* hppa-tdep.c (frameless_function_invocation): If no unwind
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71
72 \f
73 /* Routines to extract various sized constants out of hppa
74 instructions. */
75
76 /* This assumes that no garbage lies outside of the lower bits of
77 value. */
78
79 int
80 sign_extend (val, bits)
81 unsigned val, bits;
82 {
83 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
84 }
85
86 /* For many immediate values the sign bit is the low bit! */
87
88 int
89 low_sign_extend (val, bits)
90 unsigned val, bits;
91 {
92 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94 /* extract the immediate field from a ld{bhw}s instruction */
95
96 unsigned
97 get_field (val, from, to)
98 unsigned val, from, to;
99 {
100 val = val >> 31 - to;
101 return val & ((1 << 32 - from) - 1);
102 }
103
104 unsigned
105 set_field (val, from, to, new_val)
106 unsigned *val, from, to;
107 {
108 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
109 return *val = *val & mask | (new_val << (31 - from));
110 }
111
112 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
113
114 extract_3 (word)
115 unsigned word;
116 {
117 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
118 }
119
120 extract_5_load (word)
121 unsigned word;
122 {
123 return low_sign_extend (word >> 16 & MASK_5, 5);
124 }
125
126 /* extract the immediate field from a st{bhw}s instruction */
127
128 int
129 extract_5_store (word)
130 unsigned word;
131 {
132 return low_sign_extend (word & MASK_5, 5);
133 }
134
135 /* extract the immediate field from a break instruction */
136
137 unsigned
138 extract_5r_store (word)
139 unsigned word;
140 {
141 return (word & MASK_5);
142 }
143
144 /* extract the immediate field from a {sr}sm instruction */
145
146 unsigned
147 extract_5R_store (word)
148 unsigned word;
149 {
150 return (word >> 16 & MASK_5);
151 }
152
153 /* extract an 11 bit immediate field */
154
155 int
156 extract_11 (word)
157 unsigned word;
158 {
159 return low_sign_extend (word & MASK_11, 11);
160 }
161
162 /* extract a 14 bit immediate field */
163
164 int
165 extract_14 (word)
166 unsigned word;
167 {
168 return low_sign_extend (word & MASK_14, 14);
169 }
170
171 /* deposit a 14 bit constant in a word */
172
173 unsigned
174 deposit_14 (opnd, word)
175 int opnd;
176 unsigned word;
177 {
178 unsigned sign = (opnd < 0 ? 1 : 0);
179
180 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
181 }
182
183 /* extract a 21 bit constant */
184
185 int
186 extract_21 (word)
187 unsigned word;
188 {
189 int val;
190
191 word &= MASK_21;
192 word <<= 11;
193 val = GET_FIELD (word, 20, 20);
194 val <<= 11;
195 val |= GET_FIELD (word, 9, 19);
196 val <<= 2;
197 val |= GET_FIELD (word, 5, 6);
198 val <<= 5;
199 val |= GET_FIELD (word, 0, 4);
200 val <<= 2;
201 val |= GET_FIELD (word, 7, 8);
202 return sign_extend (val, 21) << 11;
203 }
204
205 /* deposit a 21 bit constant in a word. Although 21 bit constants are
206 usually the top 21 bits of a 32 bit constant, we assume that only
207 the low 21 bits of opnd are relevant */
208
209 unsigned
210 deposit_21 (opnd, word)
211 unsigned opnd, word;
212 {
213 unsigned val = 0;
214
215 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
216 val <<= 2;
217 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
218 val <<= 2;
219 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
220 val <<= 11;
221 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
222 val <<= 1;
223 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
224 return word | val;
225 }
226
227 /* extract a 12 bit constant from branch instructions */
228
229 int
230 extract_12 (word)
231 unsigned word;
232 {
233 return sign_extend (GET_FIELD (word, 19, 28) |
234 GET_FIELD (word, 29, 29) << 10 |
235 (word & 0x1) << 11, 12) << 2;
236 }
237
238 /* extract a 17 bit constant from branch instructions, returning the
239 19 bit signed value. */
240
241 int
242 extract_17 (word)
243 unsigned word;
244 {
245 return sign_extend (GET_FIELD (word, 19, 28) |
246 GET_FIELD (word, 29, 29) << 10 |
247 GET_FIELD (word, 11, 15) << 11 |
248 (word & 0x1) << 16, 17) << 2;
249 }
250 \f
251 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
252 of the objfiles seeking the unwind table entry for this PC. Each objfile
253 contains a sorted list of struct unwind_table_entry. Since we do a binary
254 search of the unwind tables, we depend upon them to be sorted. */
255
256 static struct unwind_table_entry *
257 find_unwind_entry(pc)
258 CORE_ADDR pc;
259 {
260 int first, middle, last;
261 struct objfile *objfile;
262
263 ALL_OBJFILES (objfile)
264 {
265 struct obj_unwind_info *ui;
266
267 ui = OBJ_UNWIND_INFO (objfile);
268
269 if (!ui)
270 continue;
271
272 /* First, check the cache */
273
274 if (ui->cache
275 && pc >= ui->cache->region_start
276 && pc <= ui->cache->region_end)
277 return ui->cache;
278
279 /* Not in the cache, do a binary search */
280
281 first = 0;
282 last = ui->last;
283
284 while (first <= last)
285 {
286 middle = (first + last) / 2;
287 if (pc >= ui->table[middle].region_start
288 && pc <= ui->table[middle].region_end)
289 {
290 ui->cache = &ui->table[middle];
291 return &ui->table[middle];
292 }
293
294 if (pc < ui->table[middle].region_start)
295 last = middle - 1;
296 else
297 first = middle + 1;
298 }
299 } /* ALL_OBJFILES() */
300 return NULL;
301 }
302
303 /* Called to determine if PC is in an interrupt handler of some
304 kind. */
305
306 static int
307 pc_in_interrupt_handler (pc)
308 CORE_ADDR pc;
309 {
310 struct unwind_table_entry *u;
311 struct minimal_symbol *msym_us;
312
313 u = find_unwind_entry (pc);
314 if (!u)
315 return 0;
316
317 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
318 its frame isn't a pure interrupt frame. Deal with this. */
319 msym_us = lookup_minimal_symbol_by_pc (pc);
320
321 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
322 }
323
324 /* Called when no unwind descriptor was found for PC. Returns 1 if it
325 appears that PC is in a linker stub. */
326
327 static int
328 pc_in_linker_stub (pc)
329 CORE_ADDR pc;
330 {
331 int found_magic_instruction = 0;
332 int i;
333 char buf[4];
334
335 /* If unable to read memory, assume pc is not in a linker stub. */
336 if (target_read_memory (pc, buf, 4) != 0)
337 return 0;
338
339 /* We are looking for something like
340
341 ; $$dyncall jams RP into this special spot in the frame (RP')
342 ; before calling the "call stub"
343 ldw -18(sp),rp
344
345 ldsid (rp),r1 ; Get space associated with RP into r1
346 mtsp r1,sp ; Move it into space register 0
347 be,n 0(sr0),rp) ; back to your regularly scheduled program
348 */
349
350 /* Maximum known linker stub size is 4 instructions. Search forward
351 from the given PC, then backward. */
352 for (i = 0; i < 4; i++)
353 {
354 /* If we hit something with an unwind, stop searching this direction. */
355
356 if (find_unwind_entry (pc + i * 4) != 0)
357 break;
358
359 /* Check for ldsid (rp),r1 which is the magic instruction for a
360 return from a cross-space function call. */
361 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
362 {
363 found_magic_instruction = 1;
364 break;
365 }
366 /* Add code to handle long call/branch and argument relocation stubs
367 here. */
368 }
369
370 if (found_magic_instruction != 0)
371 return 1;
372
373 /* Now look backward. */
374 for (i = 0; i < 4; i++)
375 {
376 /* If we hit something with an unwind, stop searching this direction. */
377
378 if (find_unwind_entry (pc - i * 4) != 0)
379 break;
380
381 /* Check for ldsid (rp),r1 which is the magic instruction for a
382 return from a cross-space function call. */
383 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
384 {
385 found_magic_instruction = 1;
386 break;
387 }
388 /* Add code to handle long call/branch and argument relocation stubs
389 here. */
390 }
391 return found_magic_instruction;
392 }
393
394 static int
395 find_return_regnum(pc)
396 CORE_ADDR pc;
397 {
398 struct unwind_table_entry *u;
399
400 u = find_unwind_entry (pc);
401
402 if (!u)
403 return RP_REGNUM;
404
405 if (u->Millicode)
406 return 31;
407
408 return RP_REGNUM;
409 }
410
411 /* Return size of frame, or -1 if we should use a frame pointer. */
412 int
413 find_proc_framesize (pc)
414 CORE_ADDR pc;
415 {
416 struct unwind_table_entry *u;
417 struct minimal_symbol *msym_us;
418
419 u = find_unwind_entry (pc);
420
421 if (!u)
422 {
423 if (pc_in_linker_stub (pc))
424 /* Linker stubs have a zero size frame. */
425 return 0;
426 else
427 return -1;
428 }
429
430 msym_us = lookup_minimal_symbol_by_pc (pc);
431
432 /* If Save_SP is set, and we're not in an interrupt or signal caller,
433 then we have a frame pointer. Use it. */
434 if (u->Save_SP && !pc_in_interrupt_handler (pc)
435 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
436 return -1;
437
438 return u->Total_frame_size << 3;
439 }
440
441 /* Return offset from sp at which rp is saved, or 0 if not saved. */
442 static int rp_saved PARAMS ((CORE_ADDR));
443
444 static int
445 rp_saved (pc)
446 CORE_ADDR pc;
447 {
448 struct unwind_table_entry *u;
449
450 u = find_unwind_entry (pc);
451
452 if (!u)
453 {
454 if (pc_in_linker_stub (pc))
455 /* This is the so-called RP'. */
456 return -24;
457 else
458 return 0;
459 }
460
461 if (u->Save_RP)
462 return -20;
463 else if (u->stub_type != 0)
464 {
465 switch (u->stub_type)
466 {
467 case EXPORT:
468 return -24;
469 case PARAMETER_RELOCATION:
470 return -8;
471 default:
472 return 0;
473 }
474 }
475 else
476 return 0;
477 }
478 \f
479 int
480 frameless_function_invocation (frame)
481 FRAME frame;
482 {
483 struct unwind_table_entry *u;
484
485 u = find_unwind_entry (frame->pc);
486
487 if (u == 0)
488 return 0;
489
490 return (u->Total_frame_size == 0 && u->stub_type == 0);
491 }
492
493 CORE_ADDR
494 saved_pc_after_call (frame)
495 FRAME frame;
496 {
497 int ret_regnum;
498
499 ret_regnum = find_return_regnum (get_frame_pc (frame));
500
501 return read_register (ret_regnum) & ~0x3;
502 }
503 \f
504 CORE_ADDR
505 frame_saved_pc (frame)
506 FRAME frame;
507 {
508 CORE_ADDR pc = get_frame_pc (frame);
509 struct unwind_table_entry *u;
510
511 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
512 at the base of the frame in an interrupt handler. Registers within
513 are saved in the exact same order as GDB numbers registers. How
514 convienent. */
515 if (pc_in_interrupt_handler (pc))
516 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
517
518 /* Deal with signal handler caller frames too. */
519 if (frame->signal_handler_caller)
520 {
521 CORE_ADDR rp;
522 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
523 return rp;
524 }
525
526 restart:
527 if (frameless_function_invocation (frame))
528 {
529 int ret_regnum;
530
531 ret_regnum = find_return_regnum (pc);
532
533 /* If the next frame is an interrupt frame or a signal
534 handler caller, then we need to look in the saved
535 register area to get the return pointer (the values
536 in the registers may not correspond to anything useful). */
537 if (frame->next
538 && (frame->next->signal_handler_caller
539 || pc_in_interrupt_handler (frame->next->pc)))
540 {
541 struct frame_info *fi;
542 struct frame_saved_regs saved_regs;
543
544 fi = get_frame_info (frame->next);
545 get_frame_saved_regs (fi, &saved_regs);
546 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
547 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
548 else
549 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
550 }
551 else
552 pc = read_register (ret_regnum) & ~0x3;
553 }
554 else
555 {
556 int rp_offset = rp_saved (pc);
557
558 /* Similar to code in frameless function case. If the next
559 frame is a signal or interrupt handler, then dig the right
560 information out of the saved register info. */
561 if (rp_offset == 0
562 && frame->next
563 && (frame->next->signal_handler_caller
564 || pc_in_interrupt_handler (frame->next->pc)))
565 {
566 struct frame_info *fi;
567 struct frame_saved_regs saved_regs;
568
569 fi = get_frame_info (frame->next);
570 get_frame_saved_regs (fi, &saved_regs);
571 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
572 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
573 else
574 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
575 }
576 else if (rp_offset == 0)
577 pc = read_register (RP_REGNUM) & ~0x3;
578 else
579 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
580 }
581
582 /* If PC is inside a linker stub, then dig out the address the stub
583 will return to. */
584 u = find_unwind_entry (pc);
585 if (u && u->stub_type != 0)
586 goto restart;
587
588 return pc;
589 }
590 \f
591 /* We need to correct the PC and the FP for the outermost frame when we are
592 in a system call. */
593
594 void
595 init_extra_frame_info (fromleaf, frame)
596 int fromleaf;
597 struct frame_info *frame;
598 {
599 int flags;
600 int framesize;
601
602 if (frame->next && !fromleaf)
603 return;
604
605 /* If the next frame represents a frameless function invocation
606 then we have to do some adjustments that are normally done by
607 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
608 if (fromleaf)
609 {
610 /* Find the framesize of *this* frame without peeking at the PC
611 in the current frame structure (it isn't set yet). */
612 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
613
614 /* Now adjust our base frame accordingly. If we have a frame pointer
615 use it, else subtract the size of this frame from the current
616 frame. (we always want frame->frame to point at the lowest address
617 in the frame). */
618 if (framesize == -1)
619 frame->frame = read_register (FP_REGNUM);
620 else
621 frame->frame -= framesize;
622 return;
623 }
624
625 flags = read_register (FLAGS_REGNUM);
626 if (flags & 2) /* In system call? */
627 frame->pc = read_register (31) & ~0x3;
628
629 /* The outermost frame is always derived from PC-framesize
630
631 One might think frameless innermost frames should have
632 a frame->frame that is the same as the parent's frame->frame.
633 That is wrong; frame->frame in that case should be the *high*
634 address of the parent's frame. It's complicated as hell to
635 explain, but the parent *always* creates some stack space for
636 the child. So the child actually does have a frame of some
637 sorts, and its base is the high address in its parent's frame. */
638 framesize = find_proc_framesize(frame->pc);
639 if (framesize == -1)
640 frame->frame = read_register (FP_REGNUM);
641 else
642 frame->frame = read_register (SP_REGNUM) - framesize;
643 }
644 \f
645 /* Given a GDB frame, determine the address of the calling function's frame.
646 This will be used to create a new GDB frame struct, and then
647 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
648
649 This may involve searching through prologues for several functions
650 at boundaries where GCC calls HP C code, or where code which has
651 a frame pointer calls code without a frame pointer. */
652
653
654 FRAME_ADDR
655 frame_chain (frame)
656 struct frame_info *frame;
657 {
658 int my_framesize, caller_framesize;
659 struct unwind_table_entry *u;
660 CORE_ADDR frame_base;
661
662 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
663 are easy; at *sp we have a full save state strucutre which we can
664 pull the old stack pointer from. Also see frame_saved_pc for
665 code to dig a saved PC out of the save state structure. */
666 if (pc_in_interrupt_handler (frame->pc))
667 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
668 else if (frame->signal_handler_caller)
669 {
670 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
671 }
672 else
673 frame_base = frame->frame;
674
675 /* Get frame sizes for the current frame and the frame of the
676 caller. */
677 my_framesize = find_proc_framesize (frame->pc);
678 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
679
680 /* If caller does not have a frame pointer, then its frame
681 can be found at current_frame - caller_framesize. */
682 if (caller_framesize != -1)
683 return frame_base - caller_framesize;
684
685 /* Both caller and callee have frame pointers and are GCC compiled
686 (SAVE_SP bit in unwind descriptor is on for both functions.
687 The previous frame pointer is found at the top of the current frame. */
688 if (caller_framesize == -1 && my_framesize == -1)
689 return read_memory_integer (frame_base, 4);
690
691 /* Caller has a frame pointer, but callee does not. This is a little
692 more difficult as GCC and HP C lay out locals and callee register save
693 areas very differently.
694
695 The previous frame pointer could be in a register, or in one of
696 several areas on the stack.
697
698 Walk from the current frame to the innermost frame examining
699 unwind descriptors to determine if %r3 ever gets saved into the
700 stack. If so return whatever value got saved into the stack.
701 If it was never saved in the stack, then the value in %r3 is still
702 valid, so use it.
703
704 We use information from unwind descriptors to determine if %r3
705 is saved into the stack (Entry_GR field has this information). */
706
707 while (frame)
708 {
709 u = find_unwind_entry (frame->pc);
710
711 if (!u)
712 {
713 /* We could find this information by examining prologues. I don't
714 think anyone has actually written any tools (not even "strip")
715 which leave them out of an executable, so maybe this is a moot
716 point. */
717 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
718 return 0;
719 }
720
721 /* Entry_GR specifies the number of callee-saved general registers
722 saved in the stack. It starts at %r3, so %r3 would be 1. */
723 if (u->Entry_GR >= 1 || u->Save_SP
724 || frame->signal_handler_caller
725 || pc_in_interrupt_handler (frame->pc))
726 break;
727 else
728 frame = frame->next;
729 }
730
731 if (frame)
732 {
733 /* We may have walked down the chain into a function with a frame
734 pointer. */
735 if (u->Save_SP
736 && !frame->signal_handler_caller
737 && !pc_in_interrupt_handler (frame->pc))
738 return read_memory_integer (frame->frame, 4);
739 /* %r3 was saved somewhere in the stack. Dig it out. */
740 else
741 {
742 struct frame_info *fi;
743 struct frame_saved_regs saved_regs;
744
745 fi = get_frame_info (frame);
746 get_frame_saved_regs (fi, &saved_regs);
747 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
748 }
749 }
750 else
751 {
752 /* The value in %r3 was never saved into the stack (thus %r3 still
753 holds the value of the previous frame pointer). */
754 return read_register (FP_REGNUM);
755 }
756 }
757
758 \f
759 /* To see if a frame chain is valid, see if the caller looks like it
760 was compiled with gcc. */
761
762 int
763 frame_chain_valid (chain, thisframe)
764 FRAME_ADDR chain;
765 FRAME thisframe;
766 {
767 struct minimal_symbol *msym_us;
768 struct minimal_symbol *msym_start;
769 struct unwind_table_entry *u, *next_u = NULL;
770 FRAME next;
771
772 if (!chain)
773 return 0;
774
775 u = find_unwind_entry (thisframe->pc);
776
777 if (u == NULL)
778 return 1;
779
780 /* We can't just check that the same of msym_us is "_start", because
781 someone idiotically decided that they were going to make a Ltext_end
782 symbol with the same address. This Ltext_end symbol is totally
783 indistinguishable (as nearly as I can tell) from the symbol for a function
784 which is (legitimately, since it is in the user's namespace)
785 named Ltext_end, so we can't just ignore it. */
786 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
787 msym_start = lookup_minimal_symbol ("_start", NULL);
788 if (msym_us
789 && msym_start
790 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
791 return 0;
792
793 next = get_next_frame (thisframe);
794 if (next)
795 next_u = find_unwind_entry (next->pc);
796
797 /* If this frame does not save SP, has no stack, isn't a stub,
798 and doesn't "call" an interrupt routine or signal handler caller,
799 then its not valid. */
800 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
801 || (thisframe->next && thisframe->next->signal_handler_caller)
802 || (next_u && next_u->HP_UX_interrupt_marker))
803 return 1;
804
805 if (pc_in_linker_stub (thisframe->pc))
806 return 1;
807
808 return 0;
809 }
810
811 /*
812 * These functions deal with saving and restoring register state
813 * around a function call in the inferior. They keep the stack
814 * double-word aligned; eventually, on an hp700, the stack will have
815 * to be aligned to a 64-byte boundary.
816 */
817
818 int
819 push_dummy_frame ()
820 {
821 register CORE_ADDR sp;
822 register int regnum;
823 int int_buffer;
824 double freg_buffer;
825
826 /* Space for "arguments"; the RP goes in here. */
827 sp = read_register (SP_REGNUM) + 48;
828 int_buffer = read_register (RP_REGNUM) | 0x3;
829 write_memory (sp - 20, (char *)&int_buffer, 4);
830
831 int_buffer = read_register (FP_REGNUM);
832 write_memory (sp, (char *)&int_buffer, 4);
833
834 write_register (FP_REGNUM, sp);
835
836 sp += 8;
837
838 for (regnum = 1; regnum < 32; regnum++)
839 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
840 sp = push_word (sp, read_register (regnum));
841
842 sp += 4;
843
844 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
845 {
846 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
847 sp = push_bytes (sp, (char *)&freg_buffer, 8);
848 }
849 sp = push_word (sp, read_register (IPSW_REGNUM));
850 sp = push_word (sp, read_register (SAR_REGNUM));
851 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
852 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
853 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
854 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
855 write_register (SP_REGNUM, sp);
856 }
857
858 find_dummy_frame_regs (frame, frame_saved_regs)
859 struct frame_info *frame;
860 struct frame_saved_regs *frame_saved_regs;
861 {
862 CORE_ADDR fp = frame->frame;
863 int i;
864
865 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
866 frame_saved_regs->regs[FP_REGNUM] = fp;
867 frame_saved_regs->regs[1] = fp + 8;
868
869 for (fp += 12, i = 3; i < 32; i++)
870 {
871 if (i != FP_REGNUM)
872 {
873 frame_saved_regs->regs[i] = fp;
874 fp += 4;
875 }
876 }
877
878 fp += 4;
879 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
880 frame_saved_regs->regs[i] = fp;
881
882 frame_saved_regs->regs[IPSW_REGNUM] = fp;
883 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
884 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
885 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
886 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
887 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
888 }
889
890 int
891 hppa_pop_frame ()
892 {
893 register FRAME frame = get_current_frame ();
894 register CORE_ADDR fp;
895 register int regnum;
896 struct frame_saved_regs fsr;
897 struct frame_info *fi;
898 double freg_buffer;
899
900 fi = get_frame_info (frame);
901 fp = fi->frame;
902 get_frame_saved_regs (fi, &fsr);
903
904 #ifndef NO_PC_SPACE_QUEUE_RESTORE
905 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
906 restore_pc_queue (&fsr);
907 #endif
908
909 for (regnum = 31; regnum > 0; regnum--)
910 if (fsr.regs[regnum])
911 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
912
913 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
914 if (fsr.regs[regnum])
915 {
916 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
917 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
918 }
919
920 if (fsr.regs[IPSW_REGNUM])
921 write_register (IPSW_REGNUM,
922 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
923
924 if (fsr.regs[SAR_REGNUM])
925 write_register (SAR_REGNUM,
926 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
927
928 /* If the PC was explicitly saved, then just restore it. */
929 if (fsr.regs[PCOQ_TAIL_REGNUM])
930 write_register (PCOQ_TAIL_REGNUM,
931 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
932
933 /* Else use the value in %rp to set the new PC. */
934 else
935 target_write_pc (read_register (RP_REGNUM));
936
937 write_register (FP_REGNUM, read_memory_integer (fp, 4));
938
939 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
940 write_register (SP_REGNUM, fp - 48);
941 else
942 write_register (SP_REGNUM, fp);
943
944 flush_cached_frames ();
945 set_current_frame (create_new_frame (read_register (FP_REGNUM),
946 read_pc ()));
947 }
948
949 /*
950 * After returning to a dummy on the stack, restore the instruction
951 * queue space registers. */
952
953 static int
954 restore_pc_queue (fsr)
955 struct frame_saved_regs *fsr;
956 {
957 CORE_ADDR pc = read_pc ();
958 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
959 int pid;
960 struct target_waitstatus w;
961 int insn_count;
962
963 /* Advance past break instruction in the call dummy. */
964 write_register (PCOQ_HEAD_REGNUM, pc + 4);
965 write_register (PCOQ_TAIL_REGNUM, pc + 8);
966
967 /*
968 * HPUX doesn't let us set the space registers or the space
969 * registers of the PC queue through ptrace. Boo, hiss.
970 * Conveniently, the call dummy has this sequence of instructions
971 * after the break:
972 * mtsp r21, sr0
973 * ble,n 0(sr0, r22)
974 *
975 * So, load up the registers and single step until we are in the
976 * right place.
977 */
978
979 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
980 write_register (22, new_pc);
981
982 for (insn_count = 0; insn_count < 3; insn_count++)
983 {
984 /* FIXME: What if the inferior gets a signal right now? Want to
985 merge this into wait_for_inferior (as a special kind of
986 watchpoint? By setting a breakpoint at the end? Is there
987 any other choice? Is there *any* way to do this stuff with
988 ptrace() or some equivalent?). */
989 resume (1, 0);
990 target_wait (inferior_pid, &w);
991
992 if (w.kind == TARGET_WAITKIND_SIGNALLED)
993 {
994 stop_signal = w.value.sig;
995 terminal_ours_for_output ();
996 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
997 target_signal_to_name (stop_signal),
998 target_signal_to_string (stop_signal));
999 gdb_flush (gdb_stdout);
1000 return 0;
1001 }
1002 }
1003 target_terminal_ours ();
1004 fetch_inferior_registers (-1);
1005 return 1;
1006 }
1007
1008 CORE_ADDR
1009 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1010 int nargs;
1011 value_ptr *args;
1012 CORE_ADDR sp;
1013 int struct_return;
1014 CORE_ADDR struct_addr;
1015 {
1016 /* array of arguments' offsets */
1017 int *offset = (int *)alloca(nargs * sizeof (int));
1018 int cum = 0;
1019 int i, alignment;
1020
1021 for (i = 0; i < nargs; i++)
1022 {
1023 /* Coerce chars to int & float to double if necessary */
1024 args[i] = value_arg_coerce (args[i]);
1025
1026 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1027
1028 /* value must go at proper alignment. Assume alignment is a
1029 power of two.*/
1030 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1031 if (cum % alignment)
1032 cum = (cum + alignment) & -alignment;
1033 offset[i] = -cum;
1034 }
1035 sp += max ((cum + 7) & -8, 16);
1036
1037 for (i = 0; i < nargs; i++)
1038 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1039 TYPE_LENGTH (VALUE_TYPE (args[i])));
1040
1041 if (struct_return)
1042 write_register (28, struct_addr);
1043 return sp + 32;
1044 }
1045
1046 /*
1047 * Insert the specified number of args and function address
1048 * into a call sequence of the above form stored at DUMMYNAME.
1049 *
1050 * On the hppa we need to call the stack dummy through $$dyncall.
1051 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1052 * real_pc, which is the location where gdb should start up the
1053 * inferior to do the function call.
1054 */
1055
1056 CORE_ADDR
1057 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1058 char *dummy;
1059 CORE_ADDR pc;
1060 CORE_ADDR fun;
1061 int nargs;
1062 value_ptr *args;
1063 struct type *type;
1064 int gcc_p;
1065 {
1066 CORE_ADDR dyncall_addr, sr4export_addr;
1067 struct minimal_symbol *msymbol;
1068 int flags = read_register (FLAGS_REGNUM);
1069 struct unwind_table_entry *u;
1070
1071 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1072 if (msymbol == NULL)
1073 error ("Can't find an address for $$dyncall trampoline");
1074
1075 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1076
1077 /* If we are calling an import stub (eg calling into a dynamic library)
1078 then have sr4export call the magic __d_plt_call routine which is linked
1079 in from end.o. (You can't use _sr4export to call the import stub as
1080 the value in sp-24 will get fried and you end up returning to the
1081 wrong location. You can't call the import stub directly as the code
1082 to bind the PLT entry to a function can't return to a stack address.) */
1083 u = find_unwind_entry (fun);
1084 if (u && u->stub_type == IMPORT)
1085 {
1086 CORE_ADDR new_fun;
1087 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1088 if (msymbol == NULL)
1089 error ("Can't find an address for __d_plt_call trampoline");
1090
1091 /* This is where sr4export will jump to. */
1092 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1093
1094 /* We have to store the address of the stub in __shlib_funcptr. */
1095 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1096 (struct objfile *)NULL);
1097 if (msymbol == NULL)
1098 error ("Can't find an address for __shlib_funcptr");
1099
1100 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1101 fun = new_fun;
1102
1103 }
1104
1105 /* We still need sr4export's address too. */
1106 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1107 if (msymbol == NULL)
1108 error ("Can't find an address for _sr4export trampoline");
1109
1110 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1111
1112 store_unsigned_integer
1113 (&dummy[9*REGISTER_SIZE],
1114 REGISTER_SIZE,
1115 deposit_21 (fun >> 11,
1116 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1117 REGISTER_SIZE)));
1118 store_unsigned_integer
1119 (&dummy[10*REGISTER_SIZE],
1120 REGISTER_SIZE,
1121 deposit_14 (fun & MASK_11,
1122 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1123 REGISTER_SIZE)));
1124 store_unsigned_integer
1125 (&dummy[12*REGISTER_SIZE],
1126 REGISTER_SIZE,
1127 deposit_21 (sr4export_addr >> 11,
1128 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1129 REGISTER_SIZE)));
1130 store_unsigned_integer
1131 (&dummy[13*REGISTER_SIZE],
1132 REGISTER_SIZE,
1133 deposit_14 (sr4export_addr & MASK_11,
1134 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1135 REGISTER_SIZE)));
1136
1137 write_register (22, pc);
1138
1139 /* If we are in a syscall, then we should call the stack dummy
1140 directly. $$dyncall is not needed as the kernel sets up the
1141 space id registers properly based on the value in %r31. In
1142 fact calling $$dyncall will not work because the value in %r22
1143 will be clobbered on the syscall exit path. */
1144 if (flags & 2)
1145 return pc;
1146 else
1147 return dyncall_addr;
1148
1149 }
1150
1151 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1152 bits. */
1153 CORE_ADDR
1154 target_read_pc ()
1155 {
1156 int flags = read_register (FLAGS_REGNUM);
1157
1158 if (flags & 2)
1159 return read_register (31) & ~0x3;
1160 return read_register (PC_REGNUM) & ~0x3;
1161 }
1162
1163 /* Write out the PC. If currently in a syscall, then also write the new
1164 PC value into %r31. */
1165 void
1166 target_write_pc (v)
1167 CORE_ADDR v;
1168 {
1169 int flags = read_register (FLAGS_REGNUM);
1170
1171 /* If in a syscall, then set %r31. Also make sure to get the
1172 privilege bits set correctly. */
1173 if (flags & 2)
1174 write_register (31, (long) (v | 0x3));
1175
1176 write_register (PC_REGNUM, (long) v);
1177 write_register (NPC_REGNUM, (long) v + 4);
1178 }
1179
1180 /* return the alignment of a type in bytes. Structures have the maximum
1181 alignment required by their fields. */
1182
1183 static int
1184 hppa_alignof (arg)
1185 struct type *arg;
1186 {
1187 int max_align, align, i;
1188 switch (TYPE_CODE (arg))
1189 {
1190 case TYPE_CODE_PTR:
1191 case TYPE_CODE_INT:
1192 case TYPE_CODE_FLT:
1193 return TYPE_LENGTH (arg);
1194 case TYPE_CODE_ARRAY:
1195 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1196 case TYPE_CODE_STRUCT:
1197 case TYPE_CODE_UNION:
1198 max_align = 2;
1199 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1200 {
1201 /* Bit fields have no real alignment. */
1202 if (!TYPE_FIELD_BITPOS (arg, i))
1203 {
1204 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1205 max_align = max (max_align, align);
1206 }
1207 }
1208 return max_align;
1209 default:
1210 return 4;
1211 }
1212 }
1213
1214 /* Print the register regnum, or all registers if regnum is -1 */
1215
1216 pa_do_registers_info (regnum, fpregs)
1217 int regnum;
1218 int fpregs;
1219 {
1220 char raw_regs [REGISTER_BYTES];
1221 int i;
1222
1223 for (i = 0; i < NUM_REGS; i++)
1224 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1225 if (regnum == -1)
1226 pa_print_registers (raw_regs, regnum, fpregs);
1227 else if (regnum < FP0_REGNUM)
1228 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1229 REGISTER_BYTE (regnum)));
1230 else
1231 pa_print_fp_reg (regnum);
1232 }
1233
1234 pa_print_registers (raw_regs, regnum, fpregs)
1235 char *raw_regs;
1236 int regnum;
1237 int fpregs;
1238 {
1239 int i;
1240
1241 for (i = 0; i < 18; i++)
1242 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1243 reg_names[i],
1244 *(int *)(raw_regs + REGISTER_BYTE (i)),
1245 reg_names[i + 18],
1246 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1247 reg_names[i + 36],
1248 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1249 reg_names[i + 54],
1250 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1251
1252 if (fpregs)
1253 for (i = 72; i < NUM_REGS; i++)
1254 pa_print_fp_reg (i);
1255 }
1256
1257 pa_print_fp_reg (i)
1258 int i;
1259 {
1260 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1261 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1262
1263 /* Get 32bits of data. */
1264 read_relative_register_raw_bytes (i, raw_buffer);
1265
1266 /* Put it in the buffer. No conversions are ever necessary. */
1267 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1268
1269 fputs_filtered (reg_names[i], gdb_stdout);
1270 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1271 fputs_filtered ("(single precision) ", gdb_stdout);
1272
1273 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1274 1, 0, Val_pretty_default);
1275 printf_filtered ("\n");
1276
1277 /* If "i" is even, then this register can also be a double-precision
1278 FP register. Dump it out as such. */
1279 if ((i % 2) == 0)
1280 {
1281 /* Get the data in raw format for the 2nd half. */
1282 read_relative_register_raw_bytes (i + 1, raw_buffer);
1283
1284 /* Copy it into the appropriate part of the virtual buffer. */
1285 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1286 REGISTER_RAW_SIZE (i));
1287
1288 /* Dump it as a double. */
1289 fputs_filtered (reg_names[i], gdb_stdout);
1290 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1291 fputs_filtered ("(double precision) ", gdb_stdout);
1292
1293 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1294 1, 0, Val_pretty_default);
1295 printf_filtered ("\n");
1296 }
1297 }
1298
1299 /* Figure out if PC is in a trampoline, and if so find out where
1300 the trampoline will jump to. If not in a trampoline, return zero.
1301
1302 Simple code examination probably is not a good idea since the code
1303 sequences in trampolines can also appear in user code.
1304
1305 We use unwinds and information from the minimal symbol table to
1306 determine when we're in a trampoline. This won't work for ELF
1307 (yet) since it doesn't create stub unwind entries. Whether or
1308 not ELF will create stub unwinds or normal unwinds for linker
1309 stubs is still being debated.
1310
1311 This should handle simple calls through dyncall or sr4export,
1312 long calls, argument relocation stubs, and dyncall/sr4export
1313 calling an argument relocation stub. It even handles some stubs
1314 used in dynamic executables. */
1315
1316 CORE_ADDR
1317 skip_trampoline_code (pc, name)
1318 CORE_ADDR pc;
1319 char *name;
1320 {
1321 long orig_pc = pc;
1322 long prev_inst, curr_inst, loc;
1323 static CORE_ADDR dyncall = 0;
1324 static CORE_ADDR sr4export = 0;
1325 struct minimal_symbol *msym;
1326 struct unwind_table_entry *u;
1327
1328 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1329 new exec file */
1330
1331 if (!dyncall)
1332 {
1333 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1334 if (msym)
1335 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1336 else
1337 dyncall = -1;
1338 }
1339
1340 if (!sr4export)
1341 {
1342 msym = lookup_minimal_symbol ("_sr4export", NULL);
1343 if (msym)
1344 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1345 else
1346 sr4export = -1;
1347 }
1348
1349 /* Addresses passed to dyncall may *NOT* be the actual address
1350 of the funtion. So we may have to do something special. */
1351 if (pc == dyncall)
1352 {
1353 pc = (CORE_ADDR) read_register (22);
1354
1355 /* If bit 30 (counting from the left) is on, then pc is the address of
1356 the PLT entry for this function, not the address of the function
1357 itself. Bit 31 has meaning too, but only for MPE. */
1358 if (pc & 0x2)
1359 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1360 }
1361 else if (pc == sr4export)
1362 pc = (CORE_ADDR) (read_register (22));
1363
1364 /* Get the unwind descriptor corresponding to PC, return zero
1365 if no unwind was found. */
1366 u = find_unwind_entry (pc);
1367 if (!u)
1368 return 0;
1369
1370 /* If this isn't a linker stub, then return now. */
1371 if (u->stub_type == 0)
1372 return orig_pc == pc ? 0 : pc & ~0x3;
1373
1374 /* It's a stub. Search for a branch and figure out where it goes.
1375 Note we have to handle multi insn branch sequences like ldil;ble.
1376 Most (all?) other branches can be determined by examining the contents
1377 of certain registers and the stack. */
1378 loc = pc;
1379 curr_inst = 0;
1380 prev_inst = 0;
1381 while (1)
1382 {
1383 /* Make sure we haven't walked outside the range of this stub. */
1384 if (u != find_unwind_entry (loc))
1385 {
1386 warning ("Unable to find branch in linker stub");
1387 return orig_pc == pc ? 0 : pc & ~0x3;
1388 }
1389
1390 prev_inst = curr_inst;
1391 curr_inst = read_memory_integer (loc, 4);
1392
1393 /* Does it look like a branch external using %r1? Then it's the
1394 branch from the stub to the actual function. */
1395 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1396 {
1397 /* Yup. See if the previous instruction loaded
1398 a value into %r1. If so compute and return the jump address. */
1399 if ((prev_inst & 0xffe00000) == 0x20202000)
1400 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1401 else
1402 {
1403 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1404 return orig_pc == pc ? 0 : pc & ~0x3;
1405 }
1406 }
1407
1408 /* Does it look like bl X,rp? Another way to do a branch from the
1409 stub to the actual function. */
1410 else if ((curr_inst & 0xffe0e000) == 0xe8400000)
1411 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1412
1413 /* Does it look like bv (rp)? Note this depends on the
1414 current stack pointer being the same as the stack
1415 pointer in the stub itself! This is a branch on from the
1416 stub back to the original caller. */
1417 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1418 {
1419 /* Yup. See if the previous instruction loaded
1420 rp from sp - 8. */
1421 if (prev_inst == 0x4bc23ff1)
1422 return (read_memory_integer
1423 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1424 else
1425 {
1426 warning ("Unable to find restore of %%rp before bv (%%rp).");
1427 return orig_pc == pc ? 0 : pc & ~0x3;
1428 }
1429 }
1430
1431 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1432 the original caller from the stub. Used in dynamic executables. */
1433 else if (curr_inst == 0xe0400002)
1434 {
1435 /* The value we jump to is sitting in sp - 24. But that's
1436 loaded several instructions before the be instruction.
1437 I guess we could check for the previous instruction being
1438 mtsp %r1,%sr0 if we want to do sanity checking. */
1439 return (read_memory_integer
1440 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1441 }
1442
1443 /* Haven't found the branch yet, but we're still in the stub.
1444 Keep looking. */
1445 loc += 4;
1446 }
1447 }
1448
1449 /* For the given instruction (INST), return any adjustment it makes
1450 to the stack pointer or zero for no adjustment.
1451
1452 This only handles instructions commonly found in prologues. */
1453
1454 static int
1455 prologue_inst_adjust_sp (inst)
1456 unsigned long inst;
1457 {
1458 /* This must persist across calls. */
1459 static int save_high21;
1460
1461 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1462 if ((inst & 0xffffc000) == 0x37de0000)
1463 return extract_14 (inst);
1464
1465 /* stwm X,D(sp) */
1466 if ((inst & 0xffe00000) == 0x6fc00000)
1467 return extract_14 (inst);
1468
1469 /* addil high21,%r1; ldo low11,(%r1),%r30)
1470 save high bits in save_high21 for later use. */
1471 if ((inst & 0xffe00000) == 0x28200000)
1472 {
1473 save_high21 = extract_21 (inst);
1474 return 0;
1475 }
1476
1477 if ((inst & 0xffff0000) == 0x343e0000)
1478 return save_high21 + extract_14 (inst);
1479
1480 /* fstws as used by the HP compilers. */
1481 if ((inst & 0xffffffe0) == 0x2fd01220)
1482 return extract_5_load (inst);
1483
1484 /* No adjustment. */
1485 return 0;
1486 }
1487
1488 /* Return nonzero if INST is a branch of some kind, else return zero. */
1489
1490 static int
1491 is_branch (inst)
1492 unsigned long inst;
1493 {
1494 switch (inst >> 26)
1495 {
1496 case 0x20:
1497 case 0x21:
1498 case 0x22:
1499 case 0x23:
1500 case 0x28:
1501 case 0x29:
1502 case 0x2a:
1503 case 0x2b:
1504 case 0x30:
1505 case 0x31:
1506 case 0x32:
1507 case 0x33:
1508 case 0x38:
1509 case 0x39:
1510 case 0x3a:
1511 return 1;
1512
1513 default:
1514 return 0;
1515 }
1516 }
1517
1518 /* Return the register number for a GR which is saved by INST or
1519 zero it INST does not save a GR.
1520
1521 Note we only care about full 32bit register stores (that's the only
1522 kind of stores the prologue will use). */
1523
1524 static int
1525 inst_saves_gr (inst)
1526 unsigned long inst;
1527 {
1528 /* Does it look like a stw? */
1529 if ((inst >> 26) == 0x1a)
1530 return extract_5R_store (inst);
1531
1532 /* Does it look like a stwm? */
1533 if ((inst >> 26) == 0x1b)
1534 return extract_5R_store (inst);
1535
1536 return 0;
1537 }
1538
1539 /* Return the register number for a FR which is saved by INST or
1540 zero it INST does not save a FR.
1541
1542 Note we only care about full 64bit register stores (that's the only
1543 kind of stores the prologue will use). */
1544
1545 static int
1546 inst_saves_fr (inst)
1547 unsigned long inst;
1548 {
1549 if ((inst & 0xfc1fffe0) == 0x2c101220)
1550 return extract_5r_store (inst);
1551 return 0;
1552 }
1553
1554 /* Advance PC across any function entry prologue instructions
1555 to reach some "real" code.
1556
1557 Use information in the unwind table to determine what exactly should
1558 be in the prologue. */
1559
1560 CORE_ADDR
1561 skip_prologue (pc)
1562 CORE_ADDR pc;
1563 {
1564 char buf[4];
1565 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1566 int status, i;
1567 struct unwind_table_entry *u;
1568
1569 u = find_unwind_entry (pc);
1570 if (!u)
1571 return pc;
1572
1573 /* If we are not at the beginning of a function, then return now. */
1574 if ((pc & ~0x3) != u->region_start)
1575 return pc;
1576
1577 /* This is how much of a frame adjustment we need to account for. */
1578 stack_remaining = u->Total_frame_size << 3;
1579
1580 /* Magic register saves we want to know about. */
1581 save_rp = u->Save_RP;
1582 save_sp = u->Save_SP;
1583
1584 /* Turn the Entry_GR field into a bitmask. */
1585 save_gr = 0;
1586 for (i = 3; i < u->Entry_GR + 3; i++)
1587 {
1588 /* Frame pointer gets saved into a special location. */
1589 if (u->Save_SP && i == FP_REGNUM)
1590 continue;
1591
1592 save_gr |= (1 << i);
1593 }
1594
1595 /* Turn the Entry_FR field into a bitmask too. */
1596 save_fr = 0;
1597 for (i = 12; i < u->Entry_FR + 12; i++)
1598 save_fr |= (1 << i);
1599
1600 /* Loop until we find everything of interest or hit a branch.
1601
1602 For unoptimized GCC code and for any HP CC code this will never ever
1603 examine any user instructions.
1604
1605 For optimzied GCC code we're faced with problems. GCC will schedule
1606 its prologue and make prologue instructions available for delay slot
1607 filling. The end result is user code gets mixed in with the prologue
1608 and a prologue instruction may be in the delay slot of the first branch
1609 or call.
1610
1611 Some unexpected things are expected with debugging optimized code, so
1612 we allow this routine to walk past user instructions in optimized
1613 GCC code. */
1614 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1615 {
1616 status = target_read_memory (pc, buf, 4);
1617 inst = extract_unsigned_integer (buf, 4);
1618
1619 /* Yow! */
1620 if (status != 0)
1621 return pc;
1622
1623 /* Note the interesting effects of this instruction. */
1624 stack_remaining -= prologue_inst_adjust_sp (inst);
1625
1626 /* There is only one instruction used for saving RP into the stack. */
1627 if (inst == 0x6bc23fd9)
1628 save_rp = 0;
1629
1630 /* This is the only way we save SP into the stack. At this time
1631 the HP compilers never bother to save SP into the stack. */
1632 if ((inst & 0xffffc000) == 0x6fc10000)
1633 save_sp = 0;
1634
1635 /* Account for general and floating-point register saves. */
1636 save_gr &= ~(1 << inst_saves_gr (inst));
1637 save_fr &= ~(1 << inst_saves_fr (inst));
1638
1639 /* Quit if we hit any kind of branch. This can happen if a prologue
1640 instruction is in the delay slot of the first call/branch. */
1641 if (is_branch (inst))
1642 break;
1643
1644 /* Bump the PC. */
1645 pc += 4;
1646 }
1647
1648 return pc;
1649 }
1650
1651 /* Put here the code to store, into a struct frame_saved_regs,
1652 the addresses of the saved registers of frame described by FRAME_INFO.
1653 This includes special registers such as pc and fp saved in special
1654 ways in the stack frame. sp is even more special:
1655 the address we return for it IS the sp for the next frame. */
1656
1657 void
1658 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
1659 struct frame_info *frame_info;
1660 struct frame_saved_regs *frame_saved_regs;
1661 {
1662 CORE_ADDR pc;
1663 struct unwind_table_entry *u;
1664 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1665 int status, i, reg;
1666 char buf[4];
1667 int fp_loc = -1;
1668
1669 /* Zero out everything. */
1670 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
1671
1672 /* Call dummy frames always look the same, so there's no need to
1673 examine the dummy code to determine locations of saved registers;
1674 instead, let find_dummy_frame_regs fill in the correct offsets
1675 for the saved registers. */
1676 if ((frame_info->pc >= frame_info->frame
1677 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
1678 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
1679 + 6 * 4)))
1680 find_dummy_frame_regs (frame_info, frame_saved_regs);
1681
1682 /* Interrupt handlers are special too. They lay out the register
1683 state in the exact same order as the register numbers in GDB. */
1684 if (pc_in_interrupt_handler (frame_info->pc))
1685 {
1686 for (i = 0; i < NUM_REGS; i++)
1687 {
1688 /* SP is a little special. */
1689 if (i == SP_REGNUM)
1690 frame_saved_regs->regs[SP_REGNUM]
1691 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
1692 else
1693 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
1694 }
1695 return;
1696 }
1697
1698 /* Handle signal handler callers. */
1699 if (frame_info->signal_handler_caller)
1700 {
1701 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
1702 return;
1703 }
1704
1705 /* Get the starting address of the function referred to by the PC
1706 saved in frame_info. */
1707 pc = get_pc_function_start (frame_info->pc);
1708
1709 /* Yow! */
1710 u = find_unwind_entry (pc);
1711 if (!u)
1712 return;
1713
1714 /* This is how much of a frame adjustment we need to account for. */
1715 stack_remaining = u->Total_frame_size << 3;
1716
1717 /* Magic register saves we want to know about. */
1718 save_rp = u->Save_RP;
1719 save_sp = u->Save_SP;
1720
1721 /* Turn the Entry_GR field into a bitmask. */
1722 save_gr = 0;
1723 for (i = 3; i < u->Entry_GR + 3; i++)
1724 {
1725 /* Frame pointer gets saved into a special location. */
1726 if (u->Save_SP && i == FP_REGNUM)
1727 continue;
1728
1729 save_gr |= (1 << i);
1730 }
1731
1732 /* Turn the Entry_FR field into a bitmask too. */
1733 save_fr = 0;
1734 for (i = 12; i < u->Entry_FR + 12; i++)
1735 save_fr |= (1 << i);
1736
1737 /* The frame always represents the value of %sp at entry to the
1738 current function (and is thus equivalent to the "saved" stack
1739 pointer. */
1740 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
1741
1742 /* Loop until we find everything of interest or hit a branch.
1743
1744 For unoptimized GCC code and for any HP CC code this will never ever
1745 examine any user instructions.
1746
1747 For optimzied GCC code we're faced with problems. GCC will schedule
1748 its prologue and make prologue instructions available for delay slot
1749 filling. The end result is user code gets mixed in with the prologue
1750 and a prologue instruction may be in the delay slot of the first branch
1751 or call.
1752
1753 Some unexpected things are expected with debugging optimized code, so
1754 we allow this routine to walk past user instructions in optimized
1755 GCC code. */
1756 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1757 {
1758 status = target_read_memory (pc, buf, 4);
1759 inst = extract_unsigned_integer (buf, 4);
1760
1761 /* Yow! */
1762 if (status != 0)
1763 return;
1764
1765 /* Note the interesting effects of this instruction. */
1766 stack_remaining -= prologue_inst_adjust_sp (inst);
1767
1768 /* There is only one instruction used for saving RP into the stack. */
1769 if (inst == 0x6bc23fd9)
1770 {
1771 save_rp = 0;
1772 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
1773 }
1774
1775 /* Just note that we found the save of SP into the stack. The
1776 value for frame_saved_regs was computed above. */
1777 if ((inst & 0xffffc000) == 0x6fc10000)
1778 save_sp = 0;
1779
1780 /* Account for general and floating-point register saves. */
1781 reg = inst_saves_gr (inst);
1782 if (reg >= 3 && reg <= 18
1783 && (!u->Save_SP || reg != FP_REGNUM))
1784 {
1785 save_gr &= ~(1 << reg);
1786
1787 /* stwm with a positive displacement is a *post modify*. */
1788 if ((inst >> 26) == 0x1b
1789 && extract_14 (inst) >= 0)
1790 frame_saved_regs->regs[reg] = frame_info->frame;
1791 else
1792 {
1793 /* Handle code with and without frame pointers. */
1794 if (u->Save_SP)
1795 frame_saved_regs->regs[reg]
1796 = frame_info->frame + extract_14 (inst);
1797 else
1798 frame_saved_regs->regs[reg]
1799 = frame_info->frame + (u->Total_frame_size << 3)
1800 + extract_14 (inst);
1801 }
1802 }
1803
1804
1805 /* GCC handles callee saved FP regs a little differently.
1806
1807 It emits an instruction to put the value of the start of
1808 the FP store area into %r1. It then uses fstds,ma with
1809 a basereg of %r1 for the stores.
1810
1811 HP CC emits them at the current stack pointer modifying
1812 the stack pointer as it stores each register. */
1813
1814 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1815 if ((inst & 0xffffc000) == 0x34610000
1816 || (inst & 0xffffc000) == 0x37c10000)
1817 fp_loc = extract_14 (inst);
1818
1819 reg = inst_saves_fr (inst);
1820 if (reg >= 12 && reg <= 21)
1821 {
1822 /* Note +4 braindamage below is necessary because the FP status
1823 registers are internally 8 registers rather than the expected
1824 4 registers. */
1825 save_fr &= ~(1 << reg);
1826 if (fp_loc == -1)
1827 {
1828 /* 1st HP CC FP register store. After this instruction
1829 we've set enough state that the GCC and HPCC code are
1830 both handled in the same manner. */
1831 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
1832 fp_loc = 8;
1833 }
1834 else
1835 {
1836 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
1837 = frame_info->frame + fp_loc;
1838 fp_loc += 8;
1839 }
1840 }
1841
1842 /* Quit if we hit any kind of branch. This can happen if a prologue
1843 instruction is in the delay slot of the first call/branch. */
1844 if (is_branch (inst))
1845 break;
1846
1847 /* Bump the PC. */
1848 pc += 4;
1849 }
1850 }
1851
1852 #ifdef MAINTENANCE_CMDS
1853
1854 static void
1855 unwind_command (exp, from_tty)
1856 char *exp;
1857 int from_tty;
1858 {
1859 CORE_ADDR address;
1860 union
1861 {
1862 int *foo;
1863 struct unwind_table_entry *u;
1864 } xxx;
1865
1866 /* If we have an expression, evaluate it and use it as the address. */
1867
1868 if (exp != 0 && *exp != 0)
1869 address = parse_and_eval_address (exp);
1870 else
1871 return;
1872
1873 xxx.u = find_unwind_entry (address);
1874
1875 if (!xxx.u)
1876 {
1877 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
1878 return;
1879 }
1880
1881 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1882 xxx.foo[3]);
1883 }
1884 #endif /* MAINTENANCE_CMDS */
1885
1886 void
1887 _initialize_hppa_tdep ()
1888 {
1889 #ifdef MAINTENANCE_CMDS
1890 add_cmd ("unwind", class_maintenance, unwind_command,
1891 "Print unwind table entry at given address.",
1892 &maintenanceprintlist);
1893 #endif /* MAINTENANCE_CMDS */
1894 }