* hppa-tdep.c (hppa_gdbarch_init): Set the addr_bits_remove
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40
41 #ifdef USG
42 #include <sys/types.h>
43 #endif
44
45 #include <dl.h>
46 #include <sys/param.h>
47 #include <signal.h>
48
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
51
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
54 #else
55 #endif
56
57 /*#include <sys/user.h> After a.out.h */
58 #include <sys/file.h>
59 #include "gdb_stat.h"
60 #include "gdb_wait.h"
61
62 #include "gdbcore.h"
63 #include "gdbcmd.h"
64 #include "target.h"
65 #include "symfile.h"
66 #include "objfiles.h"
67
68 /* Some local constants. */
69 static const int hppa_num_regs = 128;
70
71 /* Get at various relevent fields of an instruction word. */
72 #define MASK_5 0x1f
73 #define MASK_11 0x7ff
74 #define MASK_14 0x3fff
75 #define MASK_21 0x1fffff
76
77 /* Define offsets into the call dummy for the target function address.
78 See comments related to CALL_DUMMY for more info. */
79 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
80 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
81
82 /* Define offsets into the call dummy for the _sr4export address.
83 See comments related to CALL_DUMMY for more info. */
84 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
85 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
86
87 /* To support detection of the pseudo-initial frame
88 that threads have. */
89 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
90 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
91
92 /* Sizes (in bytes) of the native unwind entries. */
93 #define UNWIND_ENTRY_SIZE 16
94 #define STUB_UNWIND_ENTRY_SIZE 8
95
96 static int get_field (unsigned word, int from, int to);
97
98 static int extract_5_load (unsigned int);
99
100 static unsigned extract_5R_store (unsigned int);
101
102 static unsigned extract_5r_store (unsigned int);
103
104 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
105
106 static int find_proc_framesize (CORE_ADDR);
107
108 static int find_return_regnum (CORE_ADDR);
109
110 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
111
112 static int extract_17 (unsigned int);
113
114 static unsigned deposit_21 (unsigned int, unsigned int);
115
116 static int extract_21 (unsigned);
117
118 static unsigned deposit_14 (int, unsigned int);
119
120 static int extract_14 (unsigned);
121
122 static void unwind_command (char *, int);
123
124 static int low_sign_extend (unsigned int, unsigned int);
125
126 static int sign_extend (unsigned int, unsigned int);
127
128 static int restore_pc_queue (CORE_ADDR *);
129
130 static int hppa_alignof (struct type *);
131
132 static int prologue_inst_adjust_sp (unsigned long);
133
134 static int is_branch (unsigned long);
135
136 static int inst_saves_gr (unsigned long);
137
138 static int inst_saves_fr (unsigned long);
139
140 static int pc_in_interrupt_handler (CORE_ADDR);
141
142 static int pc_in_linker_stub (CORE_ADDR);
143
144 static int compare_unwind_entries (const void *, const void *);
145
146 static void read_unwind_info (struct objfile *);
147
148 static void internalize_unwinds (struct objfile *,
149 struct unwind_table_entry *,
150 asection *, unsigned int,
151 unsigned int, CORE_ADDR);
152 static void pa_print_registers (char *, int, int);
153 static void pa_strcat_registers (char *, int, int, struct ui_file *);
154 static void pa_register_look_aside (char *, int, long *);
155 static void pa_print_fp_reg (int);
156 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
157 static void record_text_segment_lowaddr (bfd *, asection *, void *);
158 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
159 following functions static, once we hppa is partially multiarched. */
160 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
161 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
162 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
163 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
164 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
165 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
166 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
167 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
168 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
169 int hppa_instruction_nullified (void);
170 int hppa_register_raw_size (int reg_nr);
171 int hppa_register_byte (int reg_nr);
172 struct type * hppa_register_virtual_type (int reg_nr);
173 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
174 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
175 int hppa_use_struct_convention (int gcc_p, struct type *type);
176 void hppa_store_return_value (struct type *type, char *valbuf);
177 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
178 int hppa_cannot_store_register (int regnum);
179 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
180 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
181 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
182 int hppa_frameless_function_invocation (struct frame_info *frame);
183 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
184 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
185 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
186 int hppa_frame_num_args (struct frame_info *frame);
187 void hppa_push_dummy_frame (void);
188 void hppa_pop_frame (void);
189 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
190 int nargs, struct value **args,
191 struct type *type, int gcc_p);
192 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
193 int struct_return, CORE_ADDR struct_addr);
194 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
195 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
196 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
197 CORE_ADDR hppa_target_read_fp (void);
198
199 typedef struct
200 {
201 struct minimal_symbol *msym;
202 CORE_ADDR solib_handle;
203 CORE_ADDR return_val;
204 }
205 args_for_find_stub;
206
207 static int cover_find_stub_with_shl_get (void *);
208
209 static int is_pa_2 = 0; /* False */
210
211 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
212 extern int hp_som_som_object_present;
213
214 /* In breakpoint.c */
215 extern int exception_catchpoints_are_fragile;
216
217 /* Should call_function allocate stack space for a struct return? */
218
219 int
220 hppa_use_struct_convention (int gcc_p, struct type *type)
221 {
222 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
223 }
224 \f
225
226 /* Routines to extract various sized constants out of hppa
227 instructions. */
228
229 /* This assumes that no garbage lies outside of the lower bits of
230 value. */
231
232 static int
233 sign_extend (unsigned val, unsigned bits)
234 {
235 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
236 }
237
238 /* For many immediate values the sign bit is the low bit! */
239
240 static int
241 low_sign_extend (unsigned val, unsigned bits)
242 {
243 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
244 }
245
246 /* Extract the bits at positions between FROM and TO, using HP's numbering
247 (MSB = 0). */
248
249 static int
250 get_field (unsigned word, int from, int to)
251 {
252 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
253 }
254
255 /* extract the immediate field from a ld{bhw}s instruction */
256
257 static int
258 extract_5_load (unsigned word)
259 {
260 return low_sign_extend (word >> 16 & MASK_5, 5);
261 }
262
263 /* extract the immediate field from a break instruction */
264
265 static unsigned
266 extract_5r_store (unsigned word)
267 {
268 return (word & MASK_5);
269 }
270
271 /* extract the immediate field from a {sr}sm instruction */
272
273 static unsigned
274 extract_5R_store (unsigned word)
275 {
276 return (word >> 16 & MASK_5);
277 }
278
279 /* extract a 14 bit immediate field */
280
281 static int
282 extract_14 (unsigned word)
283 {
284 return low_sign_extend (word & MASK_14, 14);
285 }
286
287 /* deposit a 14 bit constant in a word */
288
289 static unsigned
290 deposit_14 (int opnd, unsigned word)
291 {
292 unsigned sign = (opnd < 0 ? 1 : 0);
293
294 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
295 }
296
297 /* extract a 21 bit constant */
298
299 static int
300 extract_21 (unsigned word)
301 {
302 int val;
303
304 word &= MASK_21;
305 word <<= 11;
306 val = get_field (word, 20, 20);
307 val <<= 11;
308 val |= get_field (word, 9, 19);
309 val <<= 2;
310 val |= get_field (word, 5, 6);
311 val <<= 5;
312 val |= get_field (word, 0, 4);
313 val <<= 2;
314 val |= get_field (word, 7, 8);
315 return sign_extend (val, 21) << 11;
316 }
317
318 /* deposit a 21 bit constant in a word. Although 21 bit constants are
319 usually the top 21 bits of a 32 bit constant, we assume that only
320 the low 21 bits of opnd are relevant */
321
322 static unsigned
323 deposit_21 (unsigned opnd, unsigned word)
324 {
325 unsigned val = 0;
326
327 val |= get_field (opnd, 11 + 14, 11 + 18);
328 val <<= 2;
329 val |= get_field (opnd, 11 + 12, 11 + 13);
330 val <<= 2;
331 val |= get_field (opnd, 11 + 19, 11 + 20);
332 val <<= 11;
333 val |= get_field (opnd, 11 + 1, 11 + 11);
334 val <<= 1;
335 val |= get_field (opnd, 11 + 0, 11 + 0);
336 return word | val;
337 }
338
339 /* extract a 17 bit constant from branch instructions, returning the
340 19 bit signed value. */
341
342 static int
343 extract_17 (unsigned word)
344 {
345 return sign_extend (get_field (word, 19, 28) |
346 get_field (word, 29, 29) << 10 |
347 get_field (word, 11, 15) << 11 |
348 (word & 0x1) << 16, 17) << 2;
349 }
350 \f
351
352 /* Compare the start address for two unwind entries returning 1 if
353 the first address is larger than the second, -1 if the second is
354 larger than the first, and zero if they are equal. */
355
356 static int
357 compare_unwind_entries (const void *arg1, const void *arg2)
358 {
359 const struct unwind_table_entry *a = arg1;
360 const struct unwind_table_entry *b = arg2;
361
362 if (a->region_start > b->region_start)
363 return 1;
364 else if (a->region_start < b->region_start)
365 return -1;
366 else
367 return 0;
368 }
369
370 static CORE_ADDR low_text_segment_address;
371
372 static void
373 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
374 {
375 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
376 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
377 && section->vma < low_text_segment_address)
378 low_text_segment_address = section->vma;
379 }
380
381 static void
382 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
383 asection *section, unsigned int entries, unsigned int size,
384 CORE_ADDR text_offset)
385 {
386 /* We will read the unwind entries into temporary memory, then
387 fill in the actual unwind table. */
388 if (size > 0)
389 {
390 unsigned long tmp;
391 unsigned i;
392 char *buf = alloca (size);
393
394 low_text_segment_address = -1;
395
396 /* If addresses are 64 bits wide, then unwinds are supposed to
397 be segment relative offsets instead of absolute addresses.
398
399 Note that when loading a shared library (text_offset != 0) the
400 unwinds are already relative to the text_offset that will be
401 passed in. */
402 if (TARGET_PTR_BIT == 64 && text_offset == 0)
403 {
404 bfd_map_over_sections (objfile->obfd,
405 record_text_segment_lowaddr, NULL);
406
407 /* ?!? Mask off some low bits. Should this instead subtract
408 out the lowest section's filepos or something like that?
409 This looks very hokey to me. */
410 low_text_segment_address &= ~0xfff;
411 text_offset += low_text_segment_address;
412 }
413
414 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
415
416 /* Now internalize the information being careful to handle host/target
417 endian issues. */
418 for (i = 0; i < entries; i++)
419 {
420 table[i].region_start = bfd_get_32 (objfile->obfd,
421 (bfd_byte *) buf);
422 table[i].region_start += text_offset;
423 buf += 4;
424 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
425 table[i].region_end += text_offset;
426 buf += 4;
427 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
428 buf += 4;
429 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
430 table[i].Millicode = (tmp >> 30) & 0x1;
431 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
432 table[i].Region_description = (tmp >> 27) & 0x3;
433 table[i].reserved1 = (tmp >> 26) & 0x1;
434 table[i].Entry_SR = (tmp >> 25) & 0x1;
435 table[i].Entry_FR = (tmp >> 21) & 0xf;
436 table[i].Entry_GR = (tmp >> 16) & 0x1f;
437 table[i].Args_stored = (tmp >> 15) & 0x1;
438 table[i].Variable_Frame = (tmp >> 14) & 0x1;
439 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
440 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
441 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
442 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
443 table[i].Ada_Region = (tmp >> 9) & 0x1;
444 table[i].cxx_info = (tmp >> 8) & 0x1;
445 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
446 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
447 table[i].reserved2 = (tmp >> 5) & 0x1;
448 table[i].Save_SP = (tmp >> 4) & 0x1;
449 table[i].Save_RP = (tmp >> 3) & 0x1;
450 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
451 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
452 table[i].Cleanup_defined = tmp & 0x1;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
456 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
457 table[i].Large_frame = (tmp >> 29) & 0x1;
458 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
459 table[i].reserved4 = (tmp >> 27) & 0x1;
460 table[i].Total_frame_size = tmp & 0x7ffffff;
461
462 /* Stub unwinds are handled elsewhere. */
463 table[i].stub_unwind.stub_type = 0;
464 table[i].stub_unwind.padding = 0;
465 }
466 }
467 }
468
469 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
470 the object file. This info is used mainly by find_unwind_entry() to find
471 out the stack frame size and frame pointer used by procedures. We put
472 everything on the psymbol obstack in the objfile so that it automatically
473 gets freed when the objfile is destroyed. */
474
475 static void
476 read_unwind_info (struct objfile *objfile)
477 {
478 asection *unwind_sec, *stub_unwind_sec;
479 unsigned unwind_size, stub_unwind_size, total_size;
480 unsigned index, unwind_entries;
481 unsigned stub_entries, total_entries;
482 CORE_ADDR text_offset;
483 struct obj_unwind_info *ui;
484 obj_private_data_t *obj_private;
485
486 text_offset = ANOFFSET (objfile->section_offsets, 0);
487 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
488 sizeof (struct obj_unwind_info));
489
490 ui->table = NULL;
491 ui->cache = NULL;
492 ui->last = -1;
493
494 /* For reasons unknown the HP PA64 tools generate multiple unwinder
495 sections in a single executable. So we just iterate over every
496 section in the BFD looking for unwinder sections intead of trying
497 to do a lookup with bfd_get_section_by_name.
498
499 First determine the total size of the unwind tables so that we
500 can allocate memory in a nice big hunk. */
501 total_entries = 0;
502 for (unwind_sec = objfile->obfd->sections;
503 unwind_sec;
504 unwind_sec = unwind_sec->next)
505 {
506 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
507 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
508 {
509 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
510 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
511
512 total_entries += unwind_entries;
513 }
514 }
515
516 /* Now compute the size of the stub unwinds. Note the ELF tools do not
517 use stub unwinds at the curren time. */
518 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
519
520 if (stub_unwind_sec)
521 {
522 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
523 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
524 }
525 else
526 {
527 stub_unwind_size = 0;
528 stub_entries = 0;
529 }
530
531 /* Compute total number of unwind entries and their total size. */
532 total_entries += stub_entries;
533 total_size = total_entries * sizeof (struct unwind_table_entry);
534
535 /* Allocate memory for the unwind table. */
536 ui->table = (struct unwind_table_entry *)
537 obstack_alloc (&objfile->psymbol_obstack, total_size);
538 ui->last = total_entries - 1;
539
540 /* Now read in each unwind section and internalize the standard unwind
541 entries. */
542 index = 0;
543 for (unwind_sec = objfile->obfd->sections;
544 unwind_sec;
545 unwind_sec = unwind_sec->next)
546 {
547 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
548 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
549 {
550 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
551 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
552
553 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
554 unwind_entries, unwind_size, text_offset);
555 index += unwind_entries;
556 }
557 }
558
559 /* Now read in and internalize the stub unwind entries. */
560 if (stub_unwind_size > 0)
561 {
562 unsigned int i;
563 char *buf = alloca (stub_unwind_size);
564
565 /* Read in the stub unwind entries. */
566 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
567 0, stub_unwind_size);
568
569 /* Now convert them into regular unwind entries. */
570 for (i = 0; i < stub_entries; i++, index++)
571 {
572 /* Clear out the next unwind entry. */
573 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
574
575 /* Convert offset & size into region_start and region_end.
576 Stuff away the stub type into "reserved" fields. */
577 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
578 (bfd_byte *) buf);
579 ui->table[index].region_start += text_offset;
580 buf += 4;
581 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
582 (bfd_byte *) buf);
583 buf += 2;
584 ui->table[index].region_end
585 = ui->table[index].region_start + 4 *
586 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
587 buf += 2;
588 }
589
590 }
591
592 /* Unwind table needs to be kept sorted. */
593 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
594 compare_unwind_entries);
595
596 /* Keep a pointer to the unwind information. */
597 if (objfile->obj_private == NULL)
598 {
599 obj_private = (obj_private_data_t *)
600 obstack_alloc (&objfile->psymbol_obstack,
601 sizeof (obj_private_data_t));
602 obj_private->unwind_info = NULL;
603 obj_private->so_info = NULL;
604 obj_private->dp = 0;
605
606 objfile->obj_private = obj_private;
607 }
608 obj_private = (obj_private_data_t *) objfile->obj_private;
609 obj_private->unwind_info = ui;
610 }
611
612 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
613 of the objfiles seeking the unwind table entry for this PC. Each objfile
614 contains a sorted list of struct unwind_table_entry. Since we do a binary
615 search of the unwind tables, we depend upon them to be sorted. */
616
617 struct unwind_table_entry *
618 find_unwind_entry (CORE_ADDR pc)
619 {
620 int first, middle, last;
621 struct objfile *objfile;
622
623 /* A function at address 0? Not in HP-UX! */
624 if (pc == (CORE_ADDR) 0)
625 return NULL;
626
627 ALL_OBJFILES (objfile)
628 {
629 struct obj_unwind_info *ui;
630 ui = NULL;
631 if (objfile->obj_private)
632 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
633
634 if (!ui)
635 {
636 read_unwind_info (objfile);
637 if (objfile->obj_private == NULL)
638 error ("Internal error reading unwind information.");
639 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
640 }
641
642 /* First, check the cache */
643
644 if (ui->cache
645 && pc >= ui->cache->region_start
646 && pc <= ui->cache->region_end)
647 return ui->cache;
648
649 /* Not in the cache, do a binary search */
650
651 first = 0;
652 last = ui->last;
653
654 while (first <= last)
655 {
656 middle = (first + last) / 2;
657 if (pc >= ui->table[middle].region_start
658 && pc <= ui->table[middle].region_end)
659 {
660 ui->cache = &ui->table[middle];
661 return &ui->table[middle];
662 }
663
664 if (pc < ui->table[middle].region_start)
665 last = middle - 1;
666 else
667 first = middle + 1;
668 }
669 } /* ALL_OBJFILES() */
670 return NULL;
671 }
672
673 const unsigned char *
674 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
675 {
676 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
677 (*len) = sizeof (breakpoint);
678 return breakpoint;
679 }
680
681 /* Return the name of a register. */
682
683 const char *
684 hppa_register_name (int i)
685 {
686 static char *names[] = {
687 "flags", "r1", "rp", "r3",
688 "r4", "r5", "r6", "r7",
689 "r8", "r9", "r10", "r11",
690 "r12", "r13", "r14", "r15",
691 "r16", "r17", "r18", "r19",
692 "r20", "r21", "r22", "r23",
693 "r24", "r25", "r26", "dp",
694 "ret0", "ret1", "sp", "r31",
695 "sar", "pcoqh", "pcsqh", "pcoqt",
696 "pcsqt", "eiem", "iir", "isr",
697 "ior", "ipsw", "goto", "sr4",
698 "sr0", "sr1", "sr2", "sr3",
699 "sr5", "sr6", "sr7", "cr0",
700 "cr8", "cr9", "ccr", "cr12",
701 "cr13", "cr24", "cr25", "cr26",
702 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
703 "fpsr", "fpe1", "fpe2", "fpe3",
704 "fpe4", "fpe5", "fpe6", "fpe7",
705 "fr4", "fr4R", "fr5", "fr5R",
706 "fr6", "fr6R", "fr7", "fr7R",
707 "fr8", "fr8R", "fr9", "fr9R",
708 "fr10", "fr10R", "fr11", "fr11R",
709 "fr12", "fr12R", "fr13", "fr13R",
710 "fr14", "fr14R", "fr15", "fr15R",
711 "fr16", "fr16R", "fr17", "fr17R",
712 "fr18", "fr18R", "fr19", "fr19R",
713 "fr20", "fr20R", "fr21", "fr21R",
714 "fr22", "fr22R", "fr23", "fr23R",
715 "fr24", "fr24R", "fr25", "fr25R",
716 "fr26", "fr26R", "fr27", "fr27R",
717 "fr28", "fr28R", "fr29", "fr29R",
718 "fr30", "fr30R", "fr31", "fr31R"
719 };
720 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
721 return NULL;
722 else
723 return names[i];
724 }
725
726 const char *
727 hppa64_register_name (int i)
728 {
729 static char *names[] = {
730 "flags", "r1", "rp", "r3",
731 "r4", "r5", "r6", "r7",
732 "r8", "r9", "r10", "r11",
733 "r12", "r13", "r14", "r15",
734 "r16", "r17", "r18", "r19",
735 "r20", "r21", "r22", "r23",
736 "r24", "r25", "r26", "dp",
737 "ret0", "ret1", "sp", "r31",
738 "sar", "pcoqh", "pcsqh", "pcoqt",
739 "pcsqt", "eiem", "iir", "isr",
740 "ior", "ipsw", "goto", "sr4",
741 "sr0", "sr1", "sr2", "sr3",
742 "sr5", "sr6", "sr7", "cr0",
743 "cr8", "cr9", "ccr", "cr12",
744 "cr13", "cr24", "cr25", "cr26",
745 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
746 "fpsr", "fpe1", "fpe2", "fpe3",
747 "fr4", "fr5", "fr6", "fr7",
748 "fr8", "fr9", "fr10", "fr11",
749 "fr12", "fr13", "fr14", "fr15",
750 "fr16", "fr17", "fr18", "fr19",
751 "fr20", "fr21", "fr22", "fr23",
752 "fr24", "fr25", "fr26", "fr27",
753 "fr28", "fr29", "fr30", "fr31"
754 };
755 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
756 return NULL;
757 else
758 return names[i];
759 }
760
761
762
763 /* Return the adjustment necessary to make for addresses on the stack
764 as presented by hpread.c.
765
766 This is necessary because of the stack direction on the PA and the
767 bizarre way in which someone (?) decided they wanted to handle
768 frame pointerless code in GDB. */
769 int
770 hpread_adjust_stack_address (CORE_ADDR func_addr)
771 {
772 struct unwind_table_entry *u;
773
774 u = find_unwind_entry (func_addr);
775 if (!u)
776 return 0;
777 else
778 return u->Total_frame_size << 3;
779 }
780
781 /* Called to determine if PC is in an interrupt handler of some
782 kind. */
783
784 static int
785 pc_in_interrupt_handler (CORE_ADDR pc)
786 {
787 struct unwind_table_entry *u;
788 struct minimal_symbol *msym_us;
789
790 u = find_unwind_entry (pc);
791 if (!u)
792 return 0;
793
794 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
795 its frame isn't a pure interrupt frame. Deal with this. */
796 msym_us = lookup_minimal_symbol_by_pc (pc);
797
798 return (u->HP_UX_interrupt_marker
799 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
800 }
801
802 /* Called when no unwind descriptor was found for PC. Returns 1 if it
803 appears that PC is in a linker stub.
804
805 ?!? Need to handle stubs which appear in PA64 code. */
806
807 static int
808 pc_in_linker_stub (CORE_ADDR pc)
809 {
810 int found_magic_instruction = 0;
811 int i;
812 char buf[4];
813
814 /* If unable to read memory, assume pc is not in a linker stub. */
815 if (target_read_memory (pc, buf, 4) != 0)
816 return 0;
817
818 /* We are looking for something like
819
820 ; $$dyncall jams RP into this special spot in the frame (RP')
821 ; before calling the "call stub"
822 ldw -18(sp),rp
823
824 ldsid (rp),r1 ; Get space associated with RP into r1
825 mtsp r1,sp ; Move it into space register 0
826 be,n 0(sr0),rp) ; back to your regularly scheduled program */
827
828 /* Maximum known linker stub size is 4 instructions. Search forward
829 from the given PC, then backward. */
830 for (i = 0; i < 4; i++)
831 {
832 /* If we hit something with an unwind, stop searching this direction. */
833
834 if (find_unwind_entry (pc + i * 4) != 0)
835 break;
836
837 /* Check for ldsid (rp),r1 which is the magic instruction for a
838 return from a cross-space function call. */
839 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
840 {
841 found_magic_instruction = 1;
842 break;
843 }
844 /* Add code to handle long call/branch and argument relocation stubs
845 here. */
846 }
847
848 if (found_magic_instruction != 0)
849 return 1;
850
851 /* Now look backward. */
852 for (i = 0; i < 4; i++)
853 {
854 /* If we hit something with an unwind, stop searching this direction. */
855
856 if (find_unwind_entry (pc - i * 4) != 0)
857 break;
858
859 /* Check for ldsid (rp),r1 which is the magic instruction for a
860 return from a cross-space function call. */
861 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
862 {
863 found_magic_instruction = 1;
864 break;
865 }
866 /* Add code to handle long call/branch and argument relocation stubs
867 here. */
868 }
869 return found_magic_instruction;
870 }
871
872 static int
873 find_return_regnum (CORE_ADDR pc)
874 {
875 struct unwind_table_entry *u;
876
877 u = find_unwind_entry (pc);
878
879 if (!u)
880 return RP_REGNUM;
881
882 if (u->Millicode)
883 return 31;
884
885 return RP_REGNUM;
886 }
887
888 /* Return size of frame, or -1 if we should use a frame pointer. */
889 static int
890 find_proc_framesize (CORE_ADDR pc)
891 {
892 struct unwind_table_entry *u;
893 struct minimal_symbol *msym_us;
894
895 /* This may indicate a bug in our callers... */
896 if (pc == (CORE_ADDR) 0)
897 return -1;
898
899 u = find_unwind_entry (pc);
900
901 if (!u)
902 {
903 if (pc_in_linker_stub (pc))
904 /* Linker stubs have a zero size frame. */
905 return 0;
906 else
907 return -1;
908 }
909
910 msym_us = lookup_minimal_symbol_by_pc (pc);
911
912 /* If Save_SP is set, and we're not in an interrupt or signal caller,
913 then we have a frame pointer. Use it. */
914 if (u->Save_SP
915 && !pc_in_interrupt_handler (pc)
916 && msym_us
917 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
918 return -1;
919
920 return u->Total_frame_size << 3;
921 }
922
923 /* Return offset from sp at which rp is saved, or 0 if not saved. */
924 static int rp_saved (CORE_ADDR);
925
926 static int
927 rp_saved (CORE_ADDR pc)
928 {
929 struct unwind_table_entry *u;
930
931 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
932 if (pc == (CORE_ADDR) 0)
933 return 0;
934
935 u = find_unwind_entry (pc);
936
937 if (!u)
938 {
939 if (pc_in_linker_stub (pc))
940 /* This is the so-called RP'. */
941 return -24;
942 else
943 return 0;
944 }
945
946 if (u->Save_RP)
947 return (TARGET_PTR_BIT == 64 ? -16 : -20);
948 else if (u->stub_unwind.stub_type != 0)
949 {
950 switch (u->stub_unwind.stub_type)
951 {
952 case EXPORT:
953 case IMPORT:
954 return -24;
955 case PARAMETER_RELOCATION:
956 return -8;
957 default:
958 return 0;
959 }
960 }
961 else
962 return 0;
963 }
964 \f
965 int
966 hppa_frameless_function_invocation (struct frame_info *frame)
967 {
968 struct unwind_table_entry *u;
969
970 u = find_unwind_entry (get_frame_pc (frame));
971
972 if (u == 0)
973 return 0;
974
975 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
976 }
977
978 /* Immediately after a function call, return the saved pc.
979 Can't go through the frames for this because on some machines
980 the new frame is not set up until the new function executes
981 some instructions. */
982
983 CORE_ADDR
984 hppa_saved_pc_after_call (struct frame_info *frame)
985 {
986 int ret_regnum;
987 CORE_ADDR pc;
988 struct unwind_table_entry *u;
989
990 ret_regnum = find_return_regnum (get_frame_pc (frame));
991 pc = read_register (ret_regnum) & ~0x3;
992
993 /* If PC is in a linker stub, then we need to dig the address
994 the stub will return to out of the stack. */
995 u = find_unwind_entry (pc);
996 if (u && u->stub_unwind.stub_type != 0)
997 return DEPRECATED_FRAME_SAVED_PC (frame);
998 else
999 return pc;
1000 }
1001 \f
1002 CORE_ADDR
1003 hppa_frame_saved_pc (struct frame_info *frame)
1004 {
1005 CORE_ADDR pc = get_frame_pc (frame);
1006 struct unwind_table_entry *u;
1007 CORE_ADDR old_pc = 0;
1008 int spun_around_loop = 0;
1009 int rp_offset = 0;
1010
1011 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1012 at the base of the frame in an interrupt handler. Registers within
1013 are saved in the exact same order as GDB numbers registers. How
1014 convienent. */
1015 if (pc_in_interrupt_handler (pc))
1016 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1017 TARGET_PTR_BIT / 8) & ~0x3;
1018
1019 if ((get_frame_pc (frame) >= get_frame_base (frame)
1020 && (get_frame_pc (frame)
1021 <= (get_frame_base (frame)
1022 /* A call dummy is sized in words, but it is actually a
1023 series of instructions. Account for that scaling
1024 factor. */
1025 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1026 * DEPRECATED_CALL_DUMMY_LENGTH)
1027 /* Similarly we have to account for 64bit wide register
1028 saves. */
1029 + (32 * DEPRECATED_REGISTER_SIZE)
1030 /* We always consider FP regs 8 bytes long. */
1031 + (NUM_REGS - FP0_REGNUM) * 8
1032 /* Similarly we have to account for 64bit wide register
1033 saves. */
1034 + (6 * DEPRECATED_REGISTER_SIZE)))))
1035 {
1036 return read_memory_integer ((get_frame_base (frame)
1037 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1038 TARGET_PTR_BIT / 8) & ~0x3;
1039 }
1040
1041 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1042 /* Deal with signal handler caller frames too. */
1043 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1044 {
1045 CORE_ADDR rp;
1046 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1047 return rp & ~0x3;
1048 }
1049 #endif
1050
1051 if (hppa_frameless_function_invocation (frame))
1052 {
1053 int ret_regnum;
1054
1055 ret_regnum = find_return_regnum (pc);
1056
1057 /* If the next frame is an interrupt frame or a signal
1058 handler caller, then we need to look in the saved
1059 register area to get the return pointer (the values
1060 in the registers may not correspond to anything useful). */
1061 if (get_next_frame (frame)
1062 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1063 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1064 {
1065 CORE_ADDR *saved_regs;
1066 hppa_frame_init_saved_regs (get_next_frame (frame));
1067 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1068 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1069 TARGET_PTR_BIT / 8) & 0x2)
1070 {
1071 pc = read_memory_integer (saved_regs[31],
1072 TARGET_PTR_BIT / 8) & ~0x3;
1073
1074 /* Syscalls are really two frames. The syscall stub itself
1075 with a return pointer in %rp and the kernel call with
1076 a return pointer in %r31. We return the %rp variant
1077 if %r31 is the same as frame->pc. */
1078 if (pc == get_frame_pc (frame))
1079 pc = read_memory_integer (saved_regs[RP_REGNUM],
1080 TARGET_PTR_BIT / 8) & ~0x3;
1081 }
1082 else
1083 pc = read_memory_integer (saved_regs[RP_REGNUM],
1084 TARGET_PTR_BIT / 8) & ~0x3;
1085 }
1086 else
1087 pc = read_register (ret_regnum) & ~0x3;
1088 }
1089 else
1090 {
1091 spun_around_loop = 0;
1092 old_pc = pc;
1093
1094 restart:
1095 rp_offset = rp_saved (pc);
1096
1097 /* Similar to code in frameless function case. If the next
1098 frame is a signal or interrupt handler, then dig the right
1099 information out of the saved register info. */
1100 if (rp_offset == 0
1101 && get_next_frame (frame)
1102 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1103 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1104 {
1105 CORE_ADDR *saved_regs;
1106 hppa_frame_init_saved_regs (get_next_frame (frame));
1107 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1108 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1109 TARGET_PTR_BIT / 8) & 0x2)
1110 {
1111 pc = read_memory_integer (saved_regs[31],
1112 TARGET_PTR_BIT / 8) & ~0x3;
1113
1114 /* Syscalls are really two frames. The syscall stub itself
1115 with a return pointer in %rp and the kernel call with
1116 a return pointer in %r31. We return the %rp variant
1117 if %r31 is the same as frame->pc. */
1118 if (pc == get_frame_pc (frame))
1119 pc = read_memory_integer (saved_regs[RP_REGNUM],
1120 TARGET_PTR_BIT / 8) & ~0x3;
1121 }
1122 else
1123 pc = read_memory_integer (saved_regs[RP_REGNUM],
1124 TARGET_PTR_BIT / 8) & ~0x3;
1125 }
1126 else if (rp_offset == 0)
1127 {
1128 old_pc = pc;
1129 pc = read_register (RP_REGNUM) & ~0x3;
1130 }
1131 else
1132 {
1133 old_pc = pc;
1134 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1135 TARGET_PTR_BIT / 8) & ~0x3;
1136 }
1137 }
1138
1139 /* If PC is inside a linker stub, then dig out the address the stub
1140 will return to.
1141
1142 Don't do this for long branch stubs. Why? For some unknown reason
1143 _start is marked as a long branch stub in hpux10. */
1144 u = find_unwind_entry (pc);
1145 if (u && u->stub_unwind.stub_type != 0
1146 && u->stub_unwind.stub_type != LONG_BRANCH)
1147 {
1148 unsigned int insn;
1149
1150 /* If this is a dynamic executable, and we're in a signal handler,
1151 then the call chain will eventually point us into the stub for
1152 _sigreturn. Unlike most cases, we'll be pointed to the branch
1153 to the real sigreturn rather than the code after the real branch!.
1154
1155 Else, try to dig the address the stub will return to in the normal
1156 fashion. */
1157 insn = read_memory_integer (pc, 4);
1158 if ((insn & 0xfc00e000) == 0xe8000000)
1159 return (pc + extract_17 (insn) + 8) & ~0x3;
1160 else
1161 {
1162 if (old_pc == pc)
1163 spun_around_loop++;
1164
1165 if (spun_around_loop > 1)
1166 {
1167 /* We're just about to go around the loop again with
1168 no more hope of success. Die. */
1169 error ("Unable to find return pc for this frame");
1170 }
1171 else
1172 goto restart;
1173 }
1174 }
1175
1176 return pc;
1177 }
1178 \f
1179 /* We need to correct the PC and the FP for the outermost frame when we are
1180 in a system call. */
1181
1182 void
1183 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1184 {
1185 int flags;
1186 int framesize;
1187
1188 if (get_next_frame (frame) && !fromleaf)
1189 return;
1190
1191 /* If the next frame represents a frameless function invocation then
1192 we have to do some adjustments that are normally done by
1193 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1194 this case.) */
1195 if (fromleaf)
1196 {
1197 /* Find the framesize of *this* frame without peeking at the PC
1198 in the current frame structure (it isn't set yet). */
1199 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1200
1201 /* Now adjust our base frame accordingly. If we have a frame pointer
1202 use it, else subtract the size of this frame from the current
1203 frame. (we always want frame->frame to point at the lowest address
1204 in the frame). */
1205 if (framesize == -1)
1206 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1207 else
1208 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1209 return;
1210 }
1211
1212 flags = read_register (FLAGS_REGNUM);
1213 if (flags & 2) /* In system call? */
1214 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1215
1216 /* The outermost frame is always derived from PC-framesize
1217
1218 One might think frameless innermost frames should have
1219 a frame->frame that is the same as the parent's frame->frame.
1220 That is wrong; frame->frame in that case should be the *high*
1221 address of the parent's frame. It's complicated as hell to
1222 explain, but the parent *always* creates some stack space for
1223 the child. So the child actually does have a frame of some
1224 sorts, and its base is the high address in its parent's frame. */
1225 framesize = find_proc_framesize (get_frame_pc (frame));
1226 if (framesize == -1)
1227 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1228 else
1229 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1230 }
1231 \f
1232 /* Given a GDB frame, determine the address of the calling function's
1233 frame. This will be used to create a new GDB frame struct, and
1234 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1235 will be called for the new frame.
1236
1237 This may involve searching through prologues for several functions
1238 at boundaries where GCC calls HP C code, or where code which has
1239 a frame pointer calls code without a frame pointer. */
1240
1241 CORE_ADDR
1242 hppa_frame_chain (struct frame_info *frame)
1243 {
1244 int my_framesize, caller_framesize;
1245 struct unwind_table_entry *u;
1246 CORE_ADDR frame_base;
1247 struct frame_info *tmp_frame;
1248
1249 /* A frame in the current frame list, or zero. */
1250 struct frame_info *saved_regs_frame = 0;
1251 /* Where the registers were saved in saved_regs_frame. If
1252 saved_regs_frame is zero, this is garbage. */
1253 CORE_ADDR *saved_regs = NULL;
1254
1255 CORE_ADDR caller_pc;
1256
1257 struct minimal_symbol *min_frame_symbol;
1258 struct symbol *frame_symbol;
1259 char *frame_symbol_name;
1260
1261 /* If this is a threaded application, and we see the
1262 routine "__pthread_exit", treat it as the stack root
1263 for this thread. */
1264 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1265 frame_symbol = find_pc_function (get_frame_pc (frame));
1266
1267 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1268 {
1269 /* The test above for "no user function name" would defend
1270 against the slim likelihood that a user might define a
1271 routine named "__pthread_exit" and then try to debug it.
1272
1273 If it weren't commented out, and you tried to debug the
1274 pthread library itself, you'd get errors.
1275
1276 So for today, we don't make that check. */
1277 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1278 if (frame_symbol_name != 0)
1279 {
1280 if (0 == strncmp (frame_symbol_name,
1281 THREAD_INITIAL_FRAME_SYMBOL,
1282 THREAD_INITIAL_FRAME_SYM_LEN))
1283 {
1284 /* Pretend we've reached the bottom of the stack. */
1285 return (CORE_ADDR) 0;
1286 }
1287 }
1288 } /* End of hacky code for threads. */
1289
1290 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1291 are easy; at *sp we have a full save state strucutre which we can
1292 pull the old stack pointer from. Also see frame_saved_pc for
1293 code to dig a saved PC out of the save state structure. */
1294 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1295 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1296 TARGET_PTR_BIT / 8);
1297 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1298 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1299 {
1300 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1301 }
1302 #endif
1303 else
1304 frame_base = get_frame_base (frame);
1305
1306 /* Get frame sizes for the current frame and the frame of the
1307 caller. */
1308 my_framesize = find_proc_framesize (get_frame_pc (frame));
1309 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1310
1311 /* If we can't determine the caller's PC, then it's not likely we can
1312 really determine anything meaningful about its frame. We'll consider
1313 this to be stack bottom. */
1314 if (caller_pc == (CORE_ADDR) 0)
1315 return (CORE_ADDR) 0;
1316
1317 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1318
1319 /* If caller does not have a frame pointer, then its frame
1320 can be found at current_frame - caller_framesize. */
1321 if (caller_framesize != -1)
1322 {
1323 return frame_base - caller_framesize;
1324 }
1325 /* Both caller and callee have frame pointers and are GCC compiled
1326 (SAVE_SP bit in unwind descriptor is on for both functions.
1327 The previous frame pointer is found at the top of the current frame. */
1328 if (caller_framesize == -1 && my_framesize == -1)
1329 {
1330 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1331 }
1332 /* Caller has a frame pointer, but callee does not. This is a little
1333 more difficult as GCC and HP C lay out locals and callee register save
1334 areas very differently.
1335
1336 The previous frame pointer could be in a register, or in one of
1337 several areas on the stack.
1338
1339 Walk from the current frame to the innermost frame examining
1340 unwind descriptors to determine if %r3 ever gets saved into the
1341 stack. If so return whatever value got saved into the stack.
1342 If it was never saved in the stack, then the value in %r3 is still
1343 valid, so use it.
1344
1345 We use information from unwind descriptors to determine if %r3
1346 is saved into the stack (Entry_GR field has this information). */
1347
1348 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1349 {
1350 u = find_unwind_entry (get_frame_pc (tmp_frame));
1351
1352 if (!u)
1353 {
1354 /* We could find this information by examining prologues. I don't
1355 think anyone has actually written any tools (not even "strip")
1356 which leave them out of an executable, so maybe this is a moot
1357 point. */
1358 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1359 code that doesn't have unwind entries. For example, stepping into
1360 the dynamic linker will give you a PC that has none. Thus, I've
1361 disabled this warning. */
1362 #if 0
1363 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1364 #endif
1365 return (CORE_ADDR) 0;
1366 }
1367
1368 if (u->Save_SP
1369 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1370 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1371 break;
1372
1373 /* Entry_GR specifies the number of callee-saved general registers
1374 saved in the stack. It starts at %r3, so %r3 would be 1. */
1375 if (u->Entry_GR >= 1)
1376 {
1377 /* The unwind entry claims that r3 is saved here. However,
1378 in optimized code, GCC often doesn't actually save r3.
1379 We'll discover this if we look at the prologue. */
1380 hppa_frame_init_saved_regs (tmp_frame);
1381 saved_regs = get_frame_saved_regs (tmp_frame);
1382 saved_regs_frame = tmp_frame;
1383
1384 /* If we have an address for r3, that's good. */
1385 if (saved_regs[DEPRECATED_FP_REGNUM])
1386 break;
1387 }
1388 }
1389
1390 if (tmp_frame)
1391 {
1392 /* We may have walked down the chain into a function with a frame
1393 pointer. */
1394 if (u->Save_SP
1395 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1396 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1397 {
1398 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1399 }
1400 /* %r3 was saved somewhere in the stack. Dig it out. */
1401 else
1402 {
1403 /* Sick.
1404
1405 For optimization purposes many kernels don't have the
1406 callee saved registers into the save_state structure upon
1407 entry into the kernel for a syscall; the optimization
1408 is usually turned off if the process is being traced so
1409 that the debugger can get full register state for the
1410 process.
1411
1412 This scheme works well except for two cases:
1413
1414 * Attaching to a process when the process is in the
1415 kernel performing a system call (debugger can't get
1416 full register state for the inferior process since
1417 the process wasn't being traced when it entered the
1418 system call).
1419
1420 * Register state is not complete if the system call
1421 causes the process to core dump.
1422
1423
1424 The following heinous code is an attempt to deal with
1425 the lack of register state in a core dump. It will
1426 fail miserably if the function which performs the
1427 system call has a variable sized stack frame. */
1428
1429 if (tmp_frame != saved_regs_frame)
1430 {
1431 hppa_frame_init_saved_regs (tmp_frame);
1432 saved_regs = get_frame_saved_regs (tmp_frame);
1433 }
1434
1435 /* Abominable hack. */
1436 if (current_target.to_has_execution == 0
1437 && ((saved_regs[FLAGS_REGNUM]
1438 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1439 TARGET_PTR_BIT / 8)
1440 & 0x2))
1441 || (saved_regs[FLAGS_REGNUM] == 0
1442 && read_register (FLAGS_REGNUM) & 0x2)))
1443 {
1444 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1445 if (!u)
1446 {
1447 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1448 TARGET_PTR_BIT / 8);
1449 }
1450 else
1451 {
1452 return frame_base - (u->Total_frame_size << 3);
1453 }
1454 }
1455
1456 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1457 TARGET_PTR_BIT / 8);
1458 }
1459 }
1460 else
1461 {
1462 /* Get the innermost frame. */
1463 tmp_frame = frame;
1464 while (get_next_frame (tmp_frame) != NULL)
1465 tmp_frame = get_next_frame (tmp_frame);
1466
1467 if (tmp_frame != saved_regs_frame)
1468 {
1469 hppa_frame_init_saved_regs (tmp_frame);
1470 saved_regs = get_frame_saved_regs (tmp_frame);
1471 }
1472
1473 /* Abominable hack. See above. */
1474 if (current_target.to_has_execution == 0
1475 && ((saved_regs[FLAGS_REGNUM]
1476 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1477 TARGET_PTR_BIT / 8)
1478 & 0x2))
1479 || (saved_regs[FLAGS_REGNUM] == 0
1480 && read_register (FLAGS_REGNUM) & 0x2)))
1481 {
1482 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1483 if (!u)
1484 {
1485 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1486 TARGET_PTR_BIT / 8);
1487 }
1488 else
1489 {
1490 return frame_base - (u->Total_frame_size << 3);
1491 }
1492 }
1493
1494 /* The value in %r3 was never saved into the stack (thus %r3 still
1495 holds the value of the previous frame pointer). */
1496 return deprecated_read_fp ();
1497 }
1498 }
1499 \f
1500
1501 /* To see if a frame chain is valid, see if the caller looks like it
1502 was compiled with gcc. */
1503
1504 int
1505 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1506 {
1507 struct minimal_symbol *msym_us;
1508 struct minimal_symbol *msym_start;
1509 struct unwind_table_entry *u, *next_u = NULL;
1510 struct frame_info *next;
1511
1512 u = find_unwind_entry (get_frame_pc (thisframe));
1513
1514 if (u == NULL)
1515 return 1;
1516
1517 /* We can't just check that the same of msym_us is "_start", because
1518 someone idiotically decided that they were going to make a Ltext_end
1519 symbol with the same address. This Ltext_end symbol is totally
1520 indistinguishable (as nearly as I can tell) from the symbol for a function
1521 which is (legitimately, since it is in the user's namespace)
1522 named Ltext_end, so we can't just ignore it. */
1523 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1524 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1525 if (msym_us
1526 && msym_start
1527 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1528 return 0;
1529
1530 /* Grrrr. Some new idiot decided that they don't want _start for the
1531 PRO configurations; $START$ calls main directly.... Deal with it. */
1532 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1533 if (msym_us
1534 && msym_start
1535 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1536 return 0;
1537
1538 next = get_next_frame (thisframe);
1539 if (next)
1540 next_u = find_unwind_entry (get_frame_pc (next));
1541
1542 /* If this frame does not save SP, has no stack, isn't a stub,
1543 and doesn't "call" an interrupt routine or signal handler caller,
1544 then its not valid. */
1545 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1546 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1547 || (next_u && next_u->HP_UX_interrupt_marker))
1548 return 1;
1549
1550 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1551 return 1;
1552
1553 return 0;
1554 }
1555
1556 /* These functions deal with saving and restoring register state
1557 around a function call in the inferior. They keep the stack
1558 double-word aligned; eventually, on an hp700, the stack will have
1559 to be aligned to a 64-byte boundary. */
1560
1561 void
1562 hppa_push_dummy_frame (void)
1563 {
1564 CORE_ADDR sp, pc, pcspace;
1565 register int regnum;
1566 CORE_ADDR int_buffer;
1567 double freg_buffer;
1568
1569 pc = hppa_target_read_pc (inferior_ptid);
1570 int_buffer = read_register (FLAGS_REGNUM);
1571 if (int_buffer & 0x2)
1572 {
1573 const unsigned int sid = (pc >> 30) & 0x3;
1574 if (sid == 0)
1575 pcspace = read_register (SR4_REGNUM);
1576 else
1577 pcspace = read_register (SR4_REGNUM + 4 + sid);
1578 }
1579 else
1580 pcspace = read_register (PCSQ_HEAD_REGNUM);
1581
1582 /* Space for "arguments"; the RP goes in here. */
1583 sp = read_register (SP_REGNUM) + 48;
1584 int_buffer = read_register (RP_REGNUM) | 0x3;
1585
1586 /* The 32bit and 64bit ABIs save the return pointer into different
1587 stack slots. */
1588 if (DEPRECATED_REGISTER_SIZE == 8)
1589 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1590 else
1591 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1592
1593 int_buffer = deprecated_read_fp ();
1594 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1595
1596 write_register (DEPRECATED_FP_REGNUM, sp);
1597
1598 sp += 2 * DEPRECATED_REGISTER_SIZE;
1599
1600 for (regnum = 1; regnum < 32; regnum++)
1601 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1602 sp = push_word (sp, read_register (regnum));
1603
1604 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1605 if (DEPRECATED_REGISTER_SIZE != 8)
1606 sp += 4;
1607
1608 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1609 {
1610 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1611 (char *) &freg_buffer, 8);
1612 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1613 }
1614 sp = push_word (sp, read_register (IPSW_REGNUM));
1615 sp = push_word (sp, read_register (SAR_REGNUM));
1616 sp = push_word (sp, pc);
1617 sp = push_word (sp, pcspace);
1618 sp = push_word (sp, pc + 4);
1619 sp = push_word (sp, pcspace);
1620 write_register (SP_REGNUM, sp);
1621 }
1622
1623 static void
1624 find_dummy_frame_regs (struct frame_info *frame,
1625 CORE_ADDR frame_saved_regs[])
1626 {
1627 CORE_ADDR fp = get_frame_base (frame);
1628 int i;
1629
1630 /* The 32bit and 64bit ABIs save RP into different locations. */
1631 if (DEPRECATED_REGISTER_SIZE == 8)
1632 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1633 else
1634 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1635
1636 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1637
1638 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1639
1640 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1641 {
1642 if (i != DEPRECATED_FP_REGNUM)
1643 {
1644 frame_saved_regs[i] = fp;
1645 fp += DEPRECATED_REGISTER_SIZE;
1646 }
1647 }
1648
1649 /* This is not necessary or desirable for the 64bit ABI. */
1650 if (DEPRECATED_REGISTER_SIZE != 8)
1651 fp += 4;
1652
1653 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1654 frame_saved_regs[i] = fp;
1655
1656 frame_saved_regs[IPSW_REGNUM] = fp;
1657 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1658 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1659 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1660 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1661 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1662 }
1663
1664 void
1665 hppa_pop_frame (void)
1666 {
1667 register struct frame_info *frame = get_current_frame ();
1668 register CORE_ADDR fp, npc, target_pc;
1669 register int regnum;
1670 CORE_ADDR *fsr;
1671 double freg_buffer;
1672
1673 fp = get_frame_base (frame);
1674 hppa_frame_init_saved_regs (frame);
1675 fsr = get_frame_saved_regs (frame);
1676
1677 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1678 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1679 restore_pc_queue (fsr);
1680 #endif
1681
1682 for (regnum = 31; regnum > 0; regnum--)
1683 if (fsr[regnum])
1684 write_register (regnum, read_memory_integer (fsr[regnum],
1685 DEPRECATED_REGISTER_SIZE));
1686
1687 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1688 if (fsr[regnum])
1689 {
1690 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1691 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1692 (char *) &freg_buffer, 8);
1693 }
1694
1695 if (fsr[IPSW_REGNUM])
1696 write_register (IPSW_REGNUM,
1697 read_memory_integer (fsr[IPSW_REGNUM],
1698 DEPRECATED_REGISTER_SIZE));
1699
1700 if (fsr[SAR_REGNUM])
1701 write_register (SAR_REGNUM,
1702 read_memory_integer (fsr[SAR_REGNUM],
1703 DEPRECATED_REGISTER_SIZE));
1704
1705 /* If the PC was explicitly saved, then just restore it. */
1706 if (fsr[PCOQ_TAIL_REGNUM])
1707 {
1708 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1709 DEPRECATED_REGISTER_SIZE);
1710 write_register (PCOQ_TAIL_REGNUM, npc);
1711 }
1712 /* Else use the value in %rp to set the new PC. */
1713 else
1714 {
1715 npc = read_register (RP_REGNUM);
1716 write_pc (npc);
1717 }
1718
1719 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1720
1721 if (fsr[IPSW_REGNUM]) /* call dummy */
1722 write_register (SP_REGNUM, fp - 48);
1723 else
1724 write_register (SP_REGNUM, fp);
1725
1726 /* The PC we just restored may be inside a return trampoline. If so
1727 we want to restart the inferior and run it through the trampoline.
1728
1729 Do this by setting a momentary breakpoint at the location the
1730 trampoline returns to.
1731
1732 Don't skip through the trampoline if we're popping a dummy frame. */
1733 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1734 if (target_pc && !fsr[IPSW_REGNUM])
1735 {
1736 struct symtab_and_line sal;
1737 struct breakpoint *breakpoint;
1738 struct cleanup *old_chain;
1739
1740 /* Set up our breakpoint. Set it to be silent as the MI code
1741 for "return_command" will print the frame we returned to. */
1742 sal = find_pc_line (target_pc, 0);
1743 sal.pc = target_pc;
1744 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1745 breakpoint->silent = 1;
1746
1747 /* So we can clean things up. */
1748 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1749
1750 /* Start up the inferior. */
1751 clear_proceed_status ();
1752 proceed_to_finish = 1;
1753 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1754
1755 /* Perform our cleanups. */
1756 do_cleanups (old_chain);
1757 }
1758 flush_cached_frames ();
1759 }
1760
1761 /* After returning to a dummy on the stack, restore the instruction
1762 queue space registers. */
1763
1764 static int
1765 restore_pc_queue (CORE_ADDR *fsr)
1766 {
1767 CORE_ADDR pc = read_pc ();
1768 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1769 TARGET_PTR_BIT / 8);
1770 struct target_waitstatus w;
1771 int insn_count;
1772
1773 /* Advance past break instruction in the call dummy. */
1774 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1775 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1776
1777 /* HPUX doesn't let us set the space registers or the space
1778 registers of the PC queue through ptrace. Boo, hiss.
1779 Conveniently, the call dummy has this sequence of instructions
1780 after the break:
1781 mtsp r21, sr0
1782 ble,n 0(sr0, r22)
1783
1784 So, load up the registers and single step until we are in the
1785 right place. */
1786
1787 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1788 DEPRECATED_REGISTER_SIZE));
1789 write_register (22, new_pc);
1790
1791 for (insn_count = 0; insn_count < 3; insn_count++)
1792 {
1793 /* FIXME: What if the inferior gets a signal right now? Want to
1794 merge this into wait_for_inferior (as a special kind of
1795 watchpoint? By setting a breakpoint at the end? Is there
1796 any other choice? Is there *any* way to do this stuff with
1797 ptrace() or some equivalent?). */
1798 resume (1, 0);
1799 target_wait (inferior_ptid, &w);
1800
1801 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1802 {
1803 stop_signal = w.value.sig;
1804 terminal_ours_for_output ();
1805 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1806 target_signal_to_name (stop_signal),
1807 target_signal_to_string (stop_signal));
1808 gdb_flush (gdb_stdout);
1809 return 0;
1810 }
1811 }
1812 target_terminal_ours ();
1813 target_fetch_registers (-1);
1814 return 1;
1815 }
1816
1817
1818 #ifdef PA20W_CALLING_CONVENTIONS
1819
1820 /* This function pushes a stack frame with arguments as part of the
1821 inferior function calling mechanism.
1822
1823 This is the version for the PA64, in which later arguments appear
1824 at higher addresses. (The stack always grows towards higher
1825 addresses.)
1826
1827 We simply allocate the appropriate amount of stack space and put
1828 arguments into their proper slots. The call dummy code will copy
1829 arguments into registers as needed by the ABI.
1830
1831 This ABI also requires that the caller provide an argument pointer
1832 to the callee, so we do that too. */
1833
1834 CORE_ADDR
1835 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1836 int struct_return, CORE_ADDR struct_addr)
1837 {
1838 /* array of arguments' offsets */
1839 int *offset = (int *) alloca (nargs * sizeof (int));
1840
1841 /* array of arguments' lengths: real lengths in bytes, not aligned to
1842 word size */
1843 int *lengths = (int *) alloca (nargs * sizeof (int));
1844
1845 /* The value of SP as it was passed into this function after
1846 aligning. */
1847 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1848
1849 /* The number of stack bytes occupied by the current argument. */
1850 int bytes_reserved;
1851
1852 /* The total number of bytes reserved for the arguments. */
1853 int cum_bytes_reserved = 0;
1854
1855 /* Similarly, but aligned. */
1856 int cum_bytes_aligned = 0;
1857 int i;
1858
1859 /* Iterate over each argument provided by the user. */
1860 for (i = 0; i < nargs; i++)
1861 {
1862 struct type *arg_type = VALUE_TYPE (args[i]);
1863
1864 /* Integral scalar values smaller than a register are padded on
1865 the left. We do this by promoting them to full-width,
1866 although the ABI says to pad them with garbage. */
1867 if (is_integral_type (arg_type)
1868 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1869 {
1870 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1871 ? builtin_type_unsigned_long
1872 : builtin_type_long),
1873 args[i]);
1874 arg_type = VALUE_TYPE (args[i]);
1875 }
1876
1877 lengths[i] = TYPE_LENGTH (arg_type);
1878
1879 /* Align the size of the argument to the word size for this
1880 target. */
1881 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1882
1883 offset[i] = cum_bytes_reserved;
1884
1885 /* Aggregates larger than eight bytes (the only types larger
1886 than eight bytes we have) are aligned on a 16-byte boundary,
1887 possibly padded on the right with garbage. This may leave an
1888 empty word on the stack, and thus an unused register, as per
1889 the ABI. */
1890 if (bytes_reserved > 8)
1891 {
1892 /* Round up the offset to a multiple of two slots. */
1893 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1894 & -(2*DEPRECATED_REGISTER_SIZE));
1895
1896 /* Note the space we've wasted, if any. */
1897 bytes_reserved += new_offset - offset[i];
1898 offset[i] = new_offset;
1899 }
1900
1901 cum_bytes_reserved += bytes_reserved;
1902 }
1903
1904 /* CUM_BYTES_RESERVED already accounts for all the arguments
1905 passed by the user. However, the ABIs mandate minimum stack space
1906 allocations for outgoing arguments.
1907
1908 The ABIs also mandate minimum stack alignments which we must
1909 preserve. */
1910 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1911 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1912
1913 /* Now write each of the args at the proper offset down the stack. */
1914 for (i = 0; i < nargs; i++)
1915 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1916
1917 /* If a structure has to be returned, set up register 28 to hold its
1918 address */
1919 if (struct_return)
1920 write_register (28, struct_addr);
1921
1922 /* For the PA64 we must pass a pointer to the outgoing argument list.
1923 The ABI mandates that the pointer should point to the first byte of
1924 storage beyond the register flushback area.
1925
1926 However, the call dummy expects the outgoing argument pointer to
1927 be passed in register %r4. */
1928 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1929
1930 /* ?!? This needs further work. We need to set up the global data
1931 pointer for this procedure. This assumes the same global pointer
1932 for every procedure. The call dummy expects the dp value to
1933 be passed in register %r6. */
1934 write_register (6, read_register (27));
1935
1936 /* The stack will have 64 bytes of additional space for a frame marker. */
1937 return sp + 64;
1938 }
1939
1940 #else
1941
1942 /* This function pushes a stack frame with arguments as part of the
1943 inferior function calling mechanism.
1944
1945 This is the version of the function for the 32-bit PA machines, in
1946 which later arguments appear at lower addresses. (The stack always
1947 grows towards higher addresses.)
1948
1949 We simply allocate the appropriate amount of stack space and put
1950 arguments into their proper slots. The call dummy code will copy
1951 arguments into registers as needed by the ABI. */
1952
1953 CORE_ADDR
1954 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1955 int struct_return, CORE_ADDR struct_addr)
1956 {
1957 /* array of arguments' offsets */
1958 int *offset = (int *) alloca (nargs * sizeof (int));
1959
1960 /* array of arguments' lengths: real lengths in bytes, not aligned to
1961 word size */
1962 int *lengths = (int *) alloca (nargs * sizeof (int));
1963
1964 /* The number of stack bytes occupied by the current argument. */
1965 int bytes_reserved;
1966
1967 /* The total number of bytes reserved for the arguments. */
1968 int cum_bytes_reserved = 0;
1969
1970 /* Similarly, but aligned. */
1971 int cum_bytes_aligned = 0;
1972 int i;
1973
1974 /* Iterate over each argument provided by the user. */
1975 for (i = 0; i < nargs; i++)
1976 {
1977 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1978
1979 /* Align the size of the argument to the word size for this
1980 target. */
1981 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1982
1983 offset[i] = (cum_bytes_reserved
1984 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1985
1986 /* If the argument is a double word argument, then it needs to be
1987 double word aligned. */
1988 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1989 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
1990 {
1991 int new_offset = 0;
1992 /* BYTES_RESERVED is already aligned to the word, so we put
1993 the argument at one word more down the stack.
1994
1995 This will leave one empty word on the stack, and one unused
1996 register as mandated by the ABI. */
1997 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1998 & -(2 * DEPRECATED_REGISTER_SIZE));
1999
2000 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2001 {
2002 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2003 offset[i] += DEPRECATED_REGISTER_SIZE;
2004 }
2005 }
2006
2007 cum_bytes_reserved += bytes_reserved;
2008
2009 }
2010
2011 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2012 by the user. However, the ABI mandates minimum stack space
2013 allocations for outgoing arguments.
2014
2015 The ABI also mandates minimum stack alignments which we must
2016 preserve. */
2017 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
2018 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2019
2020 /* Now write each of the args at the proper offset down the stack.
2021 ?!? We need to promote values to a full register instead of skipping
2022 words in the stack. */
2023 for (i = 0; i < nargs; i++)
2024 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2025
2026 /* If a structure has to be returned, set up register 28 to hold its
2027 address */
2028 if (struct_return)
2029 write_register (28, struct_addr);
2030
2031 /* The stack will have 32 bytes of additional space for a frame marker. */
2032 return sp + 32;
2033 }
2034
2035 #endif
2036
2037 /* elz: this function returns a value which is built looking at the given address.
2038 It is called from call_function_by_hand, in case we need to return a
2039 value which is larger than 64 bits, and it is stored in the stack rather than
2040 in the registers r28 and r29 or fr4.
2041 This function does the same stuff as value_being_returned in values.c, but
2042 gets the value from the stack rather than from the buffer where all the
2043 registers were saved when the function called completed. */
2044 struct value *
2045 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
2046 {
2047 register struct value *val;
2048
2049 val = allocate_value (valtype);
2050 CHECK_TYPEDEF (valtype);
2051 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
2052
2053 return val;
2054 }
2055
2056
2057
2058 /* elz: Used to lookup a symbol in the shared libraries.
2059 This function calls shl_findsym, indirectly through a
2060 call to __d_shl_get. __d_shl_get is in end.c, which is always
2061 linked in by the hp compilers/linkers.
2062 The call to shl_findsym cannot be made directly because it needs
2063 to be active in target address space.
2064 inputs: - minimal symbol pointer for the function we want to look up
2065 - address in target space of the descriptor for the library
2066 where we want to look the symbol up.
2067 This address is retrieved using the
2068 som_solib_get_solib_by_pc function (somsolib.c).
2069 output: - real address in the library of the function.
2070 note: the handle can be null, in which case shl_findsym will look for
2071 the symbol in all the loaded shared libraries.
2072 files to look at if you need reference on this stuff:
2073 dld.c, dld_shl_findsym.c
2074 end.c
2075 man entry for shl_findsym */
2076
2077 CORE_ADDR
2078 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2079 {
2080 struct symbol *get_sym, *symbol2;
2081 struct minimal_symbol *buff_minsym, *msymbol;
2082 struct type *ftype;
2083 struct value **args;
2084 struct value *funcval;
2085 struct value *val;
2086
2087 int x, namelen, err_value, tmp = -1;
2088 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2089 CORE_ADDR stub_addr;
2090
2091
2092 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2093 funcval = find_function_in_inferior ("__d_shl_get");
2094 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2095 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2096 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2097 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2098 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2099 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2100 value_return_addr = endo_buff_addr + namelen;
2101 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2102
2103 /* do alignment */
2104 if ((x = value_return_addr % 64) != 0)
2105 value_return_addr = value_return_addr + 64 - x;
2106
2107 errno_return_addr = value_return_addr + 64;
2108
2109
2110 /* set up stuff needed by __d_shl_get in buffer in end.o */
2111
2112 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2113
2114 target_write_memory (value_return_addr, (char *) &tmp, 4);
2115
2116 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2117
2118 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2119 (char *) &handle, 4);
2120
2121 /* now prepare the arguments for the call */
2122
2123 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2124 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2125 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2126 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2127 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2128 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2129
2130 /* now call the function */
2131
2132 val = call_function_by_hand (funcval, 6, args);
2133
2134 /* now get the results */
2135
2136 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2137
2138 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2139 if (stub_addr <= 0)
2140 error ("call to __d_shl_get failed, error code is %d", err_value);
2141
2142 return (stub_addr);
2143 }
2144
2145 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2146 static int
2147 cover_find_stub_with_shl_get (void *args_untyped)
2148 {
2149 args_for_find_stub *args = args_untyped;
2150 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2151 return 0;
2152 }
2153
2154 /* Insert the specified number of args and function address
2155 into a call sequence of the above form stored at DUMMYNAME.
2156
2157 On the hppa we need to call the stack dummy through $$dyncall.
2158 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2159 argument, real_pc, which is the location where gdb should start up
2160 the inferior to do the function call.
2161
2162 This has to work across several versions of hpux, bsd, osf1. It has to
2163 work regardless of what compiler was used to build the inferior program.
2164 It should work regardless of whether or not end.o is available. It has
2165 to work even if gdb can not call into the dynamic loader in the inferior
2166 to query it for symbol names and addresses.
2167
2168 Yes, all those cases should work. Luckily code exists to handle most
2169 of them. The complexity is in selecting exactly what scheme should
2170 be used to perform the inferior call.
2171
2172 At the current time this routine is known not to handle cases where
2173 the program was linked with HP's compiler without including end.o.
2174
2175 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2176
2177 CORE_ADDR
2178 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2179 struct value **args, struct type *type, int gcc_p)
2180 {
2181 CORE_ADDR dyncall_addr;
2182 struct minimal_symbol *msymbol;
2183 struct minimal_symbol *trampoline;
2184 int flags = read_register (FLAGS_REGNUM);
2185 struct unwind_table_entry *u = NULL;
2186 CORE_ADDR new_stub = 0;
2187 CORE_ADDR solib_handle = 0;
2188
2189 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2190 passed an import stub, not a PLABEL. It is also necessary to set %r19
2191 (the PIC register) before performing the call.
2192
2193 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2194 are calling the target directly. When using __d_plt_call we want to
2195 use a PLABEL instead of an import stub. */
2196 int using_gcc_plt_call = 1;
2197
2198 #ifdef GDB_TARGET_IS_HPPA_20W
2199 /* We currently use completely different code for the PA2.0W inferior
2200 function call sequences. This needs to be cleaned up. */
2201 {
2202 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2203 struct target_waitstatus w;
2204 int inst1, inst2;
2205 char buf[4];
2206 int status;
2207 struct objfile *objfile;
2208
2209 /* We can not modify the PC space queues directly, so we start
2210 up the inferior and execute a couple instructions to set the
2211 space queues so that they point to the call dummy in the stack. */
2212 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2213 sr5 = read_register (SR5_REGNUM);
2214 if (1)
2215 {
2216 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2217 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2218 if (target_read_memory (pcoqh, buf, 4) != 0)
2219 error ("Couldn't modify space queue\n");
2220 inst1 = extract_unsigned_integer (buf, 4);
2221
2222 if (target_read_memory (pcoqt, buf, 4) != 0)
2223 error ("Couldn't modify space queue\n");
2224 inst2 = extract_unsigned_integer (buf, 4);
2225
2226 /* BVE (r1) */
2227 *((int *) buf) = 0xe820d000;
2228 if (target_write_memory (pcoqh, buf, 4) != 0)
2229 error ("Couldn't modify space queue\n");
2230
2231 /* NOP */
2232 *((int *) buf) = 0x08000240;
2233 if (target_write_memory (pcoqt, buf, 4) != 0)
2234 {
2235 *((int *) buf) = inst1;
2236 target_write_memory (pcoqh, buf, 4);
2237 error ("Couldn't modify space queue\n");
2238 }
2239
2240 write_register (1, pc);
2241
2242 /* Single step twice, the BVE instruction will set the space queue
2243 such that it points to the PC value written immediately above
2244 (ie the call dummy). */
2245 resume (1, 0);
2246 target_wait (inferior_ptid, &w);
2247 resume (1, 0);
2248 target_wait (inferior_ptid, &w);
2249
2250 /* Restore the two instructions at the old PC locations. */
2251 *((int *) buf) = inst1;
2252 target_write_memory (pcoqh, buf, 4);
2253 *((int *) buf) = inst2;
2254 target_write_memory (pcoqt, buf, 4);
2255 }
2256
2257 /* The call dummy wants the ultimate destination address initially
2258 in register %r5. */
2259 write_register (5, fun);
2260
2261 /* We need to see if this objfile has a different DP value than our
2262 own (it could be a shared library for example). */
2263 ALL_OBJFILES (objfile)
2264 {
2265 struct obj_section *s;
2266 obj_private_data_t *obj_private;
2267
2268 /* See if FUN is in any section within this shared library. */
2269 for (s = objfile->sections; s < objfile->sections_end; s++)
2270 if (s->addr <= fun && fun < s->endaddr)
2271 break;
2272
2273 if (s >= objfile->sections_end)
2274 continue;
2275
2276 obj_private = (obj_private_data_t *) objfile->obj_private;
2277
2278 /* The DP value may be different for each objfile. But within an
2279 objfile each function uses the same dp value. Thus we do not need
2280 to grope around the opd section looking for dp values.
2281
2282 ?!? This is not strictly correct since we may be in a shared library
2283 and want to call back into the main program. To make that case
2284 work correctly we need to set obj_private->dp for the main program's
2285 objfile, then remove this conditional. */
2286 if (obj_private->dp)
2287 write_register (27, obj_private->dp);
2288 break;
2289 }
2290 return pc;
2291 }
2292 #endif
2293
2294 #ifndef GDB_TARGET_IS_HPPA_20W
2295 /* Prefer __gcc_plt_call over the HP supplied routine because
2296 __gcc_plt_call works for any number of arguments. */
2297 trampoline = NULL;
2298 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2299 using_gcc_plt_call = 0;
2300
2301 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2302 if (msymbol == NULL)
2303 error ("Can't find an address for $$dyncall trampoline");
2304
2305 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2306
2307 /* FUN could be a procedure label, in which case we have to get
2308 its real address and the value of its GOT/DP if we plan to
2309 call the routine via gcc_plt_call. */
2310 if ((fun & 0x2) && using_gcc_plt_call)
2311 {
2312 /* Get the GOT/DP value for the target function. It's
2313 at *(fun+4). Note the call dummy is *NOT* allowed to
2314 trash %r19 before calling the target function. */
2315 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2316 DEPRECATED_REGISTER_SIZE));
2317
2318 /* Now get the real address for the function we are calling, it's
2319 at *fun. */
2320 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2321 TARGET_PTR_BIT / 8);
2322 }
2323 else
2324 {
2325
2326 #ifndef GDB_TARGET_IS_PA_ELF
2327 /* FUN could be an export stub, the real address of a function, or
2328 a PLABEL. When using gcc's PLT call routine we must call an import
2329 stub rather than the export stub or real function for lazy binding
2330 to work correctly
2331
2332 If we are using the gcc PLT call routine, then we need to
2333 get the import stub for the target function. */
2334 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2335 {
2336 struct objfile *objfile;
2337 struct minimal_symbol *funsymbol, *stub_symbol;
2338 CORE_ADDR newfun = 0;
2339
2340 funsymbol = lookup_minimal_symbol_by_pc (fun);
2341 if (!funsymbol)
2342 error ("Unable to find minimal symbol for target function.\n");
2343
2344 /* Search all the object files for an import symbol with the
2345 right name. */
2346 ALL_OBJFILES (objfile)
2347 {
2348 stub_symbol
2349 = lookup_minimal_symbol_solib_trampoline
2350 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2351
2352 if (!stub_symbol)
2353 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2354 NULL, objfile);
2355
2356 /* Found a symbol with the right name. */
2357 if (stub_symbol)
2358 {
2359 struct unwind_table_entry *u;
2360 /* It must be a shared library trampoline. */
2361 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2362 continue;
2363
2364 /* It must also be an import stub. */
2365 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2366 if (u == NULL
2367 || (u->stub_unwind.stub_type != IMPORT
2368 #ifdef GDB_NATIVE_HPUX_11
2369 /* Sigh. The hpux 10.20 dynamic linker will blow
2370 chunks if we perform a call to an unbound function
2371 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2372 linker will blow chunks if we do not call the
2373 unbound function via the IMPORT_SHLIB stub.
2374
2375 We currently have no way to select bevahior on just
2376 the target. However, we only support HPUX/SOM in
2377 native mode. So we conditinalize on a native
2378 #ifdef. Ugly. Ugly. Ugly */
2379 && u->stub_unwind.stub_type != IMPORT_SHLIB
2380 #endif
2381 ))
2382 continue;
2383
2384 /* OK. Looks like the correct import stub. */
2385 newfun = SYMBOL_VALUE (stub_symbol);
2386 fun = newfun;
2387
2388 /* If we found an IMPORT stub, then we want to stop
2389 searching now. If we found an IMPORT_SHLIB, we want
2390 to continue the search in the hopes that we will find
2391 an IMPORT stub. */
2392 if (u->stub_unwind.stub_type == IMPORT)
2393 break;
2394 }
2395 }
2396
2397 /* Ouch. We did not find an import stub. Make an attempt to
2398 do the right thing instead of just croaking. Most of the
2399 time this will actually work. */
2400 if (newfun == 0)
2401 write_register (19, som_solib_get_got_by_pc (fun));
2402
2403 u = find_unwind_entry (fun);
2404 if (u
2405 && (u->stub_unwind.stub_type == IMPORT
2406 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2407 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2408
2409 /* If we found the import stub in the shared library, then we have
2410 to set %r19 before we call the stub. */
2411 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2412 write_register (19, som_solib_get_got_by_pc (fun));
2413 }
2414 #endif
2415 }
2416
2417 /* If we are calling into another load module then have sr4export call the
2418 magic __d_plt_call routine which is linked in from end.o.
2419
2420 You can't use _sr4export to make the call as the value in sp-24 will get
2421 fried and you end up returning to the wrong location. You can't call the
2422 target as the code to bind the PLT entry to a function can't return to a
2423 stack address.
2424
2425 Also, query the dynamic linker in the inferior to provide a suitable
2426 PLABEL for the target function. */
2427 if (!using_gcc_plt_call)
2428 {
2429 CORE_ADDR new_fun;
2430
2431 /* Get a handle for the shared library containing FUN. Given the
2432 handle we can query the shared library for a PLABEL. */
2433 solib_handle = som_solib_get_solib_by_pc (fun);
2434
2435 if (solib_handle)
2436 {
2437 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2438
2439 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2440
2441 if (trampoline == NULL)
2442 {
2443 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2444 }
2445
2446 /* This is where sr4export will jump to. */
2447 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2448
2449 /* If the function is in a shared library, then call __d_shl_get to
2450 get a PLABEL for the target function. */
2451 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2452
2453 if (new_stub == 0)
2454 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2455
2456 /* We have to store the address of the stub in __shlib_funcptr. */
2457 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2458 (struct objfile *) NULL);
2459
2460 if (msymbol == NULL)
2461 error ("Can't find an address for __shlib_funcptr");
2462 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2463 (char *) &new_stub, 4);
2464
2465 /* We want sr4export to call __d_plt_call, so we claim it is
2466 the final target. Clear trampoline. */
2467 fun = new_fun;
2468 trampoline = NULL;
2469 }
2470 }
2471
2472 /* Store upper 21 bits of function address into ldil. fun will either be
2473 the final target (most cases) or __d_plt_call when calling into a shared
2474 library and __gcc_plt_call is not available. */
2475 store_unsigned_integer
2476 (&dummy[FUNC_LDIL_OFFSET],
2477 INSTRUCTION_SIZE,
2478 deposit_21 (fun >> 11,
2479 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2480 INSTRUCTION_SIZE)));
2481
2482 /* Store lower 11 bits of function address into ldo */
2483 store_unsigned_integer
2484 (&dummy[FUNC_LDO_OFFSET],
2485 INSTRUCTION_SIZE,
2486 deposit_14 (fun & MASK_11,
2487 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2488 INSTRUCTION_SIZE)));
2489 #ifdef SR4EXPORT_LDIL_OFFSET
2490
2491 {
2492 CORE_ADDR trampoline_addr;
2493
2494 /* We may still need sr4export's address too. */
2495
2496 if (trampoline == NULL)
2497 {
2498 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2499 if (msymbol == NULL)
2500 error ("Can't find an address for _sr4export trampoline");
2501
2502 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2503 }
2504 else
2505 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2506
2507
2508 /* Store upper 21 bits of trampoline's address into ldil */
2509 store_unsigned_integer
2510 (&dummy[SR4EXPORT_LDIL_OFFSET],
2511 INSTRUCTION_SIZE,
2512 deposit_21 (trampoline_addr >> 11,
2513 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2514 INSTRUCTION_SIZE)));
2515
2516 /* Store lower 11 bits of trampoline's address into ldo */
2517 store_unsigned_integer
2518 (&dummy[SR4EXPORT_LDO_OFFSET],
2519 INSTRUCTION_SIZE,
2520 deposit_14 (trampoline_addr & MASK_11,
2521 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2522 INSTRUCTION_SIZE)));
2523 }
2524 #endif
2525
2526 write_register (22, pc);
2527
2528 /* If we are in a syscall, then we should call the stack dummy
2529 directly. $$dyncall is not needed as the kernel sets up the
2530 space id registers properly based on the value in %r31. In
2531 fact calling $$dyncall will not work because the value in %r22
2532 will be clobbered on the syscall exit path.
2533
2534 Similarly if the current PC is in a shared library. Note however,
2535 this scheme won't work if the shared library isn't mapped into
2536 the same space as the stack. */
2537 if (flags & 2)
2538 return pc;
2539 #ifndef GDB_TARGET_IS_PA_ELF
2540 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2541 return pc;
2542 #endif
2543 else
2544 return dyncall_addr;
2545 #endif
2546 }
2547
2548 /* If the pid is in a syscall, then the FP register is not readable.
2549 We'll return zero in that case, rather than attempting to read it
2550 and cause a warning. */
2551
2552 CORE_ADDR
2553 hppa_read_fp (int pid)
2554 {
2555 int flags = read_register (FLAGS_REGNUM);
2556
2557 if (flags & 2)
2558 {
2559 return (CORE_ADDR) 0;
2560 }
2561
2562 /* This is the only site that may directly read_register () the FP
2563 register. All others must use deprecated_read_fp (). */
2564 return read_register (DEPRECATED_FP_REGNUM);
2565 }
2566
2567 CORE_ADDR
2568 hppa_target_read_fp (void)
2569 {
2570 return hppa_read_fp (PIDGET (inferior_ptid));
2571 }
2572
2573 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2574 bits. */
2575
2576 CORE_ADDR
2577 hppa_target_read_pc (ptid_t ptid)
2578 {
2579 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2580
2581 /* The following test does not belong here. It is OS-specific, and belongs
2582 in native code. */
2583 /* Test SS_INSYSCALL */
2584 if (flags & 2)
2585 return read_register_pid (31, ptid) & ~0x3;
2586
2587 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2588 }
2589
2590 /* Write out the PC. If currently in a syscall, then also write the new
2591 PC value into %r31. */
2592
2593 void
2594 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2595 {
2596 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2597
2598 /* The following test does not belong here. It is OS-specific, and belongs
2599 in native code. */
2600 /* If in a syscall, then set %r31. Also make sure to get the
2601 privilege bits set correctly. */
2602 /* Test SS_INSYSCALL */
2603 if (flags & 2)
2604 write_register_pid (31, v | 0x3, ptid);
2605
2606 write_register_pid (PC_REGNUM, v, ptid);
2607 write_register_pid (NPC_REGNUM, v + 4, ptid);
2608 }
2609
2610 /* return the alignment of a type in bytes. Structures have the maximum
2611 alignment required by their fields. */
2612
2613 static int
2614 hppa_alignof (struct type *type)
2615 {
2616 int max_align, align, i;
2617 CHECK_TYPEDEF (type);
2618 switch (TYPE_CODE (type))
2619 {
2620 case TYPE_CODE_PTR:
2621 case TYPE_CODE_INT:
2622 case TYPE_CODE_FLT:
2623 return TYPE_LENGTH (type);
2624 case TYPE_CODE_ARRAY:
2625 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2626 case TYPE_CODE_STRUCT:
2627 case TYPE_CODE_UNION:
2628 max_align = 1;
2629 for (i = 0; i < TYPE_NFIELDS (type); i++)
2630 {
2631 /* Bit fields have no real alignment. */
2632 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2633 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2634 {
2635 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2636 max_align = max (max_align, align);
2637 }
2638 }
2639 return max_align;
2640 default:
2641 return 4;
2642 }
2643 }
2644
2645 /* Print the register regnum, or all registers if regnum is -1 */
2646
2647 void
2648 pa_do_registers_info (int regnum, int fpregs)
2649 {
2650 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2651 int i;
2652
2653 /* Make a copy of gdb's save area (may cause actual
2654 reads from the target). */
2655 for (i = 0; i < NUM_REGS; i++)
2656 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2657
2658 if (regnum == -1)
2659 pa_print_registers (raw_regs, regnum, fpregs);
2660 else if (regnum < FP4_REGNUM)
2661 {
2662 long reg_val[2];
2663
2664 /* Why is the value not passed through "extract_signed_integer"
2665 as in "pa_print_registers" below? */
2666 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2667
2668 if (!is_pa_2)
2669 {
2670 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2671 }
2672 else
2673 {
2674 /* Fancy % formats to prevent leading zeros. */
2675 if (reg_val[0] == 0)
2676 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2677 else
2678 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2679 reg_val[0], reg_val[1]);
2680 }
2681 }
2682 else
2683 /* Note that real floating point values only start at
2684 FP4_REGNUM. FP0 and up are just status and error
2685 registers, which have integral (bit) values. */
2686 pa_print_fp_reg (regnum);
2687 }
2688
2689 /********** new function ********************/
2690 void
2691 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2692 enum precision_type precision)
2693 {
2694 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2695 int i;
2696
2697 /* Make a copy of gdb's save area (may cause actual
2698 reads from the target). */
2699 for (i = 0; i < NUM_REGS; i++)
2700 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2701
2702 if (regnum == -1)
2703 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2704
2705 else if (regnum < FP4_REGNUM)
2706 {
2707 long reg_val[2];
2708
2709 /* Why is the value not passed through "extract_signed_integer"
2710 as in "pa_print_registers" below? */
2711 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2712
2713 if (!is_pa_2)
2714 {
2715 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2716 }
2717 else
2718 {
2719 /* Fancy % formats to prevent leading zeros. */
2720 if (reg_val[0] == 0)
2721 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2722 reg_val[1]);
2723 else
2724 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2725 reg_val[0], reg_val[1]);
2726 }
2727 }
2728 else
2729 /* Note that real floating point values only start at
2730 FP4_REGNUM. FP0 and up are just status and error
2731 registers, which have integral (bit) values. */
2732 pa_strcat_fp_reg (regnum, stream, precision);
2733 }
2734
2735 /* If this is a PA2.0 machine, fetch the real 64-bit register
2736 value. Otherwise use the info from gdb's saved register area.
2737
2738 Note that reg_val is really expected to be an array of longs,
2739 with two elements. */
2740 static void
2741 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2742 {
2743 static int know_which = 0; /* False */
2744
2745 int regaddr;
2746 unsigned int offset;
2747 register int i;
2748 int start;
2749
2750
2751 char buf[MAX_REGISTER_SIZE];
2752 long long reg_val;
2753
2754 if (!know_which)
2755 {
2756 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2757 {
2758 is_pa_2 = (1 == 1);
2759 }
2760
2761 know_which = 1; /* True */
2762 }
2763
2764 raw_val[0] = 0;
2765 raw_val[1] = 0;
2766
2767 if (!is_pa_2)
2768 {
2769 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2770 return;
2771 }
2772
2773 /* Code below copied from hppah-nat.c, with fixes for wide
2774 registers, using different area of save_state, etc. */
2775 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2776 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2777 {
2778 /* Use narrow regs area of save_state and default macro. */
2779 offset = U_REGS_OFFSET;
2780 regaddr = register_addr (regnum, offset);
2781 start = 1;
2782 }
2783 else
2784 {
2785 /* Use wide regs area, and calculate registers as 8 bytes wide.
2786
2787 We'd like to do this, but current version of "C" doesn't
2788 permit "offsetof":
2789
2790 offset = offsetof(save_state_t, ss_wide);
2791
2792 Note that to avoid "C" doing typed pointer arithmetic, we
2793 have to cast away the type in our offset calculation:
2794 otherwise we get an offset of 1! */
2795
2796 /* NB: save_state_t is not available before HPUX 9.
2797 The ss_wide field is not available previous to HPUX 10.20,
2798 so to avoid compile-time warnings, we only compile this for
2799 PA 2.0 processors. This control path should only be followed
2800 if we're debugging a PA 2.0 processor, so this should not cause
2801 problems. */
2802
2803 /* #if the following code out so that this file can still be
2804 compiled on older HPUX boxes (< 10.20) which don't have
2805 this structure/structure member. */
2806 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2807 save_state_t temp;
2808
2809 offset = ((int) &temp.ss_wide) - ((int) &temp);
2810 regaddr = offset + regnum * 8;
2811 start = 0;
2812 #endif
2813 }
2814
2815 for (i = start; i < 2; i++)
2816 {
2817 errno = 0;
2818 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2819 (PTRACE_ARG3_TYPE) regaddr, 0);
2820 if (errno != 0)
2821 {
2822 /* Warning, not error, in case we are attached; sometimes the
2823 kernel doesn't let us at the registers. */
2824 char *err = safe_strerror (errno);
2825 char *msg = alloca (strlen (err) + 128);
2826 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2827 warning (msg);
2828 goto error_exit;
2829 }
2830
2831 regaddr += sizeof (long);
2832 }
2833
2834 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2835 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2836
2837 error_exit:
2838 ;
2839 }
2840
2841 /* "Info all-reg" command */
2842
2843 static void
2844 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2845 {
2846 int i, j;
2847 /* Alas, we are compiled so that "long long" is 32 bits */
2848 long raw_val[2];
2849 long long_val;
2850 int rows = 48, columns = 2;
2851
2852 for (i = 0; i < rows; i++)
2853 {
2854 for (j = 0; j < columns; j++)
2855 {
2856 /* We display registers in column-major order. */
2857 int regnum = i + j * rows;
2858
2859 /* Q: Why is the value passed through "extract_signed_integer",
2860 while above, in "pa_do_registers_info" it isn't?
2861 A: ? */
2862 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2863
2864 /* Even fancier % formats to prevent leading zeros
2865 and still maintain the output in columns. */
2866 if (!is_pa_2)
2867 {
2868 /* Being big-endian, on this machine the low bits
2869 (the ones we want to look at) are in the second longword. */
2870 long_val = extract_signed_integer (&raw_val[1], 4);
2871 printf_filtered ("%10.10s: %8lx ",
2872 REGISTER_NAME (regnum), long_val);
2873 }
2874 else
2875 {
2876 /* raw_val = extract_signed_integer(&raw_val, 8); */
2877 if (raw_val[0] == 0)
2878 printf_filtered ("%10.10s: %8lx ",
2879 REGISTER_NAME (regnum), raw_val[1]);
2880 else
2881 printf_filtered ("%10.10s: %8lx%8.8lx ",
2882 REGISTER_NAME (regnum),
2883 raw_val[0], raw_val[1]);
2884 }
2885 }
2886 printf_unfiltered ("\n");
2887 }
2888
2889 if (fpregs)
2890 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2891 pa_print_fp_reg (i);
2892 }
2893
2894 /************* new function ******************/
2895 static void
2896 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2897 struct ui_file *stream)
2898 {
2899 int i, j;
2900 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2901 long long_val;
2902 enum precision_type precision;
2903
2904 precision = unspecified_precision;
2905
2906 for (i = 0; i < 18; i++)
2907 {
2908 for (j = 0; j < 4; j++)
2909 {
2910 /* Q: Why is the value passed through "extract_signed_integer",
2911 while above, in "pa_do_registers_info" it isn't?
2912 A: ? */
2913 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2914
2915 /* Even fancier % formats to prevent leading zeros
2916 and still maintain the output in columns. */
2917 if (!is_pa_2)
2918 {
2919 /* Being big-endian, on this machine the low bits
2920 (the ones we want to look at) are in the second longword. */
2921 long_val = extract_signed_integer (&raw_val[1], 4);
2922 fprintf_filtered (stream, "%8.8s: %8lx ",
2923 REGISTER_NAME (i + (j * 18)), long_val);
2924 }
2925 else
2926 {
2927 /* raw_val = extract_signed_integer(&raw_val, 8); */
2928 if (raw_val[0] == 0)
2929 fprintf_filtered (stream, "%8.8s: %8lx ",
2930 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2931 else
2932 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2933 REGISTER_NAME (i + (j * 18)), raw_val[0],
2934 raw_val[1]);
2935 }
2936 }
2937 fprintf_unfiltered (stream, "\n");
2938 }
2939
2940 if (fpregs)
2941 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2942 pa_strcat_fp_reg (i, stream, precision);
2943 }
2944
2945 static void
2946 pa_print_fp_reg (int i)
2947 {
2948 char raw_buffer[MAX_REGISTER_SIZE];
2949 char virtual_buffer[MAX_REGISTER_SIZE];
2950
2951 /* Get 32bits of data. */
2952 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2953
2954 /* Put it in the buffer. No conversions are ever necessary. */
2955 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2956
2957 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2958 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2959 fputs_filtered ("(single precision) ", gdb_stdout);
2960
2961 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2962 1, 0, Val_pretty_default);
2963 printf_filtered ("\n");
2964
2965 /* If "i" is even, then this register can also be a double-precision
2966 FP register. Dump it out as such. */
2967 if ((i % 2) == 0)
2968 {
2969 /* Get the data in raw format for the 2nd half. */
2970 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2971
2972 /* Copy it into the appropriate part of the virtual buffer. */
2973 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2974 REGISTER_RAW_SIZE (i));
2975
2976 /* Dump it as a double. */
2977 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2978 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2979 fputs_filtered ("(double precision) ", gdb_stdout);
2980
2981 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2982 1, 0, Val_pretty_default);
2983 printf_filtered ("\n");
2984 }
2985 }
2986
2987 /*************** new function ***********************/
2988 static void
2989 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2990 {
2991 char raw_buffer[MAX_REGISTER_SIZE];
2992 char virtual_buffer[MAX_REGISTER_SIZE];
2993
2994 fputs_filtered (REGISTER_NAME (i), stream);
2995 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2996
2997 /* Get 32bits of data. */
2998 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2999
3000 /* Put it in the buffer. No conversions are ever necessary. */
3001 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
3002
3003 if (precision == double_precision && (i % 2) == 0)
3004 {
3005
3006 char raw_buf[MAX_REGISTER_SIZE];
3007
3008 /* Get the data in raw format for the 2nd half. */
3009 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3010
3011 /* Copy it into the appropriate part of the virtual buffer. */
3012 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
3013
3014 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3015 1, 0, Val_pretty_default);
3016
3017 }
3018 else
3019 {
3020 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3021 1, 0, Val_pretty_default);
3022 }
3023
3024 }
3025
3026 /* Return one if PC is in the call path of a trampoline, else return zero.
3027
3028 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3029 just shared library trampolines (import, export). */
3030
3031 int
3032 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3033 {
3034 struct minimal_symbol *minsym;
3035 struct unwind_table_entry *u;
3036 static CORE_ADDR dyncall = 0;
3037 static CORE_ADDR sr4export = 0;
3038
3039 #ifdef GDB_TARGET_IS_HPPA_20W
3040 /* PA64 has a completely different stub/trampoline scheme. Is it
3041 better? Maybe. It's certainly harder to determine with any
3042 certainty that we are in a stub because we can not refer to the
3043 unwinders to help.
3044
3045 The heuristic is simple. Try to lookup the current PC value in th
3046 minimal symbol table. If that fails, then assume we are not in a
3047 stub and return.
3048
3049 Then see if the PC value falls within the section bounds for the
3050 section containing the minimal symbol we found in the first
3051 step. If it does, then assume we are not in a stub and return.
3052
3053 Finally peek at the instructions to see if they look like a stub. */
3054 {
3055 struct minimal_symbol *minsym;
3056 asection *sec;
3057 CORE_ADDR addr;
3058 int insn, i;
3059
3060 minsym = lookup_minimal_symbol_by_pc (pc);
3061 if (! minsym)
3062 return 0;
3063
3064 sec = SYMBOL_BFD_SECTION (minsym);
3065
3066 if (sec->vma <= pc
3067 && sec->vma + sec->_cooked_size < pc)
3068 return 0;
3069
3070 /* We might be in a stub. Peek at the instructions. Stubs are 3
3071 instructions long. */
3072 insn = read_memory_integer (pc, 4);
3073
3074 /* Find out where we think we are within the stub. */
3075 if ((insn & 0xffffc00e) == 0x53610000)
3076 addr = pc;
3077 else if ((insn & 0xffffffff) == 0xe820d000)
3078 addr = pc - 4;
3079 else if ((insn & 0xffffc00e) == 0x537b0000)
3080 addr = pc - 8;
3081 else
3082 return 0;
3083
3084 /* Now verify each insn in the range looks like a stub instruction. */
3085 insn = read_memory_integer (addr, 4);
3086 if ((insn & 0xffffc00e) != 0x53610000)
3087 return 0;
3088
3089 /* Now verify each insn in the range looks like a stub instruction. */
3090 insn = read_memory_integer (addr + 4, 4);
3091 if ((insn & 0xffffffff) != 0xe820d000)
3092 return 0;
3093
3094 /* Now verify each insn in the range looks like a stub instruction. */
3095 insn = read_memory_integer (addr + 8, 4);
3096 if ((insn & 0xffffc00e) != 0x537b0000)
3097 return 0;
3098
3099 /* Looks like a stub. */
3100 return 1;
3101 }
3102 #endif
3103
3104 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3105 new exec file */
3106
3107 /* First see if PC is in one of the two C-library trampolines. */
3108 if (!dyncall)
3109 {
3110 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3111 if (minsym)
3112 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3113 else
3114 dyncall = -1;
3115 }
3116
3117 if (!sr4export)
3118 {
3119 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3120 if (minsym)
3121 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3122 else
3123 sr4export = -1;
3124 }
3125
3126 if (pc == dyncall || pc == sr4export)
3127 return 1;
3128
3129 minsym = lookup_minimal_symbol_by_pc (pc);
3130 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3131 return 1;
3132
3133 /* Get the unwind descriptor corresponding to PC, return zero
3134 if no unwind was found. */
3135 u = find_unwind_entry (pc);
3136 if (!u)
3137 return 0;
3138
3139 /* If this isn't a linker stub, then return now. */
3140 if (u->stub_unwind.stub_type == 0)
3141 return 0;
3142
3143 /* By definition a long-branch stub is a call stub. */
3144 if (u->stub_unwind.stub_type == LONG_BRANCH)
3145 return 1;
3146
3147 /* The call and return path execute the same instructions within
3148 an IMPORT stub! So an IMPORT stub is both a call and return
3149 trampoline. */
3150 if (u->stub_unwind.stub_type == IMPORT)
3151 return 1;
3152
3153 /* Parameter relocation stubs always have a call path and may have a
3154 return path. */
3155 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3156 || u->stub_unwind.stub_type == EXPORT)
3157 {
3158 CORE_ADDR addr;
3159
3160 /* Search forward from the current PC until we hit a branch
3161 or the end of the stub. */
3162 for (addr = pc; addr <= u->region_end; addr += 4)
3163 {
3164 unsigned long insn;
3165
3166 insn = read_memory_integer (addr, 4);
3167
3168 /* Does it look like a bl? If so then it's the call path, if
3169 we find a bv or be first, then we're on the return path. */
3170 if ((insn & 0xfc00e000) == 0xe8000000)
3171 return 1;
3172 else if ((insn & 0xfc00e001) == 0xe800c000
3173 || (insn & 0xfc000000) == 0xe0000000)
3174 return 0;
3175 }
3176
3177 /* Should never happen. */
3178 warning ("Unable to find branch in parameter relocation stub.\n");
3179 return 0;
3180 }
3181
3182 /* Unknown stub type. For now, just return zero. */
3183 return 0;
3184 }
3185
3186 /* Return one if PC is in the return path of a trampoline, else return zero.
3187
3188 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3189 just shared library trampolines (import, export). */
3190
3191 int
3192 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3193 {
3194 struct unwind_table_entry *u;
3195
3196 /* Get the unwind descriptor corresponding to PC, return zero
3197 if no unwind was found. */
3198 u = find_unwind_entry (pc);
3199 if (!u)
3200 return 0;
3201
3202 /* If this isn't a linker stub or it's just a long branch stub, then
3203 return zero. */
3204 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3205 return 0;
3206
3207 /* The call and return path execute the same instructions within
3208 an IMPORT stub! So an IMPORT stub is both a call and return
3209 trampoline. */
3210 if (u->stub_unwind.stub_type == IMPORT)
3211 return 1;
3212
3213 /* Parameter relocation stubs always have a call path and may have a
3214 return path. */
3215 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3216 || u->stub_unwind.stub_type == EXPORT)
3217 {
3218 CORE_ADDR addr;
3219
3220 /* Search forward from the current PC until we hit a branch
3221 or the end of the stub. */
3222 for (addr = pc; addr <= u->region_end; addr += 4)
3223 {
3224 unsigned long insn;
3225
3226 insn = read_memory_integer (addr, 4);
3227
3228 /* Does it look like a bl? If so then it's the call path, if
3229 we find a bv or be first, then we're on the return path. */
3230 if ((insn & 0xfc00e000) == 0xe8000000)
3231 return 0;
3232 else if ((insn & 0xfc00e001) == 0xe800c000
3233 || (insn & 0xfc000000) == 0xe0000000)
3234 return 1;
3235 }
3236
3237 /* Should never happen. */
3238 warning ("Unable to find branch in parameter relocation stub.\n");
3239 return 0;
3240 }
3241
3242 /* Unknown stub type. For now, just return zero. */
3243 return 0;
3244
3245 }
3246
3247 /* Figure out if PC is in a trampoline, and if so find out where
3248 the trampoline will jump to. If not in a trampoline, return zero.
3249
3250 Simple code examination probably is not a good idea since the code
3251 sequences in trampolines can also appear in user code.
3252
3253 We use unwinds and information from the minimal symbol table to
3254 determine when we're in a trampoline. This won't work for ELF
3255 (yet) since it doesn't create stub unwind entries. Whether or
3256 not ELF will create stub unwinds or normal unwinds for linker
3257 stubs is still being debated.
3258
3259 This should handle simple calls through dyncall or sr4export,
3260 long calls, argument relocation stubs, and dyncall/sr4export
3261 calling an argument relocation stub. It even handles some stubs
3262 used in dynamic executables. */
3263
3264 CORE_ADDR
3265 hppa_skip_trampoline_code (CORE_ADDR pc)
3266 {
3267 long orig_pc = pc;
3268 long prev_inst, curr_inst, loc;
3269 static CORE_ADDR dyncall = 0;
3270 static CORE_ADDR dyncall_external = 0;
3271 static CORE_ADDR sr4export = 0;
3272 struct minimal_symbol *msym;
3273 struct unwind_table_entry *u;
3274
3275 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3276 new exec file */
3277
3278 if (!dyncall)
3279 {
3280 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3281 if (msym)
3282 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3283 else
3284 dyncall = -1;
3285 }
3286
3287 if (!dyncall_external)
3288 {
3289 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3290 if (msym)
3291 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3292 else
3293 dyncall_external = -1;
3294 }
3295
3296 if (!sr4export)
3297 {
3298 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3299 if (msym)
3300 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3301 else
3302 sr4export = -1;
3303 }
3304
3305 /* Addresses passed to dyncall may *NOT* be the actual address
3306 of the function. So we may have to do something special. */
3307 if (pc == dyncall)
3308 {
3309 pc = (CORE_ADDR) read_register (22);
3310
3311 /* If bit 30 (counting from the left) is on, then pc is the address of
3312 the PLT entry for this function, not the address of the function
3313 itself. Bit 31 has meaning too, but only for MPE. */
3314 if (pc & 0x2)
3315 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3316 }
3317 if (pc == dyncall_external)
3318 {
3319 pc = (CORE_ADDR) read_register (22);
3320 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3321 }
3322 else if (pc == sr4export)
3323 pc = (CORE_ADDR) (read_register (22));
3324
3325 /* Get the unwind descriptor corresponding to PC, return zero
3326 if no unwind was found. */
3327 u = find_unwind_entry (pc);
3328 if (!u)
3329 return 0;
3330
3331 /* If this isn't a linker stub, then return now. */
3332 /* elz: attention here! (FIXME) because of a compiler/linker
3333 error, some stubs which should have a non zero stub_unwind.stub_type
3334 have unfortunately a value of zero. So this function would return here
3335 as if we were not in a trampoline. To fix this, we go look at the partial
3336 symbol information, which reports this guy as a stub.
3337 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3338 partial symbol information is also wrong sometimes. This is because
3339 when it is entered (somread.c::som_symtab_read()) it can happen that
3340 if the type of the symbol (from the som) is Entry, and the symbol is
3341 in a shared library, then it can also be a trampoline. This would
3342 be OK, except that I believe the way they decide if we are ina shared library
3343 does not work. SOOOO..., even if we have a regular function w/o trampolines
3344 its minimal symbol can be assigned type mst_solib_trampoline.
3345 Also, if we find that the symbol is a real stub, then we fix the unwind
3346 descriptor, and define the stub type to be EXPORT.
3347 Hopefully this is correct most of the times. */
3348 if (u->stub_unwind.stub_type == 0)
3349 {
3350
3351 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3352 we can delete all the code which appears between the lines */
3353 /*--------------------------------------------------------------------------*/
3354 msym = lookup_minimal_symbol_by_pc (pc);
3355
3356 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3357 return orig_pc == pc ? 0 : pc & ~0x3;
3358
3359 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3360 {
3361 struct objfile *objfile;
3362 struct minimal_symbol *msymbol;
3363 int function_found = 0;
3364
3365 /* go look if there is another minimal symbol with the same name as
3366 this one, but with type mst_text. This would happen if the msym
3367 is an actual trampoline, in which case there would be another
3368 symbol with the same name corresponding to the real function */
3369
3370 ALL_MSYMBOLS (objfile, msymbol)
3371 {
3372 if (MSYMBOL_TYPE (msymbol) == mst_text
3373 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3374 {
3375 function_found = 1;
3376 break;
3377 }
3378 }
3379
3380 if (function_found)
3381 /* the type of msym is correct (mst_solib_trampoline), but
3382 the unwind info is wrong, so set it to the correct value */
3383 u->stub_unwind.stub_type = EXPORT;
3384 else
3385 /* the stub type info in the unwind is correct (this is not a
3386 trampoline), but the msym type information is wrong, it
3387 should be mst_text. So we need to fix the msym, and also
3388 get out of this function */
3389 {
3390 MSYMBOL_TYPE (msym) = mst_text;
3391 return orig_pc == pc ? 0 : pc & ~0x3;
3392 }
3393 }
3394
3395 /*--------------------------------------------------------------------------*/
3396 }
3397
3398 /* It's a stub. Search for a branch and figure out where it goes.
3399 Note we have to handle multi insn branch sequences like ldil;ble.
3400 Most (all?) other branches can be determined by examining the contents
3401 of certain registers and the stack. */
3402
3403 loc = pc;
3404 curr_inst = 0;
3405 prev_inst = 0;
3406 while (1)
3407 {
3408 /* Make sure we haven't walked outside the range of this stub. */
3409 if (u != find_unwind_entry (loc))
3410 {
3411 warning ("Unable to find branch in linker stub");
3412 return orig_pc == pc ? 0 : pc & ~0x3;
3413 }
3414
3415 prev_inst = curr_inst;
3416 curr_inst = read_memory_integer (loc, 4);
3417
3418 /* Does it look like a branch external using %r1? Then it's the
3419 branch from the stub to the actual function. */
3420 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3421 {
3422 /* Yup. See if the previous instruction loaded
3423 a value into %r1. If so compute and return the jump address. */
3424 if ((prev_inst & 0xffe00000) == 0x20200000)
3425 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3426 else
3427 {
3428 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3429 return orig_pc == pc ? 0 : pc & ~0x3;
3430 }
3431 }
3432
3433 /* Does it look like a be 0(sr0,%r21)? OR
3434 Does it look like a be, n 0(sr0,%r21)? OR
3435 Does it look like a bve (r21)? (this is on PA2.0)
3436 Does it look like a bve, n(r21)? (this is also on PA2.0)
3437 That's the branch from an
3438 import stub to an export stub.
3439
3440 It is impossible to determine the target of the branch via
3441 simple examination of instructions and/or data (consider
3442 that the address in the plabel may be the address of the
3443 bind-on-reference routine in the dynamic loader).
3444
3445 So we have try an alternative approach.
3446
3447 Get the name of the symbol at our current location; it should
3448 be a stub symbol with the same name as the symbol in the
3449 shared library.
3450
3451 Then lookup a minimal symbol with the same name; we should
3452 get the minimal symbol for the target routine in the shared
3453 library as those take precedence of import/export stubs. */
3454 if ((curr_inst == 0xe2a00000) ||
3455 (curr_inst == 0xe2a00002) ||
3456 (curr_inst == 0xeaa0d000) ||
3457 (curr_inst == 0xeaa0d002))
3458 {
3459 struct minimal_symbol *stubsym, *libsym;
3460
3461 stubsym = lookup_minimal_symbol_by_pc (loc);
3462 if (stubsym == NULL)
3463 {
3464 warning ("Unable to find symbol for 0x%lx", loc);
3465 return orig_pc == pc ? 0 : pc & ~0x3;
3466 }
3467
3468 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3469 if (libsym == NULL)
3470 {
3471 warning ("Unable to find library symbol for %s\n",
3472 DEPRECATED_SYMBOL_NAME (stubsym));
3473 return orig_pc == pc ? 0 : pc & ~0x3;
3474 }
3475
3476 return SYMBOL_VALUE (libsym);
3477 }
3478
3479 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3480 branch from the stub to the actual function. */
3481 /*elz */
3482 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3483 || (curr_inst & 0xffe0e000) == 0xe8000000
3484 || (curr_inst & 0xffe0e000) == 0xe800A000)
3485 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3486
3487 /* Does it look like bv (rp)? Note this depends on the
3488 current stack pointer being the same as the stack
3489 pointer in the stub itself! This is a branch on from the
3490 stub back to the original caller. */
3491 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3492 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3493 {
3494 /* Yup. See if the previous instruction loaded
3495 rp from sp - 8. */
3496 if (prev_inst == 0x4bc23ff1)
3497 return (read_memory_integer
3498 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3499 else
3500 {
3501 warning ("Unable to find restore of %%rp before bv (%%rp).");
3502 return orig_pc == pc ? 0 : pc & ~0x3;
3503 }
3504 }
3505
3506 /* elz: added this case to capture the new instruction
3507 at the end of the return part of an export stub used by
3508 the PA2.0: BVE, n (rp) */
3509 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3510 {
3511 return (read_memory_integer
3512 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3513 }
3514
3515 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3516 the original caller from the stub. Used in dynamic executables. */
3517 else if (curr_inst == 0xe0400002)
3518 {
3519 /* The value we jump to is sitting in sp - 24. But that's
3520 loaded several instructions before the be instruction.
3521 I guess we could check for the previous instruction being
3522 mtsp %r1,%sr0 if we want to do sanity checking. */
3523 return (read_memory_integer
3524 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3525 }
3526
3527 /* Haven't found the branch yet, but we're still in the stub.
3528 Keep looking. */
3529 loc += 4;
3530 }
3531 }
3532
3533
3534 /* For the given instruction (INST), return any adjustment it makes
3535 to the stack pointer or zero for no adjustment.
3536
3537 This only handles instructions commonly found in prologues. */
3538
3539 static int
3540 prologue_inst_adjust_sp (unsigned long inst)
3541 {
3542 /* This must persist across calls. */
3543 static int save_high21;
3544
3545 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3546 if ((inst & 0xffffc000) == 0x37de0000)
3547 return extract_14 (inst);
3548
3549 /* stwm X,D(sp) */
3550 if ((inst & 0xffe00000) == 0x6fc00000)
3551 return extract_14 (inst);
3552
3553 /* std,ma X,D(sp) */
3554 if ((inst & 0xffe00008) == 0x73c00008)
3555 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3556
3557 /* addil high21,%r1; ldo low11,(%r1),%r30)
3558 save high bits in save_high21 for later use. */
3559 if ((inst & 0xffe00000) == 0x28200000)
3560 {
3561 save_high21 = extract_21 (inst);
3562 return 0;
3563 }
3564
3565 if ((inst & 0xffff0000) == 0x343e0000)
3566 return save_high21 + extract_14 (inst);
3567
3568 /* fstws as used by the HP compilers. */
3569 if ((inst & 0xffffffe0) == 0x2fd01220)
3570 return extract_5_load (inst);
3571
3572 /* No adjustment. */
3573 return 0;
3574 }
3575
3576 /* Return nonzero if INST is a branch of some kind, else return zero. */
3577
3578 static int
3579 is_branch (unsigned long inst)
3580 {
3581 switch (inst >> 26)
3582 {
3583 case 0x20:
3584 case 0x21:
3585 case 0x22:
3586 case 0x23:
3587 case 0x27:
3588 case 0x28:
3589 case 0x29:
3590 case 0x2a:
3591 case 0x2b:
3592 case 0x2f:
3593 case 0x30:
3594 case 0x31:
3595 case 0x32:
3596 case 0x33:
3597 case 0x38:
3598 case 0x39:
3599 case 0x3a:
3600 case 0x3b:
3601 return 1;
3602
3603 default:
3604 return 0;
3605 }
3606 }
3607
3608 /* Return the register number for a GR which is saved by INST or
3609 zero it INST does not save a GR. */
3610
3611 static int
3612 inst_saves_gr (unsigned long inst)
3613 {
3614 /* Does it look like a stw? */
3615 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3616 || (inst >> 26) == 0x1f
3617 || ((inst >> 26) == 0x1f
3618 && ((inst >> 6) == 0xa)))
3619 return extract_5R_store (inst);
3620
3621 /* Does it look like a std? */
3622 if ((inst >> 26) == 0x1c
3623 || ((inst >> 26) == 0x03
3624 && ((inst >> 6) & 0xf) == 0xb))
3625 return extract_5R_store (inst);
3626
3627 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3628 if ((inst >> 26) == 0x1b)
3629 return extract_5R_store (inst);
3630
3631 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3632 too. */
3633 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3634 || ((inst >> 26) == 0x3
3635 && (((inst >> 6) & 0xf) == 0x8
3636 || (inst >> 6) & 0xf) == 0x9))
3637 return extract_5R_store (inst);
3638
3639 return 0;
3640 }
3641
3642 /* Return the register number for a FR which is saved by INST or
3643 zero it INST does not save a FR.
3644
3645 Note we only care about full 64bit register stores (that's the only
3646 kind of stores the prologue will use).
3647
3648 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3649
3650 static int
3651 inst_saves_fr (unsigned long inst)
3652 {
3653 /* is this an FSTD ? */
3654 if ((inst & 0xfc00dfc0) == 0x2c001200)
3655 return extract_5r_store (inst);
3656 if ((inst & 0xfc000002) == 0x70000002)
3657 return extract_5R_store (inst);
3658 /* is this an FSTW ? */
3659 if ((inst & 0xfc00df80) == 0x24001200)
3660 return extract_5r_store (inst);
3661 if ((inst & 0xfc000002) == 0x7c000000)
3662 return extract_5R_store (inst);
3663 return 0;
3664 }
3665
3666 /* Advance PC across any function entry prologue instructions
3667 to reach some "real" code.
3668
3669 Use information in the unwind table to determine what exactly should
3670 be in the prologue. */
3671
3672
3673 CORE_ADDR
3674 skip_prologue_hard_way (CORE_ADDR pc)
3675 {
3676 char buf[4];
3677 CORE_ADDR orig_pc = pc;
3678 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3679 unsigned long args_stored, status, i, restart_gr, restart_fr;
3680 struct unwind_table_entry *u;
3681
3682 restart_gr = 0;
3683 restart_fr = 0;
3684
3685 restart:
3686 u = find_unwind_entry (pc);
3687 if (!u)
3688 return pc;
3689
3690 /* If we are not at the beginning of a function, then return now. */
3691 if ((pc & ~0x3) != u->region_start)
3692 return pc;
3693
3694 /* This is how much of a frame adjustment we need to account for. */
3695 stack_remaining = u->Total_frame_size << 3;
3696
3697 /* Magic register saves we want to know about. */
3698 save_rp = u->Save_RP;
3699 save_sp = u->Save_SP;
3700
3701 /* An indication that args may be stored into the stack. Unfortunately
3702 the HPUX compilers tend to set this in cases where no args were
3703 stored too!. */
3704 args_stored = 1;
3705
3706 /* Turn the Entry_GR field into a bitmask. */
3707 save_gr = 0;
3708 for (i = 3; i < u->Entry_GR + 3; i++)
3709 {
3710 /* Frame pointer gets saved into a special location. */
3711 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3712 continue;
3713
3714 save_gr |= (1 << i);
3715 }
3716 save_gr &= ~restart_gr;
3717
3718 /* Turn the Entry_FR field into a bitmask too. */
3719 save_fr = 0;
3720 for (i = 12; i < u->Entry_FR + 12; i++)
3721 save_fr |= (1 << i);
3722 save_fr &= ~restart_fr;
3723
3724 /* Loop until we find everything of interest or hit a branch.
3725
3726 For unoptimized GCC code and for any HP CC code this will never ever
3727 examine any user instructions.
3728
3729 For optimzied GCC code we're faced with problems. GCC will schedule
3730 its prologue and make prologue instructions available for delay slot
3731 filling. The end result is user code gets mixed in with the prologue
3732 and a prologue instruction may be in the delay slot of the first branch
3733 or call.
3734
3735 Some unexpected things are expected with debugging optimized code, so
3736 we allow this routine to walk past user instructions in optimized
3737 GCC code. */
3738 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3739 || args_stored)
3740 {
3741 unsigned int reg_num;
3742 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3743 unsigned long old_save_rp, old_save_sp, next_inst;
3744
3745 /* Save copies of all the triggers so we can compare them later
3746 (only for HPC). */
3747 old_save_gr = save_gr;
3748 old_save_fr = save_fr;
3749 old_save_rp = save_rp;
3750 old_save_sp = save_sp;
3751 old_stack_remaining = stack_remaining;
3752
3753 status = target_read_memory (pc, buf, 4);
3754 inst = extract_unsigned_integer (buf, 4);
3755
3756 /* Yow! */
3757 if (status != 0)
3758 return pc;
3759
3760 /* Note the interesting effects of this instruction. */
3761 stack_remaining -= prologue_inst_adjust_sp (inst);
3762
3763 /* There are limited ways to store the return pointer into the
3764 stack. */
3765 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3766 save_rp = 0;
3767
3768 /* These are the only ways we save SP into the stack. At this time
3769 the HP compilers never bother to save SP into the stack. */
3770 if ((inst & 0xffffc000) == 0x6fc10000
3771 || (inst & 0xffffc00c) == 0x73c10008)
3772 save_sp = 0;
3773
3774 /* Are we loading some register with an offset from the argument
3775 pointer? */
3776 if ((inst & 0xffe00000) == 0x37a00000
3777 || (inst & 0xffffffe0) == 0x081d0240)
3778 {
3779 pc += 4;
3780 continue;
3781 }
3782
3783 /* Account for general and floating-point register saves. */
3784 reg_num = inst_saves_gr (inst);
3785 save_gr &= ~(1 << reg_num);
3786
3787 /* Ugh. Also account for argument stores into the stack.
3788 Unfortunately args_stored only tells us that some arguments
3789 where stored into the stack. Not how many or what kind!
3790
3791 This is a kludge as on the HP compiler sets this bit and it
3792 never does prologue scheduling. So once we see one, skip past
3793 all of them. We have similar code for the fp arg stores below.
3794
3795 FIXME. Can still die if we have a mix of GR and FR argument
3796 stores! */
3797 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3798 {
3799 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3800 {
3801 pc += 4;
3802 status = target_read_memory (pc, buf, 4);
3803 inst = extract_unsigned_integer (buf, 4);
3804 if (status != 0)
3805 return pc;
3806 reg_num = inst_saves_gr (inst);
3807 }
3808 args_stored = 0;
3809 continue;
3810 }
3811
3812 reg_num = inst_saves_fr (inst);
3813 save_fr &= ~(1 << reg_num);
3814
3815 status = target_read_memory (pc + 4, buf, 4);
3816 next_inst = extract_unsigned_integer (buf, 4);
3817
3818 /* Yow! */
3819 if (status != 0)
3820 return pc;
3821
3822 /* We've got to be read to handle the ldo before the fp register
3823 save. */
3824 if ((inst & 0xfc000000) == 0x34000000
3825 && inst_saves_fr (next_inst) >= 4
3826 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3827 {
3828 /* So we drop into the code below in a reasonable state. */
3829 reg_num = inst_saves_fr (next_inst);
3830 pc -= 4;
3831 }
3832
3833 /* Ugh. Also account for argument stores into the stack.
3834 This is a kludge as on the HP compiler sets this bit and it
3835 never does prologue scheduling. So once we see one, skip past
3836 all of them. */
3837 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3838 {
3839 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3840 {
3841 pc += 8;
3842 status = target_read_memory (pc, buf, 4);
3843 inst = extract_unsigned_integer (buf, 4);
3844 if (status != 0)
3845 return pc;
3846 if ((inst & 0xfc000000) != 0x34000000)
3847 break;
3848 status = target_read_memory (pc + 4, buf, 4);
3849 next_inst = extract_unsigned_integer (buf, 4);
3850 if (status != 0)
3851 return pc;
3852 reg_num = inst_saves_fr (next_inst);
3853 }
3854 args_stored = 0;
3855 continue;
3856 }
3857
3858 /* Quit if we hit any kind of branch. This can happen if a prologue
3859 instruction is in the delay slot of the first call/branch. */
3860 if (is_branch (inst))
3861 break;
3862
3863 /* What a crock. The HP compilers set args_stored even if no
3864 arguments were stored into the stack (boo hiss). This could
3865 cause this code to then skip a bunch of user insns (up to the
3866 first branch).
3867
3868 To combat this we try to identify when args_stored was bogusly
3869 set and clear it. We only do this when args_stored is nonzero,
3870 all other resources are accounted for, and nothing changed on
3871 this pass. */
3872 if (args_stored
3873 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3874 && old_save_gr == save_gr && old_save_fr == save_fr
3875 && old_save_rp == save_rp && old_save_sp == save_sp
3876 && old_stack_remaining == stack_remaining)
3877 break;
3878
3879 /* Bump the PC. */
3880 pc += 4;
3881 }
3882
3883 /* We've got a tenative location for the end of the prologue. However
3884 because of limitations in the unwind descriptor mechanism we may
3885 have went too far into user code looking for the save of a register
3886 that does not exist. So, if there registers we expected to be saved
3887 but never were, mask them out and restart.
3888
3889 This should only happen in optimized code, and should be very rare. */
3890 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3891 {
3892 pc = orig_pc;
3893 restart_gr = save_gr;
3894 restart_fr = save_fr;
3895 goto restart;
3896 }
3897
3898 return pc;
3899 }
3900
3901
3902 /* Return the address of the PC after the last prologue instruction if
3903 we can determine it from the debug symbols. Else return zero. */
3904
3905 static CORE_ADDR
3906 after_prologue (CORE_ADDR pc)
3907 {
3908 struct symtab_and_line sal;
3909 CORE_ADDR func_addr, func_end;
3910 struct symbol *f;
3911
3912 /* If we can not find the symbol in the partial symbol table, then
3913 there is no hope we can determine the function's start address
3914 with this code. */
3915 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3916 return 0;
3917
3918 /* Get the line associated with FUNC_ADDR. */
3919 sal = find_pc_line (func_addr, 0);
3920
3921 /* There are only two cases to consider. First, the end of the source line
3922 is within the function bounds. In that case we return the end of the
3923 source line. Second is the end of the source line extends beyond the
3924 bounds of the current function. We need to use the slow code to
3925 examine instructions in that case.
3926
3927 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3928 the wrong thing to do. In fact, it should be entirely possible for this
3929 function to always return zero since the slow instruction scanning code
3930 is supposed to *always* work. If it does not, then it is a bug. */
3931 if (sal.end < func_end)
3932 return sal.end;
3933 else
3934 return 0;
3935 }
3936
3937 /* To skip prologues, I use this predicate. Returns either PC itself
3938 if the code at PC does not look like a function prologue; otherwise
3939 returns an address that (if we're lucky) follows the prologue. If
3940 LENIENT, then we must skip everything which is involved in setting
3941 up the frame (it's OK to skip more, just so long as we don't skip
3942 anything which might clobber the registers which are being saved.
3943 Currently we must not skip more on the alpha, but we might the lenient
3944 stuff some day. */
3945
3946 CORE_ADDR
3947 hppa_skip_prologue (CORE_ADDR pc)
3948 {
3949 unsigned long inst;
3950 int offset;
3951 CORE_ADDR post_prologue_pc;
3952 char buf[4];
3953
3954 /* See if we can determine the end of the prologue via the symbol table.
3955 If so, then return either PC, or the PC after the prologue, whichever
3956 is greater. */
3957
3958 post_prologue_pc = after_prologue (pc);
3959
3960 /* If after_prologue returned a useful address, then use it. Else
3961 fall back on the instruction skipping code.
3962
3963 Some folks have claimed this causes problems because the breakpoint
3964 may be the first instruction of the prologue. If that happens, then
3965 the instruction skipping code has a bug that needs to be fixed. */
3966 if (post_prologue_pc != 0)
3967 return max (pc, post_prologue_pc);
3968 else
3969 return (skip_prologue_hard_way (pc));
3970 }
3971
3972 /* Put here the code to store, into the SAVED_REGS, the addresses of
3973 the saved registers of frame described by FRAME_INFO. This
3974 includes special registers such as pc and fp saved in special ways
3975 in the stack frame. sp is even more special: the address we return
3976 for it IS the sp for the next frame. */
3977
3978 void
3979 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3980 CORE_ADDR frame_saved_regs[])
3981 {
3982 CORE_ADDR pc;
3983 struct unwind_table_entry *u;
3984 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3985 int status, i, reg;
3986 char buf[4];
3987 int fp_loc = -1;
3988 int final_iteration;
3989
3990 /* Zero out everything. */
3991 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3992
3993 /* Call dummy frames always look the same, so there's no need to
3994 examine the dummy code to determine locations of saved registers;
3995 instead, let find_dummy_frame_regs fill in the correct offsets
3996 for the saved registers. */
3997 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3998 && (get_frame_pc (frame_info)
3999 <= (get_frame_base (frame_info)
4000 /* A call dummy is sized in words, but it is actually a
4001 series of instructions. Account for that scaling
4002 factor. */
4003 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4004 * DEPRECATED_CALL_DUMMY_LENGTH)
4005 /* Similarly we have to account for 64bit wide register
4006 saves. */
4007 + (32 * DEPRECATED_REGISTER_SIZE)
4008 /* We always consider FP regs 8 bytes long. */
4009 + (NUM_REGS - FP0_REGNUM) * 8
4010 /* Similarly we have to account for 64bit wide register
4011 saves. */
4012 + (6 * DEPRECATED_REGISTER_SIZE)))))
4013 find_dummy_frame_regs (frame_info, frame_saved_regs);
4014
4015 /* Interrupt handlers are special too. They lay out the register
4016 state in the exact same order as the register numbers in GDB. */
4017 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4018 {
4019 for (i = 0; i < NUM_REGS; i++)
4020 {
4021 /* SP is a little special. */
4022 if (i == SP_REGNUM)
4023 frame_saved_regs[SP_REGNUM]
4024 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4025 TARGET_PTR_BIT / 8);
4026 else
4027 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4028 }
4029 return;
4030 }
4031
4032 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4033 /* Handle signal handler callers. */
4034 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4035 {
4036 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4037 return;
4038 }
4039 #endif
4040
4041 /* Get the starting address of the function referred to by the PC
4042 saved in frame. */
4043 pc = get_frame_func (frame_info);
4044
4045 /* Yow! */
4046 u = find_unwind_entry (pc);
4047 if (!u)
4048 return;
4049
4050 /* This is how much of a frame adjustment we need to account for. */
4051 stack_remaining = u->Total_frame_size << 3;
4052
4053 /* Magic register saves we want to know about. */
4054 save_rp = u->Save_RP;
4055 save_sp = u->Save_SP;
4056
4057 /* Turn the Entry_GR field into a bitmask. */
4058 save_gr = 0;
4059 for (i = 3; i < u->Entry_GR + 3; i++)
4060 {
4061 /* Frame pointer gets saved into a special location. */
4062 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4063 continue;
4064
4065 save_gr |= (1 << i);
4066 }
4067
4068 /* Turn the Entry_FR field into a bitmask too. */
4069 save_fr = 0;
4070 for (i = 12; i < u->Entry_FR + 12; i++)
4071 save_fr |= (1 << i);
4072
4073 /* The frame always represents the value of %sp at entry to the
4074 current function (and is thus equivalent to the "saved" stack
4075 pointer. */
4076 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4077
4078 /* Loop until we find everything of interest or hit a branch.
4079
4080 For unoptimized GCC code and for any HP CC code this will never ever
4081 examine any user instructions.
4082
4083 For optimized GCC code we're faced with problems. GCC will schedule
4084 its prologue and make prologue instructions available for delay slot
4085 filling. The end result is user code gets mixed in with the prologue
4086 and a prologue instruction may be in the delay slot of the first branch
4087 or call.
4088
4089 Some unexpected things are expected with debugging optimized code, so
4090 we allow this routine to walk past user instructions in optimized
4091 GCC code. */
4092 final_iteration = 0;
4093 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4094 && pc <= get_frame_pc (frame_info))
4095 {
4096 status = target_read_memory (pc, buf, 4);
4097 inst = extract_unsigned_integer (buf, 4);
4098
4099 /* Yow! */
4100 if (status != 0)
4101 return;
4102
4103 /* Note the interesting effects of this instruction. */
4104 stack_remaining -= prologue_inst_adjust_sp (inst);
4105
4106 /* There are limited ways to store the return pointer into the
4107 stack. */
4108 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4109 {
4110 save_rp = 0;
4111 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4112 }
4113 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4114 {
4115 save_rp = 0;
4116 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4117 }
4118
4119 /* Note if we saved SP into the stack. This also happens to indicate
4120 the location of the saved frame pointer. */
4121 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4122 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4123 {
4124 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4125 save_sp = 0;
4126 }
4127
4128 /* Account for general and floating-point register saves. */
4129 reg = inst_saves_gr (inst);
4130 if (reg >= 3 && reg <= 18
4131 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4132 {
4133 save_gr &= ~(1 << reg);
4134
4135 /* stwm with a positive displacement is a *post modify*. */
4136 if ((inst >> 26) == 0x1b
4137 && extract_14 (inst) >= 0)
4138 frame_saved_regs[reg] = get_frame_base (frame_info);
4139 /* A std has explicit post_modify forms. */
4140 else if ((inst & 0xfc00000c0) == 0x70000008)
4141 frame_saved_regs[reg] = get_frame_base (frame_info);
4142 else
4143 {
4144 CORE_ADDR offset;
4145
4146 if ((inst >> 26) == 0x1c)
4147 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4148 else if ((inst >> 26) == 0x03)
4149 offset = low_sign_extend (inst & 0x1f, 5);
4150 else
4151 offset = extract_14 (inst);
4152
4153 /* Handle code with and without frame pointers. */
4154 if (u->Save_SP)
4155 frame_saved_regs[reg]
4156 = get_frame_base (frame_info) + offset;
4157 else
4158 frame_saved_regs[reg]
4159 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4160 + offset);
4161 }
4162 }
4163
4164
4165 /* GCC handles callee saved FP regs a little differently.
4166
4167 It emits an instruction to put the value of the start of
4168 the FP store area into %r1. It then uses fstds,ma with
4169 a basereg of %r1 for the stores.
4170
4171 HP CC emits them at the current stack pointer modifying
4172 the stack pointer as it stores each register. */
4173
4174 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4175 if ((inst & 0xffffc000) == 0x34610000
4176 || (inst & 0xffffc000) == 0x37c10000)
4177 fp_loc = extract_14 (inst);
4178
4179 reg = inst_saves_fr (inst);
4180 if (reg >= 12 && reg <= 21)
4181 {
4182 /* Note +4 braindamage below is necessary because the FP status
4183 registers are internally 8 registers rather than the expected
4184 4 registers. */
4185 save_fr &= ~(1 << reg);
4186 if (fp_loc == -1)
4187 {
4188 /* 1st HP CC FP register store. After this instruction
4189 we've set enough state that the GCC and HPCC code are
4190 both handled in the same manner. */
4191 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4192 fp_loc = 8;
4193 }
4194 else
4195 {
4196 frame_saved_regs[reg + FP0_REGNUM + 4]
4197 = get_frame_base (frame_info) + fp_loc;
4198 fp_loc += 8;
4199 }
4200 }
4201
4202 /* Quit if we hit any kind of branch the previous iteration. */
4203 if (final_iteration)
4204 break;
4205
4206 /* We want to look precisely one instruction beyond the branch
4207 if we have not found everything yet. */
4208 if (is_branch (inst))
4209 final_iteration = 1;
4210
4211 /* Bump the PC. */
4212 pc += 4;
4213 }
4214 }
4215
4216 /* XXX - deprecated. This is a compatibility function for targets
4217 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4218 /* Find the addresses in which registers are saved in FRAME. */
4219
4220 void
4221 hppa_frame_init_saved_regs (struct frame_info *frame)
4222 {
4223 if (get_frame_saved_regs (frame) == NULL)
4224 frame_saved_regs_zalloc (frame);
4225 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4226 }
4227
4228 /* Exception handling support for the HP-UX ANSI C++ compiler.
4229 The compiler (aCC) provides a callback for exception events;
4230 GDB can set a breakpoint on this callback and find out what
4231 exception event has occurred. */
4232
4233 /* The name of the hook to be set to point to the callback function */
4234 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4235 /* The name of the function to be used to set the hook value */
4236 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4237 /* The name of the callback function in end.o */
4238 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4239 /* Name of function in end.o on which a break is set (called by above) */
4240 static char HP_ACC_EH_break[] = "__d_eh_break";
4241 /* Name of flag (in end.o) that enables catching throws */
4242 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4243 /* Name of flag (in end.o) that enables catching catching */
4244 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4245 /* The enum used by aCC */
4246 typedef enum
4247 {
4248 __EH_NOTIFY_THROW,
4249 __EH_NOTIFY_CATCH
4250 }
4251 __eh_notification;
4252
4253 /* Is exception-handling support available with this executable? */
4254 static int hp_cxx_exception_support = 0;
4255 /* Has the initialize function been run? */
4256 int hp_cxx_exception_support_initialized = 0;
4257 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4258 extern int exception_support_initialized;
4259 /* Address of __eh_notify_hook */
4260 static CORE_ADDR eh_notify_hook_addr = 0;
4261 /* Address of __d_eh_notify_callback */
4262 static CORE_ADDR eh_notify_callback_addr = 0;
4263 /* Address of __d_eh_break */
4264 static CORE_ADDR eh_break_addr = 0;
4265 /* Address of __d_eh_catch_catch */
4266 static CORE_ADDR eh_catch_catch_addr = 0;
4267 /* Address of __d_eh_catch_throw */
4268 static CORE_ADDR eh_catch_throw_addr = 0;
4269 /* Sal for __d_eh_break */
4270 static struct symtab_and_line *break_callback_sal = 0;
4271
4272 /* Code in end.c expects __d_pid to be set in the inferior,
4273 otherwise __d_eh_notify_callback doesn't bother to call
4274 __d_eh_break! So we poke the pid into this symbol
4275 ourselves.
4276 0 => success
4277 1 => failure */
4278 int
4279 setup_d_pid_in_inferior (void)
4280 {
4281 CORE_ADDR anaddr;
4282 struct minimal_symbol *msymbol;
4283 char buf[4]; /* FIXME 32x64? */
4284
4285 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4286 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4287 if (msymbol == NULL)
4288 {
4289 warning ("Unable to find __d_pid symbol in object file.");
4290 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4291 return 1;
4292 }
4293
4294 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4295 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4296 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4297 {
4298 warning ("Unable to write __d_pid");
4299 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4300 return 1;
4301 }
4302 return 0;
4303 }
4304
4305 /* Initialize exception catchpoint support by looking for the
4306 necessary hooks/callbacks in end.o, etc., and set the hook value to
4307 point to the required debug function
4308
4309 Return 0 => failure
4310 1 => success */
4311
4312 static int
4313 initialize_hp_cxx_exception_support (void)
4314 {
4315 struct symtabs_and_lines sals;
4316 struct cleanup *old_chain;
4317 struct cleanup *canonical_strings_chain = NULL;
4318 int i;
4319 char *addr_start;
4320 char *addr_end = NULL;
4321 char **canonical = (char **) NULL;
4322 int thread = -1;
4323 struct symbol *sym = NULL;
4324 struct minimal_symbol *msym = NULL;
4325 struct objfile *objfile;
4326 asection *shlib_info;
4327
4328 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4329 recursion is a possibility because finding the hook for exception
4330 callbacks involves making a call in the inferior, which means
4331 re-inserting breakpoints which can re-invoke this code */
4332
4333 static int recurse = 0;
4334 if (recurse > 0)
4335 {
4336 hp_cxx_exception_support_initialized = 0;
4337 exception_support_initialized = 0;
4338 return 0;
4339 }
4340
4341 hp_cxx_exception_support = 0;
4342
4343 /* First check if we have seen any HP compiled objects; if not,
4344 it is very unlikely that HP's idiosyncratic callback mechanism
4345 for exception handling debug support will be available!
4346 This will percolate back up to breakpoint.c, where our callers
4347 will decide to try the g++ exception-handling support instead. */
4348 if (!hp_som_som_object_present)
4349 return 0;
4350
4351 /* We have a SOM executable with SOM debug info; find the hooks */
4352
4353 /* First look for the notify hook provided by aCC runtime libs */
4354 /* If we find this symbol, we conclude that the executable must
4355 have HP aCC exception support built in. If this symbol is not
4356 found, even though we're a HP SOM-SOM file, we may have been
4357 built with some other compiler (not aCC). This results percolates
4358 back up to our callers in breakpoint.c which can decide to
4359 try the g++ style of exception support instead.
4360 If this symbol is found but the other symbols we require are
4361 not found, there is something weird going on, and g++ support
4362 should *not* be tried as an alternative.
4363
4364 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4365 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4366
4367 /* libCsup has this hook; it'll usually be non-debuggable */
4368 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4369 if (msym)
4370 {
4371 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4372 hp_cxx_exception_support = 1;
4373 }
4374 else
4375 {
4376 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4377 warning ("Executable may not have been compiled debuggable with HP aCC.");
4378 warning ("GDB will be unable to intercept exception events.");
4379 eh_notify_hook_addr = 0;
4380 hp_cxx_exception_support = 0;
4381 return 0;
4382 }
4383
4384 /* Next look for the notify callback routine in end.o */
4385 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4386 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4387 if (msym)
4388 {
4389 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4390 hp_cxx_exception_support = 1;
4391 }
4392 else
4393 {
4394 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4395 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4396 warning ("GDB will be unable to intercept exception events.");
4397 eh_notify_callback_addr = 0;
4398 return 0;
4399 }
4400
4401 #ifndef GDB_TARGET_IS_HPPA_20W
4402 /* Check whether the executable is dynamically linked or archive bound */
4403 /* With an archive-bound executable we can use the raw addresses we find
4404 for the callback function, etc. without modification. For an executable
4405 with shared libraries, we have to do more work to find the plabel, which
4406 can be the target of a call through $$dyncall from the aCC runtime support
4407 library (libCsup) which is linked shared by default by aCC. */
4408 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4409 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4410 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4411 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4412 {
4413 /* The minsym we have has the local code address, but that's not the
4414 plabel that can be used by an inter-load-module call. */
4415 /* Find solib handle for main image (which has end.o), and use that
4416 and the min sym as arguments to __d_shl_get() (which does the equivalent
4417 of shl_findsym()) to find the plabel. */
4418
4419 args_for_find_stub args;
4420 static char message[] = "Error while finding exception callback hook:\n";
4421
4422 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4423 args.msym = msym;
4424 args.return_val = 0;
4425
4426 recurse++;
4427 catch_errors (cover_find_stub_with_shl_get, &args, message,
4428 RETURN_MASK_ALL);
4429 eh_notify_callback_addr = args.return_val;
4430 recurse--;
4431
4432 exception_catchpoints_are_fragile = 1;
4433
4434 if (!eh_notify_callback_addr)
4435 {
4436 /* We can get here either if there is no plabel in the export list
4437 for the main image, or if something strange happened (?) */
4438 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4439 warning ("GDB will not be able to intercept exception events.");
4440 return 0;
4441 }
4442 }
4443 else
4444 exception_catchpoints_are_fragile = 0;
4445 #endif
4446
4447 /* Now, look for the breakpointable routine in end.o */
4448 /* This should also be available in the SOM symbol dict. if end.o linked in */
4449 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4450 if (msym)
4451 {
4452 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4453 hp_cxx_exception_support = 1;
4454 }
4455 else
4456 {
4457 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4458 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4459 warning ("GDB will be unable to intercept exception events.");
4460 eh_break_addr = 0;
4461 return 0;
4462 }
4463
4464 /* Next look for the catch enable flag provided in end.o */
4465 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4466 VAR_DOMAIN, 0, (struct symtab **) NULL);
4467 if (sym) /* sometimes present in debug info */
4468 {
4469 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4470 hp_cxx_exception_support = 1;
4471 }
4472 else
4473 /* otherwise look in SOM symbol dict. */
4474 {
4475 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4476 if (msym)
4477 {
4478 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4479 hp_cxx_exception_support = 1;
4480 }
4481 else
4482 {
4483 warning ("Unable to enable interception of exception catches.");
4484 warning ("Executable may not have been compiled debuggable with HP aCC.");
4485 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4486 return 0;
4487 }
4488 }
4489
4490 /* Next look for the catch enable flag provided end.o */
4491 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4492 VAR_DOMAIN, 0, (struct symtab **) NULL);
4493 if (sym) /* sometimes present in debug info */
4494 {
4495 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4496 hp_cxx_exception_support = 1;
4497 }
4498 else
4499 /* otherwise look in SOM symbol dict. */
4500 {
4501 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4502 if (msym)
4503 {
4504 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4505 hp_cxx_exception_support = 1;
4506 }
4507 else
4508 {
4509 warning ("Unable to enable interception of exception throws.");
4510 warning ("Executable may not have been compiled debuggable with HP aCC.");
4511 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4512 return 0;
4513 }
4514 }
4515
4516 /* Set the flags */
4517 hp_cxx_exception_support = 2; /* everything worked so far */
4518 hp_cxx_exception_support_initialized = 1;
4519 exception_support_initialized = 1;
4520
4521 return 1;
4522 }
4523
4524 /* Target operation for enabling or disabling interception of
4525 exception events.
4526 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4527 ENABLE is either 0 (disable) or 1 (enable).
4528 Return value is NULL if no support found;
4529 -1 if something went wrong,
4530 or a pointer to a symtab/line struct if the breakpointable
4531 address was found. */
4532
4533 struct symtab_and_line *
4534 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4535 {
4536 char buf[4];
4537
4538 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4539 if (!initialize_hp_cxx_exception_support ())
4540 return NULL;
4541
4542 switch (hp_cxx_exception_support)
4543 {
4544 case 0:
4545 /* Assuming no HP support at all */
4546 return NULL;
4547 case 1:
4548 /* HP support should be present, but something went wrong */
4549 return (struct symtab_and_line *) -1; /* yuck! */
4550 /* there may be other cases in the future */
4551 }
4552
4553 /* Set the EH hook to point to the callback routine */
4554 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4555 /* pai: (temp) FIXME should there be a pack operation first? */
4556 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4557 {
4558 warning ("Could not write to target memory for exception event callback.");
4559 warning ("Interception of exception events may not work.");
4560 return (struct symtab_and_line *) -1;
4561 }
4562 if (enable)
4563 {
4564 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4565 if (PIDGET (inferior_ptid) > 0)
4566 {
4567 if (setup_d_pid_in_inferior ())
4568 return (struct symtab_and_line *) -1;
4569 }
4570 else
4571 {
4572 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4573 return (struct symtab_and_line *) -1;
4574 }
4575 }
4576
4577 switch (kind)
4578 {
4579 case EX_EVENT_THROW:
4580 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4581 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4582 {
4583 warning ("Couldn't enable exception throw interception.");
4584 return (struct symtab_and_line *) -1;
4585 }
4586 break;
4587 case EX_EVENT_CATCH:
4588 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4589 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4590 {
4591 warning ("Couldn't enable exception catch interception.");
4592 return (struct symtab_and_line *) -1;
4593 }
4594 break;
4595 default:
4596 error ("Request to enable unknown or unsupported exception event.");
4597 }
4598
4599 /* Copy break address into new sal struct, malloc'ing if needed. */
4600 if (!break_callback_sal)
4601 {
4602 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4603 }
4604 init_sal (break_callback_sal);
4605 break_callback_sal->symtab = NULL;
4606 break_callback_sal->pc = eh_break_addr;
4607 break_callback_sal->line = 0;
4608 break_callback_sal->end = eh_break_addr;
4609
4610 return break_callback_sal;
4611 }
4612
4613 /* Record some information about the current exception event */
4614 static struct exception_event_record current_ex_event;
4615 /* Convenience struct */
4616 static struct symtab_and_line null_symtab_and_line =
4617 {NULL, 0, 0, 0};
4618
4619 /* Report current exception event. Returns a pointer to a record
4620 that describes the kind of the event, where it was thrown from,
4621 and where it will be caught. More information may be reported
4622 in the future */
4623 struct exception_event_record *
4624 child_get_current_exception_event (void)
4625 {
4626 CORE_ADDR event_kind;
4627 CORE_ADDR throw_addr;
4628 CORE_ADDR catch_addr;
4629 struct frame_info *fi, *curr_frame;
4630 int level = 1;
4631
4632 curr_frame = get_current_frame ();
4633 if (!curr_frame)
4634 return (struct exception_event_record *) NULL;
4635
4636 /* Go up one frame to __d_eh_notify_callback, because at the
4637 point when this code is executed, there's garbage in the
4638 arguments of __d_eh_break. */
4639 fi = find_relative_frame (curr_frame, &level);
4640 if (level != 0)
4641 return (struct exception_event_record *) NULL;
4642
4643 select_frame (fi);
4644
4645 /* Read in the arguments */
4646 /* __d_eh_notify_callback() is called with 3 arguments:
4647 1. event kind catch or throw
4648 2. the target address if known
4649 3. a flag -- not sure what this is. pai/1997-07-17 */
4650 event_kind = read_register (ARG0_REGNUM);
4651 catch_addr = read_register (ARG1_REGNUM);
4652
4653 /* Now go down to a user frame */
4654 /* For a throw, __d_eh_break is called by
4655 __d_eh_notify_callback which is called by
4656 __notify_throw which is called
4657 from user code.
4658 For a catch, __d_eh_break is called by
4659 __d_eh_notify_callback which is called by
4660 <stackwalking stuff> which is called by
4661 __throw__<stuff> or __rethrow_<stuff> which is called
4662 from user code. */
4663 /* FIXME: Don't use such magic numbers; search for the frames */
4664 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4665 fi = find_relative_frame (curr_frame, &level);
4666 if (level != 0)
4667 return (struct exception_event_record *) NULL;
4668
4669 select_frame (fi);
4670 throw_addr = get_frame_pc (fi);
4671
4672 /* Go back to original (top) frame */
4673 select_frame (curr_frame);
4674
4675 current_ex_event.kind = (enum exception_event_kind) event_kind;
4676 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4677 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4678
4679 return &current_ex_event;
4680 }
4681
4682 /* Instead of this nasty cast, add a method pvoid() that prints out a
4683 host VOID data type (remember %p isn't portable). */
4684
4685 static CORE_ADDR
4686 hppa_pointer_to_address_hack (void *ptr)
4687 {
4688 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4689 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4690 }
4691
4692 static void
4693 unwind_command (char *exp, int from_tty)
4694 {
4695 CORE_ADDR address;
4696 struct unwind_table_entry *u;
4697
4698 /* If we have an expression, evaluate it and use it as the address. */
4699
4700 if (exp != 0 && *exp != 0)
4701 address = parse_and_eval_address (exp);
4702 else
4703 return;
4704
4705 u = find_unwind_entry (address);
4706
4707 if (!u)
4708 {
4709 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4710 return;
4711 }
4712
4713 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4714 paddr_nz (hppa_pointer_to_address_hack (u)));
4715
4716 printf_unfiltered ("\tregion_start = ");
4717 print_address (u->region_start, gdb_stdout);
4718
4719 printf_unfiltered ("\n\tregion_end = ");
4720 print_address (u->region_end, gdb_stdout);
4721
4722 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4723
4724 printf_unfiltered ("\n\tflags =");
4725 pif (Cannot_unwind);
4726 pif (Millicode);
4727 pif (Millicode_save_sr0);
4728 pif (Entry_SR);
4729 pif (Args_stored);
4730 pif (Variable_Frame);
4731 pif (Separate_Package_Body);
4732 pif (Frame_Extension_Millicode);
4733 pif (Stack_Overflow_Check);
4734 pif (Two_Instruction_SP_Increment);
4735 pif (Ada_Region);
4736 pif (Save_SP);
4737 pif (Save_RP);
4738 pif (Save_MRP_in_frame);
4739 pif (extn_ptr_defined);
4740 pif (Cleanup_defined);
4741 pif (MPE_XL_interrupt_marker);
4742 pif (HP_UX_interrupt_marker);
4743 pif (Large_frame);
4744
4745 putchar_unfiltered ('\n');
4746
4747 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4748
4749 pin (Region_description);
4750 pin (Entry_FR);
4751 pin (Entry_GR);
4752 pin (Total_frame_size);
4753 }
4754
4755 void
4756 hppa_skip_permanent_breakpoint (void)
4757 {
4758 /* To step over a breakpoint instruction on the PA takes some
4759 fiddling with the instruction address queue.
4760
4761 When we stop at a breakpoint, the IA queue front (the instruction
4762 we're executing now) points at the breakpoint instruction, and
4763 the IA queue back (the next instruction to execute) points to
4764 whatever instruction we would execute after the breakpoint, if it
4765 were an ordinary instruction. This is the case even if the
4766 breakpoint is in the delay slot of a branch instruction.
4767
4768 Clearly, to step past the breakpoint, we need to set the queue
4769 front to the back. But what do we put in the back? What
4770 instruction comes after that one? Because of the branch delay
4771 slot, the next insn is always at the back + 4. */
4772 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4773 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4774
4775 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4776 /* We can leave the tail's space the same, since there's no jump. */
4777 }
4778
4779 /* Copy the function value from VALBUF into the proper location
4780 for a function return.
4781
4782 Called only in the context of the "return" command. */
4783
4784 void
4785 hppa_store_return_value (struct type *type, char *valbuf)
4786 {
4787 /* For software floating point, the return value goes into the
4788 integer registers. But we do not have any flag to key this on,
4789 so we always store the value into the integer registers.
4790
4791 If its a float value, then we also store it into the floating
4792 point registers. */
4793 deprecated_write_register_bytes (REGISTER_BYTE (28)
4794 + (TYPE_LENGTH (type) > 4
4795 ? (8 - TYPE_LENGTH (type))
4796 : (4 - TYPE_LENGTH (type))),
4797 valbuf, TYPE_LENGTH (type));
4798 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4799 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4800 valbuf, TYPE_LENGTH (type));
4801 }
4802
4803 /* Copy the function's return value into VALBUF.
4804
4805 This function is called only in the context of "target function calls",
4806 ie. when the debugger forces a function to be called in the child, and
4807 when the debugger forces a fucntion to return prematurely via the
4808 "return" command. */
4809
4810 void
4811 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4812 {
4813 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4814 memcpy (valbuf,
4815 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4816 TYPE_LENGTH (type));
4817 else
4818 memcpy (valbuf,
4819 ((char *)regbuf
4820 + REGISTER_BYTE (28)
4821 + (TYPE_LENGTH (type) > 4
4822 ? (8 - TYPE_LENGTH (type))
4823 : (4 - TYPE_LENGTH (type)))),
4824 TYPE_LENGTH (type));
4825 }
4826
4827 int
4828 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4829 {
4830 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4831 via a pointer regardless of its type or the compiler used. */
4832 return (TYPE_LENGTH (type) > 8);
4833 }
4834
4835 int
4836 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4837 {
4838 /* Stack grows upward */
4839 return (lhs > rhs);
4840 }
4841
4842 CORE_ADDR
4843 hppa_stack_align (CORE_ADDR sp)
4844 {
4845 /* elz: adjust the quantity to the next highest value which is
4846 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4847 On hppa the sp must always be kept 64-bit aligned */
4848 return ((sp % 8) ? (sp + 7) & -8 : sp);
4849 }
4850
4851 int
4852 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4853 {
4854 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4855
4856 An example of this occurs when an a.out is linked against a foo.sl.
4857 The foo.sl defines a global bar(), and the a.out declares a signature
4858 for bar(). However, the a.out doesn't directly call bar(), but passes
4859 its address in another call.
4860
4861 If you have this scenario and attempt to "break bar" before running,
4862 gdb will find a minimal symbol for bar() in the a.out. But that
4863 symbol's address will be negative. What this appears to denote is
4864 an index backwards from the base of the procedure linkage table (PLT)
4865 into the data linkage table (DLT), the end of which is contiguous
4866 with the start of the PLT. This is clearly not a valid address for
4867 us to set a breakpoint on.
4868
4869 Note that one must be careful in how one checks for a negative address.
4870 0xc0000000 is a legitimate address of something in a shared text
4871 segment, for example. Since I don't know what the possible range
4872 is of these "really, truly negative" addresses that come from the
4873 minimal symbols, I'm resorting to the gross hack of checking the
4874 top byte of the address for all 1's. Sigh. */
4875
4876 return (!target_has_stack && (pc & 0xFF000000));
4877 }
4878
4879 int
4880 hppa_instruction_nullified (void)
4881 {
4882 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4883 avoid the type cast. I'm leaving it as is for now as I'm doing
4884 semi-mechanical multiarching-related changes. */
4885 const int ipsw = (int) read_register (IPSW_REGNUM);
4886 const int flags = (int) read_register (FLAGS_REGNUM);
4887
4888 return ((ipsw & 0x00200000) && !(flags & 0x2));
4889 }
4890
4891 int
4892 hppa_register_raw_size (int reg_nr)
4893 {
4894 /* All registers have the same size. */
4895 return DEPRECATED_REGISTER_SIZE;
4896 }
4897
4898 /* Index within the register vector of the first byte of the space i
4899 used for register REG_NR. */
4900
4901 int
4902 hppa_register_byte (int reg_nr)
4903 {
4904 return reg_nr * 4;
4905 }
4906
4907 /* Return the GDB type object for the "standard" data type of data
4908 in register N. */
4909
4910 struct type *
4911 hppa_register_virtual_type (int reg_nr)
4912 {
4913 if (reg_nr < FP4_REGNUM)
4914 return builtin_type_int;
4915 else
4916 return builtin_type_float;
4917 }
4918
4919 /* Store the address of the place in which to copy the structure the
4920 subroutine will return. This is called from call_function. */
4921
4922 void
4923 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4924 {
4925 write_register (28, addr);
4926 }
4927
4928 CORE_ADDR
4929 hppa_extract_struct_value_address (char *regbuf)
4930 {
4931 /* Extract from an array REGBUF containing the (raw) register state
4932 the address in which a function should return its structure value,
4933 as a CORE_ADDR (or an expression that can be used as one). */
4934 /* FIXME: brobecker 2002-12-26.
4935 The current implementation is historical, but we should eventually
4936 implement it in a more robust manner as it relies on the fact that
4937 the address size is equal to the size of an int* _on the host_...
4938 One possible implementation that crossed my mind is to use
4939 extract_address. */
4940 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4941 }
4942
4943 /* Return True if REGNUM is not a register available to the user
4944 through ptrace(). */
4945
4946 int
4947 hppa_cannot_store_register (int regnum)
4948 {
4949 return (regnum == 0
4950 || regnum == PCSQ_HEAD_REGNUM
4951 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4952 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4953
4954 }
4955
4956 CORE_ADDR
4957 hppa_smash_text_address (CORE_ADDR addr)
4958 {
4959 /* The low two bits of the PC on the PA contain the privilege level.
4960 Some genius implementing a (non-GCC) compiler apparently decided
4961 this means that "addresses" in a text section therefore include a
4962 privilege level, and thus symbol tables should contain these bits.
4963 This seems like a bonehead thing to do--anyway, it seems to work
4964 for our purposes to just ignore those bits. */
4965
4966 return (addr &= ~0x3);
4967 }
4968
4969 /* Get the ith function argument for the current function. */
4970 CORE_ADDR
4971 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
4972 struct type *type)
4973 {
4974 CORE_ADDR addr;
4975 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
4976 return addr;
4977 }
4978
4979 static struct gdbarch *
4980 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4981 {
4982 struct gdbarch *gdbarch;
4983
4984 /* Try to determine the ABI of the object we are loading. */
4985 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
4986 {
4987 /* If it's a SOM file, assume it's HP/UX SOM. */
4988 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4989 info.osabi = GDB_OSABI_HPUX_SOM;
4990 }
4991
4992 /* find a candidate among the list of pre-declared architectures. */
4993 arches = gdbarch_list_lookup_by_info (arches, &info);
4994 if (arches != NULL)
4995 return (arches->gdbarch);
4996
4997 /* If none found, then allocate and initialize one. */
4998 gdbarch = gdbarch_alloc (&info, NULL);
4999
5000 /* Hook in ABI-specific overrides, if they have been registered. */
5001 gdbarch_init_osabi (info, gdbarch);
5002
5003 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5004 set_gdbarch_function_start_offset (gdbarch, 0);
5005 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5006 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5007 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5008 set_gdbarch_in_solib_return_trampoline (gdbarch,
5009 hppa_in_solib_return_trampoline);
5010 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5011 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5012 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
5013 set_gdbarch_decr_pc_after_break (gdbarch, 0);
5014 set_gdbarch_deprecated_register_size (gdbarch, 4);
5015 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
5016 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5017 set_gdbarch_sp_regnum (gdbarch, 30);
5018 set_gdbarch_fp0_regnum (gdbarch, 64);
5019 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5020 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
5021 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5022 set_gdbarch_deprecated_register_bytes (gdbarch, hppa_num_regs * 4);
5023 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5024 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5025 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
5026 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5027 set_gdbarch_deprecated_register_virtual_type (gdbarch, hppa_register_virtual_type);
5028 set_gdbarch_register_name (gdbarch, hppa_register_name);
5029 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5030 set_gdbarch_deprecated_extract_return_value (gdbarch,
5031 hppa_extract_return_value);
5032 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5033 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5034 set_gdbarch_deprecated_extract_struct_value_address
5035 (gdbarch, hppa_extract_struct_value_address);
5036 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5037 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5038 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5039 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5040 set_gdbarch_frameless_function_invocation
5041 (gdbarch, hppa_frameless_function_invocation);
5042 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5043 set_gdbarch_frame_args_skip (gdbarch, 0);
5044 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5045 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5046 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5047 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5048 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5049 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5050 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5051 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5052 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5053 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5054 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5055
5056 /* Helper for function argument information. */
5057 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5058
5059 return gdbarch;
5060 }
5061
5062 static void
5063 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5064 {
5065 /* Nothing to print for the moment. */
5066 }
5067
5068 void
5069 _initialize_hppa_tdep (void)
5070 {
5071 struct cmd_list_element *c;
5072 void break_at_finish_command (char *arg, int from_tty);
5073 void tbreak_at_finish_command (char *arg, int from_tty);
5074 void break_at_finish_at_depth_command (char *arg, int from_tty);
5075
5076 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5077 deprecated_tm_print_insn = print_insn_hppa;
5078
5079 add_cmd ("unwind", class_maintenance, unwind_command,
5080 "Print unwind table entry at given address.",
5081 &maintenanceprintlist);
5082
5083 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5084 break_at_finish_command,
5085 concat ("Set breakpoint at procedure exit. \n\
5086 Argument may be function name, or \"*\" and an address.\n\
5087 If function is specified, break at end of code for that function.\n\
5088 If an address is specified, break at the end of the function that contains \n\
5089 that exact address.\n",
5090 "With no arg, uses current execution address of selected stack frame.\n\
5091 This is useful for breaking on return to a stack frame.\n\
5092 \n\
5093 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5094 \n\
5095 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5096 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5097 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5098 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5099 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5100
5101 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5102 tbreak_at_finish_command,
5103 "Set temporary breakpoint at procedure exit. Either there should\n\
5104 be no argument or the argument must be a depth.\n"), NULL);
5105 set_cmd_completer (c, location_completer);
5106
5107 if (xdb_commands)
5108 deprecate_cmd (add_com ("bx", class_breakpoint,
5109 break_at_finish_at_depth_command,
5110 "Set breakpoint at procedure exit. Either there should\n\
5111 be no argument or the argument must be a depth.\n"), NULL);
5112 }
5113