* hppa-tdep.c (pc_in_linker_stub): Return 0 if can't read memory.
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65
66 \f
67 /* Routines to extract various sized constants out of hppa
68 instructions. */
69
70 /* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73 int
74 sign_extend (val, bits)
75 unsigned val, bits;
76 {
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
78 }
79
80 /* For many immediate values the sign bit is the low bit! */
81
82 int
83 low_sign_extend (val, bits)
84 unsigned val, bits;
85 {
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
87 }
88 /* extract the immediate field from a ld{bhw}s instruction */
89
90 unsigned
91 get_field (val, from, to)
92 unsigned val, from, to;
93 {
94 val = val >> 31 - to;
95 return val & ((1 << 32 - from) - 1);
96 }
97
98 unsigned
99 set_field (val, from, to, new_val)
100 unsigned *val, from, to;
101 {
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
104 }
105
106 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
107
108 extract_3 (word)
109 unsigned word;
110 {
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
112 }
113
114 extract_5_load (word)
115 unsigned word;
116 {
117 return low_sign_extend (word >> 16 & MASK_5, 5);
118 }
119
120 /* extract the immediate field from a st{bhw}s instruction */
121
122 int
123 extract_5_store (word)
124 unsigned word;
125 {
126 return low_sign_extend (word & MASK_5, 5);
127 }
128
129 /* extract the immediate field from a break instruction */
130
131 unsigned
132 extract_5r_store (word)
133 unsigned word;
134 {
135 return (word & MASK_5);
136 }
137
138 /* extract the immediate field from a {sr}sm instruction */
139
140 unsigned
141 extract_5R_store (word)
142 unsigned word;
143 {
144 return (word >> 16 & MASK_5);
145 }
146
147 /* extract an 11 bit immediate field */
148
149 int
150 extract_11 (word)
151 unsigned word;
152 {
153 return low_sign_extend (word & MASK_11, 11);
154 }
155
156 /* extract a 14 bit immediate field */
157
158 int
159 extract_14 (word)
160 unsigned word;
161 {
162 return low_sign_extend (word & MASK_14, 14);
163 }
164
165 /* deposit a 14 bit constant in a word */
166
167 unsigned
168 deposit_14 (opnd, word)
169 int opnd;
170 unsigned word;
171 {
172 unsigned sign = (opnd < 0 ? 1 : 0);
173
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
175 }
176
177 /* extract a 21 bit constant */
178
179 int
180 extract_21 (word)
181 unsigned word;
182 {
183 int val;
184
185 word &= MASK_21;
186 word <<= 11;
187 val = GET_FIELD (word, 20, 20);
188 val <<= 11;
189 val |= GET_FIELD (word, 9, 19);
190 val <<= 2;
191 val |= GET_FIELD (word, 5, 6);
192 val <<= 5;
193 val |= GET_FIELD (word, 0, 4);
194 val <<= 2;
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
197 }
198
199 /* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
202
203 unsigned
204 deposit_21 (opnd, word)
205 unsigned opnd, word;
206 {
207 unsigned val = 0;
208
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
210 val <<= 2;
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
214 val <<= 11;
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
216 val <<= 1;
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
218 return word | val;
219 }
220
221 /* extract a 12 bit constant from branch instructions */
222
223 int
224 extract_12 (word)
225 unsigned word;
226 {
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
230 }
231
232 /* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
234
235 int
236 extract_17 (word)
237 unsigned word;
238 {
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
243 }
244 \f
245 static int use_unwind = 0;
246
247 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
251
252 static struct unwind_table_entry *
253 find_unwind_entry(pc)
254 CORE_ADDR pc;
255 {
256 int first, middle, last;
257 struct objfile *objfile;
258
259 ALL_OBJFILES (objfile)
260 {
261 struct obj_unwind_info *ui;
262
263 ui = OBJ_UNWIND_INFO (objfile);
264
265 if (!ui)
266 continue;
267
268 /* First, check the cache */
269
270 if (ui->cache
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
273 return ui->cache;
274
275 /* Not in the cache, do a binary search */
276
277 first = 0;
278 last = ui->last;
279
280 while (first <= last)
281 {
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
285 {
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
288 }
289
290 if (pc < ui->table[middle].region_start)
291 last = middle - 1;
292 else
293 first = middle + 1;
294 }
295 } /* ALL_OBJFILES() */
296 return NULL;
297 }
298
299 /* Called when no unwind descriptor was found for PC. Returns 1 if it
300 appears that PC is in a linker stub. */
301 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
302
303 static int
304 pc_in_linker_stub (pc)
305 CORE_ADDR pc;
306 {
307 int found_magic_instruction = 0;
308 int i;
309 char buf[4];
310
311 /* If unable to read memory, assume pc is not in a linker stub. */
312 if (target_read_memory (pc, buf, 4) != 0)
313 return 0;
314
315 /* We are looking for something like
316
317 ; $$dyncall jams RP into this special spot in the frame (RP')
318 ; before calling the "call stub"
319 ldw -18(sp),rp
320
321 ldsid (rp),r1 ; Get space associated with RP into r1
322 mtsp r1,sp ; Move it into space register 0
323 be,n 0(sr0),rp) ; back to your regularly scheduled program
324 */
325
326 /* Maximum known linker stub size is 4 instructions. Search forward
327 from the given PC, then backward. */
328 for (i = 0; i < 4; i++)
329 {
330 /* If we hit something with an unwind, stop searching this direction.
331
332 if (find_unwind_entry (pc + i * 4) != 0)
333 break;
334
335 /* Check for ldsid (rp),r1 which is the magic instruction for a
336 return from a cross-space function call. */
337 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
338 {
339 found_magic_instruction = 1;
340 break;
341 }
342 /* Add code to handle long call/branch and argument relocation stubs
343 here. */
344 }
345
346 if (found_magic_instruction != 0)
347 return 1;
348
349 /* Now look backward. */
350 for (i = 0; i < 4; i++)
351 {
352 /* If we hit something with an unwind, stop searching this direction.
353
354 if (find_unwind_entry (pc - i * 4) != 0)
355 break;
356
357 /* Check for ldsid (rp),r1 which is the magic instruction for a
358 return from a cross-space function call. */
359 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
360 {
361 found_magic_instruction = 1;
362 break;
363 }
364 /* Add code to handle long call/branch and argument relocation stubs
365 here. */
366 }
367 return found_magic_instruction;
368 }
369
370 static int
371 find_return_regnum(pc)
372 CORE_ADDR pc;
373 {
374 struct unwind_table_entry *u;
375
376 u = find_unwind_entry (pc);
377
378 if (!u)
379 return RP_REGNUM;
380
381 if (u->Millicode)
382 return 31;
383
384 return RP_REGNUM;
385 }
386
387 /* Return size of frame, or -1 if we should use a frame pointer. */
388 int
389 find_proc_framesize(pc)
390 CORE_ADDR pc;
391 {
392 struct unwind_table_entry *u;
393
394 if (!use_unwind)
395 return -1;
396
397 u = find_unwind_entry (pc);
398
399 if (!u)
400 {
401 if (pc_in_linker_stub (pc))
402 /* Linker stubs have a zero size frame. */
403 return 0;
404 else
405 return -1;
406 }
407
408 if (u->Save_SP)
409 /* If this bit is set, it means there is a frame pointer and we should
410 use it. */
411 return -1;
412
413 return u->Total_frame_size << 3;
414 }
415
416 /* Return offset from sp at which rp is saved, or 0 if not saved. */
417 static int rp_saved PARAMS ((CORE_ADDR));
418
419 static int
420 rp_saved (pc)
421 CORE_ADDR pc;
422 {
423 struct unwind_table_entry *u;
424
425 u = find_unwind_entry (pc);
426
427 if (!u)
428 {
429 if (pc_in_linker_stub (pc))
430 /* This is the so-called RP'. */
431 return -24;
432 else
433 return 0;
434 }
435
436 if (u->Save_RP)
437 return -20;
438 else
439 return 0;
440 }
441 \f
442 int
443 frameless_function_invocation (frame)
444 FRAME frame;
445 {
446
447 if (use_unwind)
448 {
449 struct unwind_table_entry *u;
450
451 u = find_unwind_entry (frame->pc);
452
453 if (u == 0)
454 return 0;
455
456 return (u->Total_frame_size == 0);
457 }
458 else
459 return frameless_look_for_prologue (frame);
460 }
461
462 CORE_ADDR
463 saved_pc_after_call (frame)
464 FRAME frame;
465 {
466 int ret_regnum;
467
468 ret_regnum = find_return_regnum (get_frame_pc (frame));
469
470 return read_register (ret_regnum) & ~0x3;
471 }
472 \f
473 CORE_ADDR
474 frame_saved_pc (frame)
475 FRAME frame;
476 {
477 CORE_ADDR pc = get_frame_pc (frame);
478
479 if (frameless_function_invocation (frame))
480 {
481 int ret_regnum;
482
483 ret_regnum = find_return_regnum (pc);
484
485 return read_register (ret_regnum) & ~0x3;
486 }
487 else
488 {
489 int rp_offset = rp_saved (pc);
490
491 if (rp_offset == 0)
492 return read_register (RP_REGNUM) & ~0x3;
493 else
494 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
495 }
496 }
497 \f
498 /* We need to correct the PC and the FP for the outermost frame when we are
499 in a system call. */
500
501 void
502 init_extra_frame_info (fromleaf, frame)
503 int fromleaf;
504 struct frame_info *frame;
505 {
506 int flags;
507 int framesize;
508
509 if (frame->next) /* Only do this for outermost frame */
510 return;
511
512 flags = read_register (FLAGS_REGNUM);
513 if (flags & 2) /* In system call? */
514 frame->pc = read_register (31) & ~0x3;
515
516 /* The outermost frame is always derived from PC-framesize */
517 framesize = find_proc_framesize(frame->pc);
518 if (framesize == -1)
519 frame->frame = read_register (FP_REGNUM);
520 else
521 frame->frame = read_register (SP_REGNUM) - framesize;
522
523 if (!frameless_function_invocation (frame)) /* Frameless? */
524 return; /* No, quit now */
525
526 /* For frameless functions, we need to look at the caller's frame */
527 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
528 if (framesize != -1)
529 frame->frame -= framesize;
530 }
531 \f
532 FRAME_ADDR
533 frame_chain (frame)
534 struct frame_info *frame;
535 {
536 int framesize;
537
538 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
539
540 if (framesize != -1)
541 return frame->frame - framesize;
542
543 return read_memory_integer (frame->frame, 4);
544 }
545 \f
546 /* To see if a frame chain is valid, see if the caller looks like it
547 was compiled with gcc. */
548
549 int
550 frame_chain_valid (chain, thisframe)
551 FRAME_ADDR chain;
552 FRAME thisframe;
553 {
554 struct minimal_symbol *msym;
555
556 if (!chain)
557 return 0;
558
559 if (use_unwind)
560 {
561
562 struct unwind_table_entry *u;
563
564 u = find_unwind_entry (thisframe->pc);
565
566 if (u == NULL)
567 /* FIXME, we should probably fall back to some other technique,
568 if we want to deal gracefully with stripped executables or others
569 without unwind info. */
570 return 0;
571
572 if (u->Save_SP || u->Total_frame_size)
573 return 1;
574
575 if (pc_in_linker_stub (thisframe->pc))
576 return 1;
577
578 return 0;
579 }
580 else
581 {
582 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
583
584 if (msym
585 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
586 return 0;
587 else
588 return 1;
589 }
590 }
591
592 /*
593 * These functions deal with saving and restoring register state
594 * around a function call in the inferior. They keep the stack
595 * double-word aligned; eventually, on an hp700, the stack will have
596 * to be aligned to a 64-byte boundary.
597 */
598
599 int
600 push_dummy_frame ()
601 {
602 register CORE_ADDR sp;
603 register int regnum;
604 int int_buffer;
605 double freg_buffer;
606
607 /* Space for "arguments"; the RP goes in here. */
608 sp = read_register (SP_REGNUM) + 48;
609 int_buffer = read_register (RP_REGNUM) | 0x3;
610 write_memory (sp - 20, (char *)&int_buffer, 4);
611
612 int_buffer = read_register (FP_REGNUM);
613 write_memory (sp, (char *)&int_buffer, 4);
614
615 write_register (FP_REGNUM, sp);
616
617 sp += 8;
618
619 for (regnum = 1; regnum < 32; regnum++)
620 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
621 sp = push_word (sp, read_register (regnum));
622
623 sp += 4;
624
625 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
626 {
627 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
628 sp = push_bytes (sp, (char *)&freg_buffer, 8);
629 }
630 sp = push_word (sp, read_register (IPSW_REGNUM));
631 sp = push_word (sp, read_register (SAR_REGNUM));
632 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
633 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
634 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
635 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
636 write_register (SP_REGNUM, sp);
637 }
638
639 find_dummy_frame_regs (frame, frame_saved_regs)
640 struct frame_info *frame;
641 struct frame_saved_regs *frame_saved_regs;
642 {
643 CORE_ADDR fp = frame->frame;
644 int i;
645
646 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
647 frame_saved_regs->regs[FP_REGNUM] = fp;
648 frame_saved_regs->regs[1] = fp + 8;
649
650 for (fp += 12, i = 3; i < 32; i++)
651 {
652 if (i != FP_REGNUM)
653 {
654 frame_saved_regs->regs[i] = fp;
655 fp += 4;
656 }
657 }
658
659 fp += 4;
660 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
661 frame_saved_regs->regs[i] = fp;
662
663 frame_saved_regs->regs[IPSW_REGNUM] = fp;
664 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
665 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
666 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
667 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
668 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
669 }
670
671 int
672 hppa_pop_frame ()
673 {
674 register FRAME frame = get_current_frame ();
675 register CORE_ADDR fp;
676 register int regnum;
677 struct frame_saved_regs fsr;
678 struct frame_info *fi;
679 double freg_buffer;
680
681 fi = get_frame_info (frame);
682 fp = fi->frame;
683 get_frame_saved_regs (fi, &fsr);
684
685 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
686 restore_pc_queue (&fsr);
687
688 for (regnum = 31; regnum > 0; regnum--)
689 if (fsr.regs[regnum])
690 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
691
692 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
693 if (fsr.regs[regnum])
694 {
695 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
696 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
697 }
698
699 if (fsr.regs[IPSW_REGNUM])
700 write_register (IPSW_REGNUM,
701 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
702
703 if (fsr.regs[SAR_REGNUM])
704 write_register (SAR_REGNUM,
705 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
706
707 if (fsr.regs[PCOQ_TAIL_REGNUM])
708 write_register (PCOQ_TAIL_REGNUM,
709 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
710
711 write_register (FP_REGNUM, read_memory_integer (fp, 4));
712
713 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
714 write_register (SP_REGNUM, fp - 48);
715 else
716 write_register (SP_REGNUM, fp);
717
718 flush_cached_frames ();
719 set_current_frame (create_new_frame (read_register (FP_REGNUM),
720 read_pc ()));
721 }
722
723 /*
724 * After returning to a dummy on the stack, restore the instruction
725 * queue space registers. */
726
727 static int
728 restore_pc_queue (fsr)
729 struct frame_saved_regs *fsr;
730 {
731 CORE_ADDR pc = read_pc ();
732 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
733 int pid;
734 WAITTYPE w;
735 int insn_count;
736
737 /* Advance past break instruction in the call dummy. */
738 write_register (PCOQ_HEAD_REGNUM, pc + 4);
739 write_register (PCOQ_TAIL_REGNUM, pc + 8);
740
741 /*
742 * HPUX doesn't let us set the space registers or the space
743 * registers of the PC queue through ptrace. Boo, hiss.
744 * Conveniently, the call dummy has this sequence of instructions
745 * after the break:
746 * mtsp r21, sr0
747 * ble,n 0(sr0, r22)
748 *
749 * So, load up the registers and single step until we are in the
750 * right place.
751 */
752
753 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
754 write_register (22, new_pc);
755
756 for (insn_count = 0; insn_count < 3; insn_count++)
757 {
758 resume (1, 0);
759 target_wait(&w);
760
761 if (!WIFSTOPPED (w))
762 {
763 stop_signal = WTERMSIG (w);
764 terminal_ours_for_output ();
765 printf ("\nProgram terminated with signal %d, %s\n",
766 stop_signal, safe_strsignal (stop_signal));
767 fflush (stdout);
768 return 0;
769 }
770 }
771 fetch_inferior_registers (-1);
772 return 1;
773 }
774
775 CORE_ADDR
776 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
777 int nargs;
778 value *args;
779 CORE_ADDR sp;
780 int struct_return;
781 CORE_ADDR struct_addr;
782 {
783 /* array of arguments' offsets */
784 int *offset = (int *)alloca(nargs * sizeof (int));
785 int cum = 0;
786 int i, alignment;
787
788 for (i = 0; i < nargs; i++)
789 {
790 /* Coerce chars to int & float to double if necessary */
791 args[i] = value_arg_coerce (args[i]);
792
793 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
794
795 /* value must go at proper alignment. Assume alignment is a
796 power of two.*/
797 alignment = hppa_alignof (VALUE_TYPE (args[i]));
798 if (cum % alignment)
799 cum = (cum + alignment) & -alignment;
800 offset[i] = -cum;
801 }
802 sp += max ((cum + 7) & -8, 16);
803
804 for (i = 0; i < nargs; i++)
805 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
806 TYPE_LENGTH (VALUE_TYPE (args[i])));
807
808 if (struct_return)
809 write_register (28, struct_addr);
810 return sp + 32;
811 }
812
813 /*
814 * Insert the specified number of args and function address
815 * into a call sequence of the above form stored at DUMMYNAME.
816 *
817 * On the hppa we need to call the stack dummy through $$dyncall.
818 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
819 * real_pc, which is the location where gdb should start up the
820 * inferior to do the function call.
821 */
822
823 CORE_ADDR
824 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
825 REGISTER_TYPE *dummy;
826 CORE_ADDR pc;
827 CORE_ADDR fun;
828 int nargs;
829 value *args;
830 struct type *type;
831 int gcc_p;
832 {
833 CORE_ADDR dyncall_addr, sr4export_addr;
834 struct minimal_symbol *msymbol;
835
836 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
837 if (msymbol == NULL)
838 error ("Can't find an address for $$dyncall trampoline");
839
840 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
841
842 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
843 if (msymbol == NULL)
844 error ("Can't find an address for _sr4export trampoline");
845
846 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
847
848 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
849 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
850 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
851 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
852
853 write_register (22, pc);
854
855 return dyncall_addr;
856 }
857
858 /* return the alignment of a type in bytes. Structures have the maximum
859 alignment required by their fields. */
860
861 static int
862 hppa_alignof (arg)
863 struct type *arg;
864 {
865 int max_align, align, i;
866 switch (TYPE_CODE (arg))
867 {
868 case TYPE_CODE_PTR:
869 case TYPE_CODE_INT:
870 case TYPE_CODE_FLT:
871 return TYPE_LENGTH (arg);
872 case TYPE_CODE_ARRAY:
873 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
874 case TYPE_CODE_STRUCT:
875 case TYPE_CODE_UNION:
876 max_align = 2;
877 for (i = 0; i < TYPE_NFIELDS (arg); i++)
878 {
879 /* Bit fields have no real alignment. */
880 if (!TYPE_FIELD_BITPOS (arg, i))
881 {
882 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
883 max_align = max (max_align, align);
884 }
885 }
886 return max_align;
887 default:
888 return 4;
889 }
890 }
891
892 /* Print the register regnum, or all registers if regnum is -1 */
893
894 pa_do_registers_info (regnum, fpregs)
895 int regnum;
896 int fpregs;
897 {
898 char raw_regs [REGISTER_BYTES];
899 int i;
900
901 for (i = 0; i < NUM_REGS; i++)
902 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
903 if (regnum == -1)
904 pa_print_registers (raw_regs, regnum, fpregs);
905 else if (regnum < FP0_REGNUM)
906 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
907 REGISTER_BYTE (regnum)));
908 else
909 pa_print_fp_reg (regnum);
910 }
911
912 pa_print_registers (raw_regs, regnum, fpregs)
913 char *raw_regs;
914 int regnum;
915 int fpregs;
916 {
917 int i;
918
919 for (i = 0; i < 18; i++)
920 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
921 reg_names[i],
922 *(int *)(raw_regs + REGISTER_BYTE (i)),
923 reg_names[i + 18],
924 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
925 reg_names[i + 36],
926 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
927 reg_names[i + 54],
928 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
929
930 if (fpregs)
931 for (i = 72; i < NUM_REGS; i++)
932 pa_print_fp_reg (i);
933 }
934
935 pa_print_fp_reg (i)
936 int i;
937 {
938 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
939 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
940 REGISTER_TYPE val;
941
942 /* Get the data in raw format, then convert also to virtual format. */
943 read_relative_register_raw_bytes (i, raw_buffer);
944 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
945
946 fputs_filtered (reg_names[i], stdout);
947 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
948
949 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
950 1, 0, Val_pretty_default);
951 printf_filtered ("\n");
952 }
953
954 /* Function calls that pass into a new compilation unit must pass through a
955 small piece of code that does long format (`external' in HPPA parlance)
956 jumps. We figure out where the trampoline is going to end up, and return
957 the PC of the final destination. If we aren't in a trampoline, we just
958 return NULL.
959
960 For computed calls, we just extract the new PC from r22. */
961
962 CORE_ADDR
963 skip_trampoline_code (pc, name)
964 CORE_ADDR pc;
965 char *name;
966 {
967 long inst0, inst1;
968 static CORE_ADDR dyncall = 0;
969 struct minimal_symbol *msym;
970
971 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
972
973 if (!dyncall)
974 {
975 msym = lookup_minimal_symbol ("$$dyncall", NULL);
976 if (msym)
977 dyncall = SYMBOL_VALUE_ADDRESS (msym);
978 else
979 dyncall = -1;
980 }
981
982 if (pc == dyncall)
983 return (CORE_ADDR)(read_register (22) & ~0x3);
984
985 inst0 = read_memory_integer (pc, 4);
986 inst1 = read_memory_integer (pc+4, 4);
987
988 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
989 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
990 pc = extract_21 (inst0) + extract_17 (inst1);
991 else
992 pc = (CORE_ADDR)NULL;
993
994 return pc;
995 }
996
997 /* Advance PC across any function entry prologue instructions
998 to reach some "real" code. */
999
1000 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
1001 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
1002
1003 CORE_ADDR
1004 skip_prologue(pc)
1005 CORE_ADDR pc;
1006 {
1007 char buf[4];
1008 unsigned long inst;
1009 int status;
1010
1011 status = target_read_memory (pc, buf, 4);
1012 inst = extract_unsigned_integer (buf, 4);
1013 if (status != 0)
1014 return pc;
1015
1016 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1017 {
1018 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
1019 pc += 16;
1020 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1021 pc += 8;
1022 }
1023 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1024 pc += 12;
1025 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1026 pc += 4;
1027
1028 return pc;
1029 }
1030
1031 static void
1032 unwind_command (exp, from_tty)
1033 char *exp;
1034 int from_tty;
1035 {
1036 CORE_ADDR address;
1037 union
1038 {
1039 int *foo;
1040 struct unwind_table_entry *u;
1041 } xxx;
1042
1043 /* If we have an expression, evaluate it and use it as the address. */
1044
1045 if (exp != 0 && *exp != 0)
1046 address = parse_and_eval_address (exp);
1047 else
1048 return;
1049
1050 xxx.u = find_unwind_entry (address);
1051
1052 if (!xxx.u)
1053 {
1054 printf ("Can't find unwind table entry for PC 0x%x\n", address);
1055 return;
1056 }
1057
1058 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1059 xxx.foo[3]);
1060 }
1061
1062 void
1063 _initialize_hppa_tdep ()
1064 {
1065 add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n");
1066 add_show_from_set
1067 (add_set_cmd ("use_unwind", class_obscure, var_boolean,
1068 (char *)&use_unwind,
1069 "Set the usage of unwind info", &setlist),
1070 &showlist);
1071 }