* hppa-tdep.c (hppa_frame_find_saved_regs): Change "frame" to
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39
40 #ifdef COFF_ENCAPSULATE
41 #include "a.out.encap.h"
42 #else
43 #endif
44 #ifndef N_SET_MAGIC
45 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
46 #endif
47
48 /*#include <sys/user.h> After a.out.h */
49 #include <sys/file.h>
50 #include <sys/stat.h>
51 #include "wait.h"
52
53 #include "gdbcore.h"
54 #include "gdbcmd.h"
55 #include "target.h"
56 #include "symfile.h"
57 #include "objfiles.h"
58
59 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60
61 static int hppa_alignof PARAMS ((struct type *));
62
63 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66
67 static int is_branch PARAMS ((unsigned long));
68
69 static int inst_saves_gr PARAMS ((unsigned long));
70
71 static int inst_saves_fr PARAMS ((unsigned long));
72
73 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
74
75 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
76
77 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
78 const struct unwind_table_entry *));
79
80 static void read_unwind_info PARAMS ((struct objfile *));
81
82 static void internalize_unwinds PARAMS ((struct objfile *,
83 struct unwind_table_entry *,
84 asection *, unsigned int,
85 unsigned int));
86
87 \f
88 /* Routines to extract various sized constants out of hppa
89 instructions. */
90
91 /* This assumes that no garbage lies outside of the lower bits of
92 value. */
93
94 int
95 sign_extend (val, bits)
96 unsigned val, bits;
97 {
98 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
99 }
100
101 /* For many immediate values the sign bit is the low bit! */
102
103 int
104 low_sign_extend (val, bits)
105 unsigned val, bits;
106 {
107 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
108 }
109 /* extract the immediate field from a ld{bhw}s instruction */
110
111 unsigned
112 get_field (val, from, to)
113 unsigned val, from, to;
114 {
115 val = val >> 31 - to;
116 return val & ((1 << 32 - from) - 1);
117 }
118
119 unsigned
120 set_field (val, from, to, new_val)
121 unsigned *val, from, to;
122 {
123 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
124 return *val = *val & mask | (new_val << (31 - from));
125 }
126
127 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
128
129 extract_3 (word)
130 unsigned word;
131 {
132 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
133 }
134
135 extract_5_load (word)
136 unsigned word;
137 {
138 return low_sign_extend (word >> 16 & MASK_5, 5);
139 }
140
141 /* extract the immediate field from a st{bhw}s instruction */
142
143 int
144 extract_5_store (word)
145 unsigned word;
146 {
147 return low_sign_extend (word & MASK_5, 5);
148 }
149
150 /* extract the immediate field from a break instruction */
151
152 unsigned
153 extract_5r_store (word)
154 unsigned word;
155 {
156 return (word & MASK_5);
157 }
158
159 /* extract the immediate field from a {sr}sm instruction */
160
161 unsigned
162 extract_5R_store (word)
163 unsigned word;
164 {
165 return (word >> 16 & MASK_5);
166 }
167
168 /* extract an 11 bit immediate field */
169
170 int
171 extract_11 (word)
172 unsigned word;
173 {
174 return low_sign_extend (word & MASK_11, 11);
175 }
176
177 /* extract a 14 bit immediate field */
178
179 int
180 extract_14 (word)
181 unsigned word;
182 {
183 return low_sign_extend (word & MASK_14, 14);
184 }
185
186 /* deposit a 14 bit constant in a word */
187
188 unsigned
189 deposit_14 (opnd, word)
190 int opnd;
191 unsigned word;
192 {
193 unsigned sign = (opnd < 0 ? 1 : 0);
194
195 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
196 }
197
198 /* extract a 21 bit constant */
199
200 int
201 extract_21 (word)
202 unsigned word;
203 {
204 int val;
205
206 word &= MASK_21;
207 word <<= 11;
208 val = GET_FIELD (word, 20, 20);
209 val <<= 11;
210 val |= GET_FIELD (word, 9, 19);
211 val <<= 2;
212 val |= GET_FIELD (word, 5, 6);
213 val <<= 5;
214 val |= GET_FIELD (word, 0, 4);
215 val <<= 2;
216 val |= GET_FIELD (word, 7, 8);
217 return sign_extend (val, 21) << 11;
218 }
219
220 /* deposit a 21 bit constant in a word. Although 21 bit constants are
221 usually the top 21 bits of a 32 bit constant, we assume that only
222 the low 21 bits of opnd are relevant */
223
224 unsigned
225 deposit_21 (opnd, word)
226 unsigned opnd, word;
227 {
228 unsigned val = 0;
229
230 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
231 val <<= 2;
232 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
233 val <<= 2;
234 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
235 val <<= 11;
236 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
237 val <<= 1;
238 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
239 return word | val;
240 }
241
242 /* extract a 12 bit constant from branch instructions */
243
244 int
245 extract_12 (word)
246 unsigned word;
247 {
248 return sign_extend (GET_FIELD (word, 19, 28) |
249 GET_FIELD (word, 29, 29) << 10 |
250 (word & 0x1) << 11, 12) << 2;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 extract_17 (word)
258 unsigned word;
259 {
260 return sign_extend (GET_FIELD (word, 19, 28) |
261 GET_FIELD (word, 29, 29) << 10 |
262 GET_FIELD (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265 \f
266
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271 static int
272 compare_unwind_entries (a, b)
273 const struct unwind_table_entry *a;
274 const struct unwind_table_entry *b;
275 {
276 if (a->region_start > b->region_start)
277 return 1;
278 else if (a->region_start < b->region_start)
279 return -1;
280 else
281 return 0;
282 }
283
284 static void
285 internalize_unwinds (objfile, table, section, entries, size)
286 struct objfile *objfile;
287 struct unwind_table_entry *table;
288 asection *section;
289 unsigned int entries, size;
290 {
291 /* We will read the unwind entries into temporary memory, then
292 fill in the actual unwind table. */
293 if (size > 0)
294 {
295 unsigned long tmp;
296 unsigned i;
297 char *buf = alloca (size);
298
299 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
300
301 /* Now internalize the information being careful to handle host/target
302 endian issues. */
303 for (i = 0; i < entries; i++)
304 {
305 table[i].region_start = bfd_get_32 (objfile->obfd,
306 (bfd_byte *)buf);
307 buf += 4;
308 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
309 buf += 4;
310 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
311 buf += 4;
312 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
313 table[i].Millicode = (tmp >> 30) & 0x1;
314 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
315 table[i].Region_description = (tmp >> 27) & 0x3;
316 table[i].reserved1 = (tmp >> 26) & 0x1;
317 table[i].Entry_SR = (tmp >> 25) & 0x1;
318 table[i].Entry_FR = (tmp >> 21) & 0xf;
319 table[i].Entry_GR = (tmp >> 16) & 0x1f;
320 table[i].Args_stored = (tmp >> 15) & 0x1;
321 table[i].Variable_Frame = (tmp >> 14) & 0x1;
322 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
323 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
324 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
325 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
326 table[i].Ada_Region = (tmp >> 9) & 0x1;
327 table[i].reserved2 = (tmp >> 5) & 0xf;
328 table[i].Save_SP = (tmp >> 4) & 0x1;
329 table[i].Save_RP = (tmp >> 3) & 0x1;
330 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
331 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
332 table[i].Cleanup_defined = tmp & 0x1;
333 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
334 buf += 4;
335 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
336 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
337 table[i].Large_frame = (tmp >> 29) & 0x1;
338 table[i].reserved4 = (tmp >> 27) & 0x3;
339 table[i].Total_frame_size = tmp & 0x7ffffff;
340 }
341 }
342 }
343
344 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
345 the object file. This info is used mainly by find_unwind_entry() to find
346 out the stack frame size and frame pointer used by procedures. We put
347 everything on the psymbol obstack in the objfile so that it automatically
348 gets freed when the objfile is destroyed. */
349
350 static void
351 read_unwind_info (objfile)
352 struct objfile *objfile;
353 {
354 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
355 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
356 unsigned index, unwind_entries, elf_unwind_entries;
357 unsigned stub_entries, total_entries;
358 struct obj_unwind_info *ui;
359
360 ui = obstack_alloc (&objfile->psymbol_obstack,
361 sizeof (struct obj_unwind_info));
362
363 ui->table = NULL;
364 ui->cache = NULL;
365 ui->last = -1;
366
367 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
368 section in ELF at the moment. */
369 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
370 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
371 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
372
373 /* Get sizes and unwind counts for all sections. */
374 if (unwind_sec)
375 {
376 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
377 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
378 }
379 else
380 {
381 unwind_size = 0;
382 unwind_entries = 0;
383 }
384
385 if (elf_unwind_sec)
386 {
387 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
388 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
389 }
390 else
391 {
392 elf_unwind_size = 0;
393 elf_unwind_entries = 0;
394 }
395
396 if (stub_unwind_sec)
397 {
398 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
399 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
400 }
401 else
402 {
403 stub_unwind_size = 0;
404 stub_entries = 0;
405 }
406
407 /* Compute total number of unwind entries and their total size. */
408 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
409 total_size = total_entries * sizeof (struct unwind_table_entry);
410
411 /* Allocate memory for the unwind table. */
412 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
413 ui->last = total_entries - 1;
414
415 /* Internalize the standard unwind entries. */
416 index = 0;
417 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
418 unwind_entries, unwind_size);
419 index += unwind_entries;
420 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
421 elf_unwind_entries, elf_unwind_size);
422 index += elf_unwind_entries;
423
424 /* Now internalize the stub unwind entries. */
425 if (stub_unwind_size > 0)
426 {
427 unsigned int i;
428 char *buf = alloca (stub_unwind_size);
429
430 /* Read in the stub unwind entries. */
431 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
432 0, stub_unwind_size);
433
434 /* Now convert them into regular unwind entries. */
435 for (i = 0; i < stub_entries; i++, index++)
436 {
437 /* Clear out the next unwind entry. */
438 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
439
440 /* Convert offset & size into region_start and region_end.
441 Stuff away the stub type into "reserved" fields. */
442 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
443 (bfd_byte *) buf);
444 buf += 4;
445 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
446 (bfd_byte *) buf);
447 buf += 2;
448 ui->table[index].region_end
449 = ui->table[index].region_start + 4 *
450 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
451 buf += 2;
452 }
453
454 }
455
456 /* Unwind table needs to be kept sorted. */
457 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
458 compare_unwind_entries);
459
460 /* Keep a pointer to the unwind information. */
461 objfile->obj_private = (PTR) ui;
462 }
463
464 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
465 of the objfiles seeking the unwind table entry for this PC. Each objfile
466 contains a sorted list of struct unwind_table_entry. Since we do a binary
467 search of the unwind tables, we depend upon them to be sorted. */
468
469 static struct unwind_table_entry *
470 find_unwind_entry(pc)
471 CORE_ADDR pc;
472 {
473 int first, middle, last;
474 struct objfile *objfile;
475
476 ALL_OBJFILES (objfile)
477 {
478 struct obj_unwind_info *ui;
479
480 ui = OBJ_UNWIND_INFO (objfile);
481
482 if (!ui)
483 {
484 read_unwind_info (objfile);
485 ui = OBJ_UNWIND_INFO (objfile);
486 }
487
488 /* First, check the cache */
489
490 if (ui->cache
491 && pc >= ui->cache->region_start
492 && pc <= ui->cache->region_end)
493 return ui->cache;
494
495 /* Not in the cache, do a binary search */
496
497 first = 0;
498 last = ui->last;
499
500 while (first <= last)
501 {
502 middle = (first + last) / 2;
503 if (pc >= ui->table[middle].region_start
504 && pc <= ui->table[middle].region_end)
505 {
506 ui->cache = &ui->table[middle];
507 return &ui->table[middle];
508 }
509
510 if (pc < ui->table[middle].region_start)
511 last = middle - 1;
512 else
513 first = middle + 1;
514 }
515 } /* ALL_OBJFILES() */
516 return NULL;
517 }
518
519 /* start-sanitize-hpread */
520 /* Return the adjustment necessary to make for addresses on the stack
521 as presented by hpread.c.
522
523 This is necessary because of the stack direction on the PA and the
524 bizarre way in which someone (?) decided they wanted to handle
525 frame pointerless code in GDB. */
526 int
527 hpread_adjust_stack_address (func_addr)
528 CORE_ADDR func_addr;
529 {
530 struct unwind_table_entry *u;
531
532 u = find_unwind_entry (func_addr);
533 if (!u)
534 return 0;
535 else
536 return u->Total_frame_size << 3;
537 }
538 /* end-sanitize-hpread */
539
540 /* Called to determine if PC is in an interrupt handler of some
541 kind. */
542
543 static int
544 pc_in_interrupt_handler (pc)
545 CORE_ADDR pc;
546 {
547 struct unwind_table_entry *u;
548 struct minimal_symbol *msym_us;
549
550 u = find_unwind_entry (pc);
551 if (!u)
552 return 0;
553
554 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
555 its frame isn't a pure interrupt frame. Deal with this. */
556 msym_us = lookup_minimal_symbol_by_pc (pc);
557
558 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
559 }
560
561 /* Called when no unwind descriptor was found for PC. Returns 1 if it
562 appears that PC is in a linker stub. */
563
564 static int
565 pc_in_linker_stub (pc)
566 CORE_ADDR pc;
567 {
568 int found_magic_instruction = 0;
569 int i;
570 char buf[4];
571
572 /* If unable to read memory, assume pc is not in a linker stub. */
573 if (target_read_memory (pc, buf, 4) != 0)
574 return 0;
575
576 /* We are looking for something like
577
578 ; $$dyncall jams RP into this special spot in the frame (RP')
579 ; before calling the "call stub"
580 ldw -18(sp),rp
581
582 ldsid (rp),r1 ; Get space associated with RP into r1
583 mtsp r1,sp ; Move it into space register 0
584 be,n 0(sr0),rp) ; back to your regularly scheduled program
585 */
586
587 /* Maximum known linker stub size is 4 instructions. Search forward
588 from the given PC, then backward. */
589 for (i = 0; i < 4; i++)
590 {
591 /* If we hit something with an unwind, stop searching this direction. */
592
593 if (find_unwind_entry (pc + i * 4) != 0)
594 break;
595
596 /* Check for ldsid (rp),r1 which is the magic instruction for a
597 return from a cross-space function call. */
598 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
599 {
600 found_magic_instruction = 1;
601 break;
602 }
603 /* Add code to handle long call/branch and argument relocation stubs
604 here. */
605 }
606
607 if (found_magic_instruction != 0)
608 return 1;
609
610 /* Now look backward. */
611 for (i = 0; i < 4; i++)
612 {
613 /* If we hit something with an unwind, stop searching this direction. */
614
615 if (find_unwind_entry (pc - i * 4) != 0)
616 break;
617
618 /* Check for ldsid (rp),r1 which is the magic instruction for a
619 return from a cross-space function call. */
620 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
621 {
622 found_magic_instruction = 1;
623 break;
624 }
625 /* Add code to handle long call/branch and argument relocation stubs
626 here. */
627 }
628 return found_magic_instruction;
629 }
630
631 static int
632 find_return_regnum(pc)
633 CORE_ADDR pc;
634 {
635 struct unwind_table_entry *u;
636
637 u = find_unwind_entry (pc);
638
639 if (!u)
640 return RP_REGNUM;
641
642 if (u->Millicode)
643 return 31;
644
645 return RP_REGNUM;
646 }
647
648 /* Return size of frame, or -1 if we should use a frame pointer. */
649 int
650 find_proc_framesize (pc)
651 CORE_ADDR pc;
652 {
653 struct unwind_table_entry *u;
654 struct minimal_symbol *msym_us;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 {
660 if (pc_in_linker_stub (pc))
661 /* Linker stubs have a zero size frame. */
662 return 0;
663 else
664 return -1;
665 }
666
667 msym_us = lookup_minimal_symbol_by_pc (pc);
668
669 /* If Save_SP is set, and we're not in an interrupt or signal caller,
670 then we have a frame pointer. Use it. */
671 if (u->Save_SP && !pc_in_interrupt_handler (pc)
672 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
673 return -1;
674
675 return u->Total_frame_size << 3;
676 }
677
678 /* Return offset from sp at which rp is saved, or 0 if not saved. */
679 static int rp_saved PARAMS ((CORE_ADDR));
680
681 static int
682 rp_saved (pc)
683 CORE_ADDR pc;
684 {
685 struct unwind_table_entry *u;
686
687 u = find_unwind_entry (pc);
688
689 if (!u)
690 {
691 if (pc_in_linker_stub (pc))
692 /* This is the so-called RP'. */
693 return -24;
694 else
695 return 0;
696 }
697
698 if (u->Save_RP)
699 return -20;
700 else if (u->stub_type != 0)
701 {
702 switch (u->stub_type)
703 {
704 case EXPORT:
705 return -24;
706 case PARAMETER_RELOCATION:
707 return -8;
708 default:
709 return 0;
710 }
711 }
712 else
713 return 0;
714 }
715 \f
716 int
717 frameless_function_invocation (frame)
718 struct frame_info *frame;
719 {
720 struct unwind_table_entry *u;
721
722 u = find_unwind_entry (frame->pc);
723
724 if (u == 0)
725 return 0;
726
727 return (u->Total_frame_size == 0 && u->stub_type == 0);
728 }
729
730 CORE_ADDR
731 saved_pc_after_call (frame)
732 struct frame_info *frame;
733 {
734 int ret_regnum;
735 CORE_ADDR pc;
736 struct unwind_table_entry *u;
737
738 ret_regnum = find_return_regnum (get_frame_pc (frame));
739 pc = read_register (ret_regnum) & ~0x3;
740
741 /* If PC is in a linker stub, then we need to dig the address
742 the stub will return to out of the stack. */
743 u = find_unwind_entry (pc);
744 if (u && u->stub_type != 0)
745 return frame_saved_pc (frame);
746 else
747 return pc;
748 }
749 \f
750 CORE_ADDR
751 frame_saved_pc (frame)
752 struct frame_info *frame;
753 {
754 CORE_ADDR pc = get_frame_pc (frame);
755 struct unwind_table_entry *u;
756
757 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
758 at the base of the frame in an interrupt handler. Registers within
759 are saved in the exact same order as GDB numbers registers. How
760 convienent. */
761 if (pc_in_interrupt_handler (pc))
762 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
763
764 /* Deal with signal handler caller frames too. */
765 if (frame->signal_handler_caller)
766 {
767 CORE_ADDR rp;
768 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
769 return rp;
770 }
771
772 if (frameless_function_invocation (frame))
773 {
774 int ret_regnum;
775
776 ret_regnum = find_return_regnum (pc);
777
778 /* If the next frame is an interrupt frame or a signal
779 handler caller, then we need to look in the saved
780 register area to get the return pointer (the values
781 in the registers may not correspond to anything useful). */
782 if (frame->next
783 && (frame->next->signal_handler_caller
784 || pc_in_interrupt_handler (frame->next->pc)))
785 {
786 struct frame_saved_regs saved_regs;
787
788 get_frame_saved_regs (frame, &saved_regs);
789 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
790 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
791 else
792 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
793 }
794 else
795 pc = read_register (ret_regnum) & ~0x3;
796 }
797 else
798 {
799 int rp_offset;
800
801 restart:
802 rp_offset = rp_saved (pc);
803 /* Similar to code in frameless function case. If the next
804 frame is a signal or interrupt handler, then dig the right
805 information out of the saved register info. */
806 if (rp_offset == 0
807 && frame->next
808 && (frame->next->signal_handler_caller
809 || pc_in_interrupt_handler (frame->next->pc)))
810 {
811 struct frame_saved_regs saved_regs;
812
813 get_frame_saved_regs (frame->next, &saved_regs);
814 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
815 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
816 else
817 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
818 }
819 else if (rp_offset == 0)
820 pc = read_register (RP_REGNUM) & ~0x3;
821 else
822 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
823 }
824
825 /* If PC is inside a linker stub, then dig out the address the stub
826 will return to. */
827 u = find_unwind_entry (pc);
828 if (u && u->stub_type != 0)
829 goto restart;
830
831 return pc;
832 }
833 \f
834 /* We need to correct the PC and the FP for the outermost frame when we are
835 in a system call. */
836
837 void
838 init_extra_frame_info (fromleaf, frame)
839 int fromleaf;
840 struct frame_info *frame;
841 {
842 int flags;
843 int framesize;
844
845 if (frame->next && !fromleaf)
846 return;
847
848 /* If the next frame represents a frameless function invocation
849 then we have to do some adjustments that are normally done by
850 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
851 if (fromleaf)
852 {
853 /* Find the framesize of *this* frame without peeking at the PC
854 in the current frame structure (it isn't set yet). */
855 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
856
857 /* Now adjust our base frame accordingly. If we have a frame pointer
858 use it, else subtract the size of this frame from the current
859 frame. (we always want frame->frame to point at the lowest address
860 in the frame). */
861 if (framesize == -1)
862 frame->frame = read_register (FP_REGNUM);
863 else
864 frame->frame -= framesize;
865 return;
866 }
867
868 flags = read_register (FLAGS_REGNUM);
869 if (flags & 2) /* In system call? */
870 frame->pc = read_register (31) & ~0x3;
871
872 /* The outermost frame is always derived from PC-framesize
873
874 One might think frameless innermost frames should have
875 a frame->frame that is the same as the parent's frame->frame.
876 That is wrong; frame->frame in that case should be the *high*
877 address of the parent's frame. It's complicated as hell to
878 explain, but the parent *always* creates some stack space for
879 the child. So the child actually does have a frame of some
880 sorts, and its base is the high address in its parent's frame. */
881 framesize = find_proc_framesize(frame->pc);
882 if (framesize == -1)
883 frame->frame = read_register (FP_REGNUM);
884 else
885 frame->frame = read_register (SP_REGNUM) - framesize;
886 }
887 \f
888 /* Given a GDB frame, determine the address of the calling function's frame.
889 This will be used to create a new GDB frame struct, and then
890 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
891
892 This may involve searching through prologues for several functions
893 at boundaries where GCC calls HP C code, or where code which has
894 a frame pointer calls code without a frame pointer. */
895
896 CORE_ADDR
897 frame_chain (frame)
898 struct frame_info *frame;
899 {
900 int my_framesize, caller_framesize;
901 struct unwind_table_entry *u;
902 CORE_ADDR frame_base;
903
904 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
905 are easy; at *sp we have a full save state strucutre which we can
906 pull the old stack pointer from. Also see frame_saved_pc for
907 code to dig a saved PC out of the save state structure. */
908 if (pc_in_interrupt_handler (frame->pc))
909 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
910 else if (frame->signal_handler_caller)
911 {
912 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
913 }
914 else
915 frame_base = frame->frame;
916
917 /* Get frame sizes for the current frame and the frame of the
918 caller. */
919 my_framesize = find_proc_framesize (frame->pc);
920 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
921
922 /* If caller does not have a frame pointer, then its frame
923 can be found at current_frame - caller_framesize. */
924 if (caller_framesize != -1)
925 return frame_base - caller_framesize;
926
927 /* Both caller and callee have frame pointers and are GCC compiled
928 (SAVE_SP bit in unwind descriptor is on for both functions.
929 The previous frame pointer is found at the top of the current frame. */
930 if (caller_framesize == -1 && my_framesize == -1)
931 return read_memory_integer (frame_base, 4);
932
933 /* Caller has a frame pointer, but callee does not. This is a little
934 more difficult as GCC and HP C lay out locals and callee register save
935 areas very differently.
936
937 The previous frame pointer could be in a register, or in one of
938 several areas on the stack.
939
940 Walk from the current frame to the innermost frame examining
941 unwind descriptors to determine if %r3 ever gets saved into the
942 stack. If so return whatever value got saved into the stack.
943 If it was never saved in the stack, then the value in %r3 is still
944 valid, so use it.
945
946 We use information from unwind descriptors to determine if %r3
947 is saved into the stack (Entry_GR field has this information). */
948
949 while (frame)
950 {
951 u = find_unwind_entry (frame->pc);
952
953 if (!u)
954 {
955 /* We could find this information by examining prologues. I don't
956 think anyone has actually written any tools (not even "strip")
957 which leave them out of an executable, so maybe this is a moot
958 point. */
959 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
960 return 0;
961 }
962
963 /* Entry_GR specifies the number of callee-saved general registers
964 saved in the stack. It starts at %r3, so %r3 would be 1. */
965 if (u->Entry_GR >= 1 || u->Save_SP
966 || frame->signal_handler_caller
967 || pc_in_interrupt_handler (frame->pc))
968 break;
969 else
970 frame = frame->next;
971 }
972
973 if (frame)
974 {
975 /* We may have walked down the chain into a function with a frame
976 pointer. */
977 if (u->Save_SP
978 && !frame->signal_handler_caller
979 && !pc_in_interrupt_handler (frame->pc))
980 return read_memory_integer (frame->frame, 4);
981 /* %r3 was saved somewhere in the stack. Dig it out. */
982 else
983 {
984 struct frame_saved_regs saved_regs;
985
986 get_frame_saved_regs (frame, &saved_regs);
987 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
988 }
989 }
990 else
991 {
992 /* The value in %r3 was never saved into the stack (thus %r3 still
993 holds the value of the previous frame pointer). */
994 return read_register (FP_REGNUM);
995 }
996 }
997
998 \f
999 /* To see if a frame chain is valid, see if the caller looks like it
1000 was compiled with gcc. */
1001
1002 int
1003 frame_chain_valid (chain, thisframe)
1004 CORE_ADDR chain;
1005 struct frame_info *thisframe;
1006 {
1007 struct minimal_symbol *msym_us;
1008 struct minimal_symbol *msym_start;
1009 struct unwind_table_entry *u, *next_u = NULL;
1010 struct frame_info *next;
1011
1012 if (!chain)
1013 return 0;
1014
1015 u = find_unwind_entry (thisframe->pc);
1016
1017 if (u == NULL)
1018 return 1;
1019
1020 /* We can't just check that the same of msym_us is "_start", because
1021 someone idiotically decided that they were going to make a Ltext_end
1022 symbol with the same address. This Ltext_end symbol is totally
1023 indistinguishable (as nearly as I can tell) from the symbol for a function
1024 which is (legitimately, since it is in the user's namespace)
1025 named Ltext_end, so we can't just ignore it. */
1026 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1027 msym_start = lookup_minimal_symbol ("_start", NULL);
1028 if (msym_us
1029 && msym_start
1030 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1031 return 0;
1032
1033 next = get_next_frame (thisframe);
1034 if (next)
1035 next_u = find_unwind_entry (next->pc);
1036
1037 /* If this frame does not save SP, has no stack, isn't a stub,
1038 and doesn't "call" an interrupt routine or signal handler caller,
1039 then its not valid. */
1040 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1041 || (thisframe->next && thisframe->next->signal_handler_caller)
1042 || (next_u && next_u->HP_UX_interrupt_marker))
1043 return 1;
1044
1045 if (pc_in_linker_stub (thisframe->pc))
1046 return 1;
1047
1048 return 0;
1049 }
1050
1051 /*
1052 * These functions deal with saving and restoring register state
1053 * around a function call in the inferior. They keep the stack
1054 * double-word aligned; eventually, on an hp700, the stack will have
1055 * to be aligned to a 64-byte boundary.
1056 */
1057
1058 int
1059 push_dummy_frame ()
1060 {
1061 register CORE_ADDR sp;
1062 register int regnum;
1063 int int_buffer;
1064 double freg_buffer;
1065
1066 /* Space for "arguments"; the RP goes in here. */
1067 sp = read_register (SP_REGNUM) + 48;
1068 int_buffer = read_register (RP_REGNUM) | 0x3;
1069 write_memory (sp - 20, (char *)&int_buffer, 4);
1070
1071 int_buffer = read_register (FP_REGNUM);
1072 write_memory (sp, (char *)&int_buffer, 4);
1073
1074 write_register (FP_REGNUM, sp);
1075
1076 sp += 8;
1077
1078 for (regnum = 1; regnum < 32; regnum++)
1079 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1080 sp = push_word (sp, read_register (regnum));
1081
1082 sp += 4;
1083
1084 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1085 {
1086 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1087 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1088 }
1089 sp = push_word (sp, read_register (IPSW_REGNUM));
1090 sp = push_word (sp, read_register (SAR_REGNUM));
1091 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1092 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1093 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1094 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1095 write_register (SP_REGNUM, sp);
1096 }
1097
1098 find_dummy_frame_regs (frame, frame_saved_regs)
1099 struct frame_info *frame;
1100 struct frame_saved_regs *frame_saved_regs;
1101 {
1102 CORE_ADDR fp = frame->frame;
1103 int i;
1104
1105 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1106 frame_saved_regs->regs[FP_REGNUM] = fp;
1107 frame_saved_regs->regs[1] = fp + 8;
1108
1109 for (fp += 12, i = 3; i < 32; i++)
1110 {
1111 if (i != FP_REGNUM)
1112 {
1113 frame_saved_regs->regs[i] = fp;
1114 fp += 4;
1115 }
1116 }
1117
1118 fp += 4;
1119 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1120 frame_saved_regs->regs[i] = fp;
1121
1122 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1123 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1124 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1125 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1126 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1127 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1128 }
1129
1130 int
1131 hppa_pop_frame ()
1132 {
1133 register struct frame_info *frame = get_current_frame ();
1134 register CORE_ADDR fp;
1135 register int regnum;
1136 struct frame_saved_regs fsr;
1137 double freg_buffer;
1138
1139 fp = FRAME_FP (frame);
1140 get_frame_saved_regs (frame, &fsr);
1141
1142 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1143 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1144 restore_pc_queue (&fsr);
1145 #endif
1146
1147 for (regnum = 31; regnum > 0; regnum--)
1148 if (fsr.regs[regnum])
1149 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1150
1151 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1152 if (fsr.regs[regnum])
1153 {
1154 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1155 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1156 }
1157
1158 if (fsr.regs[IPSW_REGNUM])
1159 write_register (IPSW_REGNUM,
1160 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1161
1162 if (fsr.regs[SAR_REGNUM])
1163 write_register (SAR_REGNUM,
1164 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1165
1166 /* If the PC was explicitly saved, then just restore it. */
1167 if (fsr.regs[PCOQ_TAIL_REGNUM])
1168 write_register (PCOQ_TAIL_REGNUM,
1169 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1170
1171 /* Else use the value in %rp to set the new PC. */
1172 else
1173 target_write_pc (read_register (RP_REGNUM), 0);
1174
1175 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1176
1177 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1178 write_register (SP_REGNUM, fp - 48);
1179 else
1180 write_register (SP_REGNUM, fp);
1181
1182 flush_cached_frames ();
1183 }
1184
1185 /*
1186 * After returning to a dummy on the stack, restore the instruction
1187 * queue space registers. */
1188
1189 static int
1190 restore_pc_queue (fsr)
1191 struct frame_saved_regs *fsr;
1192 {
1193 CORE_ADDR pc = read_pc ();
1194 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1195 int pid;
1196 struct target_waitstatus w;
1197 int insn_count;
1198
1199 /* Advance past break instruction in the call dummy. */
1200 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1201 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1202
1203 /*
1204 * HPUX doesn't let us set the space registers or the space
1205 * registers of the PC queue through ptrace. Boo, hiss.
1206 * Conveniently, the call dummy has this sequence of instructions
1207 * after the break:
1208 * mtsp r21, sr0
1209 * ble,n 0(sr0, r22)
1210 *
1211 * So, load up the registers and single step until we are in the
1212 * right place.
1213 */
1214
1215 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1216 write_register (22, new_pc);
1217
1218 for (insn_count = 0; insn_count < 3; insn_count++)
1219 {
1220 /* FIXME: What if the inferior gets a signal right now? Want to
1221 merge this into wait_for_inferior (as a special kind of
1222 watchpoint? By setting a breakpoint at the end? Is there
1223 any other choice? Is there *any* way to do this stuff with
1224 ptrace() or some equivalent?). */
1225 resume (1, 0);
1226 target_wait (inferior_pid, &w);
1227
1228 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1229 {
1230 stop_signal = w.value.sig;
1231 terminal_ours_for_output ();
1232 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1233 target_signal_to_name (stop_signal),
1234 target_signal_to_string (stop_signal));
1235 gdb_flush (gdb_stdout);
1236 return 0;
1237 }
1238 }
1239 target_terminal_ours ();
1240 target_fetch_registers (-1);
1241 return 1;
1242 }
1243
1244 CORE_ADDR
1245 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1246 int nargs;
1247 value_ptr *args;
1248 CORE_ADDR sp;
1249 int struct_return;
1250 CORE_ADDR struct_addr;
1251 {
1252 /* array of arguments' offsets */
1253 int *offset = (int *)alloca(nargs * sizeof (int));
1254 int cum = 0;
1255 int i, alignment;
1256
1257 for (i = 0; i < nargs; i++)
1258 {
1259 /* Coerce chars to int & float to double if necessary */
1260 args[i] = value_arg_coerce (args[i]);
1261
1262 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1263
1264 /* value must go at proper alignment. Assume alignment is a
1265 power of two.*/
1266 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1267 if (cum % alignment)
1268 cum = (cum + alignment) & -alignment;
1269 offset[i] = -cum;
1270 }
1271 sp += max ((cum + 7) & -8, 16);
1272
1273 for (i = 0; i < nargs; i++)
1274 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1275 TYPE_LENGTH (VALUE_TYPE (args[i])));
1276
1277 if (struct_return)
1278 write_register (28, struct_addr);
1279 return sp + 32;
1280 }
1281
1282 /*
1283 * Insert the specified number of args and function address
1284 * into a call sequence of the above form stored at DUMMYNAME.
1285 *
1286 * On the hppa we need to call the stack dummy through $$dyncall.
1287 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1288 * real_pc, which is the location where gdb should start up the
1289 * inferior to do the function call.
1290 */
1291
1292 CORE_ADDR
1293 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1294 char *dummy;
1295 CORE_ADDR pc;
1296 CORE_ADDR fun;
1297 int nargs;
1298 value_ptr *args;
1299 struct type *type;
1300 int gcc_p;
1301 {
1302 CORE_ADDR dyncall_addr, sr4export_addr;
1303 struct minimal_symbol *msymbol;
1304 int flags = read_register (FLAGS_REGNUM);
1305 struct unwind_table_entry *u;
1306
1307 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1308 if (msymbol == NULL)
1309 error ("Can't find an address for $$dyncall trampoline");
1310
1311 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1312
1313 /* FUN could be a procedure label, in which case we have to get
1314 its real address and the value of its GOT/DP. */
1315 if (fun & 0x2)
1316 {
1317 /* Get the GOT/DP value for the target function. It's
1318 at *(fun+4). Note the call dummy is *NOT* allowed to
1319 trash %r19 before calling the target function. */
1320 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1321
1322 /* Now get the real address for the function we are calling, it's
1323 at *fun. */
1324 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1325 }
1326
1327 /* If we are calling an import stub (eg calling into a dynamic library)
1328 then have sr4export call the magic __d_plt_call routine which is linked
1329 in from end.o. (You can't use _sr4export to call the import stub as
1330 the value in sp-24 will get fried and you end up returning to the
1331 wrong location. You can't call the import stub directly as the code
1332 to bind the PLT entry to a function can't return to a stack address.) */
1333 u = find_unwind_entry (fun);
1334 if (u && u->stub_type == IMPORT)
1335 {
1336 CORE_ADDR new_fun;
1337 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1338 if (msymbol == NULL)
1339 error ("Can't find an address for __d_plt_call trampoline");
1340
1341 /* This is where sr4export will jump to. */
1342 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1343
1344 /* We have to store the address of the stub in __shlib_funcptr. */
1345 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1346 (struct objfile *)NULL);
1347 if (msymbol == NULL)
1348 error ("Can't find an address for __shlib_funcptr");
1349
1350 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1351 fun = new_fun;
1352
1353 }
1354
1355 /* We still need sr4export's address too. */
1356 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1357 if (msymbol == NULL)
1358 error ("Can't find an address for _sr4export trampoline");
1359
1360 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1361
1362 store_unsigned_integer
1363 (&dummy[9*REGISTER_SIZE],
1364 REGISTER_SIZE,
1365 deposit_21 (fun >> 11,
1366 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1367 REGISTER_SIZE)));
1368 store_unsigned_integer
1369 (&dummy[10*REGISTER_SIZE],
1370 REGISTER_SIZE,
1371 deposit_14 (fun & MASK_11,
1372 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1373 REGISTER_SIZE)));
1374 store_unsigned_integer
1375 (&dummy[12*REGISTER_SIZE],
1376 REGISTER_SIZE,
1377 deposit_21 (sr4export_addr >> 11,
1378 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1379 REGISTER_SIZE)));
1380 store_unsigned_integer
1381 (&dummy[13*REGISTER_SIZE],
1382 REGISTER_SIZE,
1383 deposit_14 (sr4export_addr & MASK_11,
1384 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1385 REGISTER_SIZE)));
1386
1387 write_register (22, pc);
1388
1389 /* If we are in a syscall, then we should call the stack dummy
1390 directly. $$dyncall is not needed as the kernel sets up the
1391 space id registers properly based on the value in %r31. In
1392 fact calling $$dyncall will not work because the value in %r22
1393 will be clobbered on the syscall exit path. */
1394 if (flags & 2)
1395 return pc;
1396 else
1397 return dyncall_addr;
1398
1399 }
1400
1401 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1402 bits. */
1403
1404 CORE_ADDR
1405 target_read_pc (pid)
1406 int pid;
1407 {
1408 int flags = read_register (FLAGS_REGNUM);
1409
1410 if (flags & 2)
1411 return read_register (31) & ~0x3;
1412 return read_register (PC_REGNUM) & ~0x3;
1413 }
1414
1415 /* Write out the PC. If currently in a syscall, then also write the new
1416 PC value into %r31. */
1417
1418 void
1419 target_write_pc (v, pid)
1420 CORE_ADDR v;
1421 int pid;
1422 {
1423 int flags = read_register (FLAGS_REGNUM);
1424
1425 /* If in a syscall, then set %r31. Also make sure to get the
1426 privilege bits set correctly. */
1427 if (flags & 2)
1428 write_register (31, (long) (v | 0x3));
1429
1430 write_register (PC_REGNUM, (long) v);
1431 write_register (NPC_REGNUM, (long) v + 4);
1432 }
1433
1434 /* return the alignment of a type in bytes. Structures have the maximum
1435 alignment required by their fields. */
1436
1437 static int
1438 hppa_alignof (arg)
1439 struct type *arg;
1440 {
1441 int max_align, align, i;
1442 switch (TYPE_CODE (arg))
1443 {
1444 case TYPE_CODE_PTR:
1445 case TYPE_CODE_INT:
1446 case TYPE_CODE_FLT:
1447 return TYPE_LENGTH (arg);
1448 case TYPE_CODE_ARRAY:
1449 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1450 case TYPE_CODE_STRUCT:
1451 case TYPE_CODE_UNION:
1452 max_align = 2;
1453 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1454 {
1455 /* Bit fields have no real alignment. */
1456 if (!TYPE_FIELD_BITPOS (arg, i))
1457 {
1458 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1459 max_align = max (max_align, align);
1460 }
1461 }
1462 return max_align;
1463 default:
1464 return 4;
1465 }
1466 }
1467
1468 /* Print the register regnum, or all registers if regnum is -1 */
1469
1470 pa_do_registers_info (regnum, fpregs)
1471 int regnum;
1472 int fpregs;
1473 {
1474 char raw_regs [REGISTER_BYTES];
1475 int i;
1476
1477 for (i = 0; i < NUM_REGS; i++)
1478 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1479 if (regnum == -1)
1480 pa_print_registers (raw_regs, regnum, fpregs);
1481 else if (regnum < FP0_REGNUM)
1482 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1483 REGISTER_BYTE (regnum)));
1484 else
1485 pa_print_fp_reg (regnum);
1486 }
1487
1488 pa_print_registers (raw_regs, regnum, fpregs)
1489 char *raw_regs;
1490 int regnum;
1491 int fpregs;
1492 {
1493 int i;
1494
1495 for (i = 0; i < 18; i++)
1496 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1497 reg_names[i],
1498 *(int *)(raw_regs + REGISTER_BYTE (i)),
1499 reg_names[i + 18],
1500 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1501 reg_names[i + 36],
1502 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1503 reg_names[i + 54],
1504 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1505
1506 if (fpregs)
1507 for (i = 72; i < NUM_REGS; i++)
1508 pa_print_fp_reg (i);
1509 }
1510
1511 pa_print_fp_reg (i)
1512 int i;
1513 {
1514 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1515 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1516
1517 /* Get 32bits of data. */
1518 read_relative_register_raw_bytes (i, raw_buffer);
1519
1520 /* Put it in the buffer. No conversions are ever necessary. */
1521 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1522
1523 fputs_filtered (reg_names[i], gdb_stdout);
1524 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1525 fputs_filtered ("(single precision) ", gdb_stdout);
1526
1527 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1528 1, 0, Val_pretty_default);
1529 printf_filtered ("\n");
1530
1531 /* If "i" is even, then this register can also be a double-precision
1532 FP register. Dump it out as such. */
1533 if ((i % 2) == 0)
1534 {
1535 /* Get the data in raw format for the 2nd half. */
1536 read_relative_register_raw_bytes (i + 1, raw_buffer);
1537
1538 /* Copy it into the appropriate part of the virtual buffer. */
1539 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1540 REGISTER_RAW_SIZE (i));
1541
1542 /* Dump it as a double. */
1543 fputs_filtered (reg_names[i], gdb_stdout);
1544 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1545 fputs_filtered ("(double precision) ", gdb_stdout);
1546
1547 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1548 1, 0, Val_pretty_default);
1549 printf_filtered ("\n");
1550 }
1551 }
1552
1553 /* Figure out if PC is in a trampoline, and if so find out where
1554 the trampoline will jump to. If not in a trampoline, return zero.
1555
1556 Simple code examination probably is not a good idea since the code
1557 sequences in trampolines can also appear in user code.
1558
1559 We use unwinds and information from the minimal symbol table to
1560 determine when we're in a trampoline. This won't work for ELF
1561 (yet) since it doesn't create stub unwind entries. Whether or
1562 not ELF will create stub unwinds or normal unwinds for linker
1563 stubs is still being debated.
1564
1565 This should handle simple calls through dyncall or sr4export,
1566 long calls, argument relocation stubs, and dyncall/sr4export
1567 calling an argument relocation stub. It even handles some stubs
1568 used in dynamic executables. */
1569
1570 CORE_ADDR
1571 skip_trampoline_code (pc, name)
1572 CORE_ADDR pc;
1573 char *name;
1574 {
1575 long orig_pc = pc;
1576 long prev_inst, curr_inst, loc;
1577 static CORE_ADDR dyncall = 0;
1578 static CORE_ADDR sr4export = 0;
1579 struct minimal_symbol *msym;
1580 struct unwind_table_entry *u;
1581
1582 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1583 new exec file */
1584
1585 if (!dyncall)
1586 {
1587 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1588 if (msym)
1589 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1590 else
1591 dyncall = -1;
1592 }
1593
1594 if (!sr4export)
1595 {
1596 msym = lookup_minimal_symbol ("_sr4export", NULL);
1597 if (msym)
1598 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1599 else
1600 sr4export = -1;
1601 }
1602
1603 /* Addresses passed to dyncall may *NOT* be the actual address
1604 of the function. So we may have to do something special. */
1605 if (pc == dyncall)
1606 {
1607 pc = (CORE_ADDR) read_register (22);
1608
1609 /* If bit 30 (counting from the left) is on, then pc is the address of
1610 the PLT entry for this function, not the address of the function
1611 itself. Bit 31 has meaning too, but only for MPE. */
1612 if (pc & 0x2)
1613 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1614 }
1615 else if (pc == sr4export)
1616 pc = (CORE_ADDR) (read_register (22));
1617
1618 /* Get the unwind descriptor corresponding to PC, return zero
1619 if no unwind was found. */
1620 u = find_unwind_entry (pc);
1621 if (!u)
1622 return 0;
1623
1624 /* If this isn't a linker stub, then return now. */
1625 if (u->stub_type == 0)
1626 return orig_pc == pc ? 0 : pc & ~0x3;
1627
1628 /* It's a stub. Search for a branch and figure out where it goes.
1629 Note we have to handle multi insn branch sequences like ldil;ble.
1630 Most (all?) other branches can be determined by examining the contents
1631 of certain registers and the stack. */
1632 loc = pc;
1633 curr_inst = 0;
1634 prev_inst = 0;
1635 while (1)
1636 {
1637 /* Make sure we haven't walked outside the range of this stub. */
1638 if (u != find_unwind_entry (loc))
1639 {
1640 warning ("Unable to find branch in linker stub");
1641 return orig_pc == pc ? 0 : pc & ~0x3;
1642 }
1643
1644 prev_inst = curr_inst;
1645 curr_inst = read_memory_integer (loc, 4);
1646
1647 /* Does it look like a branch external using %r1? Then it's the
1648 branch from the stub to the actual function. */
1649 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1650 {
1651 /* Yup. See if the previous instruction loaded
1652 a value into %r1. If so compute and return the jump address. */
1653 if ((prev_inst & 0xffe00000) == 0x20200000)
1654 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1655 else
1656 {
1657 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1658 return orig_pc == pc ? 0 : pc & ~0x3;
1659 }
1660 }
1661
1662 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1663 branch from the stub to the actual function. */
1664 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1665 || (curr_inst & 0xffe0e000) == 0xe8000000)
1666 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1667
1668 /* Does it look like bv (rp)? Note this depends on the
1669 current stack pointer being the same as the stack
1670 pointer in the stub itself! This is a branch on from the
1671 stub back to the original caller. */
1672 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1673 {
1674 /* Yup. See if the previous instruction loaded
1675 rp from sp - 8. */
1676 if (prev_inst == 0x4bc23ff1)
1677 return (read_memory_integer
1678 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1679 else
1680 {
1681 warning ("Unable to find restore of %%rp before bv (%%rp).");
1682 return orig_pc == pc ? 0 : pc & ~0x3;
1683 }
1684 }
1685
1686 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1687 the original caller from the stub. Used in dynamic executables. */
1688 else if (curr_inst == 0xe0400002)
1689 {
1690 /* The value we jump to is sitting in sp - 24. But that's
1691 loaded several instructions before the be instruction.
1692 I guess we could check for the previous instruction being
1693 mtsp %r1,%sr0 if we want to do sanity checking. */
1694 return (read_memory_integer
1695 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1696 }
1697
1698 /* Haven't found the branch yet, but we're still in the stub.
1699 Keep looking. */
1700 loc += 4;
1701 }
1702 }
1703
1704 /* For the given instruction (INST), return any adjustment it makes
1705 to the stack pointer or zero for no adjustment.
1706
1707 This only handles instructions commonly found in prologues. */
1708
1709 static int
1710 prologue_inst_adjust_sp (inst)
1711 unsigned long inst;
1712 {
1713 /* This must persist across calls. */
1714 static int save_high21;
1715
1716 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1717 if ((inst & 0xffffc000) == 0x37de0000)
1718 return extract_14 (inst);
1719
1720 /* stwm X,D(sp) */
1721 if ((inst & 0xffe00000) == 0x6fc00000)
1722 return extract_14 (inst);
1723
1724 /* addil high21,%r1; ldo low11,(%r1),%r30)
1725 save high bits in save_high21 for later use. */
1726 if ((inst & 0xffe00000) == 0x28200000)
1727 {
1728 save_high21 = extract_21 (inst);
1729 return 0;
1730 }
1731
1732 if ((inst & 0xffff0000) == 0x343e0000)
1733 return save_high21 + extract_14 (inst);
1734
1735 /* fstws as used by the HP compilers. */
1736 if ((inst & 0xffffffe0) == 0x2fd01220)
1737 return extract_5_load (inst);
1738
1739 /* No adjustment. */
1740 return 0;
1741 }
1742
1743 /* Return nonzero if INST is a branch of some kind, else return zero. */
1744
1745 static int
1746 is_branch (inst)
1747 unsigned long inst;
1748 {
1749 switch (inst >> 26)
1750 {
1751 case 0x20:
1752 case 0x21:
1753 case 0x22:
1754 case 0x23:
1755 case 0x28:
1756 case 0x29:
1757 case 0x2a:
1758 case 0x2b:
1759 case 0x30:
1760 case 0x31:
1761 case 0x32:
1762 case 0x33:
1763 case 0x38:
1764 case 0x39:
1765 case 0x3a:
1766 return 1;
1767
1768 default:
1769 return 0;
1770 }
1771 }
1772
1773 /* Return the register number for a GR which is saved by INST or
1774 zero it INST does not save a GR. */
1775
1776 static int
1777 inst_saves_gr (inst)
1778 unsigned long inst;
1779 {
1780 /* Does it look like a stw? */
1781 if ((inst >> 26) == 0x1a)
1782 return extract_5R_store (inst);
1783
1784 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1785 if ((inst >> 26) == 0x1b)
1786 return extract_5R_store (inst);
1787
1788 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1789 too. */
1790 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1791 return extract_5R_store (inst);
1792
1793 return 0;
1794 }
1795
1796 /* Return the register number for a FR which is saved by INST or
1797 zero it INST does not save a FR.
1798
1799 Note we only care about full 64bit register stores (that's the only
1800 kind of stores the prologue will use).
1801
1802 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1803
1804 static int
1805 inst_saves_fr (inst)
1806 unsigned long inst;
1807 {
1808 if ((inst & 0xfc00dfc0) == 0x2c001200)
1809 return extract_5r_store (inst);
1810 return 0;
1811 }
1812
1813 /* Advance PC across any function entry prologue instructions
1814 to reach some "real" code.
1815
1816 Use information in the unwind table to determine what exactly should
1817 be in the prologue. */
1818
1819 CORE_ADDR
1820 skip_prologue (pc)
1821 CORE_ADDR pc;
1822 {
1823 char buf[4];
1824 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1825 unsigned long args_stored, status, i;
1826 struct unwind_table_entry *u;
1827
1828 u = find_unwind_entry (pc);
1829 if (!u)
1830 return pc;
1831
1832 /* If we are not at the beginning of a function, then return now. */
1833 if ((pc & ~0x3) != u->region_start)
1834 return pc;
1835
1836 /* This is how much of a frame adjustment we need to account for. */
1837 stack_remaining = u->Total_frame_size << 3;
1838
1839 /* Magic register saves we want to know about. */
1840 save_rp = u->Save_RP;
1841 save_sp = u->Save_SP;
1842
1843 /* An indication that args may be stored into the stack. Unfortunately
1844 the HPUX compilers tend to set this in cases where no args were
1845 stored too!. */
1846 args_stored = u->Args_stored;
1847
1848 /* Turn the Entry_GR field into a bitmask. */
1849 save_gr = 0;
1850 for (i = 3; i < u->Entry_GR + 3; i++)
1851 {
1852 /* Frame pointer gets saved into a special location. */
1853 if (u->Save_SP && i == FP_REGNUM)
1854 continue;
1855
1856 save_gr |= (1 << i);
1857 }
1858
1859 /* Turn the Entry_FR field into a bitmask too. */
1860 save_fr = 0;
1861 for (i = 12; i < u->Entry_FR + 12; i++)
1862 save_fr |= (1 << i);
1863
1864 /* Loop until we find everything of interest or hit a branch.
1865
1866 For unoptimized GCC code and for any HP CC code this will never ever
1867 examine any user instructions.
1868
1869 For optimzied GCC code we're faced with problems. GCC will schedule
1870 its prologue and make prologue instructions available for delay slot
1871 filling. The end result is user code gets mixed in with the prologue
1872 and a prologue instruction may be in the delay slot of the first branch
1873 or call.
1874
1875 Some unexpected things are expected with debugging optimized code, so
1876 we allow this routine to walk past user instructions in optimized
1877 GCC code. */
1878 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1879 || args_stored)
1880 {
1881 unsigned int reg_num;
1882 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1883 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1884
1885 /* Save copies of all the triggers so we can compare them later
1886 (only for HPC). */
1887 old_save_gr = save_gr;
1888 old_save_fr = save_fr;
1889 old_save_rp = save_rp;
1890 old_save_sp = save_sp;
1891 old_stack_remaining = stack_remaining;
1892
1893 status = target_read_memory (pc, buf, 4);
1894 inst = extract_unsigned_integer (buf, 4);
1895
1896 /* Yow! */
1897 if (status != 0)
1898 return pc;
1899
1900 /* Note the interesting effects of this instruction. */
1901 stack_remaining -= prologue_inst_adjust_sp (inst);
1902
1903 /* There is only one instruction used for saving RP into the stack. */
1904 if (inst == 0x6bc23fd9)
1905 save_rp = 0;
1906
1907 /* This is the only way we save SP into the stack. At this time
1908 the HP compilers never bother to save SP into the stack. */
1909 if ((inst & 0xffffc000) == 0x6fc10000)
1910 save_sp = 0;
1911
1912 /* Account for general and floating-point register saves. */
1913 reg_num = inst_saves_gr (inst);
1914 save_gr &= ~(1 << reg_num);
1915
1916 /* Ugh. Also account for argument stores into the stack.
1917 Unfortunately args_stored only tells us that some arguments
1918 where stored into the stack. Not how many or what kind!
1919
1920 This is a kludge as on the HP compiler sets this bit and it
1921 never does prologue scheduling. So once we see one, skip past
1922 all of them. We have similar code for the fp arg stores below.
1923
1924 FIXME. Can still die if we have a mix of GR and FR argument
1925 stores! */
1926 if (reg_num >= 23 && reg_num <= 26)
1927 {
1928 while (reg_num >= 23 && reg_num <= 26)
1929 {
1930 pc += 4;
1931 status = target_read_memory (pc, buf, 4);
1932 inst = extract_unsigned_integer (buf, 4);
1933 if (status != 0)
1934 return pc;
1935 reg_num = inst_saves_gr (inst);
1936 }
1937 args_stored = 0;
1938 continue;
1939 }
1940
1941 reg_num = inst_saves_fr (inst);
1942 save_fr &= ~(1 << reg_num);
1943
1944 status = target_read_memory (pc + 4, buf, 4);
1945 next_inst = extract_unsigned_integer (buf, 4);
1946
1947 /* Yow! */
1948 if (status != 0)
1949 return pc;
1950
1951 /* We've got to be read to handle the ldo before the fp register
1952 save. */
1953 if ((inst & 0xfc000000) == 0x34000000
1954 && inst_saves_fr (next_inst) >= 4
1955 && inst_saves_fr (next_inst) <= 7)
1956 {
1957 /* So we drop into the code below in a reasonable state. */
1958 reg_num = inst_saves_fr (next_inst);
1959 pc -= 4;
1960 }
1961
1962 /* Ugh. Also account for argument stores into the stack.
1963 This is a kludge as on the HP compiler sets this bit and it
1964 never does prologue scheduling. So once we see one, skip past
1965 all of them. */
1966 if (reg_num >= 4 && reg_num <= 7)
1967 {
1968 while (reg_num >= 4 && reg_num <= 7)
1969 {
1970 pc += 8;
1971 status = target_read_memory (pc, buf, 4);
1972 inst = extract_unsigned_integer (buf, 4);
1973 if (status != 0)
1974 return pc;
1975 if ((inst & 0xfc000000) != 0x34000000)
1976 break;
1977 status = target_read_memory (pc + 4, buf, 4);
1978 next_inst = extract_unsigned_integer (buf, 4);
1979 if (status != 0)
1980 return pc;
1981 reg_num = inst_saves_fr (next_inst);
1982 }
1983 args_stored = 0;
1984 continue;
1985 }
1986
1987 /* Quit if we hit any kind of branch. This can happen if a prologue
1988 instruction is in the delay slot of the first call/branch. */
1989 if (is_branch (inst))
1990 break;
1991
1992 /* What a crock. The HP compilers set args_stored even if no
1993 arguments were stored into the stack (boo hiss). This could
1994 cause this code to then skip a bunch of user insns (up to the
1995 first branch).
1996
1997 To combat this we try to identify when args_stored was bogusly
1998 set and clear it. We only do this when args_stored is nonzero,
1999 all other resources are accounted for, and nothing changed on
2000 this pass. */
2001 if (args_stored
2002 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2003 && old_save_gr == save_gr && old_save_fr == save_fr
2004 && old_save_rp == save_rp && old_save_sp == save_sp
2005 && old_stack_remaining == stack_remaining)
2006 break;
2007
2008 /* Bump the PC. */
2009 pc += 4;
2010 }
2011
2012 return pc;
2013 }
2014
2015 /* Put here the code to store, into a struct frame_saved_regs,
2016 the addresses of the saved registers of frame described by FRAME_INFO.
2017 This includes special registers such as pc and fp saved in special
2018 ways in the stack frame. sp is even more special:
2019 the address we return for it IS the sp for the next frame. */
2020
2021 void
2022 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2023 struct frame_info *frame_info;
2024 struct frame_saved_regs *frame_saved_regs;
2025 {
2026 CORE_ADDR pc;
2027 struct unwind_table_entry *u;
2028 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2029 int status, i, reg;
2030 char buf[4];
2031 int fp_loc = -1;
2032
2033 /* Zero out everything. */
2034 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2035
2036 /* Call dummy frames always look the same, so there's no need to
2037 examine the dummy code to determine locations of saved registers;
2038 instead, let find_dummy_frame_regs fill in the correct offsets
2039 for the saved registers. */
2040 if ((frame_info->pc >= frame_info->frame
2041 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2042 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2043 + 6 * 4)))
2044 find_dummy_frame_regs (frame_info, frame_saved_regs);
2045
2046 /* Interrupt handlers are special too. They lay out the register
2047 state in the exact same order as the register numbers in GDB. */
2048 if (pc_in_interrupt_handler (frame_info->pc))
2049 {
2050 for (i = 0; i < NUM_REGS; i++)
2051 {
2052 /* SP is a little special. */
2053 if (i == SP_REGNUM)
2054 frame_saved_regs->regs[SP_REGNUM]
2055 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2056 else
2057 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2058 }
2059 return;
2060 }
2061
2062 /* Handle signal handler callers. */
2063 if (frame_info->signal_handler_caller)
2064 {
2065 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2066 return;
2067 }
2068
2069 /* Get the starting address of the function referred to by the PC
2070 saved in frame. */
2071 pc = get_pc_function_start (frame_info->pc);
2072
2073 /* Yow! */
2074 u = find_unwind_entry (pc);
2075 if (!u)
2076 return;
2077
2078 /* This is how much of a frame adjustment we need to account for. */
2079 stack_remaining = u->Total_frame_size << 3;
2080
2081 /* Magic register saves we want to know about. */
2082 save_rp = u->Save_RP;
2083 save_sp = u->Save_SP;
2084
2085 /* Turn the Entry_GR field into a bitmask. */
2086 save_gr = 0;
2087 for (i = 3; i < u->Entry_GR + 3; i++)
2088 {
2089 /* Frame pointer gets saved into a special location. */
2090 if (u->Save_SP && i == FP_REGNUM)
2091 continue;
2092
2093 save_gr |= (1 << i);
2094 }
2095
2096 /* Turn the Entry_FR field into a bitmask too. */
2097 save_fr = 0;
2098 for (i = 12; i < u->Entry_FR + 12; i++)
2099 save_fr |= (1 << i);
2100
2101 /* The frame always represents the value of %sp at entry to the
2102 current function (and is thus equivalent to the "saved" stack
2103 pointer. */
2104 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2105
2106 /* Loop until we find everything of interest or hit a branch.
2107
2108 For unoptimized GCC code and for any HP CC code this will never ever
2109 examine any user instructions.
2110
2111 For optimzied GCC code we're faced with problems. GCC will schedule
2112 its prologue and make prologue instructions available for delay slot
2113 filling. The end result is user code gets mixed in with the prologue
2114 and a prologue instruction may be in the delay slot of the first branch
2115 or call.
2116
2117 Some unexpected things are expected with debugging optimized code, so
2118 we allow this routine to walk past user instructions in optimized
2119 GCC code. */
2120 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2121 {
2122 status = target_read_memory (pc, buf, 4);
2123 inst = extract_unsigned_integer (buf, 4);
2124
2125 /* Yow! */
2126 if (status != 0)
2127 return;
2128
2129 /* Note the interesting effects of this instruction. */
2130 stack_remaining -= prologue_inst_adjust_sp (inst);
2131
2132 /* There is only one instruction used for saving RP into the stack. */
2133 if (inst == 0x6bc23fd9)
2134 {
2135 save_rp = 0;
2136 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2137 }
2138
2139 /* Just note that we found the save of SP into the stack. The
2140 value for frame_saved_regs was computed above. */
2141 if ((inst & 0xffffc000) == 0x6fc10000)
2142 save_sp = 0;
2143
2144 /* Account for general and floating-point register saves. */
2145 reg = inst_saves_gr (inst);
2146 if (reg >= 3 && reg <= 18
2147 && (!u->Save_SP || reg != FP_REGNUM))
2148 {
2149 save_gr &= ~(1 << reg);
2150
2151 /* stwm with a positive displacement is a *post modify*. */
2152 if ((inst >> 26) == 0x1b
2153 && extract_14 (inst) >= 0)
2154 frame_saved_regs->regs[reg] = frame_info->frame;
2155 else
2156 {
2157 /* Handle code with and without frame pointers. */
2158 if (u->Save_SP)
2159 frame_saved_regs->regs[reg]
2160 = frame_info->frame + extract_14 (inst);
2161 else
2162 frame_saved_regs->regs[reg]
2163 = frame_info->frame + (u->Total_frame_size << 3)
2164 + extract_14 (inst);
2165 }
2166 }
2167
2168
2169 /* GCC handles callee saved FP regs a little differently.
2170
2171 It emits an instruction to put the value of the start of
2172 the FP store area into %r1. It then uses fstds,ma with
2173 a basereg of %r1 for the stores.
2174
2175 HP CC emits them at the current stack pointer modifying
2176 the stack pointer as it stores each register. */
2177
2178 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2179 if ((inst & 0xffffc000) == 0x34610000
2180 || (inst & 0xffffc000) == 0x37c10000)
2181 fp_loc = extract_14 (inst);
2182
2183 reg = inst_saves_fr (inst);
2184 if (reg >= 12 && reg <= 21)
2185 {
2186 /* Note +4 braindamage below is necessary because the FP status
2187 registers are internally 8 registers rather than the expected
2188 4 registers. */
2189 save_fr &= ~(1 << reg);
2190 if (fp_loc == -1)
2191 {
2192 /* 1st HP CC FP register store. After this instruction
2193 we've set enough state that the GCC and HPCC code are
2194 both handled in the same manner. */
2195 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2196 fp_loc = 8;
2197 }
2198 else
2199 {
2200 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2201 = frame_info->frame + fp_loc;
2202 fp_loc += 8;
2203 }
2204 }
2205
2206 /* Quit if we hit any kind of branch. This can happen if a prologue
2207 instruction is in the delay slot of the first call/branch. */
2208 if (is_branch (inst))
2209 break;
2210
2211 /* Bump the PC. */
2212 pc += 4;
2213 }
2214 }
2215
2216 #ifdef MAINTENANCE_CMDS
2217
2218 static void
2219 unwind_command (exp, from_tty)
2220 char *exp;
2221 int from_tty;
2222 {
2223 CORE_ADDR address;
2224 union
2225 {
2226 int *foo;
2227 struct unwind_table_entry *u;
2228 } xxx;
2229
2230 /* If we have an expression, evaluate it and use it as the address. */
2231
2232 if (exp != 0 && *exp != 0)
2233 address = parse_and_eval_address (exp);
2234 else
2235 return;
2236
2237 xxx.u = find_unwind_entry (address);
2238
2239 if (!xxx.u)
2240 {
2241 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2242 return;
2243 }
2244
2245 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2246 xxx.foo[3]);
2247 }
2248 #endif /* MAINTENANCE_CMDS */
2249
2250 void
2251 _initialize_hppa_tdep ()
2252 {
2253 #ifdef MAINTENANCE_CMDS
2254 add_cmd ("unwind", class_maintenance, unwind_command,
2255 "Print unwind table entry at given address.",
2256 &maintenanceprintlist);
2257 #endif /* MAINTENANCE_CMDS */
2258 }