* avr-tdep.c, hppa-tdep.c, hppabsd-tdep.c, i386-tdep.c,
[binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "gdbtypes.h"
45 #include "objfiles.h"
46 #include "hppa-tdep.h"
47
48 static int hppa_debug = 0;
49
50 /* Some local constants. */
51 static const int hppa32_num_regs = 128;
52 static const int hppa64_num_regs = 96;
53
54 /* hppa-specific object data -- unwind and solib info.
55 TODO/maybe: think about splitting this into two parts; the unwind data is
56 common to all hppa targets, but is only used in this file; we can register
57 that separately and make this static. The solib data is probably hpux-
58 specific, so we can create a separate extern objfile_data that is registered
59 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
60 const struct objfile_data *hppa_objfile_priv_data = NULL;
61
62 /* Get at various relevent fields of an instruction word. */
63 #define MASK_5 0x1f
64 #define MASK_11 0x7ff
65 #define MASK_14 0x3fff
66 #define MASK_21 0x1fffff
67
68 /* Sizes (in bytes) of the native unwind entries. */
69 #define UNWIND_ENTRY_SIZE 16
70 #define STUB_UNWIND_ENTRY_SIZE 8
71
72 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
73 following functions static, once we hppa is partially multiarched. */
74 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
75
76 /* Routines to extract various sized constants out of hppa
77 instructions. */
78
79 /* This assumes that no garbage lies outside of the lower bits of
80 value. */
81
82 int
83 hppa_sign_extend (unsigned val, unsigned bits)
84 {
85 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
86 }
87
88 /* For many immediate values the sign bit is the low bit! */
89
90 int
91 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
92 {
93 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
94 }
95
96 /* Extract the bits at positions between FROM and TO, using HP's numbering
97 (MSB = 0). */
98
99 int
100 hppa_get_field (unsigned word, int from, int to)
101 {
102 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
103 }
104
105 /* extract the immediate field from a ld{bhw}s instruction */
106
107 int
108 hppa_extract_5_load (unsigned word)
109 {
110 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
111 }
112
113 /* extract the immediate field from a break instruction */
114
115 unsigned
116 hppa_extract_5r_store (unsigned word)
117 {
118 return (word & MASK_5);
119 }
120
121 /* extract the immediate field from a {sr}sm instruction */
122
123 unsigned
124 hppa_extract_5R_store (unsigned word)
125 {
126 return (word >> 16 & MASK_5);
127 }
128
129 /* extract a 14 bit immediate field */
130
131 int
132 hppa_extract_14 (unsigned word)
133 {
134 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
135 }
136
137 /* extract a 21 bit constant */
138
139 int
140 hppa_extract_21 (unsigned word)
141 {
142 int val;
143
144 word &= MASK_21;
145 word <<= 11;
146 val = hppa_get_field (word, 20, 20);
147 val <<= 11;
148 val |= hppa_get_field (word, 9, 19);
149 val <<= 2;
150 val |= hppa_get_field (word, 5, 6);
151 val <<= 5;
152 val |= hppa_get_field (word, 0, 4);
153 val <<= 2;
154 val |= hppa_get_field (word, 7, 8);
155 return hppa_sign_extend (val, 21) << 11;
156 }
157
158 /* extract a 17 bit constant from branch instructions, returning the
159 19 bit signed value. */
160
161 int
162 hppa_extract_17 (unsigned word)
163 {
164 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
165 hppa_get_field (word, 29, 29) << 10 |
166 hppa_get_field (word, 11, 15) << 11 |
167 (word & 0x1) << 16, 17) << 2;
168 }
169
170 CORE_ADDR
171 hppa_symbol_address(const char *sym)
172 {
173 struct minimal_symbol *minsym;
174
175 minsym = lookup_minimal_symbol (sym, NULL, NULL);
176 if (minsym)
177 return SYMBOL_VALUE_ADDRESS (minsym);
178 else
179 return (CORE_ADDR)-1;
180 }
181
182 struct hppa_objfile_private *
183 hppa_init_objfile_priv_data (struct objfile *objfile)
184 {
185 struct hppa_objfile_private *priv;
186
187 priv = (struct hppa_objfile_private *)
188 obstack_alloc (&objfile->objfile_obstack,
189 sizeof (struct hppa_objfile_private));
190 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
191 memset (priv, 0, sizeof (*priv));
192
193 return priv;
194 }
195 \f
196
197 /* Compare the start address for two unwind entries returning 1 if
198 the first address is larger than the second, -1 if the second is
199 larger than the first, and zero if they are equal. */
200
201 static int
202 compare_unwind_entries (const void *arg1, const void *arg2)
203 {
204 const struct unwind_table_entry *a = arg1;
205 const struct unwind_table_entry *b = arg2;
206
207 if (a->region_start > b->region_start)
208 return 1;
209 else if (a->region_start < b->region_start)
210 return -1;
211 else
212 return 0;
213 }
214
215 static void
216 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
217 {
218 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
220 {
221 bfd_vma value = section->vma - section->filepos;
222 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
223
224 if (value < *low_text_segment_address)
225 *low_text_segment_address = value;
226 }
227 }
228
229 static void
230 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
231 asection *section, unsigned int entries, unsigned int size,
232 CORE_ADDR text_offset)
233 {
234 /* We will read the unwind entries into temporary memory, then
235 fill in the actual unwind table. */
236
237 if (size > 0)
238 {
239 unsigned long tmp;
240 unsigned i;
241 char *buf = alloca (size);
242 CORE_ADDR low_text_segment_address;
243
244 /* For ELF targets, then unwinds are supposed to
245 be segment relative offsets instead of absolute addresses.
246
247 Note that when loading a shared library (text_offset != 0) the
248 unwinds are already relative to the text_offset that will be
249 passed in. */
250 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
251 {
252 low_text_segment_address = -1;
253
254 bfd_map_over_sections (objfile->obfd,
255 record_text_segment_lowaddr,
256 &low_text_segment_address);
257
258 text_offset = low_text_segment_address;
259 }
260 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
261 {
262 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
263 }
264
265 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
266
267 /* Now internalize the information being careful to handle host/target
268 endian issues. */
269 for (i = 0; i < entries; i++)
270 {
271 table[i].region_start = bfd_get_32 (objfile->obfd,
272 (bfd_byte *) buf);
273 table[i].region_start += text_offset;
274 buf += 4;
275 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
276 table[i].region_end += text_offset;
277 buf += 4;
278 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
279 buf += 4;
280 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
281 table[i].Millicode = (tmp >> 30) & 0x1;
282 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
283 table[i].Region_description = (tmp >> 27) & 0x3;
284 table[i].reserved = (tmp >> 26) & 0x1;
285 table[i].Entry_SR = (tmp >> 25) & 0x1;
286 table[i].Entry_FR = (tmp >> 21) & 0xf;
287 table[i].Entry_GR = (tmp >> 16) & 0x1f;
288 table[i].Args_stored = (tmp >> 15) & 0x1;
289 table[i].Variable_Frame = (tmp >> 14) & 0x1;
290 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
291 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
292 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
293 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
294 table[i].sr4export = (tmp >> 9) & 0x1;
295 table[i].cxx_info = (tmp >> 8) & 0x1;
296 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
297 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
298 table[i].reserved1 = (tmp >> 5) & 0x1;
299 table[i].Save_SP = (tmp >> 4) & 0x1;
300 table[i].Save_RP = (tmp >> 3) & 0x1;
301 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
302 table[i].save_r19 = (tmp >> 1) & 0x1;
303 table[i].Cleanup_defined = tmp & 0x1;
304 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
305 buf += 4;
306 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
307 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
308 table[i].Large_frame = (tmp >> 29) & 0x1;
309 table[i].alloca_frame = (tmp >> 28) & 0x1;
310 table[i].reserved2 = (tmp >> 27) & 0x1;
311 table[i].Total_frame_size = tmp & 0x7ffffff;
312
313 /* Stub unwinds are handled elsewhere. */
314 table[i].stub_unwind.stub_type = 0;
315 table[i].stub_unwind.padding = 0;
316 }
317 }
318 }
319
320 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
321 the object file. This info is used mainly by find_unwind_entry() to find
322 out the stack frame size and frame pointer used by procedures. We put
323 everything on the psymbol obstack in the objfile so that it automatically
324 gets freed when the objfile is destroyed. */
325
326 static void
327 read_unwind_info (struct objfile *objfile)
328 {
329 asection *unwind_sec, *stub_unwind_sec;
330 unsigned unwind_size, stub_unwind_size, total_size;
331 unsigned index, unwind_entries;
332 unsigned stub_entries, total_entries;
333 CORE_ADDR text_offset;
334 struct hppa_unwind_info *ui;
335 struct hppa_objfile_private *obj_private;
336
337 text_offset = ANOFFSET (objfile->section_offsets, 0);
338 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
339 sizeof (struct hppa_unwind_info));
340
341 ui->table = NULL;
342 ui->cache = NULL;
343 ui->last = -1;
344
345 /* For reasons unknown the HP PA64 tools generate multiple unwinder
346 sections in a single executable. So we just iterate over every
347 section in the BFD looking for unwinder sections intead of trying
348 to do a lookup with bfd_get_section_by_name.
349
350 First determine the total size of the unwind tables so that we
351 can allocate memory in a nice big hunk. */
352 total_entries = 0;
353 for (unwind_sec = objfile->obfd->sections;
354 unwind_sec;
355 unwind_sec = unwind_sec->next)
356 {
357 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
358 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
359 {
360 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
361 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
362
363 total_entries += unwind_entries;
364 }
365 }
366
367 /* Now compute the size of the stub unwinds. Note the ELF tools do not
368 use stub unwinds at the current time. */
369 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
370
371 if (stub_unwind_sec)
372 {
373 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
374 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
375 }
376 else
377 {
378 stub_unwind_size = 0;
379 stub_entries = 0;
380 }
381
382 /* Compute total number of unwind entries and their total size. */
383 total_entries += stub_entries;
384 total_size = total_entries * sizeof (struct unwind_table_entry);
385
386 /* Allocate memory for the unwind table. */
387 ui->table = (struct unwind_table_entry *)
388 obstack_alloc (&objfile->objfile_obstack, total_size);
389 ui->last = total_entries - 1;
390
391 /* Now read in each unwind section and internalize the standard unwind
392 entries. */
393 index = 0;
394 for (unwind_sec = objfile->obfd->sections;
395 unwind_sec;
396 unwind_sec = unwind_sec->next)
397 {
398 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
399 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
400 {
401 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
402 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
403
404 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
405 unwind_entries, unwind_size, text_offset);
406 index += unwind_entries;
407 }
408 }
409
410 /* Now read in and internalize the stub unwind entries. */
411 if (stub_unwind_size > 0)
412 {
413 unsigned int i;
414 char *buf = alloca (stub_unwind_size);
415
416 /* Read in the stub unwind entries. */
417 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
418 0, stub_unwind_size);
419
420 /* Now convert them into regular unwind entries. */
421 for (i = 0; i < stub_entries; i++, index++)
422 {
423 /* Clear out the next unwind entry. */
424 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
425
426 /* Convert offset & size into region_start and region_end.
427 Stuff away the stub type into "reserved" fields. */
428 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
429 (bfd_byte *) buf);
430 ui->table[index].region_start += text_offset;
431 buf += 4;
432 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
433 (bfd_byte *) buf);
434 buf += 2;
435 ui->table[index].region_end
436 = ui->table[index].region_start + 4 *
437 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
438 buf += 2;
439 }
440
441 }
442
443 /* Unwind table needs to be kept sorted. */
444 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
445 compare_unwind_entries);
446
447 /* Keep a pointer to the unwind information. */
448 obj_private = (struct hppa_objfile_private *)
449 objfile_data (objfile, hppa_objfile_priv_data);
450 if (obj_private == NULL)
451 obj_private = hppa_init_objfile_priv_data (objfile);
452
453 obj_private->unwind_info = ui;
454 }
455
456 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
457 of the objfiles seeking the unwind table entry for this PC. Each objfile
458 contains a sorted list of struct unwind_table_entry. Since we do a binary
459 search of the unwind tables, we depend upon them to be sorted. */
460
461 struct unwind_table_entry *
462 find_unwind_entry (CORE_ADDR pc)
463 {
464 int first, middle, last;
465 struct objfile *objfile;
466 struct hppa_objfile_private *priv;
467
468 if (hppa_debug)
469 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
470 paddr_nz (pc));
471
472 /* A function at address 0? Not in HP-UX! */
473 if (pc == (CORE_ADDR) 0)
474 {
475 if (hppa_debug)
476 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
477 return NULL;
478 }
479
480 ALL_OBJFILES (objfile)
481 {
482 struct hppa_unwind_info *ui;
483 ui = NULL;
484 priv = objfile_data (objfile, hppa_objfile_priv_data);
485 if (priv)
486 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
487
488 if (!ui)
489 {
490 read_unwind_info (objfile);
491 priv = objfile_data (objfile, hppa_objfile_priv_data);
492 if (priv == NULL)
493 error (_("Internal error reading unwind information."));
494 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
495 }
496
497 /* First, check the cache */
498
499 if (ui->cache
500 && pc >= ui->cache->region_start
501 && pc <= ui->cache->region_end)
502 {
503 if (hppa_debug)
504 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
505 paddr_nz ((CORE_ADDR) ui->cache));
506 return ui->cache;
507 }
508
509 /* Not in the cache, do a binary search */
510
511 first = 0;
512 last = ui->last;
513
514 while (first <= last)
515 {
516 middle = (first + last) / 2;
517 if (pc >= ui->table[middle].region_start
518 && pc <= ui->table[middle].region_end)
519 {
520 ui->cache = &ui->table[middle];
521 if (hppa_debug)
522 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
523 paddr_nz ((CORE_ADDR) ui->cache));
524 return &ui->table[middle];
525 }
526
527 if (pc < ui->table[middle].region_start)
528 last = middle - 1;
529 else
530 first = middle + 1;
531 }
532 } /* ALL_OBJFILES() */
533
534 if (hppa_debug)
535 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
536
537 return NULL;
538 }
539
540 /* The epilogue is defined here as the area either on the `bv' instruction
541 itself or an instruction which destroys the function's stack frame.
542
543 We do not assume that the epilogue is at the end of a function as we can
544 also have return sequences in the middle of a function. */
545 static int
546 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
547 {
548 unsigned long status;
549 unsigned int inst;
550 char buf[4];
551 int off;
552
553 status = read_memory_nobpt (pc, buf, 4);
554 if (status != 0)
555 return 0;
556
557 inst = extract_unsigned_integer (buf, 4);
558
559 /* The most common way to perform a stack adjustment ldo X(sp),sp
560 We are destroying a stack frame if the offset is negative. */
561 if ((inst & 0xffffc000) == 0x37de0000
562 && hppa_extract_14 (inst) < 0)
563 return 1;
564
565 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
566 if (((inst & 0x0fc010e0) == 0x0fc010e0
567 || (inst & 0x0fc010e0) == 0x0fc010e0)
568 && hppa_extract_14 (inst) < 0)
569 return 1;
570
571 /* bv %r0(%rp) or bv,n %r0(%rp) */
572 if (inst == 0xe840c000 || inst == 0xe840c002)
573 return 1;
574
575 return 0;
576 }
577
578 static const unsigned char *
579 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
580 {
581 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
582 (*len) = sizeof (breakpoint);
583 return breakpoint;
584 }
585
586 /* Return the name of a register. */
587
588 static const char *
589 hppa32_register_name (int i)
590 {
591 static char *names[] = {
592 "flags", "r1", "rp", "r3",
593 "r4", "r5", "r6", "r7",
594 "r8", "r9", "r10", "r11",
595 "r12", "r13", "r14", "r15",
596 "r16", "r17", "r18", "r19",
597 "r20", "r21", "r22", "r23",
598 "r24", "r25", "r26", "dp",
599 "ret0", "ret1", "sp", "r31",
600 "sar", "pcoqh", "pcsqh", "pcoqt",
601 "pcsqt", "eiem", "iir", "isr",
602 "ior", "ipsw", "goto", "sr4",
603 "sr0", "sr1", "sr2", "sr3",
604 "sr5", "sr6", "sr7", "cr0",
605 "cr8", "cr9", "ccr", "cr12",
606 "cr13", "cr24", "cr25", "cr26",
607 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
608 "fpsr", "fpe1", "fpe2", "fpe3",
609 "fpe4", "fpe5", "fpe6", "fpe7",
610 "fr4", "fr4R", "fr5", "fr5R",
611 "fr6", "fr6R", "fr7", "fr7R",
612 "fr8", "fr8R", "fr9", "fr9R",
613 "fr10", "fr10R", "fr11", "fr11R",
614 "fr12", "fr12R", "fr13", "fr13R",
615 "fr14", "fr14R", "fr15", "fr15R",
616 "fr16", "fr16R", "fr17", "fr17R",
617 "fr18", "fr18R", "fr19", "fr19R",
618 "fr20", "fr20R", "fr21", "fr21R",
619 "fr22", "fr22R", "fr23", "fr23R",
620 "fr24", "fr24R", "fr25", "fr25R",
621 "fr26", "fr26R", "fr27", "fr27R",
622 "fr28", "fr28R", "fr29", "fr29R",
623 "fr30", "fr30R", "fr31", "fr31R"
624 };
625 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
626 return NULL;
627 else
628 return names[i];
629 }
630
631 static const char *
632 hppa64_register_name (int i)
633 {
634 static char *names[] = {
635 "flags", "r1", "rp", "r3",
636 "r4", "r5", "r6", "r7",
637 "r8", "r9", "r10", "r11",
638 "r12", "r13", "r14", "r15",
639 "r16", "r17", "r18", "r19",
640 "r20", "r21", "r22", "r23",
641 "r24", "r25", "r26", "dp",
642 "ret0", "ret1", "sp", "r31",
643 "sar", "pcoqh", "pcsqh", "pcoqt",
644 "pcsqt", "eiem", "iir", "isr",
645 "ior", "ipsw", "goto", "sr4",
646 "sr0", "sr1", "sr2", "sr3",
647 "sr5", "sr6", "sr7", "cr0",
648 "cr8", "cr9", "ccr", "cr12",
649 "cr13", "cr24", "cr25", "cr26",
650 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
651 "fpsr", "fpe1", "fpe2", "fpe3",
652 "fr4", "fr5", "fr6", "fr7",
653 "fr8", "fr9", "fr10", "fr11",
654 "fr12", "fr13", "fr14", "fr15",
655 "fr16", "fr17", "fr18", "fr19",
656 "fr20", "fr21", "fr22", "fr23",
657 "fr24", "fr25", "fr26", "fr27",
658 "fr28", "fr29", "fr30", "fr31"
659 };
660 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
661 return NULL;
662 else
663 return names[i];
664 }
665
666 static int
667 hppa64_dwarf_reg_to_regnum (int reg)
668 {
669 /* r0-r31 and sar map one-to-one. */
670 if (reg <= 32)
671 return reg;
672
673 /* fr4-fr31 are mapped from 72 in steps of 2. */
674 if (reg >= 72 || reg < 72 + 28 * 2)
675 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
676
677 error ("Invalid DWARF register num %d.", reg);
678 return -1;
679 }
680
681 /* This function pushes a stack frame with arguments as part of the
682 inferior function calling mechanism.
683
684 This is the version of the function for the 32-bit PA machines, in
685 which later arguments appear at lower addresses. (The stack always
686 grows towards higher addresses.)
687
688 We simply allocate the appropriate amount of stack space and put
689 arguments into their proper slots. */
690
691 static CORE_ADDR
692 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
693 struct regcache *regcache, CORE_ADDR bp_addr,
694 int nargs, struct value **args, CORE_ADDR sp,
695 int struct_return, CORE_ADDR struct_addr)
696 {
697 /* Stack base address at which any pass-by-reference parameters are
698 stored. */
699 CORE_ADDR struct_end = 0;
700 /* Stack base address at which the first parameter is stored. */
701 CORE_ADDR param_end = 0;
702
703 /* The inner most end of the stack after all the parameters have
704 been pushed. */
705 CORE_ADDR new_sp = 0;
706
707 /* Two passes. First pass computes the location of everything,
708 second pass writes the bytes out. */
709 int write_pass;
710
711 /* Global pointer (r19) of the function we are trying to call. */
712 CORE_ADDR gp;
713
714 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
715
716 for (write_pass = 0; write_pass < 2; write_pass++)
717 {
718 CORE_ADDR struct_ptr = 0;
719 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
720 struct_ptr is adjusted for each argument below, so the first
721 argument will end up at sp-36. */
722 CORE_ADDR param_ptr = 32;
723 int i;
724 int small_struct = 0;
725
726 for (i = 0; i < nargs; i++)
727 {
728 struct value *arg = args[i];
729 struct type *type = check_typedef (value_type (arg));
730 /* The corresponding parameter that is pushed onto the
731 stack, and [possibly] passed in a register. */
732 char param_val[8];
733 int param_len;
734 memset (param_val, 0, sizeof param_val);
735 if (TYPE_LENGTH (type) > 8)
736 {
737 /* Large parameter, pass by reference. Store the value
738 in "struct" area and then pass its address. */
739 param_len = 4;
740 struct_ptr += align_up (TYPE_LENGTH (type), 8);
741 if (write_pass)
742 write_memory (struct_end - struct_ptr, value_contents (arg),
743 TYPE_LENGTH (type));
744 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
745 }
746 else if (TYPE_CODE (type) == TYPE_CODE_INT
747 || TYPE_CODE (type) == TYPE_CODE_ENUM)
748 {
749 /* Integer value store, right aligned. "unpack_long"
750 takes care of any sign-extension problems. */
751 param_len = align_up (TYPE_LENGTH (type), 4);
752 store_unsigned_integer (param_val, param_len,
753 unpack_long (type,
754 value_contents (arg)));
755 }
756 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
757 {
758 /* Floating point value store, right aligned. */
759 param_len = align_up (TYPE_LENGTH (type), 4);
760 memcpy (param_val, value_contents (arg), param_len);
761 }
762 else
763 {
764 param_len = align_up (TYPE_LENGTH (type), 4);
765
766 /* Small struct value are stored right-aligned. */
767 memcpy (param_val + param_len - TYPE_LENGTH (type),
768 value_contents (arg), TYPE_LENGTH (type));
769
770 /* Structures of size 5, 6 and 7 bytes are special in that
771 the higher-ordered word is stored in the lower-ordered
772 argument, and even though it is a 8-byte quantity the
773 registers need not be 8-byte aligned. */
774 if (param_len > 4 && param_len < 8)
775 small_struct = 1;
776 }
777
778 param_ptr += param_len;
779 if (param_len == 8 && !small_struct)
780 param_ptr = align_up (param_ptr, 8);
781
782 /* First 4 non-FP arguments are passed in gr26-gr23.
783 First 4 32-bit FP arguments are passed in fr4L-fr7L.
784 First 2 64-bit FP arguments are passed in fr5 and fr7.
785
786 The rest go on the stack, starting at sp-36, towards lower
787 addresses. 8-byte arguments must be aligned to a 8-byte
788 stack boundary. */
789 if (write_pass)
790 {
791 write_memory (param_end - param_ptr, param_val, param_len);
792
793 /* There are some cases when we don't know the type
794 expected by the callee (e.g. for variadic functions), so
795 pass the parameters in both general and fp regs. */
796 if (param_ptr <= 48)
797 {
798 int grreg = 26 - (param_ptr - 36) / 4;
799 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
800 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
801
802 regcache_cooked_write (regcache, grreg, param_val);
803 regcache_cooked_write (regcache, fpLreg, param_val);
804
805 if (param_len > 4)
806 {
807 regcache_cooked_write (regcache, grreg + 1,
808 param_val + 4);
809
810 regcache_cooked_write (regcache, fpreg, param_val);
811 regcache_cooked_write (regcache, fpreg + 1,
812 param_val + 4);
813 }
814 }
815 }
816 }
817
818 /* Update the various stack pointers. */
819 if (!write_pass)
820 {
821 struct_end = sp + align_up (struct_ptr, 64);
822 /* PARAM_PTR already accounts for all the arguments passed
823 by the user. However, the ABI mandates minimum stack
824 space allocations for outgoing arguments. The ABI also
825 mandates minimum stack alignments which we must
826 preserve. */
827 param_end = struct_end + align_up (param_ptr, 64);
828 }
829 }
830
831 /* If a structure has to be returned, set up register 28 to hold its
832 address */
833 if (struct_return)
834 write_register (28, struct_addr);
835
836 gp = tdep->find_global_pointer (function);
837
838 if (gp != 0)
839 write_register (19, gp);
840
841 /* Set the return address. */
842 if (!gdbarch_push_dummy_code_p (gdbarch))
843 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
844
845 /* Update the Stack Pointer. */
846 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
847
848 return param_end;
849 }
850
851 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
852 Runtime Architecture for PA-RISC 2.0", which is distributed as part
853 as of the HP-UX Software Transition Kit (STK). This implementation
854 is based on version 3.3, dated October 6, 1997. */
855
856 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
857
858 static int
859 hppa64_integral_or_pointer_p (const struct type *type)
860 {
861 switch (TYPE_CODE (type))
862 {
863 case TYPE_CODE_INT:
864 case TYPE_CODE_BOOL:
865 case TYPE_CODE_CHAR:
866 case TYPE_CODE_ENUM:
867 case TYPE_CODE_RANGE:
868 {
869 int len = TYPE_LENGTH (type);
870 return (len == 1 || len == 2 || len == 4 || len == 8);
871 }
872 case TYPE_CODE_PTR:
873 case TYPE_CODE_REF:
874 return (TYPE_LENGTH (type) == 8);
875 default:
876 break;
877 }
878
879 return 0;
880 }
881
882 /* Check whether TYPE is a "Floating Scalar Type". */
883
884 static int
885 hppa64_floating_p (const struct type *type)
886 {
887 switch (TYPE_CODE (type))
888 {
889 case TYPE_CODE_FLT:
890 {
891 int len = TYPE_LENGTH (type);
892 return (len == 4 || len == 8 || len == 16);
893 }
894 default:
895 break;
896 }
897
898 return 0;
899 }
900
901 /* If CODE points to a function entry address, try to look up the corresponding
902 function descriptor and return its address instead. If CODE is not a
903 function entry address, then just return it unchanged. */
904 static CORE_ADDR
905 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
906 {
907 struct obj_section *sec, *opd;
908
909 sec = find_pc_section (code);
910
911 if (!sec)
912 return code;
913
914 /* If CODE is in a data section, assume it's already a fptr. */
915 if (!(sec->the_bfd_section->flags & SEC_CODE))
916 return code;
917
918 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
919 {
920 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
921 break;
922 }
923
924 if (opd < sec->objfile->sections_end)
925 {
926 CORE_ADDR addr;
927
928 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
929 {
930 ULONGEST opdaddr;
931 char tmp[8];
932
933 if (target_read_memory (addr, tmp, sizeof (tmp)))
934 break;
935 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
936
937 if (opdaddr == code)
938 return addr - 16;
939 }
940 }
941
942 return code;
943 }
944
945 static CORE_ADDR
946 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
947 struct regcache *regcache, CORE_ADDR bp_addr,
948 int nargs, struct value **args, CORE_ADDR sp,
949 int struct_return, CORE_ADDR struct_addr)
950 {
951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
952 int i, offset = 0;
953 CORE_ADDR gp;
954
955 /* "The outgoing parameter area [...] must be aligned at a 16-byte
956 boundary." */
957 sp = align_up (sp, 16);
958
959 for (i = 0; i < nargs; i++)
960 {
961 struct value *arg = args[i];
962 struct type *type = value_type (arg);
963 int len = TYPE_LENGTH (type);
964 const bfd_byte *valbuf;
965 bfd_byte fptrbuf[8];
966 int regnum;
967
968 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
969 offset = align_up (offset, 8);
970
971 if (hppa64_integral_or_pointer_p (type))
972 {
973 /* "Integral scalar parameters smaller than 64 bits are
974 padded on the left (i.e., the value is in the
975 least-significant bits of the 64-bit storage unit, and
976 the high-order bits are undefined)." Therefore we can
977 safely sign-extend them. */
978 if (len < 8)
979 {
980 arg = value_cast (builtin_type_int64, arg);
981 len = 8;
982 }
983 }
984 else if (hppa64_floating_p (type))
985 {
986 if (len > 8)
987 {
988 /* "Quad-precision (128-bit) floating-point scalar
989 parameters are aligned on a 16-byte boundary." */
990 offset = align_up (offset, 16);
991
992 /* "Double-extended- and quad-precision floating-point
993 parameters within the first 64 bytes of the parameter
994 list are always passed in general registers." */
995 }
996 else
997 {
998 if (len == 4)
999 {
1000 /* "Single-precision (32-bit) floating-point scalar
1001 parameters are padded on the left with 32 bits of
1002 garbage (i.e., the floating-point value is in the
1003 least-significant 32 bits of a 64-bit storage
1004 unit)." */
1005 offset += 4;
1006 }
1007
1008 /* "Single- and double-precision floating-point
1009 parameters in this area are passed according to the
1010 available formal parameter information in a function
1011 prototype. [...] If no prototype is in scope,
1012 floating-point parameters must be passed both in the
1013 corresponding general registers and in the
1014 corresponding floating-point registers." */
1015 regnum = HPPA64_FP4_REGNUM + offset / 8;
1016
1017 if (regnum < HPPA64_FP4_REGNUM + 8)
1018 {
1019 /* "Single-precision floating-point parameters, when
1020 passed in floating-point registers, are passed in
1021 the right halves of the floating point registers;
1022 the left halves are unused." */
1023 regcache_cooked_write_part (regcache, regnum, offset % 8,
1024 len, value_contents (arg));
1025 }
1026 }
1027 }
1028 else
1029 {
1030 if (len > 8)
1031 {
1032 /* "Aggregates larger than 8 bytes are aligned on a
1033 16-byte boundary, possibly leaving an unused argument
1034 slot, which is filled with garbage. If necessary,
1035 they are padded on the right (with garbage), to a
1036 multiple of 8 bytes." */
1037 offset = align_up (offset, 16);
1038 }
1039 }
1040
1041 /* If we are passing a function pointer, make sure we pass a function
1042 descriptor instead of the function entry address. */
1043 if (TYPE_CODE (type) == TYPE_CODE_PTR
1044 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1045 {
1046 ULONGEST codeptr, fptr;
1047
1048 codeptr = unpack_long (type, value_contents (arg));
1049 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1050 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1051 valbuf = fptrbuf;
1052 }
1053 else
1054 {
1055 valbuf = value_contents (arg);
1056 }
1057
1058 /* Always store the argument in memory. */
1059 write_memory (sp + offset, valbuf, len);
1060
1061 regnum = HPPA_ARG0_REGNUM - offset / 8;
1062 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1063 {
1064 regcache_cooked_write_part (regcache, regnum,
1065 offset % 8, min (len, 8), valbuf);
1066 offset += min (len, 8);
1067 valbuf += min (len, 8);
1068 len -= min (len, 8);
1069 regnum--;
1070 }
1071
1072 offset += len;
1073 }
1074
1075 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1076 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1077
1078 /* Allocate the outgoing parameter area. Make sure the outgoing
1079 parameter area is multiple of 16 bytes in length. */
1080 sp += max (align_up (offset, 16), 64);
1081
1082 /* Allocate 32-bytes of scratch space. The documentation doesn't
1083 mention this, but it seems to be needed. */
1084 sp += 32;
1085
1086 /* Allocate the frame marker area. */
1087 sp += 16;
1088
1089 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1090 its address. */
1091 if (struct_return)
1092 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1093
1094 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1095 gp = tdep->find_global_pointer (function);
1096 if (gp != 0)
1097 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1098
1099 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1100 if (!gdbarch_push_dummy_code_p (gdbarch))
1101 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1102
1103 /* Set up GR30 to hold the stack pointer (sp). */
1104 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1105
1106 return sp;
1107 }
1108 \f
1109
1110 /* Handle 32/64-bit struct return conventions. */
1111
1112 static enum return_value_convention
1113 hppa32_return_value (struct gdbarch *gdbarch,
1114 struct type *type, struct regcache *regcache,
1115 gdb_byte *readbuf, const gdb_byte *writebuf)
1116 {
1117 if (TYPE_LENGTH (type) <= 2 * 4)
1118 {
1119 /* The value always lives in the right hand end of the register
1120 (or register pair)? */
1121 int b;
1122 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1123 int part = TYPE_LENGTH (type) % 4;
1124 /* The left hand register contains only part of the value,
1125 transfer that first so that the rest can be xfered as entire
1126 4-byte registers. */
1127 if (part > 0)
1128 {
1129 if (readbuf != NULL)
1130 regcache_cooked_read_part (regcache, reg, 4 - part,
1131 part, readbuf);
1132 if (writebuf != NULL)
1133 regcache_cooked_write_part (regcache, reg, 4 - part,
1134 part, writebuf);
1135 reg++;
1136 }
1137 /* Now transfer the remaining register values. */
1138 for (b = part; b < TYPE_LENGTH (type); b += 4)
1139 {
1140 if (readbuf != NULL)
1141 regcache_cooked_read (regcache, reg, readbuf + b);
1142 if (writebuf != NULL)
1143 regcache_cooked_write (regcache, reg, writebuf + b);
1144 reg++;
1145 }
1146 return RETURN_VALUE_REGISTER_CONVENTION;
1147 }
1148 else
1149 return RETURN_VALUE_STRUCT_CONVENTION;
1150 }
1151
1152 static enum return_value_convention
1153 hppa64_return_value (struct gdbarch *gdbarch,
1154 struct type *type, struct regcache *regcache,
1155 gdb_byte *readbuf, const gdb_byte *writebuf)
1156 {
1157 int len = TYPE_LENGTH (type);
1158 int regnum, offset;
1159
1160 if (len > 16)
1161 {
1162 /* All return values larget than 128 bits must be aggregate
1163 return values. */
1164 gdb_assert (!hppa64_integral_or_pointer_p (type));
1165 gdb_assert (!hppa64_floating_p (type));
1166
1167 /* "Aggregate return values larger than 128 bits are returned in
1168 a buffer allocated by the caller. The address of the buffer
1169 must be passed in GR 28." */
1170 return RETURN_VALUE_STRUCT_CONVENTION;
1171 }
1172
1173 if (hppa64_integral_or_pointer_p (type))
1174 {
1175 /* "Integral return values are returned in GR 28. Values
1176 smaller than 64 bits are padded on the left (with garbage)." */
1177 regnum = HPPA_RET0_REGNUM;
1178 offset = 8 - len;
1179 }
1180 else if (hppa64_floating_p (type))
1181 {
1182 if (len > 8)
1183 {
1184 /* "Double-extended- and quad-precision floating-point
1185 values are returned in GRs 28 and 29. The sign,
1186 exponent, and most-significant bits of the mantissa are
1187 returned in GR 28; the least-significant bits of the
1188 mantissa are passed in GR 29. For double-extended
1189 precision values, GR 29 is padded on the right with 48
1190 bits of garbage." */
1191 regnum = HPPA_RET0_REGNUM;
1192 offset = 0;
1193 }
1194 else
1195 {
1196 /* "Single-precision and double-precision floating-point
1197 return values are returned in FR 4R (single precision) or
1198 FR 4 (double-precision)." */
1199 regnum = HPPA64_FP4_REGNUM;
1200 offset = 8 - len;
1201 }
1202 }
1203 else
1204 {
1205 /* "Aggregate return values up to 64 bits in size are returned
1206 in GR 28. Aggregates smaller than 64 bits are left aligned
1207 in the register; the pad bits on the right are undefined."
1208
1209 "Aggregate return values between 65 and 128 bits are returned
1210 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1211 the remaining bits are placed, left aligned, in GR 29. The
1212 pad bits on the right of GR 29 (if any) are undefined." */
1213 regnum = HPPA_RET0_REGNUM;
1214 offset = 0;
1215 }
1216
1217 if (readbuf)
1218 {
1219 while (len > 0)
1220 {
1221 regcache_cooked_read_part (regcache, regnum, offset,
1222 min (len, 8), readbuf);
1223 readbuf += min (len, 8);
1224 len -= min (len, 8);
1225 regnum++;
1226 }
1227 }
1228
1229 if (writebuf)
1230 {
1231 while (len > 0)
1232 {
1233 regcache_cooked_write_part (regcache, regnum, offset,
1234 min (len, 8), writebuf);
1235 writebuf += min (len, 8);
1236 len -= min (len, 8);
1237 regnum++;
1238 }
1239 }
1240
1241 return RETURN_VALUE_REGISTER_CONVENTION;
1242 }
1243 \f
1244
1245 static CORE_ADDR
1246 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1247 struct target_ops *targ)
1248 {
1249 if (addr & 2)
1250 {
1251 CORE_ADDR plabel = addr & ~3;
1252 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1253 }
1254
1255 return addr;
1256 }
1257
1258 static CORE_ADDR
1259 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1260 {
1261 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1262 and not _bit_)! */
1263 return align_up (addr, 64);
1264 }
1265
1266 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1267
1268 static CORE_ADDR
1269 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1270 {
1271 /* Just always 16-byte align. */
1272 return align_up (addr, 16);
1273 }
1274
1275 CORE_ADDR
1276 hppa_read_pc (ptid_t ptid)
1277 {
1278 ULONGEST ipsw;
1279 CORE_ADDR pc;
1280
1281 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1282 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1283
1284 /* If the current instruction is nullified, then we are effectively
1285 still executing the previous instruction. Pretend we are still
1286 there. This is needed when single stepping; if the nullified
1287 instruction is on a different line, we don't want GDB to think
1288 we've stepped onto that line. */
1289 if (ipsw & 0x00200000)
1290 pc -= 4;
1291
1292 return pc & ~0x3;
1293 }
1294
1295 void
1296 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1297 {
1298 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1299 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1300 }
1301
1302 /* return the alignment of a type in bytes. Structures have the maximum
1303 alignment required by their fields. */
1304
1305 static int
1306 hppa_alignof (struct type *type)
1307 {
1308 int max_align, align, i;
1309 CHECK_TYPEDEF (type);
1310 switch (TYPE_CODE (type))
1311 {
1312 case TYPE_CODE_PTR:
1313 case TYPE_CODE_INT:
1314 case TYPE_CODE_FLT:
1315 return TYPE_LENGTH (type);
1316 case TYPE_CODE_ARRAY:
1317 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1318 case TYPE_CODE_STRUCT:
1319 case TYPE_CODE_UNION:
1320 max_align = 1;
1321 for (i = 0; i < TYPE_NFIELDS (type); i++)
1322 {
1323 /* Bit fields have no real alignment. */
1324 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1325 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1326 {
1327 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1328 max_align = max (max_align, align);
1329 }
1330 }
1331 return max_align;
1332 default:
1333 return 4;
1334 }
1335 }
1336
1337 /* For the given instruction (INST), return any adjustment it makes
1338 to the stack pointer or zero for no adjustment.
1339
1340 This only handles instructions commonly found in prologues. */
1341
1342 static int
1343 prologue_inst_adjust_sp (unsigned long inst)
1344 {
1345 /* This must persist across calls. */
1346 static int save_high21;
1347
1348 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1349 if ((inst & 0xffffc000) == 0x37de0000)
1350 return hppa_extract_14 (inst);
1351
1352 /* stwm X,D(sp) */
1353 if ((inst & 0xffe00000) == 0x6fc00000)
1354 return hppa_extract_14 (inst);
1355
1356 /* std,ma X,D(sp) */
1357 if ((inst & 0xffe00008) == 0x73c00008)
1358 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1359
1360 /* addil high21,%r30; ldo low11,(%r1),%r30)
1361 save high bits in save_high21 for later use. */
1362 if ((inst & 0xffe00000) == 0x2bc00000)
1363 {
1364 save_high21 = hppa_extract_21 (inst);
1365 return 0;
1366 }
1367
1368 if ((inst & 0xffff0000) == 0x343e0000)
1369 return save_high21 + hppa_extract_14 (inst);
1370
1371 /* fstws as used by the HP compilers. */
1372 if ((inst & 0xffffffe0) == 0x2fd01220)
1373 return hppa_extract_5_load (inst);
1374
1375 /* No adjustment. */
1376 return 0;
1377 }
1378
1379 /* Return nonzero if INST is a branch of some kind, else return zero. */
1380
1381 static int
1382 is_branch (unsigned long inst)
1383 {
1384 switch (inst >> 26)
1385 {
1386 case 0x20:
1387 case 0x21:
1388 case 0x22:
1389 case 0x23:
1390 case 0x27:
1391 case 0x28:
1392 case 0x29:
1393 case 0x2a:
1394 case 0x2b:
1395 case 0x2f:
1396 case 0x30:
1397 case 0x31:
1398 case 0x32:
1399 case 0x33:
1400 case 0x38:
1401 case 0x39:
1402 case 0x3a:
1403 case 0x3b:
1404 return 1;
1405
1406 default:
1407 return 0;
1408 }
1409 }
1410
1411 /* Return the register number for a GR which is saved by INST or
1412 zero it INST does not save a GR. */
1413
1414 static int
1415 inst_saves_gr (unsigned long inst)
1416 {
1417 /* Does it look like a stw? */
1418 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1419 || (inst >> 26) == 0x1f
1420 || ((inst >> 26) == 0x1f
1421 && ((inst >> 6) == 0xa)))
1422 return hppa_extract_5R_store (inst);
1423
1424 /* Does it look like a std? */
1425 if ((inst >> 26) == 0x1c
1426 || ((inst >> 26) == 0x03
1427 && ((inst >> 6) & 0xf) == 0xb))
1428 return hppa_extract_5R_store (inst);
1429
1430 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1431 if ((inst >> 26) == 0x1b)
1432 return hppa_extract_5R_store (inst);
1433
1434 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1435 too. */
1436 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1437 || ((inst >> 26) == 0x3
1438 && (((inst >> 6) & 0xf) == 0x8
1439 || (inst >> 6) & 0xf) == 0x9))
1440 return hppa_extract_5R_store (inst);
1441
1442 return 0;
1443 }
1444
1445 /* Return the register number for a FR which is saved by INST or
1446 zero it INST does not save a FR.
1447
1448 Note we only care about full 64bit register stores (that's the only
1449 kind of stores the prologue will use).
1450
1451 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1452
1453 static int
1454 inst_saves_fr (unsigned long inst)
1455 {
1456 /* is this an FSTD ? */
1457 if ((inst & 0xfc00dfc0) == 0x2c001200)
1458 return hppa_extract_5r_store (inst);
1459 if ((inst & 0xfc000002) == 0x70000002)
1460 return hppa_extract_5R_store (inst);
1461 /* is this an FSTW ? */
1462 if ((inst & 0xfc00df80) == 0x24001200)
1463 return hppa_extract_5r_store (inst);
1464 if ((inst & 0xfc000002) == 0x7c000000)
1465 return hppa_extract_5R_store (inst);
1466 return 0;
1467 }
1468
1469 /* Advance PC across any function entry prologue instructions
1470 to reach some "real" code.
1471
1472 Use information in the unwind table to determine what exactly should
1473 be in the prologue. */
1474
1475
1476 static CORE_ADDR
1477 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1478 {
1479 char buf[4];
1480 CORE_ADDR orig_pc = pc;
1481 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1482 unsigned long args_stored, status, i, restart_gr, restart_fr;
1483 struct unwind_table_entry *u;
1484 int final_iteration;
1485
1486 restart_gr = 0;
1487 restart_fr = 0;
1488
1489 restart:
1490 u = find_unwind_entry (pc);
1491 if (!u)
1492 return pc;
1493
1494 /* If we are not at the beginning of a function, then return now. */
1495 if ((pc & ~0x3) != u->region_start)
1496 return pc;
1497
1498 /* This is how much of a frame adjustment we need to account for. */
1499 stack_remaining = u->Total_frame_size << 3;
1500
1501 /* Magic register saves we want to know about. */
1502 save_rp = u->Save_RP;
1503 save_sp = u->Save_SP;
1504
1505 /* An indication that args may be stored into the stack. Unfortunately
1506 the HPUX compilers tend to set this in cases where no args were
1507 stored too!. */
1508 args_stored = 1;
1509
1510 /* Turn the Entry_GR field into a bitmask. */
1511 save_gr = 0;
1512 for (i = 3; i < u->Entry_GR + 3; i++)
1513 {
1514 /* Frame pointer gets saved into a special location. */
1515 if (u->Save_SP && i == HPPA_FP_REGNUM)
1516 continue;
1517
1518 save_gr |= (1 << i);
1519 }
1520 save_gr &= ~restart_gr;
1521
1522 /* Turn the Entry_FR field into a bitmask too. */
1523 save_fr = 0;
1524 for (i = 12; i < u->Entry_FR + 12; i++)
1525 save_fr |= (1 << i);
1526 save_fr &= ~restart_fr;
1527
1528 final_iteration = 0;
1529
1530 /* Loop until we find everything of interest or hit a branch.
1531
1532 For unoptimized GCC code and for any HP CC code this will never ever
1533 examine any user instructions.
1534
1535 For optimzied GCC code we're faced with problems. GCC will schedule
1536 its prologue and make prologue instructions available for delay slot
1537 filling. The end result is user code gets mixed in with the prologue
1538 and a prologue instruction may be in the delay slot of the first branch
1539 or call.
1540
1541 Some unexpected things are expected with debugging optimized code, so
1542 we allow this routine to walk past user instructions in optimized
1543 GCC code. */
1544 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1545 || args_stored)
1546 {
1547 unsigned int reg_num;
1548 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1549 unsigned long old_save_rp, old_save_sp, next_inst;
1550
1551 /* Save copies of all the triggers so we can compare them later
1552 (only for HPC). */
1553 old_save_gr = save_gr;
1554 old_save_fr = save_fr;
1555 old_save_rp = save_rp;
1556 old_save_sp = save_sp;
1557 old_stack_remaining = stack_remaining;
1558
1559 status = read_memory_nobpt (pc, buf, 4);
1560 inst = extract_unsigned_integer (buf, 4);
1561
1562 /* Yow! */
1563 if (status != 0)
1564 return pc;
1565
1566 /* Note the interesting effects of this instruction. */
1567 stack_remaining -= prologue_inst_adjust_sp (inst);
1568
1569 /* There are limited ways to store the return pointer into the
1570 stack. */
1571 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1572 save_rp = 0;
1573
1574 /* These are the only ways we save SP into the stack. At this time
1575 the HP compilers never bother to save SP into the stack. */
1576 if ((inst & 0xffffc000) == 0x6fc10000
1577 || (inst & 0xffffc00c) == 0x73c10008)
1578 save_sp = 0;
1579
1580 /* Are we loading some register with an offset from the argument
1581 pointer? */
1582 if ((inst & 0xffe00000) == 0x37a00000
1583 || (inst & 0xffffffe0) == 0x081d0240)
1584 {
1585 pc += 4;
1586 continue;
1587 }
1588
1589 /* Account for general and floating-point register saves. */
1590 reg_num = inst_saves_gr (inst);
1591 save_gr &= ~(1 << reg_num);
1592
1593 /* Ugh. Also account for argument stores into the stack.
1594 Unfortunately args_stored only tells us that some arguments
1595 where stored into the stack. Not how many or what kind!
1596
1597 This is a kludge as on the HP compiler sets this bit and it
1598 never does prologue scheduling. So once we see one, skip past
1599 all of them. We have similar code for the fp arg stores below.
1600
1601 FIXME. Can still die if we have a mix of GR and FR argument
1602 stores! */
1603 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1604 {
1605 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1606 {
1607 pc += 4;
1608 status = read_memory_nobpt (pc, buf, 4);
1609 inst = extract_unsigned_integer (buf, 4);
1610 if (status != 0)
1611 return pc;
1612 reg_num = inst_saves_gr (inst);
1613 }
1614 args_stored = 0;
1615 continue;
1616 }
1617
1618 reg_num = inst_saves_fr (inst);
1619 save_fr &= ~(1 << reg_num);
1620
1621 status = read_memory_nobpt (pc + 4, buf, 4);
1622 next_inst = extract_unsigned_integer (buf, 4);
1623
1624 /* Yow! */
1625 if (status != 0)
1626 return pc;
1627
1628 /* We've got to be read to handle the ldo before the fp register
1629 save. */
1630 if ((inst & 0xfc000000) == 0x34000000
1631 && inst_saves_fr (next_inst) >= 4
1632 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1633 {
1634 /* So we drop into the code below in a reasonable state. */
1635 reg_num = inst_saves_fr (next_inst);
1636 pc -= 4;
1637 }
1638
1639 /* Ugh. Also account for argument stores into the stack.
1640 This is a kludge as on the HP compiler sets this bit and it
1641 never does prologue scheduling. So once we see one, skip past
1642 all of them. */
1643 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1644 {
1645 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1646 {
1647 pc += 8;
1648 status = read_memory_nobpt (pc, buf, 4);
1649 inst = extract_unsigned_integer (buf, 4);
1650 if (status != 0)
1651 return pc;
1652 if ((inst & 0xfc000000) != 0x34000000)
1653 break;
1654 status = read_memory_nobpt (pc + 4, buf, 4);
1655 next_inst = extract_unsigned_integer (buf, 4);
1656 if (status != 0)
1657 return pc;
1658 reg_num = inst_saves_fr (next_inst);
1659 }
1660 args_stored = 0;
1661 continue;
1662 }
1663
1664 /* Quit if we hit any kind of branch. This can happen if a prologue
1665 instruction is in the delay slot of the first call/branch. */
1666 if (is_branch (inst) && stop_before_branch)
1667 break;
1668
1669 /* What a crock. The HP compilers set args_stored even if no
1670 arguments were stored into the stack (boo hiss). This could
1671 cause this code to then skip a bunch of user insns (up to the
1672 first branch).
1673
1674 To combat this we try to identify when args_stored was bogusly
1675 set and clear it. We only do this when args_stored is nonzero,
1676 all other resources are accounted for, and nothing changed on
1677 this pass. */
1678 if (args_stored
1679 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1680 && old_save_gr == save_gr && old_save_fr == save_fr
1681 && old_save_rp == save_rp && old_save_sp == save_sp
1682 && old_stack_remaining == stack_remaining)
1683 break;
1684
1685 /* Bump the PC. */
1686 pc += 4;
1687
1688 /* !stop_before_branch, so also look at the insn in the delay slot
1689 of the branch. */
1690 if (final_iteration)
1691 break;
1692 if (is_branch (inst))
1693 final_iteration = 1;
1694 }
1695
1696 /* We've got a tenative location for the end of the prologue. However
1697 because of limitations in the unwind descriptor mechanism we may
1698 have went too far into user code looking for the save of a register
1699 that does not exist. So, if there registers we expected to be saved
1700 but never were, mask them out and restart.
1701
1702 This should only happen in optimized code, and should be very rare. */
1703 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1704 {
1705 pc = orig_pc;
1706 restart_gr = save_gr;
1707 restart_fr = save_fr;
1708 goto restart;
1709 }
1710
1711 return pc;
1712 }
1713
1714
1715 /* Return the address of the PC after the last prologue instruction if
1716 we can determine it from the debug symbols. Else return zero. */
1717
1718 static CORE_ADDR
1719 after_prologue (CORE_ADDR pc)
1720 {
1721 struct symtab_and_line sal;
1722 CORE_ADDR func_addr, func_end;
1723 struct symbol *f;
1724
1725 /* If we can not find the symbol in the partial symbol table, then
1726 there is no hope we can determine the function's start address
1727 with this code. */
1728 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1729 return 0;
1730
1731 /* Get the line associated with FUNC_ADDR. */
1732 sal = find_pc_line (func_addr, 0);
1733
1734 /* There are only two cases to consider. First, the end of the source line
1735 is within the function bounds. In that case we return the end of the
1736 source line. Second is the end of the source line extends beyond the
1737 bounds of the current function. We need to use the slow code to
1738 examine instructions in that case.
1739
1740 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1741 the wrong thing to do. In fact, it should be entirely possible for this
1742 function to always return zero since the slow instruction scanning code
1743 is supposed to *always* work. If it does not, then it is a bug. */
1744 if (sal.end < func_end)
1745 return sal.end;
1746 else
1747 return 0;
1748 }
1749
1750 /* To skip prologues, I use this predicate. Returns either PC itself
1751 if the code at PC does not look like a function prologue; otherwise
1752 returns an address that (if we're lucky) follows the prologue.
1753
1754 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1755 It doesn't necessarily skips all the insns in the prologue. In fact
1756 we might not want to skip all the insns because a prologue insn may
1757 appear in the delay slot of the first branch, and we don't want to
1758 skip over the branch in that case. */
1759
1760 static CORE_ADDR
1761 hppa_skip_prologue (CORE_ADDR pc)
1762 {
1763 unsigned long inst;
1764 int offset;
1765 CORE_ADDR post_prologue_pc;
1766 char buf[4];
1767
1768 /* See if we can determine the end of the prologue via the symbol table.
1769 If so, then return either PC, or the PC after the prologue, whichever
1770 is greater. */
1771
1772 post_prologue_pc = after_prologue (pc);
1773
1774 /* If after_prologue returned a useful address, then use it. Else
1775 fall back on the instruction skipping code.
1776
1777 Some folks have claimed this causes problems because the breakpoint
1778 may be the first instruction of the prologue. If that happens, then
1779 the instruction skipping code has a bug that needs to be fixed. */
1780 if (post_prologue_pc != 0)
1781 return max (pc, post_prologue_pc);
1782 else
1783 return (skip_prologue_hard_way (pc, 1));
1784 }
1785
1786 /* Return an unwind entry that falls within the frame's code block. */
1787 static struct unwind_table_entry *
1788 hppa_find_unwind_entry_in_block (struct frame_info *f)
1789 {
1790 CORE_ADDR pc;
1791
1792 pc = frame_unwind_address_in_block (f);
1793 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1794 return find_unwind_entry (pc);
1795 }
1796
1797 struct hppa_frame_cache
1798 {
1799 CORE_ADDR base;
1800 struct trad_frame_saved_reg *saved_regs;
1801 };
1802
1803 static struct hppa_frame_cache *
1804 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1805 {
1806 struct hppa_frame_cache *cache;
1807 long saved_gr_mask;
1808 long saved_fr_mask;
1809 CORE_ADDR this_sp;
1810 long frame_size;
1811 struct unwind_table_entry *u;
1812 CORE_ADDR prologue_end;
1813 int fp_in_r1 = 0;
1814 int i;
1815
1816 if (hppa_debug)
1817 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1818 frame_relative_level(next_frame));
1819
1820 if ((*this_cache) != NULL)
1821 {
1822 if (hppa_debug)
1823 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1824 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1825 return (*this_cache);
1826 }
1827 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1828 (*this_cache) = cache;
1829 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1830
1831 /* Yow! */
1832 u = hppa_find_unwind_entry_in_block (next_frame);
1833 if (!u)
1834 {
1835 if (hppa_debug)
1836 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1837 return (*this_cache);
1838 }
1839
1840 /* Turn the Entry_GR field into a bitmask. */
1841 saved_gr_mask = 0;
1842 for (i = 3; i < u->Entry_GR + 3; i++)
1843 {
1844 /* Frame pointer gets saved into a special location. */
1845 if (u->Save_SP && i == HPPA_FP_REGNUM)
1846 continue;
1847
1848 saved_gr_mask |= (1 << i);
1849 }
1850
1851 /* Turn the Entry_FR field into a bitmask too. */
1852 saved_fr_mask = 0;
1853 for (i = 12; i < u->Entry_FR + 12; i++)
1854 saved_fr_mask |= (1 << i);
1855
1856 /* Loop until we find everything of interest or hit a branch.
1857
1858 For unoptimized GCC code and for any HP CC code this will never ever
1859 examine any user instructions.
1860
1861 For optimized GCC code we're faced with problems. GCC will schedule
1862 its prologue and make prologue instructions available for delay slot
1863 filling. The end result is user code gets mixed in with the prologue
1864 and a prologue instruction may be in the delay slot of the first branch
1865 or call.
1866
1867 Some unexpected things are expected with debugging optimized code, so
1868 we allow this routine to walk past user instructions in optimized
1869 GCC code. */
1870 {
1871 int final_iteration = 0;
1872 CORE_ADDR pc, start_pc, end_pc;
1873 int looking_for_sp = u->Save_SP;
1874 int looking_for_rp = u->Save_RP;
1875 int fp_loc = -1;
1876
1877 /* We have to use skip_prologue_hard_way instead of just
1878 skip_prologue_using_sal, in case we stepped into a function without
1879 symbol information. hppa_skip_prologue also bounds the returned
1880 pc by the passed in pc, so it will not return a pc in the next
1881 function.
1882
1883 We used to call hppa_skip_prologue to find the end of the prologue,
1884 but if some non-prologue instructions get scheduled into the prologue,
1885 and the program is compiled with debug information, the "easy" way
1886 in hppa_skip_prologue will return a prologue end that is too early
1887 for us to notice any potential frame adjustments. */
1888
1889 /* We used to use frame_func_unwind () to locate the beginning of the
1890 function to pass to skip_prologue (). However, when objects are
1891 compiled without debug symbols, frame_func_unwind can return the wrong
1892 function (or 0). We can do better than that by using unwind records.
1893 This only works if the Region_description of the unwind record
1894 indicates that it includes the entry point of the function.
1895 HP compilers sometimes generate unwind records for regions that
1896 do not include the entry or exit point of a function. GNU tools
1897 do not do this. */
1898
1899 if ((u->Region_description & 0x2) == 0)
1900 start_pc = u->region_start;
1901 else
1902 start_pc = frame_func_unwind (next_frame);
1903
1904 prologue_end = skip_prologue_hard_way (start_pc, 0);
1905 end_pc = frame_pc_unwind (next_frame);
1906
1907 if (prologue_end != 0 && end_pc > prologue_end)
1908 end_pc = prologue_end;
1909
1910 frame_size = 0;
1911
1912 for (pc = start_pc;
1913 ((saved_gr_mask || saved_fr_mask
1914 || looking_for_sp || looking_for_rp
1915 || frame_size < (u->Total_frame_size << 3))
1916 && pc < end_pc);
1917 pc += 4)
1918 {
1919 int reg;
1920 char buf4[4];
1921 long inst;
1922
1923 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1924 sizeof buf4))
1925 {
1926 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1927 return (*this_cache);
1928 }
1929
1930 inst = extract_unsigned_integer (buf4, sizeof buf4);
1931
1932 /* Note the interesting effects of this instruction. */
1933 frame_size += prologue_inst_adjust_sp (inst);
1934
1935 /* There are limited ways to store the return pointer into the
1936 stack. */
1937 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1938 {
1939 looking_for_rp = 0;
1940 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1941 }
1942 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1943 {
1944 looking_for_rp = 0;
1945 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1946 }
1947 else if (inst == 0x0fc212c1
1948 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1949 {
1950 looking_for_rp = 0;
1951 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1952 }
1953
1954 /* Check to see if we saved SP into the stack. This also
1955 happens to indicate the location of the saved frame
1956 pointer. */
1957 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1958 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1959 {
1960 looking_for_sp = 0;
1961 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1962 }
1963 else if (inst == 0x08030241) /* copy %r3, %r1 */
1964 {
1965 fp_in_r1 = 1;
1966 }
1967
1968 /* Account for general and floating-point register saves. */
1969 reg = inst_saves_gr (inst);
1970 if (reg >= 3 && reg <= 18
1971 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1972 {
1973 saved_gr_mask &= ~(1 << reg);
1974 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1975 /* stwm with a positive displacement is a _post_
1976 _modify_. */
1977 cache->saved_regs[reg].addr = 0;
1978 else if ((inst & 0xfc00000c) == 0x70000008)
1979 /* A std has explicit post_modify forms. */
1980 cache->saved_regs[reg].addr = 0;
1981 else
1982 {
1983 CORE_ADDR offset;
1984
1985 if ((inst >> 26) == 0x1c)
1986 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1987 else if ((inst >> 26) == 0x03)
1988 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1989 else
1990 offset = hppa_extract_14 (inst);
1991
1992 /* Handle code with and without frame pointers. */
1993 if (u->Save_SP)
1994 cache->saved_regs[reg].addr = offset;
1995 else
1996 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1997 }
1998 }
1999
2000 /* GCC handles callee saved FP regs a little differently.
2001
2002 It emits an instruction to put the value of the start of
2003 the FP store area into %r1. It then uses fstds,ma with a
2004 basereg of %r1 for the stores.
2005
2006 HP CC emits them at the current stack pointer modifying the
2007 stack pointer as it stores each register. */
2008
2009 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2010 if ((inst & 0xffffc000) == 0x34610000
2011 || (inst & 0xffffc000) == 0x37c10000)
2012 fp_loc = hppa_extract_14 (inst);
2013
2014 reg = inst_saves_fr (inst);
2015 if (reg >= 12 && reg <= 21)
2016 {
2017 /* Note +4 braindamage below is necessary because the FP
2018 status registers are internally 8 registers rather than
2019 the expected 4 registers. */
2020 saved_fr_mask &= ~(1 << reg);
2021 if (fp_loc == -1)
2022 {
2023 /* 1st HP CC FP register store. After this
2024 instruction we've set enough state that the GCC and
2025 HPCC code are both handled in the same manner. */
2026 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2027 fp_loc = 8;
2028 }
2029 else
2030 {
2031 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2032 fp_loc += 8;
2033 }
2034 }
2035
2036 /* Quit if we hit any kind of branch the previous iteration. */
2037 if (final_iteration)
2038 break;
2039 /* We want to look precisely one instruction beyond the branch
2040 if we have not found everything yet. */
2041 if (is_branch (inst))
2042 final_iteration = 1;
2043 }
2044 }
2045
2046 {
2047 /* The frame base always represents the value of %sp at entry to
2048 the current function (and is thus equivalent to the "saved"
2049 stack pointer. */
2050 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2051 CORE_ADDR fp;
2052
2053 if (hppa_debug)
2054 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2055 "prologue_end=0x%s) ",
2056 paddr_nz (this_sp),
2057 paddr_nz (frame_pc_unwind (next_frame)),
2058 paddr_nz (prologue_end));
2059
2060 /* Check to see if a frame pointer is available, and use it for
2061 frame unwinding if it is.
2062
2063 There are some situations where we need to rely on the frame
2064 pointer to do stack unwinding. For example, if a function calls
2065 alloca (), the stack pointer can get adjusted inside the body of
2066 the function. In this case, the ABI requires that the compiler
2067 maintain a frame pointer for the function.
2068
2069 The unwind record has a flag (alloca_frame) that indicates that
2070 a function has a variable frame; unfortunately, gcc/binutils
2071 does not set this flag. Instead, whenever a frame pointer is used
2072 and saved on the stack, the Save_SP flag is set. We use this to
2073 decide whether to use the frame pointer for unwinding.
2074
2075 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2076 instead of Save_SP. */
2077
2078 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2079
2080 if (u->alloca_frame)
2081 fp -= u->Total_frame_size << 3;
2082
2083 if (frame_pc_unwind (next_frame) >= prologue_end
2084 && (u->Save_SP || u->alloca_frame) && fp != 0)
2085 {
2086 cache->base = fp;
2087
2088 if (hppa_debug)
2089 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2090 paddr_nz (cache->base));
2091 }
2092 else if (u->Save_SP
2093 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2094 {
2095 /* Both we're expecting the SP to be saved and the SP has been
2096 saved. The entry SP value is saved at this frame's SP
2097 address. */
2098 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2099
2100 if (hppa_debug)
2101 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2102 paddr_nz (cache->base));
2103 }
2104 else
2105 {
2106 /* The prologue has been slowly allocating stack space. Adjust
2107 the SP back. */
2108 cache->base = this_sp - frame_size;
2109 if (hppa_debug)
2110 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2111 paddr_nz (cache->base));
2112
2113 }
2114 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2115 }
2116
2117 /* The PC is found in the "return register", "Millicode" uses "r31"
2118 as the return register while normal code uses "rp". */
2119 if (u->Millicode)
2120 {
2121 if (trad_frame_addr_p (cache->saved_regs, 31))
2122 {
2123 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2124 if (hppa_debug)
2125 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2126 }
2127 else
2128 {
2129 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2130 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2131 if (hppa_debug)
2132 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2133 }
2134 }
2135 else
2136 {
2137 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2138 {
2139 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2140 cache->saved_regs[HPPA_RP_REGNUM];
2141 if (hppa_debug)
2142 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2143 }
2144 else
2145 {
2146 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2147 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2148 if (hppa_debug)
2149 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2150 }
2151 }
2152
2153 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2154 frame. However, there is a one-insn window where we haven't saved it
2155 yet, but we've already clobbered it. Detect this case and fix it up.
2156
2157 The prologue sequence for frame-pointer functions is:
2158 0: stw %rp, -20(%sp)
2159 4: copy %r3, %r1
2160 8: copy %sp, %r3
2161 c: stw,ma %r1, XX(%sp)
2162
2163 So if we are at offset c, the r3 value that we want is not yet saved
2164 on the stack, but it's been overwritten. The prologue analyzer will
2165 set fp_in_r1 when it sees the copy insn so we know to get the value
2166 from r1 instead. */
2167 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2168 && fp_in_r1)
2169 {
2170 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2171 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2172 }
2173
2174 {
2175 /* Convert all the offsets into addresses. */
2176 int reg;
2177 for (reg = 0; reg < NUM_REGS; reg++)
2178 {
2179 if (trad_frame_addr_p (cache->saved_regs, reg))
2180 cache->saved_regs[reg].addr += cache->base;
2181 }
2182 }
2183
2184 {
2185 struct gdbarch *gdbarch;
2186 struct gdbarch_tdep *tdep;
2187
2188 gdbarch = get_frame_arch (next_frame);
2189 tdep = gdbarch_tdep (gdbarch);
2190
2191 if (tdep->unwind_adjust_stub)
2192 {
2193 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2194 }
2195 }
2196
2197 if (hppa_debug)
2198 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2199 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2200 return (*this_cache);
2201 }
2202
2203 static void
2204 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2205 struct frame_id *this_id)
2206 {
2207 struct hppa_frame_cache *info;
2208 CORE_ADDR pc = frame_pc_unwind (next_frame);
2209 struct unwind_table_entry *u;
2210
2211 info = hppa_frame_cache (next_frame, this_cache);
2212 u = hppa_find_unwind_entry_in_block (next_frame);
2213
2214 (*this_id) = frame_id_build (info->base, u->region_start);
2215 }
2216
2217 static void
2218 hppa_frame_prev_register (struct frame_info *next_frame,
2219 void **this_cache,
2220 int regnum, int *optimizedp,
2221 enum lval_type *lvalp, CORE_ADDR *addrp,
2222 int *realnump, gdb_byte *valuep)
2223 {
2224 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2225 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2226 optimizedp, lvalp, addrp, realnump, valuep);
2227 }
2228
2229 static const struct frame_unwind hppa_frame_unwind =
2230 {
2231 NORMAL_FRAME,
2232 hppa_frame_this_id,
2233 hppa_frame_prev_register
2234 };
2235
2236 static const struct frame_unwind *
2237 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2238 {
2239 if (hppa_find_unwind_entry_in_block (next_frame))
2240 return &hppa_frame_unwind;
2241
2242 return NULL;
2243 }
2244
2245 /* This is a generic fallback frame unwinder that kicks in if we fail all
2246 the other ones. Normally we would expect the stub and regular unwinder
2247 to work, but in some cases we might hit a function that just doesn't
2248 have any unwind information available. In this case we try to do
2249 unwinding solely based on code reading. This is obviously going to be
2250 slow, so only use this as a last resort. Currently this will only
2251 identify the stack and pc for the frame. */
2252
2253 static struct hppa_frame_cache *
2254 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2255 {
2256 struct hppa_frame_cache *cache;
2257 unsigned int frame_size = 0;
2258 int found_rp = 0;
2259 CORE_ADDR start_pc;
2260
2261 if (hppa_debug)
2262 fprintf_unfiltered (gdb_stdlog,
2263 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2264 frame_relative_level (next_frame));
2265
2266 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2267 (*this_cache) = cache;
2268 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2269
2270 start_pc = frame_func_unwind (next_frame);
2271 if (start_pc)
2272 {
2273 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2274 CORE_ADDR pc;
2275
2276 for (pc = start_pc; pc < cur_pc; pc += 4)
2277 {
2278 unsigned int insn;
2279
2280 insn = read_memory_unsigned_integer (pc, 4);
2281 frame_size += prologue_inst_adjust_sp (insn);
2282
2283 /* There are limited ways to store the return pointer into the
2284 stack. */
2285 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2286 {
2287 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2288 found_rp = 1;
2289 }
2290 else if (insn == 0x0fc212c1
2291 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2292 {
2293 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2294 found_rp = 1;
2295 }
2296 }
2297 }
2298
2299 if (hppa_debug)
2300 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2301 frame_size, found_rp);
2302
2303 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2304 cache->base -= frame_size;
2305 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2306
2307 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2308 {
2309 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2310 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2311 cache->saved_regs[HPPA_RP_REGNUM];
2312 }
2313 else
2314 {
2315 ULONGEST rp;
2316 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2317 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2318 }
2319
2320 return cache;
2321 }
2322
2323 static void
2324 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2325 struct frame_id *this_id)
2326 {
2327 struct hppa_frame_cache *info =
2328 hppa_fallback_frame_cache (next_frame, this_cache);
2329 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2330 }
2331
2332 static void
2333 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2334 void **this_cache,
2335 int regnum, int *optimizedp,
2336 enum lval_type *lvalp, CORE_ADDR *addrp,
2337 int *realnump, gdb_byte *valuep)
2338 {
2339 struct hppa_frame_cache *info =
2340 hppa_fallback_frame_cache (next_frame, this_cache);
2341 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2342 optimizedp, lvalp, addrp, realnump, valuep);
2343 }
2344
2345 static const struct frame_unwind hppa_fallback_frame_unwind =
2346 {
2347 NORMAL_FRAME,
2348 hppa_fallback_frame_this_id,
2349 hppa_fallback_frame_prev_register
2350 };
2351
2352 static const struct frame_unwind *
2353 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2354 {
2355 return &hppa_fallback_frame_unwind;
2356 }
2357
2358 /* Stub frames, used for all kinds of call stubs. */
2359 struct hppa_stub_unwind_cache
2360 {
2361 CORE_ADDR base;
2362 struct trad_frame_saved_reg *saved_regs;
2363 };
2364
2365 static struct hppa_stub_unwind_cache *
2366 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2367 void **this_cache)
2368 {
2369 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2370 struct hppa_stub_unwind_cache *info;
2371 struct unwind_table_entry *u;
2372
2373 if (*this_cache)
2374 return *this_cache;
2375
2376 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2377 *this_cache = info;
2378 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2379
2380 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2381
2382 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2383 {
2384 /* HPUX uses export stubs in function calls; the export stub clobbers
2385 the return value of the caller, and, later restores it from the
2386 stack. */
2387 u = find_unwind_entry (frame_pc_unwind (next_frame));
2388
2389 if (u && u->stub_unwind.stub_type == EXPORT)
2390 {
2391 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2392
2393 return info;
2394 }
2395 }
2396
2397 /* By default we assume that stubs do not change the rp. */
2398 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2399
2400 return info;
2401 }
2402
2403 static void
2404 hppa_stub_frame_this_id (struct frame_info *next_frame,
2405 void **this_prologue_cache,
2406 struct frame_id *this_id)
2407 {
2408 struct hppa_stub_unwind_cache *info
2409 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2410
2411 if (info)
2412 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2413 else
2414 *this_id = null_frame_id;
2415 }
2416
2417 static void
2418 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2419 void **this_prologue_cache,
2420 int regnum, int *optimizedp,
2421 enum lval_type *lvalp, CORE_ADDR *addrp,
2422 int *realnump, gdb_byte *valuep)
2423 {
2424 struct hppa_stub_unwind_cache *info
2425 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2426
2427 if (info)
2428 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2429 optimizedp, lvalp, addrp, realnump,
2430 valuep);
2431 else
2432 error (_("Requesting registers from null frame."));
2433 }
2434
2435 static const struct frame_unwind hppa_stub_frame_unwind = {
2436 NORMAL_FRAME,
2437 hppa_stub_frame_this_id,
2438 hppa_stub_frame_prev_register
2439 };
2440
2441 static const struct frame_unwind *
2442 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2443 {
2444 CORE_ADDR pc = frame_pc_unwind (next_frame);
2445 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2447
2448 if (pc == 0
2449 || (tdep->in_solib_call_trampoline != NULL
2450 && tdep->in_solib_call_trampoline (pc, NULL))
2451 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2452 return &hppa_stub_frame_unwind;
2453 return NULL;
2454 }
2455
2456 static struct frame_id
2457 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2458 {
2459 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2460 HPPA_SP_REGNUM),
2461 frame_pc_unwind (next_frame));
2462 }
2463
2464 CORE_ADDR
2465 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2466 {
2467 ULONGEST ipsw;
2468 CORE_ADDR pc;
2469
2470 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2471 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2472
2473 /* If the current instruction is nullified, then we are effectively
2474 still executing the previous instruction. Pretend we are still
2475 there. This is needed when single stepping; if the nullified
2476 instruction is on a different line, we don't want GDB to think
2477 we've stepped onto that line. */
2478 if (ipsw & 0x00200000)
2479 pc -= 4;
2480
2481 return pc & ~0x3;
2482 }
2483
2484 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2485 Return NULL if no such symbol was found. */
2486
2487 struct minimal_symbol *
2488 hppa_lookup_stub_minimal_symbol (const char *name,
2489 enum unwind_stub_types stub_type)
2490 {
2491 struct objfile *objfile;
2492 struct minimal_symbol *msym;
2493
2494 ALL_MSYMBOLS (objfile, msym)
2495 {
2496 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2497 {
2498 struct unwind_table_entry *u;
2499
2500 u = find_unwind_entry (SYMBOL_VALUE (msym));
2501 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2502 return msym;
2503 }
2504 }
2505
2506 return NULL;
2507 }
2508
2509 static void
2510 unwind_command (char *exp, int from_tty)
2511 {
2512 CORE_ADDR address;
2513 struct unwind_table_entry *u;
2514
2515 /* If we have an expression, evaluate it and use it as the address. */
2516
2517 if (exp != 0 && *exp != 0)
2518 address = parse_and_eval_address (exp);
2519 else
2520 return;
2521
2522 u = find_unwind_entry (address);
2523
2524 if (!u)
2525 {
2526 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2527 return;
2528 }
2529
2530 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2531
2532 printf_unfiltered ("\tregion_start = ");
2533 print_address (u->region_start, gdb_stdout);
2534 gdb_flush (gdb_stdout);
2535
2536 printf_unfiltered ("\n\tregion_end = ");
2537 print_address (u->region_end, gdb_stdout);
2538 gdb_flush (gdb_stdout);
2539
2540 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2541
2542 printf_unfiltered ("\n\tflags =");
2543 pif (Cannot_unwind);
2544 pif (Millicode);
2545 pif (Millicode_save_sr0);
2546 pif (Entry_SR);
2547 pif (Args_stored);
2548 pif (Variable_Frame);
2549 pif (Separate_Package_Body);
2550 pif (Frame_Extension_Millicode);
2551 pif (Stack_Overflow_Check);
2552 pif (Two_Instruction_SP_Increment);
2553 pif (sr4export);
2554 pif (cxx_info);
2555 pif (cxx_try_catch);
2556 pif (sched_entry_seq);
2557 pif (Save_SP);
2558 pif (Save_RP);
2559 pif (Save_MRP_in_frame);
2560 pif (save_r19);
2561 pif (Cleanup_defined);
2562 pif (MPE_XL_interrupt_marker);
2563 pif (HP_UX_interrupt_marker);
2564 pif (Large_frame);
2565 pif (alloca_frame);
2566
2567 putchar_unfiltered ('\n');
2568
2569 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2570
2571 pin (Region_description);
2572 pin (Entry_FR);
2573 pin (Entry_GR);
2574 pin (Total_frame_size);
2575
2576 if (u->stub_unwind.stub_type)
2577 {
2578 printf_unfiltered ("\tstub type = ");
2579 switch (u->stub_unwind.stub_type)
2580 {
2581 case LONG_BRANCH:
2582 printf_unfiltered ("long branch\n");
2583 break;
2584 case PARAMETER_RELOCATION:
2585 printf_unfiltered ("parameter relocation\n");
2586 break;
2587 case EXPORT:
2588 printf_unfiltered ("export\n");
2589 break;
2590 case IMPORT:
2591 printf_unfiltered ("import\n");
2592 break;
2593 case IMPORT_SHLIB:
2594 printf_unfiltered ("import shlib\n");
2595 break;
2596 default:
2597 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2598 }
2599 }
2600 }
2601
2602 int
2603 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2604 {
2605 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2606
2607 An example of this occurs when an a.out is linked against a foo.sl.
2608 The foo.sl defines a global bar(), and the a.out declares a signature
2609 for bar(). However, the a.out doesn't directly call bar(), but passes
2610 its address in another call.
2611
2612 If you have this scenario and attempt to "break bar" before running,
2613 gdb will find a minimal symbol for bar() in the a.out. But that
2614 symbol's address will be negative. What this appears to denote is
2615 an index backwards from the base of the procedure linkage table (PLT)
2616 into the data linkage table (DLT), the end of which is contiguous
2617 with the start of the PLT. This is clearly not a valid address for
2618 us to set a breakpoint on.
2619
2620 Note that one must be careful in how one checks for a negative address.
2621 0xc0000000 is a legitimate address of something in a shared text
2622 segment, for example. Since I don't know what the possible range
2623 is of these "really, truly negative" addresses that come from the
2624 minimal symbols, I'm resorting to the gross hack of checking the
2625 top byte of the address for all 1's. Sigh. */
2626
2627 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2628 }
2629
2630 /* Return the GDB type object for the "standard" data type of data in
2631 register REGNUM. */
2632
2633 static struct type *
2634 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2635 {
2636 if (regnum < HPPA_FP4_REGNUM)
2637 return builtin_type_uint32;
2638 else
2639 return builtin_type_ieee_single;
2640 }
2641
2642 static struct type *
2643 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2644 {
2645 if (regnum < HPPA64_FP4_REGNUM)
2646 return builtin_type_uint64;
2647 else
2648 return builtin_type_ieee_double;
2649 }
2650
2651 /* Return non-zero if REGNUM is not a register available to the user
2652 through ptrace/ttrace. */
2653
2654 static int
2655 hppa32_cannot_store_register (int regnum)
2656 {
2657 return (regnum == 0
2658 || regnum == HPPA_PCSQ_HEAD_REGNUM
2659 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2660 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2661 }
2662
2663 static int
2664 hppa64_cannot_store_register (int regnum)
2665 {
2666 return (regnum == 0
2667 || regnum == HPPA_PCSQ_HEAD_REGNUM
2668 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2669 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2670 }
2671
2672 static CORE_ADDR
2673 hppa_smash_text_address (CORE_ADDR addr)
2674 {
2675 /* The low two bits of the PC on the PA contain the privilege level.
2676 Some genius implementing a (non-GCC) compiler apparently decided
2677 this means that "addresses" in a text section therefore include a
2678 privilege level, and thus symbol tables should contain these bits.
2679 This seems like a bonehead thing to do--anyway, it seems to work
2680 for our purposes to just ignore those bits. */
2681
2682 return (addr &= ~0x3);
2683 }
2684
2685 /* Get the ARGIth function argument for the current function. */
2686
2687 static CORE_ADDR
2688 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2689 struct type *type)
2690 {
2691 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2692 }
2693
2694 static void
2695 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2696 int regnum, gdb_byte *buf)
2697 {
2698 ULONGEST tmp;
2699
2700 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2701 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2702 tmp &= ~0x3;
2703 store_unsigned_integer (buf, sizeof tmp, tmp);
2704 }
2705
2706 static CORE_ADDR
2707 hppa_find_global_pointer (struct value *function)
2708 {
2709 return 0;
2710 }
2711
2712 void
2713 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2714 struct trad_frame_saved_reg saved_regs[],
2715 int regnum, int *optimizedp,
2716 enum lval_type *lvalp, CORE_ADDR *addrp,
2717 int *realnump, gdb_byte *valuep)
2718 {
2719 struct gdbarch *arch = get_frame_arch (next_frame);
2720
2721 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2722 {
2723 if (valuep)
2724 {
2725 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2726 CORE_ADDR pc;
2727
2728 trad_frame_get_prev_register (next_frame, saved_regs,
2729 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2730 lvalp, addrp, realnump, valuep);
2731
2732 pc = extract_unsigned_integer (valuep, size);
2733 store_unsigned_integer (valuep, size, pc + 4);
2734 }
2735
2736 /* It's a computed value. */
2737 *optimizedp = 0;
2738 *lvalp = not_lval;
2739 *addrp = 0;
2740 *realnump = -1;
2741 return;
2742 }
2743
2744 /* Make sure the "flags" register is zero in all unwound frames.
2745 The "flags" registers is a HP-UX specific wart, and only the code
2746 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2747 with it here. This shouldn't affect other systems since those
2748 should provide zero for the "flags" register anyway. */
2749 if (regnum == HPPA_FLAGS_REGNUM)
2750 {
2751 if (valuep)
2752 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2753
2754 /* It's a computed value. */
2755 *optimizedp = 0;
2756 *lvalp = not_lval;
2757 *addrp = 0;
2758 *realnump = -1;
2759 return;
2760 }
2761
2762 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2763 optimizedp, lvalp, addrp, realnump, valuep);
2764 }
2765 \f
2766
2767 /* An instruction to match. */
2768 struct insn_pattern
2769 {
2770 unsigned int data; /* See if it matches this.... */
2771 unsigned int mask; /* ... with this mask. */
2772 };
2773
2774 /* See bfd/elf32-hppa.c */
2775 static struct insn_pattern hppa_long_branch_stub[] = {
2776 /* ldil LR'xxx,%r1 */
2777 { 0x20200000, 0xffe00000 },
2778 /* be,n RR'xxx(%sr4,%r1) */
2779 { 0xe0202002, 0xffe02002 },
2780 { 0, 0 }
2781 };
2782
2783 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2784 /* b,l .+8, %r1 */
2785 { 0xe8200000, 0xffe00000 },
2786 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2787 { 0x28200000, 0xffe00000 },
2788 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2789 { 0xe0202002, 0xffe02002 },
2790 { 0, 0 }
2791 };
2792
2793 static struct insn_pattern hppa_import_stub[] = {
2794 /* addil LR'xxx, %dp */
2795 { 0x2b600000, 0xffe00000 },
2796 /* ldw RR'xxx(%r1), %r21 */
2797 { 0x48350000, 0xffffb000 },
2798 /* bv %r0(%r21) */
2799 { 0xeaa0c000, 0xffffffff },
2800 /* ldw RR'xxx+4(%r1), %r19 */
2801 { 0x48330000, 0xffffb000 },
2802 { 0, 0 }
2803 };
2804
2805 static struct insn_pattern hppa_import_pic_stub[] = {
2806 /* addil LR'xxx,%r19 */
2807 { 0x2a600000, 0xffe00000 },
2808 /* ldw RR'xxx(%r1),%r21 */
2809 { 0x48350000, 0xffffb000 },
2810 /* bv %r0(%r21) */
2811 { 0xeaa0c000, 0xffffffff },
2812 /* ldw RR'xxx+4(%r1),%r19 */
2813 { 0x48330000, 0xffffb000 },
2814 { 0, 0 },
2815 };
2816
2817 static struct insn_pattern hppa_plt_stub[] = {
2818 /* b,l 1b, %r20 - 1b is 3 insns before here */
2819 { 0xea9f1fdd, 0xffffffff },
2820 /* depi 0,31,2,%r20 */
2821 { 0xd6801c1e, 0xffffffff },
2822 { 0, 0 }
2823 };
2824
2825 static struct insn_pattern hppa_sigtramp[] = {
2826 /* ldi 0, %r25 or ldi 1, %r25 */
2827 { 0x34190000, 0xfffffffd },
2828 /* ldi __NR_rt_sigreturn, %r20 */
2829 { 0x3414015a, 0xffffffff },
2830 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2831 { 0xe4008200, 0xffffffff },
2832 /* nop */
2833 { 0x08000240, 0xffffffff },
2834 { 0, 0 }
2835 };
2836
2837 /* Maximum number of instructions on the patterns above. */
2838 #define HPPA_MAX_INSN_PATTERN_LEN 4
2839
2840 /* Return non-zero if the instructions at PC match the series
2841 described in PATTERN, or zero otherwise. PATTERN is an array of
2842 'struct insn_pattern' objects, terminated by an entry whose mask is
2843 zero.
2844
2845 When the match is successful, fill INSN[i] with what PATTERN[i]
2846 matched. */
2847
2848 static int
2849 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2850 unsigned int *insn)
2851 {
2852 CORE_ADDR npc = pc;
2853 int i;
2854
2855 for (i = 0; pattern[i].mask; i++)
2856 {
2857 gdb_byte buf[HPPA_INSN_SIZE];
2858
2859 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2860 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2861 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2862 npc += 4;
2863 else
2864 return 0;
2865 }
2866
2867 return 1;
2868 }
2869
2870 /* This relaxed version of the insstruction matcher allows us to match
2871 from somewhere inside the pattern, by looking backwards in the
2872 instruction scheme. */
2873
2874 static int
2875 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2876 unsigned int *insn)
2877 {
2878 int offset, len = 0;
2879
2880 while (pattern[len].mask)
2881 len++;
2882
2883 for (offset = 0; offset < len; offset++)
2884 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2885 return 1;
2886
2887 return 0;
2888 }
2889
2890 static int
2891 hppa_in_dyncall (CORE_ADDR pc)
2892 {
2893 struct unwind_table_entry *u;
2894
2895 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2896 if (!u)
2897 return 0;
2898
2899 return (pc >= u->region_start && pc <= u->region_end);
2900 }
2901
2902 int
2903 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2904 {
2905 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2906 struct unwind_table_entry *u;
2907
2908 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2909 return 1;
2910
2911 /* The GNU toolchain produces linker stubs without unwind
2912 information. Since the pattern matching for linker stubs can be
2913 quite slow, so bail out if we do have an unwind entry. */
2914
2915 u = find_unwind_entry (pc);
2916 if (u != NULL)
2917 return 0;
2918
2919 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2920 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2921 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2922 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2923 }
2924
2925 /* This code skips several kind of "trampolines" used on PA-RISC
2926 systems: $$dyncall, import stubs and PLT stubs. */
2927
2928 CORE_ADDR
2929 hppa_skip_trampoline_code (CORE_ADDR pc)
2930 {
2931 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2932 int dp_rel;
2933
2934 /* $$dyncall handles both PLABELs and direct addresses. */
2935 if (hppa_in_dyncall (pc))
2936 {
2937 pc = read_register (HPPA_R0_REGNUM + 22);
2938
2939 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2940 if (pc & 0x2)
2941 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2942
2943 return pc;
2944 }
2945
2946 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2947 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2948 {
2949 /* Extract the target address from the addil/ldw sequence. */
2950 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2951
2952 if (dp_rel)
2953 pc += read_register (HPPA_DP_REGNUM);
2954 else
2955 pc += read_register (HPPA_R0_REGNUM + 19);
2956
2957 /* fallthrough */
2958 }
2959
2960 if (in_plt_section (pc, NULL))
2961 {
2962 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2963
2964 /* If the PLT slot has not yet been resolved, the target will be
2965 the PLT stub. */
2966 if (in_plt_section (pc, NULL))
2967 {
2968 /* Sanity check: are we pointing to the PLT stub? */
2969 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2970 {
2971 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2972 return 0;
2973 }
2974
2975 /* This should point to the fixup routine. */
2976 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2977 }
2978 }
2979
2980 return pc;
2981 }
2982 \f
2983
2984 /* Here is a table of C type sizes on hppa with various compiles
2985 and options. I measured this on PA 9000/800 with HP-UX 11.11
2986 and these compilers:
2987
2988 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2989 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2990 /opt/aCC/bin/aCC B3910B A.03.45
2991 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2992
2993 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2994 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2995 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2996 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2997 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2998 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2999 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3000 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3001
3002 Each line is:
3003
3004 compiler and options
3005 char, short, int, long, long long
3006 float, double, long double
3007 char *, void (*)()
3008
3009 So all these compilers use either ILP32 or LP64 model.
3010 TODO: gcc has more options so it needs more investigation.
3011
3012 For floating point types, see:
3013
3014 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3015 HP-UX floating-point guide, hpux 11.00
3016
3017 -- chastain 2003-12-18 */
3018
3019 static struct gdbarch *
3020 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3021 {
3022 struct gdbarch_tdep *tdep;
3023 struct gdbarch *gdbarch;
3024
3025 /* Try to determine the ABI of the object we are loading. */
3026 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3027 {
3028 /* If it's a SOM file, assume it's HP/UX SOM. */
3029 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3030 info.osabi = GDB_OSABI_HPUX_SOM;
3031 }
3032
3033 /* find a candidate among the list of pre-declared architectures. */
3034 arches = gdbarch_list_lookup_by_info (arches, &info);
3035 if (arches != NULL)
3036 return (arches->gdbarch);
3037
3038 /* If none found, then allocate and initialize one. */
3039 tdep = XZALLOC (struct gdbarch_tdep);
3040 gdbarch = gdbarch_alloc (&info, tdep);
3041
3042 /* Determine from the bfd_arch_info structure if we are dealing with
3043 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3044 then default to a 32bit machine. */
3045 if (info.bfd_arch_info != NULL)
3046 tdep->bytes_per_address =
3047 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3048 else
3049 tdep->bytes_per_address = 4;
3050
3051 tdep->find_global_pointer = hppa_find_global_pointer;
3052
3053 /* Some parts of the gdbarch vector depend on whether we are running
3054 on a 32 bits or 64 bits target. */
3055 switch (tdep->bytes_per_address)
3056 {
3057 case 4:
3058 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3059 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3060 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3061 set_gdbarch_cannot_store_register (gdbarch,
3062 hppa32_cannot_store_register);
3063 set_gdbarch_cannot_fetch_register (gdbarch,
3064 hppa32_cannot_store_register);
3065 break;
3066 case 8:
3067 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3068 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3069 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3070 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3071 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3072 set_gdbarch_cannot_store_register (gdbarch,
3073 hppa64_cannot_store_register);
3074 set_gdbarch_cannot_fetch_register (gdbarch,
3075 hppa64_cannot_store_register);
3076 break;
3077 default:
3078 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3079 tdep->bytes_per_address);
3080 }
3081
3082 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3083 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3084
3085 /* The following gdbarch vector elements are the same in both ILP32
3086 and LP64, but might show differences some day. */
3087 set_gdbarch_long_long_bit (gdbarch, 64);
3088 set_gdbarch_long_double_bit (gdbarch, 128);
3089 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3090
3091 /* The following gdbarch vector elements do not depend on the address
3092 size, or in any other gdbarch element previously set. */
3093 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3094 set_gdbarch_in_function_epilogue_p (gdbarch,
3095 hppa_in_function_epilogue_p);
3096 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3097 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3098 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3099 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3100 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3101 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3102 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3103 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3104
3105 /* Helper for function argument information. */
3106 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3107
3108 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3109
3110 /* When a hardware watchpoint triggers, we'll move the inferior past
3111 it by removing all eventpoints; stepping past the instruction
3112 that caused the trigger; reinserting eventpoints; and checking
3113 whether any watched location changed. */
3114 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3115
3116 /* Inferior function call methods. */
3117 switch (tdep->bytes_per_address)
3118 {
3119 case 4:
3120 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3121 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3122 set_gdbarch_convert_from_func_ptr_addr
3123 (gdbarch, hppa32_convert_from_func_ptr_addr);
3124 break;
3125 case 8:
3126 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3127 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3128 break;
3129 default:
3130 internal_error (__FILE__, __LINE__, _("bad switch"));
3131 }
3132
3133 /* Struct return methods. */
3134 switch (tdep->bytes_per_address)
3135 {
3136 case 4:
3137 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3138 break;
3139 case 8:
3140 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3141 break;
3142 default:
3143 internal_error (__FILE__, __LINE__, _("bad switch"));
3144 }
3145
3146 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3147 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3148
3149 /* Frame unwind methods. */
3150 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3151 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3152
3153 /* Hook in ABI-specific overrides, if they have been registered. */
3154 gdbarch_init_osabi (info, gdbarch);
3155
3156 /* Hook in the default unwinders. */
3157 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3158 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3159 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3160
3161 return gdbarch;
3162 }
3163
3164 static void
3165 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3166 {
3167 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3168
3169 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3170 tdep->bytes_per_address);
3171 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3172 }
3173
3174 void
3175 _initialize_hppa_tdep (void)
3176 {
3177 struct cmd_list_element *c;
3178
3179 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3180
3181 hppa_objfile_priv_data = register_objfile_data ();
3182
3183 add_cmd ("unwind", class_maintenance, unwind_command,
3184 _("Print unwind table entry at given address."),
3185 &maintenanceprintlist);
3186
3187 /* Debug this files internals. */
3188 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3189 Set whether hppa target specific debugging information should be displayed."),
3190 _("\
3191 Show whether hppa target specific debugging information is displayed."), _("\
3192 This flag controls whether hppa target specific debugging information is\n\
3193 displayed. This information is particularly useful for debugging frame\n\
3194 unwinding problems."),
3195 NULL,
3196 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3197 &setdebuglist, &showdebuglist);
3198 }