* hppa-pinsn.c (print_insn): Use read_memory_integer, instead of
[binutils-gdb.git] / gdb / hppah-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 \f
63 /* Routines to extract various sized constants out of hppa
64 instructions. */
65
66 /* This assumes that no garbage lies outside of the lower bits of
67 value. */
68
69 int
70 sign_extend (val, bits)
71 unsigned val, bits;
72 {
73 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
74 }
75
76 /* For many immediate values the sign bit is the low bit! */
77
78 int
79 low_sign_extend (val, bits)
80 unsigned val, bits;
81 {
82 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
83 }
84 /* extract the immediate field from a ld{bhw}s instruction */
85
86 unsigned
87 get_field (val, from, to)
88 unsigned val, from, to;
89 {
90 val = val >> 31 - to;
91 return val & ((1 << 32 - from) - 1);
92 }
93
94 unsigned
95 set_field (val, from, to, new_val)
96 unsigned *val, from, to;
97 {
98 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
99 return *val = *val & mask | (new_val << (31 - from));
100 }
101
102 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
103
104 extract_3 (word)
105 unsigned word;
106 {
107 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
108 }
109
110 extract_5_load (word)
111 unsigned word;
112 {
113 return low_sign_extend (word >> 16 & MASK_5, 5);
114 }
115
116 /* extract the immediate field from a st{bhw}s instruction */
117
118 int
119 extract_5_store (word)
120 unsigned word;
121 {
122 return low_sign_extend (word & MASK_5, 5);
123 }
124
125 /* extract an 11 bit immediate field */
126
127 int
128 extract_11 (word)
129 unsigned word;
130 {
131 return low_sign_extend (word & MASK_11, 11);
132 }
133
134 /* extract a 14 bit immediate field */
135
136 int
137 extract_14 (word)
138 unsigned word;
139 {
140 return low_sign_extend (word & MASK_14, 14);
141 }
142
143 /* deposit a 14 bit constant in a word */
144
145 unsigned
146 deposit_14 (opnd, word)
147 int opnd;
148 unsigned word;
149 {
150 unsigned sign = (opnd < 0 ? 1 : 0);
151
152 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
153 }
154
155 /* extract a 21 bit constant */
156
157 int
158 extract_21 (word)
159 unsigned word;
160 {
161 int val;
162
163 word &= MASK_21;
164 word <<= 11;
165 val = GET_FIELD (word, 20, 20);
166 val <<= 11;
167 val |= GET_FIELD (word, 9, 19);
168 val <<= 2;
169 val |= GET_FIELD (word, 5, 6);
170 val <<= 5;
171 val |= GET_FIELD (word, 0, 4);
172 val <<= 2;
173 val |= GET_FIELD (word, 7, 8);
174 return sign_extend (val, 21) << 11;
175 }
176
177 /* deposit a 21 bit constant in a word. Although 21 bit constants are
178 usually the top 21 bits of a 32 bit constant, we assume that only
179 the low 21 bits of opnd are relevant */
180
181 unsigned
182 deposit_21 (opnd, word)
183 unsigned opnd, word;
184 {
185 unsigned val = 0;
186
187 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
188 val <<= 2;
189 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
190 val <<= 2;
191 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
192 val <<= 11;
193 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
194 val <<= 1;
195 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
196 return word | val;
197 }
198
199 /* extract a 12 bit constant from branch instructions */
200
201 int
202 extract_12 (word)
203 unsigned word;
204 {
205 return sign_extend (GET_FIELD (word, 19, 28) |
206 GET_FIELD (word, 29, 29) << 10 |
207 (word & 0x1) << 11, 12) << 2;
208 }
209
210 /* extract a 17 bit constant from branch instructions, returning the
211 19 bit signed value. */
212
213 int
214 extract_17 (word)
215 unsigned word;
216 {
217 return sign_extend (GET_FIELD (word, 19, 28) |
218 GET_FIELD (word, 29, 29) << 10 |
219 GET_FIELD (word, 11, 15) << 11 |
220 (word & 0x1) << 16, 17) << 2;
221 }
222 \f
223 static int use_unwind = 0;
224
225 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
226 of the objfiles seeking the unwind table entry for this PC. Each objfile
227 contains a sorted list of struct unwind_table_entry. Since we do a binary
228 search of the unwind tables, we depend upon them to be sorted. */
229
230 static struct unwind_table_entry *
231 find_unwind_entry(pc)
232 CORE_ADDR pc;
233 {
234 int first, middle, last;
235 struct objfile *objfile;
236
237 ALL_OBJFILES (objfile)
238 {
239 struct obj_unwind_info *ui;
240
241 ui = OBJ_UNWIND_INFO (objfile);
242
243 if (!ui)
244 continue;
245
246 /* First, check the cache */
247
248 if (ui->cache
249 && pc >= ui->cache->region_start
250 && pc <= ui->cache->region_end)
251 return ui->cache;
252
253 /* Not in the cache, do a binary search */
254
255 first = 0;
256 last = ui->last;
257
258 while (first <= last)
259 {
260 middle = (first + last) / 2;
261 if (pc >= ui->table[middle].region_start
262 && pc <= ui->table[middle].region_end)
263 {
264 ui->cache = &ui->table[middle];
265 return &ui->table[middle];
266 }
267
268 if (pc < ui->table[middle].region_start)
269 last = middle - 1;
270 else
271 first = middle + 1;
272 }
273 } /* ALL_OBJFILES() */
274 return NULL;
275 }
276
277 static int
278 find_return_regnum(pc)
279 CORE_ADDR pc;
280 {
281 struct unwind_table_entry *u;
282
283 u = find_unwind_entry (pc);
284
285 if (!u)
286 return RP_REGNUM;
287
288 if (u->Millicode)
289 return 31;
290
291 return RP_REGNUM;
292 }
293
294 int
295 find_proc_framesize(pc)
296 CORE_ADDR pc;
297 {
298 struct unwind_table_entry *u;
299
300 if (!use_unwind)
301 return -1;
302
303 u = find_unwind_entry (pc);
304
305 if (!u)
306 return -1;
307
308 return u->Total_frame_size << 3;
309 }
310
311 int
312 rp_saved(pc)
313 {
314 struct unwind_table_entry *u;
315
316 u = find_unwind_entry (pc);
317
318 if (!u)
319 return 0;
320
321 if (u->Save_RP)
322 return 1;
323 else
324 return 0;
325 }
326 \f
327 CORE_ADDR
328 saved_pc_after_call (frame)
329 FRAME frame;
330 {
331 int ret_regnum;
332
333 ret_regnum = find_return_regnum (get_frame_pc (frame));
334
335 return read_register (ret_regnum) & ~0x3;
336 }
337 \f
338 CORE_ADDR
339 frame_saved_pc (frame)
340 FRAME frame;
341 {
342 CORE_ADDR pc = get_frame_pc (frame);
343
344 if (frameless_look_for_prologue (frame))
345 {
346 int ret_regnum;
347
348 ret_regnum = find_return_regnum (pc);
349
350 return read_register (ret_regnum) & ~0x3;
351 }
352 else if (rp_saved (pc))
353 return read_memory_integer (frame->frame - 20, 4) & ~0x3;
354 else
355 return read_register (RP_REGNUM) & ~0x3;
356 }
357 \f
358 /* We need to correct the PC and the FP for the outermost frame when we are
359 in a system call. */
360
361 void
362 init_extra_frame_info (fromleaf, frame)
363 int fromleaf;
364 struct frame_info *frame;
365 {
366 int flags;
367 int framesize;
368
369 if (frame->next) /* Only do this for outermost frame */
370 return;
371
372 flags = read_register (FLAGS_REGNUM);
373 if (flags & 2) /* In system call? */
374 frame->pc = read_register (31) & ~0x3;
375
376 /* The outermost frame is always derived from PC-framesize */
377 framesize = find_proc_framesize(frame->pc);
378 if (framesize == -1)
379 frame->frame = read_register (FP_REGNUM);
380 else
381 frame->frame = read_register (SP_REGNUM) - framesize;
382
383 if (!frameless_look_for_prologue (frame)) /* Frameless? */
384 return; /* No, quit now */
385
386 /* For frameless functions, we need to look at the caller's frame */
387 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
388 if (framesize != -1)
389 frame->frame -= framesize;
390 }
391 \f
392 FRAME_ADDR
393 frame_chain (frame)
394 struct frame_info *frame;
395 {
396 int framesize;
397
398 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
399
400 if (framesize != -1)
401 return frame->frame - framesize;
402
403 return read_memory_integer (frame->frame, 4);
404 }
405 \f
406 /* To see if a frame chain is valid, see if the caller looks like it
407 was compiled with gcc. */
408
409 int
410 frame_chain_valid (chain, thisframe)
411 FRAME_ADDR chain;
412 FRAME thisframe;
413 {
414 struct minimal_symbol *msym;
415
416 if (!chain)
417 return 0;
418
419 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
420
421 if (msym
422 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
423 return 0;
424 else
425 return 1;
426 }
427
428 #if 0
429 /* Some helper functions. gcc_p returns 1 if the function beginning at
430 pc appears to have been compiled with gcc. hpux_cc_p returns 1 if
431 fn was compiled with hpux cc. gcc functions look like :
432
433 stw rp,-0x14(sp) ; optional
434 or r4,r0,r1
435 or sp,r0,r4
436 stwm r1,framesize(sp)
437
438 hpux cc functions look like:
439
440 stw rp,-0x14(sp) ; optional.
441 stwm r3,framesiz(sp)
442 */
443
444 gcc_p (pc)
445 CORE_ADDR pc;
446 {
447 if (read_memory_integer (pc, 4) == 0x6BC23FD9)
448 pc = pc + 4;
449
450 if (read_memory_integer (pc, 4) == 0x8040241
451 && read_memory_integer (pc + 4, 4) == 0x81E0244)
452 return 1;
453 return 0;
454 }
455 #endif
456
457 /*
458 * These functions deal with saving and restoring register state
459 * around a function call in the inferior. They keep the stack
460 * double-word aligned; eventually, on an hp700, the stack will have
461 * to be aligned to a 64-byte boundary.
462 */
463
464 int
465 push_dummy_frame ()
466 {
467 register CORE_ADDR sp;
468 register int regnum;
469 int int_buffer;
470 double freg_buffer;
471
472 /* Space for "arguments"; the RP goes in here. */
473 sp = read_register (SP_REGNUM) + 48;
474 int_buffer = read_register (RP_REGNUM) | 0x3;
475 write_memory (sp - 20, (char *)&int_buffer, 4);
476
477 int_buffer = read_register (FP_REGNUM);
478 write_memory (sp, (char *)&int_buffer, 4);
479
480 write_register (FP_REGNUM, sp);
481
482 sp += 8;
483
484 for (regnum = 1; regnum < 32; regnum++)
485 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
486 sp = push_word (sp, read_register (regnum));
487
488 sp += 4;
489
490 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
491 {
492 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
493 sp = push_bytes (sp, (char *)&freg_buffer, 8);
494 }
495 sp = push_word (sp, read_register (IPSW_REGNUM));
496 sp = push_word (sp, read_register (SAR_REGNUM));
497 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
498 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
499 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
500 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
501 write_register (SP_REGNUM, sp);
502 }
503
504 find_dummy_frame_regs (frame, frame_saved_regs)
505 struct frame_info *frame;
506 struct frame_saved_regs *frame_saved_regs;
507 {
508 CORE_ADDR fp = frame->frame;
509 int i;
510
511 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
512 frame_saved_regs->regs[FP_REGNUM] = fp;
513 frame_saved_regs->regs[1] = fp + 8;
514 frame_saved_regs->regs[3] = fp + 12;
515
516 for (fp += 16, i = 5; i < 32; fp += 4, i++)
517 frame_saved_regs->regs[i] = fp;
518
519 fp += 4;
520 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
521 frame_saved_regs->regs[i] = fp;
522
523 frame_saved_regs->regs[IPSW_REGNUM] = fp;
524 fp += 4;
525 frame_saved_regs->regs[SAR_REGNUM] = fp;
526 fp += 4;
527 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp;
528 fp +=4;
529 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp;
530 fp +=4;
531 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp;
532 fp +=4;
533 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp;
534 }
535
536 int
537 hp_pop_frame ()
538 {
539 register FRAME frame = get_current_frame ();
540 register CORE_ADDR fp;
541 register int regnum;
542 struct frame_saved_regs fsr;
543 struct frame_info *fi;
544 double freg_buffer;
545
546 fi = get_frame_info (frame);
547 fp = fi->frame;
548 get_frame_saved_regs (fi, &fsr);
549
550 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
551 hp_restore_pc_queue (&fsr);
552
553 for (regnum = 31; regnum > 0; regnum--)
554 if (fsr.regs[regnum])
555 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
556
557 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
558 if (fsr.regs[regnum])
559 {
560 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
561 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
562 }
563
564 if (fsr.regs[IPSW_REGNUM])
565 write_register (IPSW_REGNUM,
566 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
567
568 if (fsr.regs[SAR_REGNUM])
569 write_register (SAR_REGNUM,
570 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
571
572 if (fsr.regs[PCOQ_TAIL_REGNUM])
573 write_register (PCOQ_TAIL_REGNUM,
574 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
575
576 write_register (FP_REGNUM, read_memory_integer (fp, 4));
577
578 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
579 write_register (SP_REGNUM, fp - 48);
580 else
581 write_register (SP_REGNUM, fp);
582
583 flush_cached_frames ();
584 set_current_frame (create_new_frame (read_register (FP_REGNUM),
585 read_pc ()));
586 }
587
588 /*
589 * After returning to a dummy on the stack, restore the instruction
590 * queue space registers. */
591
592 int
593 hp_restore_pc_queue (fsr)
594 struct frame_saved_regs *fsr;
595 {
596 CORE_ADDR pc = read_pc ();
597 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
598 int pid;
599 WAITTYPE w;
600 int insn_count;
601
602 /* Advance past break instruction in the call dummy. */
603 write_register (PCOQ_HEAD_REGNUM, pc + 4);
604 write_register (PCOQ_TAIL_REGNUM, pc + 8);
605
606 /*
607 * HPUX doesn't let us set the space registers or the space
608 * registers of the PC queue through ptrace. Boo, hiss.
609 * Conveniently, the call dummy has this sequence of instructions
610 * after the break:
611 * mtsp r21, sr0
612 * ble,n 0(sr0, r22)
613 *
614 * So, load up the registers and single step until we are in the
615 * right place.
616 */
617
618 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
619 write_register (22, new_pc);
620
621 for (insn_count = 0; insn_count < 3; insn_count++)
622 {
623 resume (1, 0);
624 target_wait(&w);
625
626 if (!WIFSTOPPED (w))
627 {
628 stop_signal = WTERMSIG (w);
629 terminal_ours_for_output ();
630 printf ("\nProgram terminated with signal %d, %s\n",
631 stop_signal, safe_strsignal (stop_signal));
632 fflush (stdout);
633 return 0;
634 }
635 }
636 fetch_inferior_registers (-1);
637 return 1;
638 }
639
640 CORE_ADDR
641 hp_push_arguments (nargs, args, sp, struct_return, struct_addr)
642 int nargs;
643 value *args;
644 CORE_ADDR sp;
645 int struct_return;
646 CORE_ADDR struct_addr;
647 {
648 /* array of arguments' offsets */
649 int *offset = (int *)alloca(nargs);
650 int cum = 0;
651 int i, alignment;
652
653 for (i = 0; i < nargs; i++)
654 {
655 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
656
657 /* value must go at proper alignment. Assume alignment is a
658 power of two.*/
659 alignment = hp_alignof (VALUE_TYPE (args[i]));
660 if (cum % alignment)
661 cum = (cum + alignment) & -alignment;
662 offset[i] = -cum;
663 }
664 sp += min ((cum + 7) & -8, 16);
665
666 for (i = 0; i < nargs; i++)
667 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
668 TYPE_LENGTH (VALUE_TYPE (args[i])));
669
670 if (struct_return)
671 write_register (28, struct_addr);
672 return sp + 32;
673 }
674
675 /* return the alignment of a type in bytes. Structures have the maximum
676 alignment required by their fields. */
677
678 int
679 hp_alignof (arg)
680 struct type *arg;
681 {
682 int max_align, align, i;
683 switch (TYPE_CODE (arg))
684 {
685 case TYPE_CODE_PTR:
686 case TYPE_CODE_INT:
687 case TYPE_CODE_FLT:
688 return TYPE_LENGTH (arg);
689 case TYPE_CODE_ARRAY:
690 return hp_alignof (TYPE_FIELD_TYPE (arg, 0));
691 case TYPE_CODE_STRUCT:
692 case TYPE_CODE_UNION:
693 max_align = 2;
694 for (i = 0; i < TYPE_NFIELDS (arg); i++)
695 {
696 /* Bit fields have no real alignment. */
697 if (!TYPE_FIELD_BITPOS (arg, i))
698 {
699 align = hp_alignof (TYPE_FIELD_TYPE (arg, i));
700 max_align = max (max_align, align);
701 }
702 }
703 return max_align;
704 default:
705 return 4;
706 }
707 }
708
709 /* Print the register regnum, or all registers if regnum is -1 */
710
711 pa_do_registers_info (regnum, fpregs)
712 int regnum;
713 int fpregs;
714 {
715 char raw_regs [REGISTER_BYTES];
716 int i;
717
718 for (i = 0; i < NUM_REGS; i++)
719 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
720 if (regnum == -1)
721 pa_print_registers (raw_regs, regnum, fpregs);
722 else if (regnum < FP0_REGNUM)
723 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
724 REGISTER_BYTE (regnum)));
725 else
726 pa_print_fp_reg (regnum);
727 }
728
729 pa_print_registers (raw_regs, regnum, fpregs)
730 char *raw_regs;
731 int regnum;
732 int fpregs;
733 {
734 int i;
735
736 for (i = 0; i < 18; i++)
737 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
738 reg_names[i],
739 *(int *)(raw_regs + REGISTER_BYTE (i)),
740 reg_names[i + 18],
741 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
742 reg_names[i + 36],
743 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
744 reg_names[i + 54],
745 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
746
747 if (fpregs)
748 for (i = 72; i < NUM_REGS; i++)
749 pa_print_fp_reg (i);
750 }
751
752 pa_print_fp_reg (i)
753 int i;
754 {
755 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
756 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
757 REGISTER_TYPE val;
758
759 /* Get the data in raw format, then convert also to virtual format. */
760 read_relative_register_raw_bytes (i, raw_buffer);
761 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
762
763 fputs_filtered (reg_names[i], stdout);
764 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
765
766 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
767 1, 0, Val_pretty_default);
768 printf_filtered ("\n");
769 }
770
771 /* Function calls that pass into a new compilation unit must pass through a
772 small piece of code that does long format (`external' in HPPA parlance)
773 jumps. We figure out where the trampoline is going to end up, and return
774 the PC of the final destination. If we aren't in a trampoline, we just
775 return NULL.
776
777 For computed calls, we just extract the new PC from r22. */
778
779 CORE_ADDR
780 skip_trampoline_code (pc, name)
781 CORE_ADDR pc;
782 char *name;
783 {
784 long inst0, inst1;
785 static CORE_ADDR dyncall = 0;
786 struct minimal_symbol *msym;
787
788 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
789
790 if (!dyncall)
791 {
792 msym = lookup_minimal_symbol ("$$dyncall", NULL);
793 if (msym)
794 dyncall = SYMBOL_VALUE_ADDRESS (msym);
795 else
796 dyncall = -1;
797 }
798
799 if (pc == dyncall)
800 return (CORE_ADDR)(read_register (22) & ~0x3);
801
802 inst0 = read_memory_integer (pc, 4);
803 inst1 = read_memory_integer (pc+4, 4);
804
805 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
806 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
807 pc = extract_21 (inst0) + extract_17 (inst1);
808 else
809 pc = (CORE_ADDR)NULL;
810
811 return pc;
812 }
813
814 /* Advance PC across any function entry prologue instructions
815 to reach some "real" code. */
816
817 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
818 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
819
820 CORE_ADDR
821 skip_prologue(pc)
822 CORE_ADDR pc;
823 {
824 int inst;
825 int status;
826
827 status = target_read_memory (pc, (char *)&inst, 4);
828 SWAP_TARGET_AND_HOST (&inst, sizeof (inst));
829 if (status != 0)
830 return pc;
831
832 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
833 {
834 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
835 pc += 16;
836 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
837 pc += 8;
838 }
839 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
840 pc += 12;
841 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
842 pc += 4;
843
844 return pc;
845 }
846
847 static void
848 unwind_command (exp, from_tty)
849 char *exp;
850 int from_tty;
851 {
852 CORE_ADDR address;
853 union
854 {
855 int *foo;
856 struct unwind_table_entry *u;
857 } xxx;
858
859 /* If we have an expression, evaluate it and use it as the address. */
860
861 if (exp != 0 && *exp != 0)
862 address = parse_and_eval_address (exp);
863 else
864 return;
865
866 xxx.u = find_unwind_entry (address);
867
868 if (!xxx.u)
869 {
870 printf ("Can't find unwind table entry for PC 0x%x\n", address);
871 return;
872 }
873
874 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
875 xxx.foo[3]);
876 }
877
878 void
879 _initialize_hppah_tdep ()
880 {
881 add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n");
882 add_show_from_set
883 (add_set_cmd ("use_unwind", class_obscure, var_boolean,
884 (char *)&use_unwind,
885 "Set the usage of unwind info", &setlist),
886 &showlist);
887 }