* config/pa/tm-hppao.h (NO_PC_SPACE_QUEUE_RESTORE): Define.
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71
72 \f
73 /* Routines to extract various sized constants out of hppa
74 instructions. */
75
76 /* This assumes that no garbage lies outside of the lower bits of
77 value. */
78
79 int
80 sign_extend (val, bits)
81 unsigned val, bits;
82 {
83 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
84 }
85
86 /* For many immediate values the sign bit is the low bit! */
87
88 int
89 low_sign_extend (val, bits)
90 unsigned val, bits;
91 {
92 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94 /* extract the immediate field from a ld{bhw}s instruction */
95
96 unsigned
97 get_field (val, from, to)
98 unsigned val, from, to;
99 {
100 val = val >> 31 - to;
101 return val & ((1 << 32 - from) - 1);
102 }
103
104 unsigned
105 set_field (val, from, to, new_val)
106 unsigned *val, from, to;
107 {
108 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
109 return *val = *val & mask | (new_val << (31 - from));
110 }
111
112 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
113
114 extract_3 (word)
115 unsigned word;
116 {
117 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
118 }
119
120 extract_5_load (word)
121 unsigned word;
122 {
123 return low_sign_extend (word >> 16 & MASK_5, 5);
124 }
125
126 /* extract the immediate field from a st{bhw}s instruction */
127
128 int
129 extract_5_store (word)
130 unsigned word;
131 {
132 return low_sign_extend (word & MASK_5, 5);
133 }
134
135 /* extract the immediate field from a break instruction */
136
137 unsigned
138 extract_5r_store (word)
139 unsigned word;
140 {
141 return (word & MASK_5);
142 }
143
144 /* extract the immediate field from a {sr}sm instruction */
145
146 unsigned
147 extract_5R_store (word)
148 unsigned word;
149 {
150 return (word >> 16 & MASK_5);
151 }
152
153 /* extract an 11 bit immediate field */
154
155 int
156 extract_11 (word)
157 unsigned word;
158 {
159 return low_sign_extend (word & MASK_11, 11);
160 }
161
162 /* extract a 14 bit immediate field */
163
164 int
165 extract_14 (word)
166 unsigned word;
167 {
168 return low_sign_extend (word & MASK_14, 14);
169 }
170
171 /* deposit a 14 bit constant in a word */
172
173 unsigned
174 deposit_14 (opnd, word)
175 int opnd;
176 unsigned word;
177 {
178 unsigned sign = (opnd < 0 ? 1 : 0);
179
180 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
181 }
182
183 /* extract a 21 bit constant */
184
185 int
186 extract_21 (word)
187 unsigned word;
188 {
189 int val;
190
191 word &= MASK_21;
192 word <<= 11;
193 val = GET_FIELD (word, 20, 20);
194 val <<= 11;
195 val |= GET_FIELD (word, 9, 19);
196 val <<= 2;
197 val |= GET_FIELD (word, 5, 6);
198 val <<= 5;
199 val |= GET_FIELD (word, 0, 4);
200 val <<= 2;
201 val |= GET_FIELD (word, 7, 8);
202 return sign_extend (val, 21) << 11;
203 }
204
205 /* deposit a 21 bit constant in a word. Although 21 bit constants are
206 usually the top 21 bits of a 32 bit constant, we assume that only
207 the low 21 bits of opnd are relevant */
208
209 unsigned
210 deposit_21 (opnd, word)
211 unsigned opnd, word;
212 {
213 unsigned val = 0;
214
215 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
216 val <<= 2;
217 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
218 val <<= 2;
219 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
220 val <<= 11;
221 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
222 val <<= 1;
223 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
224 return word | val;
225 }
226
227 /* extract a 12 bit constant from branch instructions */
228
229 int
230 extract_12 (word)
231 unsigned word;
232 {
233 return sign_extend (GET_FIELD (word, 19, 28) |
234 GET_FIELD (word, 29, 29) << 10 |
235 (word & 0x1) << 11, 12) << 2;
236 }
237
238 /* extract a 17 bit constant from branch instructions, returning the
239 19 bit signed value. */
240
241 int
242 extract_17 (word)
243 unsigned word;
244 {
245 return sign_extend (GET_FIELD (word, 19, 28) |
246 GET_FIELD (word, 29, 29) << 10 |
247 GET_FIELD (word, 11, 15) << 11 |
248 (word & 0x1) << 16, 17) << 2;
249 }
250 \f
251 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
252 of the objfiles seeking the unwind table entry for this PC. Each objfile
253 contains a sorted list of struct unwind_table_entry. Since we do a binary
254 search of the unwind tables, we depend upon them to be sorted. */
255
256 static struct unwind_table_entry *
257 find_unwind_entry(pc)
258 CORE_ADDR pc;
259 {
260 int first, middle, last;
261 struct objfile *objfile;
262
263 ALL_OBJFILES (objfile)
264 {
265 struct obj_unwind_info *ui;
266
267 ui = OBJ_UNWIND_INFO (objfile);
268
269 if (!ui)
270 continue;
271
272 /* First, check the cache */
273
274 if (ui->cache
275 && pc >= ui->cache->region_start
276 && pc <= ui->cache->region_end)
277 return ui->cache;
278
279 /* Not in the cache, do a binary search */
280
281 first = 0;
282 last = ui->last;
283
284 while (first <= last)
285 {
286 middle = (first + last) / 2;
287 if (pc >= ui->table[middle].region_start
288 && pc <= ui->table[middle].region_end)
289 {
290 ui->cache = &ui->table[middle];
291 return &ui->table[middle];
292 }
293
294 if (pc < ui->table[middle].region_start)
295 last = middle - 1;
296 else
297 first = middle + 1;
298 }
299 } /* ALL_OBJFILES() */
300 return NULL;
301 }
302
303 /* Called to determine if PC is in an interrupt handler of some
304 kind. */
305
306 static int
307 pc_in_interrupt_handler (pc)
308 CORE_ADDR pc;
309 {
310 struct unwind_table_entry *u;
311 struct minimal_symbol *msym_us;
312
313 u = find_unwind_entry (pc);
314 if (!u)
315 return 0;
316
317 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
318 its frame isn't a pure interrupt frame. Deal with this. */
319 msym_us = lookup_minimal_symbol_by_pc (pc);
320
321 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
322 }
323
324 /* Called when no unwind descriptor was found for PC. Returns 1 if it
325 appears that PC is in a linker stub. */
326
327 static int
328 pc_in_linker_stub (pc)
329 CORE_ADDR pc;
330 {
331 int found_magic_instruction = 0;
332 int i;
333 char buf[4];
334
335 /* If unable to read memory, assume pc is not in a linker stub. */
336 if (target_read_memory (pc, buf, 4) != 0)
337 return 0;
338
339 /* We are looking for something like
340
341 ; $$dyncall jams RP into this special spot in the frame (RP')
342 ; before calling the "call stub"
343 ldw -18(sp),rp
344
345 ldsid (rp),r1 ; Get space associated with RP into r1
346 mtsp r1,sp ; Move it into space register 0
347 be,n 0(sr0),rp) ; back to your regularly scheduled program
348 */
349
350 /* Maximum known linker stub size is 4 instructions. Search forward
351 from the given PC, then backward. */
352 for (i = 0; i < 4; i++)
353 {
354 /* If we hit something with an unwind, stop searching this direction. */
355
356 if (find_unwind_entry (pc + i * 4) != 0)
357 break;
358
359 /* Check for ldsid (rp),r1 which is the magic instruction for a
360 return from a cross-space function call. */
361 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
362 {
363 found_magic_instruction = 1;
364 break;
365 }
366 /* Add code to handle long call/branch and argument relocation stubs
367 here. */
368 }
369
370 if (found_magic_instruction != 0)
371 return 1;
372
373 /* Now look backward. */
374 for (i = 0; i < 4; i++)
375 {
376 /* If we hit something with an unwind, stop searching this direction. */
377
378 if (find_unwind_entry (pc - i * 4) != 0)
379 break;
380
381 /* Check for ldsid (rp),r1 which is the magic instruction for a
382 return from a cross-space function call. */
383 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
384 {
385 found_magic_instruction = 1;
386 break;
387 }
388 /* Add code to handle long call/branch and argument relocation stubs
389 here. */
390 }
391 return found_magic_instruction;
392 }
393
394 static int
395 find_return_regnum(pc)
396 CORE_ADDR pc;
397 {
398 struct unwind_table_entry *u;
399
400 u = find_unwind_entry (pc);
401
402 if (!u)
403 return RP_REGNUM;
404
405 if (u->Millicode)
406 return 31;
407
408 return RP_REGNUM;
409 }
410
411 /* Return size of frame, or -1 if we should use a frame pointer. */
412 int
413 find_proc_framesize (pc)
414 CORE_ADDR pc;
415 {
416 struct unwind_table_entry *u;
417 struct minimal_symbol *msym_us;
418
419 u = find_unwind_entry (pc);
420
421 if (!u)
422 {
423 if (pc_in_linker_stub (pc))
424 /* Linker stubs have a zero size frame. */
425 return 0;
426 else
427 return -1;
428 }
429
430 msym_us = lookup_minimal_symbol_by_pc (pc);
431
432 /* If Save_SP is set, and we're not in an interrupt or signal caller,
433 then we have a frame pointer. Use it. */
434 if (u->Save_SP && !pc_in_interrupt_handler (pc)
435 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
436 return -1;
437
438 return u->Total_frame_size << 3;
439 }
440
441 /* Return offset from sp at which rp is saved, or 0 if not saved. */
442 static int rp_saved PARAMS ((CORE_ADDR));
443
444 static int
445 rp_saved (pc)
446 CORE_ADDR pc;
447 {
448 struct unwind_table_entry *u;
449
450 u = find_unwind_entry (pc);
451
452 if (!u)
453 {
454 if (pc_in_linker_stub (pc))
455 /* This is the so-called RP'. */
456 return -24;
457 else
458 return 0;
459 }
460
461 if (u->Save_RP)
462 return -20;
463 else if (u->stub_type != 0)
464 {
465 switch (u->stub_type)
466 {
467 case EXPORT:
468 return -24;
469 case PARAMETER_RELOCATION:
470 return -8;
471 default:
472 return 0;
473 }
474 }
475 else
476 return 0;
477 }
478 \f
479 int
480 frameless_function_invocation (frame)
481 FRAME frame;
482 {
483 struct unwind_table_entry *u;
484
485 u = find_unwind_entry (frame->pc);
486
487 if (u == 0)
488 return frameless_look_for_prologue (frame);
489
490 return (u->Total_frame_size == 0 && u->stub_type == 0);
491 }
492
493 CORE_ADDR
494 saved_pc_after_call (frame)
495 FRAME frame;
496 {
497 int ret_regnum;
498
499 ret_regnum = find_return_regnum (get_frame_pc (frame));
500
501 return read_register (ret_regnum) & ~0x3;
502 }
503 \f
504 CORE_ADDR
505 frame_saved_pc (frame)
506 FRAME frame;
507 {
508 CORE_ADDR pc = get_frame_pc (frame);
509
510 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
511 at the base of the frame in an interrupt handler. Registers within
512 are saved in the exact same order as GDB numbers registers. How
513 convienent. */
514 if (pc_in_interrupt_handler (pc))
515 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
516
517 /* Deal with signal handler caller frames too. */
518 if (frame->signal_handler_caller)
519 {
520 CORE_ADDR rp;
521 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
522 return rp;
523 }
524
525 if (frameless_function_invocation (frame))
526 {
527 int ret_regnum;
528
529 ret_regnum = find_return_regnum (pc);
530
531 /* If the next frame is an interrupt frame or a signal
532 handler caller, then we need to look in the saved
533 register area to get the return pointer (the values
534 in the registers may not correspond to anything useful). */
535 if (frame->next
536 && (frame->next->signal_handler_caller
537 || pc_in_interrupt_handler (frame->next->pc)))
538 {
539 struct frame_info *fi;
540 struct frame_saved_regs saved_regs;
541
542 fi = get_frame_info (frame->next);
543 get_frame_saved_regs (fi, &saved_regs);
544 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
545 return read_memory_integer (saved_regs.regs[31], 4);
546 else
547 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
548 }
549 else
550 return read_register (ret_regnum) & ~0x3;
551 }
552 else
553 {
554 int rp_offset = rp_saved (pc);
555
556 /* Similar to code in frameless function case. If the next
557 frame is a signal or interrupt handler, then dig the right
558 information out of the saved register info. */
559 if (rp_offset == 0
560 && frame->next
561 && (frame->next->signal_handler_caller
562 || pc_in_interrupt_handler (frame->next->pc)))
563 {
564 struct frame_info *fi;
565 struct frame_saved_regs saved_regs;
566
567 fi = get_frame_info (frame->next);
568 get_frame_saved_regs (fi, &saved_regs);
569 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
570 return read_memory_integer (saved_regs.regs[31], 4);
571 else
572 return read_memory_integer (saved_regs.regs[RP_REGNUM], 4);
573 }
574 else if (rp_offset == 0)
575 return read_register (RP_REGNUM) & ~0x3;
576 else
577 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
578 }
579 }
580 \f
581 /* We need to correct the PC and the FP for the outermost frame when we are
582 in a system call. */
583
584 void
585 init_extra_frame_info (fromleaf, frame)
586 int fromleaf;
587 struct frame_info *frame;
588 {
589 int flags;
590 int framesize;
591
592 if (frame->next && !fromleaf)
593 return;
594
595 /* If the next frame represents a frameless function invocation
596 then we have to do some adjustments that are normally done by
597 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
598 if (fromleaf)
599 {
600 /* Find the framesize of *this* frame without peeking at the PC
601 in the current frame structure (it isn't set yet). */
602 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
603
604 /* Now adjust our base frame accordingly. If we have a frame pointer
605 use it, else subtract the size of this frame from the current
606 frame. (we always want frame->frame to point at the lowest address
607 in the frame). */
608 if (framesize == -1)
609 frame->frame = read_register (FP_REGNUM);
610 else
611 frame->frame -= framesize;
612 return;
613 }
614
615 flags = read_register (FLAGS_REGNUM);
616 if (flags & 2) /* In system call? */
617 frame->pc = read_register (31) & ~0x3;
618
619 /* The outermost frame is always derived from PC-framesize
620
621 One might think frameless innermost frames should have
622 a frame->frame that is the same as the parent's frame->frame.
623 That is wrong; frame->frame in that case should be the *high*
624 address of the parent's frame. It's complicated as hell to
625 explain, but the parent *always* creates some stack space for
626 the child. So the child actually does have a frame of some
627 sorts, and its base is the high address in its parent's frame. */
628 framesize = find_proc_framesize(frame->pc);
629 if (framesize == -1)
630 frame->frame = read_register (FP_REGNUM);
631 else
632 frame->frame = read_register (SP_REGNUM) - framesize;
633 }
634 \f
635 /* Given a GDB frame, determine the address of the calling function's frame.
636 This will be used to create a new GDB frame struct, and then
637 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
638
639 This may involve searching through prologues for several functions
640 at boundaries where GCC calls HP C code, or where code which has
641 a frame pointer calls code without a frame pointer. */
642
643
644 FRAME_ADDR
645 frame_chain (frame)
646 struct frame_info *frame;
647 {
648 int my_framesize, caller_framesize;
649 struct unwind_table_entry *u;
650 CORE_ADDR frame_base;
651
652 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
653 are easy; at *sp we have a full save state strucutre which we can
654 pull the old stack pointer from. Also see frame_saved_pc for
655 code to dig a saved PC out of the save state structure. */
656 if (pc_in_interrupt_handler (frame->pc))
657 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
658 else if (frame->signal_handler_caller)
659 {
660 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
661 }
662 else
663 frame_base = frame->frame;
664
665 /* Get frame sizes for the current frame and the frame of the
666 caller. */
667 my_framesize = find_proc_framesize (frame->pc);
668 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
669
670 /* If caller does not have a frame pointer, then its frame
671 can be found at current_frame - caller_framesize. */
672 if (caller_framesize != -1)
673 return frame_base - caller_framesize;
674
675 /* Both caller and callee have frame pointers and are GCC compiled
676 (SAVE_SP bit in unwind descriptor is on for both functions.
677 The previous frame pointer is found at the top of the current frame. */
678 if (caller_framesize == -1 && my_framesize == -1)
679 return read_memory_integer (frame_base, 4);
680
681 /* Caller has a frame pointer, but callee does not. This is a little
682 more difficult as GCC and HP C lay out locals and callee register save
683 areas very differently.
684
685 The previous frame pointer could be in a register, or in one of
686 several areas on the stack.
687
688 Walk from the current frame to the innermost frame examining
689 unwind descriptors to determine if %r3 ever gets saved into the
690 stack. If so return whatever value got saved into the stack.
691 If it was never saved in the stack, then the value in %r3 is still
692 valid, so use it.
693
694 We use information from unwind descriptors to determine if %r3
695 is saved into the stack (Entry_GR field has this information). */
696
697 while (frame)
698 {
699 u = find_unwind_entry (frame->pc);
700
701 if (!u)
702 {
703 /* We could find this information by examining prologues. I don't
704 think anyone has actually written any tools (not even "strip")
705 which leave them out of an executable, so maybe this is a moot
706 point. */
707 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
708 return 0;
709 }
710
711 /* Entry_GR specifies the number of callee-saved general registers
712 saved in the stack. It starts at %r3, so %r3 would be 1. */
713 if (u->Entry_GR >= 1 || u->Save_SP
714 || frame->signal_handler_caller
715 || pc_in_interrupt_handler (frame->pc))
716 break;
717 else
718 frame = frame->next;
719 }
720
721 if (frame)
722 {
723 /* We may have walked down the chain into a function with a frame
724 pointer. */
725 if (u->Save_SP
726 && !frame->signal_handler_caller
727 && !pc_in_interrupt_handler (frame->pc))
728 return read_memory_integer (frame->frame, 4);
729 /* %r3 was saved somewhere in the stack. Dig it out. */
730 else
731 {
732 struct frame_info *fi;
733 struct frame_saved_regs saved_regs;
734
735 fi = get_frame_info (frame);
736 get_frame_saved_regs (fi, &saved_regs);
737 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
738 }
739 }
740 else
741 {
742 /* The value in %r3 was never saved into the stack (thus %r3 still
743 holds the value of the previous frame pointer). */
744 return read_register (FP_REGNUM);
745 }
746 }
747
748 \f
749 /* To see if a frame chain is valid, see if the caller looks like it
750 was compiled with gcc. */
751
752 int
753 frame_chain_valid (chain, thisframe)
754 FRAME_ADDR chain;
755 FRAME thisframe;
756 {
757 struct minimal_symbol *msym_us;
758 struct minimal_symbol *msym_start;
759 struct unwind_table_entry *u, *next_u = NULL;
760 FRAME next;
761
762 if (!chain)
763 return 0;
764
765 u = find_unwind_entry (thisframe->pc);
766
767 if (u == NULL)
768 return 1;
769
770 /* We can't just check that the same of msym_us is "_start", because
771 someone idiotically decided that they were going to make a Ltext_end
772 symbol with the same address. This Ltext_end symbol is totally
773 indistinguishable (as nearly as I can tell) from the symbol for a function
774 which is (legitimately, since it is in the user's namespace)
775 named Ltext_end, so we can't just ignore it. */
776 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
777 msym_start = lookup_minimal_symbol ("_start", NULL);
778 if (msym_us
779 && msym_start
780 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
781 return 0;
782
783 next = get_next_frame (thisframe);
784 if (next)
785 next_u = find_unwind_entry (next->pc);
786
787 /* If this frame does not save SP, has no stack, isn't a stub,
788 and doesn't "call" an interrupt routine or signal handler caller,
789 then its not valid. */
790 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
791 || (thisframe->next && thisframe->next->signal_handler_caller)
792 || (next_u && next_u->HP_UX_interrupt_marker))
793 return 1;
794
795 if (pc_in_linker_stub (thisframe->pc))
796 return 1;
797
798 return 0;
799 }
800
801 /*
802 * These functions deal with saving and restoring register state
803 * around a function call in the inferior. They keep the stack
804 * double-word aligned; eventually, on an hp700, the stack will have
805 * to be aligned to a 64-byte boundary.
806 */
807
808 int
809 push_dummy_frame ()
810 {
811 register CORE_ADDR sp;
812 register int regnum;
813 int int_buffer;
814 double freg_buffer;
815
816 /* Space for "arguments"; the RP goes in here. */
817 sp = read_register (SP_REGNUM) + 48;
818 int_buffer = read_register (RP_REGNUM) | 0x3;
819 write_memory (sp - 20, (char *)&int_buffer, 4);
820
821 int_buffer = read_register (FP_REGNUM);
822 write_memory (sp, (char *)&int_buffer, 4);
823
824 write_register (FP_REGNUM, sp);
825
826 sp += 8;
827
828 for (regnum = 1; regnum < 32; regnum++)
829 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
830 sp = push_word (sp, read_register (regnum));
831
832 sp += 4;
833
834 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
835 {
836 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
837 sp = push_bytes (sp, (char *)&freg_buffer, 8);
838 }
839 sp = push_word (sp, read_register (IPSW_REGNUM));
840 sp = push_word (sp, read_register (SAR_REGNUM));
841 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
842 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
843 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
844 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
845 write_register (SP_REGNUM, sp);
846 }
847
848 find_dummy_frame_regs (frame, frame_saved_regs)
849 struct frame_info *frame;
850 struct frame_saved_regs *frame_saved_regs;
851 {
852 CORE_ADDR fp = frame->frame;
853 int i;
854
855 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
856 frame_saved_regs->regs[FP_REGNUM] = fp;
857 frame_saved_regs->regs[1] = fp + 8;
858
859 for (fp += 12, i = 3; i < 32; i++)
860 {
861 if (i != FP_REGNUM)
862 {
863 frame_saved_regs->regs[i] = fp;
864 fp += 4;
865 }
866 }
867
868 fp += 4;
869 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
870 frame_saved_regs->regs[i] = fp;
871
872 frame_saved_regs->regs[IPSW_REGNUM] = fp;
873 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
874 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
875 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
876 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
877 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
878 }
879
880 int
881 hppa_pop_frame ()
882 {
883 register FRAME frame = get_current_frame ();
884 register CORE_ADDR fp;
885 register int regnum;
886 struct frame_saved_regs fsr;
887 struct frame_info *fi;
888 double freg_buffer;
889
890 fi = get_frame_info (frame);
891 fp = fi->frame;
892 get_frame_saved_regs (fi, &fsr);
893
894 #ifndef NO_PC_SPACE_QUEUE_RESTORE
895 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
896 restore_pc_queue (&fsr);
897 #endif
898
899 for (regnum = 31; regnum > 0; regnum--)
900 if (fsr.regs[regnum])
901 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
902
903 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
904 if (fsr.regs[regnum])
905 {
906 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
907 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
908 }
909
910 if (fsr.regs[IPSW_REGNUM])
911 write_register (IPSW_REGNUM,
912 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
913
914 if (fsr.regs[SAR_REGNUM])
915 write_register (SAR_REGNUM,
916 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
917
918 /* If the PC was explicitly saved, then just restore it. */
919 if (fsr.regs[PCOQ_TAIL_REGNUM])
920 write_register (PCOQ_TAIL_REGNUM,
921 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
922
923 /* Else use the value in %rp to set the new PC. */
924 else
925 target_write_pc (read_register (RP_REGNUM));
926
927 write_register (FP_REGNUM, read_memory_integer (fp, 4));
928
929 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
930 write_register (SP_REGNUM, fp - 48);
931 else
932 write_register (SP_REGNUM, fp);
933
934 flush_cached_frames ();
935 set_current_frame (create_new_frame (read_register (FP_REGNUM),
936 read_pc ()));
937 }
938
939 /*
940 * After returning to a dummy on the stack, restore the instruction
941 * queue space registers. */
942
943 static int
944 restore_pc_queue (fsr)
945 struct frame_saved_regs *fsr;
946 {
947 CORE_ADDR pc = read_pc ();
948 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
949 int pid;
950 struct target_waitstatus w;
951 int insn_count;
952
953 /* Advance past break instruction in the call dummy. */
954 write_register (PCOQ_HEAD_REGNUM, pc + 4);
955 write_register (PCOQ_TAIL_REGNUM, pc + 8);
956
957 /*
958 * HPUX doesn't let us set the space registers or the space
959 * registers of the PC queue through ptrace. Boo, hiss.
960 * Conveniently, the call dummy has this sequence of instructions
961 * after the break:
962 * mtsp r21, sr0
963 * ble,n 0(sr0, r22)
964 *
965 * So, load up the registers and single step until we are in the
966 * right place.
967 */
968
969 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
970 write_register (22, new_pc);
971
972 for (insn_count = 0; insn_count < 3; insn_count++)
973 {
974 /* FIXME: What if the inferior gets a signal right now? Want to
975 merge this into wait_for_inferior (as a special kind of
976 watchpoint? By setting a breakpoint at the end? Is there
977 any other choice? Is there *any* way to do this stuff with
978 ptrace() or some equivalent?). */
979 resume (1, 0);
980 target_wait (inferior_pid, &w);
981
982 if (w.kind == TARGET_WAITKIND_SIGNALLED)
983 {
984 stop_signal = w.value.sig;
985 terminal_ours_for_output ();
986 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
987 target_signal_to_name (stop_signal),
988 target_signal_to_string (stop_signal));
989 gdb_flush (gdb_stdout);
990 return 0;
991 }
992 }
993 target_terminal_ours ();
994 fetch_inferior_registers (-1);
995 return 1;
996 }
997
998 CORE_ADDR
999 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1000 int nargs;
1001 value_ptr *args;
1002 CORE_ADDR sp;
1003 int struct_return;
1004 CORE_ADDR struct_addr;
1005 {
1006 /* array of arguments' offsets */
1007 int *offset = (int *)alloca(nargs * sizeof (int));
1008 int cum = 0;
1009 int i, alignment;
1010
1011 for (i = 0; i < nargs; i++)
1012 {
1013 /* Coerce chars to int & float to double if necessary */
1014 args[i] = value_arg_coerce (args[i]);
1015
1016 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1017
1018 /* value must go at proper alignment. Assume alignment is a
1019 power of two.*/
1020 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1021 if (cum % alignment)
1022 cum = (cum + alignment) & -alignment;
1023 offset[i] = -cum;
1024 }
1025 sp += max ((cum + 7) & -8, 16);
1026
1027 for (i = 0; i < nargs; i++)
1028 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1029 TYPE_LENGTH (VALUE_TYPE (args[i])));
1030
1031 if (struct_return)
1032 write_register (28, struct_addr);
1033 return sp + 32;
1034 }
1035
1036 /*
1037 * Insert the specified number of args and function address
1038 * into a call sequence of the above form stored at DUMMYNAME.
1039 *
1040 * On the hppa we need to call the stack dummy through $$dyncall.
1041 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1042 * real_pc, which is the location where gdb should start up the
1043 * inferior to do the function call.
1044 */
1045
1046 CORE_ADDR
1047 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1048 char *dummy;
1049 CORE_ADDR pc;
1050 CORE_ADDR fun;
1051 int nargs;
1052 value_ptr *args;
1053 struct type *type;
1054 int gcc_p;
1055 {
1056 CORE_ADDR dyncall_addr, sr4export_addr;
1057 struct minimal_symbol *msymbol;
1058 int flags = read_register (FLAGS_REGNUM);
1059
1060 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1061 if (msymbol == NULL)
1062 error ("Can't find an address for $$dyncall trampoline");
1063
1064 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1065
1066 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1067 if (msymbol == NULL)
1068 error ("Can't find an address for _sr4export trampoline");
1069
1070 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1071
1072 store_unsigned_integer
1073 (&dummy[9*REGISTER_SIZE],
1074 REGISTER_SIZE,
1075 deposit_21 (fun >> 11,
1076 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1077 REGISTER_SIZE)));
1078 store_unsigned_integer
1079 (&dummy[10*REGISTER_SIZE],
1080 REGISTER_SIZE,
1081 deposit_14 (fun & MASK_11,
1082 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1083 REGISTER_SIZE)));
1084 store_unsigned_integer
1085 (&dummy[12*REGISTER_SIZE],
1086 REGISTER_SIZE,
1087 deposit_21 (sr4export_addr >> 11,
1088 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1089 REGISTER_SIZE)));
1090 store_unsigned_integer
1091 (&dummy[13*REGISTER_SIZE],
1092 REGISTER_SIZE,
1093 deposit_14 (sr4export_addr & MASK_11,
1094 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1095 REGISTER_SIZE)));
1096
1097 write_register (22, pc);
1098
1099 /* If we are in a syscall, then we should call the stack dummy
1100 directly. $$dyncall is not needed as the kernel sets up the
1101 space id registers properly based on the value in %r31. In
1102 fact calling $$dyncall will not work because the value in %r22
1103 will be clobbered on the syscall exit path. */
1104 if (flags & 2)
1105 return pc;
1106 else
1107 return dyncall_addr;
1108
1109 }
1110
1111 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1112 bits. */
1113 CORE_ADDR
1114 target_read_pc ()
1115 {
1116 int flags = read_register (FLAGS_REGNUM);
1117
1118 if (flags & 2)
1119 return read_register (31) & ~0x3;
1120 return read_register (PC_REGNUM) & ~0x3;
1121 }
1122
1123 /* Write out the PC. If currently in a syscall, then also write the new
1124 PC value into %r31. */
1125 void
1126 target_write_pc (v)
1127 CORE_ADDR v;
1128 {
1129 int flags = read_register (FLAGS_REGNUM);
1130
1131 /* If in a syscall, then set %r31. Also make sure to get the
1132 privilege bits set correctly. */
1133 if (flags & 2)
1134 write_register (31, (long) (v | 0x3));
1135
1136 write_register (PC_REGNUM, (long) v);
1137 write_register (NPC_REGNUM, (long) v + 4);
1138 }
1139
1140 /* return the alignment of a type in bytes. Structures have the maximum
1141 alignment required by their fields. */
1142
1143 static int
1144 hppa_alignof (arg)
1145 struct type *arg;
1146 {
1147 int max_align, align, i;
1148 switch (TYPE_CODE (arg))
1149 {
1150 case TYPE_CODE_PTR:
1151 case TYPE_CODE_INT:
1152 case TYPE_CODE_FLT:
1153 return TYPE_LENGTH (arg);
1154 case TYPE_CODE_ARRAY:
1155 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1156 case TYPE_CODE_STRUCT:
1157 case TYPE_CODE_UNION:
1158 max_align = 2;
1159 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1160 {
1161 /* Bit fields have no real alignment. */
1162 if (!TYPE_FIELD_BITPOS (arg, i))
1163 {
1164 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1165 max_align = max (max_align, align);
1166 }
1167 }
1168 return max_align;
1169 default:
1170 return 4;
1171 }
1172 }
1173
1174 /* Print the register regnum, or all registers if regnum is -1 */
1175
1176 pa_do_registers_info (regnum, fpregs)
1177 int regnum;
1178 int fpregs;
1179 {
1180 char raw_regs [REGISTER_BYTES];
1181 int i;
1182
1183 for (i = 0; i < NUM_REGS; i++)
1184 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1185 if (regnum == -1)
1186 pa_print_registers (raw_regs, regnum, fpregs);
1187 else if (regnum < FP0_REGNUM)
1188 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1189 REGISTER_BYTE (regnum)));
1190 else
1191 pa_print_fp_reg (regnum);
1192 }
1193
1194 pa_print_registers (raw_regs, regnum, fpregs)
1195 char *raw_regs;
1196 int regnum;
1197 int fpregs;
1198 {
1199 int i;
1200
1201 for (i = 0; i < 18; i++)
1202 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1203 reg_names[i],
1204 *(int *)(raw_regs + REGISTER_BYTE (i)),
1205 reg_names[i + 18],
1206 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1207 reg_names[i + 36],
1208 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1209 reg_names[i + 54],
1210 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1211
1212 if (fpregs)
1213 for (i = 72; i < NUM_REGS; i++)
1214 pa_print_fp_reg (i);
1215 }
1216
1217 pa_print_fp_reg (i)
1218 int i;
1219 {
1220 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1221 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1222
1223 /* Get the data in raw format. */
1224 read_relative_register_raw_bytes (i, raw_buffer);
1225
1226 /* Convert raw data to virtual format if necessary. */
1227 #ifdef REGISTER_CONVERTIBLE
1228 if (REGISTER_CONVERTIBLE (i))
1229 {
1230 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1231 raw_buffer, virtual_buffer);
1232 }
1233 else
1234 #endif
1235 memcpy (virtual_buffer, raw_buffer,
1236 REGISTER_VIRTUAL_SIZE (i));
1237
1238 fputs_filtered (reg_names[i], gdb_stdout);
1239 print_spaces_filtered (15 - strlen (reg_names[i]), gdb_stdout);
1240
1241 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1242 1, 0, Val_pretty_default);
1243 printf_filtered ("\n");
1244 }
1245
1246 /* Function calls that pass into a new compilation unit must pass through a
1247 small piece of code that does long format (`external' in HPPA parlance)
1248 jumps. We figure out where the trampoline is going to end up, and return
1249 the PC of the final destination. If we aren't in a trampoline, we just
1250 return NULL.
1251
1252 For computed calls, we just extract the new PC from r22. */
1253
1254 CORE_ADDR
1255 skip_trampoline_code (pc, name)
1256 CORE_ADDR pc;
1257 char *name;
1258 {
1259 long inst0, inst1;
1260 static CORE_ADDR dyncall = 0;
1261 struct minimal_symbol *msym;
1262
1263 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
1264
1265 if (!dyncall)
1266 {
1267 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1268 if (msym)
1269 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1270 else
1271 dyncall = -1;
1272 }
1273
1274 if (pc == dyncall)
1275 return (CORE_ADDR)(read_register (22) & ~0x3);
1276
1277 inst0 = read_memory_integer (pc, 4);
1278 inst1 = read_memory_integer (pc+4, 4);
1279
1280 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
1281 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
1282 pc = extract_21 (inst0) + extract_17 (inst1);
1283 else
1284 pc = (CORE_ADDR)NULL;
1285
1286 return pc;
1287 }
1288
1289 /* For the given instruction (INST), return any adjustment it makes
1290 to the stack pointer or zero for no adjustment.
1291
1292 This only handles instructions commonly found in prologues. */
1293
1294 static int
1295 prologue_inst_adjust_sp (inst)
1296 unsigned long inst;
1297 {
1298 /* This must persist across calls. */
1299 static int save_high21;
1300
1301 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1302 if ((inst & 0xffffc000) == 0x37de0000)
1303 return extract_14 (inst);
1304
1305 /* stwm X,D(sp) */
1306 if ((inst & 0xffe00000) == 0x6fc00000)
1307 return extract_14 (inst);
1308
1309 /* addil high21,%r1; ldo low11,(%r1),%r30)
1310 save high bits in save_high21 for later use. */
1311 if ((inst & 0xffe00000) == 0x28200000)
1312 {
1313 save_high21 = extract_21 (inst);
1314 return 0;
1315 }
1316
1317 if ((inst & 0xffff0000) == 0x343e0000)
1318 return save_high21 + extract_14 (inst);
1319
1320 /* fstws as used by the HP compilers. */
1321 if ((inst & 0xffffffe0) == 0x2fd01220)
1322 return extract_5_load (inst);
1323
1324 /* No adjustment. */
1325 return 0;
1326 }
1327
1328 /* Return nonzero if INST is a branch of some kind, else return zero. */
1329
1330 static int
1331 is_branch (inst)
1332 unsigned long inst;
1333 {
1334 switch (inst >> 26)
1335 {
1336 case 0x20:
1337 case 0x21:
1338 case 0x22:
1339 case 0x23:
1340 case 0x28:
1341 case 0x29:
1342 case 0x2a:
1343 case 0x2b:
1344 case 0x30:
1345 case 0x31:
1346 case 0x32:
1347 case 0x33:
1348 case 0x38:
1349 case 0x39:
1350 case 0x3a:
1351 return 1;
1352
1353 default:
1354 return 0;
1355 }
1356 }
1357
1358 /* Return the register number for a GR which is saved by INST or
1359 zero it INST does not save a GR.
1360
1361 Note we only care about full 32bit register stores (that's the only
1362 kind of stores the prologue will use). */
1363
1364 static int
1365 inst_saves_gr (inst)
1366 unsigned long inst;
1367 {
1368 /* Does it look like a stw? */
1369 if ((inst >> 26) == 0x1a)
1370 return extract_5R_store (inst);
1371
1372 /* Does it look like a stwm? */
1373 if ((inst >> 26) == 0x1b)
1374 return extract_5R_store (inst);
1375
1376 return 0;
1377 }
1378
1379 /* Return the register number for a FR which is saved by INST or
1380 zero it INST does not save a FR.
1381
1382 Note we only care about full 64bit register stores (that's the only
1383 kind of stores the prologue will use). */
1384
1385 static int
1386 inst_saves_fr (inst)
1387 unsigned long inst;
1388 {
1389 if ((inst & 0xfc1fffe0) == 0x2c101220)
1390 return extract_5r_store (inst);
1391 return 0;
1392 }
1393
1394 /* Advance PC across any function entry prologue instructions
1395 to reach some "real" code.
1396
1397 Use information in the unwind table to determine what exactly should
1398 be in the prologue. */
1399
1400 CORE_ADDR
1401 skip_prologue(pc)
1402 CORE_ADDR pc;
1403 {
1404 char buf[4];
1405 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1406 int status, i;
1407 struct unwind_table_entry *u;
1408
1409 u = find_unwind_entry (pc);
1410 if (!u)
1411 return 0;
1412
1413 /* This is how much of a frame adjustment we need to account for. */
1414 stack_remaining = u->Total_frame_size << 3;
1415
1416 /* Magic register saves we want to know about. */
1417 save_rp = u->Save_RP;
1418 save_sp = u->Save_SP;
1419
1420 /* Turn the Entry_GR field into a bitmask. */
1421 save_gr = 0;
1422 for (i = 3; i < u->Entry_GR + 3; i++)
1423 {
1424 /* Frame pointer gets saved into a special location. */
1425 if (u->Save_SP && i == FP_REGNUM)
1426 continue;
1427
1428 save_gr |= (1 << i);
1429 }
1430
1431 /* Turn the Entry_FR field into a bitmask too. */
1432 save_fr = 0;
1433 for (i = 12; i < u->Entry_FR + 12; i++)
1434 save_fr |= (1 << i);
1435
1436 /* Loop until we find everything of interest or hit a branch.
1437
1438 For unoptimized GCC code and for any HP CC code this will never ever
1439 examine any user instructions.
1440
1441 For optimzied GCC code we're faced with problems. GCC will schedule
1442 its prologue and make prologue instructions available for delay slot
1443 filling. The end result is user code gets mixed in with the prologue
1444 and a prologue instruction may be in the delay slot of the first branch
1445 or call.
1446
1447 Some unexpected things are expected with debugging optimized code, so
1448 we allow this routine to walk past user instructions in optimized
1449 GCC code. */
1450 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1451 {
1452 status = target_read_memory (pc, buf, 4);
1453 inst = extract_unsigned_integer (buf, 4);
1454
1455 /* Yow! */
1456 if (status != 0)
1457 return pc;
1458
1459 /* Note the interesting effects of this instruction. */
1460 stack_remaining -= prologue_inst_adjust_sp (inst);
1461
1462 /* There is only one instruction used for saving RP into the stack. */
1463 if (inst == 0x6bc23fd9)
1464 save_rp = 0;
1465
1466 /* This is the only way we save SP into the stack. At this time
1467 the HP compilers never bother to save SP into the stack. */
1468 if ((inst & 0xffffc000) == 0x6fc10000)
1469 save_sp = 0;
1470
1471 /* Account for general and floating-point register saves. */
1472 save_gr &= ~(1 << inst_saves_gr (inst));
1473 save_fr &= ~(1 << inst_saves_fr (inst));
1474
1475 /* Quit if we hit any kind of branch. This can happen if a prologue
1476 instruction is in the delay slot of the first call/branch. */
1477 if (is_branch (inst))
1478 break;
1479
1480 /* Bump the PC. */
1481 pc += 4;
1482 }
1483
1484 return pc;
1485 }
1486
1487 /* Put here the code to store, into a struct frame_saved_regs,
1488 the addresses of the saved registers of frame described by FRAME_INFO.
1489 This includes special registers such as pc and fp saved in special
1490 ways in the stack frame. sp is even more special:
1491 the address we return for it IS the sp for the next frame. */
1492
1493 void
1494 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1495 struct frame_info *frame_info;
1496 struct frame_saved_regs *frame_saved_regs;
1497 {
1498 CORE_ADDR pc;
1499 struct unwind_table_entry *u;
1500 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1501 int status, i, reg;
1502 char buf[4];
1503 int fp_loc = -1;
1504
1505 /* Zero out everything. */
1506 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1507
1508 /* Call dummy frames always look the same, so there's no need to
1509 examine the dummy code to determine locations of saved registers;
1510 instead, let find_dummy_frame_regs fill in the correct offsets
1511 for the saved registers. */
1512 if ((frame_info->pc >= frame_info->frame
1513 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1514 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1515 + 6 * 4)))
1516 find_dummy_frame_regs (frame_info, frame_saved_regs);
1517
1518 /* Interrupt handlers are special too. They lay out the register
1519 state in the exact same order as the register numbers in GDB. */
1520 if (pc_in_interrupt_handler (frame_info->pc))
1521 {
1522 for (i = 0; i < NUM_REGS; i++)
1523 {
1524 /* SP is a little special. */
1525 if (i == SP_REGNUM)
1526 frame_saved_regs->regs[SP_REGNUM]
1527 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1528 else
1529 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1530 }
1531 return;
1532 }
1533
1534 /* Handle signal handler callers. */
1535 if (frame_info->signal_handler_caller)
1536 {
1537 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1538 return;
1539 }
1540
1541 /* Get the starting address of the function referred to by the PC
1542 saved in frame_info. */
1543 pc = get_pc_function_start (frame_info->pc);
1544
1545 /* Yow! */
1546 u = find_unwind_entry (pc);
1547 if (!u)
1548 return;
1549
1550 /* This is how much of a frame adjustment we need to account for. */
1551 stack_remaining = u->Total_frame_size << 3;
1552
1553 /* Magic register saves we want to know about. */
1554 save_rp = u->Save_RP;
1555 save_sp = u->Save_SP;
1556
1557 /* Turn the Entry_GR field into a bitmask. */
1558 save_gr = 0;
1559 for (i = 3; i < u->Entry_GR + 3; i++)
1560 {
1561 /* Frame pointer gets saved into a special location. */
1562 if (u->Save_SP && i == FP_REGNUM)
1563 continue;
1564
1565 save_gr |= (1 << i);
1566 }
1567
1568 /* Turn the Entry_FR field into a bitmask too. */
1569 save_fr = 0;
1570 for (i = 12; i < u->Entry_FR + 12; i++)
1571 save_fr |= (1 << i);
1572
1573 /* The frame always represents the value of %sp at entry to the
1574 current function (and is thus equivalent to the "saved" stack
1575 pointer. */
1576 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1577
1578 /* Loop until we find everything of interest or hit a branch.
1579
1580 For unoptimized GCC code and for any HP CC code this will never ever
1581 examine any user instructions.
1582
1583 For optimzied GCC code we're faced with problems. GCC will schedule
1584 its prologue and make prologue instructions available for delay slot
1585 filling. The end result is user code gets mixed in with the prologue
1586 and a prologue instruction may be in the delay slot of the first branch
1587 or call.
1588
1589 Some unexpected things are expected with debugging optimized code, so
1590 we allow this routine to walk past user instructions in optimized
1591 GCC code. */
1592 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1593 {
1594 status = target_read_memory (pc, buf, 4);
1595 inst = extract_unsigned_integer (buf, 4);
1596
1597 /* Yow! */
1598 if (status != 0)
1599 return;
1600
1601 /* Note the interesting effects of this instruction. */
1602 stack_remaining -= prologue_inst_adjust_sp (inst);
1603
1604 /* There is only one instruction used for saving RP into the stack. */
1605 if (inst == 0x6bc23fd9)
1606 {
1607 save_rp = 0;
1608 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1609 }
1610
1611 /* Just note that we found the save of SP into the stack. The
1612 value for frame_saved_regs was computed above. */
1613 if ((inst & 0xffffc000) == 0x6fc10000)
1614 save_sp = 0;
1615
1616 /* Account for general and floating-point register saves. */
1617 reg = inst_saves_gr (inst);
1618 if (reg >= 3 && reg <= 18
1619 && (!u->Save_SP || reg != FP_REGNUM))
1620 {
1621 save_gr &= ~(1 << reg);
1622
1623 /* stwm with a positive displacement is a *post modify*. */
1624 if ((inst >> 26) == 0x1b
1625 && extract_14 (inst) >= 0)
1626 frame_saved_regs->regs[reg] = frame_info->frame;
1627 else
1628 {
1629 /* Handle code with and without frame pointers. */
1630 if (u->Save_SP)
1631 frame_saved_regs->regs[reg]
1632 = frame_info->frame + extract_14 (inst);
1633 else
1634 frame_saved_regs->regs[reg]
1635 = frame_info->frame + (u->Total_frame_size << 3)
1636 + extract_14 (inst);
1637 }
1638 }
1639
1640
1641 /* GCC handles callee saved FP regs a little differently.
1642
1643 It emits an instruction to put the value of the start of
1644 the FP store area into %r1. It then uses fstds,ma with
1645 a basereg of %r1 for the stores.
1646
1647 HP CC emits them at the current stack pointer modifying
1648 the stack pointer as it stores each register. */
1649
1650 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1651 if ((inst & 0xffffc000) == 0x34610000
1652 || (inst & 0xffffc000) == 0x37c10000)
1653 fp_loc = extract_14 (inst);
1654
1655 reg = inst_saves_fr (inst);
1656 if (reg >= 12 && reg <= 21)
1657 {
1658 /* Note +4 braindamage below is necessary because the FP status
1659 registers are internally 8 registers rather than the expected
1660 4 registers. */
1661 save_fr &= ~(1 << reg);
1662 if (fp_loc == -1)
1663 {
1664 /* 1st HP CC FP register store. After this instruction
1665 we've set enough state that the GCC and HPCC code are
1666 both handled in the same manner. */
1667 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
1668 fp_loc = 8;
1669 }
1670 else
1671 {
1672 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
1673 = frame_info->frame + fp_loc;
1674 fp_loc += 8;
1675 }
1676 }
1677
1678 /* Quit if we hit any kind of branch. This can happen if a prologue
1679 instruction is in the delay slot of the first call/branch. */
1680 if (is_branch (inst))
1681 break;
1682
1683 /* Bump the PC. */
1684 pc += 4;
1685 }
1686 }
1687
1688 #ifdef MAINTENANCE_CMDS
1689
1690 static void
1691 unwind_command (exp, from_tty)
1692 char *exp;
1693 int from_tty;
1694 {
1695 CORE_ADDR address;
1696 union
1697 {
1698 int *foo;
1699 struct unwind_table_entry *u;
1700 } xxx;
1701
1702 /* If we have an expression, evaluate it and use it as the address. */
1703
1704 if (exp != 0 && *exp != 0)
1705 address = parse_and_eval_address (exp);
1706 else
1707 return;
1708
1709 xxx.u = find_unwind_entry (address);
1710
1711 if (!xxx.u)
1712 {
1713 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1714 return;
1715 }
1716
1717 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1718 xxx.foo[3]);
1719 }
1720 #endif /* MAINTENANCE_CMDS */
1721
1722 void
1723 _initialize_hppa_tdep ()
1724 {
1725 #ifdef MAINTENANCE_CMDS
1726 add_cmd ("unwind", class_maintenance, unwind_command,
1727 "Print unwind table entry at given address.",
1728 &maintenanceprintlist);
1729 #endif /* MAINTENANCE_CMDS */
1730 }