* hppa-tdep.c: Use GDB_TARGET_IS_PA_ELF so SOM target support will
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85
86 \f
87 /* Routines to extract various sized constants out of hppa
88 instructions. */
89
90 /* This assumes that no garbage lies outside of the lower bits of
91 value. */
92
93 int
94 sign_extend (val, bits)
95 unsigned val, bits;
96 {
97 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
98 }
99
100 /* For many immediate values the sign bit is the low bit! */
101
102 int
103 low_sign_extend (val, bits)
104 unsigned val, bits;
105 {
106 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
107 }
108 /* extract the immediate field from a ld{bhw}s instruction */
109
110 unsigned
111 get_field (val, from, to)
112 unsigned val, from, to;
113 {
114 val = val >> 31 - to;
115 return val & ((1 << 32 - from) - 1);
116 }
117
118 unsigned
119 set_field (val, from, to, new_val)
120 unsigned *val, from, to;
121 {
122 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
123 return *val = *val & mask | (new_val << (31 - from));
124 }
125
126 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
127
128 extract_3 (word)
129 unsigned word;
130 {
131 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
132 }
133
134 extract_5_load (word)
135 unsigned word;
136 {
137 return low_sign_extend (word >> 16 & MASK_5, 5);
138 }
139
140 /* extract the immediate field from a st{bhw}s instruction */
141
142 int
143 extract_5_store (word)
144 unsigned word;
145 {
146 return low_sign_extend (word & MASK_5, 5);
147 }
148
149 /* extract the immediate field from a break instruction */
150
151 unsigned
152 extract_5r_store (word)
153 unsigned word;
154 {
155 return (word & MASK_5);
156 }
157
158 /* extract the immediate field from a {sr}sm instruction */
159
160 unsigned
161 extract_5R_store (word)
162 unsigned word;
163 {
164 return (word >> 16 & MASK_5);
165 }
166
167 /* extract an 11 bit immediate field */
168
169 int
170 extract_11 (word)
171 unsigned word;
172 {
173 return low_sign_extend (word & MASK_11, 11);
174 }
175
176 /* extract a 14 bit immediate field */
177
178 int
179 extract_14 (word)
180 unsigned word;
181 {
182 return low_sign_extend (word & MASK_14, 14);
183 }
184
185 /* deposit a 14 bit constant in a word */
186
187 unsigned
188 deposit_14 (opnd, word)
189 int opnd;
190 unsigned word;
191 {
192 unsigned sign = (opnd < 0 ? 1 : 0);
193
194 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
195 }
196
197 /* extract a 21 bit constant */
198
199 int
200 extract_21 (word)
201 unsigned word;
202 {
203 int val;
204
205 word &= MASK_21;
206 word <<= 11;
207 val = GET_FIELD (word, 20, 20);
208 val <<= 11;
209 val |= GET_FIELD (word, 9, 19);
210 val <<= 2;
211 val |= GET_FIELD (word, 5, 6);
212 val <<= 5;
213 val |= GET_FIELD (word, 0, 4);
214 val <<= 2;
215 val |= GET_FIELD (word, 7, 8);
216 return sign_extend (val, 21) << 11;
217 }
218
219 /* deposit a 21 bit constant in a word. Although 21 bit constants are
220 usually the top 21 bits of a 32 bit constant, we assume that only
221 the low 21 bits of opnd are relevant */
222
223 unsigned
224 deposit_21 (opnd, word)
225 unsigned opnd, word;
226 {
227 unsigned val = 0;
228
229 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
230 val <<= 2;
231 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
234 val <<= 11;
235 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
236 val <<= 1;
237 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
238 return word | val;
239 }
240
241 /* extract a 12 bit constant from branch instructions */
242
243 int
244 extract_12 (word)
245 unsigned word;
246 {
247 return sign_extend (GET_FIELD (word, 19, 28) |
248 GET_FIELD (word, 29, 29) << 10 |
249 (word & 0x1) << 11, 12) << 2;
250 }
251
252 /* extract a 17 bit constant from branch instructions, returning the
253 19 bit signed value. */
254
255 int
256 extract_17 (word)
257 unsigned word;
258 {
259 return sign_extend (GET_FIELD (word, 19, 28) |
260 GET_FIELD (word, 29, 29) << 10 |
261 GET_FIELD (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263 }
264 \f
265
266 /* Compare the start address for two unwind entries returning 1 if
267 the first address is larger than the second, -1 if the second is
268 larger than the first, and zero if they are equal. */
269
270 static int
271 compare_unwind_entries (a, b)
272 const struct unwind_table_entry *a;
273 const struct unwind_table_entry *b;
274 {
275 if (a->region_start > b->region_start)
276 return 1;
277 else if (a->region_start < b->region_start)
278 return -1;
279 else
280 return 0;
281 }
282
283 static void
284 internalize_unwinds (objfile, table, section, entries, size, text_offset)
285 struct objfile *objfile;
286 struct unwind_table_entry *table;
287 asection *section;
288 unsigned int entries, size;
289 CORE_ADDR text_offset;
290 {
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
307 table[i].region_start += text_offset;
308 buf += 4;
309 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
310 table[i].region_end += text_offset;
311 buf += 4;
312 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
313 buf += 4;
314 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
315 table[i].Millicode = (tmp >> 30) & 0x1;
316 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
317 table[i].Region_description = (tmp >> 27) & 0x3;
318 table[i].reserved1 = (tmp >> 26) & 0x1;
319 table[i].Entry_SR = (tmp >> 25) & 0x1;
320 table[i].Entry_FR = (tmp >> 21) & 0xf;
321 table[i].Entry_GR = (tmp >> 16) & 0x1f;
322 table[i].Args_stored = (tmp >> 15) & 0x1;
323 table[i].Variable_Frame = (tmp >> 14) & 0x1;
324 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
325 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
326 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
327 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
328 table[i].Ada_Region = (tmp >> 9) & 0x1;
329 table[i].reserved2 = (tmp >> 5) & 0xf;
330 table[i].Save_SP = (tmp >> 4) & 0x1;
331 table[i].Save_RP = (tmp >> 3) & 0x1;
332 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
333 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
334 table[i].Cleanup_defined = tmp & 0x1;
335 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
336 buf += 4;
337 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
338 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
339 table[i].Large_frame = (tmp >> 29) & 0x1;
340 table[i].reserved4 = (tmp >> 27) & 0x3;
341 table[i].Total_frame_size = tmp & 0x7ffffff;
342 }
343 }
344 }
345
346 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
347 the object file. This info is used mainly by find_unwind_entry() to find
348 out the stack frame size and frame pointer used by procedures. We put
349 everything on the psymbol obstack in the objfile so that it automatically
350 gets freed when the objfile is destroyed. */
351
352 static void
353 read_unwind_info (objfile)
354 struct objfile *objfile;
355 {
356 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
357 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
358 unsigned index, unwind_entries, elf_unwind_entries;
359 unsigned stub_entries, total_entries;
360 CORE_ADDR text_offset;
361 struct obj_unwind_info *ui;
362
363 text_offset = ANOFFSET (objfile->section_offsets, 0);
364 ui = obstack_alloc (&objfile->psymbol_obstack,
365 sizeof (struct obj_unwind_info));
366
367 ui->table = NULL;
368 ui->cache = NULL;
369 ui->last = -1;
370
371 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
372 section in ELF at the moment. */
373 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
374 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
375 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
376
377 /* Get sizes and unwind counts for all sections. */
378 if (unwind_sec)
379 {
380 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
381 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
382 }
383 else
384 {
385 unwind_size = 0;
386 unwind_entries = 0;
387 }
388
389 if (elf_unwind_sec)
390 {
391 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
392 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
393 }
394 else
395 {
396 elf_unwind_size = 0;
397 elf_unwind_entries = 0;
398 }
399
400 if (stub_unwind_sec)
401 {
402 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
403 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
404 }
405 else
406 {
407 stub_unwind_size = 0;
408 stub_entries = 0;
409 }
410
411 /* Compute total number of unwind entries and their total size. */
412 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
413 total_size = total_entries * sizeof (struct unwind_table_entry);
414
415 /* Allocate memory for the unwind table. */
416 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
417 ui->last = total_entries - 1;
418
419 /* Internalize the standard unwind entries. */
420 index = 0;
421 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
422 unwind_entries, unwind_size, text_offset);
423 index += unwind_entries;
424 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
425 elf_unwind_entries, elf_unwind_size, text_offset);
426 index += elf_unwind_entries;
427
428 /* Now internalize the stub unwind entries. */
429 if (stub_unwind_size > 0)
430 {
431 unsigned int i;
432 char *buf = alloca (stub_unwind_size);
433
434 /* Read in the stub unwind entries. */
435 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
436 0, stub_unwind_size);
437
438 /* Now convert them into regular unwind entries. */
439 for (i = 0; i < stub_entries; i++, index++)
440 {
441 /* Clear out the next unwind entry. */
442 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
443
444 /* Convert offset & size into region_start and region_end.
445 Stuff away the stub type into "reserved" fields. */
446 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
447 (bfd_byte *) buf);
448 ui->table[index].region_start += text_offset;
449 buf += 4;
450 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
451 (bfd_byte *) buf);
452 buf += 2;
453 ui->table[index].region_end
454 = ui->table[index].region_start + 4 *
455 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
456 buf += 2;
457 }
458
459 }
460
461 /* Unwind table needs to be kept sorted. */
462 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
463 compare_unwind_entries);
464
465 /* Keep a pointer to the unwind information. */
466 objfile->obj_private = (PTR) ui;
467 }
468
469 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
470 of the objfiles seeking the unwind table entry for this PC. Each objfile
471 contains a sorted list of struct unwind_table_entry. Since we do a binary
472 search of the unwind tables, we depend upon them to be sorted. */
473
474 static struct unwind_table_entry *
475 find_unwind_entry(pc)
476 CORE_ADDR pc;
477 {
478 int first, middle, last;
479 struct objfile *objfile;
480
481 ALL_OBJFILES (objfile)
482 {
483 struct obj_unwind_info *ui;
484
485 ui = OBJ_UNWIND_INFO (objfile);
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 ui = OBJ_UNWIND_INFO (objfile);
491 }
492
493 /* First, check the cache */
494
495 if (ui->cache
496 && pc >= ui->cache->region_start
497 && pc <= ui->cache->region_end)
498 return ui->cache;
499
500 /* Not in the cache, do a binary search */
501
502 first = 0;
503 last = ui->last;
504
505 while (first <= last)
506 {
507 middle = (first + last) / 2;
508 if (pc >= ui->table[middle].region_start
509 && pc <= ui->table[middle].region_end)
510 {
511 ui->cache = &ui->table[middle];
512 return &ui->table[middle];
513 }
514
515 if (pc < ui->table[middle].region_start)
516 last = middle - 1;
517 else
518 first = middle + 1;
519 }
520 } /* ALL_OBJFILES() */
521 return NULL;
522 }
523
524 /* Return the adjustment necessary to make for addresses on the stack
525 as presented by hpread.c.
526
527 This is necessary because of the stack direction on the PA and the
528 bizarre way in which someone (?) decided they wanted to handle
529 frame pointerless code in GDB. */
530 int
531 hpread_adjust_stack_address (func_addr)
532 CORE_ADDR func_addr;
533 {
534 struct unwind_table_entry *u;
535
536 u = find_unwind_entry (func_addr);
537 if (!u)
538 return 0;
539 else
540 return u->Total_frame_size << 3;
541 }
542
543 /* Called to determine if PC is in an interrupt handler of some
544 kind. */
545
546 static int
547 pc_in_interrupt_handler (pc)
548 CORE_ADDR pc;
549 {
550 struct unwind_table_entry *u;
551 struct minimal_symbol *msym_us;
552
553 u = find_unwind_entry (pc);
554 if (!u)
555 return 0;
556
557 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
558 its frame isn't a pure interrupt frame. Deal with this. */
559 msym_us = lookup_minimal_symbol_by_pc (pc);
560
561 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
562 }
563
564 /* Called when no unwind descriptor was found for PC. Returns 1 if it
565 appears that PC is in a linker stub. */
566
567 static int
568 pc_in_linker_stub (pc)
569 CORE_ADDR pc;
570 {
571 int found_magic_instruction = 0;
572 int i;
573 char buf[4];
574
575 /* If unable to read memory, assume pc is not in a linker stub. */
576 if (target_read_memory (pc, buf, 4) != 0)
577 return 0;
578
579 /* We are looking for something like
580
581 ; $$dyncall jams RP into this special spot in the frame (RP')
582 ; before calling the "call stub"
583 ldw -18(sp),rp
584
585 ldsid (rp),r1 ; Get space associated with RP into r1
586 mtsp r1,sp ; Move it into space register 0
587 be,n 0(sr0),rp) ; back to your regularly scheduled program
588 */
589
590 /* Maximum known linker stub size is 4 instructions. Search forward
591 from the given PC, then backward. */
592 for (i = 0; i < 4; i++)
593 {
594 /* If we hit something with an unwind, stop searching this direction. */
595
596 if (find_unwind_entry (pc + i * 4) != 0)
597 break;
598
599 /* Check for ldsid (rp),r1 which is the magic instruction for a
600 return from a cross-space function call. */
601 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
602 {
603 found_magic_instruction = 1;
604 break;
605 }
606 /* Add code to handle long call/branch and argument relocation stubs
607 here. */
608 }
609
610 if (found_magic_instruction != 0)
611 return 1;
612
613 /* Now look backward. */
614 for (i = 0; i < 4; i++)
615 {
616 /* If we hit something with an unwind, stop searching this direction. */
617
618 if (find_unwind_entry (pc - i * 4) != 0)
619 break;
620
621 /* Check for ldsid (rp),r1 which is the magic instruction for a
622 return from a cross-space function call. */
623 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
624 {
625 found_magic_instruction = 1;
626 break;
627 }
628 /* Add code to handle long call/branch and argument relocation stubs
629 here. */
630 }
631 return found_magic_instruction;
632 }
633
634 static int
635 find_return_regnum(pc)
636 CORE_ADDR pc;
637 {
638 struct unwind_table_entry *u;
639
640 u = find_unwind_entry (pc);
641
642 if (!u)
643 return RP_REGNUM;
644
645 if (u->Millicode)
646 return 31;
647
648 return RP_REGNUM;
649 }
650
651 /* Return size of frame, or -1 if we should use a frame pointer. */
652 int
653 find_proc_framesize (pc)
654 CORE_ADDR pc;
655 {
656 struct unwind_table_entry *u;
657 struct minimal_symbol *msym_us;
658
659 u = find_unwind_entry (pc);
660
661 if (!u)
662 {
663 if (pc_in_linker_stub (pc))
664 /* Linker stubs have a zero size frame. */
665 return 0;
666 else
667 return -1;
668 }
669
670 msym_us = lookup_minimal_symbol_by_pc (pc);
671
672 /* If Save_SP is set, and we're not in an interrupt or signal caller,
673 then we have a frame pointer. Use it. */
674 if (u->Save_SP && !pc_in_interrupt_handler (pc)
675 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
676 return -1;
677
678 return u->Total_frame_size << 3;
679 }
680
681 /* Return offset from sp at which rp is saved, or 0 if not saved. */
682 static int rp_saved PARAMS ((CORE_ADDR));
683
684 static int
685 rp_saved (pc)
686 CORE_ADDR pc;
687 {
688 struct unwind_table_entry *u;
689
690 u = find_unwind_entry (pc);
691
692 if (!u)
693 {
694 if (pc_in_linker_stub (pc))
695 /* This is the so-called RP'. */
696 return -24;
697 else
698 return 0;
699 }
700
701 if (u->Save_RP)
702 return -20;
703 else if (u->stub_type != 0)
704 {
705 switch (u->stub_type)
706 {
707 case EXPORT:
708 case IMPORT:
709 return -24;
710 case PARAMETER_RELOCATION:
711 return -8;
712 default:
713 return 0;
714 }
715 }
716 else
717 return 0;
718 }
719 \f
720 int
721 frameless_function_invocation (frame)
722 struct frame_info *frame;
723 {
724 struct unwind_table_entry *u;
725
726 u = find_unwind_entry (frame->pc);
727
728 if (u == 0)
729 return 0;
730
731 return (u->Total_frame_size == 0 && u->stub_type == 0);
732 }
733
734 CORE_ADDR
735 saved_pc_after_call (frame)
736 struct frame_info *frame;
737 {
738 int ret_regnum;
739 CORE_ADDR pc;
740 struct unwind_table_entry *u;
741
742 ret_regnum = find_return_regnum (get_frame_pc (frame));
743 pc = read_register (ret_regnum) & ~0x3;
744
745 /* If PC is in a linker stub, then we need to dig the address
746 the stub will return to out of the stack. */
747 u = find_unwind_entry (pc);
748 if (u && u->stub_type != 0)
749 return frame_saved_pc (frame);
750 else
751 return pc;
752 }
753 \f
754 CORE_ADDR
755 frame_saved_pc (frame)
756 struct frame_info *frame;
757 {
758 CORE_ADDR pc = get_frame_pc (frame);
759 struct unwind_table_entry *u;
760
761 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
762 at the base of the frame in an interrupt handler. Registers within
763 are saved in the exact same order as GDB numbers registers. How
764 convienent. */
765 if (pc_in_interrupt_handler (pc))
766 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
767
768 /* Deal with signal handler caller frames too. */
769 if (frame->signal_handler_caller)
770 {
771 CORE_ADDR rp;
772 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
773 return rp & ~0x3;
774 }
775
776 if (frameless_function_invocation (frame))
777 {
778 int ret_regnum;
779
780 ret_regnum = find_return_regnum (pc);
781
782 /* If the next frame is an interrupt frame or a signal
783 handler caller, then we need to look in the saved
784 register area to get the return pointer (the values
785 in the registers may not correspond to anything useful). */
786 if (frame->next
787 && (frame->next->signal_handler_caller
788 || pc_in_interrupt_handler (frame->next->pc)))
789 {
790 struct frame_saved_regs saved_regs;
791
792 get_frame_saved_regs (frame->next, &saved_regs);
793 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
794 {
795 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
796
797 /* Syscalls are really two frames. The syscall stub itself
798 with a return pointer in %rp and the kernel call with
799 a return pointer in %r31. We return the %rp variant
800 if %r31 is the same as frame->pc. */
801 if (pc == frame->pc)
802 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
803 }
804 else
805 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
806 }
807 else
808 pc = read_register (ret_regnum) & ~0x3;
809 }
810 else
811 {
812 int rp_offset;
813
814 restart:
815 rp_offset = rp_saved (pc);
816 /* Similar to code in frameless function case. If the next
817 frame is a signal or interrupt handler, then dig the right
818 information out of the saved register info. */
819 if (rp_offset == 0
820 && frame->next
821 && (frame->next->signal_handler_caller
822 || pc_in_interrupt_handler (frame->next->pc)))
823 {
824 struct frame_saved_regs saved_regs;
825
826 get_frame_saved_regs (frame->next, &saved_regs);
827 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
828 {
829 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
830
831 /* Syscalls are really two frames. The syscall stub itself
832 with a return pointer in %rp and the kernel call with
833 a return pointer in %r31. We return the %rp variant
834 if %r31 is the same as frame->pc. */
835 if (pc == frame->pc)
836 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
837 }
838 else
839 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
840 }
841 else if (rp_offset == 0)
842 pc = read_register (RP_REGNUM) & ~0x3;
843 else
844 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
845 }
846
847 /* If PC is inside a linker stub, then dig out the address the stub
848 will return to. */
849 u = find_unwind_entry (pc);
850 if (u && u->stub_type != 0)
851 goto restart;
852
853 return pc;
854 }
855 \f
856 /* We need to correct the PC and the FP for the outermost frame when we are
857 in a system call. */
858
859 void
860 init_extra_frame_info (fromleaf, frame)
861 int fromleaf;
862 struct frame_info *frame;
863 {
864 int flags;
865 int framesize;
866
867 if (frame->next && !fromleaf)
868 return;
869
870 /* If the next frame represents a frameless function invocation
871 then we have to do some adjustments that are normally done by
872 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
873 if (fromleaf)
874 {
875 /* Find the framesize of *this* frame without peeking at the PC
876 in the current frame structure (it isn't set yet). */
877 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
878
879 /* Now adjust our base frame accordingly. If we have a frame pointer
880 use it, else subtract the size of this frame from the current
881 frame. (we always want frame->frame to point at the lowest address
882 in the frame). */
883 if (framesize == -1)
884 frame->frame = read_register (FP_REGNUM);
885 else
886 frame->frame -= framesize;
887 return;
888 }
889
890 flags = read_register (FLAGS_REGNUM);
891 if (flags & 2) /* In system call? */
892 frame->pc = read_register (31) & ~0x3;
893
894 /* The outermost frame is always derived from PC-framesize
895
896 One might think frameless innermost frames should have
897 a frame->frame that is the same as the parent's frame->frame.
898 That is wrong; frame->frame in that case should be the *high*
899 address of the parent's frame. It's complicated as hell to
900 explain, but the parent *always* creates some stack space for
901 the child. So the child actually does have a frame of some
902 sorts, and its base is the high address in its parent's frame. */
903 framesize = find_proc_framesize(frame->pc);
904 if (framesize == -1)
905 frame->frame = read_register (FP_REGNUM);
906 else
907 frame->frame = read_register (SP_REGNUM) - framesize;
908 }
909 \f
910 /* Given a GDB frame, determine the address of the calling function's frame.
911 This will be used to create a new GDB frame struct, and then
912 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
913
914 This may involve searching through prologues for several functions
915 at boundaries where GCC calls HP C code, or where code which has
916 a frame pointer calls code without a frame pointer. */
917
918 CORE_ADDR
919 frame_chain (frame)
920 struct frame_info *frame;
921 {
922 int my_framesize, caller_framesize;
923 struct unwind_table_entry *u;
924 CORE_ADDR frame_base;
925
926 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
927 are easy; at *sp we have a full save state strucutre which we can
928 pull the old stack pointer from. Also see frame_saved_pc for
929 code to dig a saved PC out of the save state structure. */
930 if (pc_in_interrupt_handler (frame->pc))
931 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
932 else if (frame->signal_handler_caller)
933 {
934 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
935 }
936 else
937 frame_base = frame->frame;
938
939 /* Get frame sizes for the current frame and the frame of the
940 caller. */
941 my_framesize = find_proc_framesize (frame->pc);
942 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
943
944 /* If caller does not have a frame pointer, then its frame
945 can be found at current_frame - caller_framesize. */
946 if (caller_framesize != -1)
947 return frame_base - caller_framesize;
948
949 /* Both caller and callee have frame pointers and are GCC compiled
950 (SAVE_SP bit in unwind descriptor is on for both functions.
951 The previous frame pointer is found at the top of the current frame. */
952 if (caller_framesize == -1 && my_framesize == -1)
953 return read_memory_integer (frame_base, 4);
954
955 /* Caller has a frame pointer, but callee does not. This is a little
956 more difficult as GCC and HP C lay out locals and callee register save
957 areas very differently.
958
959 The previous frame pointer could be in a register, or in one of
960 several areas on the stack.
961
962 Walk from the current frame to the innermost frame examining
963 unwind descriptors to determine if %r3 ever gets saved into the
964 stack. If so return whatever value got saved into the stack.
965 If it was never saved in the stack, then the value in %r3 is still
966 valid, so use it.
967
968 We use information from unwind descriptors to determine if %r3
969 is saved into the stack (Entry_GR field has this information). */
970
971 while (frame)
972 {
973 u = find_unwind_entry (frame->pc);
974
975 if (!u)
976 {
977 /* We could find this information by examining prologues. I don't
978 think anyone has actually written any tools (not even "strip")
979 which leave them out of an executable, so maybe this is a moot
980 point. */
981 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
982 return 0;
983 }
984
985 /* Entry_GR specifies the number of callee-saved general registers
986 saved in the stack. It starts at %r3, so %r3 would be 1. */
987 if (u->Entry_GR >= 1 || u->Save_SP
988 || frame->signal_handler_caller
989 || pc_in_interrupt_handler (frame->pc))
990 break;
991 else
992 frame = frame->next;
993 }
994
995 if (frame)
996 {
997 /* We may have walked down the chain into a function with a frame
998 pointer. */
999 if (u->Save_SP
1000 && !frame->signal_handler_caller
1001 && !pc_in_interrupt_handler (frame->pc))
1002 return read_memory_integer (frame->frame, 4);
1003 /* %r3 was saved somewhere in the stack. Dig it out. */
1004 else
1005 {
1006 struct frame_saved_regs saved_regs;
1007
1008 get_frame_saved_regs (frame, &saved_regs);
1009 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1010 }
1011 }
1012 else
1013 {
1014 /* The value in %r3 was never saved into the stack (thus %r3 still
1015 holds the value of the previous frame pointer). */
1016 return read_register (FP_REGNUM);
1017 }
1018 }
1019
1020 \f
1021 /* To see if a frame chain is valid, see if the caller looks like it
1022 was compiled with gcc. */
1023
1024 int
1025 frame_chain_valid (chain, thisframe)
1026 CORE_ADDR chain;
1027 struct frame_info *thisframe;
1028 {
1029 struct minimal_symbol *msym_us;
1030 struct minimal_symbol *msym_start;
1031 struct unwind_table_entry *u, *next_u = NULL;
1032 struct frame_info *next;
1033
1034 if (!chain)
1035 return 0;
1036
1037 u = find_unwind_entry (thisframe->pc);
1038
1039 if (u == NULL)
1040 return 1;
1041
1042 /* We can't just check that the same of msym_us is "_start", because
1043 someone idiotically decided that they were going to make a Ltext_end
1044 symbol with the same address. This Ltext_end symbol is totally
1045 indistinguishable (as nearly as I can tell) from the symbol for a function
1046 which is (legitimately, since it is in the user's namespace)
1047 named Ltext_end, so we can't just ignore it. */
1048 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1049 msym_start = lookup_minimal_symbol ("_start", NULL);
1050 if (msym_us
1051 && msym_start
1052 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1053 return 0;
1054
1055 next = get_next_frame (thisframe);
1056 if (next)
1057 next_u = find_unwind_entry (next->pc);
1058
1059 /* If this frame does not save SP, has no stack, isn't a stub,
1060 and doesn't "call" an interrupt routine or signal handler caller,
1061 then its not valid. */
1062 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1063 || (thisframe->next && thisframe->next->signal_handler_caller)
1064 || (next_u && next_u->HP_UX_interrupt_marker))
1065 return 1;
1066
1067 if (pc_in_linker_stub (thisframe->pc))
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /*
1074 * These functions deal with saving and restoring register state
1075 * around a function call in the inferior. They keep the stack
1076 * double-word aligned; eventually, on an hp700, the stack will have
1077 * to be aligned to a 64-byte boundary.
1078 */
1079
1080 int
1081 push_dummy_frame ()
1082 {
1083 register CORE_ADDR sp;
1084 register int regnum;
1085 int int_buffer;
1086 double freg_buffer;
1087
1088 /* Space for "arguments"; the RP goes in here. */
1089 sp = read_register (SP_REGNUM) + 48;
1090 int_buffer = read_register (RP_REGNUM) | 0x3;
1091 write_memory (sp - 20, (char *)&int_buffer, 4);
1092
1093 int_buffer = read_register (FP_REGNUM);
1094 write_memory (sp, (char *)&int_buffer, 4);
1095
1096 write_register (FP_REGNUM, sp);
1097
1098 sp += 8;
1099
1100 for (regnum = 1; regnum < 32; regnum++)
1101 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1102 sp = push_word (sp, read_register (regnum));
1103
1104 sp += 4;
1105
1106 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1107 {
1108 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1109 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1110 }
1111 sp = push_word (sp, read_register (IPSW_REGNUM));
1112 sp = push_word (sp, read_register (SAR_REGNUM));
1113 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1114 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1115 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1116 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1117 write_register (SP_REGNUM, sp);
1118 }
1119
1120 find_dummy_frame_regs (frame, frame_saved_regs)
1121 struct frame_info *frame;
1122 struct frame_saved_regs *frame_saved_regs;
1123 {
1124 CORE_ADDR fp = frame->frame;
1125 int i;
1126
1127 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1128 frame_saved_regs->regs[FP_REGNUM] = fp;
1129 frame_saved_regs->regs[1] = fp + 8;
1130
1131 for (fp += 12, i = 3; i < 32; i++)
1132 {
1133 if (i != FP_REGNUM)
1134 {
1135 frame_saved_regs->regs[i] = fp;
1136 fp += 4;
1137 }
1138 }
1139
1140 fp += 4;
1141 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1142 frame_saved_regs->regs[i] = fp;
1143
1144 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1145 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1146 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1147 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1148 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1149 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1150 }
1151
1152 int
1153 hppa_pop_frame ()
1154 {
1155 register struct frame_info *frame = get_current_frame ();
1156 register CORE_ADDR fp, npc, target_pc;
1157 register int regnum;
1158 struct frame_saved_regs fsr;
1159 double freg_buffer;
1160
1161 fp = FRAME_FP (frame);
1162 get_frame_saved_regs (frame, &fsr);
1163
1164 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1165 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1166 restore_pc_queue (&fsr);
1167 #endif
1168
1169 for (regnum = 31; regnum > 0; regnum--)
1170 if (fsr.regs[regnum])
1171 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1172
1173 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1174 if (fsr.regs[regnum])
1175 {
1176 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1177 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1178 }
1179
1180 if (fsr.regs[IPSW_REGNUM])
1181 write_register (IPSW_REGNUM,
1182 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1183
1184 if (fsr.regs[SAR_REGNUM])
1185 write_register (SAR_REGNUM,
1186 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1187
1188 /* If the PC was explicitly saved, then just restore it. */
1189 if (fsr.regs[PCOQ_TAIL_REGNUM])
1190 {
1191 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1192 write_register (PCOQ_TAIL_REGNUM, npc);
1193 }
1194 /* Else use the value in %rp to set the new PC. */
1195 else
1196 {
1197 npc = read_register (RP_REGNUM);
1198 target_write_pc (npc, 0);
1199 }
1200
1201 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1202
1203 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1204 write_register (SP_REGNUM, fp - 48);
1205 else
1206 write_register (SP_REGNUM, fp);
1207
1208 /* The PC we just restored may be inside a return trampoline. If so
1209 we want to restart the inferior and run it through the trampoline.
1210
1211 Do this by setting a momentary breakpoint at the location the
1212 trampoline returns to. */
1213 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1214 if (target_pc)
1215 {
1216 struct symtab_and_line sal;
1217 struct breakpoint *breakpoint;
1218 struct cleanup *old_chain;
1219
1220 /* Set up our breakpoint. Set it to be silent as the MI code
1221 for "return_command" will print the frame we returned to. */
1222 sal = find_pc_line (target_pc, 0);
1223 sal.pc = target_pc;
1224 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1225 breakpoint->silent = 1;
1226
1227 /* So we can clean things up. */
1228 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1229
1230 /* Start up the inferior. */
1231 proceed_to_finish = 1;
1232 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1233
1234 /* Perform our cleanups. */
1235 do_cleanups (old_chain);
1236 }
1237 flush_cached_frames ();
1238 }
1239
1240 /*
1241 * After returning to a dummy on the stack, restore the instruction
1242 * queue space registers. */
1243
1244 static int
1245 restore_pc_queue (fsr)
1246 struct frame_saved_regs *fsr;
1247 {
1248 CORE_ADDR pc = read_pc ();
1249 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1250 int pid;
1251 struct target_waitstatus w;
1252 int insn_count;
1253
1254 /* Advance past break instruction in the call dummy. */
1255 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1256 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1257
1258 /*
1259 * HPUX doesn't let us set the space registers or the space
1260 * registers of the PC queue through ptrace. Boo, hiss.
1261 * Conveniently, the call dummy has this sequence of instructions
1262 * after the break:
1263 * mtsp r21, sr0
1264 * ble,n 0(sr0, r22)
1265 *
1266 * So, load up the registers and single step until we are in the
1267 * right place.
1268 */
1269
1270 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1271 write_register (22, new_pc);
1272
1273 for (insn_count = 0; insn_count < 3; insn_count++)
1274 {
1275 /* FIXME: What if the inferior gets a signal right now? Want to
1276 merge this into wait_for_inferior (as a special kind of
1277 watchpoint? By setting a breakpoint at the end? Is there
1278 any other choice? Is there *any* way to do this stuff with
1279 ptrace() or some equivalent?). */
1280 resume (1, 0);
1281 target_wait (inferior_pid, &w);
1282
1283 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1284 {
1285 stop_signal = w.value.sig;
1286 terminal_ours_for_output ();
1287 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1288 target_signal_to_name (stop_signal),
1289 target_signal_to_string (stop_signal));
1290 gdb_flush (gdb_stdout);
1291 return 0;
1292 }
1293 }
1294 target_terminal_ours ();
1295 target_fetch_registers (-1);
1296 return 1;
1297 }
1298
1299 CORE_ADDR
1300 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1301 int nargs;
1302 value_ptr *args;
1303 CORE_ADDR sp;
1304 int struct_return;
1305 CORE_ADDR struct_addr;
1306 {
1307 /* array of arguments' offsets */
1308 int *offset = (int *)alloca(nargs * sizeof (int));
1309 int cum = 0;
1310 int i, alignment;
1311
1312 for (i = 0; i < nargs; i++)
1313 {
1314 /* Coerce chars to int & float to double if necessary */
1315 args[i] = value_arg_coerce (args[i]);
1316
1317 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1318
1319 /* value must go at proper alignment. Assume alignment is a
1320 power of two.*/
1321 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1322 if (cum % alignment)
1323 cum = (cum + alignment) & -alignment;
1324 offset[i] = -cum;
1325 }
1326 sp += max ((cum + 7) & -8, 16);
1327
1328 for (i = 0; i < nargs; i++)
1329 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1330 TYPE_LENGTH (VALUE_TYPE (args[i])));
1331
1332 if (struct_return)
1333 write_register (28, struct_addr);
1334 return sp + 32;
1335 }
1336
1337 /*
1338 * Insert the specified number of args and function address
1339 * into a call sequence of the above form stored at DUMMYNAME.
1340 *
1341 * On the hppa we need to call the stack dummy through $$dyncall.
1342 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1343 * real_pc, which is the location where gdb should start up the
1344 * inferior to do the function call.
1345 */
1346
1347 CORE_ADDR
1348 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1349 char *dummy;
1350 CORE_ADDR pc;
1351 CORE_ADDR fun;
1352 int nargs;
1353 value_ptr *args;
1354 struct type *type;
1355 int gcc_p;
1356 {
1357 CORE_ADDR dyncall_addr, sr4export_addr;
1358 struct minimal_symbol *msymbol;
1359 int flags = read_register (FLAGS_REGNUM);
1360 struct unwind_table_entry *u;
1361
1362 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1363 if (msymbol == NULL)
1364 error ("Can't find an address for $$dyncall trampoline");
1365
1366 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1367
1368 /* FUN could be a procedure label, in which case we have to get
1369 its real address and the value of its GOT/DP. */
1370 if (fun & 0x2)
1371 {
1372 /* Get the GOT/DP value for the target function. It's
1373 at *(fun+4). Note the call dummy is *NOT* allowed to
1374 trash %r19 before calling the target function. */
1375 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1376
1377 /* Now get the real address for the function we are calling, it's
1378 at *fun. */
1379 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1380 }
1381 else
1382 {
1383
1384 /* FUN could be either an export stub, or the real address of a
1385 function in a shared library.
1386
1387 To call this function we need to get the GOT/DP value for the target
1388 function. Do this by calling shared library support routines in
1389 somsolib.c. Once the GOT value is in %r19 we can call the procedure
1390 in the normal fashion. */
1391
1392 #ifndef GDB_TARGET_IS_PA_ELF
1393 write_register (19, som_solib_get_got_by_pc (fun));
1394 #endif
1395 }
1396
1397 /* If we are calling an import stub (eg calling into a dynamic library)
1398 then have sr4export call the magic __d_plt_call routine which is linked
1399 in from end.o. (You can't use _sr4export to call the import stub as
1400 the value in sp-24 will get fried and you end up returning to the
1401 wrong location. You can't call the import stub directly as the code
1402 to bind the PLT entry to a function can't return to a stack address.) */
1403 u = find_unwind_entry (fun);
1404 if (u && u->stub_type == IMPORT)
1405 {
1406 CORE_ADDR new_fun;
1407 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1408 if (msymbol == NULL)
1409 error ("Can't find an address for __d_plt_call trampoline");
1410
1411 /* This is where sr4export will jump to. */
1412 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1413
1414 /* We have to store the address of the stub in __shlib_funcptr. */
1415 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1416 (struct objfile *)NULL);
1417 if (msymbol == NULL)
1418 error ("Can't find an address for __shlib_funcptr");
1419
1420 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1421 fun = new_fun;
1422
1423 }
1424
1425 /* We still need sr4export's address too. */
1426 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1427 if (msymbol == NULL)
1428 error ("Can't find an address for _sr4export trampoline");
1429
1430 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1431
1432 store_unsigned_integer
1433 (&dummy[9*REGISTER_SIZE],
1434 REGISTER_SIZE,
1435 deposit_21 (fun >> 11,
1436 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1437 REGISTER_SIZE)));
1438 store_unsigned_integer
1439 (&dummy[10*REGISTER_SIZE],
1440 REGISTER_SIZE,
1441 deposit_14 (fun & MASK_11,
1442 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1443 REGISTER_SIZE)));
1444 store_unsigned_integer
1445 (&dummy[12*REGISTER_SIZE],
1446 REGISTER_SIZE,
1447 deposit_21 (sr4export_addr >> 11,
1448 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1449 REGISTER_SIZE)));
1450 store_unsigned_integer
1451 (&dummy[13*REGISTER_SIZE],
1452 REGISTER_SIZE,
1453 deposit_14 (sr4export_addr & MASK_11,
1454 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1455 REGISTER_SIZE)));
1456
1457 write_register (22, pc);
1458
1459 /* If we are in a syscall, then we should call the stack dummy
1460 directly. $$dyncall is not needed as the kernel sets up the
1461 space id registers properly based on the value in %r31. In
1462 fact calling $$dyncall will not work because the value in %r22
1463 will be clobbered on the syscall exit path. */
1464 if (flags & 2)
1465 return pc;
1466 else
1467 return dyncall_addr;
1468
1469 }
1470
1471 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1472 bits. */
1473
1474 CORE_ADDR
1475 target_read_pc (pid)
1476 int pid;
1477 {
1478 int flags = read_register (FLAGS_REGNUM);
1479
1480 if (flags & 2)
1481 return read_register (31) & ~0x3;
1482 return read_register (PC_REGNUM) & ~0x3;
1483 }
1484
1485 /* Write out the PC. If currently in a syscall, then also write the new
1486 PC value into %r31. */
1487
1488 void
1489 target_write_pc (v, pid)
1490 CORE_ADDR v;
1491 int pid;
1492 {
1493 int flags = read_register (FLAGS_REGNUM);
1494
1495 /* If in a syscall, then set %r31. Also make sure to get the
1496 privilege bits set correctly. */
1497 if (flags & 2)
1498 write_register (31, (long) (v | 0x3));
1499
1500 write_register (PC_REGNUM, (long) v);
1501 write_register (NPC_REGNUM, (long) v + 4);
1502 }
1503
1504 /* return the alignment of a type in bytes. Structures have the maximum
1505 alignment required by their fields. */
1506
1507 static int
1508 hppa_alignof (arg)
1509 struct type *arg;
1510 {
1511 int max_align, align, i;
1512 switch (TYPE_CODE (arg))
1513 {
1514 case TYPE_CODE_PTR:
1515 case TYPE_CODE_INT:
1516 case TYPE_CODE_FLT:
1517 return TYPE_LENGTH (arg);
1518 case TYPE_CODE_ARRAY:
1519 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1520 case TYPE_CODE_STRUCT:
1521 case TYPE_CODE_UNION:
1522 max_align = 2;
1523 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1524 {
1525 /* Bit fields have no real alignment. */
1526 if (!TYPE_FIELD_BITPOS (arg, i))
1527 {
1528 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1529 max_align = max (max_align, align);
1530 }
1531 }
1532 return max_align;
1533 default:
1534 return 4;
1535 }
1536 }
1537
1538 /* Print the register regnum, or all registers if regnum is -1 */
1539
1540 pa_do_registers_info (regnum, fpregs)
1541 int regnum;
1542 int fpregs;
1543 {
1544 char raw_regs [REGISTER_BYTES];
1545 int i;
1546
1547 for (i = 0; i < NUM_REGS; i++)
1548 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1549 if (regnum == -1)
1550 pa_print_registers (raw_regs, regnum, fpregs);
1551 else if (regnum < FP0_REGNUM)
1552 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1553 REGISTER_BYTE (regnum)));
1554 else
1555 pa_print_fp_reg (regnum);
1556 }
1557
1558 pa_print_registers (raw_regs, regnum, fpregs)
1559 char *raw_regs;
1560 int regnum;
1561 int fpregs;
1562 {
1563 int i;
1564
1565 for (i = 0; i < 18; i++)
1566 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1567 reg_names[i],
1568 *(int *)(raw_regs + REGISTER_BYTE (i)),
1569 reg_names[i + 18],
1570 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1571 reg_names[i + 36],
1572 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1573 reg_names[i + 54],
1574 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1575
1576 if (fpregs)
1577 for (i = 72; i < NUM_REGS; i++)
1578 pa_print_fp_reg (i);
1579 }
1580
1581 pa_print_fp_reg (i)
1582 int i;
1583 {
1584 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1585 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1586
1587 /* Get 32bits of data. */
1588 read_relative_register_raw_bytes (i, raw_buffer);
1589
1590 /* Put it in the buffer. No conversions are ever necessary. */
1591 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1592
1593 fputs_filtered (reg_names[i], gdb_stdout);
1594 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1595 fputs_filtered ("(single precision) ", gdb_stdout);
1596
1597 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1598 1, 0, Val_pretty_default);
1599 printf_filtered ("\n");
1600
1601 /* If "i" is even, then this register can also be a double-precision
1602 FP register. Dump it out as such. */
1603 if ((i % 2) == 0)
1604 {
1605 /* Get the data in raw format for the 2nd half. */
1606 read_relative_register_raw_bytes (i + 1, raw_buffer);
1607
1608 /* Copy it into the appropriate part of the virtual buffer. */
1609 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1610 REGISTER_RAW_SIZE (i));
1611
1612 /* Dump it as a double. */
1613 fputs_filtered (reg_names[i], gdb_stdout);
1614 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1615 fputs_filtered ("(double precision) ", gdb_stdout);
1616
1617 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1618 1, 0, Val_pretty_default);
1619 printf_filtered ("\n");
1620 }
1621 }
1622
1623 /* Return one if PC is in the call path of a trampoline, else return zero.
1624
1625 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1626 just shared library trampolines (import, export). */
1627
1628 in_solib_call_trampoline (pc, name)
1629 CORE_ADDR pc;
1630 char *name;
1631 {
1632 struct minimal_symbol *minsym;
1633 struct unwind_table_entry *u;
1634 static CORE_ADDR dyncall = 0;
1635 static CORE_ADDR sr4export = 0;
1636
1637 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1638 new exec file */
1639
1640 /* First see if PC is in one of the two C-library trampolines. */
1641 if (!dyncall)
1642 {
1643 minsym = lookup_minimal_symbol ("$$dyncall", NULL);
1644 if (minsym)
1645 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1646 else
1647 dyncall = -1;
1648 }
1649
1650 if (!sr4export)
1651 {
1652 minsym = lookup_minimal_symbol ("_sr4export", NULL);
1653 if (minsym)
1654 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1655 else
1656 sr4export = -1;
1657 }
1658
1659 if (pc == dyncall || pc == sr4export)
1660 return 1;
1661
1662 /* Get the unwind descriptor corresponding to PC, return zero
1663 if no unwind was found. */
1664 u = find_unwind_entry (pc);
1665 if (!u)
1666 return 0;
1667
1668 /* If this isn't a linker stub, then return now. */
1669 if (u->stub_type == 0)
1670 return 0;
1671
1672 /* By definition a long-branch stub is a call stub. */
1673 if (u->stub_type == LONG_BRANCH)
1674 return 1;
1675
1676 /* The call and return path execute the same instructions within
1677 an IMPORT stub! So an IMPORT stub is both a call and return
1678 trampoline. */
1679 if (u->stub_type == IMPORT)
1680 return 1;
1681
1682 /* Parameter relocation stubs always have a call path and may have a
1683 return path. */
1684 if (u->stub_type == PARAMETER_RELOCATION
1685 || u->stub_type == EXPORT)
1686 {
1687 CORE_ADDR addr;
1688
1689 /* Search forward from the current PC until we hit a branch
1690 or the end of the stub. */
1691 for (addr = pc; addr <= u->region_end; addr += 4)
1692 {
1693 unsigned long insn;
1694
1695 insn = read_memory_integer (addr, 4);
1696
1697 /* Does it look like a bl? If so then it's the call path, if
1698 we find a bv or be first, then we're on the return path. */
1699 if ((insn & 0xfc00e000) == 0xe8000000)
1700 return 1;
1701 else if ((insn & 0xfc00e001) == 0xe800c000
1702 || (insn & 0xfc000000) == 0xe0000000)
1703 return 0;
1704 }
1705
1706 /* Should never happen. */
1707 warning ("Unable to find branch in parameter relocation stub.\n");
1708 return 0;
1709 }
1710
1711 /* Unknown stub type. For now, just return zero. */
1712 return 0;
1713 }
1714
1715 /* Return one if PC is in the return path of a trampoline, else return zero.
1716
1717 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1718 just shared library trampolines (import, export). */
1719
1720 in_solib_return_trampoline (pc, name)
1721 CORE_ADDR pc;
1722 char *name;
1723 {
1724 struct minimal_symbol *minsym;
1725 struct unwind_table_entry *u;
1726
1727 /* Get the unwind descriptor corresponding to PC, return zero
1728 if no unwind was found. */
1729 u = find_unwind_entry (pc);
1730 if (!u)
1731 return 0;
1732
1733 /* If this isn't a linker stub or it's just a long branch stub, then
1734 return zero. */
1735 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1736 return 0;
1737
1738 /* The call and return path execute the same instructions within
1739 an IMPORT stub! So an IMPORT stub is both a call and return
1740 trampoline. */
1741 if (u->stub_type == IMPORT)
1742 return 1;
1743
1744 /* Parameter relocation stubs always have a call path and may have a
1745 return path. */
1746 if (u->stub_type == PARAMETER_RELOCATION
1747 || u->stub_type == EXPORT)
1748 {
1749 CORE_ADDR addr;
1750
1751 /* Search forward from the current PC until we hit a branch
1752 or the end of the stub. */
1753 for (addr = pc; addr <= u->region_end; addr += 4)
1754 {
1755 unsigned long insn;
1756
1757 insn = read_memory_integer (addr, 4);
1758
1759 /* Does it look like a bl? If so then it's the call path, if
1760 we find a bv or be first, then we're on the return path. */
1761 if ((insn & 0xfc00e000) == 0xe8000000)
1762 return 0;
1763 else if ((insn & 0xfc00e001) == 0xe800c000
1764 || (insn & 0xfc000000) == 0xe0000000)
1765 return 1;
1766 }
1767
1768 /* Should never happen. */
1769 warning ("Unable to find branch in parameter relocation stub.\n");
1770 return 0;
1771 }
1772
1773 /* Unknown stub type. For now, just return zero. */
1774 return 0;
1775
1776 }
1777
1778 /* Figure out if PC is in a trampoline, and if so find out where
1779 the trampoline will jump to. If not in a trampoline, return zero.
1780
1781 Simple code examination probably is not a good idea since the code
1782 sequences in trampolines can also appear in user code.
1783
1784 We use unwinds and information from the minimal symbol table to
1785 determine when we're in a trampoline. This won't work for ELF
1786 (yet) since it doesn't create stub unwind entries. Whether or
1787 not ELF will create stub unwinds or normal unwinds for linker
1788 stubs is still being debated.
1789
1790 This should handle simple calls through dyncall or sr4export,
1791 long calls, argument relocation stubs, and dyncall/sr4export
1792 calling an argument relocation stub. It even handles some stubs
1793 used in dynamic executables. */
1794
1795 CORE_ADDR
1796 skip_trampoline_code (pc, name)
1797 CORE_ADDR pc;
1798 char *name;
1799 {
1800 long orig_pc = pc;
1801 long prev_inst, curr_inst, loc;
1802 static CORE_ADDR dyncall = 0;
1803 static CORE_ADDR sr4export = 0;
1804 struct minimal_symbol *msym;
1805 struct unwind_table_entry *u;
1806
1807 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1808 new exec file */
1809
1810 if (!dyncall)
1811 {
1812 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1813 if (msym)
1814 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1815 else
1816 dyncall = -1;
1817 }
1818
1819 if (!sr4export)
1820 {
1821 msym = lookup_minimal_symbol ("_sr4export", NULL);
1822 if (msym)
1823 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1824 else
1825 sr4export = -1;
1826 }
1827
1828 /* Addresses passed to dyncall may *NOT* be the actual address
1829 of the function. So we may have to do something special. */
1830 if (pc == dyncall)
1831 {
1832 pc = (CORE_ADDR) read_register (22);
1833
1834 /* If bit 30 (counting from the left) is on, then pc is the address of
1835 the PLT entry for this function, not the address of the function
1836 itself. Bit 31 has meaning too, but only for MPE. */
1837 if (pc & 0x2)
1838 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1839 }
1840 else if (pc == sr4export)
1841 pc = (CORE_ADDR) (read_register (22));
1842
1843 /* Get the unwind descriptor corresponding to PC, return zero
1844 if no unwind was found. */
1845 u = find_unwind_entry (pc);
1846 if (!u)
1847 return 0;
1848
1849 /* If this isn't a linker stub, then return now. */
1850 if (u->stub_type == 0)
1851 return orig_pc == pc ? 0 : pc & ~0x3;
1852
1853 /* It's a stub. Search for a branch and figure out where it goes.
1854 Note we have to handle multi insn branch sequences like ldil;ble.
1855 Most (all?) other branches can be determined by examining the contents
1856 of certain registers and the stack. */
1857 loc = pc;
1858 curr_inst = 0;
1859 prev_inst = 0;
1860 while (1)
1861 {
1862 /* Make sure we haven't walked outside the range of this stub. */
1863 if (u != find_unwind_entry (loc))
1864 {
1865 warning ("Unable to find branch in linker stub");
1866 return orig_pc == pc ? 0 : pc & ~0x3;
1867 }
1868
1869 prev_inst = curr_inst;
1870 curr_inst = read_memory_integer (loc, 4);
1871
1872 /* Does it look like a branch external using %r1? Then it's the
1873 branch from the stub to the actual function. */
1874 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1875 {
1876 /* Yup. See if the previous instruction loaded
1877 a value into %r1. If so compute and return the jump address. */
1878 if ((prev_inst & 0xffe00000) == 0x20200000)
1879 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1880 else
1881 {
1882 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1883 return orig_pc == pc ? 0 : pc & ~0x3;
1884 }
1885 }
1886
1887 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1888 import stub to an export stub.
1889
1890 It is impossible to determine the target of the branch via
1891 simple examination of instructions and/or data (consider
1892 that the address in the plabel may be the address of the
1893 bind-on-reference routine in the dynamic loader).
1894
1895 So we have try an alternative approach.
1896
1897 Get the name of the symbol at our current location; it should
1898 be a stub symbol with the same name as the symbol in the
1899 shared library.
1900
1901 Then lookup a minimal symbol with the same name; we should
1902 get the minimal symbol for the target routine in the shared
1903 library as those take precedence of import/export stubs. */
1904 if (curr_inst == 0xe2a00000)
1905 {
1906 struct minimal_symbol *stubsym, *libsym;
1907
1908 stubsym = lookup_minimal_symbol_by_pc (loc);
1909 if (stubsym == NULL)
1910 {
1911 warning ("Unable to find symbol for 0x%x", loc);
1912 return orig_pc == pc ? 0 : pc & ~0x3;
1913 }
1914
1915 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
1916 if (libsym == NULL)
1917 {
1918 warning ("Unable to find library symbol for %s\n",
1919 SYMBOL_NAME (stubsym));
1920 return orig_pc == pc ? 0 : pc & ~0x3;
1921 }
1922
1923 return SYMBOL_VALUE (libsym);
1924 }
1925
1926 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1927 branch from the stub to the actual function. */
1928 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1929 || (curr_inst & 0xffe0e000) == 0xe8000000)
1930 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1931
1932 /* Does it look like bv (rp)? Note this depends on the
1933 current stack pointer being the same as the stack
1934 pointer in the stub itself! This is a branch on from the
1935 stub back to the original caller. */
1936 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1937 {
1938 /* Yup. See if the previous instruction loaded
1939 rp from sp - 8. */
1940 if (prev_inst == 0x4bc23ff1)
1941 return (read_memory_integer
1942 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1943 else
1944 {
1945 warning ("Unable to find restore of %%rp before bv (%%rp).");
1946 return orig_pc == pc ? 0 : pc & ~0x3;
1947 }
1948 }
1949
1950 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1951 the original caller from the stub. Used in dynamic executables. */
1952 else if (curr_inst == 0xe0400002)
1953 {
1954 /* The value we jump to is sitting in sp - 24. But that's
1955 loaded several instructions before the be instruction.
1956 I guess we could check for the previous instruction being
1957 mtsp %r1,%sr0 if we want to do sanity checking. */
1958 return (read_memory_integer
1959 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1960 }
1961
1962 /* Haven't found the branch yet, but we're still in the stub.
1963 Keep looking. */
1964 loc += 4;
1965 }
1966 }
1967
1968 /* For the given instruction (INST), return any adjustment it makes
1969 to the stack pointer or zero for no adjustment.
1970
1971 This only handles instructions commonly found in prologues. */
1972
1973 static int
1974 prologue_inst_adjust_sp (inst)
1975 unsigned long inst;
1976 {
1977 /* This must persist across calls. */
1978 static int save_high21;
1979
1980 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1981 if ((inst & 0xffffc000) == 0x37de0000)
1982 return extract_14 (inst);
1983
1984 /* stwm X,D(sp) */
1985 if ((inst & 0xffe00000) == 0x6fc00000)
1986 return extract_14 (inst);
1987
1988 /* addil high21,%r1; ldo low11,(%r1),%r30)
1989 save high bits in save_high21 for later use. */
1990 if ((inst & 0xffe00000) == 0x28200000)
1991 {
1992 save_high21 = extract_21 (inst);
1993 return 0;
1994 }
1995
1996 if ((inst & 0xffff0000) == 0x343e0000)
1997 return save_high21 + extract_14 (inst);
1998
1999 /* fstws as used by the HP compilers. */
2000 if ((inst & 0xffffffe0) == 0x2fd01220)
2001 return extract_5_load (inst);
2002
2003 /* No adjustment. */
2004 return 0;
2005 }
2006
2007 /* Return nonzero if INST is a branch of some kind, else return zero. */
2008
2009 static int
2010 is_branch (inst)
2011 unsigned long inst;
2012 {
2013 switch (inst >> 26)
2014 {
2015 case 0x20:
2016 case 0x21:
2017 case 0x22:
2018 case 0x23:
2019 case 0x28:
2020 case 0x29:
2021 case 0x2a:
2022 case 0x2b:
2023 case 0x30:
2024 case 0x31:
2025 case 0x32:
2026 case 0x33:
2027 case 0x38:
2028 case 0x39:
2029 case 0x3a:
2030 return 1;
2031
2032 default:
2033 return 0;
2034 }
2035 }
2036
2037 /* Return the register number for a GR which is saved by INST or
2038 zero it INST does not save a GR. */
2039
2040 static int
2041 inst_saves_gr (inst)
2042 unsigned long inst;
2043 {
2044 /* Does it look like a stw? */
2045 if ((inst >> 26) == 0x1a)
2046 return extract_5R_store (inst);
2047
2048 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2049 if ((inst >> 26) == 0x1b)
2050 return extract_5R_store (inst);
2051
2052 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2053 too. */
2054 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2055 return extract_5R_store (inst);
2056
2057 return 0;
2058 }
2059
2060 /* Return the register number for a FR which is saved by INST or
2061 zero it INST does not save a FR.
2062
2063 Note we only care about full 64bit register stores (that's the only
2064 kind of stores the prologue will use).
2065
2066 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2067
2068 static int
2069 inst_saves_fr (inst)
2070 unsigned long inst;
2071 {
2072 if ((inst & 0xfc00dfc0) == 0x2c001200)
2073 return extract_5r_store (inst);
2074 return 0;
2075 }
2076
2077 /* Advance PC across any function entry prologue instructions
2078 to reach some "real" code.
2079
2080 Use information in the unwind table to determine what exactly should
2081 be in the prologue. */
2082
2083 CORE_ADDR
2084 skip_prologue (pc)
2085 CORE_ADDR pc;
2086 {
2087 char buf[4];
2088 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2089 unsigned long args_stored, status, i;
2090 struct unwind_table_entry *u;
2091
2092 u = find_unwind_entry (pc);
2093 if (!u)
2094 return pc;
2095
2096 /* If we are not at the beginning of a function, then return now. */
2097 if ((pc & ~0x3) != u->region_start)
2098 return pc;
2099
2100 /* This is how much of a frame adjustment we need to account for. */
2101 stack_remaining = u->Total_frame_size << 3;
2102
2103 /* Magic register saves we want to know about. */
2104 save_rp = u->Save_RP;
2105 save_sp = u->Save_SP;
2106
2107 /* An indication that args may be stored into the stack. Unfortunately
2108 the HPUX compilers tend to set this in cases where no args were
2109 stored too!. */
2110 args_stored = u->Args_stored;
2111
2112 /* Turn the Entry_GR field into a bitmask. */
2113 save_gr = 0;
2114 for (i = 3; i < u->Entry_GR + 3; i++)
2115 {
2116 /* Frame pointer gets saved into a special location. */
2117 if (u->Save_SP && i == FP_REGNUM)
2118 continue;
2119
2120 save_gr |= (1 << i);
2121 }
2122
2123 /* Turn the Entry_FR field into a bitmask too. */
2124 save_fr = 0;
2125 for (i = 12; i < u->Entry_FR + 12; i++)
2126 save_fr |= (1 << i);
2127
2128 /* Loop until we find everything of interest or hit a branch.
2129
2130 For unoptimized GCC code and for any HP CC code this will never ever
2131 examine any user instructions.
2132
2133 For optimzied GCC code we're faced with problems. GCC will schedule
2134 its prologue and make prologue instructions available for delay slot
2135 filling. The end result is user code gets mixed in with the prologue
2136 and a prologue instruction may be in the delay slot of the first branch
2137 or call.
2138
2139 Some unexpected things are expected with debugging optimized code, so
2140 we allow this routine to walk past user instructions in optimized
2141 GCC code. */
2142 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2143 || args_stored)
2144 {
2145 unsigned int reg_num;
2146 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2147 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
2148
2149 /* Save copies of all the triggers so we can compare them later
2150 (only for HPC). */
2151 old_save_gr = save_gr;
2152 old_save_fr = save_fr;
2153 old_save_rp = save_rp;
2154 old_save_sp = save_sp;
2155 old_stack_remaining = stack_remaining;
2156
2157 status = target_read_memory (pc, buf, 4);
2158 inst = extract_unsigned_integer (buf, 4);
2159
2160 /* Yow! */
2161 if (status != 0)
2162 return pc;
2163
2164 /* Note the interesting effects of this instruction. */
2165 stack_remaining -= prologue_inst_adjust_sp (inst);
2166
2167 /* There is only one instruction used for saving RP into the stack. */
2168 if (inst == 0x6bc23fd9)
2169 save_rp = 0;
2170
2171 /* This is the only way we save SP into the stack. At this time
2172 the HP compilers never bother to save SP into the stack. */
2173 if ((inst & 0xffffc000) == 0x6fc10000)
2174 save_sp = 0;
2175
2176 /* Account for general and floating-point register saves. */
2177 reg_num = inst_saves_gr (inst);
2178 save_gr &= ~(1 << reg_num);
2179
2180 /* Ugh. Also account for argument stores into the stack.
2181 Unfortunately args_stored only tells us that some arguments
2182 where stored into the stack. Not how many or what kind!
2183
2184 This is a kludge as on the HP compiler sets this bit and it
2185 never does prologue scheduling. So once we see one, skip past
2186 all of them. We have similar code for the fp arg stores below.
2187
2188 FIXME. Can still die if we have a mix of GR and FR argument
2189 stores! */
2190 if (reg_num >= 23 && reg_num <= 26)
2191 {
2192 while (reg_num >= 23 && reg_num <= 26)
2193 {
2194 pc += 4;
2195 status = target_read_memory (pc, buf, 4);
2196 inst = extract_unsigned_integer (buf, 4);
2197 if (status != 0)
2198 return pc;
2199 reg_num = inst_saves_gr (inst);
2200 }
2201 args_stored = 0;
2202 continue;
2203 }
2204
2205 reg_num = inst_saves_fr (inst);
2206 save_fr &= ~(1 << reg_num);
2207
2208 status = target_read_memory (pc + 4, buf, 4);
2209 next_inst = extract_unsigned_integer (buf, 4);
2210
2211 /* Yow! */
2212 if (status != 0)
2213 return pc;
2214
2215 /* We've got to be read to handle the ldo before the fp register
2216 save. */
2217 if ((inst & 0xfc000000) == 0x34000000
2218 && inst_saves_fr (next_inst) >= 4
2219 && inst_saves_fr (next_inst) <= 7)
2220 {
2221 /* So we drop into the code below in a reasonable state. */
2222 reg_num = inst_saves_fr (next_inst);
2223 pc -= 4;
2224 }
2225
2226 /* Ugh. Also account for argument stores into the stack.
2227 This is a kludge as on the HP compiler sets this bit and it
2228 never does prologue scheduling. So once we see one, skip past
2229 all of them. */
2230 if (reg_num >= 4 && reg_num <= 7)
2231 {
2232 while (reg_num >= 4 && reg_num <= 7)
2233 {
2234 pc += 8;
2235 status = target_read_memory (pc, buf, 4);
2236 inst = extract_unsigned_integer (buf, 4);
2237 if (status != 0)
2238 return pc;
2239 if ((inst & 0xfc000000) != 0x34000000)
2240 break;
2241 status = target_read_memory (pc + 4, buf, 4);
2242 next_inst = extract_unsigned_integer (buf, 4);
2243 if (status != 0)
2244 return pc;
2245 reg_num = inst_saves_fr (next_inst);
2246 }
2247 args_stored = 0;
2248 continue;
2249 }
2250
2251 /* Quit if we hit any kind of branch. This can happen if a prologue
2252 instruction is in the delay slot of the first call/branch. */
2253 if (is_branch (inst))
2254 break;
2255
2256 /* What a crock. The HP compilers set args_stored even if no
2257 arguments were stored into the stack (boo hiss). This could
2258 cause this code to then skip a bunch of user insns (up to the
2259 first branch).
2260
2261 To combat this we try to identify when args_stored was bogusly
2262 set and clear it. We only do this when args_stored is nonzero,
2263 all other resources are accounted for, and nothing changed on
2264 this pass. */
2265 if (args_stored
2266 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2267 && old_save_gr == save_gr && old_save_fr == save_fr
2268 && old_save_rp == save_rp && old_save_sp == save_sp
2269 && old_stack_remaining == stack_remaining)
2270 break;
2271
2272 /* Bump the PC. */
2273 pc += 4;
2274 }
2275
2276 return pc;
2277 }
2278
2279 /* Put here the code to store, into a struct frame_saved_regs,
2280 the addresses of the saved registers of frame described by FRAME_INFO.
2281 This includes special registers such as pc and fp saved in special
2282 ways in the stack frame. sp is even more special:
2283 the address we return for it IS the sp for the next frame. */
2284
2285 void
2286 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2287 struct frame_info *frame_info;
2288 struct frame_saved_regs *frame_saved_regs;
2289 {
2290 CORE_ADDR pc;
2291 struct unwind_table_entry *u;
2292 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2293 int status, i, reg;
2294 char buf[4];
2295 int fp_loc = -1;
2296
2297 /* Zero out everything. */
2298 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2299
2300 /* Call dummy frames always look the same, so there's no need to
2301 examine the dummy code to determine locations of saved registers;
2302 instead, let find_dummy_frame_regs fill in the correct offsets
2303 for the saved registers. */
2304 if ((frame_info->pc >= frame_info->frame
2305 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2306 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2307 + 6 * 4)))
2308 find_dummy_frame_regs (frame_info, frame_saved_regs);
2309
2310 /* Interrupt handlers are special too. They lay out the register
2311 state in the exact same order as the register numbers in GDB. */
2312 if (pc_in_interrupt_handler (frame_info->pc))
2313 {
2314 for (i = 0; i < NUM_REGS; i++)
2315 {
2316 /* SP is a little special. */
2317 if (i == SP_REGNUM)
2318 frame_saved_regs->regs[SP_REGNUM]
2319 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2320 else
2321 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2322 }
2323 return;
2324 }
2325
2326 /* Handle signal handler callers. */
2327 if (frame_info->signal_handler_caller)
2328 {
2329 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2330 return;
2331 }
2332
2333 /* Get the starting address of the function referred to by the PC
2334 saved in frame. */
2335 pc = get_pc_function_start (frame_info->pc);
2336
2337 /* Yow! */
2338 u = find_unwind_entry (pc);
2339 if (!u)
2340 return;
2341
2342 /* This is how much of a frame adjustment we need to account for. */
2343 stack_remaining = u->Total_frame_size << 3;
2344
2345 /* Magic register saves we want to know about. */
2346 save_rp = u->Save_RP;
2347 save_sp = u->Save_SP;
2348
2349 /* Turn the Entry_GR field into a bitmask. */
2350 save_gr = 0;
2351 for (i = 3; i < u->Entry_GR + 3; i++)
2352 {
2353 /* Frame pointer gets saved into a special location. */
2354 if (u->Save_SP && i == FP_REGNUM)
2355 continue;
2356
2357 save_gr |= (1 << i);
2358 }
2359
2360 /* Turn the Entry_FR field into a bitmask too. */
2361 save_fr = 0;
2362 for (i = 12; i < u->Entry_FR + 12; i++)
2363 save_fr |= (1 << i);
2364
2365 /* The frame always represents the value of %sp at entry to the
2366 current function (and is thus equivalent to the "saved" stack
2367 pointer. */
2368 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2369
2370 /* Loop until we find everything of interest or hit a branch.
2371
2372 For unoptimized GCC code and for any HP CC code this will never ever
2373 examine any user instructions.
2374
2375 For optimzied GCC code we're faced with problems. GCC will schedule
2376 its prologue and make prologue instructions available for delay slot
2377 filling. The end result is user code gets mixed in with the prologue
2378 and a prologue instruction may be in the delay slot of the first branch
2379 or call.
2380
2381 Some unexpected things are expected with debugging optimized code, so
2382 we allow this routine to walk past user instructions in optimized
2383 GCC code. */
2384 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2385 {
2386 status = target_read_memory (pc, buf, 4);
2387 inst = extract_unsigned_integer (buf, 4);
2388
2389 /* Yow! */
2390 if (status != 0)
2391 return;
2392
2393 /* Note the interesting effects of this instruction. */
2394 stack_remaining -= prologue_inst_adjust_sp (inst);
2395
2396 /* There is only one instruction used for saving RP into the stack. */
2397 if (inst == 0x6bc23fd9)
2398 {
2399 save_rp = 0;
2400 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2401 }
2402
2403 /* Just note that we found the save of SP into the stack. The
2404 value for frame_saved_regs was computed above. */
2405 if ((inst & 0xffffc000) == 0x6fc10000)
2406 save_sp = 0;
2407
2408 /* Account for general and floating-point register saves. */
2409 reg = inst_saves_gr (inst);
2410 if (reg >= 3 && reg <= 18
2411 && (!u->Save_SP || reg != FP_REGNUM))
2412 {
2413 save_gr &= ~(1 << reg);
2414
2415 /* stwm with a positive displacement is a *post modify*. */
2416 if ((inst >> 26) == 0x1b
2417 && extract_14 (inst) >= 0)
2418 frame_saved_regs->regs[reg] = frame_info->frame;
2419 else
2420 {
2421 /* Handle code with and without frame pointers. */
2422 if (u->Save_SP)
2423 frame_saved_regs->regs[reg]
2424 = frame_info->frame + extract_14 (inst);
2425 else
2426 frame_saved_regs->regs[reg]
2427 = frame_info->frame + (u->Total_frame_size << 3)
2428 + extract_14 (inst);
2429 }
2430 }
2431
2432
2433 /* GCC handles callee saved FP regs a little differently.
2434
2435 It emits an instruction to put the value of the start of
2436 the FP store area into %r1. It then uses fstds,ma with
2437 a basereg of %r1 for the stores.
2438
2439 HP CC emits them at the current stack pointer modifying
2440 the stack pointer as it stores each register. */
2441
2442 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2443 if ((inst & 0xffffc000) == 0x34610000
2444 || (inst & 0xffffc000) == 0x37c10000)
2445 fp_loc = extract_14 (inst);
2446
2447 reg = inst_saves_fr (inst);
2448 if (reg >= 12 && reg <= 21)
2449 {
2450 /* Note +4 braindamage below is necessary because the FP status
2451 registers are internally 8 registers rather than the expected
2452 4 registers. */
2453 save_fr &= ~(1 << reg);
2454 if (fp_loc == -1)
2455 {
2456 /* 1st HP CC FP register store. After this instruction
2457 we've set enough state that the GCC and HPCC code are
2458 both handled in the same manner. */
2459 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2460 fp_loc = 8;
2461 }
2462 else
2463 {
2464 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2465 = frame_info->frame + fp_loc;
2466 fp_loc += 8;
2467 }
2468 }
2469
2470 /* Quit if we hit any kind of branch. This can happen if a prologue
2471 instruction is in the delay slot of the first call/branch. */
2472 if (is_branch (inst))
2473 break;
2474
2475 /* Bump the PC. */
2476 pc += 4;
2477 }
2478 }
2479
2480 #ifdef MAINTENANCE_CMDS
2481
2482 static void
2483 unwind_command (exp, from_tty)
2484 char *exp;
2485 int from_tty;
2486 {
2487 CORE_ADDR address;
2488 union
2489 {
2490 int *foo;
2491 struct unwind_table_entry *u;
2492 } xxx;
2493
2494 /* If we have an expression, evaluate it and use it as the address. */
2495
2496 if (exp != 0 && *exp != 0)
2497 address = parse_and_eval_address (exp);
2498 else
2499 return;
2500
2501 xxx.u = find_unwind_entry (address);
2502
2503 if (!xxx.u)
2504 {
2505 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2506 return;
2507 }
2508
2509 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2510 xxx.foo[3]);
2511 }
2512 #endif /* MAINTENANCE_CMDS */
2513
2514 void
2515 _initialize_hppa_tdep ()
2516 {
2517 #ifdef MAINTENANCE_CMDS
2518 add_cmd ("unwind", class_maintenance, unwind_command,
2519 "Print unwind table entry at given address.",
2520 &maintenanceprintlist);
2521 #endif /* MAINTENANCE_CMDS */
2522 }