2005-11-19 Randolph Chung <tausq@debian.org>
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Routines to extract various sized constants out of hppa
76 instructions. */
77
78 /* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81 int
82 hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85 }
86
87 /* For many immediate values the sign bit is the low bit! */
88
89 int
90 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91 {
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94
95 /* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98 int
99 hppa_get_field (unsigned word, int from, int to)
100 {
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102 }
103
104 /* extract the immediate field from a ld{bhw}s instruction */
105
106 int
107 hppa_extract_5_load (unsigned word)
108 {
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110 }
111
112 /* extract the immediate field from a break instruction */
113
114 unsigned
115 hppa_extract_5r_store (unsigned word)
116 {
117 return (word & MASK_5);
118 }
119
120 /* extract the immediate field from a {sr}sm instruction */
121
122 unsigned
123 hppa_extract_5R_store (unsigned word)
124 {
125 return (word >> 16 & MASK_5);
126 }
127
128 /* extract a 14 bit immediate field */
129
130 int
131 hppa_extract_14 (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134 }
135
136 /* extract a 21 bit constant */
137
138 int
139 hppa_extract_21 (unsigned word)
140 {
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155 }
156
157 /* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160 int
161 hppa_extract_17 (unsigned word)
162 {
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167 }
168
169 CORE_ADDR
170 hppa_symbol_address(const char *sym)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179 }
180
181 struct hppa_objfile_private *
182 hppa_init_objfile_priv_data (struct objfile *objfile)
183 {
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193 }
194 \f
195
196 /* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200 static int
201 compare_unwind_entries (const void *arg1, const void *arg2)
202 {
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212 }
213
214 static void
215 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216 {
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226 }
227
228 static void
229 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232 {
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved1 = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].Ada_Region = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved2 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
309 table[i].reserved4 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317 }
318
319 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325 static void
326 read_unwind_info (struct objfile *objfile)
327 {
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the current time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453 }
454
455 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460 struct unwind_table_entry *
461 find_unwind_entry (CORE_ADDR pc)
462 {
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537 }
538
539 /* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544 static int
545 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575 }
576
577 static const unsigned char *
578 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579 {
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583 }
584
585 /* Return the name of a register. */
586
587 static const char *
588 hppa32_register_name (int i)
589 {
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628 }
629
630 static const char *
631 hppa64_register_name (int i)
632 {
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663 }
664
665 /* This function pushes a stack frame with arguments as part of the
666 inferior function calling mechanism.
667
668 This is the version of the function for the 32-bit PA machines, in
669 which later arguments appear at lower addresses. (The stack always
670 grows towards higher addresses.)
671
672 We simply allocate the appropriate amount of stack space and put
673 arguments into their proper slots. */
674
675 static CORE_ADDR
676 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr,
678 int nargs, struct value **args, CORE_ADDR sp,
679 int struct_return, CORE_ADDR struct_addr)
680 {
681 /* Stack base address at which any pass-by-reference parameters are
682 stored. */
683 CORE_ADDR struct_end = 0;
684 /* Stack base address at which the first parameter is stored. */
685 CORE_ADDR param_end = 0;
686
687 /* The inner most end of the stack after all the parameters have
688 been pushed. */
689 CORE_ADDR new_sp = 0;
690
691 /* Two passes. First pass computes the location of everything,
692 second pass writes the bytes out. */
693 int write_pass;
694
695 /* Global pointer (r19) of the function we are trying to call. */
696 CORE_ADDR gp;
697
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
699
700 for (write_pass = 0; write_pass < 2; write_pass++)
701 {
702 CORE_ADDR struct_ptr = 0;
703 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
704 struct_ptr is adjusted for each argument below, so the first
705 argument will end up at sp-36. */
706 CORE_ADDR param_ptr = 32;
707 int i;
708 int small_struct = 0;
709
710 for (i = 0; i < nargs; i++)
711 {
712 struct value *arg = args[i];
713 struct type *type = check_typedef (value_type (arg));
714 /* The corresponding parameter that is pushed onto the
715 stack, and [possibly] passed in a register. */
716 char param_val[8];
717 int param_len;
718 memset (param_val, 0, sizeof param_val);
719 if (TYPE_LENGTH (type) > 8)
720 {
721 /* Large parameter, pass by reference. Store the value
722 in "struct" area and then pass its address. */
723 param_len = 4;
724 struct_ptr += align_up (TYPE_LENGTH (type), 8);
725 if (write_pass)
726 write_memory (struct_end - struct_ptr, value_contents (arg),
727 TYPE_LENGTH (type));
728 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
729 }
730 else if (TYPE_CODE (type) == TYPE_CODE_INT
731 || TYPE_CODE (type) == TYPE_CODE_ENUM)
732 {
733 /* Integer value store, right aligned. "unpack_long"
734 takes care of any sign-extension problems. */
735 param_len = align_up (TYPE_LENGTH (type), 4);
736 store_unsigned_integer (param_val, param_len,
737 unpack_long (type,
738 value_contents (arg)));
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
741 {
742 /* Floating point value store, right aligned. */
743 param_len = align_up (TYPE_LENGTH (type), 4);
744 memcpy (param_val, value_contents (arg), param_len);
745 }
746 else
747 {
748 param_len = align_up (TYPE_LENGTH (type), 4);
749
750 /* Small struct value are stored right-aligned. */
751 memcpy (param_val + param_len - TYPE_LENGTH (type),
752 value_contents (arg), TYPE_LENGTH (type));
753
754 /* Structures of size 5, 6 and 7 bytes are special in that
755 the higher-ordered word is stored in the lower-ordered
756 argument, and even though it is a 8-byte quantity the
757 registers need not be 8-byte aligned. */
758 if (param_len > 4 && param_len < 8)
759 small_struct = 1;
760 }
761
762 param_ptr += param_len;
763 if (param_len == 8 && !small_struct)
764 param_ptr = align_up (param_ptr, 8);
765
766 /* First 4 non-FP arguments are passed in gr26-gr23.
767 First 4 32-bit FP arguments are passed in fr4L-fr7L.
768 First 2 64-bit FP arguments are passed in fr5 and fr7.
769
770 The rest go on the stack, starting at sp-36, towards lower
771 addresses. 8-byte arguments must be aligned to a 8-byte
772 stack boundary. */
773 if (write_pass)
774 {
775 write_memory (param_end - param_ptr, param_val, param_len);
776
777 /* There are some cases when we don't know the type
778 expected by the callee (e.g. for variadic functions), so
779 pass the parameters in both general and fp regs. */
780 if (param_ptr <= 48)
781 {
782 int grreg = 26 - (param_ptr - 36) / 4;
783 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
784 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
785
786 regcache_cooked_write (regcache, grreg, param_val);
787 regcache_cooked_write (regcache, fpLreg, param_val);
788
789 if (param_len > 4)
790 {
791 regcache_cooked_write (regcache, grreg + 1,
792 param_val + 4);
793
794 regcache_cooked_write (regcache, fpreg, param_val);
795 regcache_cooked_write (regcache, fpreg + 1,
796 param_val + 4);
797 }
798 }
799 }
800 }
801
802 /* Update the various stack pointers. */
803 if (!write_pass)
804 {
805 struct_end = sp + align_up (struct_ptr, 64);
806 /* PARAM_PTR already accounts for all the arguments passed
807 by the user. However, the ABI mandates minimum stack
808 space allocations for outgoing arguments. The ABI also
809 mandates minimum stack alignments which we must
810 preserve. */
811 param_end = struct_end + align_up (param_ptr, 64);
812 }
813 }
814
815 /* If a structure has to be returned, set up register 28 to hold its
816 address */
817 if (struct_return)
818 write_register (28, struct_addr);
819
820 gp = tdep->find_global_pointer (function);
821
822 if (gp != 0)
823 write_register (19, gp);
824
825 /* Set the return address. */
826 if (!gdbarch_push_dummy_code_p (gdbarch))
827 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
828
829 /* Update the Stack Pointer. */
830 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
831
832 return param_end;
833 }
834
835 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
836 Runtime Architecture for PA-RISC 2.0", which is distributed as part
837 as of the HP-UX Software Transition Kit (STK). This implementation
838 is based on version 3.3, dated October 6, 1997. */
839
840 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
841
842 static int
843 hppa64_integral_or_pointer_p (const struct type *type)
844 {
845 switch (TYPE_CODE (type))
846 {
847 case TYPE_CODE_INT:
848 case TYPE_CODE_BOOL:
849 case TYPE_CODE_CHAR:
850 case TYPE_CODE_ENUM:
851 case TYPE_CODE_RANGE:
852 {
853 int len = TYPE_LENGTH (type);
854 return (len == 1 || len == 2 || len == 4 || len == 8);
855 }
856 case TYPE_CODE_PTR:
857 case TYPE_CODE_REF:
858 return (TYPE_LENGTH (type) == 8);
859 default:
860 break;
861 }
862
863 return 0;
864 }
865
866 /* Check whether TYPE is a "Floating Scalar Type". */
867
868 static int
869 hppa64_floating_p (const struct type *type)
870 {
871 switch (TYPE_CODE (type))
872 {
873 case TYPE_CODE_FLT:
874 {
875 int len = TYPE_LENGTH (type);
876 return (len == 4 || len == 8 || len == 16);
877 }
878 default:
879 break;
880 }
881
882 return 0;
883 }
884
885 static CORE_ADDR
886 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
887 struct regcache *regcache, CORE_ADDR bp_addr,
888 int nargs, struct value **args, CORE_ADDR sp,
889 int struct_return, CORE_ADDR struct_addr)
890 {
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 int i, offset = 0;
893 CORE_ADDR gp;
894
895 /* "The outgoing parameter area [...] must be aligned at a 16-byte
896 boundary." */
897 sp = align_up (sp, 16);
898
899 for (i = 0; i < nargs; i++)
900 {
901 struct value *arg = args[i];
902 struct type *type = value_type (arg);
903 int len = TYPE_LENGTH (type);
904 const bfd_byte *valbuf;
905 int regnum;
906
907 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
908 offset = align_up (offset, 8);
909
910 if (hppa64_integral_or_pointer_p (type))
911 {
912 /* "Integral scalar parameters smaller than 64 bits are
913 padded on the left (i.e., the value is in the
914 least-significant bits of the 64-bit storage unit, and
915 the high-order bits are undefined)." Therefore we can
916 safely sign-extend them. */
917 if (len < 8)
918 {
919 arg = value_cast (builtin_type_int64, arg);
920 len = 8;
921 }
922 }
923 else if (hppa64_floating_p (type))
924 {
925 if (len > 8)
926 {
927 /* "Quad-precision (128-bit) floating-point scalar
928 parameters are aligned on a 16-byte boundary." */
929 offset = align_up (offset, 16);
930
931 /* "Double-extended- and quad-precision floating-point
932 parameters within the first 64 bytes of the parameter
933 list are always passed in general registers." */
934 }
935 else
936 {
937 if (len == 4)
938 {
939 /* "Single-precision (32-bit) floating-point scalar
940 parameters are padded on the left with 32 bits of
941 garbage (i.e., the floating-point value is in the
942 least-significant 32 bits of a 64-bit storage
943 unit)." */
944 offset += 4;
945 }
946
947 /* "Single- and double-precision floating-point
948 parameters in this area are passed according to the
949 available formal parameter information in a function
950 prototype. [...] If no prototype is in scope,
951 floating-point parameters must be passed both in the
952 corresponding general registers and in the
953 corresponding floating-point registers." */
954 regnum = HPPA64_FP4_REGNUM + offset / 8;
955
956 if (regnum < HPPA64_FP4_REGNUM + 8)
957 {
958 /* "Single-precision floating-point parameters, when
959 passed in floating-point registers, are passed in
960 the right halves of the floating point registers;
961 the left halves are unused." */
962 regcache_cooked_write_part (regcache, regnum, offset % 8,
963 len, value_contents (arg));
964 }
965 }
966 }
967 else
968 {
969 if (len > 8)
970 {
971 /* "Aggregates larger than 8 bytes are aligned on a
972 16-byte boundary, possibly leaving an unused argument
973 slot, which is filled with garbage. If necessary,
974 they are padded on the right (with garbage), to a
975 multiple of 8 bytes." */
976 offset = align_up (offset, 16);
977 }
978 }
979
980 /* Always store the argument in memory. */
981 write_memory (sp + offset, value_contents (arg), len);
982
983 valbuf = value_contents (arg);
984 regnum = HPPA_ARG0_REGNUM - offset / 8;
985 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
986 {
987 regcache_cooked_write_part (regcache, regnum,
988 offset % 8, min (len, 8), valbuf);
989 offset += min (len, 8);
990 valbuf += min (len, 8);
991 len -= min (len, 8);
992 regnum--;
993 }
994
995 offset += len;
996 }
997
998 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
999 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1000
1001 /* Allocate the outgoing parameter area. Make sure the outgoing
1002 parameter area is multiple of 16 bytes in length. */
1003 sp += max (align_up (offset, 16), 64);
1004
1005 /* Allocate 32-bytes of scratch space. The documentation doesn't
1006 mention this, but it seems to be needed. */
1007 sp += 32;
1008
1009 /* Allocate the frame marker area. */
1010 sp += 16;
1011
1012 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1013 its address. */
1014 if (struct_return)
1015 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1016
1017 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1018 gp = tdep->find_global_pointer (function);
1019 if (gp != 0)
1020 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1021
1022 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1023 if (!gdbarch_push_dummy_code_p (gdbarch))
1024 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1025
1026 /* Set up GR30 to hold the stack pointer (sp). */
1027 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1028
1029 return sp;
1030 }
1031 \f
1032
1033 /* Handle 32/64-bit struct return conventions. */
1034
1035 static enum return_value_convention
1036 hppa32_return_value (struct gdbarch *gdbarch,
1037 struct type *type, struct regcache *regcache,
1038 gdb_byte *readbuf, const gdb_byte *writebuf)
1039 {
1040 if (TYPE_LENGTH (type) <= 2 * 4)
1041 {
1042 /* The value always lives in the right hand end of the register
1043 (or register pair)? */
1044 int b;
1045 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1046 int part = TYPE_LENGTH (type) % 4;
1047 /* The left hand register contains only part of the value,
1048 transfer that first so that the rest can be xfered as entire
1049 4-byte registers. */
1050 if (part > 0)
1051 {
1052 if (readbuf != NULL)
1053 regcache_cooked_read_part (regcache, reg, 4 - part,
1054 part, readbuf);
1055 if (writebuf != NULL)
1056 regcache_cooked_write_part (regcache, reg, 4 - part,
1057 part, writebuf);
1058 reg++;
1059 }
1060 /* Now transfer the remaining register values. */
1061 for (b = part; b < TYPE_LENGTH (type); b += 4)
1062 {
1063 if (readbuf != NULL)
1064 regcache_cooked_read (regcache, reg, readbuf + b);
1065 if (writebuf != NULL)
1066 regcache_cooked_write (regcache, reg, writebuf + b);
1067 reg++;
1068 }
1069 return RETURN_VALUE_REGISTER_CONVENTION;
1070 }
1071 else
1072 return RETURN_VALUE_STRUCT_CONVENTION;
1073 }
1074
1075 static enum return_value_convention
1076 hppa64_return_value (struct gdbarch *gdbarch,
1077 struct type *type, struct regcache *regcache,
1078 gdb_byte *readbuf, const gdb_byte *writebuf)
1079 {
1080 int len = TYPE_LENGTH (type);
1081 int regnum, offset;
1082
1083 if (len > 16)
1084 {
1085 /* All return values larget than 128 bits must be aggregate
1086 return values. */
1087 gdb_assert (!hppa64_integral_or_pointer_p (type));
1088 gdb_assert (!hppa64_floating_p (type));
1089
1090 /* "Aggregate return values larger than 128 bits are returned in
1091 a buffer allocated by the caller. The address of the buffer
1092 must be passed in GR 28." */
1093 return RETURN_VALUE_STRUCT_CONVENTION;
1094 }
1095
1096 if (hppa64_integral_or_pointer_p (type))
1097 {
1098 /* "Integral return values are returned in GR 28. Values
1099 smaller than 64 bits are padded on the left (with garbage)." */
1100 regnum = HPPA_RET0_REGNUM;
1101 offset = 8 - len;
1102 }
1103 else if (hppa64_floating_p (type))
1104 {
1105 if (len > 8)
1106 {
1107 /* "Double-extended- and quad-precision floating-point
1108 values are returned in GRs 28 and 29. The sign,
1109 exponent, and most-significant bits of the mantissa are
1110 returned in GR 28; the least-significant bits of the
1111 mantissa are passed in GR 29. For double-extended
1112 precision values, GR 29 is padded on the right with 48
1113 bits of garbage." */
1114 regnum = HPPA_RET0_REGNUM;
1115 offset = 0;
1116 }
1117 else
1118 {
1119 /* "Single-precision and double-precision floating-point
1120 return values are returned in FR 4R (single precision) or
1121 FR 4 (double-precision)." */
1122 regnum = HPPA64_FP4_REGNUM;
1123 offset = 8 - len;
1124 }
1125 }
1126 else
1127 {
1128 /* "Aggregate return values up to 64 bits in size are returned
1129 in GR 28. Aggregates smaller than 64 bits are left aligned
1130 in the register; the pad bits on the right are undefined."
1131
1132 "Aggregate return values between 65 and 128 bits are returned
1133 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1134 the remaining bits are placed, left aligned, in GR 29. The
1135 pad bits on the right of GR 29 (if any) are undefined." */
1136 regnum = HPPA_RET0_REGNUM;
1137 offset = 0;
1138 }
1139
1140 if (readbuf)
1141 {
1142 while (len > 0)
1143 {
1144 regcache_cooked_read_part (regcache, regnum, offset,
1145 min (len, 8), readbuf);
1146 readbuf += min (len, 8);
1147 len -= min (len, 8);
1148 regnum++;
1149 }
1150 }
1151
1152 if (writebuf)
1153 {
1154 while (len > 0)
1155 {
1156 regcache_cooked_write_part (regcache, regnum, offset,
1157 min (len, 8), writebuf);
1158 writebuf += min (len, 8);
1159 len -= min (len, 8);
1160 regnum++;
1161 }
1162 }
1163
1164 return RETURN_VALUE_REGISTER_CONVENTION;
1165 }
1166 \f
1167
1168 static CORE_ADDR
1169 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1170 struct target_ops *targ)
1171 {
1172 if (addr & 2)
1173 {
1174 CORE_ADDR plabel = addr & ~3;
1175 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1176 }
1177
1178 return addr;
1179 }
1180
1181 static CORE_ADDR
1182 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1183 {
1184 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1185 and not _bit_)! */
1186 return align_up (addr, 64);
1187 }
1188
1189 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1190
1191 static CORE_ADDR
1192 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1193 {
1194 /* Just always 16-byte align. */
1195 return align_up (addr, 16);
1196 }
1197
1198 CORE_ADDR
1199 hppa_read_pc (ptid_t ptid)
1200 {
1201 ULONGEST ipsw;
1202 CORE_ADDR pc;
1203
1204 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1205 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1206
1207 /* If the current instruction is nullified, then we are effectively
1208 still executing the previous instruction. Pretend we are still
1209 there. This is needed when single stepping; if the nullified
1210 instruction is on a different line, we don't want GDB to think
1211 we've stepped onto that line. */
1212 if (ipsw & 0x00200000)
1213 pc -= 4;
1214
1215 return pc & ~0x3;
1216 }
1217
1218 void
1219 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1220 {
1221 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1222 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1223 }
1224
1225 /* return the alignment of a type in bytes. Structures have the maximum
1226 alignment required by their fields. */
1227
1228 static int
1229 hppa_alignof (struct type *type)
1230 {
1231 int max_align, align, i;
1232 CHECK_TYPEDEF (type);
1233 switch (TYPE_CODE (type))
1234 {
1235 case TYPE_CODE_PTR:
1236 case TYPE_CODE_INT:
1237 case TYPE_CODE_FLT:
1238 return TYPE_LENGTH (type);
1239 case TYPE_CODE_ARRAY:
1240 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1241 case TYPE_CODE_STRUCT:
1242 case TYPE_CODE_UNION:
1243 max_align = 1;
1244 for (i = 0; i < TYPE_NFIELDS (type); i++)
1245 {
1246 /* Bit fields have no real alignment. */
1247 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1248 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1249 {
1250 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1251 max_align = max (max_align, align);
1252 }
1253 }
1254 return max_align;
1255 default:
1256 return 4;
1257 }
1258 }
1259
1260 /* For the given instruction (INST), return any adjustment it makes
1261 to the stack pointer or zero for no adjustment.
1262
1263 This only handles instructions commonly found in prologues. */
1264
1265 static int
1266 prologue_inst_adjust_sp (unsigned long inst)
1267 {
1268 /* This must persist across calls. */
1269 static int save_high21;
1270
1271 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1272 if ((inst & 0xffffc000) == 0x37de0000)
1273 return hppa_extract_14 (inst);
1274
1275 /* stwm X,D(sp) */
1276 if ((inst & 0xffe00000) == 0x6fc00000)
1277 return hppa_extract_14 (inst);
1278
1279 /* std,ma X,D(sp) */
1280 if ((inst & 0xffe00008) == 0x73c00008)
1281 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1282
1283 /* addil high21,%r30; ldo low11,(%r1),%r30)
1284 save high bits in save_high21 for later use. */
1285 if ((inst & 0xffe00000) == 0x2bc00000)
1286 {
1287 save_high21 = hppa_extract_21 (inst);
1288 return 0;
1289 }
1290
1291 if ((inst & 0xffff0000) == 0x343e0000)
1292 return save_high21 + hppa_extract_14 (inst);
1293
1294 /* fstws as used by the HP compilers. */
1295 if ((inst & 0xffffffe0) == 0x2fd01220)
1296 return hppa_extract_5_load (inst);
1297
1298 /* No adjustment. */
1299 return 0;
1300 }
1301
1302 /* Return nonzero if INST is a branch of some kind, else return zero. */
1303
1304 static int
1305 is_branch (unsigned long inst)
1306 {
1307 switch (inst >> 26)
1308 {
1309 case 0x20:
1310 case 0x21:
1311 case 0x22:
1312 case 0x23:
1313 case 0x27:
1314 case 0x28:
1315 case 0x29:
1316 case 0x2a:
1317 case 0x2b:
1318 case 0x2f:
1319 case 0x30:
1320 case 0x31:
1321 case 0x32:
1322 case 0x33:
1323 case 0x38:
1324 case 0x39:
1325 case 0x3a:
1326 case 0x3b:
1327 return 1;
1328
1329 default:
1330 return 0;
1331 }
1332 }
1333
1334 /* Return the register number for a GR which is saved by INST or
1335 zero it INST does not save a GR. */
1336
1337 static int
1338 inst_saves_gr (unsigned long inst)
1339 {
1340 /* Does it look like a stw? */
1341 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1342 || (inst >> 26) == 0x1f
1343 || ((inst >> 26) == 0x1f
1344 && ((inst >> 6) == 0xa)))
1345 return hppa_extract_5R_store (inst);
1346
1347 /* Does it look like a std? */
1348 if ((inst >> 26) == 0x1c
1349 || ((inst >> 26) == 0x03
1350 && ((inst >> 6) & 0xf) == 0xb))
1351 return hppa_extract_5R_store (inst);
1352
1353 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1354 if ((inst >> 26) == 0x1b)
1355 return hppa_extract_5R_store (inst);
1356
1357 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1358 too. */
1359 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1360 || ((inst >> 26) == 0x3
1361 && (((inst >> 6) & 0xf) == 0x8
1362 || (inst >> 6) & 0xf) == 0x9))
1363 return hppa_extract_5R_store (inst);
1364
1365 return 0;
1366 }
1367
1368 /* Return the register number for a FR which is saved by INST or
1369 zero it INST does not save a FR.
1370
1371 Note we only care about full 64bit register stores (that's the only
1372 kind of stores the prologue will use).
1373
1374 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1375
1376 static int
1377 inst_saves_fr (unsigned long inst)
1378 {
1379 /* is this an FSTD ? */
1380 if ((inst & 0xfc00dfc0) == 0x2c001200)
1381 return hppa_extract_5r_store (inst);
1382 if ((inst & 0xfc000002) == 0x70000002)
1383 return hppa_extract_5R_store (inst);
1384 /* is this an FSTW ? */
1385 if ((inst & 0xfc00df80) == 0x24001200)
1386 return hppa_extract_5r_store (inst);
1387 if ((inst & 0xfc000002) == 0x7c000000)
1388 return hppa_extract_5R_store (inst);
1389 return 0;
1390 }
1391
1392 /* Advance PC across any function entry prologue instructions
1393 to reach some "real" code.
1394
1395 Use information in the unwind table to determine what exactly should
1396 be in the prologue. */
1397
1398
1399 static CORE_ADDR
1400 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1401 {
1402 char buf[4];
1403 CORE_ADDR orig_pc = pc;
1404 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1405 unsigned long args_stored, status, i, restart_gr, restart_fr;
1406 struct unwind_table_entry *u;
1407 int final_iteration;
1408
1409 restart_gr = 0;
1410 restart_fr = 0;
1411
1412 restart:
1413 u = find_unwind_entry (pc);
1414 if (!u)
1415 return pc;
1416
1417 /* If we are not at the beginning of a function, then return now. */
1418 if ((pc & ~0x3) != u->region_start)
1419 return pc;
1420
1421 /* This is how much of a frame adjustment we need to account for. */
1422 stack_remaining = u->Total_frame_size << 3;
1423
1424 /* Magic register saves we want to know about. */
1425 save_rp = u->Save_RP;
1426 save_sp = u->Save_SP;
1427
1428 /* An indication that args may be stored into the stack. Unfortunately
1429 the HPUX compilers tend to set this in cases where no args were
1430 stored too!. */
1431 args_stored = 1;
1432
1433 /* Turn the Entry_GR field into a bitmask. */
1434 save_gr = 0;
1435 for (i = 3; i < u->Entry_GR + 3; i++)
1436 {
1437 /* Frame pointer gets saved into a special location. */
1438 if (u->Save_SP && i == HPPA_FP_REGNUM)
1439 continue;
1440
1441 save_gr |= (1 << i);
1442 }
1443 save_gr &= ~restart_gr;
1444
1445 /* Turn the Entry_FR field into a bitmask too. */
1446 save_fr = 0;
1447 for (i = 12; i < u->Entry_FR + 12; i++)
1448 save_fr |= (1 << i);
1449 save_fr &= ~restart_fr;
1450
1451 final_iteration = 0;
1452
1453 /* Loop until we find everything of interest or hit a branch.
1454
1455 For unoptimized GCC code and for any HP CC code this will never ever
1456 examine any user instructions.
1457
1458 For optimzied GCC code we're faced with problems. GCC will schedule
1459 its prologue and make prologue instructions available for delay slot
1460 filling. The end result is user code gets mixed in with the prologue
1461 and a prologue instruction may be in the delay slot of the first branch
1462 or call.
1463
1464 Some unexpected things are expected with debugging optimized code, so
1465 we allow this routine to walk past user instructions in optimized
1466 GCC code. */
1467 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1468 || args_stored)
1469 {
1470 unsigned int reg_num;
1471 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1472 unsigned long old_save_rp, old_save_sp, next_inst;
1473
1474 /* Save copies of all the triggers so we can compare them later
1475 (only for HPC). */
1476 old_save_gr = save_gr;
1477 old_save_fr = save_fr;
1478 old_save_rp = save_rp;
1479 old_save_sp = save_sp;
1480 old_stack_remaining = stack_remaining;
1481
1482 status = deprecated_read_memory_nobpt (pc, buf, 4);
1483 inst = extract_unsigned_integer (buf, 4);
1484
1485 /* Yow! */
1486 if (status != 0)
1487 return pc;
1488
1489 /* Note the interesting effects of this instruction. */
1490 stack_remaining -= prologue_inst_adjust_sp (inst);
1491
1492 /* There are limited ways to store the return pointer into the
1493 stack. */
1494 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1495 save_rp = 0;
1496
1497 /* These are the only ways we save SP into the stack. At this time
1498 the HP compilers never bother to save SP into the stack. */
1499 if ((inst & 0xffffc000) == 0x6fc10000
1500 || (inst & 0xffffc00c) == 0x73c10008)
1501 save_sp = 0;
1502
1503 /* Are we loading some register with an offset from the argument
1504 pointer? */
1505 if ((inst & 0xffe00000) == 0x37a00000
1506 || (inst & 0xffffffe0) == 0x081d0240)
1507 {
1508 pc += 4;
1509 continue;
1510 }
1511
1512 /* Account for general and floating-point register saves. */
1513 reg_num = inst_saves_gr (inst);
1514 save_gr &= ~(1 << reg_num);
1515
1516 /* Ugh. Also account for argument stores into the stack.
1517 Unfortunately args_stored only tells us that some arguments
1518 where stored into the stack. Not how many or what kind!
1519
1520 This is a kludge as on the HP compiler sets this bit and it
1521 never does prologue scheduling. So once we see one, skip past
1522 all of them. We have similar code for the fp arg stores below.
1523
1524 FIXME. Can still die if we have a mix of GR and FR argument
1525 stores! */
1526 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1527 {
1528 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1529 {
1530 pc += 4;
1531 status = deprecated_read_memory_nobpt (pc, buf, 4);
1532 inst = extract_unsigned_integer (buf, 4);
1533 if (status != 0)
1534 return pc;
1535 reg_num = inst_saves_gr (inst);
1536 }
1537 args_stored = 0;
1538 continue;
1539 }
1540
1541 reg_num = inst_saves_fr (inst);
1542 save_fr &= ~(1 << reg_num);
1543
1544 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1545 next_inst = extract_unsigned_integer (buf, 4);
1546
1547 /* Yow! */
1548 if (status != 0)
1549 return pc;
1550
1551 /* We've got to be read to handle the ldo before the fp register
1552 save. */
1553 if ((inst & 0xfc000000) == 0x34000000
1554 && inst_saves_fr (next_inst) >= 4
1555 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1556 {
1557 /* So we drop into the code below in a reasonable state. */
1558 reg_num = inst_saves_fr (next_inst);
1559 pc -= 4;
1560 }
1561
1562 /* Ugh. Also account for argument stores into the stack.
1563 This is a kludge as on the HP compiler sets this bit and it
1564 never does prologue scheduling. So once we see one, skip past
1565 all of them. */
1566 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1567 {
1568 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1569 {
1570 pc += 8;
1571 status = deprecated_read_memory_nobpt (pc, buf, 4);
1572 inst = extract_unsigned_integer (buf, 4);
1573 if (status != 0)
1574 return pc;
1575 if ((inst & 0xfc000000) != 0x34000000)
1576 break;
1577 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1578 next_inst = extract_unsigned_integer (buf, 4);
1579 if (status != 0)
1580 return pc;
1581 reg_num = inst_saves_fr (next_inst);
1582 }
1583 args_stored = 0;
1584 continue;
1585 }
1586
1587 /* Quit if we hit any kind of branch. This can happen if a prologue
1588 instruction is in the delay slot of the first call/branch. */
1589 if (is_branch (inst) && stop_before_branch)
1590 break;
1591
1592 /* What a crock. The HP compilers set args_stored even if no
1593 arguments were stored into the stack (boo hiss). This could
1594 cause this code to then skip a bunch of user insns (up to the
1595 first branch).
1596
1597 To combat this we try to identify when args_stored was bogusly
1598 set and clear it. We only do this when args_stored is nonzero,
1599 all other resources are accounted for, and nothing changed on
1600 this pass. */
1601 if (args_stored
1602 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1603 && old_save_gr == save_gr && old_save_fr == save_fr
1604 && old_save_rp == save_rp && old_save_sp == save_sp
1605 && old_stack_remaining == stack_remaining)
1606 break;
1607
1608 /* Bump the PC. */
1609 pc += 4;
1610
1611 /* !stop_before_branch, so also look at the insn in the delay slot
1612 of the branch. */
1613 if (final_iteration)
1614 break;
1615 if (is_branch (inst))
1616 final_iteration = 1;
1617 }
1618
1619 /* We've got a tenative location for the end of the prologue. However
1620 because of limitations in the unwind descriptor mechanism we may
1621 have went too far into user code looking for the save of a register
1622 that does not exist. So, if there registers we expected to be saved
1623 but never were, mask them out and restart.
1624
1625 This should only happen in optimized code, and should be very rare. */
1626 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1627 {
1628 pc = orig_pc;
1629 restart_gr = save_gr;
1630 restart_fr = save_fr;
1631 goto restart;
1632 }
1633
1634 return pc;
1635 }
1636
1637
1638 /* Return the address of the PC after the last prologue instruction if
1639 we can determine it from the debug symbols. Else return zero. */
1640
1641 static CORE_ADDR
1642 after_prologue (CORE_ADDR pc)
1643 {
1644 struct symtab_and_line sal;
1645 CORE_ADDR func_addr, func_end;
1646 struct symbol *f;
1647
1648 /* If we can not find the symbol in the partial symbol table, then
1649 there is no hope we can determine the function's start address
1650 with this code. */
1651 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1652 return 0;
1653
1654 /* Get the line associated with FUNC_ADDR. */
1655 sal = find_pc_line (func_addr, 0);
1656
1657 /* There are only two cases to consider. First, the end of the source line
1658 is within the function bounds. In that case we return the end of the
1659 source line. Second is the end of the source line extends beyond the
1660 bounds of the current function. We need to use the slow code to
1661 examine instructions in that case.
1662
1663 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1664 the wrong thing to do. In fact, it should be entirely possible for this
1665 function to always return zero since the slow instruction scanning code
1666 is supposed to *always* work. If it does not, then it is a bug. */
1667 if (sal.end < func_end)
1668 return sal.end;
1669 else
1670 return 0;
1671 }
1672
1673 /* To skip prologues, I use this predicate. Returns either PC itself
1674 if the code at PC does not look like a function prologue; otherwise
1675 returns an address that (if we're lucky) follows the prologue.
1676
1677 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1678 It doesn't necessarily skips all the insns in the prologue. In fact
1679 we might not want to skip all the insns because a prologue insn may
1680 appear in the delay slot of the first branch, and we don't want to
1681 skip over the branch in that case. */
1682
1683 static CORE_ADDR
1684 hppa_skip_prologue (CORE_ADDR pc)
1685 {
1686 unsigned long inst;
1687 int offset;
1688 CORE_ADDR post_prologue_pc;
1689 char buf[4];
1690
1691 /* See if we can determine the end of the prologue via the symbol table.
1692 If so, then return either PC, or the PC after the prologue, whichever
1693 is greater. */
1694
1695 post_prologue_pc = after_prologue (pc);
1696
1697 /* If after_prologue returned a useful address, then use it. Else
1698 fall back on the instruction skipping code.
1699
1700 Some folks have claimed this causes problems because the breakpoint
1701 may be the first instruction of the prologue. If that happens, then
1702 the instruction skipping code has a bug that needs to be fixed. */
1703 if (post_prologue_pc != 0)
1704 return max (pc, post_prologue_pc);
1705 else
1706 return (skip_prologue_hard_way (pc, 1));
1707 }
1708
1709 struct hppa_frame_cache
1710 {
1711 CORE_ADDR base;
1712 struct trad_frame_saved_reg *saved_regs;
1713 };
1714
1715 static struct hppa_frame_cache *
1716 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1717 {
1718 struct hppa_frame_cache *cache;
1719 long saved_gr_mask;
1720 long saved_fr_mask;
1721 CORE_ADDR this_sp;
1722 long frame_size;
1723 struct unwind_table_entry *u;
1724 CORE_ADDR prologue_end;
1725 int fp_in_r1 = 0;
1726 int i;
1727
1728 if (hppa_debug)
1729 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1730 frame_relative_level(next_frame));
1731
1732 if ((*this_cache) != NULL)
1733 {
1734 if (hppa_debug)
1735 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1736 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1737 return (*this_cache);
1738 }
1739 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1740 (*this_cache) = cache;
1741 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1742
1743 /* Yow! */
1744 u = find_unwind_entry (frame_pc_unwind (next_frame));
1745 if (!u)
1746 {
1747 if (hppa_debug)
1748 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1749 return (*this_cache);
1750 }
1751
1752 /* Turn the Entry_GR field into a bitmask. */
1753 saved_gr_mask = 0;
1754 for (i = 3; i < u->Entry_GR + 3; i++)
1755 {
1756 /* Frame pointer gets saved into a special location. */
1757 if (u->Save_SP && i == HPPA_FP_REGNUM)
1758 continue;
1759
1760 saved_gr_mask |= (1 << i);
1761 }
1762
1763 /* Turn the Entry_FR field into a bitmask too. */
1764 saved_fr_mask = 0;
1765 for (i = 12; i < u->Entry_FR + 12; i++)
1766 saved_fr_mask |= (1 << i);
1767
1768 /* Loop until we find everything of interest or hit a branch.
1769
1770 For unoptimized GCC code and for any HP CC code this will never ever
1771 examine any user instructions.
1772
1773 For optimized GCC code we're faced with problems. GCC will schedule
1774 its prologue and make prologue instructions available for delay slot
1775 filling. The end result is user code gets mixed in with the prologue
1776 and a prologue instruction may be in the delay slot of the first branch
1777 or call.
1778
1779 Some unexpected things are expected with debugging optimized code, so
1780 we allow this routine to walk past user instructions in optimized
1781 GCC code. */
1782 {
1783 int final_iteration = 0;
1784 CORE_ADDR pc, end_pc;
1785 int looking_for_sp = u->Save_SP;
1786 int looking_for_rp = u->Save_RP;
1787 int fp_loc = -1;
1788
1789 /* We have to use skip_prologue_hard_way instead of just
1790 skip_prologue_using_sal, in case we stepped into a function without
1791 symbol information. hppa_skip_prologue also bounds the returned
1792 pc by the passed in pc, so it will not return a pc in the next
1793 function.
1794
1795 We used to call hppa_skip_prologue to find the end of the prologue,
1796 but if some non-prologue instructions get scheduled into the prologue,
1797 and the program is compiled with debug information, the "easy" way
1798 in hppa_skip_prologue will return a prologue end that is too early
1799 for us to notice any potential frame adjustments. */
1800
1801 /* We used to use frame_func_unwind () to locate the beginning of the
1802 function to pass to skip_prologue (). However, when objects are
1803 compiled without debug symbols, frame_func_unwind can return the wrong
1804 function (or 0). We can do better than that by using unwind records. */
1805
1806 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1807 end_pc = frame_pc_unwind (next_frame);
1808
1809 if (prologue_end != 0 && end_pc > prologue_end)
1810 end_pc = prologue_end;
1811
1812 frame_size = 0;
1813
1814 for (pc = u->region_start;
1815 ((saved_gr_mask || saved_fr_mask
1816 || looking_for_sp || looking_for_rp
1817 || frame_size < (u->Total_frame_size << 3))
1818 && pc < end_pc);
1819 pc += 4)
1820 {
1821 int reg;
1822 char buf4[4];
1823 long inst;
1824
1825 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1826 sizeof buf4))
1827 {
1828 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1829 return (*this_cache);
1830 }
1831
1832 inst = extract_unsigned_integer (buf4, sizeof buf4);
1833
1834 /* Note the interesting effects of this instruction. */
1835 frame_size += prologue_inst_adjust_sp (inst);
1836
1837 /* There are limited ways to store the return pointer into the
1838 stack. */
1839 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1840 {
1841 looking_for_rp = 0;
1842 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1843 }
1844 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1845 {
1846 looking_for_rp = 0;
1847 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1848 }
1849 else if (inst == 0x0fc212c1
1850 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1851 {
1852 looking_for_rp = 0;
1853 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1854 }
1855
1856 /* Check to see if we saved SP into the stack. This also
1857 happens to indicate the location of the saved frame
1858 pointer. */
1859 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1860 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1861 {
1862 looking_for_sp = 0;
1863 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1864 }
1865 else if (inst == 0x08030241) /* copy %r3, %r1 */
1866 {
1867 fp_in_r1 = 1;
1868 }
1869
1870 /* Account for general and floating-point register saves. */
1871 reg = inst_saves_gr (inst);
1872 if (reg >= 3 && reg <= 18
1873 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1874 {
1875 saved_gr_mask &= ~(1 << reg);
1876 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1877 /* stwm with a positive displacement is a _post_
1878 _modify_. */
1879 cache->saved_regs[reg].addr = 0;
1880 else if ((inst & 0xfc00000c) == 0x70000008)
1881 /* A std has explicit post_modify forms. */
1882 cache->saved_regs[reg].addr = 0;
1883 else
1884 {
1885 CORE_ADDR offset;
1886
1887 if ((inst >> 26) == 0x1c)
1888 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1889 else if ((inst >> 26) == 0x03)
1890 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1891 else
1892 offset = hppa_extract_14 (inst);
1893
1894 /* Handle code with and without frame pointers. */
1895 if (u->Save_SP)
1896 cache->saved_regs[reg].addr = offset;
1897 else
1898 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1899 }
1900 }
1901
1902 /* GCC handles callee saved FP regs a little differently.
1903
1904 It emits an instruction to put the value of the start of
1905 the FP store area into %r1. It then uses fstds,ma with a
1906 basereg of %r1 for the stores.
1907
1908 HP CC emits them at the current stack pointer modifying the
1909 stack pointer as it stores each register. */
1910
1911 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1912 if ((inst & 0xffffc000) == 0x34610000
1913 || (inst & 0xffffc000) == 0x37c10000)
1914 fp_loc = hppa_extract_14 (inst);
1915
1916 reg = inst_saves_fr (inst);
1917 if (reg >= 12 && reg <= 21)
1918 {
1919 /* Note +4 braindamage below is necessary because the FP
1920 status registers are internally 8 registers rather than
1921 the expected 4 registers. */
1922 saved_fr_mask &= ~(1 << reg);
1923 if (fp_loc == -1)
1924 {
1925 /* 1st HP CC FP register store. After this
1926 instruction we've set enough state that the GCC and
1927 HPCC code are both handled in the same manner. */
1928 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1929 fp_loc = 8;
1930 }
1931 else
1932 {
1933 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1934 fp_loc += 8;
1935 }
1936 }
1937
1938 /* Quit if we hit any kind of branch the previous iteration. */
1939 if (final_iteration)
1940 break;
1941 /* We want to look precisely one instruction beyond the branch
1942 if we have not found everything yet. */
1943 if (is_branch (inst))
1944 final_iteration = 1;
1945 }
1946 }
1947
1948 {
1949 /* The frame base always represents the value of %sp at entry to
1950 the current function (and is thus equivalent to the "saved"
1951 stack pointer. */
1952 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1953 CORE_ADDR fp;
1954
1955 if (hppa_debug)
1956 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1957 "prologue_end=0x%s) ",
1958 paddr_nz (this_sp),
1959 paddr_nz (frame_pc_unwind (next_frame)),
1960 paddr_nz (prologue_end));
1961
1962 /* Check to see if a frame pointer is available, and use it for
1963 frame unwinding if it is.
1964
1965 There are some situations where we need to rely on the frame
1966 pointer to do stack unwinding. For example, if a function calls
1967 alloca (), the stack pointer can get adjusted inside the body of
1968 the function. In this case, the ABI requires that the compiler
1969 maintain a frame pointer for the function.
1970
1971 The unwind record has a flag (alloca_frame) that indicates that
1972 a function has a variable frame; unfortunately, gcc/binutils
1973 does not set this flag. Instead, whenever a frame pointer is used
1974 and saved on the stack, the Save_SP flag is set. We use this to
1975 decide whether to use the frame pointer for unwinding.
1976
1977 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1978 instead of Save_SP. */
1979
1980 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1981
1982 if (frame_pc_unwind (next_frame) >= prologue_end
1983 && u->Save_SP && fp != 0)
1984 {
1985 cache->base = fp;
1986
1987 if (hppa_debug)
1988 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
1989 paddr_nz (cache->base));
1990 }
1991 else if (u->Save_SP
1992 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1993 {
1994 /* Both we're expecting the SP to be saved and the SP has been
1995 saved. The entry SP value is saved at this frame's SP
1996 address. */
1997 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1998
1999 if (hppa_debug)
2000 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2001 paddr_nz (cache->base));
2002 }
2003 else
2004 {
2005 /* The prologue has been slowly allocating stack space. Adjust
2006 the SP back. */
2007 cache->base = this_sp - frame_size;
2008 if (hppa_debug)
2009 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2010 paddr_nz (cache->base));
2011
2012 }
2013 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2014 }
2015
2016 /* The PC is found in the "return register", "Millicode" uses "r31"
2017 as the return register while normal code uses "rp". */
2018 if (u->Millicode)
2019 {
2020 if (trad_frame_addr_p (cache->saved_regs, 31))
2021 {
2022 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2023 if (hppa_debug)
2024 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2025 }
2026 else
2027 {
2028 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2029 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2030 if (hppa_debug)
2031 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2032 }
2033 }
2034 else
2035 {
2036 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2037 {
2038 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2039 cache->saved_regs[HPPA_RP_REGNUM];
2040 if (hppa_debug)
2041 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2042 }
2043 else
2044 {
2045 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2046 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2047 if (hppa_debug)
2048 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2049 }
2050 }
2051
2052 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2053 frame. However, there is a one-insn window where we haven't saved it
2054 yet, but we've already clobbered it. Detect this case and fix it up.
2055
2056 The prologue sequence for frame-pointer functions is:
2057 0: stw %rp, -20(%sp)
2058 4: copy %r3, %r1
2059 8: copy %sp, %r3
2060 c: stw,ma %r1, XX(%sp)
2061
2062 So if we are at offset c, the r3 value that we want is not yet saved
2063 on the stack, but it's been overwritten. The prologue analyzer will
2064 set fp_in_r1 when it sees the copy insn so we know to get the value
2065 from r1 instead. */
2066 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2067 && fp_in_r1)
2068 {
2069 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2070 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2071 }
2072
2073 {
2074 /* Convert all the offsets into addresses. */
2075 int reg;
2076 for (reg = 0; reg < NUM_REGS; reg++)
2077 {
2078 if (trad_frame_addr_p (cache->saved_regs, reg))
2079 cache->saved_regs[reg].addr += cache->base;
2080 }
2081 }
2082
2083 {
2084 struct gdbarch *gdbarch;
2085 struct gdbarch_tdep *tdep;
2086
2087 gdbarch = get_frame_arch (next_frame);
2088 tdep = gdbarch_tdep (gdbarch);
2089
2090 if (tdep->unwind_adjust_stub)
2091 {
2092 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2093 }
2094 }
2095
2096 if (hppa_debug)
2097 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2098 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2099 return (*this_cache);
2100 }
2101
2102 static void
2103 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2104 struct frame_id *this_id)
2105 {
2106 struct hppa_frame_cache *info;
2107 CORE_ADDR pc = frame_pc_unwind (next_frame);
2108 struct unwind_table_entry *u;
2109
2110 info = hppa_frame_cache (next_frame, this_cache);
2111 u = find_unwind_entry (pc);
2112
2113 (*this_id) = frame_id_build (info->base, u->region_start);
2114 }
2115
2116 static void
2117 hppa_frame_prev_register (struct frame_info *next_frame,
2118 void **this_cache,
2119 int regnum, int *optimizedp,
2120 enum lval_type *lvalp, CORE_ADDR *addrp,
2121 int *realnump, gdb_byte *valuep)
2122 {
2123 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2124 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2125 optimizedp, lvalp, addrp, realnump, valuep);
2126 }
2127
2128 static const struct frame_unwind hppa_frame_unwind =
2129 {
2130 NORMAL_FRAME,
2131 hppa_frame_this_id,
2132 hppa_frame_prev_register
2133 };
2134
2135 static const struct frame_unwind *
2136 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2137 {
2138 CORE_ADDR pc = frame_pc_unwind (next_frame);
2139
2140 if (find_unwind_entry (pc))
2141 return &hppa_frame_unwind;
2142
2143 return NULL;
2144 }
2145
2146 /* This is a generic fallback frame unwinder that kicks in if we fail all
2147 the other ones. Normally we would expect the stub and regular unwinder
2148 to work, but in some cases we might hit a function that just doesn't
2149 have any unwind information available. In this case we try to do
2150 unwinding solely based on code reading. This is obviously going to be
2151 slow, so only use this as a last resort. Currently this will only
2152 identify the stack and pc for the frame. */
2153
2154 static struct hppa_frame_cache *
2155 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2156 {
2157 struct hppa_frame_cache *cache;
2158 unsigned int frame_size = 0;
2159 int found_rp = 0;
2160 CORE_ADDR start_pc;
2161
2162 if (hppa_debug)
2163 fprintf_unfiltered (gdb_stdlog,
2164 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2165 frame_relative_level (next_frame));
2166
2167 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2168 (*this_cache) = cache;
2169 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2170
2171 start_pc = frame_func_unwind (next_frame);
2172 if (start_pc)
2173 {
2174 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2175 CORE_ADDR pc;
2176
2177 for (pc = start_pc; pc < cur_pc; pc += 4)
2178 {
2179 unsigned int insn;
2180
2181 insn = read_memory_unsigned_integer (pc, 4);
2182 frame_size += prologue_inst_adjust_sp (insn);
2183
2184 /* There are limited ways to store the return pointer into the
2185 stack. */
2186 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2187 {
2188 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2189 found_rp = 1;
2190 }
2191 else if (insn == 0x0fc212c1
2192 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2193 {
2194 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2195 found_rp = 1;
2196 }
2197 }
2198 }
2199
2200 if (hppa_debug)
2201 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2202 frame_size, found_rp);
2203
2204 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2205 cache->base -= frame_size;
2206 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2207
2208 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2209 {
2210 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2211 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2212 cache->saved_regs[HPPA_RP_REGNUM];
2213 }
2214 else
2215 {
2216 ULONGEST rp;
2217 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2218 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2219 }
2220
2221 return cache;
2222 }
2223
2224 static void
2225 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2226 struct frame_id *this_id)
2227 {
2228 struct hppa_frame_cache *info =
2229 hppa_fallback_frame_cache (next_frame, this_cache);
2230 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2231 }
2232
2233 static void
2234 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2235 void **this_cache,
2236 int regnum, int *optimizedp,
2237 enum lval_type *lvalp, CORE_ADDR *addrp,
2238 int *realnump, gdb_byte *valuep)
2239 {
2240 struct hppa_frame_cache *info =
2241 hppa_fallback_frame_cache (next_frame, this_cache);
2242 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2243 optimizedp, lvalp, addrp, realnump, valuep);
2244 }
2245
2246 static const struct frame_unwind hppa_fallback_frame_unwind =
2247 {
2248 NORMAL_FRAME,
2249 hppa_fallback_frame_this_id,
2250 hppa_fallback_frame_prev_register
2251 };
2252
2253 static const struct frame_unwind *
2254 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2255 {
2256 return &hppa_fallback_frame_unwind;
2257 }
2258
2259 /* Stub frames, used for all kinds of call stubs. */
2260 struct hppa_stub_unwind_cache
2261 {
2262 CORE_ADDR base;
2263 struct trad_frame_saved_reg *saved_regs;
2264 };
2265
2266 static struct hppa_stub_unwind_cache *
2267 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2268 void **this_cache)
2269 {
2270 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2271 struct hppa_stub_unwind_cache *info;
2272 struct unwind_table_entry *u;
2273
2274 if (*this_cache)
2275 return *this_cache;
2276
2277 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2278 *this_cache = info;
2279 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2280
2281 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2282
2283 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2284 {
2285 /* HPUX uses export stubs in function calls; the export stub clobbers
2286 the return value of the caller, and, later restores it from the
2287 stack. */
2288 u = find_unwind_entry (frame_pc_unwind (next_frame));
2289
2290 if (u && u->stub_unwind.stub_type == EXPORT)
2291 {
2292 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2293
2294 return info;
2295 }
2296 }
2297
2298 /* By default we assume that stubs do not change the rp. */
2299 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2300
2301 return info;
2302 }
2303
2304 static void
2305 hppa_stub_frame_this_id (struct frame_info *next_frame,
2306 void **this_prologue_cache,
2307 struct frame_id *this_id)
2308 {
2309 struct hppa_stub_unwind_cache *info
2310 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2311
2312 if (info)
2313 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2314 else
2315 *this_id = null_frame_id;
2316 }
2317
2318 static void
2319 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2320 void **this_prologue_cache,
2321 int regnum, int *optimizedp,
2322 enum lval_type *lvalp, CORE_ADDR *addrp,
2323 int *realnump, gdb_byte *valuep)
2324 {
2325 struct hppa_stub_unwind_cache *info
2326 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2327
2328 if (info)
2329 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2330 optimizedp, lvalp, addrp, realnump,
2331 valuep);
2332 else
2333 error (_("Requesting registers from null frame."));
2334 }
2335
2336 static const struct frame_unwind hppa_stub_frame_unwind = {
2337 NORMAL_FRAME,
2338 hppa_stub_frame_this_id,
2339 hppa_stub_frame_prev_register
2340 };
2341
2342 static const struct frame_unwind *
2343 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2344 {
2345 CORE_ADDR pc = frame_pc_unwind (next_frame);
2346 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2348
2349 if (pc == 0
2350 || (tdep->in_solib_call_trampoline != NULL
2351 && tdep->in_solib_call_trampoline (pc, NULL))
2352 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2353 return &hppa_stub_frame_unwind;
2354 return NULL;
2355 }
2356
2357 static struct frame_id
2358 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2359 {
2360 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2361 HPPA_SP_REGNUM),
2362 frame_pc_unwind (next_frame));
2363 }
2364
2365 CORE_ADDR
2366 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2367 {
2368 ULONGEST ipsw;
2369 CORE_ADDR pc;
2370
2371 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2372 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2373
2374 /* If the current instruction is nullified, then we are effectively
2375 still executing the previous instruction. Pretend we are still
2376 there. This is needed when single stepping; if the nullified
2377 instruction is on a different line, we don't want GDB to think
2378 we've stepped onto that line. */
2379 if (ipsw & 0x00200000)
2380 pc -= 4;
2381
2382 return pc & ~0x3;
2383 }
2384
2385 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2386 Return NULL if no such symbol was found. */
2387
2388 struct minimal_symbol *
2389 hppa_lookup_stub_minimal_symbol (const char *name,
2390 enum unwind_stub_types stub_type)
2391 {
2392 struct objfile *objfile;
2393 struct minimal_symbol *msym;
2394
2395 ALL_MSYMBOLS (objfile, msym)
2396 {
2397 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2398 {
2399 struct unwind_table_entry *u;
2400
2401 u = find_unwind_entry (SYMBOL_VALUE (msym));
2402 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2403 return msym;
2404 }
2405 }
2406
2407 return NULL;
2408 }
2409
2410 static void
2411 unwind_command (char *exp, int from_tty)
2412 {
2413 CORE_ADDR address;
2414 struct unwind_table_entry *u;
2415
2416 /* If we have an expression, evaluate it and use it as the address. */
2417
2418 if (exp != 0 && *exp != 0)
2419 address = parse_and_eval_address (exp);
2420 else
2421 return;
2422
2423 u = find_unwind_entry (address);
2424
2425 if (!u)
2426 {
2427 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2428 return;
2429 }
2430
2431 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2432
2433 printf_unfiltered ("\tregion_start = ");
2434 print_address (u->region_start, gdb_stdout);
2435 gdb_flush (gdb_stdout);
2436
2437 printf_unfiltered ("\n\tregion_end = ");
2438 print_address (u->region_end, gdb_stdout);
2439 gdb_flush (gdb_stdout);
2440
2441 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2442
2443 printf_unfiltered ("\n\tflags =");
2444 pif (Cannot_unwind);
2445 pif (Millicode);
2446 pif (Millicode_save_sr0);
2447 pif (Entry_SR);
2448 pif (Args_stored);
2449 pif (Variable_Frame);
2450 pif (Separate_Package_Body);
2451 pif (Frame_Extension_Millicode);
2452 pif (Stack_Overflow_Check);
2453 pif (Two_Instruction_SP_Increment);
2454 pif (Ada_Region);
2455 pif (Save_SP);
2456 pif (Save_RP);
2457 pif (Save_MRP_in_frame);
2458 pif (extn_ptr_defined);
2459 pif (Cleanup_defined);
2460 pif (MPE_XL_interrupt_marker);
2461 pif (HP_UX_interrupt_marker);
2462 pif (Large_frame);
2463
2464 putchar_unfiltered ('\n');
2465
2466 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2467
2468 pin (Region_description);
2469 pin (Entry_FR);
2470 pin (Entry_GR);
2471 pin (Total_frame_size);
2472
2473 if (u->stub_unwind.stub_type)
2474 {
2475 printf_unfiltered ("\tstub type = ");
2476 switch (u->stub_unwind.stub_type)
2477 {
2478 case LONG_BRANCH:
2479 printf_unfiltered ("long branch\n");
2480 break;
2481 case PARAMETER_RELOCATION:
2482 printf_unfiltered ("parameter relocation\n");
2483 break;
2484 case EXPORT:
2485 printf_unfiltered ("export\n");
2486 break;
2487 case IMPORT:
2488 printf_unfiltered ("import\n");
2489 break;
2490 case IMPORT_SHLIB:
2491 printf_unfiltered ("import shlib\n");
2492 break;
2493 default:
2494 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2495 }
2496 }
2497 }
2498
2499 int
2500 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2501 {
2502 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2503
2504 An example of this occurs when an a.out is linked against a foo.sl.
2505 The foo.sl defines a global bar(), and the a.out declares a signature
2506 for bar(). However, the a.out doesn't directly call bar(), but passes
2507 its address in another call.
2508
2509 If you have this scenario and attempt to "break bar" before running,
2510 gdb will find a minimal symbol for bar() in the a.out. But that
2511 symbol's address will be negative. What this appears to denote is
2512 an index backwards from the base of the procedure linkage table (PLT)
2513 into the data linkage table (DLT), the end of which is contiguous
2514 with the start of the PLT. This is clearly not a valid address for
2515 us to set a breakpoint on.
2516
2517 Note that one must be careful in how one checks for a negative address.
2518 0xc0000000 is a legitimate address of something in a shared text
2519 segment, for example. Since I don't know what the possible range
2520 is of these "really, truly negative" addresses that come from the
2521 minimal symbols, I'm resorting to the gross hack of checking the
2522 top byte of the address for all 1's. Sigh. */
2523
2524 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2525 }
2526
2527 /* Return the GDB type object for the "standard" data type of data in
2528 register REGNUM. */
2529
2530 static struct type *
2531 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2532 {
2533 if (regnum < HPPA_FP4_REGNUM)
2534 return builtin_type_uint32;
2535 else
2536 return builtin_type_ieee_single_big;
2537 }
2538
2539 static struct type *
2540 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2541 {
2542 if (regnum < HPPA64_FP4_REGNUM)
2543 return builtin_type_uint64;
2544 else
2545 return builtin_type_ieee_double_big;
2546 }
2547
2548 /* Return non-zero if REGNUM is not a register available to the user
2549 through ptrace/ttrace. */
2550
2551 static int
2552 hppa32_cannot_store_register (int regnum)
2553 {
2554 return (regnum == 0
2555 || regnum == HPPA_PCSQ_HEAD_REGNUM
2556 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2557 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2558 }
2559
2560 static int
2561 hppa64_cannot_store_register (int regnum)
2562 {
2563 return (regnum == 0
2564 || regnum == HPPA_PCSQ_HEAD_REGNUM
2565 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2566 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2567 }
2568
2569 static CORE_ADDR
2570 hppa_smash_text_address (CORE_ADDR addr)
2571 {
2572 /* The low two bits of the PC on the PA contain the privilege level.
2573 Some genius implementing a (non-GCC) compiler apparently decided
2574 this means that "addresses" in a text section therefore include a
2575 privilege level, and thus symbol tables should contain these bits.
2576 This seems like a bonehead thing to do--anyway, it seems to work
2577 for our purposes to just ignore those bits. */
2578
2579 return (addr &= ~0x3);
2580 }
2581
2582 /* Get the ARGIth function argument for the current function. */
2583
2584 static CORE_ADDR
2585 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2586 struct type *type)
2587 {
2588 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2589 }
2590
2591 static void
2592 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2593 int regnum, gdb_byte *buf)
2594 {
2595 ULONGEST tmp;
2596
2597 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2598 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2599 tmp &= ~0x3;
2600 store_unsigned_integer (buf, sizeof tmp, tmp);
2601 }
2602
2603 static CORE_ADDR
2604 hppa_find_global_pointer (struct value *function)
2605 {
2606 return 0;
2607 }
2608
2609 void
2610 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2611 struct trad_frame_saved_reg saved_regs[],
2612 int regnum, int *optimizedp,
2613 enum lval_type *lvalp, CORE_ADDR *addrp,
2614 int *realnump, gdb_byte *valuep)
2615 {
2616 struct gdbarch *arch = get_frame_arch (next_frame);
2617
2618 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2619 {
2620 if (valuep)
2621 {
2622 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2623 CORE_ADDR pc;
2624
2625 trad_frame_get_prev_register (next_frame, saved_regs,
2626 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2627 lvalp, addrp, realnump, valuep);
2628
2629 pc = extract_unsigned_integer (valuep, size);
2630 store_unsigned_integer (valuep, size, pc + 4);
2631 }
2632
2633 /* It's a computed value. */
2634 *optimizedp = 0;
2635 *lvalp = not_lval;
2636 *addrp = 0;
2637 *realnump = -1;
2638 return;
2639 }
2640
2641 /* Make sure the "flags" register is zero in all unwound frames.
2642 The "flags" registers is a HP-UX specific wart, and only the code
2643 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2644 with it here. This shouldn't affect other systems since those
2645 should provide zero for the "flags" register anyway. */
2646 if (regnum == HPPA_FLAGS_REGNUM)
2647 {
2648 if (valuep)
2649 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2650
2651 /* It's a computed value. */
2652 *optimizedp = 0;
2653 *lvalp = not_lval;
2654 *addrp = 0;
2655 *realnump = -1;
2656 return;
2657 }
2658
2659 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2660 optimizedp, lvalp, addrp, realnump, valuep);
2661 }
2662 \f
2663
2664 /* Here is a table of C type sizes on hppa with various compiles
2665 and options. I measured this on PA 9000/800 with HP-UX 11.11
2666 and these compilers:
2667
2668 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2669 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2670 /opt/aCC/bin/aCC B3910B A.03.45
2671 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2672
2673 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2674 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2675 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2676 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2677 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2678 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2679 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2680 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2681
2682 Each line is:
2683
2684 compiler and options
2685 char, short, int, long, long long
2686 float, double, long double
2687 char *, void (*)()
2688
2689 So all these compilers use either ILP32 or LP64 model.
2690 TODO: gcc has more options so it needs more investigation.
2691
2692 For floating point types, see:
2693
2694 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2695 HP-UX floating-point guide, hpux 11.00
2696
2697 -- chastain 2003-12-18 */
2698
2699 static struct gdbarch *
2700 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2701 {
2702 struct gdbarch_tdep *tdep;
2703 struct gdbarch *gdbarch;
2704
2705 /* Try to determine the ABI of the object we are loading. */
2706 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2707 {
2708 /* If it's a SOM file, assume it's HP/UX SOM. */
2709 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2710 info.osabi = GDB_OSABI_HPUX_SOM;
2711 }
2712
2713 /* find a candidate among the list of pre-declared architectures. */
2714 arches = gdbarch_list_lookup_by_info (arches, &info);
2715 if (arches != NULL)
2716 return (arches->gdbarch);
2717
2718 /* If none found, then allocate and initialize one. */
2719 tdep = XZALLOC (struct gdbarch_tdep);
2720 gdbarch = gdbarch_alloc (&info, tdep);
2721
2722 /* Determine from the bfd_arch_info structure if we are dealing with
2723 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2724 then default to a 32bit machine. */
2725 if (info.bfd_arch_info != NULL)
2726 tdep->bytes_per_address =
2727 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2728 else
2729 tdep->bytes_per_address = 4;
2730
2731 tdep->find_global_pointer = hppa_find_global_pointer;
2732
2733 /* Some parts of the gdbarch vector depend on whether we are running
2734 on a 32 bits or 64 bits target. */
2735 switch (tdep->bytes_per_address)
2736 {
2737 case 4:
2738 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2739 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2740 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2741 set_gdbarch_cannot_store_register (gdbarch,
2742 hppa32_cannot_store_register);
2743 set_gdbarch_cannot_fetch_register (gdbarch,
2744 hppa32_cannot_store_register);
2745 break;
2746 case 8:
2747 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2748 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2749 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2750 set_gdbarch_cannot_store_register (gdbarch,
2751 hppa64_cannot_store_register);
2752 set_gdbarch_cannot_fetch_register (gdbarch,
2753 hppa64_cannot_store_register);
2754 break;
2755 default:
2756 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
2757 tdep->bytes_per_address);
2758 }
2759
2760 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2761 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2762
2763 /* The following gdbarch vector elements are the same in both ILP32
2764 and LP64, but might show differences some day. */
2765 set_gdbarch_long_long_bit (gdbarch, 64);
2766 set_gdbarch_long_double_bit (gdbarch, 128);
2767 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2768
2769 /* The following gdbarch vector elements do not depend on the address
2770 size, or in any other gdbarch element previously set. */
2771 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2772 set_gdbarch_in_function_epilogue_p (gdbarch,
2773 hppa_in_function_epilogue_p);
2774 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2775 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2776 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2777 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2778 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2779 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2780 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2781 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2782
2783 /* Helper for function argument information. */
2784 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2785
2786 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2787
2788 /* When a hardware watchpoint triggers, we'll move the inferior past
2789 it by removing all eventpoints; stepping past the instruction
2790 that caused the trigger; reinserting eventpoints; and checking
2791 whether any watched location changed. */
2792 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2793
2794 /* Inferior function call methods. */
2795 switch (tdep->bytes_per_address)
2796 {
2797 case 4:
2798 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2799 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2800 set_gdbarch_convert_from_func_ptr_addr
2801 (gdbarch, hppa32_convert_from_func_ptr_addr);
2802 break;
2803 case 8:
2804 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2805 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2806 break;
2807 default:
2808 internal_error (__FILE__, __LINE__, _("bad switch"));
2809 }
2810
2811 /* Struct return methods. */
2812 switch (tdep->bytes_per_address)
2813 {
2814 case 4:
2815 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2816 break;
2817 case 8:
2818 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2819 break;
2820 default:
2821 internal_error (__FILE__, __LINE__, _("bad switch"));
2822 }
2823
2824 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2825 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2826
2827 /* Frame unwind methods. */
2828 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2829 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2830
2831 /* Hook in ABI-specific overrides, if they have been registered. */
2832 gdbarch_init_osabi (info, gdbarch);
2833
2834 /* Hook in the default unwinders. */
2835 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2836 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2837 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2838
2839 return gdbarch;
2840 }
2841
2842 static void
2843 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2844 {
2845 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2846
2847 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2848 tdep->bytes_per_address);
2849 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2850 }
2851
2852 void
2853 _initialize_hppa_tdep (void)
2854 {
2855 struct cmd_list_element *c;
2856
2857 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2858
2859 hppa_objfile_priv_data = register_objfile_data ();
2860
2861 add_cmd ("unwind", class_maintenance, unwind_command,
2862 _("Print unwind table entry at given address."),
2863 &maintenanceprintlist);
2864
2865 /* Debug this files internals. */
2866 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
2867 Set whether hppa target specific debugging information should be displayed."),
2868 _("\
2869 Show whether hppa target specific debugging information is displayed."), _("\
2870 This flag controls whether hppa target specific debugging information is\n\
2871 displayed. This information is particularly useful for debugging frame\n\
2872 unwinding problems."),
2873 NULL,
2874 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2875 &setdebuglist, &showdebuglist);
2876 }