* hppa-tdep.c (hppa_pop_frame): Call clear_proceed_status before
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to.
867
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
873 {
874 unsigned int insn;
875
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
880
881 Else, try to dig the address the stub will return to in the normal
882 fashion. */
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
886 else
887 goto restart;
888 }
889
890 return pc;
891 }
892 \f
893 /* We need to correct the PC and the FP for the outermost frame when we are
894 in a system call. */
895
896 void
897 init_extra_frame_info (fromleaf, frame)
898 int fromleaf;
899 struct frame_info *frame;
900 {
901 int flags;
902 int framesize;
903
904 if (frame->next && !fromleaf)
905 return;
906
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
910 if (fromleaf)
911 {
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
915
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
919 in the frame). */
920 if (framesize == -1)
921 frame->frame = read_register (FP_REGNUM);
922 else
923 frame->frame -= framesize;
924 return;
925 }
926
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
930
931 /* The outermost frame is always derived from PC-framesize
932
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
941 if (framesize == -1)
942 frame->frame = read_register (FP_REGNUM);
943 else
944 frame->frame = read_register (SP_REGNUM) - framesize;
945 }
946 \f
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
950
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
954
955 CORE_ADDR
956 frame_chain (frame)
957 struct frame_info *frame;
958 {
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
963
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
972 {
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
974 }
975 #endif
976 else
977 frame_base = frame->frame;
978
979 /* Get frame sizes for the current frame and the frame of the
980 caller. */
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
983
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
988
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
994
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
998
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1001
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1006 valid, so use it.
1007
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1010
1011 tmp_frame = frame;
1012 while (tmp_frame)
1013 {
1014 u = find_unwind_entry (tmp_frame->pc);
1015
1016 if (!u)
1017 {
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1021 point. */
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1023 return 0;
1024 }
1025
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1031 break;
1032 else
1033 tmp_frame = tmp_frame->next;
1034 }
1035
1036 if (tmp_frame)
1037 {
1038 /* We may have walked down the chain into a function with a frame
1039 pointer. */
1040 if (u->Save_SP
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1045 else
1046 {
1047 struct frame_saved_regs saved_regs;
1048
1049 /* Sick.
1050
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1056 process.
1057
1058 This scheme works well except for two cases:
1059
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1064 system call).
1065
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1068
1069
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1074
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1076
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && ((saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1081 & 0x2))
1082 || (saved_regs.regs[FLAGS_REGNUM] == 0
1083 && read_register (FLAGS_REGNUM) & 0x2)))
1084 {
1085 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1086 if (!u)
1087 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1088 else
1089 return frame_base - (u->Total_frame_size << 3);
1090 }
1091
1092 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1093 }
1094 }
1095 else
1096 {
1097 struct frame_saved_regs saved_regs;
1098
1099 /* Get the innermost frame. */
1100 tmp_frame = frame;
1101 while (tmp_frame->next != NULL)
1102 tmp_frame = tmp_frame->next;
1103
1104 get_frame_saved_regs (tmp_frame, &saved_regs);
1105 /* Abominable hack. See above. */
1106 if (current_target.to_has_execution == 0
1107 && ((saved_regs.regs[FLAGS_REGNUM]
1108 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1109 & 0x2))
1110 || (saved_regs.regs[FLAGS_REGNUM] == 0
1111 && read_register (FLAGS_REGNUM) & 0x2)))
1112 {
1113 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1114 if (!u)
1115 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1116 else
1117 return frame_base - (u->Total_frame_size << 3);
1118 }
1119
1120 /* The value in %r3 was never saved into the stack (thus %r3 still
1121 holds the value of the previous frame pointer). */
1122 return read_register (FP_REGNUM);
1123 }
1124 }
1125
1126 \f
1127 /* To see if a frame chain is valid, see if the caller looks like it
1128 was compiled with gcc. */
1129
1130 int
1131 frame_chain_valid (chain, thisframe)
1132 CORE_ADDR chain;
1133 struct frame_info *thisframe;
1134 {
1135 struct minimal_symbol *msym_us;
1136 struct minimal_symbol *msym_start;
1137 struct unwind_table_entry *u, *next_u = NULL;
1138 struct frame_info *next;
1139
1140 if (!chain)
1141 return 0;
1142
1143 u = find_unwind_entry (thisframe->pc);
1144
1145 if (u == NULL)
1146 return 1;
1147
1148 /* We can't just check that the same of msym_us is "_start", because
1149 someone idiotically decided that they were going to make a Ltext_end
1150 symbol with the same address. This Ltext_end symbol is totally
1151 indistinguishable (as nearly as I can tell) from the symbol for a function
1152 which is (legitimately, since it is in the user's namespace)
1153 named Ltext_end, so we can't just ignore it. */
1154 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1155 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1156 if (msym_us
1157 && msym_start
1158 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1159 return 0;
1160
1161 /* Grrrr. Some new idiot decided that they don't want _start for the
1162 PRO configurations; $START$ calls main directly.... Deal with it. */
1163 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1164 if (msym_us
1165 && msym_start
1166 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1167 return 0;
1168
1169 next = get_next_frame (thisframe);
1170 if (next)
1171 next_u = find_unwind_entry (next->pc);
1172
1173 /* If this frame does not save SP, has no stack, isn't a stub,
1174 and doesn't "call" an interrupt routine or signal handler caller,
1175 then its not valid. */
1176 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1177 || (thisframe->next && thisframe->next->signal_handler_caller)
1178 || (next_u && next_u->HP_UX_interrupt_marker))
1179 return 1;
1180
1181 if (pc_in_linker_stub (thisframe->pc))
1182 return 1;
1183
1184 return 0;
1185 }
1186
1187 /*
1188 * These functions deal with saving and restoring register state
1189 * around a function call in the inferior. They keep the stack
1190 * double-word aligned; eventually, on an hp700, the stack will have
1191 * to be aligned to a 64-byte boundary.
1192 */
1193
1194 void
1195 push_dummy_frame (inf_status)
1196 struct inferior_status *inf_status;
1197 {
1198 CORE_ADDR sp, pc, pcspace;
1199 register int regnum;
1200 int int_buffer;
1201 double freg_buffer;
1202
1203 /* Oh, what a hack. If we're trying to perform an inferior call
1204 while the inferior is asleep, we have to make sure to clear
1205 the "in system call" bit in the flag register (the call will
1206 start after the syscall returns, so we're no longer in the system
1207 call!) This state is kept in "inf_status", change it there.
1208
1209 We also need a number of horrid hacks to deal with lossage in the
1210 PC queue registers (apparently they're not valid when the in syscall
1211 bit is set). */
1212 pc = target_read_pc (inferior_pid);
1213 int_buffer = read_register (FLAGS_REGNUM);
1214 if (int_buffer & 0x2)
1215 {
1216 unsigned int sid;
1217 int_buffer &= ~0x2;
1218 memcpy (inf_status->registers, &int_buffer, 4);
1219 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1220 pc += 4;
1221 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1222 pc -= 4;
1223 sid = (pc >> 30) & 0x3;
1224 if (sid == 0)
1225 pcspace = read_register (SR4_REGNUM);
1226 else
1227 pcspace = read_register (SR4_REGNUM + 4 + sid);
1228 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1229 &pcspace, 4);
1230 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1231 &pcspace, 4);
1232 }
1233 else
1234 pcspace = read_register (PCSQ_HEAD_REGNUM);
1235
1236 /* Space for "arguments"; the RP goes in here. */
1237 sp = read_register (SP_REGNUM) + 48;
1238 int_buffer = read_register (RP_REGNUM) | 0x3;
1239 write_memory (sp - 20, (char *)&int_buffer, 4);
1240
1241 int_buffer = read_register (FP_REGNUM);
1242 write_memory (sp, (char *)&int_buffer, 4);
1243
1244 write_register (FP_REGNUM, sp);
1245
1246 sp += 8;
1247
1248 for (regnum = 1; regnum < 32; regnum++)
1249 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1250 sp = push_word (sp, read_register (regnum));
1251
1252 sp += 4;
1253
1254 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1255 {
1256 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1257 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1258 }
1259 sp = push_word (sp, read_register (IPSW_REGNUM));
1260 sp = push_word (sp, read_register (SAR_REGNUM));
1261 sp = push_word (sp, pc);
1262 sp = push_word (sp, pcspace);
1263 sp = push_word (sp, pc + 4);
1264 sp = push_word (sp, pcspace);
1265 write_register (SP_REGNUM, sp);
1266 }
1267
1268 void
1269 find_dummy_frame_regs (frame, frame_saved_regs)
1270 struct frame_info *frame;
1271 struct frame_saved_regs *frame_saved_regs;
1272 {
1273 CORE_ADDR fp = frame->frame;
1274 int i;
1275
1276 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1277 frame_saved_regs->regs[FP_REGNUM] = fp;
1278 frame_saved_regs->regs[1] = fp + 8;
1279
1280 for (fp += 12, i = 3; i < 32; i++)
1281 {
1282 if (i != FP_REGNUM)
1283 {
1284 frame_saved_regs->regs[i] = fp;
1285 fp += 4;
1286 }
1287 }
1288
1289 fp += 4;
1290 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1291 frame_saved_regs->regs[i] = fp;
1292
1293 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1294 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1295 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1296 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1297 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1298 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1299 }
1300
1301 void
1302 hppa_pop_frame ()
1303 {
1304 register struct frame_info *frame = get_current_frame ();
1305 register CORE_ADDR fp, npc, target_pc;
1306 register int regnum;
1307 struct frame_saved_regs fsr;
1308 double freg_buffer;
1309
1310 fp = FRAME_FP (frame);
1311 get_frame_saved_regs (frame, &fsr);
1312
1313 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1314 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1315 restore_pc_queue (&fsr);
1316 #endif
1317
1318 for (regnum = 31; regnum > 0; regnum--)
1319 if (fsr.regs[regnum])
1320 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1321
1322 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1323 if (fsr.regs[regnum])
1324 {
1325 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1326 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1327 }
1328
1329 if (fsr.regs[IPSW_REGNUM])
1330 write_register (IPSW_REGNUM,
1331 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1332
1333 if (fsr.regs[SAR_REGNUM])
1334 write_register (SAR_REGNUM,
1335 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1336
1337 /* If the PC was explicitly saved, then just restore it. */
1338 if (fsr.regs[PCOQ_TAIL_REGNUM])
1339 {
1340 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1341 write_register (PCOQ_TAIL_REGNUM, npc);
1342 }
1343 /* Else use the value in %rp to set the new PC. */
1344 else
1345 {
1346 npc = read_register (RP_REGNUM);
1347 target_write_pc (npc, 0);
1348 }
1349
1350 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1351
1352 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1353 write_register (SP_REGNUM, fp - 48);
1354 else
1355 write_register (SP_REGNUM, fp);
1356
1357 /* The PC we just restored may be inside a return trampoline. If so
1358 we want to restart the inferior and run it through the trampoline.
1359
1360 Do this by setting a momentary breakpoint at the location the
1361 trampoline returns to.
1362
1363 Don't skip through the trampoline if we're popping a dummy frame. */
1364 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1365 if (target_pc && !fsr.regs[IPSW_REGNUM])
1366 {
1367 struct symtab_and_line sal;
1368 struct breakpoint *breakpoint;
1369 struct cleanup *old_chain;
1370
1371 /* Set up our breakpoint. Set it to be silent as the MI code
1372 for "return_command" will print the frame we returned to. */
1373 sal = find_pc_line (target_pc, 0);
1374 sal.pc = target_pc;
1375 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1376 breakpoint->silent = 1;
1377
1378 /* So we can clean things up. */
1379 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1380
1381 /* Start up the inferior. */
1382 clear_proceed_status ();
1383 proceed_to_finish = 1;
1384 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1385
1386 /* Perform our cleanups. */
1387 do_cleanups (old_chain);
1388 }
1389 flush_cached_frames ();
1390 }
1391
1392 /*
1393 * After returning to a dummy on the stack, restore the instruction
1394 * queue space registers. */
1395
1396 static int
1397 restore_pc_queue (fsr)
1398 struct frame_saved_regs *fsr;
1399 {
1400 CORE_ADDR pc = read_pc ();
1401 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1402 struct target_waitstatus w;
1403 int insn_count;
1404
1405 /* Advance past break instruction in the call dummy. */
1406 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1407 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1408
1409 /*
1410 * HPUX doesn't let us set the space registers or the space
1411 * registers of the PC queue through ptrace. Boo, hiss.
1412 * Conveniently, the call dummy has this sequence of instructions
1413 * after the break:
1414 * mtsp r21, sr0
1415 * ble,n 0(sr0, r22)
1416 *
1417 * So, load up the registers and single step until we are in the
1418 * right place.
1419 */
1420
1421 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1422 write_register (22, new_pc);
1423
1424 for (insn_count = 0; insn_count < 3; insn_count++)
1425 {
1426 /* FIXME: What if the inferior gets a signal right now? Want to
1427 merge this into wait_for_inferior (as a special kind of
1428 watchpoint? By setting a breakpoint at the end? Is there
1429 any other choice? Is there *any* way to do this stuff with
1430 ptrace() or some equivalent?). */
1431 resume (1, 0);
1432 target_wait (inferior_pid, &w);
1433
1434 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1435 {
1436 stop_signal = w.value.sig;
1437 terminal_ours_for_output ();
1438 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1439 target_signal_to_name (stop_signal),
1440 target_signal_to_string (stop_signal));
1441 gdb_flush (gdb_stdout);
1442 return 0;
1443 }
1444 }
1445 target_terminal_ours ();
1446 target_fetch_registers (-1);
1447 return 1;
1448 }
1449
1450 CORE_ADDR
1451 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1452 int nargs;
1453 value_ptr *args;
1454 CORE_ADDR sp;
1455 int struct_return;
1456 CORE_ADDR struct_addr;
1457 {
1458 /* array of arguments' offsets */
1459 int *offset = (int *)alloca(nargs * sizeof (int));
1460 int cum = 0;
1461 int i, alignment;
1462
1463 for (i = 0; i < nargs; i++)
1464 {
1465 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1466
1467 /* value must go at proper alignment. Assume alignment is a
1468 power of two.*/
1469 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1470 if (cum % alignment)
1471 cum = (cum + alignment) & -alignment;
1472 offset[i] = -cum;
1473 }
1474 sp += max ((cum + 7) & -8, 16);
1475
1476 for (i = 0; i < nargs; i++)
1477 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1478 TYPE_LENGTH (VALUE_TYPE (args[i])));
1479
1480 if (struct_return)
1481 write_register (28, struct_addr);
1482 return sp + 32;
1483 }
1484
1485 /*
1486 * Insert the specified number of args and function address
1487 * into a call sequence of the above form stored at DUMMYNAME.
1488 *
1489 * On the hppa we need to call the stack dummy through $$dyncall.
1490 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1491 * real_pc, which is the location where gdb should start up the
1492 * inferior to do the function call.
1493 */
1494
1495 CORE_ADDR
1496 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1497 char *dummy;
1498 CORE_ADDR pc;
1499 CORE_ADDR fun;
1500 int nargs;
1501 value_ptr *args;
1502 struct type *type;
1503 int gcc_p;
1504 {
1505 CORE_ADDR dyncall_addr;
1506 struct minimal_symbol *msymbol;
1507 struct minimal_symbol *trampoline;
1508 int flags = read_register (FLAGS_REGNUM);
1509 struct unwind_table_entry *u;
1510
1511 trampoline = NULL;
1512 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1513 if (msymbol == NULL)
1514 error ("Can't find an address for $$dyncall trampoline");
1515
1516 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1517
1518 /* FUN could be a procedure label, in which case we have to get
1519 its real address and the value of its GOT/DP. */
1520 if (fun & 0x2)
1521 {
1522 /* Get the GOT/DP value for the target function. It's
1523 at *(fun+4). Note the call dummy is *NOT* allowed to
1524 trash %r19 before calling the target function. */
1525 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1526
1527 /* Now get the real address for the function we are calling, it's
1528 at *fun. */
1529 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1530 }
1531 else
1532 {
1533
1534 #ifndef GDB_TARGET_IS_PA_ELF
1535 /* FUN could be either an export stub, or the real address of a
1536 function in a shared library. We must call an import stub
1537 rather than the export stub or real function for lazy binding
1538 to work correctly. */
1539 if (som_solib_get_got_by_pc (fun))
1540 {
1541 struct objfile *objfile;
1542 struct minimal_symbol *funsymbol, *stub_symbol;
1543 CORE_ADDR newfun = 0;
1544
1545 funsymbol = lookup_minimal_symbol_by_pc (fun);
1546 if (!funsymbol)
1547 error ("Unable to find minimal symbol for target fucntion.\n");
1548
1549 /* Search all the object files for an import symbol with the
1550 right name. */
1551 ALL_OBJFILES (objfile)
1552 {
1553 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1554 NULL, objfile);
1555 /* Found a symbol with the right name. */
1556 if (stub_symbol)
1557 {
1558 struct unwind_table_entry *u;
1559 /* It must be a shared library trampoline. */
1560 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1561 continue;
1562
1563 /* It must also be an import stub. */
1564 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1565 if (!u || u->stub_type != IMPORT)
1566 continue;
1567
1568 /* OK. Looks like the correct import stub. */
1569 newfun = SYMBOL_VALUE (stub_symbol);
1570 fun = newfun;
1571 }
1572 }
1573 if (newfun == 0)
1574 write_register (19, som_solib_get_got_by_pc (fun));
1575 }
1576 #endif
1577 }
1578
1579 /* If we are calling an import stub (eg calling into a dynamic library)
1580 then have sr4export call the magic __d_plt_call routine which is linked
1581 in from end.o. (You can't use _sr4export to call the import stub as
1582 the value in sp-24 will get fried and you end up returning to the
1583 wrong location. You can't call the import stub directly as the code
1584 to bind the PLT entry to a function can't return to a stack address.) */
1585 u = find_unwind_entry (fun);
1586 if (u && u->stub_type == IMPORT)
1587 {
1588 CORE_ADDR new_fun;
1589
1590 /* Prefer __gcc_plt_call over the HP supplied routine because
1591 __gcc_plt_call works for any number of arguments. */
1592 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1593 if (trampoline == NULL)
1594 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1595
1596 if (trampoline == NULL)
1597 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1598
1599 /* This is where sr4export will jump to. */
1600 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1601
1602 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1603 {
1604 /* We have to store the address of the stub in __shlib_funcptr. */
1605 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1606 (struct objfile *)NULL);
1607 if (msymbol == NULL)
1608 error ("Can't find an address for __shlib_funcptr");
1609
1610 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1611
1612 /* We want sr4export to call __d_plt_call, so we claim it is
1613 the final target. Clear trampoline. */
1614 fun = new_fun;
1615 trampoline = NULL;
1616 }
1617 }
1618
1619 /* Store upper 21 bits of function address into ldil. fun will either be
1620 the final target (most cases) or __d_plt_call when calling into a shared
1621 library and __gcc_plt_call is not available. */
1622 store_unsigned_integer
1623 (&dummy[FUNC_LDIL_OFFSET],
1624 INSTRUCTION_SIZE,
1625 deposit_21 (fun >> 11,
1626 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1627 INSTRUCTION_SIZE)));
1628
1629 /* Store lower 11 bits of function address into ldo */
1630 store_unsigned_integer
1631 (&dummy[FUNC_LDO_OFFSET],
1632 INSTRUCTION_SIZE,
1633 deposit_14 (fun & MASK_11,
1634 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1635 INSTRUCTION_SIZE)));
1636 #ifdef SR4EXPORT_LDIL_OFFSET
1637
1638 {
1639 CORE_ADDR trampoline_addr;
1640
1641 /* We may still need sr4export's address too. */
1642
1643 if (trampoline == NULL)
1644 {
1645 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1646 if (msymbol == NULL)
1647 error ("Can't find an address for _sr4export trampoline");
1648
1649 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1650 }
1651 else
1652 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1653
1654
1655 /* Store upper 21 bits of trampoline's address into ldil */
1656 store_unsigned_integer
1657 (&dummy[SR4EXPORT_LDIL_OFFSET],
1658 INSTRUCTION_SIZE,
1659 deposit_21 (trampoline_addr >> 11,
1660 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1661 INSTRUCTION_SIZE)));
1662
1663 /* Store lower 11 bits of trampoline's address into ldo */
1664 store_unsigned_integer
1665 (&dummy[SR4EXPORT_LDO_OFFSET],
1666 INSTRUCTION_SIZE,
1667 deposit_14 (trampoline_addr & MASK_11,
1668 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1669 INSTRUCTION_SIZE)));
1670 }
1671 #endif
1672
1673 write_register (22, pc);
1674
1675 /* If we are in a syscall, then we should call the stack dummy
1676 directly. $$dyncall is not needed as the kernel sets up the
1677 space id registers properly based on the value in %r31. In
1678 fact calling $$dyncall will not work because the value in %r22
1679 will be clobbered on the syscall exit path.
1680
1681 Similarly if the current PC is in a shared library. Note however,
1682 this scheme won't work if the shared library isn't mapped into
1683 the same space as the stack. */
1684 if (flags & 2)
1685 return pc;
1686 #ifndef GDB_TARGET_IS_PA_ELF
1687 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1688 return pc;
1689 #endif
1690 else
1691 return dyncall_addr;
1692
1693 }
1694
1695 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1696 bits. */
1697
1698 CORE_ADDR
1699 target_read_pc (pid)
1700 int pid;
1701 {
1702 int flags = read_register (FLAGS_REGNUM);
1703
1704 if (flags & 2) {
1705 return read_register (31) & ~0x3;
1706 }
1707 return read_register (PC_REGNUM) & ~0x3;
1708 }
1709
1710 /* Write out the PC. If currently in a syscall, then also write the new
1711 PC value into %r31. */
1712
1713 void
1714 target_write_pc (v, pid)
1715 CORE_ADDR v;
1716 int pid;
1717 {
1718 int flags = read_register (FLAGS_REGNUM);
1719
1720 /* If in a syscall, then set %r31. Also make sure to get the
1721 privilege bits set correctly. */
1722 if (flags & 2)
1723 write_register (31, (long) (v | 0x3));
1724
1725 write_register (PC_REGNUM, (long) v);
1726 write_register (NPC_REGNUM, (long) v + 4);
1727 }
1728
1729 /* return the alignment of a type in bytes. Structures have the maximum
1730 alignment required by their fields. */
1731
1732 static int
1733 hppa_alignof (type)
1734 struct type *type;
1735 {
1736 int max_align, align, i;
1737 CHECK_TYPEDEF (type);
1738 switch (TYPE_CODE (type))
1739 {
1740 case TYPE_CODE_PTR:
1741 case TYPE_CODE_INT:
1742 case TYPE_CODE_FLT:
1743 return TYPE_LENGTH (type);
1744 case TYPE_CODE_ARRAY:
1745 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1746 case TYPE_CODE_STRUCT:
1747 case TYPE_CODE_UNION:
1748 max_align = 2;
1749 for (i = 0; i < TYPE_NFIELDS (type); i++)
1750 {
1751 /* Bit fields have no real alignment. */
1752 if (!TYPE_FIELD_BITPOS (type, i))
1753 {
1754 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1755 max_align = max (max_align, align);
1756 }
1757 }
1758 return max_align;
1759 default:
1760 return 4;
1761 }
1762 }
1763
1764 /* Print the register regnum, or all registers if regnum is -1 */
1765
1766 void
1767 pa_do_registers_info (regnum, fpregs)
1768 int regnum;
1769 int fpregs;
1770 {
1771 char raw_regs [REGISTER_BYTES];
1772 int i;
1773
1774 for (i = 0; i < NUM_REGS; i++)
1775 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1776 if (regnum == -1)
1777 pa_print_registers (raw_regs, regnum, fpregs);
1778 else if (regnum < FP0_REGNUM)
1779 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1780 REGISTER_BYTE (regnum)));
1781 else
1782 pa_print_fp_reg (regnum);
1783 }
1784
1785 static void
1786 pa_print_registers (raw_regs, regnum, fpregs)
1787 char *raw_regs;
1788 int regnum;
1789 int fpregs;
1790 {
1791 int i,j;
1792 long val;
1793
1794 for (i = 0; i < 18; i++)
1795 {
1796 for (j = 0; j < 4; j++)
1797 {
1798 val =
1799 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1800 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1801 }
1802 printf_unfiltered ("\n");
1803 }
1804
1805 if (fpregs)
1806 for (i = 72; i < NUM_REGS; i++)
1807 pa_print_fp_reg (i);
1808 }
1809
1810 static void
1811 pa_print_fp_reg (i)
1812 int i;
1813 {
1814 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1815 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1816
1817 /* Get 32bits of data. */
1818 read_relative_register_raw_bytes (i, raw_buffer);
1819
1820 /* Put it in the buffer. No conversions are ever necessary. */
1821 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1822
1823 fputs_filtered (reg_names[i], gdb_stdout);
1824 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1825 fputs_filtered ("(single precision) ", gdb_stdout);
1826
1827 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1828 1, 0, Val_pretty_default);
1829 printf_filtered ("\n");
1830
1831 /* If "i" is even, then this register can also be a double-precision
1832 FP register. Dump it out as such. */
1833 if ((i % 2) == 0)
1834 {
1835 /* Get the data in raw format for the 2nd half. */
1836 read_relative_register_raw_bytes (i + 1, raw_buffer);
1837
1838 /* Copy it into the appropriate part of the virtual buffer. */
1839 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1840 REGISTER_RAW_SIZE (i));
1841
1842 /* Dump it as a double. */
1843 fputs_filtered (reg_names[i], gdb_stdout);
1844 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1845 fputs_filtered ("(double precision) ", gdb_stdout);
1846
1847 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1848 1, 0, Val_pretty_default);
1849 printf_filtered ("\n");
1850 }
1851 }
1852
1853 /* Return one if PC is in the call path of a trampoline, else return zero.
1854
1855 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1856 just shared library trampolines (import, export). */
1857
1858 int
1859 in_solib_call_trampoline (pc, name)
1860 CORE_ADDR pc;
1861 char *name;
1862 {
1863 struct minimal_symbol *minsym;
1864 struct unwind_table_entry *u;
1865 static CORE_ADDR dyncall = 0;
1866 static CORE_ADDR sr4export = 0;
1867
1868 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1869 new exec file */
1870
1871 /* First see if PC is in one of the two C-library trampolines. */
1872 if (!dyncall)
1873 {
1874 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1875 if (minsym)
1876 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1877 else
1878 dyncall = -1;
1879 }
1880
1881 if (!sr4export)
1882 {
1883 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1884 if (minsym)
1885 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1886 else
1887 sr4export = -1;
1888 }
1889
1890 if (pc == dyncall || pc == sr4export)
1891 return 1;
1892
1893 /* Get the unwind descriptor corresponding to PC, return zero
1894 if no unwind was found. */
1895 u = find_unwind_entry (pc);
1896 if (!u)
1897 return 0;
1898
1899 /* If this isn't a linker stub, then return now. */
1900 if (u->stub_type == 0)
1901 return 0;
1902
1903 /* By definition a long-branch stub is a call stub. */
1904 if (u->stub_type == LONG_BRANCH)
1905 return 1;
1906
1907 /* The call and return path execute the same instructions within
1908 an IMPORT stub! So an IMPORT stub is both a call and return
1909 trampoline. */
1910 if (u->stub_type == IMPORT)
1911 return 1;
1912
1913 /* Parameter relocation stubs always have a call path and may have a
1914 return path. */
1915 if (u->stub_type == PARAMETER_RELOCATION
1916 || u->stub_type == EXPORT)
1917 {
1918 CORE_ADDR addr;
1919
1920 /* Search forward from the current PC until we hit a branch
1921 or the end of the stub. */
1922 for (addr = pc; addr <= u->region_end; addr += 4)
1923 {
1924 unsigned long insn;
1925
1926 insn = read_memory_integer (addr, 4);
1927
1928 /* Does it look like a bl? If so then it's the call path, if
1929 we find a bv or be first, then we're on the return path. */
1930 if ((insn & 0xfc00e000) == 0xe8000000)
1931 return 1;
1932 else if ((insn & 0xfc00e001) == 0xe800c000
1933 || (insn & 0xfc000000) == 0xe0000000)
1934 return 0;
1935 }
1936
1937 /* Should never happen. */
1938 warning ("Unable to find branch in parameter relocation stub.\n");
1939 return 0;
1940 }
1941
1942 /* Unknown stub type. For now, just return zero. */
1943 return 0;
1944 }
1945
1946 /* Return one if PC is in the return path of a trampoline, else return zero.
1947
1948 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1949 just shared library trampolines (import, export). */
1950
1951 int
1952 in_solib_return_trampoline (pc, name)
1953 CORE_ADDR pc;
1954 char *name;
1955 {
1956 struct unwind_table_entry *u;
1957
1958 /* Get the unwind descriptor corresponding to PC, return zero
1959 if no unwind was found. */
1960 u = find_unwind_entry (pc);
1961 if (!u)
1962 return 0;
1963
1964 /* If this isn't a linker stub or it's just a long branch stub, then
1965 return zero. */
1966 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1967 return 0;
1968
1969 /* The call and return path execute the same instructions within
1970 an IMPORT stub! So an IMPORT stub is both a call and return
1971 trampoline. */
1972 if (u->stub_type == IMPORT)
1973 return 1;
1974
1975 /* Parameter relocation stubs always have a call path and may have a
1976 return path. */
1977 if (u->stub_type == PARAMETER_RELOCATION
1978 || u->stub_type == EXPORT)
1979 {
1980 CORE_ADDR addr;
1981
1982 /* Search forward from the current PC until we hit a branch
1983 or the end of the stub. */
1984 for (addr = pc; addr <= u->region_end; addr += 4)
1985 {
1986 unsigned long insn;
1987
1988 insn = read_memory_integer (addr, 4);
1989
1990 /* Does it look like a bl? If so then it's the call path, if
1991 we find a bv or be first, then we're on the return path. */
1992 if ((insn & 0xfc00e000) == 0xe8000000)
1993 return 0;
1994 else if ((insn & 0xfc00e001) == 0xe800c000
1995 || (insn & 0xfc000000) == 0xe0000000)
1996 return 1;
1997 }
1998
1999 /* Should never happen. */
2000 warning ("Unable to find branch in parameter relocation stub.\n");
2001 return 0;
2002 }
2003
2004 /* Unknown stub type. For now, just return zero. */
2005 return 0;
2006
2007 }
2008
2009 /* Figure out if PC is in a trampoline, and if so find out where
2010 the trampoline will jump to. If not in a trampoline, return zero.
2011
2012 Simple code examination probably is not a good idea since the code
2013 sequences in trampolines can also appear in user code.
2014
2015 We use unwinds and information from the minimal symbol table to
2016 determine when we're in a trampoline. This won't work for ELF
2017 (yet) since it doesn't create stub unwind entries. Whether or
2018 not ELF will create stub unwinds or normal unwinds for linker
2019 stubs is still being debated.
2020
2021 This should handle simple calls through dyncall or sr4export,
2022 long calls, argument relocation stubs, and dyncall/sr4export
2023 calling an argument relocation stub. It even handles some stubs
2024 used in dynamic executables. */
2025
2026 CORE_ADDR
2027 skip_trampoline_code (pc, name)
2028 CORE_ADDR pc;
2029 char *name;
2030 {
2031 long orig_pc = pc;
2032 long prev_inst, curr_inst, loc;
2033 static CORE_ADDR dyncall = 0;
2034 static CORE_ADDR sr4export = 0;
2035 struct minimal_symbol *msym;
2036 struct unwind_table_entry *u;
2037
2038 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2039 new exec file */
2040
2041 if (!dyncall)
2042 {
2043 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2044 if (msym)
2045 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2046 else
2047 dyncall = -1;
2048 }
2049
2050 if (!sr4export)
2051 {
2052 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2053 if (msym)
2054 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2055 else
2056 sr4export = -1;
2057 }
2058
2059 /* Addresses passed to dyncall may *NOT* be the actual address
2060 of the function. So we may have to do something special. */
2061 if (pc == dyncall)
2062 {
2063 pc = (CORE_ADDR) read_register (22);
2064
2065 /* If bit 30 (counting from the left) is on, then pc is the address of
2066 the PLT entry for this function, not the address of the function
2067 itself. Bit 31 has meaning too, but only for MPE. */
2068 if (pc & 0x2)
2069 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2070 }
2071 else if (pc == sr4export)
2072 pc = (CORE_ADDR) (read_register (22));
2073
2074 /* Get the unwind descriptor corresponding to PC, return zero
2075 if no unwind was found. */
2076 u = find_unwind_entry (pc);
2077 if (!u)
2078 return 0;
2079
2080 /* If this isn't a linker stub, then return now. */
2081 if (u->stub_type == 0)
2082 return orig_pc == pc ? 0 : pc & ~0x3;
2083
2084 /* It's a stub. Search for a branch and figure out where it goes.
2085 Note we have to handle multi insn branch sequences like ldil;ble.
2086 Most (all?) other branches can be determined by examining the contents
2087 of certain registers and the stack. */
2088 loc = pc;
2089 curr_inst = 0;
2090 prev_inst = 0;
2091 while (1)
2092 {
2093 /* Make sure we haven't walked outside the range of this stub. */
2094 if (u != find_unwind_entry (loc))
2095 {
2096 warning ("Unable to find branch in linker stub");
2097 return orig_pc == pc ? 0 : pc & ~0x3;
2098 }
2099
2100 prev_inst = curr_inst;
2101 curr_inst = read_memory_integer (loc, 4);
2102
2103 /* Does it look like a branch external using %r1? Then it's the
2104 branch from the stub to the actual function. */
2105 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2106 {
2107 /* Yup. See if the previous instruction loaded
2108 a value into %r1. If so compute and return the jump address. */
2109 if ((prev_inst & 0xffe00000) == 0x20200000)
2110 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2111 else
2112 {
2113 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2114 return orig_pc == pc ? 0 : pc & ~0x3;
2115 }
2116 }
2117
2118 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2119 import stub to an export stub.
2120
2121 It is impossible to determine the target of the branch via
2122 simple examination of instructions and/or data (consider
2123 that the address in the plabel may be the address of the
2124 bind-on-reference routine in the dynamic loader).
2125
2126 So we have try an alternative approach.
2127
2128 Get the name of the symbol at our current location; it should
2129 be a stub symbol with the same name as the symbol in the
2130 shared library.
2131
2132 Then lookup a minimal symbol with the same name; we should
2133 get the minimal symbol for the target routine in the shared
2134 library as those take precedence of import/export stubs. */
2135 if (curr_inst == 0xe2a00000)
2136 {
2137 struct minimal_symbol *stubsym, *libsym;
2138
2139 stubsym = lookup_minimal_symbol_by_pc (loc);
2140 if (stubsym == NULL)
2141 {
2142 warning ("Unable to find symbol for 0x%x", loc);
2143 return orig_pc == pc ? 0 : pc & ~0x3;
2144 }
2145
2146 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2147 if (libsym == NULL)
2148 {
2149 warning ("Unable to find library symbol for %s\n",
2150 SYMBOL_NAME (stubsym));
2151 return orig_pc == pc ? 0 : pc & ~0x3;
2152 }
2153
2154 return SYMBOL_VALUE (libsym);
2155 }
2156
2157 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2158 branch from the stub to the actual function. */
2159 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2160 || (curr_inst & 0xffe0e000) == 0xe8000000)
2161 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2162
2163 /* Does it look like bv (rp)? Note this depends on the
2164 current stack pointer being the same as the stack
2165 pointer in the stub itself! This is a branch on from the
2166 stub back to the original caller. */
2167 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2168 {
2169 /* Yup. See if the previous instruction loaded
2170 rp from sp - 8. */
2171 if (prev_inst == 0x4bc23ff1)
2172 return (read_memory_integer
2173 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2174 else
2175 {
2176 warning ("Unable to find restore of %%rp before bv (%%rp).");
2177 return orig_pc == pc ? 0 : pc & ~0x3;
2178 }
2179 }
2180
2181 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2182 the original caller from the stub. Used in dynamic executables. */
2183 else if (curr_inst == 0xe0400002)
2184 {
2185 /* The value we jump to is sitting in sp - 24. But that's
2186 loaded several instructions before the be instruction.
2187 I guess we could check for the previous instruction being
2188 mtsp %r1,%sr0 if we want to do sanity checking. */
2189 return (read_memory_integer
2190 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2191 }
2192
2193 /* Haven't found the branch yet, but we're still in the stub.
2194 Keep looking. */
2195 loc += 4;
2196 }
2197 }
2198
2199 /* For the given instruction (INST), return any adjustment it makes
2200 to the stack pointer or zero for no adjustment.
2201
2202 This only handles instructions commonly found in prologues. */
2203
2204 static int
2205 prologue_inst_adjust_sp (inst)
2206 unsigned long inst;
2207 {
2208 /* This must persist across calls. */
2209 static int save_high21;
2210
2211 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2212 if ((inst & 0xffffc000) == 0x37de0000)
2213 return extract_14 (inst);
2214
2215 /* stwm X,D(sp) */
2216 if ((inst & 0xffe00000) == 0x6fc00000)
2217 return extract_14 (inst);
2218
2219 /* addil high21,%r1; ldo low11,(%r1),%r30)
2220 save high bits in save_high21 for later use. */
2221 if ((inst & 0xffe00000) == 0x28200000)
2222 {
2223 save_high21 = extract_21 (inst);
2224 return 0;
2225 }
2226
2227 if ((inst & 0xffff0000) == 0x343e0000)
2228 return save_high21 + extract_14 (inst);
2229
2230 /* fstws as used by the HP compilers. */
2231 if ((inst & 0xffffffe0) == 0x2fd01220)
2232 return extract_5_load (inst);
2233
2234 /* No adjustment. */
2235 return 0;
2236 }
2237
2238 /* Return nonzero if INST is a branch of some kind, else return zero. */
2239
2240 static int
2241 is_branch (inst)
2242 unsigned long inst;
2243 {
2244 switch (inst >> 26)
2245 {
2246 case 0x20:
2247 case 0x21:
2248 case 0x22:
2249 case 0x23:
2250 case 0x28:
2251 case 0x29:
2252 case 0x2a:
2253 case 0x2b:
2254 case 0x30:
2255 case 0x31:
2256 case 0x32:
2257 case 0x33:
2258 case 0x38:
2259 case 0x39:
2260 case 0x3a:
2261 return 1;
2262
2263 default:
2264 return 0;
2265 }
2266 }
2267
2268 /* Return the register number for a GR which is saved by INST or
2269 zero it INST does not save a GR. */
2270
2271 static int
2272 inst_saves_gr (inst)
2273 unsigned long inst;
2274 {
2275 /* Does it look like a stw? */
2276 if ((inst >> 26) == 0x1a)
2277 return extract_5R_store (inst);
2278
2279 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2280 if ((inst >> 26) == 0x1b)
2281 return extract_5R_store (inst);
2282
2283 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2284 too. */
2285 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2286 return extract_5R_store (inst);
2287
2288 return 0;
2289 }
2290
2291 /* Return the register number for a FR which is saved by INST or
2292 zero it INST does not save a FR.
2293
2294 Note we only care about full 64bit register stores (that's the only
2295 kind of stores the prologue will use).
2296
2297 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2298
2299 static int
2300 inst_saves_fr (inst)
2301 unsigned long inst;
2302 {
2303 if ((inst & 0xfc00dfc0) == 0x2c001200)
2304 return extract_5r_store (inst);
2305 return 0;
2306 }
2307
2308 /* Advance PC across any function entry prologue instructions
2309 to reach some "real" code.
2310
2311 Use information in the unwind table to determine what exactly should
2312 be in the prologue. */
2313
2314 CORE_ADDR
2315 skip_prologue (pc)
2316 CORE_ADDR pc;
2317 {
2318 char buf[4];
2319 CORE_ADDR orig_pc = pc;
2320 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2321 unsigned long args_stored, status, i, restart_gr, restart_fr;
2322 struct unwind_table_entry *u;
2323
2324 restart_gr = 0;
2325 restart_fr = 0;
2326
2327 restart:
2328 u = find_unwind_entry (pc);
2329 if (!u)
2330 return pc;
2331
2332 /* If we are not at the beginning of a function, then return now. */
2333 if ((pc & ~0x3) != u->region_start)
2334 return pc;
2335
2336 /* This is how much of a frame adjustment we need to account for. */
2337 stack_remaining = u->Total_frame_size << 3;
2338
2339 /* Magic register saves we want to know about. */
2340 save_rp = u->Save_RP;
2341 save_sp = u->Save_SP;
2342
2343 /* An indication that args may be stored into the stack. Unfortunately
2344 the HPUX compilers tend to set this in cases where no args were
2345 stored too!. */
2346 args_stored = 1;
2347
2348 /* Turn the Entry_GR field into a bitmask. */
2349 save_gr = 0;
2350 for (i = 3; i < u->Entry_GR + 3; i++)
2351 {
2352 /* Frame pointer gets saved into a special location. */
2353 if (u->Save_SP && i == FP_REGNUM)
2354 continue;
2355
2356 save_gr |= (1 << i);
2357 }
2358 save_gr &= ~restart_gr;
2359
2360 /* Turn the Entry_FR field into a bitmask too. */
2361 save_fr = 0;
2362 for (i = 12; i < u->Entry_FR + 12; i++)
2363 save_fr |= (1 << i);
2364 save_fr &= ~restart_fr;
2365
2366 /* Loop until we find everything of interest or hit a branch.
2367
2368 For unoptimized GCC code and for any HP CC code this will never ever
2369 examine any user instructions.
2370
2371 For optimzied GCC code we're faced with problems. GCC will schedule
2372 its prologue and make prologue instructions available for delay slot
2373 filling. The end result is user code gets mixed in with the prologue
2374 and a prologue instruction may be in the delay slot of the first branch
2375 or call.
2376
2377 Some unexpected things are expected with debugging optimized code, so
2378 we allow this routine to walk past user instructions in optimized
2379 GCC code. */
2380 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2381 || args_stored)
2382 {
2383 unsigned int reg_num;
2384 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2385 unsigned long old_save_rp, old_save_sp, next_inst;
2386
2387 /* Save copies of all the triggers so we can compare them later
2388 (only for HPC). */
2389 old_save_gr = save_gr;
2390 old_save_fr = save_fr;
2391 old_save_rp = save_rp;
2392 old_save_sp = save_sp;
2393 old_stack_remaining = stack_remaining;
2394
2395 status = target_read_memory (pc, buf, 4);
2396 inst = extract_unsigned_integer (buf, 4);
2397
2398 /* Yow! */
2399 if (status != 0)
2400 return pc;
2401
2402 /* Note the interesting effects of this instruction. */
2403 stack_remaining -= prologue_inst_adjust_sp (inst);
2404
2405 /* There is only one instruction used for saving RP into the stack. */
2406 if (inst == 0x6bc23fd9)
2407 save_rp = 0;
2408
2409 /* This is the only way we save SP into the stack. At this time
2410 the HP compilers never bother to save SP into the stack. */
2411 if ((inst & 0xffffc000) == 0x6fc10000)
2412 save_sp = 0;
2413
2414 /* Account for general and floating-point register saves. */
2415 reg_num = inst_saves_gr (inst);
2416 save_gr &= ~(1 << reg_num);
2417
2418 /* Ugh. Also account for argument stores into the stack.
2419 Unfortunately args_stored only tells us that some arguments
2420 where stored into the stack. Not how many or what kind!
2421
2422 This is a kludge as on the HP compiler sets this bit and it
2423 never does prologue scheduling. So once we see one, skip past
2424 all of them. We have similar code for the fp arg stores below.
2425
2426 FIXME. Can still die if we have a mix of GR and FR argument
2427 stores! */
2428 if (reg_num >= 23 && reg_num <= 26)
2429 {
2430 while (reg_num >= 23 && reg_num <= 26)
2431 {
2432 pc += 4;
2433 status = target_read_memory (pc, buf, 4);
2434 inst = extract_unsigned_integer (buf, 4);
2435 if (status != 0)
2436 return pc;
2437 reg_num = inst_saves_gr (inst);
2438 }
2439 args_stored = 0;
2440 continue;
2441 }
2442
2443 reg_num = inst_saves_fr (inst);
2444 save_fr &= ~(1 << reg_num);
2445
2446 status = target_read_memory (pc + 4, buf, 4);
2447 next_inst = extract_unsigned_integer (buf, 4);
2448
2449 /* Yow! */
2450 if (status != 0)
2451 return pc;
2452
2453 /* We've got to be read to handle the ldo before the fp register
2454 save. */
2455 if ((inst & 0xfc000000) == 0x34000000
2456 && inst_saves_fr (next_inst) >= 4
2457 && inst_saves_fr (next_inst) <= 7)
2458 {
2459 /* So we drop into the code below in a reasonable state. */
2460 reg_num = inst_saves_fr (next_inst);
2461 pc -= 4;
2462 }
2463
2464 /* Ugh. Also account for argument stores into the stack.
2465 This is a kludge as on the HP compiler sets this bit and it
2466 never does prologue scheduling. So once we see one, skip past
2467 all of them. */
2468 if (reg_num >= 4 && reg_num <= 7)
2469 {
2470 while (reg_num >= 4 && reg_num <= 7)
2471 {
2472 pc += 8;
2473 status = target_read_memory (pc, buf, 4);
2474 inst = extract_unsigned_integer (buf, 4);
2475 if (status != 0)
2476 return pc;
2477 if ((inst & 0xfc000000) != 0x34000000)
2478 break;
2479 status = target_read_memory (pc + 4, buf, 4);
2480 next_inst = extract_unsigned_integer (buf, 4);
2481 if (status != 0)
2482 return pc;
2483 reg_num = inst_saves_fr (next_inst);
2484 }
2485 args_stored = 0;
2486 continue;
2487 }
2488
2489 /* Quit if we hit any kind of branch. This can happen if a prologue
2490 instruction is in the delay slot of the first call/branch. */
2491 if (is_branch (inst))
2492 break;
2493
2494 /* What a crock. The HP compilers set args_stored even if no
2495 arguments were stored into the stack (boo hiss). This could
2496 cause this code to then skip a bunch of user insns (up to the
2497 first branch).
2498
2499 To combat this we try to identify when args_stored was bogusly
2500 set and clear it. We only do this when args_stored is nonzero,
2501 all other resources are accounted for, and nothing changed on
2502 this pass. */
2503 if (args_stored
2504 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2505 && old_save_gr == save_gr && old_save_fr == save_fr
2506 && old_save_rp == save_rp && old_save_sp == save_sp
2507 && old_stack_remaining == stack_remaining)
2508 break;
2509
2510 /* Bump the PC. */
2511 pc += 4;
2512 }
2513
2514 /* We've got a tenative location for the end of the prologue. However
2515 because of limitations in the unwind descriptor mechanism we may
2516 have went too far into user code looking for the save of a register
2517 that does not exist. So, if there registers we expected to be saved
2518 but never were, mask them out and restart.
2519
2520 This should only happen in optimized code, and should be very rare. */
2521 if (save_gr || save_fr
2522 && ! (restart_fr || restart_gr))
2523 {
2524 pc = orig_pc;
2525 restart_gr = save_gr;
2526 restart_fr = save_fr;
2527 goto restart;
2528 }
2529
2530 return pc;
2531 }
2532
2533 /* Put here the code to store, into a struct frame_saved_regs,
2534 the addresses of the saved registers of frame described by FRAME_INFO.
2535 This includes special registers such as pc and fp saved in special
2536 ways in the stack frame. sp is even more special:
2537 the address we return for it IS the sp for the next frame. */
2538
2539 void
2540 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2541 struct frame_info *frame_info;
2542 struct frame_saved_regs *frame_saved_regs;
2543 {
2544 CORE_ADDR pc;
2545 struct unwind_table_entry *u;
2546 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2547 int status, i, reg;
2548 char buf[4];
2549 int fp_loc = -1;
2550
2551 /* Zero out everything. */
2552 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2553
2554 /* Call dummy frames always look the same, so there's no need to
2555 examine the dummy code to determine locations of saved registers;
2556 instead, let find_dummy_frame_regs fill in the correct offsets
2557 for the saved registers. */
2558 if ((frame_info->pc >= frame_info->frame
2559 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2560 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2561 + 6 * 4)))
2562 find_dummy_frame_regs (frame_info, frame_saved_regs);
2563
2564 /* Interrupt handlers are special too. They lay out the register
2565 state in the exact same order as the register numbers in GDB. */
2566 if (pc_in_interrupt_handler (frame_info->pc))
2567 {
2568 for (i = 0; i < NUM_REGS; i++)
2569 {
2570 /* SP is a little special. */
2571 if (i == SP_REGNUM)
2572 frame_saved_regs->regs[SP_REGNUM]
2573 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2574 else
2575 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2576 }
2577 return;
2578 }
2579
2580 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2581 /* Handle signal handler callers. */
2582 if (frame_info->signal_handler_caller)
2583 {
2584 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2585 return;
2586 }
2587 #endif
2588
2589 /* Get the starting address of the function referred to by the PC
2590 saved in frame. */
2591 pc = get_pc_function_start (frame_info->pc);
2592
2593 /* Yow! */
2594 u = find_unwind_entry (pc);
2595 if (!u)
2596 return;
2597
2598 /* This is how much of a frame adjustment we need to account for. */
2599 stack_remaining = u->Total_frame_size << 3;
2600
2601 /* Magic register saves we want to know about. */
2602 save_rp = u->Save_RP;
2603 save_sp = u->Save_SP;
2604
2605 /* Turn the Entry_GR field into a bitmask. */
2606 save_gr = 0;
2607 for (i = 3; i < u->Entry_GR + 3; i++)
2608 {
2609 /* Frame pointer gets saved into a special location. */
2610 if (u->Save_SP && i == FP_REGNUM)
2611 continue;
2612
2613 save_gr |= (1 << i);
2614 }
2615
2616 /* Turn the Entry_FR field into a bitmask too. */
2617 save_fr = 0;
2618 for (i = 12; i < u->Entry_FR + 12; i++)
2619 save_fr |= (1 << i);
2620
2621 /* The frame always represents the value of %sp at entry to the
2622 current function (and is thus equivalent to the "saved" stack
2623 pointer. */
2624 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2625
2626 /* Loop until we find everything of interest or hit a branch.
2627
2628 For unoptimized GCC code and for any HP CC code this will never ever
2629 examine any user instructions.
2630
2631 For optimzied GCC code we're faced with problems. GCC will schedule
2632 its prologue and make prologue instructions available for delay slot
2633 filling. The end result is user code gets mixed in with the prologue
2634 and a prologue instruction may be in the delay slot of the first branch
2635 or call.
2636
2637 Some unexpected things are expected with debugging optimized code, so
2638 we allow this routine to walk past user instructions in optimized
2639 GCC code. */
2640 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2641 {
2642 status = target_read_memory (pc, buf, 4);
2643 inst = extract_unsigned_integer (buf, 4);
2644
2645 /* Yow! */
2646 if (status != 0)
2647 return;
2648
2649 /* Note the interesting effects of this instruction. */
2650 stack_remaining -= prologue_inst_adjust_sp (inst);
2651
2652 /* There is only one instruction used for saving RP into the stack. */
2653 if (inst == 0x6bc23fd9)
2654 {
2655 save_rp = 0;
2656 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2657 }
2658
2659 /* Just note that we found the save of SP into the stack. The
2660 value for frame_saved_regs was computed above. */
2661 if ((inst & 0xffffc000) == 0x6fc10000)
2662 save_sp = 0;
2663
2664 /* Account for general and floating-point register saves. */
2665 reg = inst_saves_gr (inst);
2666 if (reg >= 3 && reg <= 18
2667 && (!u->Save_SP || reg != FP_REGNUM))
2668 {
2669 save_gr &= ~(1 << reg);
2670
2671 /* stwm with a positive displacement is a *post modify*. */
2672 if ((inst >> 26) == 0x1b
2673 && extract_14 (inst) >= 0)
2674 frame_saved_regs->regs[reg] = frame_info->frame;
2675 else
2676 {
2677 /* Handle code with and without frame pointers. */
2678 if (u->Save_SP)
2679 frame_saved_regs->regs[reg]
2680 = frame_info->frame + extract_14 (inst);
2681 else
2682 frame_saved_regs->regs[reg]
2683 = frame_info->frame + (u->Total_frame_size << 3)
2684 + extract_14 (inst);
2685 }
2686 }
2687
2688
2689 /* GCC handles callee saved FP regs a little differently.
2690
2691 It emits an instruction to put the value of the start of
2692 the FP store area into %r1. It then uses fstds,ma with
2693 a basereg of %r1 for the stores.
2694
2695 HP CC emits them at the current stack pointer modifying
2696 the stack pointer as it stores each register. */
2697
2698 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2699 if ((inst & 0xffffc000) == 0x34610000
2700 || (inst & 0xffffc000) == 0x37c10000)
2701 fp_loc = extract_14 (inst);
2702
2703 reg = inst_saves_fr (inst);
2704 if (reg >= 12 && reg <= 21)
2705 {
2706 /* Note +4 braindamage below is necessary because the FP status
2707 registers are internally 8 registers rather than the expected
2708 4 registers. */
2709 save_fr &= ~(1 << reg);
2710 if (fp_loc == -1)
2711 {
2712 /* 1st HP CC FP register store. After this instruction
2713 we've set enough state that the GCC and HPCC code are
2714 both handled in the same manner. */
2715 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2716 fp_loc = 8;
2717 }
2718 else
2719 {
2720 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2721 = frame_info->frame + fp_loc;
2722 fp_loc += 8;
2723 }
2724 }
2725
2726 /* Quit if we hit any kind of branch. This can happen if a prologue
2727 instruction is in the delay slot of the first call/branch. */
2728 if (is_branch (inst))
2729 break;
2730
2731 /* Bump the PC. */
2732 pc += 4;
2733 }
2734 }
2735
2736 #ifdef MAINTENANCE_CMDS
2737
2738 static void
2739 unwind_command (exp, from_tty)
2740 char *exp;
2741 int from_tty;
2742 {
2743 CORE_ADDR address;
2744 struct unwind_table_entry *u;
2745
2746 /* If we have an expression, evaluate it and use it as the address. */
2747
2748 if (exp != 0 && *exp != 0)
2749 address = parse_and_eval_address (exp);
2750 else
2751 return;
2752
2753 u = find_unwind_entry (address);
2754
2755 if (!u)
2756 {
2757 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2758 return;
2759 }
2760
2761 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2762
2763 printf_unfiltered ("\tregion_start = ");
2764 print_address (u->region_start, gdb_stdout);
2765
2766 printf_unfiltered ("\n\tregion_end = ");
2767 print_address (u->region_end, gdb_stdout);
2768
2769 #ifdef __STDC__
2770 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2771 #else
2772 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2773 #endif
2774
2775 printf_unfiltered ("\n\tflags =");
2776 pif (Cannot_unwind);
2777 pif (Millicode);
2778 pif (Millicode_save_sr0);
2779 pif (Entry_SR);
2780 pif (Args_stored);
2781 pif (Variable_Frame);
2782 pif (Separate_Package_Body);
2783 pif (Frame_Extension_Millicode);
2784 pif (Stack_Overflow_Check);
2785 pif (Two_Instruction_SP_Increment);
2786 pif (Ada_Region);
2787 pif (Save_SP);
2788 pif (Save_RP);
2789 pif (Save_MRP_in_frame);
2790 pif (extn_ptr_defined);
2791 pif (Cleanup_defined);
2792 pif (MPE_XL_interrupt_marker);
2793 pif (HP_UX_interrupt_marker);
2794 pif (Large_frame);
2795
2796 putchar_unfiltered ('\n');
2797
2798 #ifdef __STDC__
2799 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2800 #else
2801 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2802 #endif
2803
2804 pin (Region_description);
2805 pin (Entry_FR);
2806 pin (Entry_GR);
2807 pin (Total_frame_size);
2808 }
2809 #endif /* MAINTENANCE_CMDS */
2810
2811 void
2812 _initialize_hppa_tdep ()
2813 {
2814 tm_print_insn = print_insn_hppa;
2815
2816 #ifdef MAINTENANCE_CMDS
2817 add_cmd ("unwind", class_maintenance, unwind_command,
2818 "Print unwind table entry at given address.",
2819 &maintenanceprintlist);
2820 #endif /* MAINTENANCE_CMDS */
2821 }