch (unsigned long);
109 static int inst_saves_gr (unsigned long);
111 static int inst_saves_fr (unsigned long);
113 static int pc_in_interrupt_handler (CORE_ADDR
);
115 static int pc_in_linker_stub (CORE_ADDR
);
117 static int compare_unwind_entries (const void *, const void *);
119 static void read_unwind_info (struct objfile
*);
121 static void internalize_unwinds (struct objfile
*,
122 struct unwind_table_entry
*,
123 asection
*, unsigned int,
124 unsigned int, CORE_ADDR
);
125 static void pa_print_registers (char *, int, int);
126 static void pa_strcat_registers (char *, int, int, struct ui_file
*);
127 static void pa_register_look_aside (char *, int, long *);
128 static void pa_print_fp_reg (int);
129 static void pa_strcat_fp_reg (int, struct ui_file
*, enum precision_type
);
130 static void record_text_segment_lowaddr (bfd
*, asection
*, void *);
134 struct minimal_symbol
*msym
;
135 CORE_ADDR solib_handle
;
136 CORE_ADDR return_val
;
140 static int cover_find_stub_with_shl_get (PTR
);
142 static int is_pa_2
= 0; /* False */
144 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
145 extern int hp_som_som_object_present
;
147 /* In breakpoint.c */
148 extern int exception_catchpoints_are_fragile
;
150 /* This is defined in valops.c. */
151 extern value_ptr
find_function_in_inferior (char *);
153 /* Should call_function allocate stack space for a struct return? */
155 hppa_use_struct_convention (int gcc_p
, struct type
*type
)
157 return (TYPE_LENGTH (type
) > 2 * REGISTER_SIZE
);
161 /* Routines to extract various sized constants out of hppa
164 /* This assumes that no garbage lies outside of the lower bits of
168 sign_extend (unsigned val
, unsigned bits
)
170 return (int) (val
>> (bits
- 1) ? (-1 << bits
) | val
: val
);
173 /* For many immediate values the sign bit is the low bit! */
176 low_sign_extend (unsigned val
, unsigned bits
)
178 return (int) ((val
& 0x1 ? (-1 << (bits
- 1)) : 0) | val
>> 1);
181 /* extract the immediate field from a ld{bhw}s instruction */
184 extract_5_load (unsigned word
)
186 return low_sign_extend (word
>> 16 & MASK_5
, 5);
189 /* extract the immediate field from a break instruction */
192 extract_5r_store (unsigned word
)
194 return (word
& MASK_5
);
197 /* extract the immediate field from a {sr}sm instruction */
200 extract_5R_store (unsigned word
)
202 return (word
>> 16 & MASK_5
);
205 /* extract a 14 bit immediate field */
208 extract_14 (unsigned word
)
210 return low_sign_extend (word
& MASK_14
, 14);
213 /* deposit a 14 bit constant in a word */
216 deposit_14 (int opnd
, unsigned word
)
218 unsigned sign
= (opnd
< 0 ? 1 : 0);
220 return word
| ((unsigned) opnd
<< 1 & MASK_14
) | sign
;
223 /* extract a 21 bit constant */
226 extract_21 (unsigned word
)
232 val
= GET_FIELD (word
, 20, 20);
234 val
|= GET_FIELD (word
, 9, 19);
236 val
|= GET_FIELD (word
, 5, 6);
238 val
|= GET_FIELD (word
, 0, 4);
240 val
|= GET_FIELD (word
, 7, 8);
241 return sign_extend (val
, 21) << 11;
244 /* deposit a 21 bit constant in a word. Although 21 bit constants are
245 usually the top 21 bits of a 32 bit constant, we assume that only
246 the low 21 bits of opnd are relevant */
249 deposit_21 (unsigned opnd
, unsigned word
)
253 val
|= GET_FIELD (opnd
, 11 + 14, 11 + 18);
255 val
|= GET_FIELD (opnd
, 11 + 12, 11 + 13);
257 val
|= GET_FIELD (opnd
, 11 + 19, 11 + 20);
259 val
|= GET_FIELD (opnd
, 11 + 1, 11 + 11);
261 val
|= GET_FIELD (opnd
, 11 + 0, 11 + 0);
265 /* extract a 17 bit constant from branch instructions, returning the
266 19 bit signed value. */
269 extract_17 (unsigned word
)
271 return sign_extend (GET_FIELD (word
, 19, 28) |
272 GET_FIELD (word
, 29, 29) << 10 |
273 GET_FIELD (word
, 11, 15) << 11 |
274 (word
& 0x1) << 16, 17) << 2;
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
283 compare_unwind_entries (const void *arg1
, const void *arg2
)
285 const struct unwind_table_entry
*a
= arg1
;
286 const struct unwind_table_entry
*b
= arg2
;
288 if (a
->region_start
> b
->region_start
)
290 else if (a
->region_start
< b
->region_start
)
296 static CORE_ADDR low_text_segment_address
;
299 record_text_segment_lowaddr (bfd
*abfd
, asection
*section
, void *ignored
)
301 if ((section
->flags
& (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
)
302 == (SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
))
303 && section
->vma
< low_text_segment_address
)
304 low_text_segment_address
= section
->vma
;
308 internalize_unwinds (struct objfile
*objfile
, struct unwind_table_entry
*table
,
309 asection
*section
, unsigned int entries
, unsigned int size
,
310 CORE_ADDR text_offset
)
312 /* We will read the unwind entries into temporary memory, then
313 fill in the actual unwind table. */
318 char *buf
= alloca (size
);
320 low_text_segment_address
= -1;
322 /* If addresses are 64 bits wide, then unwinds are supposed to
323 be segment relative offsets instead of absolute addresses.
325 Note that when loading a shared library (text_offset != 0) the
326 unwinds are already relative to the text_offset that will be
328 if (TARGET_PTR_BIT
== 64 && text_offset
== 0)
330 bfd_map_over_sections (objfile
->obfd
,
331 record_text_segment_lowaddr
, (PTR
) NULL
);
333 /* ?!? Mask off some low bits. Should this instead subtract
334 out the lowest section's filepos or something like that?
335 This looks very hokey to me. */
336 low_text_segment_address
&= ~0xfff;
337 text_offset
+= low_text_segment_address
;
340 bfd_get_section_contents (objfile
->obfd
, section
, buf
, 0, size
);
342 /* Now internalize the information being careful to handle host/target
344 for (i
= 0; i
< entries
; i
++)
346 table
[i
].region_start
= bfd_get_32 (objfile
->obfd
,
348 table
[i
].region_start
+= text_offset
;
350 table
[i
].region_end
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
351 table
[i
].region_end
+= text_offset
;
353 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
355 table
[i
].Cannot_unwind
= (tmp
>> 31) & 0x1;
356 table
[i
].Millicode
= (tmp
>> 30) & 0x1;
357 table
[i
].Millicode_save_sr0
= (tmp
>> 29) & 0x1;
358 table
[i
].Region_description
= (tmp
>> 27) & 0x3;
359 table
[i
].reserved1
= (tmp
>> 26) & 0x1;
360 table
[i
].Entry_SR
= (tmp
>> 25) & 0x1;
361 table
[i
].Entry_FR
= (tmp
>> 21) & 0xf;
362 table
[i
].Entry_GR
= (tmp
>> 16) & 0x1f;
363 table
[i
].Args_stored
= (tmp
>> 15) & 0x1;
364 table
[i
].Variable_Frame
= (tmp
>> 14) & 0x1;
365 table
[i
].Separate_Package_Body
= (tmp
>> 13) & 0x1;
366 table
[i
].Frame_Extension_Millicode
= (tmp
>> 12) & 0x1;
367 table
[i
].Stack_Overflow_Check
= (tmp
>> 11) & 0x1;
368 table
[i
].Two_Instruction_SP_Increment
= (tmp
>> 10) & 0x1;
369 table
[i
].Ada_Region
= (tmp
>> 9) & 0x1;
370 table
[i
].cxx_info
= (tmp
>> 8) & 0x1;
371 table
[i
].cxx_try_catch
= (tmp
>> 7) & 0x1;
372 table
[i
].sched_entry_seq
= (tmp
>> 6) & 0x1;
373 table
[i
].reserved2
= (tmp
>> 5) & 0x1;
374 table
[i
].Save_SP
= (tmp
>> 4) & 0x1;
375 table
[i
].Save_RP
= (tmp
>> 3) & 0x1;
376 table
[i
].Save_MRP_in_frame
= (tmp
>> 2) & 0x1;
377 table
[i
].extn_ptr_defined
= (tmp
>> 1) & 0x1;
378 table
[i
].Cleanup_defined
= tmp
& 0x1;
379 tmp
= bfd_get_32 (objfile
->obfd
, (bfd_byte
*) buf
);
381 table
[i
].MPE_XL_interrupt_marker
= (tmp
>> 31) & 0x1;
382 table
[i
].HP_UX_interrupt_marker
= (tmp
>> 30) & 0x1;
383 table
[i
].Large_frame
= (tmp
>> 29) & 0x1;
384 table
[i
].Pseudo_SP_Set
= (tmp
>> 28) & 0x1;
385 table
[i
].reserved4
= (tmp
>> 27) & 0x1;
386 table
[i
].Total_frame_size
= tmp
& 0x7ffffff;
388 /* Stub unwinds are handled elsewhere. */
389 table
[i
].stub_unwind
.stub_type
= 0;
390 table
[i
].stub_unwind
.padding
= 0;
395 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
396 the object file. This info is used mainly by find_unwind_entry() to find
397 out the stack frame size and frame pointer used by procedures. We put
398 everything on the psymbol obstack in the objfile so that it automatically
399 gets freed when the objfile is destroyed. */
402 read_unwind_info (struct objfile
*objfile
)
404 asection
*unwind_sec
, *stub_unwind_sec
;
405 unsigned unwind_size
, stub_unwind_size
, total_size
;
406 unsigned index
, unwind_entries
;
407 unsigned stub_entries
, total_entries
;
408 CORE_ADDR text_offset
;
409 struct obj_unwind_info
*ui
;
410 obj_private_data_t
*obj_private
;
412 text_offset
= ANOFFSET (objfile
->section_offsets
, 0);
413 ui
= (struct obj_unwind_info
*) obstack_alloc (&objfile
->psymbol_obstack
,
414 sizeof (struct obj_unwind_info
));
420 /* For reasons unknown the HP PA64 tools generate multiple unwinder
421 sections in a single executable. So we just iterate over every
422 section in the BFD looking for unwinder sections intead of trying
423 to do a lookup with bfd_get_section_by_name.
425 First determine the total size of the unwind tables so that we
426 can allocate memory in a nice big hunk. */
428 for (unwind_sec
= objfile
->obfd
->sections
;
430 unwind_sec
= unwind_sec
->next
)
432 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
433 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
435 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
436 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
438 total_entries
+= unwind_entries
;
442 /* Now compute the size of the stub unwinds. Note the ELF tools do not
443 use stub unwinds at the curren time. */
444 stub_unwind_sec
= bfd_get_section_by_name (objfile
->obfd
, "$UNWIND_END$");
448 stub_unwind_size
= bfd_section_size (objfile
->obfd
, stub_unwind_sec
);
449 stub_entries
= stub_unwind_size
/ STUB_UNWIND_ENTRY_SIZE
;
453 stub_unwind_size
= 0;
457 /* Compute total number of unwind entries and their total size. */
458 total_entries
+= stub_entries
;
459 total_size
= total_entries
* sizeof (struct unwind_table_entry
);
461 /* Allocate memory for the unwind table. */
462 ui
->table
= (struct unwind_table_entry
*)
463 obstack_alloc (&objfile
->psymbol_obstack
, total_size
);
464 ui
->last
= total_entries
- 1;
466 /* Now read in each unwind section and internalize the standard unwind
469 for (unwind_sec
= objfile
->obfd
->sections
;
471 unwind_sec
= unwind_sec
->next
)
473 if (strcmp (unwind_sec
->name
, "$UNWIND_START$") == 0
474 || strcmp (unwind_sec
->name
, ".PARISC.unwind") == 0)
476 unwind_size
= bfd_section_size (objfile
->obfd
, unwind_sec
);
477 unwind_entries
= unwind_size
/ UNWIND_ENTRY_SIZE
;
479 internalize_unwinds (objfile
, &ui
->table
[index
], unwind_sec
,
480 unwind_entries
, unwind_size
, text_offset
);
481 index
+= unwind_entries
;
485 /* Now read in and internalize the stub unwind entries. */
486 if (stub_unwind_size
> 0)
489 char *buf
= alloca (stub_unwind_size
);
491 /* Read in the stub unwind entries. */
492 bfd_get_section_contents (objfile
->obfd
, stub_unwind_sec
, buf
,
493 0, stub_unwind_size
);
495 /* Now convert them into regular unwind entries. */
496 for (i
= 0; i
< stub_entries
; i
++, index
++)
498 /* Clear out the next unwind entry. */
499 memset (&ui
->table
[index
], 0, sizeof (struct unwind_table_entry
));
501 /* Convert offset & size into region_start and region_end.
502 Stuff away the stub type into "reserved" fields. */
503 ui
->table
[index
].region_start
= bfd_get_32 (objfile
->obfd
,
505 ui
->table
[index
].region_start
+= text_offset
;
507 ui
->table
[index
].stub_unwind
.stub_type
= bfd_get_8 (objfile
->obfd
,
510 ui
->table
[index
].region_end
511 = ui
->table
[index
].region_start
+ 4 *
512 (bfd_get_16 (objfile
->obfd
, (bfd_byte
*) buf
) - 1);
518 /* Unwind table needs to be kept sorted. */
519 qsort (ui
->table
, total_entries
, sizeof (struct unwind_table_entry
),
520 compare_unwind_entries
);
522 /* Keep a pointer to the unwind information. */
523 if (objfile
->obj_private
== NULL
)
525 obj_private
= (obj_private_data_t
*)
526 obstack_alloc (&objfile
->psymbol_obstack
,
527 sizeof (obj_private_data_t
));
528 obj_private
->unwind_info
= NULL
;
529 obj_private
->so_info
= NULL
;
532 objfile
->obj_private
= (PTR
) obj_private
;
534 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
535 obj_private
->unwind_info
= ui
;
538 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
539 of the objfiles seeking the unwind table entry for this PC. Each objfile
540 contains a sorted list of struct unwind_table_entry. Since we do a binary
541 search of the unwind tables, we depend upon them to be sorted. */
543 struct unwind_table_entry
*
544 find_unwind_entry (CORE_ADDR pc
)
546 int first
, middle
, last
;
547 struct objfile
*objfile
;
549 /* A function at address 0? Not in HP-UX! */
550 if (pc
== (CORE_ADDR
) 0)
553 ALL_OBJFILES (objfile
)
555 struct obj_unwind_info
*ui
;
557 if (objfile
->obj_private
)
558 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
562 read_unwind_info (objfile
);
563 if (objfile
->obj_private
== NULL
)
564 error ("Internal error reading unwind information.");
565 ui
= ((obj_private_data_t
*) (objfile
->obj_private
))->unwind_info
;
568 /* First, check the cache */
571 && pc
>= ui
->cache
->region_start
572 && pc
<= ui
->cache
->region_end
)
575 /* Not in the cache, do a binary search */
580 while (first
<= last
)
582 middle
= (first
+ last
) / 2;
583 if (pc
>= ui
->table
[middle
].region_start
584 && pc
<= ui
->table
[middle
].region_end
)
586 ui
->cache
= &ui
->table
[middle
];
587 return &ui
->table
[middle
];
590 if (pc
< ui
->table
[middle
].region_start
)
595 } /* ALL_OBJFILES() */
599 /* Return the adjustment necessary to make for addresses on the stack
600 as presented by hpread.c.
602 This is necessary because of the stack direction on the PA and the
603 bizarre way in which someone (?) decided they wanted to handle
604 frame pointerless code in GDB. */
606 hpread_adjust_stack_address (CORE_ADDR func_addr
)
608 struct unwind_table_entry
*u
;
610 u
= find_unwind_entry (func_addr
);
614 return u
->Total_frame_size
<< 3;
617 /* Called to determine if PC is in an interrupt handler of some
621 pc_in_interrupt_handler (CORE_ADDR pc
)
623 struct unwind_table_entry
*u
;
624 struct minimal_symbol
*msym_us
;
626 u
= find_unwind_entry (pc
);
630 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
631 its frame isn't a pure interrupt frame. Deal with this. */
632 msym_us
= lookup_minimal_symbol_by_pc (pc
);
634 return u
->HP_UX_interrupt_marker
&& !IN_SIGTRAMP (pc
, SYMBOL_NAME (msym_us
));
637 /* Called when no unwind descriptor was found for PC. Returns 1 if it
638 appears that PC is in a linker stub.
640 ?!? Need to handle stubs which appear in PA64 code. */
643 pc_in_linker_stub (CORE_ADDR pc
)
645 int found_magic_instruction
= 0;
649 /* If unable to read memory, assume pc is not in a linker stub. */
650 if (target_read_memory (pc
, buf
, 4) != 0)
653 /* We are looking for something like
655 ; $$dyncall jams RP into this special spot in the frame (RP')
656 ; before calling the "call stub"
659 ldsid (rp),r1 ; Get space associated with RP into r1
660 mtsp r1,sp ; Move it into space register 0
661 be,n 0(sr0),rp) ; back to your regularly scheduled program */
663 /* Maximum known linker stub size is 4 instructions. Search forward
664 from the given PC, then backward. */
665 for (i
= 0; i
< 4; i
++)
667 /* If we hit something with an unwind, stop searching this direction. */
669 if (find_unwind_entry (pc
+ i
* 4) != 0)
672 /* Check for ldsid (rp),r1 which is the magic instruction for a
673 return from a cross-space function call. */
674 if (read_memory_integer (pc
+ i
* 4, 4) == 0x004010a1)
676 found_magic_instruction
= 1;
679 /* Add code to handle long call/branch and argument relocation stubs
683 if (found_magic_instruction
!= 0)
686 /* Now look backward. */
687 for (i
= 0; i
< 4; i
++)
689 /* If we hit something with an unwind, stop searching this direction. */
691 if (find_unwind_entry (pc
- i
* 4) != 0)
694 /* Check for ldsid (rp),r1 which is the magic instruction for a
695 return from a cross-space function call. */
696 if (read_memory_integer (pc
- i
* 4, 4) == 0x004010a1)
698 found_magic_instruction
= 1;
701 /* Add code to handle long call/branch and argument relocation stubs
704 return found_magic_instruction
;
708 find_return_regnum (CORE_ADDR pc
)
710 struct unwind_table_entry
*u
;
712 u
= find_unwind_entry (pc
);
723 /* Return size of frame, or -1 if we should use a frame pointer. */
725 find_proc_framesize (CORE_ADDR pc
)
727 struct unwind_table_entry
*u
;
728 struct minimal_symbol
*msym_us
;
730 /* This may indicate a bug in our callers... */
731 if (pc
== (CORE_ADDR
) 0)
734 u
= find_unwind_entry (pc
);
738 if (pc_in_linker_stub (pc
))
739 /* Linker stubs have a zero size frame. */
745 msym_us
= lookup_minimal_symbol_by_pc (pc
);
747 /* If Save_SP is set, and we're not in an interrupt or signal caller,
748 then we have a frame pointer. Use it. */
749 if (u
->Save_SP
&& !pc_in_interrupt_handler (pc
)
750 && !IN_SIGTRAMP (pc
, SYMBOL_NAME (msym_us
)))
753 return u
->Total_frame_size
<< 3;
756 /* Return offset from sp at which rp is saved, or 0 if not saved. */
757 static int rp_saved (CORE_ADDR
);
760 rp_saved (CORE_ADDR pc
)
762 struct unwind_table_entry
*u
;
764 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
765 if (pc
== (CORE_ADDR
) 0)
768 u
= find_unwind_entry (pc
);
772 if (pc_in_linker_stub (pc
))
773 /* This is the so-called RP'. */
780 return (TARGET_PTR_BIT
== 64 ? -16 : -20);
781 else if (u
->stub_unwind
.stub_type
!= 0)
783 switch (u
->stub_unwind
.stub_type
)
788 case PARAMETER_RELOCATION
:
799 frameless_function_invocation (struct frame_info
*frame
)
801 struct unwind_table_entry
*u
;
803 u
= find_unwind_entry (frame
->pc
);
808 return (u
->Total_frame_size
== 0 && u
->stub_unwind
.stub_type
== 0);
812 saved_pc_after_call (struct frame_info
*frame
)
816 struct unwind_table_entry
*u
;
818 ret_regnum
= find_return_regnum (get_frame_pc (frame
));
819 pc
= read_register (ret_regnum
) & ~0x3;
821 /* If PC is in a linker stub, then we need to dig the address
822 the stub will return to out of the stack. */
823 u
= find_unwind_entry (pc
);
824 if (u
&& u
->stub_unwind
.stub_type
!= 0)
825 return FRAME_SAVED_PC (frame
);
831 hppa_frame_saved_pc (struct frame_info
*frame
)
833 CORE_ADDR pc
= get_frame_pc (frame
);
834 struct unwind_table_entry
*u
;
836 int spun_around_loop
= 0;
839 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
840 at the base of the frame in an interrupt handler. Registers within
841 are saved in the exact same order as GDB numbers registers. How
843 if (pc_in_interrupt_handler (pc
))
844 return read_memory_integer (frame
->frame
+ PC_REGNUM
* 4,
845 TARGET_PTR_BIT
/ 8) & ~0x3;
847 if ((frame
->pc
>= frame
->frame
848 && frame
->pc
<= (frame
->frame
849 /* A call dummy is sized in words, but it is
850 actually a series of instructions. Account
851 for that scaling factor. */
852 + ((REGISTER_SIZE
/ INSTRUCTION_SIZE
)
854 /* Similarly we have to account for 64bit
855 wide register saves. */
856 + (32 * REGISTER_SIZE
)
857 /* We always consider FP regs 8 bytes long. */
858 + (NUM_REGS
- FP0_REGNUM
) * 8
859 /* Similarly we have to account for 64bit
860 wide register saves. */
861 + (6 * REGISTER_SIZE
))))
863 return read_memory_integer ((frame
->frame
864 + (TARGET_PTR_BIT
== 64 ? -16 : -20)),
865 TARGET_PTR_BIT
/ 8) & ~0x3;
868 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
869 /* Deal with signal handler caller frames too. */
870 if (frame
->signal_handler_caller
)
873 FRAME_SAVED_PC_IN_SIGTRAMP (frame
, &rp
);
878 if (frameless_function_invocation (frame
))
882 ret_regnum
= find_return_regnum (pc
);
884 /* If the next frame is an interrupt frame or a signal
885 handler caller, then we need to look in the saved
886 register area to get the return pointer (the values
887 in the registers may not correspond to anything useful). */
889 && (frame
->next
->signal_handler_caller
890 || pc_in_interrupt_handler (frame
->next
->pc
)))
892 struct frame_saved_regs saved_regs
;
894 get_frame_saved_regs (frame
->next
, &saved_regs
);
895 if (read_memory_integer (saved_regs
.regs
[FLAGS_REGNUM
],
896 TARGET_PTR_BIT
/ 8) & 0x2)
898 pc
= read_memory_integer (saved_regs
.regs
[31],
899 TARGET_PTR_BIT
/ 8) & ~0x3;
901 /* Syscalls are really two frames. The syscall stub itself
902 with a return pointer in %rp and the kernel call with
903 a return pointer in %r31. We return the %rp variant
904 if %r31 is the same as frame->pc. */
906 pc
= read_memory_integer (saved_regs
.regs
[RP_REGNUM
],
907 TARGET_PTR_BIT
/ 8) & ~0x3;
910 pc
= read_memory_integer (saved_regs
.regs
[RP_REGNUM
],
911 TARGET_PTR_BIT
/ 8) & ~0x3;
914 pc
= read_register (ret_regnum
) & ~0x3;
918 spun_around_loop
= 0;
922 rp_offset
= rp_saved (pc
);
924 /* Similar to code in frameless function case. If the next
925 frame is a signal or interrupt handler, then dig the right
926 information out of the saved register info. */
929 && (frame
->next
->signal_handler_caller
930 || pc_in_interrupt_handler (frame
->next
->pc
)))
932 struct frame_saved_regs saved_regs
;
934 get_frame_saved_regs (frame
->next
, &saved_regs
);
935 if (read_memory_integer (saved_regs
.regs
[FLAGS_REGNUM
],
936 TARGET_PTR_BIT
/ 8) & 0x2)
938 pc
= read_memory_integer (saved_regs
.regs
[31],
939 TARGET_PTR_BIT
/ 8) & ~0x3;
941 /* Syscalls are really two frames. The syscall stub itself
942 with a return pointer in %rp and the kernel call with
943 a return pointer in %r31. We return the %rp variant
944 if %r31 is the same as frame->pc. */
946 pc
= read_memory_integer (saved_regs
.regs
[RP_REGNUM
],
947 TARGET_PTR_BIT
/ 8) & ~0x3;
950 pc
= read_memory_integer (saved_regs
.regs
[RP_REGNUM
],
951 TARGET_PTR_BIT
/ 8) & ~0x3;
953 else if (rp_offset
== 0)
956 pc
= read_register (RP_REGNUM
) & ~0x3;
961 pc
= read_memory_integer (frame
->frame
+ rp_offset
,
962 TARGET_PTR_BIT
/ 8) & ~0x3;
966 /* If PC is inside a linker stub, then dig out the address the stub
969 Don't do this for long branch stubs. Why? For some unknown reason
970 _start is marked as a long branch stub in hpux10. */
971 u
= find_unwind_entry (pc
);
972 if (u
&& u
->stub_unwind
.stub_type
!= 0
973 && u
->stub_unwind
.stub_type
!= LONG_BRANCH
)
977 /* If this is a dynamic executable, and we're in a signal handler,
978 then the call chain will eventually point us into the stub for
979 _sigreturn. Unlike most cases, we'll be pointed to the branch
980 to the real sigreturn rather than the code after the real branch!.
982 Else, try to dig the address the stub will return to in the normal
984 insn
= read_memory_integer (pc
, 4);
985 if ((insn
& 0xfc00e000) == 0xe8000000)
986 return (pc
+ extract_17 (insn
) + 8) & ~0x3;
992 if (spun_around_loop
> 1)
994 /* We're just about to go around the loop again with
995 no more hope of success. Die. */
996 error ("Unable to find return pc for this frame");
1006 /* We need to correct the PC and the FP for the outermost frame when we are
1007 in a system call. */
1010 init_extra_frame_info (int fromleaf
, struct frame_info
*frame
)
1015 if (frame
->next
&& !fromleaf
)
1018 /* If the next frame represents a frameless function invocation
1019 then we have to do some adjustments that are normally done by
1020 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1023 /* Find the framesize of *this* frame without peeking at the PC
1024 in the current frame structure (it isn't set yet). */
1025 framesize
= find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame
)));
1027 /* Now adjust our base frame accordingly. If we have a frame pointer
1028 use it, else subtract the size of this frame from the current
1029 frame. (we always want frame->frame to point at the lowest address
1031 if (framesize
== -1)
1032 frame
->frame
= TARGET_READ_FP ();
1034 frame
->frame
-= framesize
;
1038 flags
= read_register (FLAGS_REGNUM
);
1039 if (flags
& 2) /* In system call? */
1040 frame
->pc
= read_register (31) & ~0x3;
1042 /* The outermost frame is always derived from PC-framesize
1044 One might think frameless innermost frames should have
1045 a frame->frame that is the same as the parent's frame->frame.
1046 That is wrong; frame->frame in that case should be the *high*
1047 address of the parent's frame. It's complicated as hell to
1048 explain, but the parent *always* creates some stack space for
1049 the child. So the child actually does have a frame of some
1050 sorts, and its base is the high address in its parent's frame. */
1051 framesize
= find_proc_framesize (frame
->pc
);
1052 if (framesize
== -1)
1053 frame
->frame
= TARGET_READ_FP ();
1055 frame
->frame
= read_register (SP_REGNUM
) - framesize
;
1058 /* Given a GDB frame, determine the address of the calling function's frame.
1059 This will be used to create a new GDB frame struct, and then
1060 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1062 This may involve searching through prologues for several functions
1063 at boundaries where GCC calls HP C code, or where code which has
1064 a frame pointer calls code without a frame pointer. */
1067 frame_chain (struct frame_info
*frame
)
1069 int my_framesize
, caller_framesize
;
1070 struct unwind_table_entry
*u
;
1071 CORE_ADDR frame_base
;
1072 struct frame_info
*tmp_frame
;
1074 /* A frame in the current frame list, or zero. */
1075 struct frame_info
*saved_regs_frame
= 0;
1076 /* Where the registers were saved in saved_regs_frame.
1077 If saved_regs_frame is zero, this is garbage. */
1078 struct frame_saved_regs saved_regs
;
1080 CORE_ADDR caller_pc
;
1082 struct minimal_symbol
*min_frame_symbol
;
1083 struct symbol
*frame_symbol
;
1084 char *frame_symbol_name
;
1086 /* If this is a threaded application, and we see the
1087 routine "__pthread_exit", treat it as the stack root
1089 min_frame_symbol
= lookup_minimal_symbol_by_pc (frame
->pc
);
1090 frame_symbol
= find_pc_function (frame
->pc
);
1092 if ((min_frame_symbol
!= 0) /* && (frame_symbol == 0) */ )
1094 /* The test above for "no user function name" would defend
1095 against the slim likelihood that a user might define a
1096 routine named "__pthread_exit" and then try to debug it.
1098 If it weren't commented out, and you tried to debug the
1099 pthread library itself, you'd get errors.
1101 So for today, we don't make that check. */
1102 frame_symbol_name
= SYMBOL_NAME (min_frame_symbol
);
1103 if (frame_symbol_name
!= 0)
1105 if (0 == strncmp (frame_symbol_name
,
1106 THREAD_INITIAL_FRAME_SYMBOL
,
1107 THREAD_INITIAL_FRAME_SYM_LEN
))
1109 /* Pretend we've reached the bottom of the stack. */
1110 return (CORE_ADDR
) 0;
1113 } /* End of hacky code for threads. */
1115 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1116 are easy; at *sp we have a full save state strucutre which we can
1117 pull the old stack pointer from. Also see frame_saved_pc for
1118 code to dig a saved PC out of the save state structure. */
1119 if (pc_in_interrupt_handler (frame
->pc
))
1120 frame_base
= read_memory_integer (frame
->frame
+ SP_REGNUM
* 4,
1121 TARGET_PTR_BIT
/ 8);
1122 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1123 else if (frame
->signal_handler_caller
)
1125 FRAME_BASE_BEFORE_SIGTRAMP (frame
, &frame_base
);
1129 frame_base
= frame
->frame
;
1131 /* Get frame sizes for the current frame and the frame of the
1133 my_framesize
= find_proc_framesize (frame
->pc
);
1134 caller_pc
= FRAME_SAVED_PC (frame
);
1136 /* If we can't determine the caller's PC, then it's not likely we can
1137 really determine anything meaningful about its frame. We'll consider
1138 this to be stack bottom. */
1139 if (caller_pc
== (CORE_ADDR
) 0)
1140 return (CORE_ADDR
) 0;
1142 caller_framesize
= find_proc_framesize (FRAME_SAVED_PC (frame
));
1144 /* If caller does not have a frame pointer, then its frame
1145 can be found at current_frame - caller_framesize. */
1146 if (caller_framesize
!= -1)
1148 return frame_base
- caller_framesize
;
1150 /* Both caller and callee have frame pointers and are GCC compiled
1151 (SAVE_SP bit in unwind descriptor is on for both functions.
1152 The previous frame pointer is found at the top of the current frame. */
1153 if (caller_framesize
== -1 && my_framesize
== -1)
1155 return read_memory_integer (frame_base
, TARGET_PTR_BIT
/ 8);
1157 /* Caller has a frame pointer, but callee does not. This is a little
1158 more difficult as GCC and HP C lay out locals and callee register save
1159 areas very differently.
1161 The previous frame pointer could be in a register, or in one of
1162 several areas on the stack.
1164 Walk from the current frame to the innermost frame examining
1165 unwind descriptors to determine if %r3 ever gets saved into the
1166 stack. If so return whatever value got saved into the stack.
1167 If it was never saved in the stack, then the value in %r3 is still
1170 We use information from unwind descriptors to determine if %r3
1171 is saved into the stack (Entry_GR field has this information). */
1173 for (tmp_frame
= frame
; tmp_frame
; tmp_frame
= tmp_frame
->next
)
1175 u
= find_unwind_entry (tmp_frame
->pc
);
1179 /* We could find this information by examining prologues. I don't
1180 think anyone has actually written any tools (not even "strip")
1181 which leave them out of an executable, so maybe this is a moot
1183 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1184 code that doesn't have unwind entries. For example, stepping into
1185 the dynamic linker will give you a PC that has none. Thus, I've
1186 disabled this warning. */
1188 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame
->pc
);
1190 return (CORE_ADDR
) 0;
1194 || tmp_frame
->signal_handler_caller
1195 || pc_in_interrupt_handler (tmp_frame
->pc
))
1198 /* Entry_GR specifies the number of callee-saved general registers
1199 saved in the stack. It starts at %r3, so %r3 would be 1. */
1200 if (u
->Entry_GR
>= 1)
1202 /* The unwind entry claims that r3 is saved here. However,
1203 in optimized code, GCC often doesn't actually save r3.
1204 We'll discover this if we look at the prologue. */
1205 get_frame_saved_regs (tmp_frame
, &saved_regs
);
1206 saved_regs_frame
= tmp_frame
;
1208 /* If we have an address for r3, that's good. */
1209 if (saved_regs
.regs
[FP_REGNUM
])
1216 /* We may have walked down the chain into a function with a frame
1219 && !tmp_frame
->signal_handler_caller
1220 && !pc_in_interrupt_handler (tmp_frame
->pc
))
1222 return read_memory_integer (tmp_frame
->frame
, TARGET_PTR_BIT
/ 8);
1224 /* %r3 was saved somewhere in the stack. Dig it out. */
1229 For optimization purposes many kernels don't have the
1230 callee saved registers into the save_state structure upon
1231 entry into the kernel for a syscall; the optimization
1232 is usually turned off if the process is being traced so
1233 that the debugger can get full register state for the
1236 This scheme works well except for two cases:
1238 * Attaching to a process when the process is in the
1239 kernel performing a system call (debugger can't get
1240 full register state for the inferior process since
1241 the process wasn't being traced when it entered the
1244 * Register state is not complete if the system call
1245 causes the process to core dump.
1248 The following heinous code is an attempt to deal with
1249 the lack of register state in a core dump. It will
1250 fail miserably if the function which performs the
1251 system call has a variable sized stack frame. */
1253 if (tmp_frame
!= saved_regs_frame
)
1254 get_frame_saved_regs (tmp_frame
, &saved_regs
);
1256 /* Abominable hack. */
1257 if (current_target
.to_has_execution
== 0
1258 && ((saved_regs
.regs
[FLAGS_REGNUM
]
1259 && (read_memory_integer (saved_regs
.regs
[FLAGS_REGNUM
],
1262 || (saved_regs
.regs
[FLAGS_REGNUM
] == 0
1263 && read_register (FLAGS_REGNUM
) & 0x2)))
1265 u
= find_unwind_entry (FRAME_SAVED_PC (frame
));
1268 return read_memory_integer (saved_regs
.regs
[FP_REGNUM
],
1269 TARGET_PTR_BIT
/ 8);
1273 return frame_base
- (u
->Total_frame_size
<< 3);
1277 return read_memory_integer (saved_regs
.regs
[FP_REGNUM
],
1278 TARGET_PTR_BIT
/ 8);
1283 /* Get the innermost frame. */
1285 while (tmp_frame
->next
!= NULL
)
1286 tmp_frame
= tmp_frame
->next
;
1288 if (tmp_frame
!= saved_regs_frame
)
1289 get_frame_saved_regs (tmp_frame
, &saved_regs
);
1291 /* Abominable hack. See above. */
1292 if (current_target
.to_has_execution
== 0
1293 && ((saved_regs
.regs
[FLAGS_REGNUM
]
1294 && (read_memory_integer (saved_regs
.regs
[FLAGS_REGNUM
],
1297 || (saved_regs
.regs
[FLAGS_REGNUM
] == 0
1298 && read_register (FLAGS_REGNUM
) & 0x2)))
1300 u
= find_unwind_entry (FRAME_SAVED_PC (frame
));
1303 return read_memory_integer (saved_regs
.regs
[FP_REGNUM
],
1304 TARGET_PTR_BIT
/ 8);
1308 return frame_base
- (u
->Total_frame_size
<< 3);
1312 /* The value in %r3 was never saved into the stack (thus %r3 still
1313 holds the value of the previous frame pointer). */
1314 return TARGET_READ_FP ();
1319 /* To see if a frame chain is valid, see if the caller looks like it
1320 was compiled with gcc. */
1323 hppa_frame_chain_valid (CORE_ADDR chain
, struct frame_info
*thisframe
)
1325 struct minimal_symbol
*msym_us
;
1326 struct minimal_symbol
*msym_start
;
1327 struct unwind_table_entry
*u
, *next_u
= NULL
;
1328 struct frame_info
*next
;
1333 u
= find_unwind_entry (thisframe
->pc
);
1338 /* We can't just check that the same of msym_us is "_start", because
1339 someone idiotically decided that they were going to make a Ltext_end
1340 symbol with the same address. This Ltext_end symbol is totally
1341 indistinguishable (as nearly as I can tell) from the symbol for a function
1342 which is (legitimately, since it is in the user's namespace)
1343 named Ltext_end, so we can't just ignore it. */
1344 msym_us
= lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe
));
1345 msym_start
= lookup_minimal_symbol ("_start", NULL
, NULL
);
1348 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1351 /* Grrrr. Some new idiot decided that they don't want _start for the
1352 PRO configurations; $START$ calls main directly.... Deal with it. */
1353 msym_start
= lookup_minimal_symbol ("$START$", NULL
, NULL
);
1356 && SYMBOL_VALUE_ADDRESS (msym_us
) == SYMBOL_VALUE_ADDRESS (msym_start
))
1359 next
= get_next_frame (thisframe
);
1361 next_u
= find_unwind_entry (next
->pc
);
1363 /* If this frame does not save SP, has no stack, isn't a stub,
1364 and doesn't "call" an interrupt routine or signal handler caller,
1365 then its not valid. */
1366 if (u
->Save_SP
|| u
->Total_frame_size
|| u
->stub_unwind
.stub_type
!= 0
1367 || (thisframe
->next
&& thisframe
->next
->signal_handler_caller
)
1368 || (next_u
&& next_u
->HP_UX_interrupt_marker
))
1371 if (pc_in_linker_stub (thisframe
->pc
))
1378 These functions deal with saving and restoring register state
1379 around a function call in the inferior. They keep the stack
1380 double-word aligned; eventually, on an hp700, the stack will have
1381 to be aligned to a 64-byte boundary. */
1384 push_dummy_frame (struct inferior_status
*inf_status
)
1386 CORE_ADDR sp
, pc
, pcspace
;
1387 register int regnum
;
1388 CORE_ADDR int_buffer
;
1391 /* Oh, what a hack. If we're trying to perform an inferior call
1392 while the inferior is asleep, we have to make sure to clear
1393 the "in system call" bit in the flag register (the call will
1394 start after the syscall returns, so we're no longer in the system
1395 call!) This state is kept in "inf_status", change it there.
1397 We also need a number of horrid hacks to deal with lossage in the
1398 PC queue registers (apparently they're not valid when the in syscall
1400 pc
= target_read_pc (inferior_ptid
);
1401 int_buffer
= read_register (FLAGS_REGNUM
);
1402 if (int_buffer
& 0x2)
1406 write_inferior_status_register (inf_status
, 0, int_buffer
);
1407 write_inferior_status_register (inf_status
, PCOQ_HEAD_REGNUM
, pc
+ 0);
1408 write_inferior_status_register (inf_status
, PCOQ_TAIL_REGNUM
, pc
+ 4);
1409 sid
= (pc
>> 30) & 0x3;
1411 pcspace
= read_register (SR4_REGNUM
);
1413 pcspace
= read_register (SR4_REGNUM
+ 4 + sid
);
1414 write_inferior_status_register (inf_status
, PCSQ_HEAD_REGNUM
, pcspace
);
1415 write_inferior_status_register (inf_status
, PCSQ_TAIL_REGNUM
, pcspace
);
1418 pcspace
= read_register (PCSQ_HEAD_REGNUM
);
1420 /* Space for "arguments"; the RP goes in here. */
1421 sp
= read_register (SP_REGNUM
) + 48;
1422 int_buffer
= read_register (RP_REGNUM
) | 0x3;
1424 /* The 32bit and 64bit ABIs save the return pointer into different
1426 if (REGISTER_SIZE
== 8)
1427 write_memory (sp
- 16, (char *) &int_buffer
, REGISTER_SIZE
);
1429 write_memory (sp
- 20, (char *) &int_buffer
, REGISTER_SIZE
);
1431 int_buffer
= TARGET_READ_FP ();
1432 write_memory (sp
, (char *) &int_buffer
, REGISTER_SIZE
);
1434 write_register (FP_REGNUM
, sp
);
1436 sp
+= 2 * REGISTER_SIZE
;
1438 for (regnum
= 1; regnum
< 32; regnum
++)
1439 if (regnum
!= RP_REGNUM
&& regnum
!= FP_REGNUM
)
1440 sp
= push_word (sp
, read_register (regnum
));
1442 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1443 if (REGISTER_SIZE
!= 8)
1446 for (regnum
= FP0_REGNUM
; regnum
< NUM_REGS
; regnum
++)
1448 read_register_bytes (REGISTER_BYTE (regnum
), (char *) &freg_buffer
, 8);
1449 sp
= push_bytes (sp
, (char *) &freg_buffer
, 8);
1451 sp
= push_word (sp
, read_register (IPSW_REGNUM
));
1452 sp
= push_word (sp
, read_register (SAR_REGNUM
));
1453 sp
= push_word (sp
, pc
);
1454 sp
= push_word (sp
, pcspace
);
1455 sp
= push_word (sp
, pc
+ 4);
1456 sp
= push_word (sp
, pcspace
);
1457 write_register (SP_REGNUM
, sp
);
1461 find_dummy_frame_regs (struct frame_info
*frame
,
1462 struct frame_saved_regs
*frame_saved_regs
)
1464 CORE_ADDR fp
= frame
->frame
;
1467 /* The 32bit and 64bit ABIs save RP into different locations. */
1468 if (REGISTER_SIZE
== 8)
1469 frame_saved_regs
->regs
[RP_REGNUM
] = (fp
- 16) & ~0x3;
1471 frame_saved_regs
->regs
[RP_REGNUM
] = (fp
- 20) & ~0x3;
1473 frame_saved_regs
->regs
[FP_REGNUM
] = fp
;
1475 frame_saved_regs
->regs
[1] = fp
+ (2 * REGISTER_SIZE
);
1477 for (fp
+= 3 * REGISTER_SIZE
, i
= 3; i
< 32; i
++)
1481 frame_saved_regs
->regs
[i
] = fp
;
1482 fp
+= REGISTER_SIZE
;
1486 /* This is not necessary or desirable for the 64bit ABI. */
1487 if (REGISTER_SIZE
!= 8)
1490 for (i
= FP0_REGNUM
; i
< NUM_REGS
; i
++, fp
+= 8)
1491 frame_saved_regs
->regs
[i
] = fp
;
1493 frame_saved_regs
->regs
[IPSW_REGNUM
] = fp
;
1494 frame_saved_regs
->regs
[SAR_REGNUM
] = fp
+ REGISTER_SIZE
;
1495 frame_saved_regs
->regs
[PCOQ_HEAD_REGNUM
] = fp
+ 2 * REGISTER_SIZE
;
1496 frame_saved_regs
->regs
[PCSQ_HEAD_REGNUM
] = fp
+ 3 * REGISTER_SIZE
;
1497 frame_saved_regs
->regs
[PCOQ_TAIL_REGNUM
] = fp
+ 4 * REGISTER_SIZE
;
1498 frame_saved_regs
->regs
[PCSQ_TAIL_REGNUM
] = fp
+ 5 * REGISTER_SIZE
;
1502 hppa_pop_frame (void)
1504 register struct frame_info
*frame
= get_current_frame ();
1505 register CORE_ADDR fp
, npc
, target_pc
;
1506 register int regnum
;
1507 struct frame_saved_regs fsr
;
1510 fp
= FRAME_FP (frame
);
1511 get_frame_saved_regs (frame
, &fsr
);
1513 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1514 if (fsr
.regs
[IPSW_REGNUM
]) /* Restoring a call dummy frame */
1515 restore_pc_queue (&fsr
);
1518 for (regnum
= 31; regnum
> 0; regnum
--)
1519 if (fsr
.regs
[regnum
])
1520 write_register (regnum
, read_memory_integer (fsr
.regs
[regnum
],
1523 for (regnum
= NUM_REGS
- 1; regnum
>= FP0_REGNUM
; regnum
--)
1524 if (fsr
.regs
[regnum
])
1526 read_memory (fsr
.regs
[regnum
], (char *) &freg_buffer
, 8);
1527 write_register_bytes (REGISTER_BYTE (regnum
), (char *) &freg_buffer
, 8);
1530 if (fsr
.regs
[IPSW_REGNUM
])
1531 write_register (IPSW_REGNUM
,
1532 read_memory_integer (fsr
.regs
[IPSW_REGNUM
],
1535 if (fsr
.regs
[SAR_REGNUM
])
1536 write_register (SAR_REGNUM
,
1537 read_memory_integer (fsr
.regs
[SAR_REGNUM
],
1540 /* If the PC was explicitly saved, then just restore it. */
1541 if (fsr
.regs
[PCOQ_TAIL_REGNUM
])
1543 npc
= read_memory_integer (fsr
.regs
[PCOQ_TAIL_REGNUM
],
1545 write_register (PCOQ_TAIL_REGNUM
, npc
);
1547 /* Else use the value in %rp to set the new PC. */
1550 npc
= read_register (RP_REGNUM
);
1554 write_register (FP_REGNUM
, read_memory_integer (fp
, REGISTER_SIZE
));
1556 if (fsr
.regs
[IPSW_REGNUM
]) /* call dummy */
1557 write_register (SP_REGNUM
, fp
- 48);
1559 write_register (SP_REGNUM
, fp
);
1561 /* The PC we just restored may be inside a return trampoline. If so
1562 we want to restart the inferior and run it through the trampoline.
1564 Do this by setting a momentary breakpoint at the location the
1565 trampoline returns to.
1567 Don't skip through the trampoline if we're popping a dummy frame. */
1568 target_pc
= SKIP_TRAMPOLINE_CODE (npc
& ~0x3) & ~0x3;
1569 if (target_pc
&& !fsr
.regs
[IPSW_REGNUM
])
1571 struct symtab_and_line sal
;
1572 struct breakpoint
*breakpoint
;
1573 struct cleanup
*old_chain
;
1575 /* Set up our breakpoint. Set it to be silent as the MI code
1576 for "return_command" will print the frame we returned to. */
1577 sal
= find_pc_line (target_pc
, 0);
1579 breakpoint
= set_momentary_breakpoint (sal
, NULL
, bp_finish
);
1580 breakpoint
->silent
= 1;
1582 /* So we can clean things up. */
1583 old_chain
= make_cleanup_delete_breakpoint (breakpoint
);
1585 /* Start up the inferior. */
1586 clear_proceed_status ();
1587 proceed_to_finish
= 1;
1588 proceed ((CORE_ADDR
) -1, TARGET_SIGNAL_DEFAULT
, 0);
1590 /* Perform our cleanups. */
1591 do_cleanups (old_chain
);
1593 flush_cached_frames ();
1596 /* After returning to a dummy on the stack, restore the instruction
1597 queue space registers. */
1600 restore_pc_queue (struct frame_saved_regs
*fsr
)
1602 CORE_ADDR pc
= read_pc ();
1603 CORE_ADDR new_pc
= read_memory_integer (fsr
->regs
[PCOQ_HEAD_REGNUM
],
1604 TARGET_PTR_BIT
/ 8);
1605 struct target_waitstatus w
;
1608 /* Advance past break instruction in the call dummy. */
1609 write_register (PCOQ_HEAD_REGNUM
, pc
+ 4);
1610 write_register (PCOQ_TAIL_REGNUM
, pc
+ 8);
1612 /* HPUX doesn't let us set the space registers or the space
1613 registers of the PC queue through ptrace. Boo, hiss.
1614 Conveniently, the call dummy has this sequence of instructions
1619 So, load up the registers and single step until we are in the
1622 write_register (21, read_memory_integer (fsr
->regs
[PCSQ_HEAD_REGNUM
],
1624 write_register (22, new_pc
);
1626 for (insn_count
= 0; insn_count
< 3; insn_count
++)
1628 /* FIXME: What if the inferior gets a signal right now? Want to
1629 merge this into wait_for_inferior (as a special kind of
1630 watchpoint? By setting a breakpoint at the end? Is there
1631 any other choice? Is there *any* way to do this stuff with
1632 ptrace() or some equivalent?). */
1634 target_wait (inferior_ptid
, &w
);
1636 if (w
.kind
== TARGET_WAITKIND_SIGNALLED
)
1638 stop_signal
= w
.value
.sig
;
1639 terminal_ours_for_output ();
1640 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1641 target_signal_to_name (stop_signal
),
1642 target_signal_to_string (stop_signal
));
1643 gdb_flush (gdb_stdout
);
1647 target_terminal_ours ();
1648 target_fetch_registers (-1);
1653 #ifdef PA20W_CALLING_CONVENTIONS
1655 /* This function pushes a stack frame with arguments as part of the
1656 inferior function calling mechanism.
1658 This is the version for the PA64, in which later arguments appear
1659 at higher addresses. (The stack always grows towards higher
1662 We simply allocate the appropriate amount of stack space and put
1663 arguments into their proper slots. The call dummy code will copy
1664 arguments into registers as needed by the ABI.
1666 This ABI also requires that the caller provide an argument pointer
1667 to the callee, so we do that too. */
1670 hppa_push_arguments (int nargs
, value_ptr
*args
, CORE_ADDR sp
,
1671 int struct_return
, CORE_ADDR struct_addr
)
1673 /* array of arguments' offsets */
1674 int *offset
= (int *) alloca (nargs
* sizeof (int));
1676 /* array of arguments' lengths: real lengths in bytes, not aligned to
1678 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1680 /* The value of SP as it was passed into this function after
1682 CORE_ADDR orig_sp
= STACK_ALIGN (sp
);
1684 /* The number of stack bytes occupied by the current argument. */
1687 /* The total number of bytes reserved for the arguments. */
1688 int cum_bytes_reserved
= 0;
1690 /* Similarly, but aligned. */
1691 int cum_bytes_aligned
= 0;
1694 /* Iterate over each argument provided by the user. */
1695 for (i
= 0; i
< nargs
; i
++)
1697 struct type
*arg_type
= VALUE_TYPE (args
[i
]);
1699 /* Integral scalar values smaller than a register are padded on
1700 the left. We do this by promoting them to full-width,
1701 although the ABI says to pad them with garbage. */
1702 if (is_integral_type (arg_type
)
1703 && TYPE_LENGTH (arg_type
) < REGISTER_SIZE
)
1705 args
[i
] = value_cast ((TYPE_UNSIGNED (arg_type
)
1706 ? builtin_type_unsigned_long
1707 : builtin_type_long
),
1709 arg_type
= VALUE_TYPE (args
[i
]);
1712 lengths
[i
] = TYPE_LENGTH (arg_type
);
1714 /* Align the size of the argument to the word size for this
1716 bytes_reserved
= (lengths
[i
] + REGISTER_SIZE
- 1) & -REGISTER_SIZE
;
1718 offset
[i
] = cum_bytes_reserved
;
1720 /* Aggregates larger than eight bytes (the only types larger
1721 than eight bytes we have) are aligned on a 16-byte boundary,
1722 possibly padded on the right with garbage. This may leave an
1723 empty word on the stack, and thus an unused register, as per
1725 if (bytes_reserved
> 8)
1727 /* Round up the offset to a multiple of two slots. */
1728 int new_offset
= ((offset
[i
] + 2*REGISTER_SIZE
-1)
1729 & -(2*REGISTER_SIZE
));
1731 /* Note the space we've wasted, if any. */
1732 bytes_reserved
+= new_offset
- offset
[i
];
1733 offset
[i
] = new_offset
;
1736 cum_bytes_reserved
+= bytes_reserved
;
1739 /* CUM_BYTES_RESERVED already accounts for all the arguments
1740 passed by the user. However, the ABIs mandate minimum stack space
1741 allocations for outgoing arguments.
1743 The ABIs also mandate minimum stack alignments which we must
1745 cum_bytes_aligned
= STACK_ALIGN (cum_bytes_reserved
);
1746 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
1748 /* Now write each of the args at the proper offset down the stack. */
1749 for (i
= 0; i
< nargs
; i
++)
1750 write_memory (orig_sp
+ offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
1752 /* If a structure has to be returned, set up register 28 to hold its
1755 write_register (28, struct_addr
);
1757 /* For the PA64 we must pass a pointer to the outgoing argument list.
1758 The ABI mandates that the pointer should point to the first byte of
1759 storage beyond the register flushback area.
1761 However, the call dummy expects the outgoing argument pointer to
1762 be passed in register %r4. */
1763 write_register (4, orig_sp
+ REG_PARM_STACK_SPACE
);
1765 /* ?!? This needs further work. We need to set up the global data
1766 pointer for this procedure. This assumes the same global pointer
1767 for every procedure. The call dummy expects the dp value to
1768 be passed in register %r6. */
1769 write_register (6, read_register (27));
1771 /* The stack will have 64 bytes of additional space for a frame marker. */
1777 /* This function pushes a stack frame with arguments as part of the
1778 inferior function calling mechanism.
1780 This is the version of the function for the 32-bit PA machines, in
1781 which later arguments appear at lower addresses. (The stack always
1782 grows towards higher addresses.)
1784 We simply allocate the appropriate amount of stack space and put
1785 arguments into their proper slots. The call dummy code will copy
1786 arguments into registers as needed by the ABI. */
1789 hppa_push_arguments (int nargs
, value_ptr
*args
, CORE_ADDR sp
,
1790 int struct_return
, CORE_ADDR struct_addr
)
1792 /* array of arguments' offsets */
1793 int *offset
= (int *) alloca (nargs
* sizeof (int));
1795 /* array of arguments' lengths: real lengths in bytes, not aligned to
1797 int *lengths
= (int *) alloca (nargs
* sizeof (int));
1799 /* The number of stack bytes occupied by the current argument. */
1802 /* The total number of bytes reserved for the arguments. */
1803 int cum_bytes_reserved
= 0;
1805 /* Similarly, but aligned. */
1806 int cum_bytes_aligned
= 0;
1809 /* Iterate over each argument provided by the user. */
1810 for (i
= 0; i
< nargs
; i
++)
1812 lengths
[i
] = TYPE_LENGTH (VALUE_TYPE (args
[i
]));
1814 /* Align the size of the argument to the word size for this
1816 bytes_reserved
= (lengths
[i
] + REGISTER_SIZE
- 1) & -REGISTER_SIZE
;
1818 offset
[i
] = cum_bytes_reserved
+ lengths
[i
];
1820 /* If the argument is a double word argument, then it needs to be
1821 double word aligned. */
1822 if ((bytes_reserved
== 2 * REGISTER_SIZE
)
1823 && (offset
[i
] % 2 * REGISTER_SIZE
))
1826 /* BYTES_RESERVED is already aligned to the word, so we put
1827 the argument at one word more down the stack.
1829 This will leave one empty word on the stack, and one unused
1830 register as mandated by the ABI. */
1831 new_offset
= ((offset
[i
] + 2 * REGISTER_SIZE
- 1)
1832 & -(2 * REGISTER_SIZE
));
1834 if ((new_offset
- offset
[i
]) >= 2 * REGISTER_SIZE
)
1836 bytes_reserved
+= REGISTER_SIZE
;
1837 offset
[i
] += REGISTER_SIZE
;
1841 cum_bytes_reserved
+= bytes_reserved
;
1845 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1846 by the user. However, the ABI mandates minimum stack space
1847 allocations for outgoing arguments.
1849 The ABI also mandates minimum stack alignments which we must
1851 cum_bytes_aligned
= STACK_ALIGN (cum_bytes_reserved
);
1852 sp
+= max (cum_bytes_aligned
, REG_PARM_STACK_SPACE
);
1854 /* Now write each of the args at the proper offset down the stack.
1855 ?!? We need to promote values to a full register instead of skipping
1856 words in the stack. */
1857 for (i
= 0; i
< nargs
; i
++)
1858 write_memory (sp
- offset
[i
], VALUE_CONTENTS (args
[i
]), lengths
[i
]);
1860 /* If a structure has to be returned, set up register 28 to hold its
1863 write_register (28, struct_addr
);
1865 /* The stack will have 32 bytes of additional space for a frame marker. */
1871 /* elz: this function returns a value which is built looking at the given address.
1872 It is called from call_function_by_hand, in case we need to return a
1873 value which is larger than 64 bits, and it is stored in the stack rather than
1874 in the registers r28 and r29 or fr4.
1875 This function does the same stuff as value_being_returned in values.c, but
1876 gets the value from the stack rather than from the buffer where all the
1877 registers were saved when the function called completed. */
1879 hppa_value_returned_from_stack (register struct type
*valtype
, CORE_ADDR addr
)
1881 register value_ptr val
;
1883 val
= allocate_value (valtype
);
1884 CHECK_TYPEDEF (valtype
);
1885 target_read_memory (addr
, VALUE_CONTENTS_RAW (val
), TYPE_LENGTH (valtype
));
1892 /* elz: Used to lookup a symbol in the shared libraries.
1893 This function calls shl_findsym, indirectly through a
1894 call to __d_shl_get. __d_shl_get is in end.c, which is always
1895 linked in by the hp compilers/linkers.
1896 The call to shl_findsym cannot be made directly because it needs
1897 to be active in target address space.
1898 inputs: - minimal symbol pointer for the function we want to look up
1899 - address in target space of the descriptor for the library
1900 where we want to look the symbol up.
1901 This address is retrieved using the
1902 som_solib_get_solib_by_pc function (somsolib.c).
1903 output: - real address in the library of the function.
1904 note: the handle can be null, in which case shl_findsym will look for
1905 the symbol in all the loaded shared libraries.
1906 files to look at if you need reference on this stuff:
1907 dld.c, dld_shl_findsym.c
1909 man entry for shl_findsym */
1912 find_stub_with_shl_get (struct minimal_symbol
*function
, CORE_ADDR handle
)
1914 struct symbol
*get_sym
, *symbol2
;
1915 struct minimal_symbol
*buff_minsym
, *msymbol
;
1918 value_ptr funcval
, val
;
1920 int x
, namelen
, err_value
, tmp
= -1;
1921 CORE_ADDR endo_buff_addr
, value_return_addr
, errno_return_addr
;
1922 CORE_ADDR stub_addr
;
1925 args
= (value_ptr
*) alloca (sizeof (value_ptr
) * 8); /* 6 for the arguments and one null one??? */
1926 funcval
= find_function_in_inferior ("__d_shl_get");
1927 get_sym
= lookup_symbol ("__d_shl_get", NULL
, VAR_NAMESPACE
, NULL
, NULL
);
1928 buff_minsym
= lookup_minimal_symbol ("__buffer", NULL
, NULL
);
1929 msymbol
= lookup_minimal_symbol ("__shldp", NULL
, NULL
);
1930 symbol2
= lookup_symbol ("__shldp", NULL
, VAR_NAMESPACE
, NULL
, NULL
);
1931 endo_buff_addr
= SYMBOL_VALUE_ADDRESS (buff_minsym
);
1932 namelen
= strlen (SYMBOL_NAME (function
));
1933 value_return_addr
= endo_buff_addr
+ namelen
;
1934 ftype
= check_typedef (SYMBOL_TYPE (get_sym
));
1937 if ((x
= value_return_addr
% 64) != 0)
1938 value_return_addr
= value_return_addr
+ 64 - x
;
1940 errno_return_addr
= value_return_addr
+ 64;
1943 /* set up stuff needed by __d_shl_get in buffer in end.o */
1945 target_write_memory (endo_buff_addr
, SYMBOL_NAME (function
), namelen
);
1947 target_write_memory (value_return_addr
, (char *) &tmp
, 4);
1949 target_write_memory (errno_return_addr
, (char *) &tmp
, 4);
1951 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
1952 (char *) &handle
, 4);
1954 /* now prepare the arguments for the call */
1956 args
[0] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 0), 12);
1957 args
[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 1), SYMBOL_VALUE_ADDRESS (msymbol
));
1958 args
[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 2), endo_buff_addr
);
1959 args
[3] = value_from_longest (TYPE_FIELD_TYPE (ftype
, 3), TYPE_PROCEDURE
);
1960 args
[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 4), value_return_addr
);
1961 args
[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype
, 5), errno_return_addr
);
1963 /* now call the function */
1965 val
= call_function_by_hand (funcval
, 6, args
);
1967 /* now get the results */
1969 target_read_memory (errno_return_addr
, (char *) &err_value
, sizeof (err_value
));
1971 target_read_memory (value_return_addr
, (char *) &stub_addr
, sizeof (stub_addr
));
1973 error ("call to __d_shl_get failed, error code is %d", err_value
);
1978 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
1980 cover_find_stub_with_shl_get (PTR args_untyped
)
1982 args_for_find_stub
*args
= args_untyped
;
1983 args
->return_val
= find_stub_with_shl_get (args
->msym
, args
->solib_handle
);
1987 /* Insert the specified number of args and function address
1988 into a call sequence of the above form stored at DUMMYNAME.
1990 On the hppa we need to call the stack dummy through $$dyncall.
1991 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1992 real_pc, which is the location where gdb should start up the
1993 inferior to do the function call.
1995 This has to work across several versions of hpux, bsd, osf1. It has to
1996 work regardless of what compiler was used to build the inferior program.
1997 It should work regardless of whether or not end.o is available. It has
1998 to work even if gdb can not call into the dynamic loader in the inferior
1999 to query it for symbol names and addresses.
2001 Yes, all those cases should work. Luckily code exists to handle most
2002 of them. The complexity is in selecting exactly what scheme should
2003 be used to perform the inferior call.
2005 At the current time this routine is known not to handle cases where
2006 the program was linked with HP's compiler without including end.o.
2008 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2011 hppa_fix_call_dummy (char *dummy
, CORE_ADDR pc
, CORE_ADDR fun
, int nargs
,
2012 value_ptr
*args
, struct type
*type
, int gcc_p
)
2014 CORE_ADDR dyncall_addr
;
2015 struct minimal_symbol
*msymbol
;
2016 struct minimal_symbol
*trampoline
;
2017 int flags
= read_register (FLAGS_REGNUM
);
2018 struct unwind_table_entry
*u
= NULL
;
2019 CORE_ADDR new_stub
= 0;
2020 CORE_ADDR solib_handle
= 0;
2022 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2023 passed an import stub, not a PLABEL. It is also necessary to set %r19
2024 (the PIC register) before performing the call.
2026 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2027 are calling the target directly. When using __d_plt_call we want to
2028 use a PLABEL instead of an import stub. */
2029 int using_gcc_plt_call
= 1;
2031 #ifdef GDB_TARGET_IS_HPPA_20W
2032 /* We currently use completely different code for the PA2.0W inferior
2033 function call sequences. This needs to be cleaned up. */
2035 CORE_ADDR pcsqh
, pcsqt
, pcoqh
, pcoqt
, sr5
;
2036 struct target_waitstatus w
;
2040 struct objfile
*objfile
;
2042 /* We can not modify the PC space queues directly, so we start
2043 up the inferior and execute a couple instructions to set the
2044 space queues so that they point to the call dummy in the stack. */
2045 pcsqh
= read_register (PCSQ_HEAD_REGNUM
);
2046 sr5
= read_register (SR5_REGNUM
);
2049 pcoqh
= read_register (PCOQ_HEAD_REGNUM
);
2050 pcoqt
= read_register (PCOQ_TAIL_REGNUM
);
2051 if (target_read_memory (pcoqh
, buf
, 4) != 0)
2052 error ("Couldn't modify space queue\n");
2053 inst1
= extract_unsigned_integer (buf
, 4);
2055 if (target_read_memory (pcoqt
, buf
, 4) != 0)
2056 error ("Couldn't modify space queue\n");
2057 inst2
= extract_unsigned_integer (buf
, 4);
2060 *((int *) buf
) = 0xe820d000;
2061 if (target_write_memory (pcoqh
, buf
, 4) != 0)
2062 error ("Couldn't modify space queue\n");
2065 *((int *) buf
) = 0x08000240;
2066 if (target_write_memory (pcoqt
, buf
, 4) != 0)
2068 *((int *) buf
) = inst1
;
2069 target_write_memory (pcoqh
, buf
, 4);
2070 error ("Couldn't modify space queue\n");
2073 write_register (1, pc
);
2075 /* Single step twice, the BVE instruction will set the space queue
2076 such that it points to the PC value written immediately above
2077 (ie the call dummy). */
2079 target_wait (inferior_ptid
, &w
);
2081 target_wait (inferior_ptid
, &w
);
2083 /* Restore the two instructions at the old PC locations. */
2084 *((int *) buf
) = inst1
;
2085 target_write_memory (pcoqh
, buf
, 4);
2086 *((int *) buf
) = inst2
;
2087 target_write_memory (pcoqt
, buf
, 4);
2090 /* The call dummy wants the ultimate destination address initially
2092 write_register (5, fun
);
2094 /* We need to see if this objfile has a different DP value than our
2095 own (it could be a shared library for example). */
2096 ALL_OBJFILES (objfile
)
2098 struct obj_section
*s
;
2099 obj_private_data_t
*obj_private
;
2101 /* See if FUN is in any section within this shared library. */
2102 for (s
= objfile
->sections
; s
< objfile
->sections_end
; s
++)
2103 if (s
->addr
<= fun
&& fun
< s
->endaddr
)
2106 if (s
>= objfile
->sections_end
)
2109 obj_private
= (obj_private_data_t
*) objfile
->obj_private
;
2111 /* The DP value may be different for each objfile. But within an
2112 objfile each function uses the same dp value. Thus we do not need
2113 to grope around the opd section looking for dp values.
2115 ?!? This is not strictly correct since we may be in a shared library
2116 and want to call back into the main program. To make that case
2117 work correctly we need to set obj_private->dp for the main program's
2118 objfile, then remove this conditional. */
2119 if (obj_private
->dp
)
2120 write_register (27, obj_private
->dp
);
2127 #ifndef GDB_TARGET_IS_HPPA_20W
2128 /* Prefer __gcc_plt_call over the HP supplied routine because
2129 __gcc_plt_call works for any number of arguments. */
2131 if (lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
) == NULL
)
2132 using_gcc_plt_call
= 0;
2134 msymbol
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
2135 if (msymbol
== NULL
)
2136 error ("Can't find an address for $$dyncall trampoline");
2138 dyncall_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2140 /* FUN could be a procedure label, in which case we have to get
2141 its real address and the value of its GOT/DP if we plan to
2142 call the routine via gcc_plt_call. */
2143 if ((fun
& 0x2) && using_gcc_plt_call
)
2145 /* Get the GOT/DP value for the target function. It's
2146 at *(fun+4). Note the call dummy is *NOT* allowed to
2147 trash %r19 before calling the target function. */
2148 write_register (19, read_memory_integer ((fun
& ~0x3) + 4,
2151 /* Now get the real address for the function we are calling, it's
2153 fun
= (CORE_ADDR
) read_memory_integer (fun
& ~0x3,
2154 TARGET_PTR_BIT
/ 8);
2159 #ifndef GDB_TARGET_IS_PA_ELF
2160 /* FUN could be an export stub, the real address of a function, or
2161 a PLABEL. When using gcc's PLT call routine we must call an import
2162 stub rather than the export stub or real function for lazy binding
2165 If we are using the gcc PLT call routine, then we need to
2166 get the import stub for the target function. */
2167 if (using_gcc_plt_call
&& som_solib_get_got_by_pc (fun
))
2169 struct objfile
*objfile
;
2170 struct minimal_symbol
*funsymbol
, *stub_symbol
;
2171 CORE_ADDR newfun
= 0;
2173 funsymbol
= lookup_minimal_symbol_by_pc (fun
);
2175 error ("Unable to find minimal symbol for target function.\n");
2177 /* Search all the object files for an import symbol with the
2179 ALL_OBJFILES (objfile
)
2182 = lookup_minimal_symbol_solib_trampoline
2183 (SYMBOL_NAME (funsymbol
), NULL
, objfile
);
2186 stub_symbol
= lookup_minimal_symbol (SYMBOL_NAME (funsymbol
),
2189 /* Found a symbol with the right name. */
2192 struct unwind_table_entry
*u
;
2193 /* It must be a shared library trampoline. */
2194 if (MSYMBOL_TYPE (stub_symbol
) != mst_solib_trampoline
)
2197 /* It must also be an import stub. */
2198 u
= find_unwind_entry (SYMBOL_VALUE (stub_symbol
));
2200 || (u
->stub_unwind
.stub_type
!= IMPORT
2201 #ifdef GDB_NATIVE_HPUX_11
2202 /* Sigh. The hpux 10.20 dynamic linker will blow
2203 chunks if we perform a call to an unbound function
2204 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2205 linker will blow chunks if we do not call the
2206 unbound function via the IMPORT_SHLIB stub.
2208 We currently have no way to select bevahior on just
2209 the target. However, we only support HPUX/SOM in
2210 native mode. So we conditinalize on a native
2211 #ifdef. Ugly. Ugly. Ugly */
2212 && u
->stub_unwind
.stub_type
!= IMPORT_SHLIB
2217 /* OK. Looks like the correct import stub. */
2218 newfun
= SYMBOL_VALUE (stub_symbol
);
2221 /* If we found an IMPORT stub, then we want to stop
2222 searching now. If we found an IMPORT_SHLIB, we want
2223 to continue the search in the hopes that we will find
2225 if (u
->stub_unwind
.stub_type
== IMPORT
)
2230 /* Ouch. We did not find an import stub. Make an attempt to
2231 do the right thing instead of just croaking. Most of the
2232 time this will actually work. */
2234 write_register (19, som_solib_get_got_by_pc (fun
));
2236 u
= find_unwind_entry (fun
);
2238 && (u
->stub_unwind
.stub_type
== IMPORT
2239 || u
->stub_unwind
.stub_type
== IMPORT_SHLIB
))
2240 trampoline
= lookup_minimal_symbol ("__gcc_plt_call", NULL
, NULL
);
2242 /* If we found the import stub in the shared library, then we have
2243 to set %r19 before we call the stub. */
2244 if (u
&& u
->stub_unwind
.stub_type
== IMPORT_SHLIB
)
2245 write_register (19, som_solib_get_got_by_pc (fun
));
2250 /* If we are calling into another load module then have sr4export call the
2251 magic __d_plt_call routine which is linked in from end.o.
2253 You can't use _sr4export to make the call as the value in sp-24 will get
2254 fried and you end up returning to the wrong location. You can't call the
2255 target as the code to bind the PLT entry to a function can't return to a
2258 Also, query the dynamic linker in the inferior to provide a suitable
2259 PLABEL for the target function. */
2260 if (!using_gcc_plt_call
)
2264 /* Get a handle for the shared library containing FUN. Given the
2265 handle we can query the shared library for a PLABEL. */
2266 solib_handle
= som_solib_get_solib_by_pc (fun
);
2270 struct minimal_symbol
*fmsymbol
= lookup_minimal_symbol_by_pc (fun
);
2272 trampoline
= lookup_minimal_symbol ("__d_plt_call", NULL
, NULL
);
2274 if (trampoline
== NULL
)
2276 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2279 /* This is where sr4export will jump to. */
2280 new_fun
= SYMBOL_VALUE_ADDRESS (trampoline
);
2282 /* If the function is in a shared library, then call __d_shl_get to
2283 get a PLABEL for the target function. */
2284 new_stub
= find_stub_with_shl_get (fmsymbol
, solib_handle
);
2287 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol
));
2289 /* We have to store the address of the stub in __shlib_funcptr. */
2290 msymbol
= lookup_minimal_symbol ("__shlib_funcptr", NULL
,
2291 (struct objfile
*) NULL
);
2293 if (msymbol
== NULL
)
2294 error ("Can't find an address for __shlib_funcptr");
2295 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol
),
2296 (char *) &new_stub
, 4);
2298 /* We want sr4export to call __d_plt_call, so we claim it is
2299 the final target. Clear trampoline. */
2305 /* Store upper 21 bits of function address into ldil. fun will either be
2306 the final target (most cases) or __d_plt_call when calling into a shared
2307 library and __gcc_plt_call is not available. */
2308 store_unsigned_integer
2309 (&dummy
[FUNC_LDIL_OFFSET
],
2311 deposit_21 (fun
>> 11,
2312 extract_unsigned_integer (&dummy
[FUNC_LDIL_OFFSET
],
2313 INSTRUCTION_SIZE
)));
2315 /* Store lower 11 bits of function address into ldo */
2316 store_unsigned_integer
2317 (&dummy
[FUNC_LDO_OFFSET
],
2319 deposit_14 (fun
& MASK_11
,
2320 extract_unsigned_integer (&dummy
[FUNC_LDO_OFFSET
],
2321 INSTRUCTION_SIZE
)));
2322 #ifdef SR4EXPORT_LDIL_OFFSET
2325 CORE_ADDR trampoline_addr
;
2327 /* We may still need sr4export's address too. */
2329 if (trampoline
== NULL
)
2331 msymbol
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
2332 if (msymbol
== NULL
)
2333 error ("Can't find an address for _sr4export trampoline");
2335 trampoline_addr
= SYMBOL_VALUE_ADDRESS (msymbol
);
2338 trampoline_addr
= SYMBOL_VALUE_ADDRESS (trampoline
);
2341 /* Store upper 21 bits of trampoline's address into ldil */
2342 store_unsigned_integer
2343 (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2345 deposit_21 (trampoline_addr
>> 11,
2346 extract_unsigned_integer (&dummy
[SR4EXPORT_LDIL_OFFSET
],
2347 INSTRUCTION_SIZE
)));
2349 /* Store lower 11 bits of trampoline's address into ldo */
2350 store_unsigned_integer
2351 (&dummy
[SR4EXPORT_LDO_OFFSET
],
2353 deposit_14 (trampoline_addr
& MASK_11
,
2354 extract_unsigned_integer (&dummy
[SR4EXPORT_LDO_OFFSET
],
2355 INSTRUCTION_SIZE
)));
2359 write_register (22, pc
);
2361 /* If we are in a syscall, then we should call the stack dummy
2362 directly. $$dyncall is not needed as the kernel sets up the
2363 space id registers properly based on the value in %r31. In
2364 fact calling $$dyncall will not work because the value in %r22
2365 will be clobbered on the syscall exit path.
2367 Similarly if the current PC is in a shared library. Note however,
2368 this scheme won't work if the shared library isn't mapped into
2369 the same space as the stack. */
2372 #ifndef GDB_TARGET_IS_PA_ELF
2373 else if (som_solib_get_got_by_pc (target_read_pc (inferior_ptid
)))
2377 return dyncall_addr
;
2384 /* If the pid is in a syscall, then the FP register is not readable.
2385 We'll return zero in that case, rather than attempting to read it
2386 and cause a warning. */
2388 target_read_fp (int pid
)
2390 int flags
= read_register (FLAGS_REGNUM
);
2394 return (CORE_ADDR
) 0;
2397 /* This is the only site that may directly read_register () the FP
2398 register. All others must use TARGET_READ_FP (). */
2399 return read_register (FP_REGNUM
);
2403 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2407 target_read_pc (ptid_t ptid
)
2409 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2411 /* The following test does not belong here. It is OS-specific, and belongs
2413 /* Test SS_INSYSCALL */
2415 return read_register_pid (31, ptid
) & ~0x3;
2417 return read_register_pid (PC_REGNUM
, ptid
) & ~0x3;
2420 /* Write out the PC. If currently in a syscall, then also write the new
2421 PC value into %r31. */
2424 target_write_pc (CORE_ADDR v
, ptid_t ptid
)
2426 int flags
= read_register_pid (FLAGS_REGNUM
, ptid
);
2428 /* The following test does not belong here. It is OS-specific, and belongs
2430 /* If in a syscall, then set %r31. Also make sure to get the
2431 privilege bits set correctly. */
2432 /* Test SS_INSYSCALL */
2434 write_register_pid (31, v
| 0x3, ptid
);
2436 write_register_pid (PC_REGNUM
, v
, ptid
);
2437 write_register_pid (NPC_REGNUM
, v
+ 4, ptid
);
2440 /* return the alignment of a type in bytes. Structures have the maximum
2441 alignment required by their fields. */
2444 hppa_alignof (struct type
*type
)
2446 int max_align
, align
, i
;
2447 CHECK_TYPEDEF (type
);
2448 switch (TYPE_CODE (type
))
2453 return TYPE_LENGTH (type
);
2454 case TYPE_CODE_ARRAY
:
2455 return hppa_alignof (TYPE_FIELD_TYPE (type
, 0));
2456 case TYPE_CODE_STRUCT
:
2457 case TYPE_CODE_UNION
:
2459 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
2461 /* Bit fields have no real alignment. */
2462 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2463 if (!TYPE_FIELD_BITSIZE (type
, i
)) /* elz: this should be bitsize */
2465 align
= hppa_alignof (TYPE_FIELD_TYPE (type
, i
));
2466 max_align
= max (max_align
, align
);
2475 /* Print the register regnum, or all registers if regnum is -1 */
2478 pa_do_registers_info (int regnum
, int fpregs
)
2480 char raw_regs
[REGISTER_BYTES
];
2483 /* Make a copy of gdb's save area (may cause actual
2484 reads from the target). */
2485 for (i
= 0; i
< NUM_REGS
; i
++)
2486 read_relative_register_raw_bytes (i
, raw_regs
+ REGISTER_BYTE (i
));
2489 pa_print_registers (raw_regs
, regnum
, fpregs
);
2490 else if (regnum
< FP4_REGNUM
)
2494 /* Why is the value not passed through "extract_signed_integer"
2495 as in "pa_print_registers" below? */
2496 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2500 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum
), reg_val
[1]);
2504 /* Fancy % formats to prevent leading zeros. */
2505 if (reg_val
[0] == 0)
2506 printf_unfiltered ("%s %x\n", REGISTER_NAME (regnum
), reg_val
[1]);
2508 printf_unfiltered ("%s %x%8.8x\n", REGISTER_NAME (regnum
),
2509 reg_val
[0], reg_val
[1]);
2513 /* Note that real floating point values only start at
2514 FP4_REGNUM. FP0 and up are just status and error
2515 registers, which have integral (bit) values. */
2516 pa_print_fp_reg (regnum
);
2519 /********** new function ********************/
2521 pa_do_strcat_registers_info (int regnum
, int fpregs
, struct ui_file
*stream
,
2522 enum precision_type precision
)
2524 char raw_regs
[REGISTER_BYTES
];
2527 /* Make a copy of gdb's save area (may cause actual
2528 reads from the target). */
2529 for (i
= 0; i
< NUM_REGS
; i
++)
2530 read_relative_register_raw_bytes (i
, raw_regs
+ REGISTER_BYTE (i
));
2533 pa_strcat_registers (raw_regs
, regnum
, fpregs
, stream
);
2535 else if (regnum
< FP4_REGNUM
)
2539 /* Why is the value not passed through "extract_signed_integer"
2540 as in "pa_print_registers" below? */
2541 pa_register_look_aside (raw_regs
, regnum
, ®_val
[0]);
2545 fprintf_unfiltered (stream
, "%s %x", REGISTER_NAME (regnum
), reg_val
[1]);
2549 /* Fancy % formats to prevent leading zeros. */
2550 if (reg_val
[0] == 0)
2551 fprintf_unfiltered (stream
, "%s %x", REGISTER_NAME (regnum
),
2554 fprintf_unfiltered (stream
, "%s %x%8.8x", REGISTER_NAME (regnum
),
2555 reg_val
[0], reg_val
[1]);
2559 /* Note that real floating point values only start at
2560 FP4_REGNUM. FP0 and up are just status and error
2561 registers, which have integral (bit) values. */
2562 pa_strcat_fp_reg (regnum
, stream
, precision
);
2565 /* If this is a PA2.0 machine, fetch the real 64-bit register
2566 value. Otherwise use the info from gdb's saved register area.
2568 Note that reg_val is really expected to be an array of longs,
2569 with two elements. */
2571 pa_register_look_aside (char *raw_regs
, int regnum
, long *raw_val
)
2573 static int know_which
= 0; /* False */
2576 unsigned int offset
;
2581 char buf
[MAX_REGISTER_RAW_SIZE
];
2586 if (CPU_PA_RISC2_0
== sysconf (_SC_CPU_VERSION
))
2591 know_which
= 1; /* True */
2599 raw_val
[1] = *(long *) (raw_regs
+ REGISTER_BYTE (regnum
));
2603 /* Code below copied from hppah-nat.c, with fixes for wide
2604 registers, using different area of save_state, etc. */
2605 if (regnum
== FLAGS_REGNUM
|| regnum
>= FP0_REGNUM
||
2606 !HAVE_STRUCT_SAVE_STATE_T
|| !HAVE_STRUCT_MEMBER_SS_WIDE
)
2608 /* Use narrow regs area of save_state and default macro. */
2609 offset
= U_REGS_OFFSET
;
2610 regaddr
= register_addr (regnum
, offset
);
2615 /* Use wide regs area, and calculate registers as 8 bytes wide.
2617 We'd like to do this, but current version of "C" doesn't
2620 offset = offsetof(save_state_t, ss_wide);
2622 Note that to avoid "C" doing typed pointer arithmetic, we
2623 have to cast away the type in our offset calculation:
2624 otherwise we get an offset of 1! */
2626 /* NB: save_state_t is not available before HPUX 9.
2627 The ss_wide field is not available previous to HPUX 10.20,
2628 so to avoid compile-time warnings, we only compile this for
2629 PA 2.0 processors. This control path should only be followed
2630 if we're debugging a PA 2.0 processor, so this should not cause
2633 /* #if the following code out so that this file can still be
2634 compiled on older HPUX boxes (< 10.20) which don't have
2635 this structure/structure member. */
2636 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2639 offset
= ((int) &temp
.ss_wide
) - ((int) &temp
);
2640 regaddr
= offset
+ regnum
* 8;
2645 for (i
= start
; i
< 2; i
++)
2648 raw_val
[i
] = call_ptrace (PT_RUREGS
, PIDGET (inferior_ptid
),
2649 (PTRACE_ARG3_TYPE
) regaddr
, 0);
2652 /* Warning, not error, in case we are attached; sometimes the
2653 kernel doesn't let us at the registers. */
2654 char *err
= safe_strerror (errno
);
2655 char *msg
= alloca (strlen (err
) + 128);
2656 sprintf (msg
, "reading register %s: %s", REGISTER_NAME (regnum
), err
);
2661 regaddr
+= sizeof (long);
2664 if (regnum
== PCOQ_HEAD_REGNUM
|| regnum
== PCOQ_TAIL_REGNUM
)
2665 raw_val
[1] &= ~0x3; /* I think we're masking out space bits */
2671 /* "Info all-reg" command */
2674 pa_print_registers (char *raw_regs
, int regnum
, int fpregs
)
2677 /* Alas, we are compiled so that "long long" is 32 bits */
2680 int rows
= 48, columns
= 2;
2682 for (i
= 0; i
< rows
; i
++)
2684 for (j
= 0; j
< columns
; j
++)
2686 /* We display registers in column-major order. */
2687 int regnum
= i
+ j
* rows
;
2689 /* Q: Why is the value passed through "extract_signed_integer",
2690 while above, in "pa_do_registers_info" it isn't?
2692 pa_register_look_aside (raw_regs
, regnum
, &raw_val
[0]);
2694 /* Even fancier % formats to prevent leading zeros
2695 and still maintain the output in columns. */
2698 /* Being big-endian, on this machine the low bits
2699 (the ones we want to look at) are in the second longword. */
2700 long_val
= extract_signed_integer (&raw_val
[1], 4);
2701 printf_filtered ("%10.10s: %8x ",
2702 REGISTER_NAME (regnum
), long_val
);
2706 /* raw_val = extract_signed_integer(&raw_val, 8); */
2707 if (raw_val
[0] == 0)
2708 printf_filtered ("%10.10s: %8x ",
2709 REGISTER_NAME (regnum
), raw_val
[1]);
2711 printf_filtered ("%10.10s: %8x%8.8x ",
2712 REGISTER_NAME (regnum
),
2713 raw_val
[0], raw_val
[1]);
2716 printf_unfiltered ("\n");
2720 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2721 pa_print_fp_reg (i
);
2724 /************* new function ******************/
2726 pa_strcat_registers (char *raw_regs
, int regnum
, int fpregs
,
2727 struct ui_file
*stream
)
2730 long raw_val
[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2732 enum precision_type precision
;
2734 precision
= unspecified_precision
;
2736 for (i
= 0; i
< 18; i
++)
2738 for (j
= 0; j
< 4; j
++)
2740 /* Q: Why is the value passed through "extract_signed_integer",
2741 while above, in "pa_do_registers_info" it isn't?
2743 pa_register_look_aside (raw_regs
, i
+ (j
* 18), &raw_val
[0]);
2745 /* Even fancier % formats to prevent leading zeros
2746 and still maintain the output in columns. */
2749 /* Being big-endian, on this machine the low bits
2750 (the ones we want to look at) are in the second longword. */
2751 long_val
= extract_signed_integer (&raw_val
[1], 4);
2752 fprintf_filtered (stream
, "%8.8s: %8x ", REGISTER_NAME (i
+ (j
* 18)), long_val
);
2756 /* raw_val = extract_signed_integer(&raw_val, 8); */
2757 if (raw_val
[0] == 0)
2758 fprintf_filtered (stream
, "%8.8s: %8x ", REGISTER_NAME (i
+ (j
* 18)),
2761 fprintf_filtered (stream
, "%8.8s: %8x%8.8x ", REGISTER_NAME (i
+ (j
* 18)),
2762 raw_val
[0], raw_val
[1]);
2765 fprintf_unfiltered (stream
, "\n");
2769 for (i
= FP4_REGNUM
; i
< NUM_REGS
; i
++) /* FP4_REGNUM == 72 */
2770 pa_strcat_fp_reg (i
, stream
, precision
);
2774 pa_print_fp_reg (int i
)
2776 char raw_buffer
[MAX_REGISTER_RAW_SIZE
];
2777 char virtual_buffer
[MAX_REGISTER_VIRTUAL_SIZE
];
2779 /* Get 32bits of data. */
2780 read_relative_register_raw_bytes (i
, raw_buffer
);
2782 /* Put it in the buffer. No conversions are ever necessary. */
2783 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
2785 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
2786 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
2787 fputs_filtered ("(single precision) ", gdb_stdout
);
2789 val_print (REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, gdb_stdout
, 0,
2790 1, 0, Val_pretty_default
);
2791 printf_filtered ("\n");
2793 /* If "i" is even, then this register can also be a double-precision
2794 FP register. Dump it out as such. */
2797 /* Get the data in raw format for the 2nd half. */
2798 read_relative_register_raw_bytes (i
+ 1, raw_buffer
);
2800 /* Copy it into the appropriate part of the virtual buffer. */
2801 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buffer
,
2802 REGISTER_RAW_SIZE (i
));
2804 /* Dump it as a double. */
2805 fputs_filtered (REGISTER_NAME (i
), gdb_stdout
);
2806 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), gdb_stdout
);
2807 fputs_filtered ("(double precision) ", gdb_stdout
);
2809 val_print (builtin_type_double
, virtual_buffer
, 0, 0, gdb_stdout
, 0,
2810 1, 0, Val_pretty_default
);
2811 printf_filtered ("\n");
2815 /*************** new function ***********************/
2817 pa_strcat_fp_reg (int i
, struct ui_file
*stream
, enum precision_type precision
)
2819 char raw_buffer
[MAX_REGISTER_RAW_SIZE
];
2820 char virtual_buffer
[MAX_REGISTER_VIRTUAL_SIZE
];
2822 fputs_filtered (REGISTER_NAME (i
), stream
);
2823 print_spaces_filtered (8 - strlen (REGISTER_NAME (i
)), stream
);
2825 /* Get 32bits of data. */
2826 read_relative_register_raw_bytes (i
, raw_buffer
);
2828 /* Put it in the buffer. No conversions are ever necessary. */
2829 memcpy (virtual_buffer
, raw_buffer
, REGISTER_RAW_SIZE (i
));
2831 if (precision
== double_precision
&& (i
% 2) == 0)
2834 char raw_buf
[MAX_REGISTER_RAW_SIZE
];
2836 /* Get the data in raw format for the 2nd half. */
2837 read_relative_register_raw_bytes (i
+ 1, raw_buf
);
2839 /* Copy it into the appropriate part of the virtual buffer. */
2840 memcpy (virtual_buffer
+ REGISTER_RAW_SIZE (i
), raw_buf
, REGISTER_RAW_SIZE (i
));
2842 val_print (builtin_type_double
, virtual_buffer
, 0, 0, stream
, 0,
2843 1, 0, Val_pretty_default
);
2848 val_print (REGISTER_VIRTUAL_TYPE (i
), virtual_buffer
, 0, 0, stream
, 0,
2849 1, 0, Val_pretty_default
);
2854 /* Return one if PC is in the call path of a trampoline, else return zero.
2856 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2857 just shared library trampolines (import, export). */
2860 in_solib_call_trampoline (CORE_ADDR pc
, char *name
)
2862 struct minimal_symbol
*minsym
;
2863 struct unwind_table_entry
*u
;
2864 static CORE_ADDR dyncall
= 0;
2865 static CORE_ADDR sr4export
= 0;
2867 #ifdef GDB_TARGET_IS_HPPA_20W
2868 /* PA64 has a completely different stub/trampoline scheme. Is it
2869 better? Maybe. It's certainly harder to determine with any
2870 certainty that we are in a stub because we can not refer to the
2873 The heuristic is simple. Try to lookup the current PC value in th
2874 minimal symbol table. If that fails, then assume we are not in a
2877 Then see if the PC value falls within the section bounds for the
2878 section containing the minimal symbol we found in the first
2879 step. If it does, then assume we are not in a stub and return.
2881 Finally peek at the instructions to see if they look like a stub. */
2883 struct minimal_symbol
*minsym
;
2888 minsym
= lookup_minimal_symbol_by_pc (pc
);
2892 sec
= SYMBOL_BFD_SECTION (minsym
);
2895 && sec
->vma
+ sec
->_cooked_size
< pc
)
2898 /* We might be in a stub. Peek at the instructions. Stubs are 3
2899 instructions long. */
2900 insn
= read_memory_integer (pc
, 4);
2902 /* Find out where we think we are within the stub. */
2903 if ((insn
& 0xffffc00e) == 0x53610000)
2905 else if ((insn
& 0xffffffff) == 0xe820d000)
2907 else if ((insn
& 0xffffc00e) == 0x537b0000)
2912 /* Now verify each insn in the range looks like a stub instruction. */
2913 insn
= read_memory_integer (addr
, 4);
2914 if ((insn
& 0xffffc00e) != 0x53610000)
2917 /* Now verify each insn in the range looks like a stub instruction. */
2918 insn
= read_memory_integer (addr
+ 4, 4);
2919 if ((insn
& 0xffffffff) != 0xe820d000)
2922 /* Now verify each insn in the range looks like a stub instruction. */
2923 insn
= read_memory_integer (addr
+ 8, 4);
2924 if ((insn
& 0xffffc00e) != 0x537b0000)
2927 /* Looks like a stub. */
2932 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2935 /* First see if PC is in one of the two C-library trampolines. */
2938 minsym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
2940 dyncall
= SYMBOL_VALUE_ADDRESS (minsym
);
2947 minsym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
2949 sr4export
= SYMBOL_VALUE_ADDRESS (minsym
);
2954 if (pc
== dyncall
|| pc
== sr4export
)
2957 minsym
= lookup_minimal_symbol_by_pc (pc
);
2958 if (minsym
&& strcmp (SYMBOL_NAME (minsym
), ".stub") == 0)
2961 /* Get the unwind descriptor corresponding to PC, return zero
2962 if no unwind was found. */
2963 u
= find_unwind_entry (pc
);
2967 /* If this isn't a linker stub, then return now. */
2968 if (u
->stub_unwind
.stub_type
== 0)
2971 /* By definition a long-branch stub is a call stub. */
2972 if (u
->stub_unwind
.stub_type
== LONG_BRANCH
)
2975 /* The call and return path execute the same instructions within
2976 an IMPORT stub! So an IMPORT stub is both a call and return
2978 if (u
->stub_unwind
.stub_type
== IMPORT
)
2981 /* Parameter relocation stubs always have a call path and may have a
2983 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
2984 || u
->stub_unwind
.stub_type
== EXPORT
)
2988 /* Search forward from the current PC until we hit a branch
2989 or the end of the stub. */
2990 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
2994 insn
= read_memory_integer (addr
, 4);
2996 /* Does it look like a bl? If so then it's the call path, if
2997 we find a bv or be first, then we're on the return path. */
2998 if ((insn
& 0xfc00e000) == 0xe8000000)
3000 else if ((insn
& 0xfc00e001) == 0xe800c000
3001 || (insn
& 0xfc000000) == 0xe0000000)
3005 /* Should never happen. */
3006 warning ("Unable to find branch in parameter relocation stub.\n");
3010 /* Unknown stub type. For now, just return zero. */
3014 /* Return one if PC is in the return path of a trampoline, else return zero.
3016 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3017 just shared library trampolines (import, export). */
3020 in_solib_return_trampoline (CORE_ADDR pc
, char *name
)
3022 struct unwind_table_entry
*u
;
3024 /* Get the unwind descriptor corresponding to PC, return zero
3025 if no unwind was found. */
3026 u
= find_unwind_entry (pc
);
3030 /* If this isn't a linker stub or it's just a long branch stub, then
3032 if (u
->stub_unwind
.stub_type
== 0 || u
->stub_unwind
.stub_type
== LONG_BRANCH
)
3035 /* The call and return path execute the same instructions within
3036 an IMPORT stub! So an IMPORT stub is both a call and return
3038 if (u
->stub_unwind
.stub_type
== IMPORT
)
3041 /* Parameter relocation stubs always have a call path and may have a
3043 if (u
->stub_unwind
.stub_type
== PARAMETER_RELOCATION
3044 || u
->stub_unwind
.stub_type
== EXPORT
)
3048 /* Search forward from the current PC until we hit a branch
3049 or the end of the stub. */
3050 for (addr
= pc
; addr
<= u
->region_end
; addr
+= 4)
3054 insn
= read_memory_integer (addr
, 4);
3056 /* Does it look like a bl? If so then it's the call path, if
3057 we find a bv or be first, then we're on the return path. */
3058 if ((insn
& 0xfc00e000) == 0xe8000000)
3060 else if ((insn
& 0xfc00e001) == 0xe800c000
3061 || (insn
& 0xfc000000) == 0xe0000000)
3065 /* Should never happen. */
3066 warning ("Unable to find branch in parameter relocation stub.\n");
3070 /* Unknown stub type. For now, just return zero. */
3075 /* Figure out if PC is in a trampoline, and if so find out where
3076 the trampoline will jump to. If not in a trampoline, return zero.
3078 Simple code examination probably is not a good idea since the code
3079 sequences in trampolines can also appear in user code.
3081 We use unwinds and information from the minimal symbol table to
3082 determine when we're in a trampoline. This won't work for ELF
3083 (yet) since it doesn't create stub unwind entries. Whether or
3084 not ELF will create stub unwinds or normal unwinds for linker
3085 stubs is still being debated.
3087 This should handle simple calls through dyncall or sr4export,
3088 long calls, argument relocation stubs, and dyncall/sr4export
3089 calling an argument relocation stub. It even handles some stubs
3090 used in dynamic executables. */
3093 skip_trampoline_code (CORE_ADDR pc
, char *name
)
3096 long prev_inst
, curr_inst
, loc
;
3097 static CORE_ADDR dyncall
= 0;
3098 static CORE_ADDR dyncall_external
= 0;
3099 static CORE_ADDR sr4export
= 0;
3100 struct minimal_symbol
*msym
;
3101 struct unwind_table_entry
*u
;
3103 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3108 msym
= lookup_minimal_symbol ("$$dyncall", NULL
, NULL
);
3110 dyncall
= SYMBOL_VALUE_ADDRESS (msym
);
3115 if (!dyncall_external
)
3117 msym
= lookup_minimal_symbol ("$$dyncall_external", NULL
, NULL
);
3119 dyncall_external
= SYMBOL_VALUE_ADDRESS (msym
);
3121 dyncall_external
= -1;
3126 msym
= lookup_minimal_symbol ("_sr4export", NULL
, NULL
);
3128 sr4export
= SYMBOL_VALUE_ADDRESS (msym
);
3133 /* Addresses passed to dyncall may *NOT* be the actual address
3134 of the function. So we may have to do something special. */
3137 pc
= (CORE_ADDR
) read_register (22);
3139 /* If bit 30 (counting from the left) is on, then pc is the address of
3140 the PLT entry for this function, not the address of the function
3141 itself. Bit 31 has meaning too, but only for MPE. */
3143 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3145 if (pc
== dyncall_external
)
3147 pc
= (CORE_ADDR
) read_register (22);
3148 pc
= (CORE_ADDR
) read_memory_integer (pc
& ~0x3, TARGET_PTR_BIT
/ 8);
3150 else if (pc
== sr4export
)
3151 pc
= (CORE_ADDR
) (read_register (22));
3153 /* Get the unwind descriptor corresponding to PC, return zero
3154 if no unwind was found. */
3155 u
= find_unwind_entry (pc
);
3159 /* If this isn't a linker stub, then return now. */
3160 /* elz: attention here! (FIXME) because of a compiler/linker
3161 error, some stubs which should have a non zero stub_unwind.stub_type
3162 have unfortunately a value of zero. So this function would return here
3163 as if we were not in a trampoline. To fix this, we go look at the partial
3164 symbol information, which reports this guy as a stub.
3165 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3166 partial symbol information is also wrong sometimes. This is because
3167 when it is entered (somread.c::som_symtab_read()) it can happen that
3168 if the type of the symbol (from the som) is Entry, and the symbol is
3169 in a shared library, then it can also be a trampoline. This would
3170 be OK, except that I believe the way they decide if we are ina shared library
3171 does not work. SOOOO..., even if we have a regular function w/o trampolines
3172 its minimal symbol can be assigned type mst_solib_trampoline.
3173 Also, if we find that the symbol is a real stub, then we fix the unwind
3174 descriptor, and define the stub type to be EXPORT.
3175 Hopefully this is correct most of the times. */
3176 if (u
->stub_unwind
.stub_type
== 0)
3179 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3180 we can delete all the code which appears between the lines */
3181 /*--------------------------------------------------------------------------*/
3182 msym
= lookup_minimal_symbol_by_pc (pc
);
3184 if (msym
== NULL
|| MSYMBOL_TYPE (msym
) != mst_solib_trampoline
)
3185 return orig_pc
== pc
? 0 : pc
& ~0x3;
3187 else if (msym
!= NULL
&& MSYMBOL_TYPE (msym
) == mst_solib_trampoline
)
3189 struct objfile
*objfile
;
3190 struct minimal_symbol
*msymbol
;
3191 int function_found
= 0;
3193 /* go look if there is another minimal symbol with the same name as
3194 this one, but with type mst_text. This would happen if the msym
3195 is an actual trampoline, in which case there would be another
3196 symbol with the same name corresponding to the real function */
3198 ALL_MSYMBOLS (objfile
, msymbol
)
3200 if (MSYMBOL_TYPE (msymbol
) == mst_text
3201 && STREQ (SYMBOL_NAME (msymbol
), SYMBOL_NAME (msym
)))
3209 /* the type of msym is correct (mst_solib_trampoline), but
3210 the unwind info is wrong, so set it to the correct value */
3211 u
->stub_unwind
.stub_type
= EXPORT
;
3213 /* the stub type info in the unwind is correct (this is not a
3214 trampoline), but the msym type information is wrong, it
3215 should be mst_text. So we need to fix the msym, and also
3216 get out of this function */
3218 MSYMBOL_TYPE (msym
) = mst_text
;
3219 return orig_pc
== pc
? 0 : pc
& ~0x3;
3223 /*--------------------------------------------------------------------------*/
3226 /* It's a stub. Search for a branch and figure out where it goes.
3227 Note we have to handle multi insn branch sequences like ldil;ble.
3228 Most (all?) other branches can be determined by examining the contents
3229 of certain registers and the stack. */
3236 /* Make sure we haven't walked outside the range of this stub. */
3237 if (u
!= find_unwind_entry (loc
))
3239 warning ("Unable to find branch in linker stub");
3240 return orig_pc
== pc
? 0 : pc
& ~0x3;
3243 prev_inst
= curr_inst
;
3244 curr_inst
= read_memory_integer (loc
, 4);
3246 /* Does it look like a branch external using %r1? Then it's the
3247 branch from the stub to the actual function. */
3248 if ((curr_inst
& 0xffe0e000) == 0xe0202000)
3250 /* Yup. See if the previous instruction loaded
3251 a value into %r1. If so compute and return the jump address. */
3252 if ((prev_inst
& 0xffe00000) == 0x20200000)
3253 return (extract_21 (prev_inst
) + extract_17 (curr_inst
)) & ~0x3;
3256 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3257 return orig_pc
== pc
? 0 : pc
& ~0x3;
3261 /* Does it look like a be 0(sr0,%r21)? OR
3262 Does it look like a be, n 0(sr0,%r21)? OR
3263 Does it look like a bve (r21)? (this is on PA2.0)
3264 Does it look like a bve, n(r21)? (this is also on PA2.0)
3265 That's the branch from an
3266 import stub to an export stub.
3268 It is impossible to determine the target of the branch via
3269 simple examination of instructions and/or data (consider
3270 that the address in the plabel may be the address of the
3271 bind-on-reference routine in the dynamic loader).
3273 So we have try an alternative approach.
3275 Get the name of the symbol at our current location; it should
3276 be a stub symbol with the same name as the symbol in the
3279 Then lookup a minimal symbol with the same name; we should
3280 get the minimal symbol for the target routine in the shared
3281 library as those take precedence of import/export stubs. */
3282 if ((curr_inst
== 0xe2a00000) ||
3283 (curr_inst
== 0xe2a00002) ||
3284 (curr_inst
== 0xeaa0d000) ||
3285 (curr_inst
== 0xeaa0d002))
3287 struct minimal_symbol
*stubsym
, *libsym
;
3289 stubsym
= lookup_minimal_symbol_by_pc (loc
);
3290 if (stubsym
== NULL
)
3292 warning ("Unable to find symbol for 0x%x", loc
);
3293 return orig_pc
== pc
? 0 : pc
& ~0x3;
3296 libsym
= lookup_minimal_symbol (SYMBOL_NAME (stubsym
), NULL
, NULL
);
3299 warning ("Unable to find library symbol for %s\n",
3300 SYMBOL_NAME (stubsym
));
3301 return orig_pc
== pc
? 0 : pc
& ~0x3;
3304 return SYMBOL_VALUE (libsym
);
3307 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3308 branch from the stub to the actual function. */
3310 else if ((curr_inst
& 0xffe0e000) == 0xe8400000
3311 || (curr_inst
& 0xffe0e000) == 0xe8000000
3312 || (curr_inst
& 0xffe0e000) == 0xe800A000)
3313 return (loc
+ extract_17 (curr_inst
) + 8) & ~0x3;
3315 /* Does it look like bv (rp)? Note this depends on the
3316 current stack pointer being the same as the stack
3317 pointer in the stub itself! This is a branch on from the
3318 stub back to the original caller. */
3319 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3320 else if ((curr_inst
& 0xffe0f000) == 0xe840c000)
3322 /* Yup. See if the previous instruction loaded
3324 if (prev_inst
== 0x4bc23ff1)
3325 return (read_memory_integer
3326 (read_register (SP_REGNUM
) - 8, 4)) & ~0x3;
3329 warning ("Unable to find restore of %%rp before bv (%%rp).");
3330 return orig_pc
== pc
? 0 : pc
& ~0x3;
3334 /* elz: added this case to capture the new instruction
3335 at the end of the return part of an export stub used by
3336 the PA2.0: BVE, n (rp) */
3337 else if ((curr_inst
& 0xffe0f000) == 0xe840d000)
3339 return (read_memory_integer
3340 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3343 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3344 the original caller from the stub. Used in dynamic executables. */
3345 else if (curr_inst
== 0xe0400002)
3347 /* The value we jump to is sitting in sp - 24. But that's
3348 loaded several instructions before the be instruction.
3349 I guess we could check for the previous instruction being
3350 mtsp %r1,%sr0 if we want to do sanity checking. */
3351 return (read_memory_integer
3352 (read_register (SP_REGNUM
) - 24, TARGET_PTR_BIT
/ 8)) & ~0x3;
3355 /* Haven't found the branch yet, but we're still in the stub.
3362 /* For the given instruction (INST), return any adjustment it makes
3363 to the stack pointer or zero for no adjustment.
3365 This only handles instructions commonly found in prologues. */
3368 prologue_inst_adjust_sp (unsigned long inst
)
3370 /* This must persist across calls. */
3371 static int save_high21
;
3373 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3374 if ((inst
& 0xffffc000) == 0x37de0000)
3375 return extract_14 (inst
);
3378 if ((inst
& 0xffe00000) == 0x6fc00000)
3379 return extract_14 (inst
);
3381 /* std,ma X,D(sp) */
3382 if ((inst
& 0xffe00008) == 0x73c00008)
3383 return (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
3385 /* addil high21,%r1; ldo low11,(%r1),%r30)
3386 save high bits in save_high21 for later use. */
3387 if ((inst
& 0xffe00000) == 0x28200000)
3389 save_high21
= extract_21 (inst
);
3393 if ((inst
& 0xffff0000) == 0x343e0000)
3394 return save_high21
+ extract_14 (inst
);
3396 /* fstws as used by the HP compilers. */
3397 if ((inst
& 0xffffffe0) == 0x2fd01220)
3398 return extract_5_load (inst
);
3400 /* No adjustment. */
3404 /* Return nonzero if INST is a branch of some kind, else return zero. */
3407 is_branch (unsigned long inst
)
3436 /* Return the register number for a GR which is saved by INST or
3437 zero it INST does not save a GR. */
3440 inst_saves_gr (unsigned long inst
)
3442 /* Does it look like a stw? */
3443 if ((inst
>> 26) == 0x1a || (inst
>> 26) == 0x1b
3444 || (inst
>> 26) == 0x1f
3445 || ((inst
>> 26) == 0x1f
3446 && ((inst
>> 6) == 0xa)))
3447 return extract_5R_store (inst
);
3449 /* Does it look like a std? */
3450 if ((inst
>> 26) == 0x1c
3451 || ((inst
>> 26) == 0x03
3452 && ((inst
>> 6) & 0xf) == 0xb))
3453 return extract_5R_store (inst
);
3455 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3456 if ((inst
>> 26) == 0x1b)
3457 return extract_5R_store (inst
);
3459 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3461 if ((inst
>> 26) == 0x19 || (inst
>> 26) == 0x18
3462 || ((inst
>> 26) == 0x3
3463 && (((inst
>> 6) & 0xf) == 0x8
3464 || (inst
>> 6) & 0xf) == 0x9))
3465 return extract_5R_store (inst
);
3470 /* Return the register number for a FR which is saved by INST or
3471 zero it INST does not save a FR.
3473 Note we only care about full 64bit register stores (that's the only
3474 kind of stores the prologue will use).
3476 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3479 inst_saves_fr (unsigned long inst
)
3481 /* is this an FSTD ? */
3482 if ((inst
& 0xfc00dfc0) == 0x2c001200)
3483 return extract_5r_store (inst
);
3484 if ((inst
& 0xfc000002) == 0x70000002)
3485 return extract_5R_store (inst
);
3486 /* is this an FSTW ? */
3487 if ((inst
& 0xfc00df80) == 0x24001200)
3488 return extract_5r_store (inst
);
3489 if ((inst
& 0xfc000002) == 0x7c000000)
3490 return extract_5R_store (inst
);
3494 /* Advance PC across any function entry prologue instructions
3495 to reach some "real" code.
3497 Use information in the unwind table to determine what exactly should
3498 be in the prologue. */
3502 skip_prologue_hard_way (CORE_ADDR pc
)
3505 CORE_ADDR orig_pc
= pc
;
3506 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
3507 unsigned long args_stored
, status
, i
, restart_gr
, restart_fr
;
3508 struct unwind_table_entry
*u
;
3514 u
= find_unwind_entry (pc
);
3518 /* If we are not at the beginning of a function, then return now. */
3519 if ((pc
& ~0x3) != u
->region_start
)
3522 /* This is how much of a frame adjustment we need to account for. */
3523 stack_remaining
= u
->Total_frame_size
<< 3;
3525 /* Magic register saves we want to know about. */
3526 save_rp
= u
->Save_RP
;
3527 save_sp
= u
->Save_SP
;
3529 /* An indication that args may be stored into the stack. Unfortunately
3530 the HPUX compilers tend to set this in cases where no args were
3534 /* Turn the Entry_GR field into a bitmask. */
3536 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
3538 /* Frame pointer gets saved into a special location. */
3539 if (u
->Save_SP
&& i
== FP_REGNUM
)
3542 save_gr
|= (1 << i
);
3544 save_gr
&= ~restart_gr
;
3546 /* Turn the Entry_FR field into a bitmask too. */
3548 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
3549 save_fr
|= (1 << i
);
3550 save_fr
&= ~restart_fr
;
3552 /* Loop until we find everything of interest or hit a branch.
3554 For unoptimized GCC code and for any HP CC code this will never ever
3555 examine any user instructions.
3557 For optimzied GCC code we're faced with problems. GCC will schedule
3558 its prologue and make prologue instructions available for delay slot
3559 filling. The end result is user code gets mixed in with the prologue
3560 and a prologue instruction may be in the delay slot of the first branch
3563 Some unexpected things are expected with debugging optimized code, so
3564 we allow this routine to walk past user instructions in optimized
3566 while (save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0
3569 unsigned int reg_num
;
3570 unsigned long old_stack_remaining
, old_save_gr
, old_save_fr
;
3571 unsigned long old_save_rp
, old_save_sp
, next_inst
;
3573 /* Save copies of all the triggers so we can compare them later
3575 old_save_gr
= save_gr
;
3576 old_save_fr
= save_fr
;
3577 old_save_rp
= save_rp
;
3578 old_save_sp
= save_sp
;
3579 old_stack_remaining
= stack_remaining
;
3581 status
= target_read_memory (pc
, buf
, 4);
3582 inst
= extract_unsigned_integer (buf
, 4);
3588 /* Note the interesting effects of this instruction. */
3589 stack_remaining
-= prologue_inst_adjust_sp (inst
);
3591 /* There are limited ways to store the return pointer into the
3593 if (inst
== 0x6bc23fd9 || inst
== 0x0fc212c1)
3596 /* These are the only ways we save SP into the stack. At this time
3597 the HP compilers never bother to save SP into the stack. */
3598 if ((inst
& 0xffffc000) == 0x6fc10000
3599 || (inst
& 0xffffc00c) == 0x73c10008)
3602 /* Are we loading some register with an offset from the argument
3604 if ((inst
& 0xffe00000) == 0x37a00000
3605 || (inst
& 0xffffffe0) == 0x081d0240)
3611 /* Account for general and floating-point register saves. */
3612 reg_num
= inst_saves_gr (inst
);
3613 save_gr
&= ~(1 << reg_num
);
3615 /* Ugh. Also account for argument stores into the stack.
3616 Unfortunately args_stored only tells us that some arguments
3617 where stored into the stack. Not how many or what kind!
3619 This is a kludge as on the HP compiler sets this bit and it
3620 never does prologue scheduling. So once we see one, skip past
3621 all of them. We have similar code for the fp arg stores below.
3623 FIXME. Can still die if we have a mix of GR and FR argument
3625 if (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3627 while (reg_num
>= (TARGET_PTR_BIT
== 64 ? 19 : 23) && reg_num
<= 26)
3630 status
= target_read_memory (pc
, buf
, 4);
3631 inst
= extract_unsigned_integer (buf
, 4);
3634 reg_num
= inst_saves_gr (inst
);
3640 reg_num
= inst_saves_fr (inst
);
3641 save_fr
&= ~(1 << reg_num
);
3643 status
= target_read_memory (pc
+ 4, buf
, 4);
3644 next_inst
= extract_unsigned_integer (buf
, 4);
3650 /* We've got to be read to handle the ldo before the fp register
3652 if ((inst
& 0xfc000000) == 0x34000000
3653 && inst_saves_fr (next_inst
) >= 4
3654 && inst_saves_fr (next_inst
) <= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3656 /* So we drop into the code below in a reasonable state. */
3657 reg_num
= inst_saves_fr (next_inst
);
3661 /* Ugh. Also account for argument stores into the stack.
3662 This is a kludge as on the HP compiler sets this bit and it
3663 never does prologue scheduling. So once we see one, skip past
3665 if (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3667 while (reg_num
>= 4 && reg_num
<= (TARGET_PTR_BIT
== 64 ? 11 : 7))
3670 status
= target_read_memory (pc
, buf
, 4);
3671 inst
= extract_unsigned_integer (buf
, 4);
3674 if ((inst
& 0xfc000000) != 0x34000000)
3676 status
= target_read_memory (pc
+ 4, buf
, 4);
3677 next_inst
= extract_unsigned_integer (buf
, 4);
3680 reg_num
= inst_saves_fr (next_inst
);
3686 /* Quit if we hit any kind of branch. This can happen if a prologue
3687 instruction is in the delay slot of the first call/branch. */
3688 if (is_branch (inst
))
3691 /* What a crock. The HP compilers set args_stored even if no
3692 arguments were stored into the stack (boo hiss). This could
3693 cause this code to then skip a bunch of user insns (up to the
3696 To combat this we try to identify when args_stored was bogusly
3697 set and clear it. We only do this when args_stored is nonzero,
3698 all other resources are accounted for, and nothing changed on
3701 && !(save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
3702 && old_save_gr
== save_gr
&& old_save_fr
== save_fr
3703 && old_save_rp
== save_rp
&& old_save_sp
== save_sp
3704 && old_stack_remaining
== stack_remaining
)
3711 /* We've got a tenative location for the end of the prologue. However
3712 because of limitations in the unwind descriptor mechanism we may
3713 have went too far into user code looking for the save of a register
3714 that does not exist. So, if there registers we expected to be saved
3715 but never were, mask them out and restart.
3717 This should only happen in optimized code, and should be very rare. */
3718 if (save_gr
|| (save_fr
&& !(restart_fr
|| restart_gr
)))
3721 restart_gr
= save_gr
;
3722 restart_fr
= save_fr
;
3730 /* Return the address of the PC after the last prologue instruction if
3731 we can determine it from the debug symbols. Else return zero. */
3734 after_prologue (CORE_ADDR pc
)
3736 struct symtab_and_line sal
;
3737 CORE_ADDR func_addr
, func_end
;
3740 /* If we can not find the symbol in the partial symbol table, then
3741 there is no hope we can determine the function's start address
3743 if (!find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
3746 /* Get the line associated with FUNC_ADDR. */
3747 sal
= find_pc_line (func_addr
, 0);
3749 /* There are only two cases to consider. First, the end of the source line
3750 is within the function bounds. In that case we return the end of the
3751 source line. Second is the end of the source line extends beyond the
3752 bounds of the current function. We need to use the slow code to
3753 examine instructions in that case.
3755 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3756 the wrong thing to do. In fact, it should be entirely possible for this
3757 function to always return zero since the slow instruction scanning code
3758 is supposed to *always* work. If it does not, then it is a bug. */
3759 if (sal
.end
< func_end
)
3765 /* To skip prologues, I use this predicate. Returns either PC itself
3766 if the code at PC does not look like a function prologue; otherwise
3767 returns an address that (if we're lucky) follows the prologue. If
3768 LENIENT, then we must skip everything which is involved in setting
3769 up the frame (it's OK to skip more, just so long as we don't skip
3770 anything which might clobber the registers which are being saved.
3771 Currently we must not skip more on the alpha, but we might the lenient
3775 hppa_skip_prologue (CORE_ADDR pc
)
3779 CORE_ADDR post_prologue_pc
;
3782 /* See if we can determine the end of the prologue via the symbol table.
3783 If so, then return either PC, or the PC after the prologue, whichever
3786 post_prologue_pc
= after_prologue (pc
);
3788 /* If after_prologue returned a useful address, then use it. Else
3789 fall back on the instruction skipping code.
3791 Some folks have claimed this causes problems because the breakpoint
3792 may be the first instruction of the prologue. If that happens, then
3793 the instruction skipping code has a bug that needs to be fixed. */
3794 if (post_prologue_pc
!= 0)
3795 return max (pc
, post_prologue_pc
);
3797 return (skip_prologue_hard_way (pc
));
3800 /* Put here the code to store, into a struct frame_saved_regs,
3801 the addresses of the saved registers of frame described by FRAME_INFO.
3802 This includes special registers such as pc and fp saved in special
3803 ways in the stack frame. sp is even more special:
3804 the address we return for it IS the sp for the next frame. */
3807 hppa_frame_find_saved_regs (struct frame_info
*frame_info
,
3808 struct frame_saved_regs
*frame_saved_regs
)
3811 struct unwind_table_entry
*u
;
3812 unsigned long inst
, stack_remaining
, save_gr
, save_fr
, save_rp
, save_sp
;
3816 int final_iteration
;
3818 /* Zero out everything. */
3819 memset (frame_saved_regs
, '\0', sizeof (struct frame_saved_regs
));
3821 /* Call dummy frames always look the same, so there's no need to
3822 examine the dummy code to determine locations of saved registers;
3823 instead, let find_dummy_frame_regs fill in the correct offsets
3824 for the saved registers. */
3825 if ((frame_info
->pc
>= frame_info
->frame
3826 && frame_info
->pc
<= (frame_info
->frame
3827 /* A call dummy is sized in words, but it is
3828 actually a series of instructions. Account
3829 for that scaling factor. */
3830 + ((REGISTER_SIZE
/ INSTRUCTION_SIZE
)
3831 * CALL_DUMMY_LENGTH
)
3832 /* Similarly we have to account for 64bit
3833 wide register saves. */
3834 + (32 * REGISTER_SIZE
)
3835 /* We always consider FP regs 8 bytes long. */
3836 + (NUM_REGS
- FP0_REGNUM
) * 8
3837 /* Similarly we have to account for 64bit
3838 wide register saves. */
3839 + (6 * REGISTER_SIZE
))))
3840 find_dummy_frame_regs (frame_info
, frame_saved_regs
);
3842 /* Interrupt handlers are special too. They lay out the register
3843 state in the exact same order as the register numbers in GDB. */
3844 if (pc_in_interrupt_handler (frame_info
->pc
))
3846 for (i
= 0; i
< NUM_REGS
; i
++)
3848 /* SP is a little special. */
3850 frame_saved_regs
->regs
[SP_REGNUM
]
3851 = read_memory_integer (frame_info
->frame
+ SP_REGNUM
* 4,
3852 TARGET_PTR_BIT
/ 8);
3854 frame_saved_regs
->regs
[i
] = frame_info
->frame
+ i
* 4;
3859 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3860 /* Handle signal handler callers. */
3861 if (frame_info
->signal_handler_caller
)
3863 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info
, frame_saved_regs
);
3868 /* Get the starting address of the function referred to by the PC
3870 pc
= get_pc_function_start (frame_info
->pc
);
3873 u
= find_unwind_entry (pc
);
3877 /* This is how much of a frame adjustment we need to account for. */
3878 stack_remaining
= u
->Total_frame_size
<< 3;
3880 /* Magic register saves we want to know about. */
3881 save_rp
= u
->Save_RP
;
3882 save_sp
= u
->Save_SP
;
3884 /* Turn the Entry_GR field into a bitmask. */
3886 for (i
= 3; i
< u
->Entry_GR
+ 3; i
++)
3888 /* Frame pointer gets saved into a special location. */
3889 if (u
->Save_SP
&& i
== FP_REGNUM
)
3892 save_gr
|= (1 << i
);
3895 /* Turn the Entry_FR field into a bitmask too. */
3897 for (i
= 12; i
< u
->Entry_FR
+ 12; i
++)
3898 save_fr
|= (1 << i
);
3900 /* The frame always represents the value of %sp at entry to the
3901 current function (and is thus equivalent to the "saved" stack
3903 frame_saved_regs
->regs
[SP_REGNUM
] = frame_info
->frame
;
3905 /* Loop until we find everything of interest or hit a branch.
3907 For unoptimized GCC code and for any HP CC code this will never ever
3908 examine any user instructions.
3910 For optimized GCC code we're faced with problems. GCC will schedule
3911 its prologue and make prologue instructions available for delay slot
3912 filling. The end result is user code gets mixed in with the prologue
3913 and a prologue instruction may be in the delay slot of the first branch
3916 Some unexpected things are expected with debugging optimized code, so
3917 we allow this routine to walk past user instructions in optimized
3919 final_iteration
= 0;
3920 while ((save_gr
|| save_fr
|| save_rp
|| save_sp
|| stack_remaining
> 0)
3921 && pc
<= frame_info
->pc
)
3923 status
= target_read_memory (pc
, buf
, 4);
3924 inst
= extract_unsigned_integer (buf
, 4);
3930 /* Note the interesting effects of this instruction. */
3931 stack_remaining
-= prologue_inst_adjust_sp (inst
);
3933 /* There are limited ways to store the return pointer into the
3935 if (inst
== 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3938 frame_saved_regs
->regs
[RP_REGNUM
] = frame_info
->frame
- 20;
3940 else if (inst
== 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
3943 frame_saved_regs
->regs
[RP_REGNUM
] = frame_info
->frame
- 16;
3946 /* Note if we saved SP into the stack. This also happens to indicate
3947 the location of the saved frame pointer. */
3948 if ( (inst
& 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
3949 || (inst
& 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
3951 frame_saved_regs
->regs
[FP_REGNUM
] = frame_info
->frame
;
3955 /* Account for general and floating-point register saves. */
3956 reg
= inst_saves_gr (inst
);
3957 if (reg
>= 3 && reg
<= 18
3958 && (!u
->Save_SP
|| reg
!= FP_REGNUM
))
3960 save_gr
&= ~(1 << reg
);
3962 /* stwm with a positive displacement is a *post modify*. */
3963 if ((inst
>> 26) == 0x1b
3964 && extract_14 (inst
) >= 0)
3965 frame_saved_regs
->regs
[reg
] = frame_info
->frame
;
3966 /* A std has explicit post_modify forms. */
3967 else if ((inst
& 0xfc00000c0) == 0x70000008)
3968 frame_saved_regs
->regs
[reg
] = frame_info
->frame
;
3973 if ((inst
>> 26) == 0x1c)
3974 offset
= (inst
& 0x1 ? -1 << 13 : 0) | (((inst
>> 4) & 0x3ff) << 3);
3975 else if ((inst
>> 26) == 0x03)
3976 offset
= low_sign_extend (inst
& 0x1f, 5);
3978 offset
= extract_14 (inst
);
3980 /* Handle code with and without frame pointers. */
3982 frame_saved_regs
->regs
[reg
]
3983 = frame_info
->frame
+ offset
;
3985 frame_saved_regs
->regs
[reg
]
3986 = (frame_info
->frame
+ (u
->Total_frame_size
<< 3)
3992 /* GCC handles callee saved FP regs a little differently.
3994 It emits an instruction to put the value of the start of
3995 the FP store area into %r1. It then uses fstds,ma with
3996 a basereg of %r1 for the stores.
3998 HP CC emits them at the current stack pointer modifying
3999 the stack pointer as it stores each register. */
4001 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4002 if ((inst
& 0xffffc000) == 0x34610000
4003 || (inst
& 0xffffc000) == 0x37c10000)
4004 fp_loc
= extract_14 (inst
);
4006 reg
= inst_saves_fr (inst
);
4007 if (reg
>= 12 && reg
<= 21)
4009 /* Note +4 braindamage below is necessary because the FP status
4010 registers are internally 8 registers rather than the expected
4012 save_fr
&= ~(1 << reg
);
4015 /* 1st HP CC FP register store. After this instruction
4016 we've set enough state that the GCC and HPCC code are
4017 both handled in the same manner. */
4018 frame_saved_regs
->regs
[reg
+ FP4_REGNUM
+ 4] = frame_info
->frame
;
4023 frame_saved_regs
->regs
[reg
+ FP0_REGNUM
+ 4]
4024 = frame_info
->frame
+ fp_loc
;
4029 /* Quit if we hit any kind of branch the previous iteration. */
4030 if (final_iteration
)
4033 /* We want to look precisely one instruction beyond the branch
4034 if we have not found everything yet. */
4035 if (is_branch (inst
))
4036 final_iteration
= 1;
4044 /* Exception handling support for the HP-UX ANSI C++ compiler.
4045 The compiler (aCC) provides a callback for exception events;
4046 GDB can set a breakpoint on this callback and find out what
4047 exception event has occurred. */
4049 /* The name of the hook to be set to point to the callback function */
4050 static char HP_ACC_EH_notify_hook
[] = "__eh_notify_hook";
4051 /* The name of the function to be used to set the hook value */
4052 static char HP_ACC_EH_set_hook_value
[] = "__eh_set_hook_value";
4053 /* The name of the callback function in end.o */
4054 static char HP_ACC_EH_notify_callback
[] = "__d_eh_notify_callback";
4055 /* Name of function in end.o on which a break is set (called by above) */
4056 static char HP_ACC_EH_break
[] = "__d_eh_break";
4057 /* Name of flag (in end.o) that enables catching throws */
4058 static char HP_ACC_EH_catch_throw
[] = "__d_eh_catch_throw";
4059 /* Name of flag (in end.o) that enables catching catching */
4060 static char HP_ACC_EH_catch_catch
[] = "__d_eh_catch_catch";
4061 /* The enum used by aCC */
4069 /* Is exception-handling support available with this executable? */
4070 static int hp_cxx_exception_support
= 0;
4071 /* Has the initialize function been run? */
4072 int hp_cxx_exception_support_initialized
= 0;
4073 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4074 extern int exception_support_initialized
;
4075 /* Address of __eh_notify_hook */
4076 static CORE_ADDR eh_notify_hook_addr
= 0;
4077 /* Address of __d_eh_notify_callback */
4078 static CORE_ADDR eh_notify_callback_addr
= 0;
4079 /* Address of __d_eh_break */
4080 static CORE_ADDR eh_break_addr
= 0;
4081 /* Address of __d_eh_catch_catch */
4082 static CORE_ADDR eh_catch_catch_addr
= 0;
4083 /* Address of __d_eh_catch_throw */
4084 static CORE_ADDR eh_catch_throw_addr
= 0;
4085 /* Sal for __d_eh_break */
4086 static struct symtab_and_line
*break_callback_sal
= 0;
4088 /* Code in end.c expects __d_pid to be set in the inferior,
4089 otherwise __d_eh_notify_callback doesn't bother to call
4090 __d_eh_break! So we poke the pid into this symbol
4095 setup_d_pid_in_inferior (void)
4098 struct minimal_symbol
*msymbol
;
4099 char buf
[4]; /* FIXME 32x64? */
4101 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4102 msymbol
= lookup_minimal_symbol ("__d_pid", NULL
, symfile_objfile
);
4103 if (msymbol
== NULL
)
4105 warning ("Unable to find __d_pid symbol in object file.");
4106 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4110 anaddr
= SYMBOL_VALUE_ADDRESS (msymbol
);
4111 store_unsigned_integer (buf
, 4, PIDGET (inferior_ptid
)); /* FIXME 32x64? */
4112 if (target_write_memory (anaddr
, buf
, 4)) /* FIXME 32x64? */
4114 warning ("Unable to write __d_pid");
4115 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4121 /* Initialize exception catchpoint support by looking for the
4122 necessary hooks/callbacks in end.o, etc., and set the hook value to
4123 point to the required debug function
4129 initialize_hp_cxx_exception_support (void)
4131 struct symtabs_and_lines sals
;
4132 struct cleanup
*old_chain
;
4133 struct cleanup
*canonical_strings_chain
= NULL
;
4136 char *addr_end
= NULL
;
4137 char **canonical
= (char **) NULL
;
4139 struct symbol
*sym
= NULL
;
4140 struct minimal_symbol
*msym
= NULL
;
4141 struct objfile
*objfile
;
4142 asection
*shlib_info
;
4144 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4145 recursion is a possibility because finding the hook for exception
4146 callbacks involves making a call in the inferior, which means
4147 re-inserting breakpoints which can re-invoke this code */
4149 static int recurse
= 0;
4152 hp_cxx_exception_support_initialized
= 0;
4153 exception_support_initialized
= 0;
4157 hp_cxx_exception_support
= 0;
4159 /* First check if we have seen any HP compiled objects; if not,
4160 it is very unlikely that HP's idiosyncratic callback mechanism
4161 for exception handling debug support will be available!
4162 This will percolate back up to breakpoint.c, where our callers
4163 will decide to try the g++ exception-handling support instead. */
4164 if (!hp_som_som_object_present
)
4167 /* We have a SOM executable with SOM debug info; find the hooks */
4169 /* First look for the notify hook provided by aCC runtime libs */
4170 /* If we find this symbol, we conclude that the executable must
4171 have HP aCC exception support built in. If this symbol is not
4172 found, even though we're a HP SOM-SOM file, we may have been
4173 built with some other compiler (not aCC). This results percolates
4174 back up to our callers in breakpoint.c which can decide to
4175 try the g++ style of exception support instead.
4176 If this symbol is found but the other symbols we require are
4177 not found, there is something weird going on, and g++ support
4178 should *not* be tried as an alternative.
4180 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4181 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4183 /* libCsup has this hook; it'll usually be non-debuggable */
4184 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_hook
, NULL
, NULL
);
4187 eh_notify_hook_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4188 hp_cxx_exception_support
= 1;
4192 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook
);
4193 warning ("Executable may not have been compiled debuggable with HP aCC.");
4194 warning ("GDB will be unable to intercept exception events.");
4195 eh_notify_hook_addr
= 0;
4196 hp_cxx_exception_support
= 0;
4200 /* Next look for the notify callback routine in end.o */
4201 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4202 msym
= lookup_minimal_symbol (HP_ACC_EH_notify_callback
, NULL
, NULL
);
4205 eh_notify_callback_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4206 hp_cxx_exception_support
= 1;
4210 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback
);
4211 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4212 warning ("GDB will be unable to intercept exception events.");
4213 eh_notify_callback_addr
= 0;
4217 #ifndef GDB_TARGET_IS_HPPA_20W
4218 /* Check whether the executable is dynamically linked or archive bound */
4219 /* With an archive-bound executable we can use the raw addresses we find
4220 for the callback function, etc. without modification. For an executable
4221 with shared libraries, we have to do more work to find the plabel, which
4222 can be the target of a call through $$dyncall from the aCC runtime support
4223 library (libCsup) which is linked shared by default by aCC. */
4224 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4225 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4226 shlib_info
= bfd_get_section_by_name (symfile_objfile
->obfd
, "$SHLIB_INFO$");
4227 if (shlib_info
&& (bfd_section_size (symfile_objfile
->obfd
, shlib_info
) != 0))
4229 /* The minsym we have has the local code address, but that's not the
4230 plabel that can be used by an inter-load-module call. */
4231 /* Find solib handle for main image (which has end.o), and use that
4232 and the min sym as arguments to __d_shl_get() (which does the equivalent
4233 of shl_findsym()) to find the plabel. */
4235 args_for_find_stub args
;
4236 static char message
[] = "Error while finding exception callback hook:\n";
4238 args
.solib_handle
= som_solib_get_solib_by_pc (eh_notify_callback_addr
);
4240 args
.return_val
= 0;
4243 catch_errors (cover_find_stub_with_shl_get
, (PTR
) &args
, message
,
4245 eh_notify_callback_addr
= args
.return_val
;
4248 exception_catchpoints_are_fragile
= 1;
4250 if (!eh_notify_callback_addr
)
4252 /* We can get here either if there is no plabel in the export list
4253 for the main image, or if something strange happened (??) */
4254 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4255 warning ("GDB will not be able to intercept exception events.");
4260 exception_catchpoints_are_fragile
= 0;
4263 /* Now, look for the breakpointable routine in end.o */
4264 /* This should also be available in the SOM symbol dict. if end.o linked in */
4265 msym
= lookup_minimal_symbol (HP_ACC_EH_break
, NULL
, NULL
);
4268 eh_break_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4269 hp_cxx_exception_support
= 1;
4273 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break
);
4274 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4275 warning ("GDB will be unable to intercept exception events.");
4280 /* Next look for the catch enable flag provided in end.o */
4281 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4282 VAR_NAMESPACE
, 0, (struct symtab
**) NULL
);
4283 if (sym
) /* sometimes present in debug info */
4285 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4286 hp_cxx_exception_support
= 1;
4289 /* otherwise look in SOM symbol dict. */
4291 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_catch
, NULL
, NULL
);
4294 eh_catch_catch_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4295 hp_cxx_exception_support
= 1;
4299 warning ("Unable to enable interception of exception catches.");
4300 warning ("Executable may not have been compiled debuggable with HP aCC.");
4301 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4306 /* Next look for the catch enable flag provided end.o */
4307 sym
= lookup_symbol (HP_ACC_EH_catch_catch
, (struct block
*) NULL
,
4308 VAR_NAMESPACE
, 0, (struct symtab
**) NULL
);
4309 if (sym
) /* sometimes present in debug info */
4311 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (sym
);
4312 hp_cxx_exception_support
= 1;
4315 /* otherwise look in SOM symbol dict. */
4317 msym
= lookup_minimal_symbol (HP_ACC_EH_catch_throw
, NULL
, NULL
);
4320 eh_catch_throw_addr
= SYMBOL_VALUE_ADDRESS (msym
);
4321 hp_cxx_exception_support
= 1;
4325 warning ("Unable to enable interception of exception throws.");
4326 warning ("Executable may not have been compiled debuggable with HP aCC.");
4327 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4333 hp_cxx_exception_support
= 2; /* everything worked so far */
4334 hp_cxx_exception_support_initialized
= 1;
4335 exception_support_initialized
= 1;
4340 /* Target operation for enabling or disabling interception of
4342 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4343 ENABLE is either 0 (disable) or 1 (enable).
4344 Return value is NULL if no support found;
4345 -1 if something went wrong,
4346 or a pointer to a symtab/line struct if the breakpointable
4347 address was found. */
4349 struct symtab_and_line
*
4350 child_enable_exception_callback (enum exception_event_kind kind
, int enable
)
4354 if (!exception_support_initialized
|| !hp_cxx_exception_support_initialized
)
4355 if (!initialize_hp_cxx_exception_support ())
4358 switch (hp_cxx_exception_support
)
4361 /* Assuming no HP support at all */
4364 /* HP support should be present, but something went wrong */
4365 return (struct symtab_and_line
*) -1; /* yuck! */
4366 /* there may be other cases in the future */
4369 /* Set the EH hook to point to the callback routine */
4370 store_unsigned_integer (buf
, 4, enable
? eh_notify_callback_addr
: 0); /* FIXME 32x64 problem */
4371 /* pai: (temp) FIXME should there be a pack operation first? */
4372 if (target_write_memory (eh_notify_hook_addr
, buf
, 4)) /* FIXME 32x64 problem */
4374 warning ("Could not write to target memory for exception event callback.");
4375 warning ("Interception of exception events may not work.");
4376 return (struct symtab_and_line
*) -1;
4380 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4381 if (PIDGET (inferior_ptid
) > 0)
4383 if (setup_d_pid_in_inferior ())
4384 return (struct symtab_and_line
*) -1;
4388 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4389 return (struct symtab_and_line
*) -1;
4395 case EX_EVENT_THROW
:
4396 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4397 if (target_write_memory (eh_catch_throw_addr
, buf
, 4)) /* FIXME 32x64? */
4399 warning ("Couldn't enable exception throw interception.");
4400 return (struct symtab_and_line
*) -1;
4403 case EX_EVENT_CATCH
:
4404 store_unsigned_integer (buf
, 4, enable
? 1 : 0);
4405 if (target_write_memory (eh_catch_catch_addr
, buf
, 4)) /* FIXME 32x64? */
4407 warning ("Couldn't enable exception catch interception.");
4408 return (struct symtab_and_line
*) -1;
4412 error ("Request to enable unknown or unsupported exception event.");
4415 /* Copy break address into new sal struct, malloc'ing if needed. */
4416 if (!break_callback_sal
)
4418 break_callback_sal
= (struct symtab_and_line
*) xmalloc (sizeof (struct symtab_and_line
));
4420 INIT_SAL (break_callback_sal
);
4421 break_callback_sal
->symtab
= NULL
;
4422 break_callback_sal
->pc
= eh_break_addr
;
4423 break_callback_sal
->line
= 0;
4424 break_callback_sal
->end
= eh_break_addr
;
4426 return break_callback_sal
;
4429 /* Record some information about the current exception event */
4430 static struct exception_event_record current_ex_event
;
4431 /* Convenience struct */
4432 static struct symtab_and_line null_symtab_and_line
=
4435 /* Report current exception event. Returns a pointer to a record
4436 that describes the kind of the event, where it was thrown from,
4437 and where it will be caught. More information may be reported
4439 struct exception_event_record
*
4440 child_get_current_exception_event (void)
4442 CORE_ADDR event_kind
;
4443 CORE_ADDR throw_addr
;
4444 CORE_ADDR catch_addr
;
4445 struct frame_info
*fi
, *curr_frame
;
4448 curr_frame
= get_current_frame ();
4450 return (struct exception_event_record
*) NULL
;
4452 /* Go up one frame to __d_eh_notify_callback, because at the
4453 point when this code is executed, there's garbage in the
4454 arguments of __d_eh_break. */
4455 fi
= find_relative_frame (curr_frame
, &level
);
4457 return (struct exception_event_record
*) NULL
;
4459 select_frame (fi
, -1);
4461 /* Read in the arguments */
4462 /* __d_eh_notify_callback() is called with 3 arguments:
4463 1. event kind catch or throw
4464 2. the target address if known
4465 3. a flag -- not sure what this is. pai/1997-07-17 */
4466 event_kind
= read_register (ARG0_REGNUM
);
4467 catch_addr
= read_register (ARG1_REGNUM
);
4469 /* Now go down to a user frame */
4470 /* For a throw, __d_eh_break is called by
4471 __d_eh_notify_callback which is called by
4472 __notify_throw which is called
4474 For a catch, __d_eh_break is called by
4475 __d_eh_notify_callback which is called by
4476 <stackwalking stuff> which is called by
4477 __throw__<stuff> or __rethrow_<stuff> which is called
4479 /* FIXME: Don't use such magic numbers; search for the frames */
4480 level
= (event_kind
== EX_EVENT_THROW
) ? 3 : 4;
4481 fi
= find_relative_frame (curr_frame
, &level
);
4483 return (struct exception_event_record
*) NULL
;
4485 select_frame (fi
, -1);
4486 throw_addr
= fi
->pc
;
4488 /* Go back to original (top) frame */
4489 select_frame (curr_frame
, -1);
4491 current_ex_event
.kind
= (enum exception_event_kind
) event_kind
;
4492 current_ex_event
.throw_sal
= find_pc_line (throw_addr
, 1);
4493 current_ex_event
.catch_sal
= find_pc_line (catch_addr
, 1);
4495 return ¤t_ex_event
;
4499 unwind_command (char *exp
, int from_tty
)
4502 struct unwind_table_entry
*u
;
4504 /* If we have an expression, evaluate it and use it as the address. */
4506 if (exp
!= 0 && *exp
!= 0)
4507 address
= parse_and_eval_address (exp
);
4511 u
= find_unwind_entry (address
);
4515 printf_unfiltered ("Can't find unwind table entry for %s\n", exp
);
4519 printf_unfiltered ("unwind_table_entry (0x%x):\n", u
);
4521 printf_unfiltered ("\tregion_start = ");
4522 print_address (u
->region_start
, gdb_stdout
);
4524 printf_unfiltered ("\n\tregion_end = ");
4525 print_address (u
->region_end
, gdb_stdout
);
4527 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4529 printf_unfiltered ("\n\tflags =");
4530 pif (Cannot_unwind
);
4532 pif (Millicode_save_sr0
);
4535 pif (Variable_Frame
);
4536 pif (Separate_Package_Body
);
4537 pif (Frame_Extension_Millicode
);
4538 pif (Stack_Overflow_Check
);
4539 pif (Two_Instruction_SP_Increment
);
4543 pif (Save_MRP_in_frame
);
4544 pif (extn_ptr_defined
);
4545 pif (Cleanup_defined
);
4546 pif (MPE_XL_interrupt_marker
);
4547 pif (HP_UX_interrupt_marker
);
4550 putchar_unfiltered ('\n');
4552 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4554 pin (Region_description
);
4557 pin (Total_frame_size
);
4560 #ifdef PREPARE_TO_PROCEED
4562 /* If the user has switched threads, and there is a breakpoint
4563 at the old thread's pc location, then switch to that thread
4564 and return TRUE, else return FALSE and don't do a thread
4565 switch (or rather, don't seem to have done a thread switch).
4567 Ptrace-based gdb will always return FALSE to the thread-switch
4568 query, and thus also to PREPARE_TO_PROCEED.
4570 The important thing is whether there is a BPT instruction,
4571 not how many user breakpoints there are. So we have to worry
4572 about things like these:
4576 o User hits bp, no switch -- NO
4578 o User hits bp, switches threads -- YES
4580 o User hits bp, deletes bp, switches threads -- NO
4582 o User hits bp, deletes one of two or more bps
4583 at that PC, user switches threads -- YES
4585 o Plus, since we're buffering events, the user may have hit a
4586 breakpoint, deleted the breakpoint and then gotten another
4587 hit on that same breakpoint on another thread which
4588 actually hit before the delete. (FIXME in breakpoint.c
4589 so that "dead" breakpoints are ignored?) -- NO
4591 For these reasons, we have to violate information hiding and
4592 call "breakpoint_here_p". If core gdb thinks there is a bpt
4593 here, that's what counts, as core gdb is the one which is
4594 putting the BPT instruction in and taking it out.
4596 Note that this implementation is potentially redundant now that
4597 default_prepare_to_proceed() has been added. */
4599 hppa_prepare_to_proceed (void)
4602 pid_t current_thread
;
4604 old_thread
= hppa_switched_threads (PIDGET (inferior_ptid
));
4605 if (old_thread
!= 0)
4607 /* Switched over from "old_thread". Try to do
4608 as little work as possible, 'cause mostly
4609 we're going to switch back. */
4611 CORE_ADDR old_pc
= read_pc ();
4613 /* Yuk, shouldn't use global to specify current
4614 thread. But that's how gdb does it. */
4615 current_thread
= PIDGET (inferior_ptid
);
4616 inferior_ptid
= pid_to_ptid (old_thread
);
4618 new_pc
= read_pc ();
4619 if (new_pc
!= old_pc
/* If at same pc, no need */
4620 && breakpoint_here_p (new_pc
))
4622 /* User hasn't deleted the BP.
4623 Return TRUE, finishing switch to "old_thread". */
4624 flush_cached_frames ();
4625 registers_changed ();
4627 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4628 current_thread
, PIDGET (inferior_ptid
));
4634 /* Otherwise switch back to the user-chosen thread. */
4635 inferior_ptid
= pid_to_ptid (current_thread
);
4636 new_pc
= read_pc (); /* Re-prime register cache */
4641 #endif /* PREPARE_TO_PROCEED */
4644 hppa_skip_permanent_breakpoint (void)
4646 /* To step over a breakpoint instruction on the PA takes some
4647 fiddling with the instruction address queue.
4649 When we stop at a breakpoint, the IA queue front (the instruction
4650 we're executing now) points at the breakpoint instruction, and
4651 the IA queue back (the next instruction to execute) points to
4652 whatever instruction we would execute after the breakpoint, if it
4653 were an ordinary instruction. This is the case even if the
4654 breakpoint is in the delay slot of a branch instruction.
4656 Clearly, to step past the breakpoint, we need to set the queue
4657 front to the back. But what do we put in the back? What
4658 instruction comes after that one? Because of the branch delay
4659 slot, the next insn is always at the back + 4. */
4660 write_register (PCOQ_HEAD_REGNUM
, read_register (PCOQ_TAIL_REGNUM
));
4661 write_register (PCSQ_HEAD_REGNUM
, read_register (PCSQ_TAIL_REGNUM
));
4663 write_register (PCOQ_TAIL_REGNUM
, read_register (PCOQ_TAIL_REGNUM
) + 4);
4664 /* We can leave the tail's space the same, since there's no jump. */
4668 _initialize_hppa_tdep (void)
4670 tm_print_insn
= print_insn_hppa
;
4672 add_cmd ("unwind", class_maintenance
, unwind_command
,
4673 "Print unwind table entry at given address.",
4674 &maintenanceprintlist
);