* Makefile.in (ALLDEPFILES): Add hpread.c.
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66 static int is_branch PARAMS ((unsigned long));
67 static int inst_saves_gr PARAMS ((unsigned long));
68 static int inst_saves_fr PARAMS ((unsigned long));
69 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
70 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
71 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
72 const struct unwind_table_entry *));
73 static void read_unwind_info PARAMS ((struct objfile *));
74 static void internalize_unwinds PARAMS ((struct objfile *,
75 struct unwind_table_entry *,
76 asection *, unsigned int,
77 unsigned int));
78
79 \f
80 /* Routines to extract various sized constants out of hppa
81 instructions. */
82
83 /* This assumes that no garbage lies outside of the lower bits of
84 value. */
85
86 int
87 sign_extend (val, bits)
88 unsigned val, bits;
89 {
90 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
91 }
92
93 /* For many immediate values the sign bit is the low bit! */
94
95 int
96 low_sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
100 }
101 /* extract the immediate field from a ld{bhw}s instruction */
102
103 unsigned
104 get_field (val, from, to)
105 unsigned val, from, to;
106 {
107 val = val >> 31 - to;
108 return val & ((1 << 32 - from) - 1);
109 }
110
111 unsigned
112 set_field (val, from, to, new_val)
113 unsigned *val, from, to;
114 {
115 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
116 return *val = *val & mask | (new_val << (31 - from));
117 }
118
119 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
120
121 extract_3 (word)
122 unsigned word;
123 {
124 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
125 }
126
127 extract_5_load (word)
128 unsigned word;
129 {
130 return low_sign_extend (word >> 16 & MASK_5, 5);
131 }
132
133 /* extract the immediate field from a st{bhw}s instruction */
134
135 int
136 extract_5_store (word)
137 unsigned word;
138 {
139 return low_sign_extend (word & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a break instruction */
143
144 unsigned
145 extract_5r_store (word)
146 unsigned word;
147 {
148 return (word & MASK_5);
149 }
150
151 /* extract the immediate field from a {sr}sm instruction */
152
153 unsigned
154 extract_5R_store (word)
155 unsigned word;
156 {
157 return (word >> 16 & MASK_5);
158 }
159
160 /* extract an 11 bit immediate field */
161
162 int
163 extract_11 (word)
164 unsigned word;
165 {
166 return low_sign_extend (word & MASK_11, 11);
167 }
168
169 /* extract a 14 bit immediate field */
170
171 int
172 extract_14 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_14, 14);
176 }
177
178 /* deposit a 14 bit constant in a word */
179
180 unsigned
181 deposit_14 (opnd, word)
182 int opnd;
183 unsigned word;
184 {
185 unsigned sign = (opnd < 0 ? 1 : 0);
186
187 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
188 }
189
190 /* extract a 21 bit constant */
191
192 int
193 extract_21 (word)
194 unsigned word;
195 {
196 int val;
197
198 word &= MASK_21;
199 word <<= 11;
200 val = GET_FIELD (word, 20, 20);
201 val <<= 11;
202 val |= GET_FIELD (word, 9, 19);
203 val <<= 2;
204 val |= GET_FIELD (word, 5, 6);
205 val <<= 5;
206 val |= GET_FIELD (word, 0, 4);
207 val <<= 2;
208 val |= GET_FIELD (word, 7, 8);
209 return sign_extend (val, 21) << 11;
210 }
211
212 /* deposit a 21 bit constant in a word. Although 21 bit constants are
213 usually the top 21 bits of a 32 bit constant, we assume that only
214 the low 21 bits of opnd are relevant */
215
216 unsigned
217 deposit_21 (opnd, word)
218 unsigned opnd, word;
219 {
220 unsigned val = 0;
221
222 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
223 val <<= 2;
224 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
225 val <<= 2;
226 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
227 val <<= 11;
228 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
229 val <<= 1;
230 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
231 return word | val;
232 }
233
234 /* extract a 12 bit constant from branch instructions */
235
236 int
237 extract_12 (word)
238 unsigned word;
239 {
240 return sign_extend (GET_FIELD (word, 19, 28) |
241 GET_FIELD (word, 29, 29) << 10 |
242 (word & 0x1) << 11, 12) << 2;
243 }
244
245 /* extract a 17 bit constant from branch instructions, returning the
246 19 bit signed value. */
247
248 int
249 extract_17 (word)
250 unsigned word;
251 {
252 return sign_extend (GET_FIELD (word, 19, 28) |
253 GET_FIELD (word, 29, 29) << 10 |
254 GET_FIELD (word, 11, 15) << 11 |
255 (word & 0x1) << 16, 17) << 2;
256 }
257 \f
258
259 /* Compare the start address for two unwind entries returning 1 if
260 the first address is larger than the second, -1 if the second is
261 larger than the first, and zero if they are equal. */
262
263 static int
264 compare_unwind_entries (a, b)
265 const struct unwind_table_entry *a;
266 const struct unwind_table_entry *b;
267 {
268 if (a->region_start > b->region_start)
269 return 1;
270 else if (a->region_start < b->region_start)
271 return -1;
272 else
273 return 0;
274 }
275
276 static void
277 internalize_unwinds (objfile, table, section, entries, size)
278 struct objfile *objfile;
279 struct unwind_table_entry *table;
280 asection *section;
281 unsigned int entries, size;
282 {
283 /* We will read the unwind entries into temporary memory, then
284 fill in the actual unwind table. */
285 if (size > 0)
286 {
287 unsigned long tmp;
288 unsigned i;
289 char *buf = alloca (size);
290
291 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
292
293 /* Now internalize the information being careful to handle host/target
294 endian issues. */
295 for (i = 0; i < entries; i++)
296 {
297 table[i].region_start = bfd_get_32 (objfile->obfd,
298 (bfd_byte *)buf);
299 buf += 4;
300 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
301 buf += 4;
302 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
303 buf += 4;
304 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
305 table[i].Millicode = (tmp >> 30) & 0x1;
306 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
307 table[i].Region_description = (tmp >> 27) & 0x3;
308 table[i].reserved1 = (tmp >> 26) & 0x1;
309 table[i].Entry_SR = (tmp >> 25) & 0x1;
310 table[i].Entry_FR = (tmp >> 21) & 0xf;
311 table[i].Entry_GR = (tmp >> 16) & 0x1f;
312 table[i].Args_stored = (tmp >> 15) & 0x1;
313 table[i].Variable_Frame = (tmp >> 14) & 0x1;
314 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
315 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
316 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
317 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
318 table[i].Ada_Region = (tmp >> 9) & 0x1;
319 table[i].reserved2 = (tmp >> 5) & 0xf;
320 table[i].Save_SP = (tmp >> 4) & 0x1;
321 table[i].Save_RP = (tmp >> 3) & 0x1;
322 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
323 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
324 table[i].Cleanup_defined = tmp & 0x1;
325 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 buf += 4;
327 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
328 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
329 table[i].Large_frame = (tmp >> 29) & 0x1;
330 table[i].reserved4 = (tmp >> 27) & 0x3;
331 table[i].Total_frame_size = tmp & 0x7ffffff;
332 }
333 }
334 }
335
336 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
337 the object file. This info is used mainly by find_unwind_entry() to find
338 out the stack frame size and frame pointer used by procedures. We put
339 everything on the psymbol obstack in the objfile so that it automatically
340 gets freed when the objfile is destroyed. */
341
342 static void
343 read_unwind_info (objfile)
344 struct objfile *objfile;
345 {
346 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
347 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
348 unsigned index, unwind_entries, elf_unwind_entries;
349 unsigned stub_entries, total_entries;
350 struct obj_unwind_info *ui;
351
352 ui = obstack_alloc (&objfile->psymbol_obstack,
353 sizeof (struct obj_unwind_info));
354
355 ui->table = NULL;
356 ui->cache = NULL;
357 ui->last = -1;
358
359 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
360 section in ELF at the moment. */
361 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
362 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
363 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
364
365 /* Get sizes and unwind counts for all sections. */
366 if (unwind_sec)
367 {
368 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
369 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 unwind_size = 0;
374 unwind_entries = 0;
375 }
376
377 if (elf_unwind_sec)
378 {
379 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
380 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
381 }
382 else
383 {
384 elf_unwind_size = 0;
385 elf_unwind_entries = 0;
386 }
387
388 if (stub_unwind_sec)
389 {
390 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
391 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
392 }
393 else
394 {
395 stub_unwind_size = 0;
396 stub_entries = 0;
397 }
398
399 /* Compute total number of unwind entries and their total size. */
400 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
401 total_size = total_entries * sizeof (struct unwind_table_entry);
402
403 /* Allocate memory for the unwind table. */
404 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
405 ui->last = total_entries - 1;
406
407 /* Internalize the standard unwind entries. */
408 index = 0;
409 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
410 unwind_entries, unwind_size);
411 index += unwind_entries;
412 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
413 elf_unwind_entries, elf_unwind_size);
414 index += elf_unwind_entries;
415
416 /* Now internalize the stub unwind entries. */
417 if (stub_unwind_size > 0)
418 {
419 unsigned int i;
420 char *buf = alloca (stub_unwind_size);
421
422 /* Read in the stub unwind entries. */
423 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
424 0, stub_unwind_size);
425
426 /* Now convert them into regular unwind entries. */
427 for (i = 0; i < stub_entries; i++, index++)
428 {
429 /* Clear out the next unwind entry. */
430 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
431
432 /* Convert offset & size into region_start and region_end.
433 Stuff away the stub type into "reserved" fields. */
434 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
435 (bfd_byte *) buf);
436 buf += 4;
437 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
438 (bfd_byte *) buf);
439 buf += 2;
440 ui->table[index].region_end
441 = ui->table[index].region_start + 4 *
442 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
443 buf += 2;
444 }
445
446 }
447
448 /* Unwind table needs to be kept sorted. */
449 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
450 compare_unwind_entries);
451
452 /* Keep a pointer to the unwind information. */
453 objfile->obj_private = (PTR) ui;
454 }
455
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
460
461 static struct unwind_table_entry *
462 find_unwind_entry(pc)
463 CORE_ADDR pc;
464 {
465 int first, middle, last;
466 struct objfile *objfile;
467
468 ALL_OBJFILES (objfile)
469 {
470 struct obj_unwind_info *ui;
471
472 ui = OBJ_UNWIND_INFO (objfile);
473
474 if (!ui)
475 {
476 read_unwind_info (objfile);
477 ui = OBJ_UNWIND_INFO (objfile);
478 }
479
480 /* First, check the cache */
481
482 if (ui->cache
483 && pc >= ui->cache->region_start
484 && pc <= ui->cache->region_end)
485 return ui->cache;
486
487 /* Not in the cache, do a binary search */
488
489 first = 0;
490 last = ui->last;
491
492 while (first <= last)
493 {
494 middle = (first + last) / 2;
495 if (pc >= ui->table[middle].region_start
496 && pc <= ui->table[middle].region_end)
497 {
498 ui->cache = &ui->table[middle];
499 return &ui->table[middle];
500 }
501
502 if (pc < ui->table[middle].region_start)
503 last = middle - 1;
504 else
505 first = middle + 1;
506 }
507 } /* ALL_OBJFILES() */
508 return NULL;
509 }
510
511 /* start-sanitize-hpread */
512 /* Return the adjustment necessary to make for addresses on the stack
513 as presented by hpread.c.
514
515 This is necessary because of the stack direction on the PA and the
516 bizarre way in which someone (?) decided they wanted to handle
517 frame pointerless code in GDB. */
518 int
519 hpread_adjust_stack_address (func_addr)
520 CORE_ADDR func_addr;
521 {
522 struct unwind_table_entry *u;
523
524 u = find_unwind_entry (func_addr);
525 if (!u)
526 return 0;
527 else
528 return u->Total_frame_size << 3;
529 }
530 /* end-sanitize-hpread */
531
532 /* Called to determine if PC is in an interrupt handler of some
533 kind. */
534
535 static int
536 pc_in_interrupt_handler (pc)
537 CORE_ADDR pc;
538 {
539 struct unwind_table_entry *u;
540 struct minimal_symbol *msym_us;
541
542 u = find_unwind_entry (pc);
543 if (!u)
544 return 0;
545
546 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
547 its frame isn't a pure interrupt frame. Deal with this. */
548 msym_us = lookup_minimal_symbol_by_pc (pc);
549
550 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
551 }
552
553 /* Called when no unwind descriptor was found for PC. Returns 1 if it
554 appears that PC is in a linker stub. */
555
556 static int
557 pc_in_linker_stub (pc)
558 CORE_ADDR pc;
559 {
560 int found_magic_instruction = 0;
561 int i;
562 char buf[4];
563
564 /* If unable to read memory, assume pc is not in a linker stub. */
565 if (target_read_memory (pc, buf, 4) != 0)
566 return 0;
567
568 /* We are looking for something like
569
570 ; $$dyncall jams RP into this special spot in the frame (RP')
571 ; before calling the "call stub"
572 ldw -18(sp),rp
573
574 ldsid (rp),r1 ; Get space associated with RP into r1
575 mtsp r1,sp ; Move it into space register 0
576 be,n 0(sr0),rp) ; back to your regularly scheduled program
577 */
578
579 /* Maximum known linker stub size is 4 instructions. Search forward
580 from the given PC, then backward. */
581 for (i = 0; i < 4; i++)
582 {
583 /* If we hit something with an unwind, stop searching this direction. */
584
585 if (find_unwind_entry (pc + i * 4) != 0)
586 break;
587
588 /* Check for ldsid (rp),r1 which is the magic instruction for a
589 return from a cross-space function call. */
590 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
591 {
592 found_magic_instruction = 1;
593 break;
594 }
595 /* Add code to handle long call/branch and argument relocation stubs
596 here. */
597 }
598
599 if (found_magic_instruction != 0)
600 return 1;
601
602 /* Now look backward. */
603 for (i = 0; i < 4; i++)
604 {
605 /* If we hit something with an unwind, stop searching this direction. */
606
607 if (find_unwind_entry (pc - i * 4) != 0)
608 break;
609
610 /* Check for ldsid (rp),r1 which is the magic instruction for a
611 return from a cross-space function call. */
612 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
613 {
614 found_magic_instruction = 1;
615 break;
616 }
617 /* Add code to handle long call/branch and argument relocation stubs
618 here. */
619 }
620 return found_magic_instruction;
621 }
622
623 static int
624 find_return_regnum(pc)
625 CORE_ADDR pc;
626 {
627 struct unwind_table_entry *u;
628
629 u = find_unwind_entry (pc);
630
631 if (!u)
632 return RP_REGNUM;
633
634 if (u->Millicode)
635 return 31;
636
637 return RP_REGNUM;
638 }
639
640 /* Return size of frame, or -1 if we should use a frame pointer. */
641 int
642 find_proc_framesize (pc)
643 CORE_ADDR pc;
644 {
645 struct unwind_table_entry *u;
646 struct minimal_symbol *msym_us;
647
648 u = find_unwind_entry (pc);
649
650 if (!u)
651 {
652 if (pc_in_linker_stub (pc))
653 /* Linker stubs have a zero size frame. */
654 return 0;
655 else
656 return -1;
657 }
658
659 msym_us = lookup_minimal_symbol_by_pc (pc);
660
661 /* If Save_SP is set, and we're not in an interrupt or signal caller,
662 then we have a frame pointer. Use it. */
663 if (u->Save_SP && !pc_in_interrupt_handler (pc)
664 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
665 return -1;
666
667 return u->Total_frame_size << 3;
668 }
669
670 /* Return offset from sp at which rp is saved, or 0 if not saved. */
671 static int rp_saved PARAMS ((CORE_ADDR));
672
673 static int
674 rp_saved (pc)
675 CORE_ADDR pc;
676 {
677 struct unwind_table_entry *u;
678
679 u = find_unwind_entry (pc);
680
681 if (!u)
682 {
683 if (pc_in_linker_stub (pc))
684 /* This is the so-called RP'. */
685 return -24;
686 else
687 return 0;
688 }
689
690 if (u->Save_RP)
691 return -20;
692 else if (u->stub_type != 0)
693 {
694 switch (u->stub_type)
695 {
696 case EXPORT:
697 return -24;
698 case PARAMETER_RELOCATION:
699 return -8;
700 default:
701 return 0;
702 }
703 }
704 else
705 return 0;
706 }
707 \f
708 int
709 frameless_function_invocation (frame)
710 FRAME frame;
711 {
712 struct unwind_table_entry *u;
713
714 u = find_unwind_entry (frame->pc);
715
716 if (u == 0)
717 return 0;
718
719 return (u->Total_frame_size == 0 && u->stub_type == 0);
720 }
721
722 CORE_ADDR
723 saved_pc_after_call (frame)
724 FRAME frame;
725 {
726 int ret_regnum;
727 CORE_ADDR pc;
728 struct unwind_table_entry *u;
729
730 ret_regnum = find_return_regnum (get_frame_pc (frame));
731 pc = read_register (ret_regnum) & ~0x3;
732
733 /* If PC is in a linker stub, then we need to dig the address
734 the stub will return to out of the stack. */
735 u = find_unwind_entry (pc);
736 if (u && u->stub_type != 0)
737 return frame_saved_pc (frame);
738 else
739 return pc;
740 }
741 \f
742 CORE_ADDR
743 frame_saved_pc (frame)
744 FRAME frame;
745 {
746 CORE_ADDR pc = get_frame_pc (frame);
747 struct unwind_table_entry *u;
748
749 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
750 at the base of the frame in an interrupt handler. Registers within
751 are saved in the exact same order as GDB numbers registers. How
752 convienent. */
753 if (pc_in_interrupt_handler (pc))
754 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
755
756 /* Deal with signal handler caller frames too. */
757 if (frame->signal_handler_caller)
758 {
759 CORE_ADDR rp;
760 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
761 return rp;
762 }
763
764 if (frameless_function_invocation (frame))
765 {
766 int ret_regnum;
767
768 ret_regnum = find_return_regnum (pc);
769
770 /* If the next frame is an interrupt frame or a signal
771 handler caller, then we need to look in the saved
772 register area to get the return pointer (the values
773 in the registers may not correspond to anything useful). */
774 if (frame->next
775 && (frame->next->signal_handler_caller
776 || pc_in_interrupt_handler (frame->next->pc)))
777 {
778 struct frame_info *fi;
779 struct frame_saved_regs saved_regs;
780
781 fi = get_frame_info (frame->next);
782 get_frame_saved_regs (fi, &saved_regs);
783 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
784 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
785 else
786 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
787 }
788 else
789 pc = read_register (ret_regnum) & ~0x3;
790 }
791 else
792 {
793 int rp_offset;
794
795 restart:
796 rp_offset = rp_saved (pc);
797 /* Similar to code in frameless function case. If the next
798 frame is a signal or interrupt handler, then dig the right
799 information out of the saved register info. */
800 if (rp_offset == 0
801 && frame->next
802 && (frame->next->signal_handler_caller
803 || pc_in_interrupt_handler (frame->next->pc)))
804 {
805 struct frame_info *fi;
806 struct frame_saved_regs saved_regs;
807
808 fi = get_frame_info (frame->next);
809 get_frame_saved_regs (fi, &saved_regs);
810 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM] & 0x2, 4))
811 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
812 else
813 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
814 }
815 else if (rp_offset == 0)
816 pc = read_register (RP_REGNUM) & ~0x3;
817 else
818 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
819 }
820
821 /* If PC is inside a linker stub, then dig out the address the stub
822 will return to. */
823 u = find_unwind_entry (pc);
824 if (u && u->stub_type != 0)
825 goto restart;
826
827 return pc;
828 }
829 \f
830 /* We need to correct the PC and the FP for the outermost frame when we are
831 in a system call. */
832
833 void
834 init_extra_frame_info (fromleaf, frame)
835 int fromleaf;
836 struct frame_info *frame;
837 {
838 int flags;
839 int framesize;
840
841 if (frame->next && !fromleaf)
842 return;
843
844 /* If the next frame represents a frameless function invocation
845 then we have to do some adjustments that are normally done by
846 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
847 if (fromleaf)
848 {
849 /* Find the framesize of *this* frame without peeking at the PC
850 in the current frame structure (it isn't set yet). */
851 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
852
853 /* Now adjust our base frame accordingly. If we have a frame pointer
854 use it, else subtract the size of this frame from the current
855 frame. (we always want frame->frame to point at the lowest address
856 in the frame). */
857 if (framesize == -1)
858 frame->frame = read_register (FP_REGNUM);
859 else
860 frame->frame -= framesize;
861 return;
862 }
863
864 flags = read_register (FLAGS_REGNUM);
865 if (flags & 2) /* In system call? */
866 frame->pc = read_register (31) & ~0x3;
867
868 /* The outermost frame is always derived from PC-framesize
869
870 One might think frameless innermost frames should have
871 a frame->frame that is the same as the parent's frame->frame.
872 That is wrong; frame->frame in that case should be the *high*
873 address of the parent's frame. It's complicated as hell to
874 explain, but the parent *always* creates some stack space for
875 the child. So the child actually does have a frame of some
876 sorts, and its base is the high address in its parent's frame. */
877 framesize = find_proc_framesize(frame->pc);
878 if (framesize == -1)
879 frame->frame = read_register (FP_REGNUM);
880 else
881 frame->frame = read_register (SP_REGNUM) - framesize;
882 }
883 \f
884 /* Given a GDB frame, determine the address of the calling function's frame.
885 This will be used to create a new GDB frame struct, and then
886 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
887
888 This may involve searching through prologues for several functions
889 at boundaries where GCC calls HP C code, or where code which has
890 a frame pointer calls code without a frame pointer. */
891
892
893 FRAME_ADDR
894 frame_chain (frame)
895 struct frame_info *frame;
896 {
897 int my_framesize, caller_framesize;
898 struct unwind_table_entry *u;
899 CORE_ADDR frame_base;
900
901 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
902 are easy; at *sp we have a full save state strucutre which we can
903 pull the old stack pointer from. Also see frame_saved_pc for
904 code to dig a saved PC out of the save state structure. */
905 if (pc_in_interrupt_handler (frame->pc))
906 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
907 else if (frame->signal_handler_caller)
908 {
909 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
910 }
911 else
912 frame_base = frame->frame;
913
914 /* Get frame sizes for the current frame and the frame of the
915 caller. */
916 my_framesize = find_proc_framesize (frame->pc);
917 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
918
919 /* If caller does not have a frame pointer, then its frame
920 can be found at current_frame - caller_framesize. */
921 if (caller_framesize != -1)
922 return frame_base - caller_framesize;
923
924 /* Both caller and callee have frame pointers and are GCC compiled
925 (SAVE_SP bit in unwind descriptor is on for both functions.
926 The previous frame pointer is found at the top of the current frame. */
927 if (caller_framesize == -1 && my_framesize == -1)
928 return read_memory_integer (frame_base, 4);
929
930 /* Caller has a frame pointer, but callee does not. This is a little
931 more difficult as GCC and HP C lay out locals and callee register save
932 areas very differently.
933
934 The previous frame pointer could be in a register, or in one of
935 several areas on the stack.
936
937 Walk from the current frame to the innermost frame examining
938 unwind descriptors to determine if %r3 ever gets saved into the
939 stack. If so return whatever value got saved into the stack.
940 If it was never saved in the stack, then the value in %r3 is still
941 valid, so use it.
942
943 We use information from unwind descriptors to determine if %r3
944 is saved into the stack (Entry_GR field has this information). */
945
946 while (frame)
947 {
948 u = find_unwind_entry (frame->pc);
949
950 if (!u)
951 {
952 /* We could find this information by examining prologues. I don't
953 think anyone has actually written any tools (not even "strip")
954 which leave them out of an executable, so maybe this is a moot
955 point. */
956 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
957 return 0;
958 }
959
960 /* Entry_GR specifies the number of callee-saved general registers
961 saved in the stack. It starts at %r3, so %r3 would be 1. */
962 if (u->Entry_GR >= 1 || u->Save_SP
963 || frame->signal_handler_caller
964 || pc_in_interrupt_handler (frame->pc))
965 break;
966 else
967 frame = frame->next;
968 }
969
970 if (frame)
971 {
972 /* We may have walked down the chain into a function with a frame
973 pointer. */
974 if (u->Save_SP
975 && !frame->signal_handler_caller
976 && !pc_in_interrupt_handler (frame->pc))
977 return read_memory_integer (frame->frame, 4);
978 /* %r3 was saved somewhere in the stack. Dig it out. */
979 else
980 {
981 struct frame_info *fi;
982 struct frame_saved_regs saved_regs;
983
984 fi = get_frame_info (frame);
985 get_frame_saved_regs (fi, &saved_regs);
986 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
987 }
988 }
989 else
990 {
991 /* The value in %r3 was never saved into the stack (thus %r3 still
992 holds the value of the previous frame pointer). */
993 return read_register (FP_REGNUM);
994 }
995 }
996
997 \f
998 /* To see if a frame chain is valid, see if the caller looks like it
999 was compiled with gcc. */
1000
1001 int
1002 frame_chain_valid (chain, thisframe)
1003 FRAME_ADDR chain;
1004 FRAME thisframe;
1005 {
1006 struct minimal_symbol *msym_us;
1007 struct minimal_symbol *msym_start;
1008 struct unwind_table_entry *u, *next_u = NULL;
1009 FRAME next;
1010
1011 if (!chain)
1012 return 0;
1013
1014 u = find_unwind_entry (thisframe->pc);
1015
1016 if (u == NULL)
1017 return 1;
1018
1019 /* We can't just check that the same of msym_us is "_start", because
1020 someone idiotically decided that they were going to make a Ltext_end
1021 symbol with the same address. This Ltext_end symbol is totally
1022 indistinguishable (as nearly as I can tell) from the symbol for a function
1023 which is (legitimately, since it is in the user's namespace)
1024 named Ltext_end, so we can't just ignore it. */
1025 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1026 msym_start = lookup_minimal_symbol ("_start", NULL);
1027 if (msym_us
1028 && msym_start
1029 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1030 return 0;
1031
1032 next = get_next_frame (thisframe);
1033 if (next)
1034 next_u = find_unwind_entry (next->pc);
1035
1036 /* If this frame does not save SP, has no stack, isn't a stub,
1037 and doesn't "call" an interrupt routine or signal handler caller,
1038 then its not valid. */
1039 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1040 || (thisframe->next && thisframe->next->signal_handler_caller)
1041 || (next_u && next_u->HP_UX_interrupt_marker))
1042 return 1;
1043
1044 if (pc_in_linker_stub (thisframe->pc))
1045 return 1;
1046
1047 return 0;
1048 }
1049
1050 /*
1051 * These functions deal with saving and restoring register state
1052 * around a function call in the inferior. They keep the stack
1053 * double-word aligned; eventually, on an hp700, the stack will have
1054 * to be aligned to a 64-byte boundary.
1055 */
1056
1057 int
1058 push_dummy_frame ()
1059 {
1060 register CORE_ADDR sp;
1061 register int regnum;
1062 int int_buffer;
1063 double freg_buffer;
1064
1065 /* Space for "arguments"; the RP goes in here. */
1066 sp = read_register (SP_REGNUM) + 48;
1067 int_buffer = read_register (RP_REGNUM) | 0x3;
1068 write_memory (sp - 20, (char *)&int_buffer, 4);
1069
1070 int_buffer = read_register (FP_REGNUM);
1071 write_memory (sp, (char *)&int_buffer, 4);
1072
1073 write_register (FP_REGNUM, sp);
1074
1075 sp += 8;
1076
1077 for (regnum = 1; regnum < 32; regnum++)
1078 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1079 sp = push_word (sp, read_register (regnum));
1080
1081 sp += 4;
1082
1083 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1084 {
1085 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1086 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1087 }
1088 sp = push_word (sp, read_register (IPSW_REGNUM));
1089 sp = push_word (sp, read_register (SAR_REGNUM));
1090 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1091 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1092 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1093 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1094 write_register (SP_REGNUM, sp);
1095 }
1096
1097 find_dummy_frame_regs (frame, frame_saved_regs)
1098 struct frame_info *frame;
1099 struct frame_saved_regs *frame_saved_regs;
1100 {
1101 CORE_ADDR fp = frame->frame;
1102 int i;
1103
1104 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1105 frame_saved_regs->regs[FP_REGNUM] = fp;
1106 frame_saved_regs->regs[1] = fp + 8;
1107
1108 for (fp += 12, i = 3; i < 32; i++)
1109 {
1110 if (i != FP_REGNUM)
1111 {
1112 frame_saved_regs->regs[i] = fp;
1113 fp += 4;
1114 }
1115 }
1116
1117 fp += 4;
1118 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1119 frame_saved_regs->regs[i] = fp;
1120
1121 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1122 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1123 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1124 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1125 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1126 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1127 }
1128
1129 int
1130 hppa_pop_frame ()
1131 {
1132 register FRAME frame = get_current_frame ();
1133 register CORE_ADDR fp;
1134 register int regnum;
1135 struct frame_saved_regs fsr;
1136 struct frame_info *fi;
1137 double freg_buffer;
1138
1139 fi = get_frame_info (frame);
1140 fp = fi->frame;
1141 get_frame_saved_regs (fi, &fsr);
1142
1143 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1144 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1145 restore_pc_queue (&fsr);
1146 #endif
1147
1148 for (regnum = 31; regnum > 0; regnum--)
1149 if (fsr.regs[regnum])
1150 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1151
1152 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1153 if (fsr.regs[regnum])
1154 {
1155 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1156 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1157 }
1158
1159 if (fsr.regs[IPSW_REGNUM])
1160 write_register (IPSW_REGNUM,
1161 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1162
1163 if (fsr.regs[SAR_REGNUM])
1164 write_register (SAR_REGNUM,
1165 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1166
1167 /* If the PC was explicitly saved, then just restore it. */
1168 if (fsr.regs[PCOQ_TAIL_REGNUM])
1169 write_register (PCOQ_TAIL_REGNUM,
1170 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1171
1172 /* Else use the value in %rp to set the new PC. */
1173 else
1174 target_write_pc (read_register (RP_REGNUM), 0);
1175
1176 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1177
1178 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1179 write_register (SP_REGNUM, fp - 48);
1180 else
1181 write_register (SP_REGNUM, fp);
1182
1183 flush_cached_frames ();
1184 set_current_frame (create_new_frame (read_register (FP_REGNUM),
1185 read_pc ()));
1186 }
1187
1188 /*
1189 * After returning to a dummy on the stack, restore the instruction
1190 * queue space registers. */
1191
1192 static int
1193 restore_pc_queue (fsr)
1194 struct frame_saved_regs *fsr;
1195 {
1196 CORE_ADDR pc = read_pc ();
1197 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1198 int pid;
1199 struct target_waitstatus w;
1200 int insn_count;
1201
1202 /* Advance past break instruction in the call dummy. */
1203 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1204 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1205
1206 /*
1207 * HPUX doesn't let us set the space registers or the space
1208 * registers of the PC queue through ptrace. Boo, hiss.
1209 * Conveniently, the call dummy has this sequence of instructions
1210 * after the break:
1211 * mtsp r21, sr0
1212 * ble,n 0(sr0, r22)
1213 *
1214 * So, load up the registers and single step until we are in the
1215 * right place.
1216 */
1217
1218 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1219 write_register (22, new_pc);
1220
1221 for (insn_count = 0; insn_count < 3; insn_count++)
1222 {
1223 /* FIXME: What if the inferior gets a signal right now? Want to
1224 merge this into wait_for_inferior (as a special kind of
1225 watchpoint? By setting a breakpoint at the end? Is there
1226 any other choice? Is there *any* way to do this stuff with
1227 ptrace() or some equivalent?). */
1228 resume (1, 0);
1229 target_wait (inferior_pid, &w);
1230
1231 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1232 {
1233 stop_signal = w.value.sig;
1234 terminal_ours_for_output ();
1235 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1236 target_signal_to_name (stop_signal),
1237 target_signal_to_string (stop_signal));
1238 gdb_flush (gdb_stdout);
1239 return 0;
1240 }
1241 }
1242 target_terminal_ours ();
1243 target_fetch_registers (-1);
1244 return 1;
1245 }
1246
1247 CORE_ADDR
1248 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1249 int nargs;
1250 value_ptr *args;
1251 CORE_ADDR sp;
1252 int struct_return;
1253 CORE_ADDR struct_addr;
1254 {
1255 /* array of arguments' offsets */
1256 int *offset = (int *)alloca(nargs * sizeof (int));
1257 int cum = 0;
1258 int i, alignment;
1259
1260 for (i = 0; i < nargs; i++)
1261 {
1262 /* Coerce chars to int & float to double if necessary */
1263 args[i] = value_arg_coerce (args[i]);
1264
1265 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1266
1267 /* value must go at proper alignment. Assume alignment is a
1268 power of two.*/
1269 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1270 if (cum % alignment)
1271 cum = (cum + alignment) & -alignment;
1272 offset[i] = -cum;
1273 }
1274 sp += max ((cum + 7) & -8, 16);
1275
1276 for (i = 0; i < nargs; i++)
1277 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1278 TYPE_LENGTH (VALUE_TYPE (args[i])));
1279
1280 if (struct_return)
1281 write_register (28, struct_addr);
1282 return sp + 32;
1283 }
1284
1285 /*
1286 * Insert the specified number of args and function address
1287 * into a call sequence of the above form stored at DUMMYNAME.
1288 *
1289 * On the hppa we need to call the stack dummy through $$dyncall.
1290 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1291 * real_pc, which is the location where gdb should start up the
1292 * inferior to do the function call.
1293 */
1294
1295 CORE_ADDR
1296 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1297 char *dummy;
1298 CORE_ADDR pc;
1299 CORE_ADDR fun;
1300 int nargs;
1301 value_ptr *args;
1302 struct type *type;
1303 int gcc_p;
1304 {
1305 CORE_ADDR dyncall_addr, sr4export_addr;
1306 struct minimal_symbol *msymbol;
1307 int flags = read_register (FLAGS_REGNUM);
1308 struct unwind_table_entry *u;
1309
1310 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1311 if (msymbol == NULL)
1312 error ("Can't find an address for $$dyncall trampoline");
1313
1314 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1315
1316 /* FUN could be a procedure label, in which case we have to get
1317 its real address and the value of its GOT/DP. */
1318 if (fun & 0x2)
1319 {
1320 /* Get the GOT/DP value for the target function. It's
1321 at *(fun+4). Note the call dummy is *NOT* allowed to
1322 trash %r19 before calling the target function. */
1323 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1324
1325 /* Now get the real address for the function we are calling, it's
1326 at *fun. */
1327 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1328 }
1329
1330 /* If we are calling an import stub (eg calling into a dynamic library)
1331 then have sr4export call the magic __d_plt_call routine which is linked
1332 in from end.o. (You can't use _sr4export to call the import stub as
1333 the value in sp-24 will get fried and you end up returning to the
1334 wrong location. You can't call the import stub directly as the code
1335 to bind the PLT entry to a function can't return to a stack address.) */
1336 u = find_unwind_entry (fun);
1337 if (u && u->stub_type == IMPORT)
1338 {
1339 CORE_ADDR new_fun;
1340 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1341 if (msymbol == NULL)
1342 error ("Can't find an address for __d_plt_call trampoline");
1343
1344 /* This is where sr4export will jump to. */
1345 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1346
1347 /* We have to store the address of the stub in __shlib_funcptr. */
1348 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1349 (struct objfile *)NULL);
1350 if (msymbol == NULL)
1351 error ("Can't find an address for __shlib_funcptr");
1352
1353 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1354 fun = new_fun;
1355
1356 }
1357
1358 /* We still need sr4export's address too. */
1359 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1360 if (msymbol == NULL)
1361 error ("Can't find an address for _sr4export trampoline");
1362
1363 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1364
1365 store_unsigned_integer
1366 (&dummy[9*REGISTER_SIZE],
1367 REGISTER_SIZE,
1368 deposit_21 (fun >> 11,
1369 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1370 REGISTER_SIZE)));
1371 store_unsigned_integer
1372 (&dummy[10*REGISTER_SIZE],
1373 REGISTER_SIZE,
1374 deposit_14 (fun & MASK_11,
1375 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1376 REGISTER_SIZE)));
1377 store_unsigned_integer
1378 (&dummy[12*REGISTER_SIZE],
1379 REGISTER_SIZE,
1380 deposit_21 (sr4export_addr >> 11,
1381 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1382 REGISTER_SIZE)));
1383 store_unsigned_integer
1384 (&dummy[13*REGISTER_SIZE],
1385 REGISTER_SIZE,
1386 deposit_14 (sr4export_addr & MASK_11,
1387 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1388 REGISTER_SIZE)));
1389
1390 write_register (22, pc);
1391
1392 /* If we are in a syscall, then we should call the stack dummy
1393 directly. $$dyncall is not needed as the kernel sets up the
1394 space id registers properly based on the value in %r31. In
1395 fact calling $$dyncall will not work because the value in %r22
1396 will be clobbered on the syscall exit path. */
1397 if (flags & 2)
1398 return pc;
1399 else
1400 return dyncall_addr;
1401
1402 }
1403
1404 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1405 bits. */
1406 CORE_ADDR
1407 target_read_pc (pid)
1408 int pid;
1409 {
1410 int flags = read_register (FLAGS_REGNUM);
1411
1412 if (flags & 2)
1413 return read_register (31) & ~0x3;
1414 return read_register (PC_REGNUM) & ~0x3;
1415 }
1416
1417 /* Write out the PC. If currently in a syscall, then also write the new
1418 PC value into %r31. */
1419 void
1420 target_write_pc (v, pid)
1421 CORE_ADDR v;
1422 int pid;
1423 {
1424 int flags = read_register (FLAGS_REGNUM);
1425
1426 /* If in a syscall, then set %r31. Also make sure to get the
1427 privilege bits set correctly. */
1428 if (flags & 2)
1429 write_register (31, (long) (v | 0x3));
1430
1431 write_register (PC_REGNUM, (long) v);
1432 write_register (NPC_REGNUM, (long) v + 4);
1433 }
1434
1435 /* return the alignment of a type in bytes. Structures have the maximum
1436 alignment required by their fields. */
1437
1438 static int
1439 hppa_alignof (arg)
1440 struct type *arg;
1441 {
1442 int max_align, align, i;
1443 switch (TYPE_CODE (arg))
1444 {
1445 case TYPE_CODE_PTR:
1446 case TYPE_CODE_INT:
1447 case TYPE_CODE_FLT:
1448 return TYPE_LENGTH (arg);
1449 case TYPE_CODE_ARRAY:
1450 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1451 case TYPE_CODE_STRUCT:
1452 case TYPE_CODE_UNION:
1453 max_align = 2;
1454 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1455 {
1456 /* Bit fields have no real alignment. */
1457 if (!TYPE_FIELD_BITPOS (arg, i))
1458 {
1459 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1460 max_align = max (max_align, align);
1461 }
1462 }
1463 return max_align;
1464 default:
1465 return 4;
1466 }
1467 }
1468
1469 /* Print the register regnum, or all registers if regnum is -1 */
1470
1471 pa_do_registers_info (regnum, fpregs)
1472 int regnum;
1473 int fpregs;
1474 {
1475 char raw_regs [REGISTER_BYTES];
1476 int i;
1477
1478 for (i = 0; i < NUM_REGS; i++)
1479 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1480 if (regnum == -1)
1481 pa_print_registers (raw_regs, regnum, fpregs);
1482 else if (regnum < FP0_REGNUM)
1483 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1484 REGISTER_BYTE (regnum)));
1485 else
1486 pa_print_fp_reg (regnum);
1487 }
1488
1489 pa_print_registers (raw_regs, regnum, fpregs)
1490 char *raw_regs;
1491 int regnum;
1492 int fpregs;
1493 {
1494 int i;
1495
1496 for (i = 0; i < 18; i++)
1497 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1498 reg_names[i],
1499 *(int *)(raw_regs + REGISTER_BYTE (i)),
1500 reg_names[i + 18],
1501 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1502 reg_names[i + 36],
1503 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1504 reg_names[i + 54],
1505 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1506
1507 if (fpregs)
1508 for (i = 72; i < NUM_REGS; i++)
1509 pa_print_fp_reg (i);
1510 }
1511
1512 pa_print_fp_reg (i)
1513 int i;
1514 {
1515 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1516 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1517
1518 /* Get 32bits of data. */
1519 read_relative_register_raw_bytes (i, raw_buffer);
1520
1521 /* Put it in the buffer. No conversions are ever necessary. */
1522 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1523
1524 fputs_filtered (reg_names[i], gdb_stdout);
1525 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1526 fputs_filtered ("(single precision) ", gdb_stdout);
1527
1528 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1529 1, 0, Val_pretty_default);
1530 printf_filtered ("\n");
1531
1532 /* If "i" is even, then this register can also be a double-precision
1533 FP register. Dump it out as such. */
1534 if ((i % 2) == 0)
1535 {
1536 /* Get the data in raw format for the 2nd half. */
1537 read_relative_register_raw_bytes (i + 1, raw_buffer);
1538
1539 /* Copy it into the appropriate part of the virtual buffer. */
1540 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1541 REGISTER_RAW_SIZE (i));
1542
1543 /* Dump it as a double. */
1544 fputs_filtered (reg_names[i], gdb_stdout);
1545 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1546 fputs_filtered ("(double precision) ", gdb_stdout);
1547
1548 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1549 1, 0, Val_pretty_default);
1550 printf_filtered ("\n");
1551 }
1552 }
1553
1554 /* Figure out if PC is in a trampoline, and if so find out where
1555 the trampoline will jump to. If not in a trampoline, return zero.
1556
1557 Simple code examination probably is not a good idea since the code
1558 sequences in trampolines can also appear in user code.
1559
1560 We use unwinds and information from the minimal symbol table to
1561 determine when we're in a trampoline. This won't work for ELF
1562 (yet) since it doesn't create stub unwind entries. Whether or
1563 not ELF will create stub unwinds or normal unwinds for linker
1564 stubs is still being debated.
1565
1566 This should handle simple calls through dyncall or sr4export,
1567 long calls, argument relocation stubs, and dyncall/sr4export
1568 calling an argument relocation stub. It even handles some stubs
1569 used in dynamic executables. */
1570
1571 CORE_ADDR
1572 skip_trampoline_code (pc, name)
1573 CORE_ADDR pc;
1574 char *name;
1575 {
1576 long orig_pc = pc;
1577 long prev_inst, curr_inst, loc;
1578 static CORE_ADDR dyncall = 0;
1579 static CORE_ADDR sr4export = 0;
1580 struct minimal_symbol *msym;
1581 struct unwind_table_entry *u;
1582
1583 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1584 new exec file */
1585
1586 if (!dyncall)
1587 {
1588 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1589 if (msym)
1590 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1591 else
1592 dyncall = -1;
1593 }
1594
1595 if (!sr4export)
1596 {
1597 msym = lookup_minimal_symbol ("_sr4export", NULL);
1598 if (msym)
1599 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1600 else
1601 sr4export = -1;
1602 }
1603
1604 /* Addresses passed to dyncall may *NOT* be the actual address
1605 of the funtion. So we may have to do something special. */
1606 if (pc == dyncall)
1607 {
1608 pc = (CORE_ADDR) read_register (22);
1609
1610 /* If bit 30 (counting from the left) is on, then pc is the address of
1611 the PLT entry for this function, not the address of the function
1612 itself. Bit 31 has meaning too, but only for MPE. */
1613 if (pc & 0x2)
1614 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1615 }
1616 else if (pc == sr4export)
1617 pc = (CORE_ADDR) (read_register (22));
1618
1619 /* Get the unwind descriptor corresponding to PC, return zero
1620 if no unwind was found. */
1621 u = find_unwind_entry (pc);
1622 if (!u)
1623 return 0;
1624
1625 /* If this isn't a linker stub, then return now. */
1626 if (u->stub_type == 0)
1627 return orig_pc == pc ? 0 : pc & ~0x3;
1628
1629 /* It's a stub. Search for a branch and figure out where it goes.
1630 Note we have to handle multi insn branch sequences like ldil;ble.
1631 Most (all?) other branches can be determined by examining the contents
1632 of certain registers and the stack. */
1633 loc = pc;
1634 curr_inst = 0;
1635 prev_inst = 0;
1636 while (1)
1637 {
1638 /* Make sure we haven't walked outside the range of this stub. */
1639 if (u != find_unwind_entry (loc))
1640 {
1641 warning ("Unable to find branch in linker stub");
1642 return orig_pc == pc ? 0 : pc & ~0x3;
1643 }
1644
1645 prev_inst = curr_inst;
1646 curr_inst = read_memory_integer (loc, 4);
1647
1648 /* Does it look like a branch external using %r1? Then it's the
1649 branch from the stub to the actual function. */
1650 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1651 {
1652 /* Yup. See if the previous instruction loaded
1653 a value into %r1. If so compute and return the jump address. */
1654 if ((prev_inst & 0xffe00000) == 0x20200000)
1655 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1656 else
1657 {
1658 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1659 return orig_pc == pc ? 0 : pc & ~0x3;
1660 }
1661 }
1662
1663 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1664 branch from the stub to the actual function. */
1665 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1666 || (curr_inst & 0xffe0e000) == 0xe8000000)
1667 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1668
1669 /* Does it look like bv (rp)? Note this depends on the
1670 current stack pointer being the same as the stack
1671 pointer in the stub itself! This is a branch on from the
1672 stub back to the original caller. */
1673 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1674 {
1675 /* Yup. See if the previous instruction loaded
1676 rp from sp - 8. */
1677 if (prev_inst == 0x4bc23ff1)
1678 return (read_memory_integer
1679 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1680 else
1681 {
1682 warning ("Unable to find restore of %%rp before bv (%%rp).");
1683 return orig_pc == pc ? 0 : pc & ~0x3;
1684 }
1685 }
1686
1687 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1688 the original caller from the stub. Used in dynamic executables. */
1689 else if (curr_inst == 0xe0400002)
1690 {
1691 /* The value we jump to is sitting in sp - 24. But that's
1692 loaded several instructions before the be instruction.
1693 I guess we could check for the previous instruction being
1694 mtsp %r1,%sr0 if we want to do sanity checking. */
1695 return (read_memory_integer
1696 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1697 }
1698
1699 /* Haven't found the branch yet, but we're still in the stub.
1700 Keep looking. */
1701 loc += 4;
1702 }
1703 }
1704
1705 /* For the given instruction (INST), return any adjustment it makes
1706 to the stack pointer or zero for no adjustment.
1707
1708 This only handles instructions commonly found in prologues. */
1709
1710 static int
1711 prologue_inst_adjust_sp (inst)
1712 unsigned long inst;
1713 {
1714 /* This must persist across calls. */
1715 static int save_high21;
1716
1717 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1718 if ((inst & 0xffffc000) == 0x37de0000)
1719 return extract_14 (inst);
1720
1721 /* stwm X,D(sp) */
1722 if ((inst & 0xffe00000) == 0x6fc00000)
1723 return extract_14 (inst);
1724
1725 /* addil high21,%r1; ldo low11,(%r1),%r30)
1726 save high bits in save_high21 for later use. */
1727 if ((inst & 0xffe00000) == 0x28200000)
1728 {
1729 save_high21 = extract_21 (inst);
1730 return 0;
1731 }
1732
1733 if ((inst & 0xffff0000) == 0x343e0000)
1734 return save_high21 + extract_14 (inst);
1735
1736 /* fstws as used by the HP compilers. */
1737 if ((inst & 0xffffffe0) == 0x2fd01220)
1738 return extract_5_load (inst);
1739
1740 /* No adjustment. */
1741 return 0;
1742 }
1743
1744 /* Return nonzero if INST is a branch of some kind, else return zero. */
1745
1746 static int
1747 is_branch (inst)
1748 unsigned long inst;
1749 {
1750 switch (inst >> 26)
1751 {
1752 case 0x20:
1753 case 0x21:
1754 case 0x22:
1755 case 0x23:
1756 case 0x28:
1757 case 0x29:
1758 case 0x2a:
1759 case 0x2b:
1760 case 0x30:
1761 case 0x31:
1762 case 0x32:
1763 case 0x33:
1764 case 0x38:
1765 case 0x39:
1766 case 0x3a:
1767 return 1;
1768
1769 default:
1770 return 0;
1771 }
1772 }
1773
1774 /* Return the register number for a GR which is saved by INST or
1775 zero it INST does not save a GR. */
1776
1777 static int
1778 inst_saves_gr (inst)
1779 unsigned long inst;
1780 {
1781 /* Does it look like a stw? */
1782 if ((inst >> 26) == 0x1a)
1783 return extract_5R_store (inst);
1784
1785 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1786 if ((inst >> 26) == 0x1b)
1787 return extract_5R_store (inst);
1788
1789 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1790 too. */
1791 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1792 return extract_5R_store (inst);
1793
1794 return 0;
1795 }
1796
1797 /* Return the register number for a FR which is saved by INST or
1798 zero it INST does not save a FR.
1799
1800 Note we only care about full 64bit register stores (that's the only
1801 kind of stores the prologue will use).
1802
1803 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1804
1805 static int
1806 inst_saves_fr (inst)
1807 unsigned long inst;
1808 {
1809 if ((inst & 0xfc00dfc0) == 0x2c001200)
1810 return extract_5r_store (inst);
1811 return 0;
1812 }
1813
1814 /* Advance PC across any function entry prologue instructions
1815 to reach some "real" code.
1816
1817 Use information in the unwind table to determine what exactly should
1818 be in the prologue. */
1819
1820 CORE_ADDR
1821 skip_prologue (pc)
1822 CORE_ADDR pc;
1823 {
1824 char buf[4];
1825 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1826 unsigned long args_stored, status, i;
1827 struct unwind_table_entry *u;
1828
1829 u = find_unwind_entry (pc);
1830 if (!u)
1831 return pc;
1832
1833 /* If we are not at the beginning of a function, then return now. */
1834 if ((pc & ~0x3) != u->region_start)
1835 return pc;
1836
1837 /* This is how much of a frame adjustment we need to account for. */
1838 stack_remaining = u->Total_frame_size << 3;
1839
1840 /* Magic register saves we want to know about. */
1841 save_rp = u->Save_RP;
1842 save_sp = u->Save_SP;
1843
1844 /* An indication that args may be stored into the stack. Unfortunately
1845 the HPUX compilers tend to set this in cases where no args were
1846 stored too!. */
1847 args_stored = u->Args_stored;
1848
1849 /* Turn the Entry_GR field into a bitmask. */
1850 save_gr = 0;
1851 for (i = 3; i < u->Entry_GR + 3; i++)
1852 {
1853 /* Frame pointer gets saved into a special location. */
1854 if (u->Save_SP && i == FP_REGNUM)
1855 continue;
1856
1857 save_gr |= (1 << i);
1858 }
1859
1860 /* Turn the Entry_FR field into a bitmask too. */
1861 save_fr = 0;
1862 for (i = 12; i < u->Entry_FR + 12; i++)
1863 save_fr |= (1 << i);
1864
1865 /* Loop until we find everything of interest or hit a branch.
1866
1867 For unoptimized GCC code and for any HP CC code this will never ever
1868 examine any user instructions.
1869
1870 For optimzied GCC code we're faced with problems. GCC will schedule
1871 its prologue and make prologue instructions available for delay slot
1872 filling. The end result is user code gets mixed in with the prologue
1873 and a prologue instruction may be in the delay slot of the first branch
1874 or call.
1875
1876 Some unexpected things are expected with debugging optimized code, so
1877 we allow this routine to walk past user instructions in optimized
1878 GCC code. */
1879 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1880 || args_stored)
1881 {
1882 unsigned int reg_num;
1883 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1884 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1885
1886 /* Save copies of all the triggers so we can compare them later
1887 (only for HPC). */
1888 old_save_gr = save_gr;
1889 old_save_fr = save_fr;
1890 old_save_rp = save_rp;
1891 old_save_sp = save_sp;
1892 old_stack_remaining = stack_remaining;
1893
1894 status = target_read_memory (pc, buf, 4);
1895 inst = extract_unsigned_integer (buf, 4);
1896
1897 /* Yow! */
1898 if (status != 0)
1899 return pc;
1900
1901 /* Note the interesting effects of this instruction. */
1902 stack_remaining -= prologue_inst_adjust_sp (inst);
1903
1904 /* There is only one instruction used for saving RP into the stack. */
1905 if (inst == 0x6bc23fd9)
1906 save_rp = 0;
1907
1908 /* This is the only way we save SP into the stack. At this time
1909 the HP compilers never bother to save SP into the stack. */
1910 if ((inst & 0xffffc000) == 0x6fc10000)
1911 save_sp = 0;
1912
1913 /* Account for general and floating-point register saves. */
1914 reg_num = inst_saves_gr (inst);
1915 save_gr &= ~(1 << reg_num);
1916
1917 /* Ugh. Also account for argument stores into the stack.
1918 Unfortunately args_stored only tells us that some arguments
1919 where stored into the stack. Not how many or what kind!
1920
1921 This is a kludge as on the HP compiler sets this bit and it
1922 never does prologue scheduling. So once we see one, skip past
1923 all of them. We have similar code for the fp arg stores below.
1924
1925 FIXME. Can still die if we have a mix of GR and FR argument
1926 stores! */
1927 if (reg_num >= 23 && reg_num <= 26)
1928 {
1929 while (reg_num >= 23 && reg_num <= 26)
1930 {
1931 pc += 4;
1932 status = target_read_memory (pc, buf, 4);
1933 inst = extract_unsigned_integer (buf, 4);
1934 if (status != 0)
1935 return pc;
1936 reg_num = inst_saves_gr (inst);
1937 }
1938 args_stored = 0;
1939 continue;
1940 }
1941
1942 reg_num = inst_saves_fr (inst);
1943 save_fr &= ~(1 << reg_num);
1944
1945 status = target_read_memory (pc + 4, buf, 4);
1946 next_inst = extract_unsigned_integer (buf, 4);
1947
1948 /* Yow! */
1949 if (status != 0)
1950 return pc;
1951
1952 /* We've got to be read to handle the ldo before the fp register
1953 save. */
1954 if ((inst & 0xfc000000) == 0x34000000
1955 && inst_saves_fr (next_inst) >= 4
1956 && inst_saves_fr (next_inst) <= 7)
1957 {
1958 /* So we drop into the code below in a reasonable state. */
1959 reg_num = inst_saves_fr (next_inst);
1960 pc -= 4;
1961 }
1962
1963 /* Ugh. Also account for argument stores into the stack.
1964 This is a kludge as on the HP compiler sets this bit and it
1965 never does prologue scheduling. So once we see one, skip past
1966 all of them. */
1967 if (reg_num >= 4 && reg_num <= 7)
1968 {
1969 while (reg_num >= 4 && reg_num <= 7)
1970 {
1971 pc += 8;
1972 status = target_read_memory (pc, buf, 4);
1973 inst = extract_unsigned_integer (buf, 4);
1974 if (status != 0)
1975 return pc;
1976 if ((inst & 0xfc000000) != 0x34000000)
1977 break;
1978 status = target_read_memory (pc + 4, buf, 4);
1979 next_inst = extract_unsigned_integer (buf, 4);
1980 if (status != 0)
1981 return pc;
1982 reg_num = inst_saves_fr (next_inst);
1983 }
1984 args_stored = 0;
1985 continue;
1986 }
1987
1988 /* Quit if we hit any kind of branch. This can happen if a prologue
1989 instruction is in the delay slot of the first call/branch. */
1990 if (is_branch (inst))
1991 break;
1992
1993 /* What a crock. The HP compilers set args_stored even if no
1994 arguments were stored into the stack (boo hiss). This could
1995 cause this code to then skip a bunch of user insns (up to the
1996 first branch).
1997
1998 To combat this we try to identify when args_stored was bogusly
1999 set and clear it. We only do this when args_stored is nonzero,
2000 all other resources are accounted for, and nothing changed on
2001 this pass. */
2002 if (args_stored
2003 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2004 && old_save_gr == save_gr && old_save_fr == save_fr
2005 && old_save_rp == save_rp && old_save_sp == save_sp
2006 && old_stack_remaining == stack_remaining)
2007 break;
2008
2009 /* Bump the PC. */
2010 pc += 4;
2011 }
2012
2013 return pc;
2014 }
2015
2016 /* Put here the code to store, into a struct frame_saved_regs,
2017 the addresses of the saved registers of frame described by FRAME_INFO.
2018 This includes special registers such as pc and fp saved in special
2019 ways in the stack frame. sp is even more special:
2020 the address we return for it IS the sp for the next frame. */
2021
2022 void
2023 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2024 struct frame_info *frame_info;
2025 struct frame_saved_regs *frame_saved_regs;
2026 {
2027 CORE_ADDR pc;
2028 struct unwind_table_entry *u;
2029 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2030 int status, i, reg;
2031 char buf[4];
2032 int fp_loc = -1;
2033
2034 /* Zero out everything. */
2035 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2036
2037 /* Call dummy frames always look the same, so there's no need to
2038 examine the dummy code to determine locations of saved registers;
2039 instead, let find_dummy_frame_regs fill in the correct offsets
2040 for the saved registers. */
2041 if ((frame_info->pc >= frame_info->frame
2042 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2043 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2044 + 6 * 4)))
2045 find_dummy_frame_regs (frame_info, frame_saved_regs);
2046
2047 /* Interrupt handlers are special too. They lay out the register
2048 state in the exact same order as the register numbers in GDB. */
2049 if (pc_in_interrupt_handler (frame_info->pc))
2050 {
2051 for (i = 0; i < NUM_REGS; i++)
2052 {
2053 /* SP is a little special. */
2054 if (i == SP_REGNUM)
2055 frame_saved_regs->regs[SP_REGNUM]
2056 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2057 else
2058 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2059 }
2060 return;
2061 }
2062
2063 /* Handle signal handler callers. */
2064 if (frame_info->signal_handler_caller)
2065 {
2066 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2067 return;
2068 }
2069
2070 /* Get the starting address of the function referred to by the PC
2071 saved in frame_info. */
2072 pc = get_pc_function_start (frame_info->pc);
2073
2074 /* Yow! */
2075 u = find_unwind_entry (pc);
2076 if (!u)
2077 return;
2078
2079 /* This is how much of a frame adjustment we need to account for. */
2080 stack_remaining = u->Total_frame_size << 3;
2081
2082 /* Magic register saves we want to know about. */
2083 save_rp = u->Save_RP;
2084 save_sp = u->Save_SP;
2085
2086 /* Turn the Entry_GR field into a bitmask. */
2087 save_gr = 0;
2088 for (i = 3; i < u->Entry_GR + 3; i++)
2089 {
2090 /* Frame pointer gets saved into a special location. */
2091 if (u->Save_SP && i == FP_REGNUM)
2092 continue;
2093
2094 save_gr |= (1 << i);
2095 }
2096
2097 /* Turn the Entry_FR field into a bitmask too. */
2098 save_fr = 0;
2099 for (i = 12; i < u->Entry_FR + 12; i++)
2100 save_fr |= (1 << i);
2101
2102 /* The frame always represents the value of %sp at entry to the
2103 current function (and is thus equivalent to the "saved" stack
2104 pointer. */
2105 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2106
2107 /* Loop until we find everything of interest or hit a branch.
2108
2109 For unoptimized GCC code and for any HP CC code this will never ever
2110 examine any user instructions.
2111
2112 For optimzied GCC code we're faced with problems. GCC will schedule
2113 its prologue and make prologue instructions available for delay slot
2114 filling. The end result is user code gets mixed in with the prologue
2115 and a prologue instruction may be in the delay slot of the first branch
2116 or call.
2117
2118 Some unexpected things are expected with debugging optimized code, so
2119 we allow this routine to walk past user instructions in optimized
2120 GCC code. */
2121 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2122 {
2123 status = target_read_memory (pc, buf, 4);
2124 inst = extract_unsigned_integer (buf, 4);
2125
2126 /* Yow! */
2127 if (status != 0)
2128 return;
2129
2130 /* Note the interesting effects of this instruction. */
2131 stack_remaining -= prologue_inst_adjust_sp (inst);
2132
2133 /* There is only one instruction used for saving RP into the stack. */
2134 if (inst == 0x6bc23fd9)
2135 {
2136 save_rp = 0;
2137 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2138 }
2139
2140 /* Just note that we found the save of SP into the stack. The
2141 value for frame_saved_regs was computed above. */
2142 if ((inst & 0xffffc000) == 0x6fc10000)
2143 save_sp = 0;
2144
2145 /* Account for general and floating-point register saves. */
2146 reg = inst_saves_gr (inst);
2147 if (reg >= 3 && reg <= 18
2148 && (!u->Save_SP || reg != FP_REGNUM))
2149 {
2150 save_gr &= ~(1 << reg);
2151
2152 /* stwm with a positive displacement is a *post modify*. */
2153 if ((inst >> 26) == 0x1b
2154 && extract_14 (inst) >= 0)
2155 frame_saved_regs->regs[reg] = frame_info->frame;
2156 else
2157 {
2158 /* Handle code with and without frame pointers. */
2159 if (u->Save_SP)
2160 frame_saved_regs->regs[reg]
2161 = frame_info->frame + extract_14 (inst);
2162 else
2163 frame_saved_regs->regs[reg]
2164 = frame_info->frame + (u->Total_frame_size << 3)
2165 + extract_14 (inst);
2166 }
2167 }
2168
2169
2170 /* GCC handles callee saved FP regs a little differently.
2171
2172 It emits an instruction to put the value of the start of
2173 the FP store area into %r1. It then uses fstds,ma with
2174 a basereg of %r1 for the stores.
2175
2176 HP CC emits them at the current stack pointer modifying
2177 the stack pointer as it stores each register. */
2178
2179 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2180 if ((inst & 0xffffc000) == 0x34610000
2181 || (inst & 0xffffc000) == 0x37c10000)
2182 fp_loc = extract_14 (inst);
2183
2184 reg = inst_saves_fr (inst);
2185 if (reg >= 12 && reg <= 21)
2186 {
2187 /* Note +4 braindamage below is necessary because the FP status
2188 registers are internally 8 registers rather than the expected
2189 4 registers. */
2190 save_fr &= ~(1 << reg);
2191 if (fp_loc == -1)
2192 {
2193 /* 1st HP CC FP register store. After this instruction
2194 we've set enough state that the GCC and HPCC code are
2195 both handled in the same manner. */
2196 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2197 fp_loc = 8;
2198 }
2199 else
2200 {
2201 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2202 = frame_info->frame + fp_loc;
2203 fp_loc += 8;
2204 }
2205 }
2206
2207 /* Quit if we hit any kind of branch. This can happen if a prologue
2208 instruction is in the delay slot of the first call/branch. */
2209 if (is_branch (inst))
2210 break;
2211
2212 /* Bump the PC. */
2213 pc += 4;
2214 }
2215 }
2216
2217 #ifdef MAINTENANCE_CMDS
2218
2219 static void
2220 unwind_command (exp, from_tty)
2221 char *exp;
2222 int from_tty;
2223 {
2224 CORE_ADDR address;
2225 union
2226 {
2227 int *foo;
2228 struct unwind_table_entry *u;
2229 } xxx;
2230
2231 /* If we have an expression, evaluate it and use it as the address. */
2232
2233 if (exp != 0 && *exp != 0)
2234 address = parse_and_eval_address (exp);
2235 else
2236 return;
2237
2238 xxx.u = find_unwind_entry (address);
2239
2240 if (!xxx.u)
2241 {
2242 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2243 return;
2244 }
2245
2246 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2247 xxx.foo[3]);
2248 }
2249 #endif /* MAINTENANCE_CMDS */
2250
2251 void
2252 _initialize_hppa_tdep ()
2253 {
2254 #ifdef MAINTENANCE_CMDS
2255 add_cmd ("unwind", class_maintenance, unwind_command,
2256 "Print unwind table entry at given address.",
2257 &maintenanceprintlist);
2258 #endif /* MAINTENANCE_CMDS */
2259 }