gas: remove use of PTR
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70 #include "infcall.h"
71 #include "maint.h"
72
73 /* Register names. */
74
75 static const char * const i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char * const i386_zmm_names[] =
91 {
92 "zmm0", "zmm1", "zmm2", "zmm3",
93 "zmm4", "zmm5", "zmm6", "zmm7"
94 };
95
96 static const char * const i386_zmmh_names[] =
97 {
98 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
99 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
100 };
101
102 static const char * const i386_k_names[] =
103 {
104 "k0", "k1", "k2", "k3",
105 "k4", "k5", "k6", "k7"
106 };
107
108 static const char * const i386_ymm_names[] =
109 {
110 "ymm0", "ymm1", "ymm2", "ymm3",
111 "ymm4", "ymm5", "ymm6", "ymm7",
112 };
113
114 static const char * const i386_ymmh_names[] =
115 {
116 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
117 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
118 };
119
120 static const char * const i386_mpx_names[] =
121 {
122 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
123 };
124
125 static const char * const i386_pkeys_names[] =
126 {
127 "pkru"
128 };
129
130 /* Register names for MPX pseudo-registers. */
131
132 static const char * const i386_bnd_names[] =
133 {
134 "bnd0", "bnd1", "bnd2", "bnd3"
135 };
136
137 /* Register names for MMX pseudo-registers. */
138
139 static const char * const i386_mmx_names[] =
140 {
141 "mm0", "mm1", "mm2", "mm3",
142 "mm4", "mm5", "mm6", "mm7"
143 };
144
145 /* Register names for byte pseudo-registers. */
146
147 static const char * const i386_byte_names[] =
148 {
149 "al", "cl", "dl", "bl",
150 "ah", "ch", "dh", "bh"
151 };
152
153 /* Register names for word pseudo-registers. */
154
155 static const char * const i386_word_names[] =
156 {
157 "ax", "cx", "dx", "bx",
158 "", "bp", "si", "di"
159 };
160
161 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
162 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
163 we have 16 upper ZMM regs that have to be handled differently. */
164
165 const int num_lower_zmm_regs = 16;
166
167 /* MMX register? */
168
169 static int
170 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
171 {
172 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
173 int mm0_regnum = tdep->mm0_regnum;
174
175 if (mm0_regnum < 0)
176 return 0;
177
178 regnum -= mm0_regnum;
179 return regnum >= 0 && regnum < tdep->num_mmx_regs;
180 }
181
182 /* Byte register? */
183
184 int
185 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
186 {
187 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
188
189 regnum -= tdep->al_regnum;
190 return regnum >= 0 && regnum < tdep->num_byte_regs;
191 }
192
193 /* Word register? */
194
195 int
196 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
197 {
198 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
199
200 regnum -= tdep->ax_regnum;
201 return regnum >= 0 && regnum < tdep->num_word_regs;
202 }
203
204 /* Dword register? */
205
206 int
207 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
210 int eax_regnum = tdep->eax_regnum;
211
212 if (eax_regnum < 0)
213 return 0;
214
215 regnum -= eax_regnum;
216 return regnum >= 0 && regnum < tdep->num_dword_regs;
217 }
218
219 /* AVX512 register? */
220
221 int
222 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
223 {
224 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
225 int zmm0h_regnum = tdep->zmm0h_regnum;
226
227 if (zmm0h_regnum < 0)
228 return 0;
229
230 regnum -= zmm0h_regnum;
231 return regnum >= 0 && regnum < tdep->num_zmm_regs;
232 }
233
234 int
235 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
236 {
237 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
238 int zmm0_regnum = tdep->zmm0_regnum;
239
240 if (zmm0_regnum < 0)
241 return 0;
242
243 regnum -= zmm0_regnum;
244 return regnum >= 0 && regnum < tdep->num_zmm_regs;
245 }
246
247 int
248 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
249 {
250 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
251 int k0_regnum = tdep->k0_regnum;
252
253 if (k0_regnum < 0)
254 return 0;
255
256 regnum -= k0_regnum;
257 return regnum >= 0 && regnum < I387_NUM_K_REGS;
258 }
259
260 static int
261 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
262 {
263 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
264 int ymm0h_regnum = tdep->ymm0h_regnum;
265
266 if (ymm0h_regnum < 0)
267 return 0;
268
269 regnum -= ymm0h_regnum;
270 return regnum >= 0 && regnum < tdep->num_ymm_regs;
271 }
272
273 /* AVX register? */
274
275 int
276 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
277 {
278 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
279 int ymm0_regnum = tdep->ymm0_regnum;
280
281 if (ymm0_regnum < 0)
282 return 0;
283
284 regnum -= ymm0_regnum;
285 return regnum >= 0 && regnum < tdep->num_ymm_regs;
286 }
287
288 static int
289 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
290 {
291 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
292 int ymm16h_regnum = tdep->ymm16h_regnum;
293
294 if (ymm16h_regnum < 0)
295 return 0;
296
297 regnum -= ymm16h_regnum;
298 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
299 }
300
301 int
302 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
305 int ymm16_regnum = tdep->ymm16_regnum;
306
307 if (ymm16_regnum < 0)
308 return 0;
309
310 regnum -= ymm16_regnum;
311 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
312 }
313
314 /* BND register? */
315
316 int
317 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
318 {
319 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
320 int bnd0_regnum = tdep->bnd0_regnum;
321
322 if (bnd0_regnum < 0)
323 return 0;
324
325 regnum -= bnd0_regnum;
326 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
327 }
328
329 /* SSE register? */
330
331 int
332 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
335 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
336
337 if (num_xmm_regs == 0)
338 return 0;
339
340 regnum -= I387_XMM0_REGNUM (tdep);
341 return regnum >= 0 && regnum < num_xmm_regs;
342 }
343
344 /* XMM_512 register? */
345
346 int
347 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
348 {
349 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
350 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
351
352 if (num_xmm_avx512_regs == 0)
353 return 0;
354
355 regnum -= I387_XMM16_REGNUM (tdep);
356 return regnum >= 0 && regnum < num_xmm_avx512_regs;
357 }
358
359 static int
360 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
361 {
362 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
363
364 if (I387_NUM_XMM_REGS (tdep) == 0)
365 return 0;
366
367 return (regnum == I387_MXCSR_REGNUM (tdep));
368 }
369
370 /* FP register? */
371
372 int
373 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
374 {
375 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
376
377 if (I387_ST0_REGNUM (tdep) < 0)
378 return 0;
379
380 return (I387_ST0_REGNUM (tdep) <= regnum
381 && regnum < I387_FCTRL_REGNUM (tdep));
382 }
383
384 int
385 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
386 {
387 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
388
389 if (I387_ST0_REGNUM (tdep) < 0)
390 return 0;
391
392 return (I387_FCTRL_REGNUM (tdep) <= regnum
393 && regnum < I387_XMM0_REGNUM (tdep));
394 }
395
396 /* BNDr (raw) register? */
397
398 static int
399 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
400 {
401 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
402
403 if (I387_BND0R_REGNUM (tdep) < 0)
404 return 0;
405
406 regnum -= tdep->bnd0r_regnum;
407 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
408 }
409
410 /* BND control register? */
411
412 static int
413 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
414 {
415 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
416
417 if (I387_BNDCFGU_REGNUM (tdep) < 0)
418 return 0;
419
420 regnum -= I387_BNDCFGU_REGNUM (tdep);
421 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
422 }
423
424 /* PKRU register? */
425
426 bool
427 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
428 {
429 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
430 int pkru_regnum = tdep->pkru_regnum;
431
432 if (pkru_regnum < 0)
433 return false;
434
435 regnum -= pkru_regnum;
436 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
437 }
438
439 /* Return the name of register REGNUM, or the empty string if it is
440 an anonymous register. */
441
442 static const char *
443 i386_register_name (struct gdbarch *gdbarch, int regnum)
444 {
445 /* Hide the upper YMM registers. */
446 if (i386_ymmh_regnum_p (gdbarch, regnum))
447 return "";
448
449 /* Hide the upper YMM16-31 registers. */
450 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
451 return "";
452
453 /* Hide the upper ZMM registers. */
454 if (i386_zmmh_regnum_p (gdbarch, regnum))
455 return "";
456
457 return tdesc_register_name (gdbarch, regnum);
458 }
459
460 /* Return the name of register REGNUM. */
461
462 const char *
463 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
464 {
465 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
466 if (i386_bnd_regnum_p (gdbarch, regnum))
467 return i386_bnd_names[regnum - tdep->bnd0_regnum];
468 if (i386_mmx_regnum_p (gdbarch, regnum))
469 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
470 else if (i386_ymm_regnum_p (gdbarch, regnum))
471 return i386_ymm_names[regnum - tdep->ymm0_regnum];
472 else if (i386_zmm_regnum_p (gdbarch, regnum))
473 return i386_zmm_names[regnum - tdep->zmm0_regnum];
474 else if (i386_byte_regnum_p (gdbarch, regnum))
475 return i386_byte_names[regnum - tdep->al_regnum];
476 else if (i386_word_regnum_p (gdbarch, regnum))
477 return i386_word_names[regnum - tdep->ax_regnum];
478
479 internal_error (__FILE__, __LINE__, _("invalid regnum"));
480 }
481
482 /* Convert a dbx register number REG to the appropriate register
483 number used by GDB. */
484
485 static int
486 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
487 {
488 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
489
490 /* This implements what GCC calls the "default" register map
491 (dbx_register_map[]). */
492
493 if (reg >= 0 && reg <= 7)
494 {
495 /* General-purpose registers. The debug info calls %ebp
496 register 4, and %esp register 5. */
497 if (reg == 4)
498 return 5;
499 else if (reg == 5)
500 return 4;
501 else return reg;
502 }
503 else if (reg >= 12 && reg <= 19)
504 {
505 /* Floating-point registers. */
506 return reg - 12 + I387_ST0_REGNUM (tdep);
507 }
508 else if (reg >= 21 && reg <= 28)
509 {
510 /* SSE registers. */
511 int ymm0_regnum = tdep->ymm0_regnum;
512
513 if (ymm0_regnum >= 0
514 && i386_xmm_regnum_p (gdbarch, reg))
515 return reg - 21 + ymm0_regnum;
516 else
517 return reg - 21 + I387_XMM0_REGNUM (tdep);
518 }
519 else if (reg >= 29 && reg <= 36)
520 {
521 /* MMX registers. */
522 return reg - 29 + I387_MM0_REGNUM (tdep);
523 }
524
525 /* This will hopefully provoke a warning. */
526 return gdbarch_num_cooked_regs (gdbarch);
527 }
528
529 /* Convert SVR4 DWARF register number REG to the appropriate register number
530 used by GDB. */
531
532 static int
533 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
534 {
535 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
536
537 /* This implements the GCC register map that tries to be compatible
538 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
539
540 /* The SVR4 register numbering includes %eip and %eflags, and
541 numbers the floating point registers differently. */
542 if (reg >= 0 && reg <= 9)
543 {
544 /* General-purpose registers. */
545 return reg;
546 }
547 else if (reg >= 11 && reg <= 18)
548 {
549 /* Floating-point registers. */
550 return reg - 11 + I387_ST0_REGNUM (tdep);
551 }
552 else if (reg >= 21 && reg <= 36)
553 {
554 /* The SSE and MMX registers have the same numbers as with dbx. */
555 return i386_dbx_reg_to_regnum (gdbarch, reg);
556 }
557
558 switch (reg)
559 {
560 case 37: return I387_FCTRL_REGNUM (tdep);
561 case 38: return I387_FSTAT_REGNUM (tdep);
562 case 39: return I387_MXCSR_REGNUM (tdep);
563 case 40: return I386_ES_REGNUM;
564 case 41: return I386_CS_REGNUM;
565 case 42: return I386_SS_REGNUM;
566 case 43: return I386_DS_REGNUM;
567 case 44: return I386_FS_REGNUM;
568 case 45: return I386_GS_REGNUM;
569 }
570
571 return -1;
572 }
573
574 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
575 num_regs + num_pseudo_regs for other debug formats. */
576
577 int
578 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
579 {
580 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
581
582 if (regnum == -1)
583 return gdbarch_num_cooked_regs (gdbarch);
584 return regnum;
585 }
586
587 \f
588
589 /* This is the variable that is set with "set disassembly-flavor", and
590 its legitimate values. */
591 static const char att_flavor[] = "att";
592 static const char intel_flavor[] = "intel";
593 static const char *const valid_flavors[] =
594 {
595 att_flavor,
596 intel_flavor,
597 NULL
598 };
599 static const char *disassembly_flavor = att_flavor;
600 \f
601
602 /* Use the program counter to determine the contents and size of a
603 breakpoint instruction. Return a pointer to a string of bytes that
604 encode a breakpoint instruction, store the length of the string in
605 *LEN and optionally adjust *PC to point to the correct memory
606 location for inserting the breakpoint.
607
608 On the i386 we have a single breakpoint that fits in a single byte
609 and can be inserted anywhere.
610
611 This function is 64-bit safe. */
612
613 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
614
615 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
616
617 \f
618 /* Displaced instruction handling. */
619
620 /* Skip the legacy instruction prefixes in INSN.
621 Not all prefixes are valid for any particular insn
622 but we needn't care, the insn will fault if it's invalid.
623 The result is a pointer to the first opcode byte,
624 or NULL if we run off the end of the buffer. */
625
626 static gdb_byte *
627 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
628 {
629 gdb_byte *end = insn + max_len;
630
631 while (insn < end)
632 {
633 switch (*insn)
634 {
635 case DATA_PREFIX_OPCODE:
636 case ADDR_PREFIX_OPCODE:
637 case CS_PREFIX_OPCODE:
638 case DS_PREFIX_OPCODE:
639 case ES_PREFIX_OPCODE:
640 case FS_PREFIX_OPCODE:
641 case GS_PREFIX_OPCODE:
642 case SS_PREFIX_OPCODE:
643 case LOCK_PREFIX_OPCODE:
644 case REPE_PREFIX_OPCODE:
645 case REPNE_PREFIX_OPCODE:
646 ++insn;
647 continue;
648 default:
649 return insn;
650 }
651 }
652
653 return NULL;
654 }
655
656 static int
657 i386_absolute_jmp_p (const gdb_byte *insn)
658 {
659 /* jmp far (absolute address in operand). */
660 if (insn[0] == 0xea)
661 return 1;
662
663 if (insn[0] == 0xff)
664 {
665 /* jump near, absolute indirect (/4). */
666 if ((insn[1] & 0x38) == 0x20)
667 return 1;
668
669 /* jump far, absolute indirect (/5). */
670 if ((insn[1] & 0x38) == 0x28)
671 return 1;
672 }
673
674 return 0;
675 }
676
677 /* Return non-zero if INSN is a jump, zero otherwise. */
678
679 static int
680 i386_jmp_p (const gdb_byte *insn)
681 {
682 /* jump short, relative. */
683 if (insn[0] == 0xeb)
684 return 1;
685
686 /* jump near, relative. */
687 if (insn[0] == 0xe9)
688 return 1;
689
690 return i386_absolute_jmp_p (insn);
691 }
692
693 static int
694 i386_absolute_call_p (const gdb_byte *insn)
695 {
696 /* call far, absolute. */
697 if (insn[0] == 0x9a)
698 return 1;
699
700 if (insn[0] == 0xff)
701 {
702 /* Call near, absolute indirect (/2). */
703 if ((insn[1] & 0x38) == 0x10)
704 return 1;
705
706 /* Call far, absolute indirect (/3). */
707 if ((insn[1] & 0x38) == 0x18)
708 return 1;
709 }
710
711 return 0;
712 }
713
714 static int
715 i386_ret_p (const gdb_byte *insn)
716 {
717 switch (insn[0])
718 {
719 case 0xc2: /* ret near, pop N bytes. */
720 case 0xc3: /* ret near */
721 case 0xca: /* ret far, pop N bytes. */
722 case 0xcb: /* ret far */
723 case 0xcf: /* iret */
724 return 1;
725
726 default:
727 return 0;
728 }
729 }
730
731 static int
732 i386_call_p (const gdb_byte *insn)
733 {
734 if (i386_absolute_call_p (insn))
735 return 1;
736
737 /* call near, relative. */
738 if (insn[0] == 0xe8)
739 return 1;
740
741 return 0;
742 }
743
744 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
745 length in bytes. Otherwise, return zero. */
746
747 static int
748 i386_syscall_p (const gdb_byte *insn, int *lengthp)
749 {
750 /* Is it 'int $0x80'? */
751 if ((insn[0] == 0xcd && insn[1] == 0x80)
752 /* Or is it 'sysenter'? */
753 || (insn[0] == 0x0f && insn[1] == 0x34)
754 /* Or is it 'syscall'? */
755 || (insn[0] == 0x0f && insn[1] == 0x05))
756 {
757 *lengthp = 2;
758 return 1;
759 }
760
761 return 0;
762 }
763
764 /* The gdbarch insn_is_call method. */
765
766 static int
767 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
768 {
769 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
770
771 read_code (addr, buf, I386_MAX_INSN_LEN);
772 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
773
774 return i386_call_p (insn);
775 }
776
777 /* The gdbarch insn_is_ret method. */
778
779 static int
780 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
781 {
782 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
783
784 read_code (addr, buf, I386_MAX_INSN_LEN);
785 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
786
787 return i386_ret_p (insn);
788 }
789
790 /* The gdbarch insn_is_jump method. */
791
792 static int
793 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
794 {
795 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
796
797 read_code (addr, buf, I386_MAX_INSN_LEN);
798 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
799
800 return i386_jmp_p (insn);
801 }
802
803 /* Some kernels may run one past a syscall insn, so we have to cope. */
804
805 displaced_step_copy_insn_closure_up
806 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809 {
810 size_t len = gdbarch_max_insn_length (gdbarch);
811 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
812 (new i386_displaced_step_copy_insn_closure (len));
813 gdb_byte *buf = closure->buf.data ();
814
815 read_memory (from, buf, len);
816
817 /* GDB may get control back after the insn after the syscall.
818 Presumably this is a kernel bug.
819 If this is a syscall, make sure there's a nop afterwards. */
820 {
821 int syscall_length;
822 gdb_byte *insn;
823
824 insn = i386_skip_prefixes (buf, len);
825 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
826 insn[syscall_length] = NOP_OPCODE;
827 }
828
829 write_memory (to, buf, len);
830
831 displaced_debug_printf ("%s->%s: %s",
832 paddress (gdbarch, from), paddress (gdbarch, to),
833 displaced_step_dump_bytes (buf, len).c_str ());
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_copy_insn_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_copy_insn_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_copy_insn_closure *closure
857 = (i386_displaced_step_copy_insn_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
863 paddress (gdbarch, from), paddress (gdbarch, to),
864 insn[0], insn[1]);
865
866 /* The list of issues to contend with here is taken from
867 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
868 Yay for Free Software! */
869
870 /* Relocate the %eip, if necessary. */
871
872 /* The instruction recognizers we use assume any leading prefixes
873 have been skipped. */
874 {
875 /* This is the size of the buffer in closure. */
876 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
877 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
878 /* If there are too many prefixes, just ignore the insn.
879 It will fault when run. */
880 if (opcode != NULL)
881 insn = opcode;
882 }
883
884 /* Except in the case of absolute or indirect jump or call
885 instructions, or a return instruction, the new eip is relative to
886 the displaced instruction; make it relative. Well, signal
887 handler returns don't need relocation either, but we use the
888 value of %eip to recognize those; see below. */
889 if (! i386_absolute_jmp_p (insn)
890 && ! i386_absolute_call_p (insn)
891 && ! i386_ret_p (insn))
892 {
893 ULONGEST orig_eip;
894 int insn_len;
895
896 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
897
898 /* A signal trampoline system call changes the %eip, resuming
899 execution of the main program after the signal handler has
900 returned. That makes them like 'return' instructions; we
901 shouldn't relocate %eip.
902
903 But most system calls don't, and we do need to relocate %eip.
904
905 Our heuristic for distinguishing these cases: if stepping
906 over the system call instruction left control directly after
907 the instruction, the we relocate --- control almost certainly
908 doesn't belong in the displaced copy. Otherwise, we assume
909 the instruction has put control where it belongs, and leave
910 it unrelocated. Goodness help us if there are PC-relative
911 system calls. */
912 if (i386_syscall_p (insn, &insn_len)
913 && orig_eip != to + (insn - insn_start) + insn_len
914 /* GDB can get control back after the insn after the syscall.
915 Presumably this is a kernel bug.
916 i386_displaced_step_copy_insn ensures its a nop,
917 we add one to the length for it. */
918 && orig_eip != to + (insn - insn_start) + insn_len + 1)
919 displaced_debug_printf ("syscall changed %%eip; not relocating");
920 else
921 {
922 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
923
924 /* If we just stepped over a breakpoint insn, we don't backup
925 the pc on purpose; this is to match behaviour without
926 stepping. */
927
928 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
929
930 displaced_debug_printf ("relocated %%eip from %s to %s",
931 paddress (gdbarch, orig_eip),
932 paddress (gdbarch, eip));
933 }
934 }
935
936 /* If the instruction was PUSHFL, then the TF bit will be set in the
937 pushed value, and should be cleared. We'll leave this for later,
938 since GDB already messes up the TF flag when stepping over a
939 pushfl. */
940
941 /* If the instruction was a call, the return address now atop the
942 stack is the address following the copied instruction. We need
943 to make it the address following the original instruction. */
944 if (i386_call_p (insn))
945 {
946 ULONGEST esp;
947 ULONGEST retaddr;
948 const ULONGEST retaddr_len = 4;
949
950 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
951 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
952 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
953 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
954
955 displaced_debug_printf ("relocated return addr at %s to %s",
956 paddress (gdbarch, esp),
957 paddress (gdbarch, retaddr));
958 }
959 }
960
961 static void
962 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
963 {
964 target_write_memory (*to, buf, len);
965 *to += len;
966 }
967
968 static void
969 i386_relocate_instruction (struct gdbarch *gdbarch,
970 CORE_ADDR *to, CORE_ADDR oldloc)
971 {
972 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
973 gdb_byte buf[I386_MAX_INSN_LEN];
974 int offset = 0, rel32, newrel;
975 int insn_length;
976 gdb_byte *insn = buf;
977
978 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
979
980 insn_length = gdb_buffered_insn_length (gdbarch, insn,
981 I386_MAX_INSN_LEN, oldloc);
982
983 /* Get past the prefixes. */
984 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
985
986 /* Adjust calls with 32-bit relative addresses as push/jump, with
987 the address pushed being the location where the original call in
988 the user program would return to. */
989 if (insn[0] == 0xe8)
990 {
991 gdb_byte push_buf[16];
992 unsigned int ret_addr;
993
994 /* Where "ret" in the original code will return to. */
995 ret_addr = oldloc + insn_length;
996 push_buf[0] = 0x68; /* pushq $... */
997 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
998 /* Push the push. */
999 append_insns (to, 5, push_buf);
1000
1001 /* Convert the relative call to a relative jump. */
1002 insn[0] = 0xe9;
1003
1004 /* Adjust the destination offset. */
1005 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1006 newrel = (oldloc - *to) + rel32;
1007 store_signed_integer (insn + 1, 4, byte_order, newrel);
1008
1009 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1010 hex_string (rel32), paddress (gdbarch, oldloc),
1011 hex_string (newrel), paddress (gdbarch, *to));
1012
1013 /* Write the adjusted jump into its displaced location. */
1014 append_insns (to, 5, insn);
1015 return;
1016 }
1017
1018 /* Adjust jumps with 32-bit relative addresses. Calls are already
1019 handled above. */
1020 if (insn[0] == 0xe9)
1021 offset = 1;
1022 /* Adjust conditional jumps. */
1023 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1024 offset = 2;
1025
1026 if (offset)
1027 {
1028 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1029 newrel = (oldloc - *to) + rel32;
1030 store_signed_integer (insn + offset, 4, byte_order, newrel);
1031 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1032 hex_string (rel32), paddress (gdbarch, oldloc),
1033 hex_string (newrel), paddress (gdbarch, *to));
1034 }
1035
1036 /* Write the adjusted instructions into their displaced
1037 location. */
1038 append_insns (to, insn_length, buf);
1039 }
1040
1041 \f
1042 #ifdef I386_REGNO_TO_SYMMETRY
1043 #error "The Sequent Symmetry is no longer supported."
1044 #endif
1045
1046 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1047 and %esp "belong" to the calling function. Therefore these
1048 registers should be saved if they're going to be modified. */
1049
1050 /* The maximum number of saved registers. This should include all
1051 registers mentioned above, and %eip. */
1052 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1053
1054 struct i386_frame_cache
1055 {
1056 /* Base address. */
1057 CORE_ADDR base;
1058 int base_p;
1059 LONGEST sp_offset;
1060 CORE_ADDR pc;
1061
1062 /* Saved registers. */
1063 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1064 CORE_ADDR saved_sp;
1065 int saved_sp_reg;
1066 int pc_in_eax;
1067
1068 /* Stack space reserved for local variables. */
1069 long locals;
1070 };
1071
1072 /* Allocate and initialize a frame cache. */
1073
1074 static struct i386_frame_cache *
1075 i386_alloc_frame_cache (void)
1076 {
1077 struct i386_frame_cache *cache;
1078 int i;
1079
1080 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1081
1082 /* Base address. */
1083 cache->base_p = 0;
1084 cache->base = 0;
1085 cache->sp_offset = -4;
1086 cache->pc = 0;
1087
1088 /* Saved registers. We initialize these to -1 since zero is a valid
1089 offset (that's where %ebp is supposed to be stored). */
1090 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1091 cache->saved_regs[i] = -1;
1092 cache->saved_sp = 0;
1093 cache->saved_sp_reg = -1;
1094 cache->pc_in_eax = 0;
1095
1096 /* Frameless until proven otherwise. */
1097 cache->locals = -1;
1098
1099 return cache;
1100 }
1101
1102 /* If the instruction at PC is a jump, return the address of its
1103 target. Otherwise, return PC. */
1104
1105 static CORE_ADDR
1106 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1107 {
1108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1109 gdb_byte op;
1110 long delta = 0;
1111 int data16 = 0;
1112
1113 if (target_read_code (pc, &op, 1))
1114 return pc;
1115
1116 if (op == 0x66)
1117 {
1118 data16 = 1;
1119
1120 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1121 }
1122
1123 switch (op)
1124 {
1125 case 0xe9:
1126 /* Relative jump: if data16 == 0, disp32, else disp16. */
1127 if (data16)
1128 {
1129 delta = read_memory_integer (pc + 2, 2, byte_order);
1130
1131 /* Include the size of the jmp instruction (including the
1132 0x66 prefix). */
1133 delta += 4;
1134 }
1135 else
1136 {
1137 delta = read_memory_integer (pc + 1, 4, byte_order);
1138
1139 /* Include the size of the jmp instruction. */
1140 delta += 5;
1141 }
1142 break;
1143 case 0xeb:
1144 /* Relative jump, disp8 (ignore data16). */
1145 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1146
1147 delta += data16 + 2;
1148 break;
1149 }
1150
1151 return pc + delta;
1152 }
1153
1154 /* Check whether PC points at a prologue for a function returning a
1155 structure or union. If so, it updates CACHE and returns the
1156 address of the first instruction after the code sequence that
1157 removes the "hidden" argument from the stack or CURRENT_PC,
1158 whichever is smaller. Otherwise, return PC. */
1159
1160 static CORE_ADDR
1161 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1162 struct i386_frame_cache *cache)
1163 {
1164 /* Functions that return a structure or union start with:
1165
1166 popl %eax 0x58
1167 xchgl %eax, (%esp) 0x87 0x04 0x24
1168 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1169
1170 (the System V compiler puts out the second `xchg' instruction,
1171 and the assembler doesn't try to optimize it, so the 'sib' form
1172 gets generated). This sequence is used to get the address of the
1173 return buffer for a function that returns a structure. */
1174 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1175 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1176 gdb_byte buf[4];
1177 gdb_byte op;
1178
1179 if (current_pc <= pc)
1180 return pc;
1181
1182 if (target_read_code (pc, &op, 1))
1183 return pc;
1184
1185 if (op != 0x58) /* popl %eax */
1186 return pc;
1187
1188 if (target_read_code (pc + 1, buf, 4))
1189 return pc;
1190
1191 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1192 return pc;
1193
1194 if (current_pc == pc)
1195 {
1196 cache->sp_offset += 4;
1197 return current_pc;
1198 }
1199
1200 if (current_pc == pc + 1)
1201 {
1202 cache->pc_in_eax = 1;
1203 return current_pc;
1204 }
1205
1206 if (buf[1] == proto1[1])
1207 return pc + 4;
1208 else
1209 return pc + 5;
1210 }
1211
1212 static CORE_ADDR
1213 i386_skip_probe (CORE_ADDR pc)
1214 {
1215 /* A function may start with
1216
1217 pushl constant
1218 call _probe
1219 addl $4, %esp
1220
1221 followed by
1222
1223 pushl %ebp
1224
1225 etc. */
1226 gdb_byte buf[8];
1227 gdb_byte op;
1228
1229 if (target_read_code (pc, &op, 1))
1230 return pc;
1231
1232 if (op == 0x68 || op == 0x6a)
1233 {
1234 int delta;
1235
1236 /* Skip past the `pushl' instruction; it has either a one-byte or a
1237 four-byte operand, depending on the opcode. */
1238 if (op == 0x68)
1239 delta = 5;
1240 else
1241 delta = 2;
1242
1243 /* Read the following 8 bytes, which should be `call _probe' (6
1244 bytes) followed by `addl $4,%esp' (2 bytes). */
1245 read_memory (pc + delta, buf, sizeof (buf));
1246 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1247 pc += delta + sizeof (buf);
1248 }
1249
1250 return pc;
1251 }
1252
1253 /* GCC 4.1 and later, can put code in the prologue to realign the
1254 stack pointer. Check whether PC points to such code, and update
1255 CACHE accordingly. Return the first instruction after the code
1256 sequence or CURRENT_PC, whichever is smaller. If we don't
1257 recognize the code, return PC. */
1258
1259 static CORE_ADDR
1260 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1261 struct i386_frame_cache *cache)
1262 {
1263 /* There are 2 code sequences to re-align stack before the frame
1264 gets set up:
1265
1266 1. Use a caller-saved saved register:
1267
1268 leal 4(%esp), %reg
1269 andl $-XXX, %esp
1270 pushl -4(%reg)
1271
1272 2. Use a callee-saved saved register:
1273
1274 pushl %reg
1275 leal 8(%esp), %reg
1276 andl $-XXX, %esp
1277 pushl -4(%reg)
1278
1279 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1280
1281 0x83 0xe4 0xf0 andl $-16, %esp
1282 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1283 */
1284
1285 gdb_byte buf[14];
1286 int reg;
1287 int offset, offset_and;
1288 static int regnums[8] = {
1289 I386_EAX_REGNUM, /* %eax */
1290 I386_ECX_REGNUM, /* %ecx */
1291 I386_EDX_REGNUM, /* %edx */
1292 I386_EBX_REGNUM, /* %ebx */
1293 I386_ESP_REGNUM, /* %esp */
1294 I386_EBP_REGNUM, /* %ebp */
1295 I386_ESI_REGNUM, /* %esi */
1296 I386_EDI_REGNUM /* %edi */
1297 };
1298
1299 if (target_read_code (pc, buf, sizeof buf))
1300 return pc;
1301
1302 /* Check caller-saved saved register. The first instruction has
1303 to be "leal 4(%esp), %reg". */
1304 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1305 {
1306 /* MOD must be binary 10 and R/M must be binary 100. */
1307 if ((buf[1] & 0xc7) != 0x44)
1308 return pc;
1309
1310 /* REG has register number. */
1311 reg = (buf[1] >> 3) & 7;
1312 offset = 4;
1313 }
1314 else
1315 {
1316 /* Check callee-saved saved register. The first instruction
1317 has to be "pushl %reg". */
1318 if ((buf[0] & 0xf8) != 0x50)
1319 return pc;
1320
1321 /* Get register. */
1322 reg = buf[0] & 0x7;
1323
1324 /* The next instruction has to be "leal 8(%esp), %reg". */
1325 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1326 return pc;
1327
1328 /* MOD must be binary 10 and R/M must be binary 100. */
1329 if ((buf[2] & 0xc7) != 0x44)
1330 return pc;
1331
1332 /* REG has register number. Registers in pushl and leal have to
1333 be the same. */
1334 if (reg != ((buf[2] >> 3) & 7))
1335 return pc;
1336
1337 offset = 5;
1338 }
1339
1340 /* Rigister can't be %esp nor %ebp. */
1341 if (reg == 4 || reg == 5)
1342 return pc;
1343
1344 /* The next instruction has to be "andl $-XXX, %esp". */
1345 if (buf[offset + 1] != 0xe4
1346 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1347 return pc;
1348
1349 offset_and = offset;
1350 offset += buf[offset] == 0x81 ? 6 : 3;
1351
1352 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1353 0xfc. REG must be binary 110 and MOD must be binary 01. */
1354 if (buf[offset] != 0xff
1355 || buf[offset + 2] != 0xfc
1356 || (buf[offset + 1] & 0xf8) != 0x70)
1357 return pc;
1358
1359 /* R/M has register. Registers in leal and pushl have to be the
1360 same. */
1361 if (reg != (buf[offset + 1] & 7))
1362 return pc;
1363
1364 if (current_pc > pc + offset_and)
1365 cache->saved_sp_reg = regnums[reg];
1366
1367 return std::min (pc + offset + 3, current_pc);
1368 }
1369
1370 /* Maximum instruction length we need to handle. */
1371 #define I386_MAX_MATCHED_INSN_LEN 6
1372
1373 /* Instruction description. */
1374 struct i386_insn
1375 {
1376 size_t len;
1377 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1378 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1379 };
1380
1381 /* Return whether instruction at PC matches PATTERN. */
1382
1383 static int
1384 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1385 {
1386 gdb_byte op;
1387
1388 if (target_read_code (pc, &op, 1))
1389 return 0;
1390
1391 if ((op & pattern.mask[0]) == pattern.insn[0])
1392 {
1393 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1394 int insn_matched = 1;
1395 size_t i;
1396
1397 gdb_assert (pattern.len > 1);
1398 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1399
1400 if (target_read_code (pc + 1, buf, pattern.len - 1))
1401 return 0;
1402
1403 for (i = 1; i < pattern.len; i++)
1404 {
1405 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1406 insn_matched = 0;
1407 }
1408 return insn_matched;
1409 }
1410 return 0;
1411 }
1412
1413 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1414 the first instruction description that matches. Otherwise, return
1415 NULL. */
1416
1417 static struct i386_insn *
1418 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1419 {
1420 struct i386_insn *pattern;
1421
1422 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1423 {
1424 if (i386_match_pattern (pc, *pattern))
1425 return pattern;
1426 }
1427
1428 return NULL;
1429 }
1430
1431 /* Return whether PC points inside a sequence of instructions that
1432 matches INSN_PATTERNS. */
1433
1434 static int
1435 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1436 {
1437 CORE_ADDR current_pc;
1438 int ix, i;
1439 struct i386_insn *insn;
1440
1441 insn = i386_match_insn (pc, insn_patterns);
1442 if (insn == NULL)
1443 return 0;
1444
1445 current_pc = pc;
1446 ix = insn - insn_patterns;
1447 for (i = ix - 1; i >= 0; i--)
1448 {
1449 current_pc -= insn_patterns[i].len;
1450
1451 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1452 return 0;
1453 }
1454
1455 current_pc = pc + insn->len;
1456 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1457 {
1458 if (!i386_match_pattern (current_pc, *insn))
1459 return 0;
1460
1461 current_pc += insn->len;
1462 }
1463
1464 return 1;
1465 }
1466
1467 /* Some special instructions that might be migrated by GCC into the
1468 part of the prologue that sets up the new stack frame. Because the
1469 stack frame hasn't been setup yet, no registers have been saved
1470 yet, and only the scratch registers %eax, %ecx and %edx can be
1471 touched. */
1472
1473 static i386_insn i386_frame_setup_skip_insns[] =
1474 {
1475 /* Check for `movb imm8, r' and `movl imm32, r'.
1476
1477 ??? Should we handle 16-bit operand-sizes here? */
1478
1479 /* `movb imm8, %al' and `movb imm8, %ah' */
1480 /* `movb imm8, %cl' and `movb imm8, %ch' */
1481 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1482 /* `movb imm8, %dl' and `movb imm8, %dh' */
1483 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1484 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1485 { 5, { 0xb8 }, { 0xfe } },
1486 /* `movl imm32, %edx' */
1487 { 5, { 0xba }, { 0xff } },
1488
1489 /* Check for `mov imm32, r32'. Note that there is an alternative
1490 encoding for `mov m32, %eax'.
1491
1492 ??? Should we handle SIB addressing here?
1493 ??? Should we handle 16-bit operand-sizes here? */
1494
1495 /* `movl m32, %eax' */
1496 { 5, { 0xa1 }, { 0xff } },
1497 /* `movl m32, %eax' and `mov; m32, %ecx' */
1498 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1499 /* `movl m32, %edx' */
1500 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1501
1502 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1503 Because of the symmetry, there are actually two ways to encode
1504 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1505 opcode bytes 0x31 and 0x33 for `xorl'. */
1506
1507 /* `subl %eax, %eax' */
1508 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1509 /* `subl %ecx, %ecx' */
1510 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1511 /* `subl %edx, %edx' */
1512 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1513 /* `xorl %eax, %eax' */
1514 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1515 /* `xorl %ecx, %ecx' */
1516 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1517 /* `xorl %edx, %edx' */
1518 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1519 { 0 }
1520 };
1521
1522 /* Check whether PC points to an endbr32 instruction. */
1523 static CORE_ADDR
1524 i386_skip_endbr (CORE_ADDR pc)
1525 {
1526 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1527
1528 gdb_byte buf[sizeof (endbr32)];
1529
1530 /* Stop there if we can't read the code */
1531 if (target_read_code (pc, buf, sizeof (endbr32)))
1532 return pc;
1533
1534 /* If the instruction isn't an endbr32, stop */
1535 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1536 return pc;
1537
1538 return pc + sizeof (endbr32);
1539 }
1540
1541 /* Check whether PC points to a no-op instruction. */
1542 static CORE_ADDR
1543 i386_skip_noop (CORE_ADDR pc)
1544 {
1545 gdb_byte op;
1546 int check = 1;
1547
1548 if (target_read_code (pc, &op, 1))
1549 return pc;
1550
1551 while (check)
1552 {
1553 check = 0;
1554 /* Ignore `nop' instruction. */
1555 if (op == 0x90)
1556 {
1557 pc += 1;
1558 if (target_read_code (pc, &op, 1))
1559 return pc;
1560 check = 1;
1561 }
1562 /* Ignore no-op instruction `mov %edi, %edi'.
1563 Microsoft system dlls often start with
1564 a `mov %edi,%edi' instruction.
1565 The 5 bytes before the function start are
1566 filled with `nop' instructions.
1567 This pattern can be used for hot-patching:
1568 The `mov %edi, %edi' instruction can be replaced by a
1569 near jump to the location of the 5 `nop' instructions
1570 which can be replaced by a 32-bit jump to anywhere
1571 in the 32-bit address space. */
1572
1573 else if (op == 0x8b)
1574 {
1575 if (target_read_code (pc + 1, &op, 1))
1576 return pc;
1577
1578 if (op == 0xff)
1579 {
1580 pc += 2;
1581 if (target_read_code (pc, &op, 1))
1582 return pc;
1583
1584 check = 1;
1585 }
1586 }
1587 }
1588 return pc;
1589 }
1590
1591 /* Check whether PC points at a code that sets up a new stack frame.
1592 If so, it updates CACHE and returns the address of the first
1593 instruction after the sequence that sets up the frame or LIMIT,
1594 whichever is smaller. If we don't recognize the code, return PC. */
1595
1596 static CORE_ADDR
1597 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1598 CORE_ADDR pc, CORE_ADDR limit,
1599 struct i386_frame_cache *cache)
1600 {
1601 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1602 struct i386_insn *insn;
1603 gdb_byte op;
1604 int skip = 0;
1605
1606 if (limit <= pc)
1607 return limit;
1608
1609 if (target_read_code (pc, &op, 1))
1610 return pc;
1611
1612 if (op == 0x55) /* pushl %ebp */
1613 {
1614 /* Take into account that we've executed the `pushl %ebp' that
1615 starts this instruction sequence. */
1616 cache->saved_regs[I386_EBP_REGNUM] = 0;
1617 cache->sp_offset += 4;
1618 pc++;
1619
1620 /* If that's all, return now. */
1621 if (limit <= pc)
1622 return limit;
1623
1624 /* Check for some special instructions that might be migrated by
1625 GCC into the prologue and skip them. At this point in the
1626 prologue, code should only touch the scratch registers %eax,
1627 %ecx and %edx, so while the number of possibilities is sheer,
1628 it is limited.
1629
1630 Make sure we only skip these instructions if we later see the
1631 `movl %esp, %ebp' that actually sets up the frame. */
1632 while (pc + skip < limit)
1633 {
1634 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1635 if (insn == NULL)
1636 break;
1637
1638 skip += insn->len;
1639 }
1640
1641 /* If that's all, return now. */
1642 if (limit <= pc + skip)
1643 return limit;
1644
1645 if (target_read_code (pc + skip, &op, 1))
1646 return pc + skip;
1647
1648 /* The i386 prologue looks like
1649
1650 push %ebp
1651 mov %esp,%ebp
1652 sub $0x10,%esp
1653
1654 and a different prologue can be generated for atom.
1655
1656 push %ebp
1657 lea (%esp),%ebp
1658 lea -0x10(%esp),%esp
1659
1660 We handle both of them here. */
1661
1662 switch (op)
1663 {
1664 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1665 case 0x8b:
1666 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1667 != 0xec)
1668 return pc;
1669 pc += (skip + 2);
1670 break;
1671 case 0x89:
1672 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1673 != 0xe5)
1674 return pc;
1675 pc += (skip + 2);
1676 break;
1677 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1678 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1679 != 0x242c)
1680 return pc;
1681 pc += (skip + 3);
1682 break;
1683 default:
1684 return pc;
1685 }
1686
1687 /* OK, we actually have a frame. We just don't know how large
1688 it is yet. Set its size to zero. We'll adjust it if
1689 necessary. We also now commit to skipping the special
1690 instructions mentioned before. */
1691 cache->locals = 0;
1692
1693 /* If that's all, return now. */
1694 if (limit <= pc)
1695 return limit;
1696
1697 /* Check for stack adjustment
1698
1699 subl $XXX, %esp
1700 or
1701 lea -XXX(%esp),%esp
1702
1703 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1704 reg, so we don't have to worry about a data16 prefix. */
1705 if (target_read_code (pc, &op, 1))
1706 return pc;
1707 if (op == 0x83)
1708 {
1709 /* `subl' with 8-bit immediate. */
1710 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1711 /* Some instruction starting with 0x83 other than `subl'. */
1712 return pc;
1713
1714 /* `subl' with signed 8-bit immediate (though it wouldn't
1715 make sense to be negative). */
1716 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1717 return pc + 3;
1718 }
1719 else if (op == 0x81)
1720 {
1721 /* Maybe it is `subl' with a 32-bit immediate. */
1722 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1723 /* Some instruction starting with 0x81 other than `subl'. */
1724 return pc;
1725
1726 /* It is `subl' with a 32-bit immediate. */
1727 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1728 return pc + 6;
1729 }
1730 else if (op == 0x8d)
1731 {
1732 /* The ModR/M byte is 0x64. */
1733 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1734 return pc;
1735 /* 'lea' with 8-bit displacement. */
1736 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1737 return pc + 4;
1738 }
1739 else
1740 {
1741 /* Some instruction other than `subl' nor 'lea'. */
1742 return pc;
1743 }
1744 }
1745 else if (op == 0xc8) /* enter */
1746 {
1747 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1748 return pc + 4;
1749 }
1750
1751 return pc;
1752 }
1753
1754 /* Check whether PC points at code that saves registers on the stack.
1755 If so, it updates CACHE and returns the address of the first
1756 instruction after the register saves or CURRENT_PC, whichever is
1757 smaller. Otherwise, return PC. */
1758
1759 static CORE_ADDR
1760 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1761 struct i386_frame_cache *cache)
1762 {
1763 CORE_ADDR offset = 0;
1764 gdb_byte op;
1765 int i;
1766
1767 if (cache->locals > 0)
1768 offset -= cache->locals;
1769 for (i = 0; i < 8 && pc < current_pc; i++)
1770 {
1771 if (target_read_code (pc, &op, 1))
1772 return pc;
1773 if (op < 0x50 || op > 0x57)
1774 break;
1775
1776 offset -= 4;
1777 cache->saved_regs[op - 0x50] = offset;
1778 cache->sp_offset += 4;
1779 pc++;
1780 }
1781
1782 return pc;
1783 }
1784
1785 /* Do a full analysis of the prologue at PC and update CACHE
1786 accordingly. Bail out early if CURRENT_PC is reached. Return the
1787 address where the analysis stopped.
1788
1789 We handle these cases:
1790
1791 The startup sequence can be at the start of the function, or the
1792 function can start with a branch to startup code at the end.
1793
1794 %ebp can be set up with either the 'enter' instruction, or "pushl
1795 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1796 once used in the System V compiler).
1797
1798 Local space is allocated just below the saved %ebp by either the
1799 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1800 16-bit unsigned argument for space to allocate, and the 'addl'
1801 instruction could have either a signed byte, or 32-bit immediate.
1802
1803 Next, the registers used by this function are pushed. With the
1804 System V compiler they will always be in the order: %edi, %esi,
1805 %ebx (and sometimes a harmless bug causes it to also save but not
1806 restore %eax); however, the code below is willing to see the pushes
1807 in any order, and will handle up to 8 of them.
1808
1809 If the setup sequence is at the end of the function, then the next
1810 instruction will be a branch back to the start. */
1811
1812 static CORE_ADDR
1813 i386_analyze_prologue (struct gdbarch *gdbarch,
1814 CORE_ADDR pc, CORE_ADDR current_pc,
1815 struct i386_frame_cache *cache)
1816 {
1817 pc = i386_skip_endbr (pc);
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang and newer Intel
1853 compilers to emit usable line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && cust->producer () != NULL
1857 && (producer_is_llvm (cust->producer ())
1858 || producer_is_icc_ge_19 (cust->producer ()))))
1859 return std::max (start_pc, post_prologue_pc);
1860 }
1861
1862 cache.locals = -1;
1863 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1864 if (cache.locals < 0)
1865 return start_pc;
1866
1867 /* Found valid frame setup. */
1868
1869 /* The native cc on SVR4 in -K PIC mode inserts the following code
1870 to get the address of the global offset table (GOT) into register
1871 %ebx:
1872
1873 call 0x0
1874 popl %ebx
1875 movl %ebx,x(%ebp) (optional)
1876 addl y,%ebx
1877
1878 This code is with the rest of the prologue (at the end of the
1879 function), so we have to skip it to get to the first real
1880 instruction at the start of the function. */
1881
1882 for (i = 0; i < 6; i++)
1883 {
1884 if (target_read_code (pc + i, &op, 1))
1885 return pc;
1886
1887 if (pic_pat[i] != op)
1888 break;
1889 }
1890 if (i == 6)
1891 {
1892 int delta = 6;
1893
1894 if (target_read_code (pc + delta, &op, 1))
1895 return pc;
1896
1897 if (op == 0x89) /* movl %ebx, x(%ebp) */
1898 {
1899 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1900
1901 if (op == 0x5d) /* One byte offset from %ebp. */
1902 delta += 3;
1903 else if (op == 0x9d) /* Four byte offset from %ebp. */
1904 delta += 6;
1905 else /* Unexpected instruction. */
1906 delta = 0;
1907
1908 if (target_read_code (pc + delta, &op, 1))
1909 return pc;
1910 }
1911
1912 /* addl y,%ebx */
1913 if (delta > 0 && op == 0x81
1914 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1915 == 0xc3)
1916 {
1917 pc += delta + 6;
1918 }
1919 }
1920
1921 /* If the function starts with a branch (to startup code at the end)
1922 the last instruction should bring us back to the first
1923 instruction of the real code. */
1924 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1925 pc = i386_follow_jump (gdbarch, pc);
1926
1927 return pc;
1928 }
1929
1930 /* Check that the code pointed to by PC corresponds to a call to
1931 __main, skip it if so. Return PC otherwise. */
1932
1933 CORE_ADDR
1934 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1935 {
1936 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1937 gdb_byte op;
1938
1939 if (target_read_code (pc, &op, 1))
1940 return pc;
1941 if (op == 0xe8)
1942 {
1943 gdb_byte buf[4];
1944
1945 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1946 {
1947 /* Make sure address is computed correctly as a 32bit
1948 integer even if CORE_ADDR is 64 bit wide. */
1949 struct bound_minimal_symbol s;
1950 CORE_ADDR call_dest;
1951
1952 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1953 call_dest = call_dest & 0xffffffffU;
1954 s = lookup_minimal_symbol_by_pc (call_dest);
1955 if (s.minsym != NULL
1956 && s.minsym->linkage_name () != NULL
1957 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1958 pc += 5;
1959 }
1960 }
1961
1962 return pc;
1963 }
1964
1965 /* This function is 64-bit safe. */
1966
1967 static CORE_ADDR
1968 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1969 {
1970 gdb_byte buf[8];
1971
1972 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1973 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1974 }
1975 \f
1976
1977 /* Normal frames. */
1978
1979 static void
1980 i386_frame_cache_1 (struct frame_info *this_frame,
1981 struct i386_frame_cache *cache)
1982 {
1983 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1984 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1985 gdb_byte buf[4];
1986 int i;
1987
1988 cache->pc = get_frame_func (this_frame);
1989
1990 /* In principle, for normal frames, %ebp holds the frame pointer,
1991 which holds the base address for the current stack frame.
1992 However, for functions that don't need it, the frame pointer is
1993 optional. For these "frameless" functions the frame pointer is
1994 actually the frame pointer of the calling frame. Signal
1995 trampolines are just a special case of a "frameless" function.
1996 They (usually) share their frame pointer with the frame that was
1997 in progress when the signal occurred. */
1998
1999 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
2000 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2001 if (cache->base == 0)
2002 {
2003 cache->base_p = 1;
2004 return;
2005 }
2006
2007 /* For normal frames, %eip is stored at 4(%ebp). */
2008 cache->saved_regs[I386_EIP_REGNUM] = 4;
2009
2010 if (cache->pc != 0)
2011 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2012 cache);
2013
2014 if (cache->locals < 0)
2015 {
2016 /* We didn't find a valid frame, which means that CACHE->base
2017 currently holds the frame pointer for our calling frame. If
2018 we're at the start of a function, or somewhere half-way its
2019 prologue, the function's frame probably hasn't been fully
2020 setup yet. Try to reconstruct the base address for the stack
2021 frame by looking at the stack pointer. For truly "frameless"
2022 functions this might work too. */
2023
2024 if (cache->saved_sp_reg != -1)
2025 {
2026 /* Saved stack pointer has been saved. */
2027 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2028 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2029
2030 /* We're halfway aligning the stack. */
2031 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2032 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2033
2034 /* This will be added back below. */
2035 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2036 }
2037 else if (cache->pc != 0
2038 || target_read_code (get_frame_pc (this_frame), buf, 1))
2039 {
2040 /* We're in a known function, but did not find a frame
2041 setup. Assume that the function does not use %ebp.
2042 Alternatively, we may have jumped to an invalid
2043 address; in that case there is definitely no new
2044 frame in %ebp. */
2045 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2046 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2047 + cache->sp_offset;
2048 }
2049 else
2050 /* We're in an unknown function. We could not find the start
2051 of the function to analyze the prologue; our best option is
2052 to assume a typical frame layout with the caller's %ebp
2053 saved. */
2054 cache->saved_regs[I386_EBP_REGNUM] = 0;
2055 }
2056
2057 if (cache->saved_sp_reg != -1)
2058 {
2059 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2060 register may be unavailable). */
2061 if (cache->saved_sp == 0
2062 && deprecated_frame_register_read (this_frame,
2063 cache->saved_sp_reg, buf))
2064 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2065 }
2066 /* Now that we have the base address for the stack frame we can
2067 calculate the value of %esp in the calling frame. */
2068 else if (cache->saved_sp == 0)
2069 cache->saved_sp = cache->base + 8;
2070
2071 /* Adjust all the saved registers such that they contain addresses
2072 instead of offsets. */
2073 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2074 if (cache->saved_regs[i] != -1)
2075 cache->saved_regs[i] += cache->base;
2076
2077 cache->base_p = 1;
2078 }
2079
2080 static struct i386_frame_cache *
2081 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct i386_frame_cache *cache;
2084
2085 if (*this_cache)
2086 return (struct i386_frame_cache *) *this_cache;
2087
2088 cache = i386_alloc_frame_cache ();
2089 *this_cache = cache;
2090
2091 try
2092 {
2093 i386_frame_cache_1 (this_frame, cache);
2094 }
2095 catch (const gdb_exception_error &ex)
2096 {
2097 if (ex.error != NOT_AVAILABLE_ERROR)
2098 throw;
2099 }
2100
2101 return cache;
2102 }
2103
2104 static void
2105 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2106 struct frame_id *this_id)
2107 {
2108 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2109
2110 if (!cache->base_p)
2111 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2112 else if (cache->base == 0)
2113 {
2114 /* This marks the outermost frame. */
2115 }
2116 else
2117 {
2118 /* See the end of i386_push_dummy_call. */
2119 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2120 }
2121 }
2122
2123 static enum unwind_stop_reason
2124 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2125 void **this_cache)
2126 {
2127 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2128
2129 if (!cache->base_p)
2130 return UNWIND_UNAVAILABLE;
2131
2132 /* This marks the outermost frame. */
2133 if (cache->base == 0)
2134 return UNWIND_OUTERMOST;
2135
2136 return UNWIND_NO_REASON;
2137 }
2138
2139 static struct value *
2140 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2141 int regnum)
2142 {
2143 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2144
2145 gdb_assert (regnum >= 0);
2146
2147 /* The System V ABI says that:
2148
2149 "The flags register contains the system flags, such as the
2150 direction flag and the carry flag. The direction flag must be
2151 set to the forward (that is, zero) direction before entry and
2152 upon exit from a function. Other user flags have no specified
2153 role in the standard calling sequence and are not preserved."
2154
2155 To guarantee the "upon exit" part of that statement we fake a
2156 saved flags register that has its direction flag cleared.
2157
2158 Note that GCC doesn't seem to rely on the fact that the direction
2159 flag is cleared after a function return; it always explicitly
2160 clears the flag before operations where it matters.
2161
2162 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2163 right thing to do. The way we fake the flags register here makes
2164 it impossible to change it. */
2165
2166 if (regnum == I386_EFLAGS_REGNUM)
2167 {
2168 ULONGEST val;
2169
2170 val = get_frame_register_unsigned (this_frame, regnum);
2171 val &= ~(1 << 10);
2172 return frame_unwind_got_constant (this_frame, regnum, val);
2173 }
2174
2175 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2176 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2177
2178 if (regnum == I386_ESP_REGNUM
2179 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2180 {
2181 /* If the SP has been saved, but we don't know where, then this
2182 means that SAVED_SP_REG register was found unavailable back
2183 when we built the cache. */
2184 if (cache->saved_sp == 0)
2185 return frame_unwind_got_register (this_frame, regnum,
2186 cache->saved_sp_reg);
2187 else
2188 return frame_unwind_got_constant (this_frame, regnum,
2189 cache->saved_sp);
2190 }
2191
2192 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2193 return frame_unwind_got_memory (this_frame, regnum,
2194 cache->saved_regs[regnum]);
2195
2196 return frame_unwind_got_register (this_frame, regnum, regnum);
2197 }
2198
2199 static const struct frame_unwind i386_frame_unwind =
2200 {
2201 "i386 prologue",
2202 NORMAL_FRAME,
2203 i386_frame_unwind_stop_reason,
2204 i386_frame_this_id,
2205 i386_frame_prev_register,
2206 NULL,
2207 default_frame_sniffer
2208 };
2209
2210 /* Normal frames, but in a function epilogue. */
2211
2212 /* Implement the stack_frame_destroyed_p gdbarch method.
2213
2214 The epilogue is defined here as the 'ret' instruction, which will
2215 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2216 the function's stack frame. */
2217
2218 static int
2219 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2220 {
2221 gdb_byte insn;
2222 struct compunit_symtab *cust;
2223
2224 cust = find_pc_compunit_symtab (pc);
2225 if (cust != NULL && cust->epilogue_unwind_valid ())
2226 return 0;
2227
2228 if (target_read_memory (pc, &insn, 1))
2229 return 0; /* Can't read memory at pc. */
2230
2231 if (insn != 0xc3) /* 'ret' instruction. */
2232 return 0;
2233
2234 return 1;
2235 }
2236
2237 static int
2238 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2239 struct frame_info *this_frame,
2240 void **this_prologue_cache)
2241 {
2242 if (frame_relative_level (this_frame) == 0)
2243 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2244 get_frame_pc (this_frame));
2245 else
2246 return 0;
2247 }
2248
2249 static struct i386_frame_cache *
2250 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2251 {
2252 struct i386_frame_cache *cache;
2253 CORE_ADDR sp;
2254
2255 if (*this_cache)
2256 return (struct i386_frame_cache *) *this_cache;
2257
2258 cache = i386_alloc_frame_cache ();
2259 *this_cache = cache;
2260
2261 try
2262 {
2263 cache->pc = get_frame_func (this_frame);
2264
2265 /* At this point the stack looks as if we just entered the
2266 function, with the return address at the top of the
2267 stack. */
2268 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2269 cache->base = sp + cache->sp_offset;
2270 cache->saved_sp = cache->base + 8;
2271 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2272
2273 cache->base_p = 1;
2274 }
2275 catch (const gdb_exception_error &ex)
2276 {
2277 if (ex.error != NOT_AVAILABLE_ERROR)
2278 throw;
2279 }
2280
2281 return cache;
2282 }
2283
2284 static enum unwind_stop_reason
2285 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2286 void **this_cache)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_epilogue_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 return UNWIND_UNAVAILABLE;
2293
2294 return UNWIND_NO_REASON;
2295 }
2296
2297 static void
2298 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2299 void **this_cache,
2300 struct frame_id *this_id)
2301 {
2302 struct i386_frame_cache *cache =
2303 i386_epilogue_frame_cache (this_frame, this_cache);
2304
2305 if (!cache->base_p)
2306 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2307 else
2308 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2309 }
2310
2311 static struct value *
2312 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2313 void **this_cache, int regnum)
2314 {
2315 /* Make sure we've initialized the cache. */
2316 i386_epilogue_frame_cache (this_frame, this_cache);
2317
2318 return i386_frame_prev_register (this_frame, this_cache, regnum);
2319 }
2320
2321 static const struct frame_unwind i386_epilogue_frame_unwind =
2322 {
2323 "i386 epilogue",
2324 NORMAL_FRAME,
2325 i386_epilogue_frame_unwind_stop_reason,
2326 i386_epilogue_frame_this_id,
2327 i386_epilogue_frame_prev_register,
2328 NULL,
2329 i386_epilogue_frame_sniffer
2330 };
2331 \f
2332
2333 /* Stack-based trampolines. */
2334
2335 /* These trampolines are used on cross x86 targets, when taking the
2336 address of a nested function. When executing these trampolines,
2337 no stack frame is set up, so we are in a similar situation as in
2338 epilogues and i386_epilogue_frame_this_id can be re-used. */
2339
2340 /* Static chain passed in register. */
2341
2342 static i386_insn i386_tramp_chain_in_reg_insns[] =
2343 {
2344 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2345 { 5, { 0xb8 }, { 0xfe } },
2346
2347 /* `jmp imm32' */
2348 { 5, { 0xe9 }, { 0xff } },
2349
2350 {0}
2351 };
2352
2353 /* Static chain passed on stack (when regparm=3). */
2354
2355 static i386_insn i386_tramp_chain_on_stack_insns[] =
2356 {
2357 /* `push imm32' */
2358 { 5, { 0x68 }, { 0xff } },
2359
2360 /* `jmp imm32' */
2361 { 5, { 0xe9 }, { 0xff } },
2362
2363 {0}
2364 };
2365
2366 /* Return whether PC points inside a stack trampoline. */
2367
2368 static int
2369 i386_in_stack_tramp_p (CORE_ADDR pc)
2370 {
2371 gdb_byte insn;
2372 const char *name;
2373
2374 /* A stack trampoline is detected if no name is associated
2375 to the current pc and if it points inside a trampoline
2376 sequence. */
2377
2378 find_pc_partial_function (pc, &name, NULL, NULL);
2379 if (name)
2380 return 0;
2381
2382 if (target_read_memory (pc, &insn, 1))
2383 return 0;
2384
2385 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2386 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2387 return 0;
2388
2389 return 1;
2390 }
2391
2392 static int
2393 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2394 struct frame_info *this_frame,
2395 void **this_cache)
2396 {
2397 if (frame_relative_level (this_frame) == 0)
2398 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2399 else
2400 return 0;
2401 }
2402
2403 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2404 {
2405 "i386 stack tramp",
2406 NORMAL_FRAME,
2407 i386_epilogue_frame_unwind_stop_reason,
2408 i386_epilogue_frame_this_id,
2409 i386_epilogue_frame_prev_register,
2410 NULL,
2411 i386_stack_tramp_frame_sniffer
2412 };
2413 \f
2414 /* Generate a bytecode expression to get the value of the saved PC. */
2415
2416 static void
2417 i386_gen_return_address (struct gdbarch *gdbarch,
2418 struct agent_expr *ax, struct axs_value *value,
2419 CORE_ADDR scope)
2420 {
2421 /* The following sequence assumes the traditional use of the base
2422 register. */
2423 ax_reg (ax, I386_EBP_REGNUM);
2424 ax_const_l (ax, 4);
2425 ax_simple (ax, aop_add);
2426 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2427 value->kind = axs_lvalue_memory;
2428 }
2429 \f
2430
2431 /* Signal trampolines. */
2432
2433 static struct i386_frame_cache *
2434 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2435 {
2436 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2437 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2438 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2439 struct i386_frame_cache *cache;
2440 CORE_ADDR addr;
2441 gdb_byte buf[4];
2442
2443 if (*this_cache)
2444 return (struct i386_frame_cache *) *this_cache;
2445
2446 cache = i386_alloc_frame_cache ();
2447
2448 try
2449 {
2450 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2451 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2452
2453 addr = tdep->sigcontext_addr (this_frame);
2454 if (tdep->sc_reg_offset)
2455 {
2456 int i;
2457
2458 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2459
2460 for (i = 0; i < tdep->sc_num_regs; i++)
2461 if (tdep->sc_reg_offset[i] != -1)
2462 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2463 }
2464 else
2465 {
2466 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2467 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2468 }
2469
2470 cache->base_p = 1;
2471 }
2472 catch (const gdb_exception_error &ex)
2473 {
2474 if (ex.error != NOT_AVAILABLE_ERROR)
2475 throw;
2476 }
2477
2478 *this_cache = cache;
2479 return cache;
2480 }
2481
2482 static enum unwind_stop_reason
2483 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2484 void **this_cache)
2485 {
2486 struct i386_frame_cache *cache =
2487 i386_sigtramp_frame_cache (this_frame, this_cache);
2488
2489 if (!cache->base_p)
2490 return UNWIND_UNAVAILABLE;
2491
2492 return UNWIND_NO_REASON;
2493 }
2494
2495 static void
2496 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2497 struct frame_id *this_id)
2498 {
2499 struct i386_frame_cache *cache =
2500 i386_sigtramp_frame_cache (this_frame, this_cache);
2501
2502 if (!cache->base_p)
2503 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2504 else
2505 {
2506 /* See the end of i386_push_dummy_call. */
2507 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2508 }
2509 }
2510
2511 static struct value *
2512 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2513 void **this_cache, int regnum)
2514 {
2515 /* Make sure we've initialized the cache. */
2516 i386_sigtramp_frame_cache (this_frame, this_cache);
2517
2518 return i386_frame_prev_register (this_frame, this_cache, regnum);
2519 }
2520
2521 static int
2522 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2523 struct frame_info *this_frame,
2524 void **this_prologue_cache)
2525 {
2526 gdbarch *arch = get_frame_arch (this_frame);
2527 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
2528
2529 /* We shouldn't even bother if we don't have a sigcontext_addr
2530 handler. */
2531 if (tdep->sigcontext_addr == NULL)
2532 return 0;
2533
2534 if (tdep->sigtramp_p != NULL)
2535 {
2536 if (tdep->sigtramp_p (this_frame))
2537 return 1;
2538 }
2539
2540 if (tdep->sigtramp_start != 0)
2541 {
2542 CORE_ADDR pc = get_frame_pc (this_frame);
2543
2544 gdb_assert (tdep->sigtramp_end != 0);
2545 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2546 return 1;
2547 }
2548
2549 return 0;
2550 }
2551
2552 static const struct frame_unwind i386_sigtramp_frame_unwind =
2553 {
2554 "i386 sigtramp",
2555 SIGTRAMP_FRAME,
2556 i386_sigtramp_frame_unwind_stop_reason,
2557 i386_sigtramp_frame_this_id,
2558 i386_sigtramp_frame_prev_register,
2559 NULL,
2560 i386_sigtramp_frame_sniffer
2561 };
2562 \f
2563
2564 static CORE_ADDR
2565 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2566 {
2567 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2568
2569 return cache->base;
2570 }
2571
2572 static const struct frame_base i386_frame_base =
2573 {
2574 &i386_frame_unwind,
2575 i386_frame_base_address,
2576 i386_frame_base_address,
2577 i386_frame_base_address
2578 };
2579
2580 static struct frame_id
2581 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2582 {
2583 CORE_ADDR fp;
2584
2585 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2586
2587 /* See the end of i386_push_dummy_call. */
2588 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2589 }
2590
2591 /* _Decimal128 function return values need 16-byte alignment on the
2592 stack. */
2593
2594 static CORE_ADDR
2595 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2596 {
2597 return sp & -(CORE_ADDR)16;
2598 }
2599 \f
2600
2601 /* Figure out where the longjmp will land. Slurp the args out of the
2602 stack. We expect the first arg to be a pointer to the jmp_buf
2603 structure from which we extract the address that we will land at.
2604 This address is copied into PC. This routine returns non-zero on
2605 success. */
2606
2607 static int
2608 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2609 {
2610 gdb_byte buf[4];
2611 CORE_ADDR sp, jb_addr;
2612 struct gdbarch *gdbarch = get_frame_arch (frame);
2613 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2614 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2615 int jb_pc_offset = tdep->jb_pc_offset;
2616
2617 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2618 longjmp will land. */
2619 if (jb_pc_offset == -1)
2620 return 0;
2621
2622 get_frame_register (frame, I386_ESP_REGNUM, buf);
2623 sp = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (sp + 4, buf, 4))
2625 return 0;
2626
2627 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2628 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2629 return 0;
2630
2631 *pc = extract_unsigned_integer (buf, 4, byte_order);
2632 return 1;
2633 }
2634 \f
2635
2636 /* Check whether TYPE must be 16-byte-aligned when passed as a
2637 function argument. 16-byte vectors, _Decimal128 and structures or
2638 unions containing such types must be 16-byte-aligned; other
2639 arguments are 4-byte-aligned. */
2640
2641 static int
2642 i386_16_byte_align_p (struct type *type)
2643 {
2644 type = check_typedef (type);
2645 if ((type->code () == TYPE_CODE_DECFLOAT
2646 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2647 && TYPE_LENGTH (type) == 16)
2648 return 1;
2649 if (type->code () == TYPE_CODE_ARRAY)
2650 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2651 if (type->code () == TYPE_CODE_STRUCT
2652 || type->code () == TYPE_CODE_UNION)
2653 {
2654 int i;
2655 for (i = 0; i < type->num_fields (); i++)
2656 {
2657 if (field_is_static (&type->field (i)))
2658 continue;
2659 if (i386_16_byte_align_p (type->field (i).type ()))
2660 return 1;
2661 }
2662 }
2663 return 0;
2664 }
2665
2666 /* Implementation for set_gdbarch_push_dummy_code. */
2667
2668 static CORE_ADDR
2669 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2670 struct value **args, int nargs, struct type *value_type,
2671 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2672 struct regcache *regcache)
2673 {
2674 /* Use 0xcc breakpoint - 1 byte. */
2675 *bp_addr = sp - 1;
2676 *real_pc = funaddr;
2677
2678 /* Keep the stack aligned. */
2679 return sp - 16;
2680 }
2681
2682 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2683 calling convention. */
2684
2685 CORE_ADDR
2686 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2687 struct regcache *regcache, CORE_ADDR bp_addr,
2688 int nargs, struct value **args, CORE_ADDR sp,
2689 function_call_return_method return_method,
2690 CORE_ADDR struct_addr, bool thiscall)
2691 {
2692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2693 gdb_byte buf[4];
2694 int i;
2695 int write_pass;
2696 int args_space = 0;
2697
2698 /* BND registers can be in arbitrary values at the moment of the
2699 inferior call. This can cause boundary violations that are not
2700 due to a real bug or even desired by the user. The best to be done
2701 is set the BND registers to allow access to the whole memory, INIT
2702 state, before pushing the inferior call. */
2703 i387_reset_bnd_regs (gdbarch, regcache);
2704
2705 /* Determine the total space required for arguments and struct
2706 return address in a first pass (allowing for 16-byte-aligned
2707 arguments), then push arguments in a second pass. */
2708
2709 for (write_pass = 0; write_pass < 2; write_pass++)
2710 {
2711 int args_space_used = 0;
2712
2713 if (return_method == return_method_struct)
2714 {
2715 if (write_pass)
2716 {
2717 /* Push value address. */
2718 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2719 write_memory (sp, buf, 4);
2720 args_space_used += 4;
2721 }
2722 else
2723 args_space += 4;
2724 }
2725
2726 for (i = thiscall ? 1 : 0; i < nargs; i++)
2727 {
2728 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2729
2730 if (write_pass)
2731 {
2732 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2733 args_space_used = align_up (args_space_used, 16);
2734
2735 write_memory (sp + args_space_used,
2736 value_contents_all (args[i]).data (), len);
2737 /* The System V ABI says that:
2738
2739 "An argument's size is increased, if necessary, to make it a
2740 multiple of [32-bit] words. This may require tail padding,
2741 depending on the size of the argument."
2742
2743 This makes sure the stack stays word-aligned. */
2744 args_space_used += align_up (len, 4);
2745 }
2746 else
2747 {
2748 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2749 args_space = align_up (args_space, 16);
2750 args_space += align_up (len, 4);
2751 }
2752 }
2753
2754 if (!write_pass)
2755 {
2756 sp -= args_space;
2757
2758 /* The original System V ABI only requires word alignment,
2759 but modern incarnations need 16-byte alignment in order
2760 to support SSE. Since wasting a few bytes here isn't
2761 harmful we unconditionally enforce 16-byte alignment. */
2762 sp &= ~0xf;
2763 }
2764 }
2765
2766 /* Store return address. */
2767 sp -= 4;
2768 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2769 write_memory (sp, buf, 4);
2770
2771 /* Finally, update the stack pointer... */
2772 store_unsigned_integer (buf, 4, byte_order, sp);
2773 regcache->cooked_write (I386_ESP_REGNUM, buf);
2774
2775 /* ...and fake a frame pointer. */
2776 regcache->cooked_write (I386_EBP_REGNUM, buf);
2777
2778 /* The 'this' pointer needs to be in ECX. */
2779 if (thiscall)
2780 regcache->cooked_write (I386_ECX_REGNUM,
2781 value_contents_all (args[0]).data ());
2782
2783 /* If the PLT is position-independent, the SYSTEM V ABI requires %ebx to be
2784 set to the address of the GOT when doing a call to a PLT address.
2785 Note that we do not try to determine whether the PLT is
2786 position-independent, we just set the register regardless. */
2787 CORE_ADDR func_addr = find_function_addr (function, nullptr, nullptr);
2788 if (in_plt_section (func_addr))
2789 {
2790 struct objfile *objf = nullptr;
2791 asection *asect = nullptr;
2792 obj_section *osect = nullptr;
2793
2794 /* Get object file containing func_addr. */
2795 obj_section *func_section = find_pc_section (func_addr);
2796 if (func_section != nullptr)
2797 objf = func_section->objfile;
2798
2799 if (objf != nullptr)
2800 {
2801 /* Get corresponding .got.plt or .got section. */
2802 asect = bfd_get_section_by_name (objf->obfd, ".got.plt");
2803 if (asect == nullptr)
2804 asect = bfd_get_section_by_name (objf->obfd, ".got");
2805 }
2806
2807 if (asect != nullptr)
2808 /* Translate asection to obj_section. */
2809 osect = maint_obj_section_from_bfd_section (objf->obfd, asect, objf);
2810
2811 if (osect != nullptr)
2812 {
2813 /* Store the section address in %ebx. */
2814 store_unsigned_integer (buf, 4, byte_order, osect->addr ());
2815 regcache->cooked_write (I386_EBX_REGNUM, buf);
2816 }
2817 else
2818 {
2819 /* If we would only do this for a position-independent PLT, it would
2820 make sense to issue a warning here. */
2821 }
2822 }
2823
2824 /* MarkK wrote: This "+ 8" is all over the place:
2825 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2826 i386_dummy_id). It's there, since all frame unwinders for
2827 a given target have to agree (within a certain margin) on the
2828 definition of the stack address of a frame. Otherwise frame id
2829 comparison might not work correctly. Since DWARF2/GCC uses the
2830 stack address *before* the function call as a frame's CFA. On
2831 the i386, when %ebp is used as a frame pointer, the offset
2832 between the contents %ebp and the CFA as defined by GCC. */
2833 return sp + 8;
2834 }
2835
2836 /* Implement the "push_dummy_call" gdbarch method. */
2837
2838 static CORE_ADDR
2839 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2840 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2841 struct value **args, CORE_ADDR sp,
2842 function_call_return_method return_method,
2843 CORE_ADDR struct_addr)
2844 {
2845 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2846 nargs, args, sp, return_method,
2847 struct_addr, false);
2848 }
2849
2850 /* These registers are used for returning integers (and on some
2851 targets also for returning `struct' and `union' values when their
2852 size and alignment match an integer type). */
2853 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2854 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2855
2856 /* Read, for architecture GDBARCH, a function return value of TYPE
2857 from REGCACHE, and copy that into VALBUF. */
2858
2859 static void
2860 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2861 struct regcache *regcache, gdb_byte *valbuf)
2862 {
2863 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2864 int len = TYPE_LENGTH (type);
2865 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2866
2867 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2868 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2869 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2870 {
2871 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2872 return;
2873 }
2874 else if (type->code () == TYPE_CODE_FLT)
2875 {
2876 if (tdep->st0_regnum < 0)
2877 {
2878 warning (_("Cannot find floating-point return value."));
2879 memset (valbuf, 0, len);
2880 return;
2881 }
2882
2883 /* Floating-point return values can be found in %st(0). Convert
2884 its contents to the desired type. This is probably not
2885 exactly how it would happen on the target itself, but it is
2886 the best we can do. */
2887 regcache->raw_read (I386_ST0_REGNUM, buf);
2888 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2889 }
2890 else
2891 {
2892 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2893 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2894
2895 if (len <= low_size)
2896 {
2897 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2898 memcpy (valbuf, buf, len);
2899 }
2900 else if (len <= (low_size + high_size))
2901 {
2902 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2903 memcpy (valbuf, buf, low_size);
2904 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2905 memcpy (valbuf + low_size, buf, len - low_size);
2906 }
2907 else
2908 internal_error (__FILE__, __LINE__,
2909 _("Cannot extract return value of %d bytes long."),
2910 len);
2911 }
2912 }
2913
2914 /* Write, for architecture GDBARCH, a function return value of TYPE
2915 from VALBUF into REGCACHE. */
2916
2917 static void
2918 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2919 struct regcache *regcache, const gdb_byte *valbuf)
2920 {
2921 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2922 int len = TYPE_LENGTH (type);
2923
2924 if (type->code () == TYPE_CODE_FLT)
2925 {
2926 ULONGEST fstat;
2927 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2928
2929 if (tdep->st0_regnum < 0)
2930 {
2931 warning (_("Cannot set floating-point return value."));
2932 return;
2933 }
2934
2935 /* Returning floating-point values is a bit tricky. Apart from
2936 storing the return value in %st(0), we have to simulate the
2937 state of the FPU at function return point. */
2938
2939 /* Convert the value found in VALBUF to the extended
2940 floating-point format used by the FPU. This is probably
2941 not exactly how it would happen on the target itself, but
2942 it is the best we can do. */
2943 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2944 regcache->raw_write (I386_ST0_REGNUM, buf);
2945
2946 /* Set the top of the floating-point register stack to 7. The
2947 actual value doesn't really matter, but 7 is what a normal
2948 function return would end up with if the program started out
2949 with a freshly initialized FPU. */
2950 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2951 fstat |= (7 << 11);
2952 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2953
2954 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2955 the floating-point register stack to 7, the appropriate value
2956 for the tag word is 0x3fff. */
2957 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2958 }
2959 else
2960 {
2961 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2962 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2963
2964 if (len <= low_size)
2965 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2966 else if (len <= (low_size + high_size))
2967 {
2968 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2969 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2970 valbuf + low_size);
2971 }
2972 else
2973 internal_error (__FILE__, __LINE__,
2974 _("Cannot store return value of %d bytes long."), len);
2975 }
2976 }
2977 \f
2978
2979 /* This is the variable that is set with "set struct-convention", and
2980 its legitimate values. */
2981 static const char default_struct_convention[] = "default";
2982 static const char pcc_struct_convention[] = "pcc";
2983 static const char reg_struct_convention[] = "reg";
2984 static const char *const valid_conventions[] =
2985 {
2986 default_struct_convention,
2987 pcc_struct_convention,
2988 reg_struct_convention,
2989 NULL
2990 };
2991 static const char *struct_convention = default_struct_convention;
2992
2993 /* Return non-zero if TYPE, which is assumed to be a structure,
2994 a union type, or an array type, should be returned in registers
2995 for architecture GDBARCH. */
2996
2997 static int
2998 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2999 {
3000 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3001 enum type_code code = type->code ();
3002 int len = TYPE_LENGTH (type);
3003
3004 gdb_assert (code == TYPE_CODE_STRUCT
3005 || code == TYPE_CODE_UNION
3006 || code == TYPE_CODE_ARRAY);
3007
3008 if (struct_convention == pcc_struct_convention
3009 || (struct_convention == default_struct_convention
3010 && tdep->struct_return == pcc_struct_return))
3011 return 0;
3012
3013 /* Structures consisting of a single `float', `double' or 'long
3014 double' member are returned in %st(0). */
3015 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3016 {
3017 type = check_typedef (type->field (0).type ());
3018 if (type->code () == TYPE_CODE_FLT)
3019 return (len == 4 || len == 8 || len == 12);
3020 }
3021
3022 return (len == 1 || len == 2 || len == 4 || len == 8);
3023 }
3024
3025 /* Determine, for architecture GDBARCH, how a return value of TYPE
3026 should be returned. If it is supposed to be returned in registers,
3027 and READBUF is non-zero, read the appropriate value from REGCACHE,
3028 and copy it into READBUF. If WRITEBUF is non-zero, write the value
3029 from WRITEBUF into REGCACHE. */
3030
3031 static enum return_value_convention
3032 i386_return_value (struct gdbarch *gdbarch, struct value *function,
3033 struct type *type, struct regcache *regcache,
3034 gdb_byte *readbuf, const gdb_byte *writebuf)
3035 {
3036 enum type_code code = type->code ();
3037
3038 if (((code == TYPE_CODE_STRUCT
3039 || code == TYPE_CODE_UNION
3040 || code == TYPE_CODE_ARRAY)
3041 && !i386_reg_struct_return_p (gdbarch, type))
3042 /* Complex double and long double uses the struct return convention. */
3043 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
3044 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
3045 /* 128-bit decimal float uses the struct return convention. */
3046 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
3047 {
3048 /* The System V ABI says that:
3049
3050 "A function that returns a structure or union also sets %eax
3051 to the value of the original address of the caller's area
3052 before it returns. Thus when the caller receives control
3053 again, the address of the returned object resides in register
3054 %eax and can be used to access the object."
3055
3056 So the ABI guarantees that we can always find the return
3057 value just after the function has returned. */
3058
3059 /* Note that the ABI doesn't mention functions returning arrays,
3060 which is something possible in certain languages such as Ada.
3061 In this case, the value is returned as if it was wrapped in
3062 a record, so the convention applied to records also applies
3063 to arrays. */
3064
3065 if (readbuf)
3066 {
3067 ULONGEST addr;
3068
3069 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3070 read_memory (addr, readbuf, TYPE_LENGTH (type));
3071 }
3072
3073 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3074 }
3075
3076 /* This special case is for structures consisting of a single
3077 `float', `double' or 'long double' member. These structures are
3078 returned in %st(0). For these structures, we call ourselves
3079 recursively, changing TYPE into the type of the first member of
3080 the structure. Since that should work for all structures that
3081 have only one member, we don't bother to check the member's type
3082 here. */
3083 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3084 {
3085 type = check_typedef (type->field (0).type ());
3086 return i386_return_value (gdbarch, function, type, regcache,
3087 readbuf, writebuf);
3088 }
3089
3090 if (readbuf)
3091 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3092 if (writebuf)
3093 i386_store_return_value (gdbarch, type, regcache, writebuf);
3094
3095 return RETURN_VALUE_REGISTER_CONVENTION;
3096 }
3097 \f
3098
3099 struct type *
3100 i387_ext_type (struct gdbarch *gdbarch)
3101 {
3102 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3103
3104 if (!tdep->i387_ext_type)
3105 {
3106 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3107 gdb_assert (tdep->i387_ext_type != NULL);
3108 }
3109
3110 return tdep->i387_ext_type;
3111 }
3112
3113 /* Construct type for pseudo BND registers. We can't use
3114 tdesc_find_type since a complement of one value has to be used
3115 to describe the upper bound. */
3116
3117 static struct type *
3118 i386_bnd_type (struct gdbarch *gdbarch)
3119 {
3120 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3121
3122
3123 if (!tdep->i386_bnd_type)
3124 {
3125 struct type *t;
3126 const struct builtin_type *bt = builtin_type (gdbarch);
3127
3128 /* The type we're building is described bellow: */
3129 #if 0
3130 struct __bound128
3131 {
3132 void *lbound;
3133 void *ubound; /* One complement of raw ubound field. */
3134 };
3135 #endif
3136
3137 t = arch_composite_type (gdbarch,
3138 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3139
3140 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3141 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3142
3143 t->set_name ("builtin_type_bound128");
3144 tdep->i386_bnd_type = t;
3145 }
3146
3147 return tdep->i386_bnd_type;
3148 }
3149
3150 /* Construct vector type for pseudo ZMM registers. We can't use
3151 tdesc_find_type since ZMM isn't described in target description. */
3152
3153 static struct type *
3154 i386_zmm_type (struct gdbarch *gdbarch)
3155 {
3156 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3157
3158 if (!tdep->i386_zmm_type)
3159 {
3160 const struct builtin_type *bt = builtin_type (gdbarch);
3161
3162 /* The type we're building is this: */
3163 #if 0
3164 union __gdb_builtin_type_vec512i
3165 {
3166 int128_t v4_int128[4];
3167 int64_t v8_int64[8];
3168 int32_t v16_int32[16];
3169 int16_t v32_int16[32];
3170 int8_t v64_int8[64];
3171 double v8_double[8];
3172 float v16_float[16];
3173 float16_t v32_half[32];
3174 bfloat16_t v32_bfloat16[32];
3175 };
3176 #endif
3177
3178 struct type *t;
3179
3180 t = arch_composite_type (gdbarch,
3181 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3182 append_composite_type_field (t, "v32_bfloat16",
3183 init_vector_type (bt->builtin_bfloat16, 32));
3184 append_composite_type_field (t, "v32_half",
3185 init_vector_type (bt->builtin_half, 32));
3186 append_composite_type_field (t, "v16_float",
3187 init_vector_type (bt->builtin_float, 16));
3188 append_composite_type_field (t, "v8_double",
3189 init_vector_type (bt->builtin_double, 8));
3190 append_composite_type_field (t, "v64_int8",
3191 init_vector_type (bt->builtin_int8, 64));
3192 append_composite_type_field (t, "v32_int16",
3193 init_vector_type (bt->builtin_int16, 32));
3194 append_composite_type_field (t, "v16_int32",
3195 init_vector_type (bt->builtin_int32, 16));
3196 append_composite_type_field (t, "v8_int64",
3197 init_vector_type (bt->builtin_int64, 8));
3198 append_composite_type_field (t, "v4_int128",
3199 init_vector_type (bt->builtin_int128, 4));
3200
3201 t->set_is_vector (true);
3202 t->set_name ("builtin_type_vec512i");
3203 tdep->i386_zmm_type = t;
3204 }
3205
3206 return tdep->i386_zmm_type;
3207 }
3208
3209 /* Construct vector type for pseudo YMM registers. We can't use
3210 tdesc_find_type since YMM isn't described in target description. */
3211
3212 static struct type *
3213 i386_ymm_type (struct gdbarch *gdbarch)
3214 {
3215 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3216
3217 if (!tdep->i386_ymm_type)
3218 {
3219 const struct builtin_type *bt = builtin_type (gdbarch);
3220
3221 /* The type we're building is this: */
3222 #if 0
3223 union __gdb_builtin_type_vec256i
3224 {
3225 int128_t v2_int128[2];
3226 int64_t v4_int64[4];
3227 int32_t v8_int32[8];
3228 int16_t v16_int16[16];
3229 int8_t v32_int8[32];
3230 double v4_double[4];
3231 float v8_float[8];
3232 float16_t v16_half[16];
3233 bfloat16_t v16_bfloat16[16];
3234 };
3235 #endif
3236
3237 struct type *t;
3238
3239 t = arch_composite_type (gdbarch,
3240 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3241 append_composite_type_field (t, "v16_bfloat16",
3242 init_vector_type (bt->builtin_bfloat16, 16));
3243 append_composite_type_field (t, "v16_half",
3244 init_vector_type (bt->builtin_half, 16));
3245 append_composite_type_field (t, "v8_float",
3246 init_vector_type (bt->builtin_float, 8));
3247 append_composite_type_field (t, "v4_double",
3248 init_vector_type (bt->builtin_double, 4));
3249 append_composite_type_field (t, "v32_int8",
3250 init_vector_type (bt->builtin_int8, 32));
3251 append_composite_type_field (t, "v16_int16",
3252 init_vector_type (bt->builtin_int16, 16));
3253 append_composite_type_field (t, "v8_int32",
3254 init_vector_type (bt->builtin_int32, 8));
3255 append_composite_type_field (t, "v4_int64",
3256 init_vector_type (bt->builtin_int64, 4));
3257 append_composite_type_field (t, "v2_int128",
3258 init_vector_type (bt->builtin_int128, 2));
3259
3260 t->set_is_vector (true);
3261 t->set_name ("builtin_type_vec256i");
3262 tdep->i386_ymm_type = t;
3263 }
3264
3265 return tdep->i386_ymm_type;
3266 }
3267
3268 /* Construct vector type for MMX registers. */
3269 static struct type *
3270 i386_mmx_type (struct gdbarch *gdbarch)
3271 {
3272 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3273
3274 if (!tdep->i386_mmx_type)
3275 {
3276 const struct builtin_type *bt = builtin_type (gdbarch);
3277
3278 /* The type we're building is this: */
3279 #if 0
3280 union __gdb_builtin_type_vec64i
3281 {
3282 int64_t uint64;
3283 int32_t v2_int32[2];
3284 int16_t v4_int16[4];
3285 int8_t v8_int8[8];
3286 };
3287 #endif
3288
3289 struct type *t;
3290
3291 t = arch_composite_type (gdbarch,
3292 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3293
3294 append_composite_type_field (t, "uint64", bt->builtin_int64);
3295 append_composite_type_field (t, "v2_int32",
3296 init_vector_type (bt->builtin_int32, 2));
3297 append_composite_type_field (t, "v4_int16",
3298 init_vector_type (bt->builtin_int16, 4));
3299 append_composite_type_field (t, "v8_int8",
3300 init_vector_type (bt->builtin_int8, 8));
3301
3302 t->set_is_vector (true);
3303 t->set_name ("builtin_type_vec64i");
3304 tdep->i386_mmx_type = t;
3305 }
3306
3307 return tdep->i386_mmx_type;
3308 }
3309
3310 /* Return the GDB type object for the "standard" data type of data in
3311 register REGNUM. */
3312
3313 struct type *
3314 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3315 {
3316 if (i386_bnd_regnum_p (gdbarch, regnum))
3317 return i386_bnd_type (gdbarch);
3318 if (i386_mmx_regnum_p (gdbarch, regnum))
3319 return i386_mmx_type (gdbarch);
3320 else if (i386_ymm_regnum_p (gdbarch, regnum))
3321 return i386_ymm_type (gdbarch);
3322 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3323 return i386_ymm_type (gdbarch);
3324 else if (i386_zmm_regnum_p (gdbarch, regnum))
3325 return i386_zmm_type (gdbarch);
3326 else
3327 {
3328 const struct builtin_type *bt = builtin_type (gdbarch);
3329 if (i386_byte_regnum_p (gdbarch, regnum))
3330 return bt->builtin_int8;
3331 else if (i386_word_regnum_p (gdbarch, regnum))
3332 return bt->builtin_int16;
3333 else if (i386_dword_regnum_p (gdbarch, regnum))
3334 return bt->builtin_int32;
3335 else if (i386_k_regnum_p (gdbarch, regnum))
3336 return bt->builtin_int64;
3337 }
3338
3339 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3340 }
3341
3342 /* Map a cooked register onto a raw register or memory. For the i386,
3343 the MMX registers need to be mapped onto floating point registers. */
3344
3345 static int
3346 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3347 {
3348 gdbarch *arch = regcache->arch ();
3349 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
3350 int mmxreg, fpreg;
3351 ULONGEST fstat;
3352 int tos;
3353
3354 mmxreg = regnum - tdep->mm0_regnum;
3355 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3356 tos = (fstat >> 11) & 0x7;
3357 fpreg = (mmxreg + tos) % 8;
3358
3359 return (I387_ST0_REGNUM (tdep) + fpreg);
3360 }
3361
3362 /* A helper function for us by i386_pseudo_register_read_value and
3363 amd64_pseudo_register_read_value. It does all the work but reads
3364 the data into an already-allocated value. */
3365
3366 void
3367 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3368 readable_regcache *regcache,
3369 int regnum,
3370 struct value *result_value)
3371 {
3372 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3373 enum register_status status;
3374 gdb_byte *buf = value_contents_raw (result_value).data ();
3375
3376 if (i386_mmx_regnum_p (gdbarch, regnum))
3377 {
3378 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3379
3380 /* Extract (always little endian). */
3381 status = regcache->raw_read (fpnum, raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 0,
3384 TYPE_LENGTH (value_type (result_value)));
3385 else
3386 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3387 }
3388 else
3389 {
3390 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3391 if (i386_bnd_regnum_p (gdbarch, regnum))
3392 {
3393 regnum -= tdep->bnd0_regnum;
3394
3395 /* Extract (always little endian). Read lower 128bits. */
3396 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3397 raw_buf);
3398 if (status != REG_VALID)
3399 mark_value_bytes_unavailable (result_value, 0, 16);
3400 else
3401 {
3402 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3403 LONGEST upper, lower;
3404 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3405
3406 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3407 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3408 upper = ~upper;
3409
3410 memcpy (buf, &lower, size);
3411 memcpy (buf + size, &upper, size);
3412 }
3413 }
3414 else if (i386_k_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->k0_regnum;
3417
3418 /* Extract (always little endian). */
3419 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3420 if (status != REG_VALID)
3421 mark_value_bytes_unavailable (result_value, 0, 8);
3422 else
3423 memcpy (buf, raw_buf, 8);
3424 }
3425 else if (i386_zmm_regnum_p (gdbarch, regnum))
3426 {
3427 regnum -= tdep->zmm0_regnum;
3428
3429 if (regnum < num_lower_zmm_regs)
3430 {
3431 /* Extract (always little endian). Read lower 128bits. */
3432 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3433 raw_buf);
3434 if (status != REG_VALID)
3435 mark_value_bytes_unavailable (result_value, 0, 16);
3436 else
3437 memcpy (buf, raw_buf, 16);
3438
3439 /* Extract (always little endian). Read upper 128bits. */
3440 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3441 raw_buf);
3442 if (status != REG_VALID)
3443 mark_value_bytes_unavailable (result_value, 16, 16);
3444 else
3445 memcpy (buf + 16, raw_buf, 16);
3446 }
3447 else
3448 {
3449 /* Extract (always little endian). Read lower 128bits. */
3450 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3451 - num_lower_zmm_regs,
3452 raw_buf);
3453 if (status != REG_VALID)
3454 mark_value_bytes_unavailable (result_value, 0, 16);
3455 else
3456 memcpy (buf, raw_buf, 16);
3457
3458 /* Extract (always little endian). Read upper 128bits. */
3459 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3460 - num_lower_zmm_regs,
3461 raw_buf);
3462 if (status != REG_VALID)
3463 mark_value_bytes_unavailable (result_value, 16, 16);
3464 else
3465 memcpy (buf + 16, raw_buf, 16);
3466 }
3467
3468 /* Read upper 256bits. */
3469 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3470 raw_buf);
3471 if (status != REG_VALID)
3472 mark_value_bytes_unavailable (result_value, 32, 32);
3473 else
3474 memcpy (buf + 32, raw_buf, 32);
3475 }
3476 else if (i386_ymm_regnum_p (gdbarch, regnum))
3477 {
3478 regnum -= tdep->ymm0_regnum;
3479
3480 /* Extract (always little endian). Read lower 128bits. */
3481 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3482 raw_buf);
3483 if (status != REG_VALID)
3484 mark_value_bytes_unavailable (result_value, 0, 16);
3485 else
3486 memcpy (buf, raw_buf, 16);
3487 /* Read upper 128bits. */
3488 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3489 raw_buf);
3490 if (status != REG_VALID)
3491 mark_value_bytes_unavailable (result_value, 16, 32);
3492 else
3493 memcpy (buf + 16, raw_buf, 16);
3494 }
3495 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->ymm16_regnum;
3498 /* Extract (always little endian). Read lower 128bits. */
3499 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3500 raw_buf);
3501 if (status != REG_VALID)
3502 mark_value_bytes_unavailable (result_value, 0, 16);
3503 else
3504 memcpy (buf, raw_buf, 16);
3505 /* Read upper 128bits. */
3506 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3507 raw_buf);
3508 if (status != REG_VALID)
3509 mark_value_bytes_unavailable (result_value, 16, 16);
3510 else
3511 memcpy (buf + 16, raw_buf, 16);
3512 }
3513 else if (i386_word_regnum_p (gdbarch, regnum))
3514 {
3515 int gpnum = regnum - tdep->ax_regnum;
3516
3517 /* Extract (always little endian). */
3518 status = regcache->raw_read (gpnum, raw_buf);
3519 if (status != REG_VALID)
3520 mark_value_bytes_unavailable (result_value, 0,
3521 TYPE_LENGTH (value_type (result_value)));
3522 else
3523 memcpy (buf, raw_buf, 2);
3524 }
3525 else if (i386_byte_regnum_p (gdbarch, regnum))
3526 {
3527 int gpnum = regnum - tdep->al_regnum;
3528
3529 /* Extract (always little endian). We read both lower and
3530 upper registers. */
3531 status = regcache->raw_read (gpnum % 4, raw_buf);
3532 if (status != REG_VALID)
3533 mark_value_bytes_unavailable (result_value, 0,
3534 TYPE_LENGTH (value_type (result_value)));
3535 else if (gpnum >= 4)
3536 memcpy (buf, raw_buf + 1, 1);
3537 else
3538 memcpy (buf, raw_buf, 1);
3539 }
3540 else
3541 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3542 }
3543 }
3544
3545 static struct value *
3546 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3547 readable_regcache *regcache,
3548 int regnum)
3549 {
3550 struct value *result;
3551
3552 result = allocate_value (register_type (gdbarch, regnum));
3553 VALUE_LVAL (result) = lval_register;
3554 VALUE_REGNUM (result) = regnum;
3555
3556 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3557
3558 return result;
3559 }
3560
3561 void
3562 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3563 int regnum, const gdb_byte *buf)
3564 {
3565 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3566
3567 if (i386_mmx_regnum_p (gdbarch, regnum))
3568 {
3569 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3570
3571 /* Read ... */
3572 regcache->raw_read (fpnum, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3575 /* ... Write. */
3576 regcache->raw_write (fpnum, raw_buf);
3577 }
3578 else
3579 {
3580 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3581
3582 if (i386_bnd_regnum_p (gdbarch, regnum))
3583 {
3584 ULONGEST upper, lower;
3585 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3586 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3587
3588 /* New values from input value. */
3589 regnum -= tdep->bnd0_regnum;
3590 lower = extract_unsigned_integer (buf, size, byte_order);
3591 upper = extract_unsigned_integer (buf + size, size, byte_order);
3592
3593 /* Fetching register buffer. */
3594 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3595 raw_buf);
3596
3597 upper = ~upper;
3598
3599 /* Set register bits. */
3600 memcpy (raw_buf, &lower, 8);
3601 memcpy (raw_buf + 8, &upper, 8);
3602
3603 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3604 }
3605 else if (i386_k_regnum_p (gdbarch, regnum))
3606 {
3607 regnum -= tdep->k0_regnum;
3608
3609 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3610 }
3611 else if (i386_zmm_regnum_p (gdbarch, regnum))
3612 {
3613 regnum -= tdep->zmm0_regnum;
3614
3615 if (regnum < num_lower_zmm_regs)
3616 {
3617 /* Write lower 128bits. */
3618 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3619 /* Write upper 128bits. */
3620 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3621 }
3622 else
3623 {
3624 /* Write lower 128bits. */
3625 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3626 - num_lower_zmm_regs, buf);
3627 /* Write upper 128bits. */
3628 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3629 - num_lower_zmm_regs, buf + 16);
3630 }
3631 /* Write upper 256bits. */
3632 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3633 }
3634 else if (i386_ymm_regnum_p (gdbarch, regnum))
3635 {
3636 regnum -= tdep->ymm0_regnum;
3637
3638 /* ... Write lower 128bits. */
3639 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3640 /* ... Write upper 128bits. */
3641 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3642 }
3643 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3644 {
3645 regnum -= tdep->ymm16_regnum;
3646
3647 /* ... Write lower 128bits. */
3648 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3649 /* ... Write upper 128bits. */
3650 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3651 }
3652 else if (i386_word_regnum_p (gdbarch, regnum))
3653 {
3654 int gpnum = regnum - tdep->ax_regnum;
3655
3656 /* Read ... */
3657 regcache->raw_read (gpnum, raw_buf);
3658 /* ... Modify ... (always little endian). */
3659 memcpy (raw_buf, buf, 2);
3660 /* ... Write. */
3661 regcache->raw_write (gpnum, raw_buf);
3662 }
3663 else if (i386_byte_regnum_p (gdbarch, regnum))
3664 {
3665 int gpnum = regnum - tdep->al_regnum;
3666
3667 /* Read ... We read both lower and upper registers. */
3668 regcache->raw_read (gpnum % 4, raw_buf);
3669 /* ... Modify ... (always little endian). */
3670 if (gpnum >= 4)
3671 memcpy (raw_buf + 1, buf, 1);
3672 else
3673 memcpy (raw_buf, buf, 1);
3674 /* ... Write. */
3675 regcache->raw_write (gpnum % 4, raw_buf);
3676 }
3677 else
3678 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3679 }
3680 }
3681
3682 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3683
3684 int
3685 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3686 struct agent_expr *ax, int regnum)
3687 {
3688 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3689
3690 if (i386_mmx_regnum_p (gdbarch, regnum))
3691 {
3692 /* MMX to FPU register mapping depends on current TOS. Let's just
3693 not care and collect everything... */
3694 int i;
3695
3696 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3697 for (i = 0; i < 8; i++)
3698 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3699 return 0;
3700 }
3701 else if (i386_bnd_regnum_p (gdbarch, regnum))
3702 {
3703 regnum -= tdep->bnd0_regnum;
3704 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3705 return 0;
3706 }
3707 else if (i386_k_regnum_p (gdbarch, regnum))
3708 {
3709 regnum -= tdep->k0_regnum;
3710 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3711 return 0;
3712 }
3713 else if (i386_zmm_regnum_p (gdbarch, regnum))
3714 {
3715 regnum -= tdep->zmm0_regnum;
3716 if (regnum < num_lower_zmm_regs)
3717 {
3718 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3719 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3720 }
3721 else
3722 {
3723 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3724 - num_lower_zmm_regs);
3725 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3726 - num_lower_zmm_regs);
3727 }
3728 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3729 return 0;
3730 }
3731 else if (i386_ymm_regnum_p (gdbarch, regnum))
3732 {
3733 regnum -= tdep->ymm0_regnum;
3734 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3735 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3736 return 0;
3737 }
3738 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3739 {
3740 regnum -= tdep->ymm16_regnum;
3741 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3742 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3743 return 0;
3744 }
3745 else if (i386_word_regnum_p (gdbarch, regnum))
3746 {
3747 int gpnum = regnum - tdep->ax_regnum;
3748
3749 ax_reg_mask (ax, gpnum);
3750 return 0;
3751 }
3752 else if (i386_byte_regnum_p (gdbarch, regnum))
3753 {
3754 int gpnum = regnum - tdep->al_regnum;
3755
3756 ax_reg_mask (ax, gpnum % 4);
3757 return 0;
3758 }
3759 else
3760 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3761 return 1;
3762 }
3763 \f
3764
3765 /* Return the register number of the register allocated by GCC after
3766 REGNUM, or -1 if there is no such register. */
3767
3768 static int
3769 i386_next_regnum (int regnum)
3770 {
3771 /* GCC allocates the registers in the order:
3772
3773 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3774
3775 Since storing a variable in %esp doesn't make any sense we return
3776 -1 for %ebp and for %esp itself. */
3777 static int next_regnum[] =
3778 {
3779 I386_EDX_REGNUM, /* Slot for %eax. */
3780 I386_EBX_REGNUM, /* Slot for %ecx. */
3781 I386_ECX_REGNUM, /* Slot for %edx. */
3782 I386_ESI_REGNUM, /* Slot for %ebx. */
3783 -1, -1, /* Slots for %esp and %ebp. */
3784 I386_EDI_REGNUM, /* Slot for %esi. */
3785 I386_EBP_REGNUM /* Slot for %edi. */
3786 };
3787
3788 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3789 return next_regnum[regnum];
3790
3791 return -1;
3792 }
3793
3794 /* Return nonzero if a value of type TYPE stored in register REGNUM
3795 needs any special handling. */
3796
3797 static int
3798 i386_convert_register_p (struct gdbarch *gdbarch,
3799 int regnum, struct type *type)
3800 {
3801 int len = TYPE_LENGTH (type);
3802
3803 /* Values may be spread across multiple registers. Most debugging
3804 formats aren't expressive enough to specify the locations, so
3805 some heuristics is involved. Right now we only handle types that
3806 have a length that is a multiple of the word size, since GCC
3807 doesn't seem to put any other types into registers. */
3808 if (len > 4 && len % 4 == 0)
3809 {
3810 int last_regnum = regnum;
3811
3812 while (len > 4)
3813 {
3814 last_regnum = i386_next_regnum (last_regnum);
3815 len -= 4;
3816 }
3817
3818 if (last_regnum != -1)
3819 return 1;
3820 }
3821
3822 return i387_convert_register_p (gdbarch, regnum, type);
3823 }
3824
3825 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3826 return its contents in TO. */
3827
3828 static int
3829 i386_register_to_value (struct frame_info *frame, int regnum,
3830 struct type *type, gdb_byte *to,
3831 int *optimizedp, int *unavailablep)
3832 {
3833 struct gdbarch *gdbarch = get_frame_arch (frame);
3834 int len = TYPE_LENGTH (type);
3835
3836 if (i386_fp_regnum_p (gdbarch, regnum))
3837 return i387_register_to_value (frame, regnum, type, to,
3838 optimizedp, unavailablep);
3839
3840 /* Read a value spread across multiple registers. */
3841
3842 gdb_assert (len > 4 && len % 4 == 0);
3843
3844 while (len > 0)
3845 {
3846 gdb_assert (regnum != -1);
3847 gdb_assert (register_size (gdbarch, regnum) == 4);
3848
3849 if (!get_frame_register_bytes (frame, regnum, 0,
3850 gdb::make_array_view (to,
3851 register_size (gdbarch,
3852 regnum)),
3853 optimizedp, unavailablep))
3854 return 0;
3855
3856 regnum = i386_next_regnum (regnum);
3857 len -= 4;
3858 to += 4;
3859 }
3860
3861 *optimizedp = *unavailablep = 0;
3862 return 1;
3863 }
3864
3865 /* Write the contents FROM of a value of type TYPE into register
3866 REGNUM in frame FRAME. */
3867
3868 static void
3869 i386_value_to_register (struct frame_info *frame, int regnum,
3870 struct type *type, const gdb_byte *from)
3871 {
3872 int len = TYPE_LENGTH (type);
3873
3874 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3875 {
3876 i387_value_to_register (frame, regnum, type, from);
3877 return;
3878 }
3879
3880 /* Write a value spread across multiple registers. */
3881
3882 gdb_assert (len > 4 && len % 4 == 0);
3883
3884 while (len > 0)
3885 {
3886 gdb_assert (regnum != -1);
3887 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3888
3889 put_frame_register (frame, regnum, from);
3890 regnum = i386_next_regnum (regnum);
3891 len -= 4;
3892 from += 4;
3893 }
3894 }
3895 \f
3896 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3897 in the general-purpose register set REGSET to register cache
3898 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3899
3900 void
3901 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3902 int regnum, const void *gregs, size_t len)
3903 {
3904 struct gdbarch *gdbarch = regcache->arch ();
3905 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3906 const gdb_byte *regs = (const gdb_byte *) gregs;
3907 int i;
3908
3909 gdb_assert (len >= tdep->sizeof_gregset);
3910
3911 for (i = 0; i < tdep->gregset_num_regs; i++)
3912 {
3913 if ((regnum == i || regnum == -1)
3914 && tdep->gregset_reg_offset[i] != -1)
3915 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3916 }
3917 }
3918
3919 /* Collect register REGNUM from the register cache REGCACHE and store
3920 it in the buffer specified by GREGS and LEN as described by the
3921 general-purpose register set REGSET. If REGNUM is -1, do this for
3922 all registers in REGSET. */
3923
3924 static void
3925 i386_collect_gregset (const struct regset *regset,
3926 const struct regcache *regcache,
3927 int regnum, void *gregs, size_t len)
3928 {
3929 struct gdbarch *gdbarch = regcache->arch ();
3930 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3931 gdb_byte *regs = (gdb_byte *) gregs;
3932 int i;
3933
3934 gdb_assert (len >= tdep->sizeof_gregset);
3935
3936 for (i = 0; i < tdep->gregset_num_regs; i++)
3937 {
3938 if ((regnum == i || regnum == -1)
3939 && tdep->gregset_reg_offset[i] != -1)
3940 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3941 }
3942 }
3943
3944 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3945 in the floating-point register set REGSET to register cache
3946 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3947
3948 static void
3949 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3950 int regnum, const void *fpregs, size_t len)
3951 {
3952 struct gdbarch *gdbarch = regcache->arch ();
3953 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3954
3955 if (len == I387_SIZEOF_FXSAVE)
3956 {
3957 i387_supply_fxsave (regcache, regnum, fpregs);
3958 return;
3959 }
3960
3961 gdb_assert (len >= tdep->sizeof_fpregset);
3962 i387_supply_fsave (regcache, regnum, fpregs);
3963 }
3964
3965 /* Collect register REGNUM from the register cache REGCACHE and store
3966 it in the buffer specified by FPREGS and LEN as described by the
3967 floating-point register set REGSET. If REGNUM is -1, do this for
3968 all registers in REGSET. */
3969
3970 static void
3971 i386_collect_fpregset (const struct regset *regset,
3972 const struct regcache *regcache,
3973 int regnum, void *fpregs, size_t len)
3974 {
3975 struct gdbarch *gdbarch = regcache->arch ();
3976 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3977
3978 if (len == I387_SIZEOF_FXSAVE)
3979 {
3980 i387_collect_fxsave (regcache, regnum, fpregs);
3981 return;
3982 }
3983
3984 gdb_assert (len >= tdep->sizeof_fpregset);
3985 i387_collect_fsave (regcache, regnum, fpregs);
3986 }
3987
3988 /* Register set definitions. */
3989
3990 const struct regset i386_gregset =
3991 {
3992 NULL, i386_supply_gregset, i386_collect_gregset
3993 };
3994
3995 const struct regset i386_fpregset =
3996 {
3997 NULL, i386_supply_fpregset, i386_collect_fpregset
3998 };
3999
4000 /* Default iterator over core file register note sections. */
4001
4002 void
4003 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
4004 iterate_over_regset_sections_cb *cb,
4005 void *cb_data,
4006 const struct regcache *regcache)
4007 {
4008 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4009
4010 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
4011 cb_data);
4012 if (tdep->sizeof_fpregset)
4013 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
4014 NULL, cb_data);
4015 }
4016 \f
4017
4018 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
4019
4020 CORE_ADDR
4021 i386_pe_skip_trampoline_code (struct frame_info *frame,
4022 CORE_ADDR pc, char *name)
4023 {
4024 struct gdbarch *gdbarch = get_frame_arch (frame);
4025 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4026
4027 /* jmp *(dest) */
4028 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
4029 {
4030 unsigned long indirect =
4031 read_memory_unsigned_integer (pc + 2, 4, byte_order);
4032 struct minimal_symbol *indsym =
4033 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
4034 const char *symname = indsym ? indsym->linkage_name () : 0;
4035
4036 if (symname)
4037 {
4038 if (startswith (symname, "__imp_")
4039 || startswith (symname, "_imp_"))
4040 return name ? 1 :
4041 read_memory_unsigned_integer (indirect, 4, byte_order);
4042 }
4043 }
4044 return 0; /* Not a trampoline. */
4045 }
4046 \f
4047
4048 /* Return whether the THIS_FRAME corresponds to a sigtramp
4049 routine. */
4050
4051 int
4052 i386_sigtramp_p (struct frame_info *this_frame)
4053 {
4054 CORE_ADDR pc = get_frame_pc (this_frame);
4055 const char *name;
4056
4057 find_pc_partial_function (pc, &name, NULL, NULL);
4058 return (name && strcmp ("_sigtramp", name) == 0);
4059 }
4060 \f
4061
4062 /* We have two flavours of disassembly. The machinery on this page
4063 deals with switching between those. */
4064
4065 static int
4066 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4067 {
4068 gdb_assert (disassembly_flavor == att_flavor
4069 || disassembly_flavor == intel_flavor);
4070
4071 info->disassembler_options = disassembly_flavor;
4072
4073 return default_print_insn (pc, info);
4074 }
4075 \f
4076
4077 /* There are a few i386 architecture variants that differ only
4078 slightly from the generic i386 target. For now, we don't give them
4079 their own source file, but include them here. As a consequence,
4080 they'll always be included. */
4081
4082 /* System V Release 4 (SVR4). */
4083
4084 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4085 routine. */
4086
4087 static int
4088 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4089 {
4090 CORE_ADDR pc = get_frame_pc (this_frame);
4091 const char *name;
4092
4093 /* The origin of these symbols is currently unknown. */
4094 find_pc_partial_function (pc, &name, NULL, NULL);
4095 return (name && (strcmp ("_sigreturn", name) == 0
4096 || strcmp ("sigvechandler", name) == 0));
4097 }
4098
4099 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4100 address of the associated sigcontext (ucontext) structure. */
4101
4102 static CORE_ADDR
4103 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4104 {
4105 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4107 gdb_byte buf[4];
4108 CORE_ADDR sp;
4109
4110 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4111 sp = extract_unsigned_integer (buf, 4, byte_order);
4112
4113 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4114 }
4115
4116 \f
4117
4118 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4119 gdbarch.h. */
4120
4121 int
4122 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4123 {
4124 return (*s == '$' /* Literal number. */
4125 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4126 || (*s == '(' && s[1] == '%') /* Register indirection. */
4127 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4128 }
4129
4130 /* Helper function for i386_stap_parse_special_token.
4131
4132 This function parses operands of the form `-8+3+1(%rbp)', which
4133 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4134
4135 Return true if the operand was parsed successfully, false
4136 otherwise. */
4137
4138 static expr::operation_up
4139 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4140 struct stap_parse_info *p)
4141 {
4142 const char *s = p->arg;
4143
4144 if (isdigit (*s) || *s == '-' || *s == '+')
4145 {
4146 bool got_minus[3];
4147 int i;
4148 long displacements[3];
4149 const char *start;
4150 int len;
4151 char *endp;
4152
4153 got_minus[0] = false;
4154 if (*s == '+')
4155 ++s;
4156 else if (*s == '-')
4157 {
4158 ++s;
4159 got_minus[0] = true;
4160 }
4161
4162 if (!isdigit ((unsigned char) *s))
4163 return {};
4164
4165 displacements[0] = strtol (s, &endp, 10);
4166 s = endp;
4167
4168 if (*s != '+' && *s != '-')
4169 {
4170 /* We are not dealing with a triplet. */
4171 return {};
4172 }
4173
4174 got_minus[1] = false;
4175 if (*s == '+')
4176 ++s;
4177 else
4178 {
4179 ++s;
4180 got_minus[1] = true;
4181 }
4182
4183 if (!isdigit ((unsigned char) *s))
4184 return {};
4185
4186 displacements[1] = strtol (s, &endp, 10);
4187 s = endp;
4188
4189 if (*s != '+' && *s != '-')
4190 {
4191 /* We are not dealing with a triplet. */
4192 return {};
4193 }
4194
4195 got_minus[2] = false;
4196 if (*s == '+')
4197 ++s;
4198 else
4199 {
4200 ++s;
4201 got_minus[2] = true;
4202 }
4203
4204 if (!isdigit ((unsigned char) *s))
4205 return {};
4206
4207 displacements[2] = strtol (s, &endp, 10);
4208 s = endp;
4209
4210 if (*s != '(' || s[1] != '%')
4211 return {};
4212
4213 s += 2;
4214 start = s;
4215
4216 while (isalnum (*s))
4217 ++s;
4218
4219 if (*s++ != ')')
4220 return {};
4221
4222 len = s - start - 1;
4223 std::string regname (start, len);
4224
4225 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4226 error (_("Invalid register name `%s' on expression `%s'."),
4227 regname.c_str (), p->saved_arg);
4228
4229 LONGEST value = 0;
4230 for (i = 0; i < 3; i++)
4231 {
4232 LONGEST this_val = displacements[i];
4233 if (got_minus[i])
4234 this_val = -this_val;
4235 value += this_val;
4236 }
4237
4238 p->arg = s;
4239
4240 using namespace expr;
4241
4242 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4243 operation_up offset
4244 = make_operation<long_const_operation> (long_type, value);
4245
4246 operation_up reg
4247 = make_operation<register_operation> (std::move (regname));
4248 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4249 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4250
4251 operation_up sum
4252 = make_operation<add_operation> (std::move (reg), std::move (offset));
4253 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4254 sum = make_operation<unop_cast_operation> (std::move (sum),
4255 arg_ptr_type);
4256 return make_operation<unop_ind_operation> (std::move (sum));
4257 }
4258
4259 return {};
4260 }
4261
4262 /* Helper function for i386_stap_parse_special_token.
4263
4264 This function parses operands of the form `register base +
4265 (register index * size) + offset', as represented in
4266 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4267
4268 Return true if the operand was parsed successfully, false
4269 otherwise. */
4270
4271 static expr::operation_up
4272 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4273 struct stap_parse_info *p)
4274 {
4275 const char *s = p->arg;
4276
4277 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4278 {
4279 bool offset_minus = false;
4280 long offset = 0;
4281 bool size_minus = false;
4282 long size = 0;
4283 const char *start;
4284 int len_base;
4285 int len_index;
4286
4287 if (*s == '+')
4288 ++s;
4289 else if (*s == '-')
4290 {
4291 ++s;
4292 offset_minus = true;
4293 }
4294
4295 if (offset_minus && !isdigit (*s))
4296 return {};
4297
4298 if (isdigit (*s))
4299 {
4300 char *endp;
4301
4302 offset = strtol (s, &endp, 10);
4303 s = endp;
4304 }
4305
4306 if (*s != '(' || s[1] != '%')
4307 return {};
4308
4309 s += 2;
4310 start = s;
4311
4312 while (isalnum (*s))
4313 ++s;
4314
4315 if (*s != ',' || s[1] != '%')
4316 return {};
4317
4318 len_base = s - start;
4319 std::string base (start, len_base);
4320
4321 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4322 error (_("Invalid register name `%s' on expression `%s'."),
4323 base.c_str (), p->saved_arg);
4324
4325 s += 2;
4326 start = s;
4327
4328 while (isalnum (*s))
4329 ++s;
4330
4331 len_index = s - start;
4332 std::string index (start, len_index);
4333
4334 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4335 len_index) == -1)
4336 error (_("Invalid register name `%s' on expression `%s'."),
4337 index.c_str (), p->saved_arg);
4338
4339 if (*s != ',' && *s != ')')
4340 return {};
4341
4342 if (*s == ',')
4343 {
4344 char *endp;
4345
4346 ++s;
4347 if (*s == '+')
4348 ++s;
4349 else if (*s == '-')
4350 {
4351 ++s;
4352 size_minus = true;
4353 }
4354
4355 size = strtol (s, &endp, 10);
4356 s = endp;
4357
4358 if (*s != ')')
4359 return {};
4360 }
4361
4362 ++s;
4363 p->arg = s;
4364
4365 using namespace expr;
4366
4367 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4368 operation_up reg = make_operation<register_operation> (std::move (base));
4369
4370 if (offset != 0)
4371 {
4372 if (offset_minus)
4373 offset = -offset;
4374 operation_up value
4375 = make_operation<long_const_operation> (long_type, offset);
4376 reg = make_operation<add_operation> (std::move (reg),
4377 std::move (value));
4378 }
4379
4380 operation_up ind_reg
4381 = make_operation<register_operation> (std::move (index));
4382
4383 if (size != 0)
4384 {
4385 if (size_minus)
4386 size = -size;
4387 operation_up value
4388 = make_operation<long_const_operation> (long_type, size);
4389 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4390 std::move (value));
4391 }
4392
4393 operation_up sum
4394 = make_operation<add_operation> (std::move (reg),
4395 std::move (ind_reg));
4396
4397 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4398 sum = make_operation<unop_cast_operation> (std::move (sum),
4399 arg_ptr_type);
4400 return make_operation<unop_ind_operation> (std::move (sum));
4401 }
4402
4403 return {};
4404 }
4405
4406 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4407 gdbarch.h. */
4408
4409 expr::operation_up
4410 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4411 struct stap_parse_info *p)
4412 {
4413 /* The special tokens to be parsed here are:
4414
4415 - `register base + (register index * size) + offset', as represented
4416 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4417
4418 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4419 `*(-8 + 3 - 1 + (void *) $eax)'. */
4420
4421 expr::operation_up result
4422 = i386_stap_parse_special_token_triplet (gdbarch, p);
4423
4424 if (result == nullptr)
4425 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4426
4427 return result;
4428 }
4429
4430 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4431 gdbarch.h. */
4432
4433 static std::string
4434 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4435 const std::string &regname, int regnum)
4436 {
4437 static const std::unordered_set<std::string> reg_assoc
4438 = { "ax", "bx", "cx", "dx",
4439 "si", "di", "bp", "sp" };
4440
4441 /* If we are dealing with a register whose size is less than the size
4442 specified by the "[-]N@" prefix, and it is one of the registers that
4443 we know has an extended variant available, then use the extended
4444 version of the register instead. */
4445 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4446 && reg_assoc.find (regname) != reg_assoc.end ())
4447 return "e" + regname;
4448
4449 /* Otherwise, just use the requested register. */
4450 return regname;
4451 }
4452
4453 \f
4454
4455 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4456 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4457
4458 static const char *
4459 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4460 {
4461 return "(x86_64|i.86)";
4462 }
4463
4464 \f
4465
4466 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4467
4468 static bool
4469 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4470 {
4471 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4472 I386_EAX_REGNUM, I386_EIP_REGNUM);
4473 }
4474
4475 /* Generic ELF. */
4476
4477 void
4478 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4479 {
4480 static const char *const stap_integer_prefixes[] = { "$", NULL };
4481 static const char *const stap_register_prefixes[] = { "%", NULL };
4482 static const char *const stap_register_indirection_prefixes[] = { "(",
4483 NULL };
4484 static const char *const stap_register_indirection_suffixes[] = { ")",
4485 NULL };
4486
4487 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4488 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4489
4490 /* Registering SystemTap handlers. */
4491 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4492 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4493 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4494 stap_register_indirection_prefixes);
4495 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4496 stap_register_indirection_suffixes);
4497 set_gdbarch_stap_is_single_operand (gdbarch,
4498 i386_stap_is_single_operand);
4499 set_gdbarch_stap_parse_special_token (gdbarch,
4500 i386_stap_parse_special_token);
4501 set_gdbarch_stap_adjust_register (gdbarch,
4502 i386_stap_adjust_register);
4503
4504 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4505 i386_in_indirect_branch_thunk);
4506 }
4507
4508 /* System V Release 4 (SVR4). */
4509
4510 void
4511 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4512 {
4513 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4514
4515 /* System V Release 4 uses ELF. */
4516 i386_elf_init_abi (info, gdbarch);
4517
4518 /* System V Release 4 has shared libraries. */
4519 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4520
4521 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4522 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4523 tdep->sc_pc_offset = 36 + 14 * 4;
4524 tdep->sc_sp_offset = 36 + 17 * 4;
4525
4526 tdep->jb_pc_offset = 20;
4527 }
4528
4529 \f
4530
4531 /* i386 register groups. In addition to the normal groups, add "mmx"
4532 and "sse". */
4533
4534 static const reggroup *i386_sse_reggroup;
4535 static const reggroup *i386_mmx_reggroup;
4536
4537 static void
4538 i386_init_reggroups (void)
4539 {
4540 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4541 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4542 }
4543
4544 static void
4545 i386_add_reggroups (struct gdbarch *gdbarch)
4546 {
4547 reggroup_add (gdbarch, i386_sse_reggroup);
4548 reggroup_add (gdbarch, i386_mmx_reggroup);
4549 }
4550
4551 int
4552 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4553 const struct reggroup *group)
4554 {
4555 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4556 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4557 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4558 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4559 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4560 avx512_p, avx_p, sse_p, pkru_regnum_p;
4561
4562 /* Don't include pseudo registers, except for MMX, in any register
4563 groups. */
4564 if (i386_byte_regnum_p (gdbarch, regnum))
4565 return 0;
4566
4567 if (i386_word_regnum_p (gdbarch, regnum))
4568 return 0;
4569
4570 if (i386_dword_regnum_p (gdbarch, regnum))
4571 return 0;
4572
4573 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4574 if (group == i386_mmx_reggroup)
4575 return mmx_regnum_p;
4576
4577 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4578 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4579 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4580 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4581 if (group == i386_sse_reggroup)
4582 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4583
4584 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4585 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4586 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4587
4588 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4589 == X86_XSTATE_AVX_AVX512_MASK);
4590 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4591 == X86_XSTATE_AVX_MASK) && !avx512_p;
4592 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4593 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4594
4595 if (group == vector_reggroup)
4596 return (mmx_regnum_p
4597 || (zmm_regnum_p && avx512_p)
4598 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4599 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4600 || mxcsr_regnum_p);
4601
4602 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4603 || i386_fpc_regnum_p (gdbarch, regnum));
4604 if (group == float_reggroup)
4605 return fp_regnum_p;
4606
4607 /* For "info reg all", don't include upper YMM registers nor XMM
4608 registers when AVX is supported. */
4609 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4610 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4611 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4612 if (group == all_reggroup
4613 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4614 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4615 || ymmh_regnum_p
4616 || ymmh_avx512_regnum_p
4617 || zmmh_regnum_p))
4618 return 0;
4619
4620 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4621 if (group == all_reggroup
4622 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4623 return bnd_regnum_p;
4624
4625 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4626 if (group == all_reggroup
4627 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4628 return 0;
4629
4630 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4631 if (group == all_reggroup
4632 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4633 return mpx_ctrl_regnum_p;
4634
4635 if (group == general_reggroup)
4636 return (!fp_regnum_p
4637 && !mmx_regnum_p
4638 && !mxcsr_regnum_p
4639 && !xmm_regnum_p
4640 && !xmm_avx512_regnum_p
4641 && !ymm_regnum_p
4642 && !ymmh_regnum_p
4643 && !ymm_avx512_regnum_p
4644 && !ymmh_avx512_regnum_p
4645 && !bndr_regnum_p
4646 && !bnd_regnum_p
4647 && !mpx_ctrl_regnum_p
4648 && !zmm_regnum_p
4649 && !zmmh_regnum_p
4650 && !pkru_regnum_p);
4651
4652 return default_register_reggroup_p (gdbarch, regnum, group);
4653 }
4654 \f
4655
4656 /* Get the ARGIth function argument for the current function. */
4657
4658 static CORE_ADDR
4659 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4660 struct type *type)
4661 {
4662 struct gdbarch *gdbarch = get_frame_arch (frame);
4663 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4664 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4665 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4666 }
4667
4668 #define PREFIX_REPZ 0x01
4669 #define PREFIX_REPNZ 0x02
4670 #define PREFIX_LOCK 0x04
4671 #define PREFIX_DATA 0x08
4672 #define PREFIX_ADDR 0x10
4673
4674 /* operand size */
4675 enum
4676 {
4677 OT_BYTE = 0,
4678 OT_WORD,
4679 OT_LONG,
4680 OT_QUAD,
4681 OT_DQUAD,
4682 };
4683
4684 /* i386 arith/logic operations */
4685 enum
4686 {
4687 OP_ADDL,
4688 OP_ORL,
4689 OP_ADCL,
4690 OP_SBBL,
4691 OP_ANDL,
4692 OP_SUBL,
4693 OP_XORL,
4694 OP_CMPL,
4695 };
4696
4697 struct i386_record_s
4698 {
4699 struct gdbarch *gdbarch;
4700 struct regcache *regcache;
4701 CORE_ADDR orig_addr;
4702 CORE_ADDR addr;
4703 int aflag;
4704 int dflag;
4705 int override;
4706 uint8_t modrm;
4707 uint8_t mod, reg, rm;
4708 int ot;
4709 uint8_t rex_x;
4710 uint8_t rex_b;
4711 int rip_offset;
4712 int popl_esp_hack;
4713 const int *regmap;
4714 };
4715
4716 /* Parse the "modrm" part of the memory address irp->addr points at.
4717 Returns -1 if something goes wrong, 0 otherwise. */
4718
4719 static int
4720 i386_record_modrm (struct i386_record_s *irp)
4721 {
4722 struct gdbarch *gdbarch = irp->gdbarch;
4723
4724 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4725 return -1;
4726
4727 irp->addr++;
4728 irp->mod = (irp->modrm >> 6) & 3;
4729 irp->reg = (irp->modrm >> 3) & 7;
4730 irp->rm = irp->modrm & 7;
4731
4732 return 0;
4733 }
4734
4735 /* Extract the memory address that the current instruction writes to,
4736 and return it in *ADDR. Return -1 if something goes wrong. */
4737
4738 static int
4739 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4740 {
4741 struct gdbarch *gdbarch = irp->gdbarch;
4742 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4743 gdb_byte buf[4];
4744 ULONGEST offset64;
4745
4746 *addr = 0;
4747 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4748 {
4749 /* 32/64 bits */
4750 int havesib = 0;
4751 uint8_t scale = 0;
4752 uint8_t byte;
4753 uint8_t index = 0;
4754 uint8_t base = irp->rm;
4755
4756 if (base == 4)
4757 {
4758 havesib = 1;
4759 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4760 return -1;
4761 irp->addr++;
4762 scale = (byte >> 6) & 3;
4763 index = ((byte >> 3) & 7) | irp->rex_x;
4764 base = (byte & 7);
4765 }
4766 base |= irp->rex_b;
4767
4768 switch (irp->mod)
4769 {
4770 case 0:
4771 if ((base & 7) == 5)
4772 {
4773 base = 0xff;
4774 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4775 return -1;
4776 irp->addr += 4;
4777 *addr = extract_signed_integer (buf, 4, byte_order);
4778 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4779 *addr += irp->addr + irp->rip_offset;
4780 }
4781 break;
4782 case 1:
4783 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4784 return -1;
4785 irp->addr++;
4786 *addr = (int8_t) buf[0];
4787 break;
4788 case 2:
4789 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4790 return -1;
4791 *addr = extract_signed_integer (buf, 4, byte_order);
4792 irp->addr += 4;
4793 break;
4794 }
4795
4796 offset64 = 0;
4797 if (base != 0xff)
4798 {
4799 if (base == 4 && irp->popl_esp_hack)
4800 *addr += irp->popl_esp_hack;
4801 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4802 &offset64);
4803 }
4804 if (irp->aflag == 2)
4805 {
4806 *addr += offset64;
4807 }
4808 else
4809 *addr = (uint32_t) (offset64 + *addr);
4810
4811 if (havesib && (index != 4 || scale != 0))
4812 {
4813 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4814 &offset64);
4815 if (irp->aflag == 2)
4816 *addr += offset64 << scale;
4817 else
4818 *addr = (uint32_t) (*addr + (offset64 << scale));
4819 }
4820
4821 if (!irp->aflag)
4822 {
4823 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4824 address from 32-bit to 64-bit. */
4825 *addr = (uint32_t) *addr;
4826 }
4827 }
4828 else
4829 {
4830 /* 16 bits */
4831 switch (irp->mod)
4832 {
4833 case 0:
4834 if (irp->rm == 6)
4835 {
4836 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4837 return -1;
4838 irp->addr += 2;
4839 *addr = extract_signed_integer (buf, 2, byte_order);
4840 irp->rm = 0;
4841 goto no_rm;
4842 }
4843 break;
4844 case 1:
4845 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4846 return -1;
4847 irp->addr++;
4848 *addr = (int8_t) buf[0];
4849 break;
4850 case 2:
4851 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4852 return -1;
4853 irp->addr += 2;
4854 *addr = extract_signed_integer (buf, 2, byte_order);
4855 break;
4856 }
4857
4858 switch (irp->rm)
4859 {
4860 case 0:
4861 regcache_raw_read_unsigned (irp->regcache,
4862 irp->regmap[X86_RECORD_REBX_REGNUM],
4863 &offset64);
4864 *addr = (uint32_t) (*addr + offset64);
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 break;
4870 case 1:
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REBX_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
4879 break;
4880 case 2:
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
4885 regcache_raw_read_unsigned (irp->regcache,
4886 irp->regmap[X86_RECORD_RESI_REGNUM],
4887 &offset64);
4888 *addr = (uint32_t) (*addr + offset64);
4889 break;
4890 case 3:
4891 regcache_raw_read_unsigned (irp->regcache,
4892 irp->regmap[X86_RECORD_REBP_REGNUM],
4893 &offset64);
4894 *addr = (uint32_t) (*addr + offset64);
4895 regcache_raw_read_unsigned (irp->regcache,
4896 irp->regmap[X86_RECORD_REDI_REGNUM],
4897 &offset64);
4898 *addr = (uint32_t) (*addr + offset64);
4899 break;
4900 case 4:
4901 regcache_raw_read_unsigned (irp->regcache,
4902 irp->regmap[X86_RECORD_RESI_REGNUM],
4903 &offset64);
4904 *addr = (uint32_t) (*addr + offset64);
4905 break;
4906 case 5:
4907 regcache_raw_read_unsigned (irp->regcache,
4908 irp->regmap[X86_RECORD_REDI_REGNUM],
4909 &offset64);
4910 *addr = (uint32_t) (*addr + offset64);
4911 break;
4912 case 6:
4913 regcache_raw_read_unsigned (irp->regcache,
4914 irp->regmap[X86_RECORD_REBP_REGNUM],
4915 &offset64);
4916 *addr = (uint32_t) (*addr + offset64);
4917 break;
4918 case 7:
4919 regcache_raw_read_unsigned (irp->regcache,
4920 irp->regmap[X86_RECORD_REBX_REGNUM],
4921 &offset64);
4922 *addr = (uint32_t) (*addr + offset64);
4923 break;
4924 }
4925 *addr &= 0xffff;
4926 }
4927
4928 no_rm:
4929 return 0;
4930 }
4931
4932 /* Record the address and contents of the memory that will be changed
4933 by the current instruction. Return -1 if something goes wrong, 0
4934 otherwise. */
4935
4936 static int
4937 i386_record_lea_modrm (struct i386_record_s *irp)
4938 {
4939 struct gdbarch *gdbarch = irp->gdbarch;
4940 uint64_t addr;
4941
4942 if (irp->override >= 0)
4943 {
4944 if (record_full_memory_query)
4945 {
4946 if (yquery (_("\
4947 Process record ignores the memory change of instruction at address %s\n\
4948 because it can't get the value of the segment register.\n\
4949 Do you want to stop the program?"),
4950 paddress (gdbarch, irp->orig_addr)))
4951 return -1;
4952 }
4953
4954 return 0;
4955 }
4956
4957 if (i386_record_lea_modrm_addr (irp, &addr))
4958 return -1;
4959
4960 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4961 return -1;
4962
4963 return 0;
4964 }
4965
4966 /* Record the effects of a push operation. Return -1 if something
4967 goes wrong, 0 otherwise. */
4968
4969 static int
4970 i386_record_push (struct i386_record_s *irp, int size)
4971 {
4972 ULONGEST addr;
4973
4974 if (record_full_arch_list_add_reg (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM]))
4976 return -1;
4977 regcache_raw_read_unsigned (irp->regcache,
4978 irp->regmap[X86_RECORD_RESP_REGNUM],
4979 &addr);
4980 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4981 return -1;
4982
4983 return 0;
4984 }
4985
4986
4987 /* Defines contents to record. */
4988 #define I386_SAVE_FPU_REGS 0xfffd
4989 #define I386_SAVE_FPU_ENV 0xfffe
4990 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4991
4992 /* Record the values of the floating point registers which will be
4993 changed by the current instruction. Returns -1 if something is
4994 wrong, 0 otherwise. */
4995
4996 static int i386_record_floats (struct gdbarch *gdbarch,
4997 struct i386_record_s *ir,
4998 uint32_t iregnum)
4999 {
5000 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5001 int i;
5002
5003 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5004 happen. Currently we store st0-st7 registers, but we need not store all
5005 registers all the time, in future we use ftag register and record only
5006 those who are not marked as an empty. */
5007
5008 if (I386_SAVE_FPU_REGS == iregnum)
5009 {
5010 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5011 {
5012 if (record_full_arch_list_add_reg (ir->regcache, i))
5013 return -1;
5014 }
5015 }
5016 else if (I386_SAVE_FPU_ENV == iregnum)
5017 {
5018 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5019 {
5020 if (record_full_arch_list_add_reg (ir->regcache, i))
5021 return -1;
5022 }
5023 }
5024 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5025 {
5026 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5027 if (record_full_arch_list_add_reg (ir->regcache, i))
5028 return -1;
5029 }
5030 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5031 (iregnum <= I387_FOP_REGNUM (tdep)))
5032 {
5033 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5034 return -1;
5035 }
5036 else
5037 {
5038 /* Parameter error. */
5039 return -1;
5040 }
5041 if(I386_SAVE_FPU_ENV != iregnum)
5042 {
5043 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5044 {
5045 if (record_full_arch_list_add_reg (ir->regcache, i))
5046 return -1;
5047 }
5048 }
5049 return 0;
5050 }
5051
5052 /* Parse the current instruction, and record the values of the
5053 registers and memory that will be changed by the current
5054 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5055
5056 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5057 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5058
5059 int
5060 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5061 CORE_ADDR input_addr)
5062 {
5063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5064 int prefixes = 0;
5065 int regnum = 0;
5066 uint32_t opcode;
5067 uint8_t opcode8;
5068 ULONGEST addr;
5069 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5070 struct i386_record_s ir;
5071 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5072 uint8_t rex_w = -1;
5073 uint8_t rex_r = 0;
5074
5075 memset (&ir, 0, sizeof (struct i386_record_s));
5076 ir.regcache = regcache;
5077 ir.addr = input_addr;
5078 ir.orig_addr = input_addr;
5079 ir.aflag = 1;
5080 ir.dflag = 1;
5081 ir.override = -1;
5082 ir.popl_esp_hack = 0;
5083 ir.regmap = tdep->record_regmap;
5084 ir.gdbarch = gdbarch;
5085
5086 if (record_debug > 1)
5087 gdb_printf (gdb_stdlog, "Process record: i386_process_record "
5088 "addr = %s\n",
5089 paddress (gdbarch, ir.addr));
5090
5091 /* prefixes */
5092 while (1)
5093 {
5094 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5095 return -1;
5096 ir.addr++;
5097 switch (opcode8) /* Instruction prefixes */
5098 {
5099 case REPE_PREFIX_OPCODE:
5100 prefixes |= PREFIX_REPZ;
5101 break;
5102 case REPNE_PREFIX_OPCODE:
5103 prefixes |= PREFIX_REPNZ;
5104 break;
5105 case LOCK_PREFIX_OPCODE:
5106 prefixes |= PREFIX_LOCK;
5107 break;
5108 case CS_PREFIX_OPCODE:
5109 ir.override = X86_RECORD_CS_REGNUM;
5110 break;
5111 case SS_PREFIX_OPCODE:
5112 ir.override = X86_RECORD_SS_REGNUM;
5113 break;
5114 case DS_PREFIX_OPCODE:
5115 ir.override = X86_RECORD_DS_REGNUM;
5116 break;
5117 case ES_PREFIX_OPCODE:
5118 ir.override = X86_RECORD_ES_REGNUM;
5119 break;
5120 case FS_PREFIX_OPCODE:
5121 ir.override = X86_RECORD_FS_REGNUM;
5122 break;
5123 case GS_PREFIX_OPCODE:
5124 ir.override = X86_RECORD_GS_REGNUM;
5125 break;
5126 case DATA_PREFIX_OPCODE:
5127 prefixes |= PREFIX_DATA;
5128 break;
5129 case ADDR_PREFIX_OPCODE:
5130 prefixes |= PREFIX_ADDR;
5131 break;
5132 case 0x40: /* i386 inc %eax */
5133 case 0x41: /* i386 inc %ecx */
5134 case 0x42: /* i386 inc %edx */
5135 case 0x43: /* i386 inc %ebx */
5136 case 0x44: /* i386 inc %esp */
5137 case 0x45: /* i386 inc %ebp */
5138 case 0x46: /* i386 inc %esi */
5139 case 0x47: /* i386 inc %edi */
5140 case 0x48: /* i386 dec %eax */
5141 case 0x49: /* i386 dec %ecx */
5142 case 0x4a: /* i386 dec %edx */
5143 case 0x4b: /* i386 dec %ebx */
5144 case 0x4c: /* i386 dec %esp */
5145 case 0x4d: /* i386 dec %ebp */
5146 case 0x4e: /* i386 dec %esi */
5147 case 0x4f: /* i386 dec %edi */
5148 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5149 {
5150 /* REX */
5151 rex_w = (opcode8 >> 3) & 1;
5152 rex_r = (opcode8 & 0x4) << 1;
5153 ir.rex_x = (opcode8 & 0x2) << 2;
5154 ir.rex_b = (opcode8 & 0x1) << 3;
5155 }
5156 else /* 32 bit target */
5157 goto out_prefixes;
5158 break;
5159 default:
5160 goto out_prefixes;
5161 break;
5162 }
5163 }
5164 out_prefixes:
5165 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5166 {
5167 ir.dflag = 2;
5168 }
5169 else
5170 {
5171 if (prefixes & PREFIX_DATA)
5172 ir.dflag ^= 1;
5173 }
5174 if (prefixes & PREFIX_ADDR)
5175 ir.aflag ^= 1;
5176 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5177 ir.aflag = 2;
5178
5179 /* Now check op code. */
5180 opcode = (uint32_t) opcode8;
5181 reswitch:
5182 switch (opcode)
5183 {
5184 case 0x0f:
5185 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5186 return -1;
5187 ir.addr++;
5188 opcode = (uint32_t) opcode8 | 0x0f00;
5189 goto reswitch;
5190 break;
5191
5192 case 0x00: /* arith & logic */
5193 case 0x01:
5194 case 0x02:
5195 case 0x03:
5196 case 0x04:
5197 case 0x05:
5198 case 0x08:
5199 case 0x09:
5200 case 0x0a:
5201 case 0x0b:
5202 case 0x0c:
5203 case 0x0d:
5204 case 0x10:
5205 case 0x11:
5206 case 0x12:
5207 case 0x13:
5208 case 0x14:
5209 case 0x15:
5210 case 0x18:
5211 case 0x19:
5212 case 0x1a:
5213 case 0x1b:
5214 case 0x1c:
5215 case 0x1d:
5216 case 0x20:
5217 case 0x21:
5218 case 0x22:
5219 case 0x23:
5220 case 0x24:
5221 case 0x25:
5222 case 0x28:
5223 case 0x29:
5224 case 0x2a:
5225 case 0x2b:
5226 case 0x2c:
5227 case 0x2d:
5228 case 0x30:
5229 case 0x31:
5230 case 0x32:
5231 case 0x33:
5232 case 0x34:
5233 case 0x35:
5234 case 0x38:
5235 case 0x39:
5236 case 0x3a:
5237 case 0x3b:
5238 case 0x3c:
5239 case 0x3d:
5240 if (((opcode >> 3) & 7) != OP_CMPL)
5241 {
5242 if ((opcode & 1) == 0)
5243 ir.ot = OT_BYTE;
5244 else
5245 ir.ot = ir.dflag + OT_WORD;
5246
5247 switch ((opcode >> 1) & 3)
5248 {
5249 case 0: /* OP Ev, Gv */
5250 if (i386_record_modrm (&ir))
5251 return -1;
5252 if (ir.mod != 3)
5253 {
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
5258 {
5259 ir.rm |= ir.rex_b;
5260 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5261 ir.rm &= 0x3;
5262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5263 }
5264 break;
5265 case 1: /* OP Gv, Ev */
5266 if (i386_record_modrm (&ir))
5267 return -1;
5268 ir.reg |= rex_r;
5269 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5270 ir.reg &= 0x3;
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5272 break;
5273 case 2: /* OP A, Iv */
5274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5275 break;
5276 }
5277 }
5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 break;
5280
5281 case 0x80: /* GRP1 */
5282 case 0x81:
5283 case 0x82:
5284 case 0x83:
5285 if (i386_record_modrm (&ir))
5286 return -1;
5287
5288 if (ir.reg != OP_CMPL)
5289 {
5290 if ((opcode & 1) == 0)
5291 ir.ot = OT_BYTE;
5292 else
5293 ir.ot = ir.dflag + OT_WORD;
5294
5295 if (ir.mod != 3)
5296 {
5297 if (opcode == 0x83)
5298 ir.rip_offset = 1;
5299 else
5300 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5301 if (i386_record_lea_modrm (&ir))
5302 return -1;
5303 }
5304 else
5305 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5306 }
5307 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5308 break;
5309
5310 case 0x40: /* inc */
5311 case 0x41:
5312 case 0x42:
5313 case 0x43:
5314 case 0x44:
5315 case 0x45:
5316 case 0x46:
5317 case 0x47:
5318
5319 case 0x48: /* dec */
5320 case 0x49:
5321 case 0x4a:
5322 case 0x4b:
5323 case 0x4c:
5324 case 0x4d:
5325 case 0x4e:
5326 case 0x4f:
5327
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5330 break;
5331
5332 case 0xf6: /* GRP3 */
5333 case 0xf7:
5334 if ((opcode & 1) == 0)
5335 ir.ot = OT_BYTE;
5336 else
5337 ir.ot = ir.dflag + OT_WORD;
5338 if (i386_record_modrm (&ir))
5339 return -1;
5340
5341 if (ir.mod != 3 && ir.reg == 0)
5342 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5343
5344 switch (ir.reg)
5345 {
5346 case 0: /* test */
5347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5348 break;
5349 case 2: /* not */
5350 case 3: /* neg */
5351 if (ir.mod != 3)
5352 {
5353 if (i386_record_lea_modrm (&ir))
5354 return -1;
5355 }
5356 else
5357 {
5358 ir.rm |= ir.rex_b;
5359 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5360 ir.rm &= 0x3;
5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5362 }
5363 if (ir.reg == 3) /* neg */
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5365 break;
5366 case 4: /* mul */
5367 case 5: /* imul */
5368 case 6: /* div */
5369 case 7: /* idiv */
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5371 if (ir.ot != OT_BYTE)
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375 default:
5376 ir.addr -= 2;
5377 opcode = opcode << 8 | ir.modrm;
5378 goto no_support;
5379 break;
5380 }
5381 break;
5382
5383 case 0xfe: /* GRP4 */
5384 case 0xff: /* GRP5 */
5385 if (i386_record_modrm (&ir))
5386 return -1;
5387 if (ir.reg >= 2 && opcode == 0xfe)
5388 {
5389 ir.addr -= 2;
5390 opcode = opcode << 8 | ir.modrm;
5391 goto no_support;
5392 }
5393 switch (ir.reg)
5394 {
5395 case 0: /* inc */
5396 case 1: /* dec */
5397 if ((opcode & 1) == 0)
5398 ir.ot = OT_BYTE;
5399 else
5400 ir.ot = ir.dflag + OT_WORD;
5401 if (ir.mod != 3)
5402 {
5403 if (i386_record_lea_modrm (&ir))
5404 return -1;
5405 }
5406 else
5407 {
5408 ir.rm |= ir.rex_b;
5409 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5410 ir.rm &= 0x3;
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5412 }
5413 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5414 break;
5415 case 2: /* call */
5416 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5417 ir.dflag = 2;
5418 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5419 return -1;
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5421 break;
5422 case 3: /* lcall */
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5424 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5425 return -1;
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5427 break;
5428 case 4: /* jmp */
5429 case 5: /* ljmp */
5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5431 break;
5432 case 6: /* push */
5433 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5434 ir.dflag = 2;
5435 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5436 return -1;
5437 break;
5438 default:
5439 ir.addr -= 2;
5440 opcode = opcode << 8 | ir.modrm;
5441 goto no_support;
5442 break;
5443 }
5444 break;
5445
5446 case 0x84: /* test */
5447 case 0x85:
5448 case 0xa8:
5449 case 0xa9:
5450 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5451 break;
5452
5453 case 0x98: /* CWDE/CBW */
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5455 break;
5456
5457 case 0x99: /* CDQ/CWD */
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5460 break;
5461
5462 case 0x0faf: /* imul */
5463 case 0x69:
5464 case 0x6b:
5465 ir.ot = ir.dflag + OT_WORD;
5466 if (i386_record_modrm (&ir))
5467 return -1;
5468 if (opcode == 0x69)
5469 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5470 else if (opcode == 0x6b)
5471 ir.rip_offset = 1;
5472 ir.reg |= rex_r;
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.reg &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5477 break;
5478
5479 case 0x0fc0: /* xadd */
5480 case 0x0fc1:
5481 if ((opcode & 1) == 0)
5482 ir.ot = OT_BYTE;
5483 else
5484 ir.ot = ir.dflag + OT_WORD;
5485 if (i386_record_modrm (&ir))
5486 return -1;
5487 ir.reg |= rex_r;
5488 if (ir.mod == 3)
5489 {
5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5491 ir.reg &= 0x3;
5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5493 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5494 ir.rm &= 0x3;
5495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5496 }
5497 else
5498 {
5499 if (i386_record_lea_modrm (&ir))
5500 return -1;
5501 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5502 ir.reg &= 0x3;
5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5504 }
5505 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5506 break;
5507
5508 case 0x0fb0: /* cmpxchg */
5509 case 0x0fb1:
5510 if ((opcode & 1) == 0)
5511 ir.ot = OT_BYTE;
5512 else
5513 ir.ot = ir.dflag + OT_WORD;
5514 if (i386_record_modrm (&ir))
5515 return -1;
5516 if (ir.mod == 3)
5517 {
5518 ir.reg |= rex_r;
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5520 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5521 ir.reg &= 0x3;
5522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5523 }
5524 else
5525 {
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5527 if (i386_record_lea_modrm (&ir))
5528 return -1;
5529 }
5530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5531 break;
5532
5533 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5534 if (i386_record_modrm (&ir))
5535 return -1;
5536 if (ir.mod == 3)
5537 {
5538 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5539 an extended opcode. rdrand has bits 110 (/6) and rdseed
5540 has bits 111 (/7). */
5541 if (ir.reg == 6 || ir.reg == 7)
5542 {
5543 /* The storage register is described by the 3 R/M bits, but the
5544 REX.B prefix may be used to give access to registers
5545 R8~R15. In this case ir.rex_b + R/M will give us the register
5546 in the range R8~R15.
5547
5548 REX.W may also be used to access 64-bit registers, but we
5549 already record entire registers and not just partial bits
5550 of them. */
5551 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5552 /* These instructions also set conditional bits. */
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5554 break;
5555 }
5556 else
5557 {
5558 /* We don't handle this particular instruction yet. */
5559 ir.addr -= 2;
5560 opcode = opcode << 8 | ir.modrm;
5561 goto no_support;
5562 }
5563 }
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5566 if (i386_record_lea_modrm (&ir))
5567 return -1;
5568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5569 break;
5570
5571 case 0x50: /* push */
5572 case 0x51:
5573 case 0x52:
5574 case 0x53:
5575 case 0x54:
5576 case 0x55:
5577 case 0x56:
5578 case 0x57:
5579 case 0x68:
5580 case 0x6a:
5581 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5582 ir.dflag = 2;
5583 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5584 return -1;
5585 break;
5586
5587 case 0x06: /* push es */
5588 case 0x0e: /* push cs */
5589 case 0x16: /* push ss */
5590 case 0x1e: /* push ds */
5591 if (ir.regmap[X86_RECORD_R8_REGNUM])
5592 {
5593 ir.addr -= 1;
5594 goto no_support;
5595 }
5596 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5597 return -1;
5598 break;
5599
5600 case 0x0fa0: /* push fs */
5601 case 0x0fa8: /* push gs */
5602 if (ir.regmap[X86_RECORD_R8_REGNUM])
5603 {
5604 ir.addr -= 2;
5605 goto no_support;
5606 }
5607 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5608 return -1;
5609 break;
5610
5611 case 0x60: /* pusha */
5612 if (ir.regmap[X86_RECORD_R8_REGNUM])
5613 {
5614 ir.addr -= 1;
5615 goto no_support;
5616 }
5617 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5618 return -1;
5619 break;
5620
5621 case 0x58: /* pop */
5622 case 0x59:
5623 case 0x5a:
5624 case 0x5b:
5625 case 0x5c:
5626 case 0x5d:
5627 case 0x5e:
5628 case 0x5f:
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5631 break;
5632
5633 case 0x61: /* popa */
5634 if (ir.regmap[X86_RECORD_R8_REGNUM])
5635 {
5636 ir.addr -= 1;
5637 goto no_support;
5638 }
5639 for (regnum = X86_RECORD_REAX_REGNUM;
5640 regnum <= X86_RECORD_REDI_REGNUM;
5641 regnum++)
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5643 break;
5644
5645 case 0x8f: /* pop */
5646 if (ir.regmap[X86_RECORD_R8_REGNUM])
5647 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5648 else
5649 ir.ot = ir.dflag + OT_WORD;
5650 if (i386_record_modrm (&ir))
5651 return -1;
5652 if (ir.mod == 3)
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5654 else
5655 {
5656 ir.popl_esp_hack = 1 << ir.ot;
5657 if (i386_record_lea_modrm (&ir))
5658 return -1;
5659 }
5660 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5661 break;
5662
5663 case 0xc8: /* enter */
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5665 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5666 ir.dflag = 2;
5667 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5668 return -1;
5669 break;
5670
5671 case 0xc9: /* leave */
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5674 break;
5675
5676 case 0x07: /* pop es */
5677 if (ir.regmap[X86_RECORD_R8_REGNUM])
5678 {
5679 ir.addr -= 1;
5680 goto no_support;
5681 }
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5684 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x17: /* pop ss */
5688 if (ir.regmap[X86_RECORD_R8_REGNUM])
5689 {
5690 ir.addr -= 1;
5691 goto no_support;
5692 }
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5696 break;
5697
5698 case 0x1f: /* pop ds */
5699 if (ir.regmap[X86_RECORD_R8_REGNUM])
5700 {
5701 ir.addr -= 1;
5702 goto no_support;
5703 }
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5707 break;
5708
5709 case 0x0fa1: /* pop fs */
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5713 break;
5714
5715 case 0x0fa9: /* pop gs */
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5719 break;
5720
5721 case 0x88: /* mov */
5722 case 0x89:
5723 case 0xc6:
5724 case 0xc7:
5725 if ((opcode & 1) == 0)
5726 ir.ot = OT_BYTE;
5727 else
5728 ir.ot = ir.dflag + OT_WORD;
5729
5730 if (i386_record_modrm (&ir))
5731 return -1;
5732
5733 if (ir.mod != 3)
5734 {
5735 if (opcode == 0xc6 || opcode == 0xc7)
5736 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5737 if (i386_record_lea_modrm (&ir))
5738 return -1;
5739 }
5740 else
5741 {
5742 if (opcode == 0xc6 || opcode == 0xc7)
5743 ir.rm |= ir.rex_b;
5744 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5745 ir.rm &= 0x3;
5746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5747 }
5748 break;
5749
5750 case 0x8a: /* mov */
5751 case 0x8b:
5752 if ((opcode & 1) == 0)
5753 ir.ot = OT_BYTE;
5754 else
5755 ir.ot = ir.dflag + OT_WORD;
5756 if (i386_record_modrm (&ir))
5757 return -1;
5758 ir.reg |= rex_r;
5759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5760 ir.reg &= 0x3;
5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5762 break;
5763
5764 case 0x8c: /* mov seg */
5765 if (i386_record_modrm (&ir))
5766 return -1;
5767 if (ir.reg > 5)
5768 {
5769 ir.addr -= 2;
5770 opcode = opcode << 8 | ir.modrm;
5771 goto no_support;
5772 }
5773
5774 if (ir.mod == 3)
5775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5776 else
5777 {
5778 ir.ot = OT_WORD;
5779 if (i386_record_lea_modrm (&ir))
5780 return -1;
5781 }
5782 break;
5783
5784 case 0x8e: /* mov seg */
5785 if (i386_record_modrm (&ir))
5786 return -1;
5787 switch (ir.reg)
5788 {
5789 case 0:
5790 regnum = X86_RECORD_ES_REGNUM;
5791 break;
5792 case 2:
5793 regnum = X86_RECORD_SS_REGNUM;
5794 break;
5795 case 3:
5796 regnum = X86_RECORD_DS_REGNUM;
5797 break;
5798 case 4:
5799 regnum = X86_RECORD_FS_REGNUM;
5800 break;
5801 case 5:
5802 regnum = X86_RECORD_GS_REGNUM;
5803 break;
5804 default:
5805 ir.addr -= 2;
5806 opcode = opcode << 8 | ir.modrm;
5807 goto no_support;
5808 break;
5809 }
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5811 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5812 break;
5813
5814 case 0x0fb6: /* movzbS */
5815 case 0x0fb7: /* movzwS */
5816 case 0x0fbe: /* movsbS */
5817 case 0x0fbf: /* movswS */
5818 if (i386_record_modrm (&ir))
5819 return -1;
5820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5821 break;
5822
5823 case 0x8d: /* lea */
5824 if (i386_record_modrm (&ir))
5825 return -1;
5826 if (ir.mod == 3)
5827 {
5828 ir.addr -= 2;
5829 opcode = opcode << 8 | ir.modrm;
5830 goto no_support;
5831 }
5832 ir.ot = ir.dflag;
5833 ir.reg |= rex_r;
5834 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5835 ir.reg &= 0x3;
5836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5837 break;
5838
5839 case 0xa0: /* mov EAX */
5840 case 0xa1:
5841
5842 case 0xd7: /* xlat */
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5844 break;
5845
5846 case 0xa2: /* mov EAX */
5847 case 0xa3:
5848 if (ir.override >= 0)
5849 {
5850 if (record_full_memory_query)
5851 {
5852 if (yquery (_("\
5853 Process record ignores the memory change of instruction at address %s\n\
5854 because it can't get the value of the segment register.\n\
5855 Do you want to stop the program?"),
5856 paddress (gdbarch, ir.orig_addr)))
5857 return -1;
5858 }
5859 }
5860 else
5861 {
5862 if ((opcode & 1) == 0)
5863 ir.ot = OT_BYTE;
5864 else
5865 ir.ot = ir.dflag + OT_WORD;
5866 if (ir.aflag == 2)
5867 {
5868 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5869 return -1;
5870 ir.addr += 8;
5871 addr = extract_unsigned_integer (buf, 8, byte_order);
5872 }
5873 else if (ir.aflag)
5874 {
5875 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5876 return -1;
5877 ir.addr += 4;
5878 addr = extract_unsigned_integer (buf, 4, byte_order);
5879 }
5880 else
5881 {
5882 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5883 return -1;
5884 ir.addr += 2;
5885 addr = extract_unsigned_integer (buf, 2, byte_order);
5886 }
5887 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5888 return -1;
5889 }
5890 break;
5891
5892 case 0xb0: /* mov R, Ib */
5893 case 0xb1:
5894 case 0xb2:
5895 case 0xb3:
5896 case 0xb4:
5897 case 0xb5:
5898 case 0xb6:
5899 case 0xb7:
5900 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5901 ? ((opcode & 0x7) | ir.rex_b)
5902 : ((opcode & 0x7) & 0x3));
5903 break;
5904
5905 case 0xb8: /* mov R, Iv */
5906 case 0xb9:
5907 case 0xba:
5908 case 0xbb:
5909 case 0xbc:
5910 case 0xbd:
5911 case 0xbe:
5912 case 0xbf:
5913 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5914 break;
5915
5916 case 0x91: /* xchg R, EAX */
5917 case 0x92:
5918 case 0x93:
5919 case 0x94:
5920 case 0x95:
5921 case 0x96:
5922 case 0x97:
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5925 break;
5926
5927 case 0x86: /* xchg Ev, Gv */
5928 case 0x87:
5929 if ((opcode & 1) == 0)
5930 ir.ot = OT_BYTE;
5931 else
5932 ir.ot = ir.dflag + OT_WORD;
5933 if (i386_record_modrm (&ir))
5934 return -1;
5935 if (ir.mod == 3)
5936 {
5937 ir.rm |= ir.rex_b;
5938 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5939 ir.rm &= 0x3;
5940 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5941 }
5942 else
5943 {
5944 if (i386_record_lea_modrm (&ir))
5945 return -1;
5946 }
5947 ir.reg |= rex_r;
5948 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5949 ir.reg &= 0x3;
5950 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5951 break;
5952
5953 case 0xc4: /* les Gv */
5954 case 0xc5: /* lds Gv */
5955 if (ir.regmap[X86_RECORD_R8_REGNUM])
5956 {
5957 ir.addr -= 1;
5958 goto no_support;
5959 }
5960 /* FALLTHROUGH */
5961 case 0x0fb2: /* lss Gv */
5962 case 0x0fb4: /* lfs Gv */
5963 case 0x0fb5: /* lgs Gv */
5964 if (i386_record_modrm (&ir))
5965 return -1;
5966 if (ir.mod == 3)
5967 {
5968 if (opcode > 0xff)
5969 ir.addr -= 3;
5970 else
5971 ir.addr -= 2;
5972 opcode = opcode << 8 | ir.modrm;
5973 goto no_support;
5974 }
5975 switch (opcode)
5976 {
5977 case 0xc4: /* les Gv */
5978 regnum = X86_RECORD_ES_REGNUM;
5979 break;
5980 case 0xc5: /* lds Gv */
5981 regnum = X86_RECORD_DS_REGNUM;
5982 break;
5983 case 0x0fb2: /* lss Gv */
5984 regnum = X86_RECORD_SS_REGNUM;
5985 break;
5986 case 0x0fb4: /* lfs Gv */
5987 regnum = X86_RECORD_FS_REGNUM;
5988 break;
5989 case 0x0fb5: /* lgs Gv */
5990 regnum = X86_RECORD_GS_REGNUM;
5991 break;
5992 }
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5996 break;
5997
5998 case 0xc0: /* shifts */
5999 case 0xc1:
6000 case 0xd0:
6001 case 0xd1:
6002 case 0xd2:
6003 case 0xd3:
6004 if ((opcode & 1) == 0)
6005 ir.ot = OT_BYTE;
6006 else
6007 ir.ot = ir.dflag + OT_WORD;
6008 if (i386_record_modrm (&ir))
6009 return -1;
6010 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6011 {
6012 if (i386_record_lea_modrm (&ir))
6013 return -1;
6014 }
6015 else
6016 {
6017 ir.rm |= ir.rex_b;
6018 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6019 ir.rm &= 0x3;
6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6021 }
6022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6023 break;
6024
6025 case 0x0fa4:
6026 case 0x0fa5:
6027 case 0x0fac:
6028 case 0x0fad:
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if (ir.mod == 3)
6032 {
6033 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6034 return -1;
6035 }
6036 else
6037 {
6038 if (i386_record_lea_modrm (&ir))
6039 return -1;
6040 }
6041 break;
6042
6043 case 0xd8: /* Floats. */
6044 case 0xd9:
6045 case 0xda:
6046 case 0xdb:
6047 case 0xdc:
6048 case 0xdd:
6049 case 0xde:
6050 case 0xdf:
6051 if (i386_record_modrm (&ir))
6052 return -1;
6053 ir.reg |= ((opcode & 7) << 3);
6054 if (ir.mod != 3)
6055 {
6056 /* Memory. */
6057 uint64_t addr64;
6058
6059 if (i386_record_lea_modrm_addr (&ir, &addr64))
6060 return -1;
6061 switch (ir.reg)
6062 {
6063 case 0x02:
6064 case 0x12:
6065 case 0x22:
6066 case 0x32:
6067 /* For fcom, ficom nothing to do. */
6068 break;
6069 case 0x03:
6070 case 0x13:
6071 case 0x23:
6072 case 0x33:
6073 /* For fcomp, ficomp pop FPU stack, store all. */
6074 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6075 return -1;
6076 break;
6077 case 0x00:
6078 case 0x01:
6079 case 0x04:
6080 case 0x05:
6081 case 0x06:
6082 case 0x07:
6083 case 0x10:
6084 case 0x11:
6085 case 0x14:
6086 case 0x15:
6087 case 0x16:
6088 case 0x17:
6089 case 0x20:
6090 case 0x21:
6091 case 0x24:
6092 case 0x25:
6093 case 0x26:
6094 case 0x27:
6095 case 0x30:
6096 case 0x31:
6097 case 0x34:
6098 case 0x35:
6099 case 0x36:
6100 case 0x37:
6101 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6102 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6103 of code, always affects st(0) register. */
6104 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6105 return -1;
6106 break;
6107 case 0x08:
6108 case 0x0a:
6109 case 0x0b:
6110 case 0x18:
6111 case 0x19:
6112 case 0x1a:
6113 case 0x1b:
6114 case 0x1d:
6115 case 0x28:
6116 case 0x29:
6117 case 0x2a:
6118 case 0x2b:
6119 case 0x38:
6120 case 0x39:
6121 case 0x3a:
6122 case 0x3b:
6123 case 0x3c:
6124 case 0x3d:
6125 switch (ir.reg & 7)
6126 {
6127 case 0:
6128 /* Handling fld, fild. */
6129 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6130 return -1;
6131 break;
6132 case 1:
6133 switch (ir.reg >> 4)
6134 {
6135 case 0:
6136 if (record_full_arch_list_add_mem (addr64, 4))
6137 return -1;
6138 break;
6139 case 2:
6140 if (record_full_arch_list_add_mem (addr64, 8))
6141 return -1;
6142 break;
6143 case 3:
6144 break;
6145 default:
6146 if (record_full_arch_list_add_mem (addr64, 2))
6147 return -1;
6148 break;
6149 }
6150 break;
6151 default:
6152 switch (ir.reg >> 4)
6153 {
6154 case 0:
6155 if (record_full_arch_list_add_mem (addr64, 4))
6156 return -1;
6157 if (3 == (ir.reg & 7))
6158 {
6159 /* For fstp m32fp. */
6160 if (i386_record_floats (gdbarch, &ir,
6161 I386_SAVE_FPU_REGS))
6162 return -1;
6163 }
6164 break;
6165 case 1:
6166 if (record_full_arch_list_add_mem (addr64, 4))
6167 return -1;
6168 if ((3 == (ir.reg & 7))
6169 || (5 == (ir.reg & 7))
6170 || (7 == (ir.reg & 7)))
6171 {
6172 /* For fstp insn. */
6173 if (i386_record_floats (gdbarch, &ir,
6174 I386_SAVE_FPU_REGS))
6175 return -1;
6176 }
6177 break;
6178 case 2:
6179 if (record_full_arch_list_add_mem (addr64, 8))
6180 return -1;
6181 if (3 == (ir.reg & 7))
6182 {
6183 /* For fstp m64fp. */
6184 if (i386_record_floats (gdbarch, &ir,
6185 I386_SAVE_FPU_REGS))
6186 return -1;
6187 }
6188 break;
6189 case 3:
6190 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6191 {
6192 /* For fistp, fbld, fild, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir,
6194 I386_SAVE_FPU_REGS))
6195 return -1;
6196 }
6197 /* Fall through */
6198 default:
6199 if (record_full_arch_list_add_mem (addr64, 2))
6200 return -1;
6201 break;
6202 }
6203 break;
6204 }
6205 break;
6206 case 0x0c:
6207 /* Insn fldenv. */
6208 if (i386_record_floats (gdbarch, &ir,
6209 I386_SAVE_FPU_ENV_REG_STACK))
6210 return -1;
6211 break;
6212 case 0x0d:
6213 /* Insn fldcw. */
6214 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6215 return -1;
6216 break;
6217 case 0x2c:
6218 /* Insn frstor. */
6219 if (i386_record_floats (gdbarch, &ir,
6220 I386_SAVE_FPU_ENV_REG_STACK))
6221 return -1;
6222 break;
6223 case 0x0e:
6224 if (ir.dflag)
6225 {
6226 if (record_full_arch_list_add_mem (addr64, 28))
6227 return -1;
6228 }
6229 else
6230 {
6231 if (record_full_arch_list_add_mem (addr64, 14))
6232 return -1;
6233 }
6234 break;
6235 case 0x0f:
6236 case 0x2f:
6237 if (record_full_arch_list_add_mem (addr64, 2))
6238 return -1;
6239 /* Insn fstp, fbstp. */
6240 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6241 return -1;
6242 break;
6243 case 0x1f:
6244 case 0x3e:
6245 if (record_full_arch_list_add_mem (addr64, 10))
6246 return -1;
6247 break;
6248 case 0x2e:
6249 if (ir.dflag)
6250 {
6251 if (record_full_arch_list_add_mem (addr64, 28))
6252 return -1;
6253 addr64 += 28;
6254 }
6255 else
6256 {
6257 if (record_full_arch_list_add_mem (addr64, 14))
6258 return -1;
6259 addr64 += 14;
6260 }
6261 if (record_full_arch_list_add_mem (addr64, 80))
6262 return -1;
6263 /* Insn fsave. */
6264 if (i386_record_floats (gdbarch, &ir,
6265 I386_SAVE_FPU_ENV_REG_STACK))
6266 return -1;
6267 break;
6268 case 0x3f:
6269 if (record_full_arch_list_add_mem (addr64, 8))
6270 return -1;
6271 /* Insn fistp. */
6272 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6273 return -1;
6274 break;
6275 default:
6276 ir.addr -= 2;
6277 opcode = opcode << 8 | ir.modrm;
6278 goto no_support;
6279 break;
6280 }
6281 }
6282 /* Opcode is an extension of modR/M byte. */
6283 else
6284 {
6285 switch (opcode)
6286 {
6287 case 0xd8:
6288 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6289 return -1;
6290 break;
6291 case 0xd9:
6292 if (0x0c == (ir.modrm >> 4))
6293 {
6294 if ((ir.modrm & 0x0f) <= 7)
6295 {
6296 if (i386_record_floats (gdbarch, &ir,
6297 I386_SAVE_FPU_REGS))
6298 return -1;
6299 }
6300 else
6301 {
6302 if (i386_record_floats (gdbarch, &ir,
6303 I387_ST0_REGNUM (tdep)))
6304 return -1;
6305 /* If only st(0) is changing, then we have already
6306 recorded. */
6307 if ((ir.modrm & 0x0f) - 0x08)
6308 {
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) +
6311 ((ir.modrm & 0x0f) - 0x08)))
6312 return -1;
6313 }
6314 }
6315 }
6316 else
6317 {
6318 switch (ir.modrm)
6319 {
6320 case 0xe0:
6321 case 0xe1:
6322 case 0xf0:
6323 case 0xf5:
6324 case 0xf8:
6325 case 0xfa:
6326 case 0xfc:
6327 case 0xfe:
6328 case 0xff:
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep)))
6331 return -1;
6332 break;
6333 case 0xf1:
6334 case 0xf2:
6335 case 0xf3:
6336 case 0xf4:
6337 case 0xf6:
6338 case 0xf7:
6339 case 0xe8:
6340 case 0xe9:
6341 case 0xea:
6342 case 0xeb:
6343 case 0xec:
6344 case 0xed:
6345 case 0xee:
6346 case 0xf9:
6347 case 0xfb:
6348 if (i386_record_floats (gdbarch, &ir,
6349 I386_SAVE_FPU_REGS))
6350 return -1;
6351 break;
6352 case 0xfd:
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep)))
6355 return -1;
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) + 1))
6358 return -1;
6359 break;
6360 }
6361 }
6362 break;
6363 case 0xda:
6364 if (0xe9 == ir.modrm)
6365 {
6366 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6367 return -1;
6368 }
6369 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6370 {
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep)))
6373 return -1;
6374 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6375 {
6376 if (i386_record_floats (gdbarch, &ir,
6377 I387_ST0_REGNUM (tdep) +
6378 (ir.modrm & 0x0f)))
6379 return -1;
6380 }
6381 else if ((ir.modrm & 0x0f) - 0x08)
6382 {
6383 if (i386_record_floats (gdbarch, &ir,
6384 I387_ST0_REGNUM (tdep) +
6385 ((ir.modrm & 0x0f) - 0x08)))
6386 return -1;
6387 }
6388 }
6389 break;
6390 case 0xdb:
6391 if (0xe3 == ir.modrm)
6392 {
6393 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6394 return -1;
6395 }
6396 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6397 {
6398 if (i386_record_floats (gdbarch, &ir,
6399 I387_ST0_REGNUM (tdep)))
6400 return -1;
6401 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6402 {
6403 if (i386_record_floats (gdbarch, &ir,
6404 I387_ST0_REGNUM (tdep) +
6405 (ir.modrm & 0x0f)))
6406 return -1;
6407 }
6408 else if ((ir.modrm & 0x0f) - 0x08)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 ((ir.modrm & 0x0f) - 0x08)))
6413 return -1;
6414 }
6415 }
6416 break;
6417 case 0xdc:
6418 if ((0x0c == ir.modrm >> 4)
6419 || (0x0d == ir.modrm >> 4)
6420 || (0x0f == ir.modrm >> 4))
6421 {
6422 if ((ir.modrm & 0x0f) <= 7)
6423 {
6424 if (i386_record_floats (gdbarch, &ir,
6425 I387_ST0_REGNUM (tdep) +
6426 (ir.modrm & 0x0f)))
6427 return -1;
6428 }
6429 else
6430 {
6431 if (i386_record_floats (gdbarch, &ir,
6432 I387_ST0_REGNUM (tdep) +
6433 ((ir.modrm & 0x0f) - 0x08)))
6434 return -1;
6435 }
6436 }
6437 break;
6438 case 0xdd:
6439 if (0x0c == ir.modrm >> 4)
6440 {
6441 if (i386_record_floats (gdbarch, &ir,
6442 I387_FTAG_REGNUM (tdep)))
6443 return -1;
6444 }
6445 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6446 {
6447 if ((ir.modrm & 0x0f) <= 7)
6448 {
6449 if (i386_record_floats (gdbarch, &ir,
6450 I387_ST0_REGNUM (tdep) +
6451 (ir.modrm & 0x0f)))
6452 return -1;
6453 }
6454 else
6455 {
6456 if (i386_record_floats (gdbarch, &ir,
6457 I386_SAVE_FPU_REGS))
6458 return -1;
6459 }
6460 }
6461 break;
6462 case 0xde:
6463 if ((0x0c == ir.modrm >> 4)
6464 || (0x0e == ir.modrm >> 4)
6465 || (0x0f == ir.modrm >> 4)
6466 || (0xd9 == ir.modrm))
6467 {
6468 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6469 return -1;
6470 }
6471 break;
6472 case 0xdf:
6473 if (0xe0 == ir.modrm)
6474 {
6475 if (record_full_arch_list_add_reg (ir.regcache,
6476 I386_EAX_REGNUM))
6477 return -1;
6478 }
6479 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6480 {
6481 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6482 return -1;
6483 }
6484 break;
6485 }
6486 }
6487 break;
6488 /* string ops */
6489 case 0xa4: /* movsS */
6490 case 0xa5:
6491 case 0xaa: /* stosS */
6492 case 0xab:
6493 case 0x6c: /* insS */
6494 case 0x6d:
6495 regcache_raw_read_unsigned (ir.regcache,
6496 ir.regmap[X86_RECORD_RECX_REGNUM],
6497 &addr);
6498 if (addr)
6499 {
6500 ULONGEST es, ds;
6501
6502 if ((opcode & 1) == 0)
6503 ir.ot = OT_BYTE;
6504 else
6505 ir.ot = ir.dflag + OT_WORD;
6506 regcache_raw_read_unsigned (ir.regcache,
6507 ir.regmap[X86_RECORD_REDI_REGNUM],
6508 &addr);
6509
6510 regcache_raw_read_unsigned (ir.regcache,
6511 ir.regmap[X86_RECORD_ES_REGNUM],
6512 &es);
6513 regcache_raw_read_unsigned (ir.regcache,
6514 ir.regmap[X86_RECORD_DS_REGNUM],
6515 &ds);
6516 if (ir.aflag && (es != ds))
6517 {
6518 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6519 if (record_full_memory_query)
6520 {
6521 if (yquery (_("\
6522 Process record ignores the memory change of instruction at address %s\n\
6523 because it can't get the value of the segment register.\n\
6524 Do you want to stop the program?"),
6525 paddress (gdbarch, ir.orig_addr)))
6526 return -1;
6527 }
6528 }
6529 else
6530 {
6531 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6532 return -1;
6533 }
6534
6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 if (opcode == 0xa4 || opcode == 0xa5)
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6540 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6541 }
6542 break;
6543
6544 case 0xa6: /* cmpsS */
6545 case 0xa7:
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6548 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6551 break;
6552
6553 case 0xac: /* lodsS */
6554 case 0xad:
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6557 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6560 break;
6561
6562 case 0xae: /* scasS */
6563 case 0xaf:
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6565 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6568 break;
6569
6570 case 0x6e: /* outsS */
6571 case 0x6f:
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6573 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6575 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6576 break;
6577
6578 case 0xe4: /* port I/O */
6579 case 0xe5:
6580 case 0xec:
6581 case 0xed:
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6584 break;
6585
6586 case 0xe6:
6587 case 0xe7:
6588 case 0xee:
6589 case 0xef:
6590 break;
6591
6592 /* control */
6593 case 0xc2: /* ret im */
6594 case 0xc3: /* ret */
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6596 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6597 break;
6598
6599 case 0xca: /* lret im */
6600 case 0xcb: /* lret */
6601 case 0xcf: /* iret */
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 break;
6606
6607 case 0xe8: /* call im */
6608 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6609 ir.dflag = 2;
6610 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6611 return -1;
6612 break;
6613
6614 case 0x9a: /* lcall im */
6615 if (ir.regmap[X86_RECORD_R8_REGNUM])
6616 {
6617 ir.addr -= 1;
6618 goto no_support;
6619 }
6620 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6621 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6622 return -1;
6623 break;
6624
6625 case 0xe9: /* jmp im */
6626 case 0xea: /* ljmp im */
6627 case 0xeb: /* jmp Jb */
6628 case 0x70: /* jcc Jb */
6629 case 0x71:
6630 case 0x72:
6631 case 0x73:
6632 case 0x74:
6633 case 0x75:
6634 case 0x76:
6635 case 0x77:
6636 case 0x78:
6637 case 0x79:
6638 case 0x7a:
6639 case 0x7b:
6640 case 0x7c:
6641 case 0x7d:
6642 case 0x7e:
6643 case 0x7f:
6644 case 0x0f80: /* jcc Jv */
6645 case 0x0f81:
6646 case 0x0f82:
6647 case 0x0f83:
6648 case 0x0f84:
6649 case 0x0f85:
6650 case 0x0f86:
6651 case 0x0f87:
6652 case 0x0f88:
6653 case 0x0f89:
6654 case 0x0f8a:
6655 case 0x0f8b:
6656 case 0x0f8c:
6657 case 0x0f8d:
6658 case 0x0f8e:
6659 case 0x0f8f:
6660 break;
6661
6662 case 0x0f90: /* setcc Gv */
6663 case 0x0f91:
6664 case 0x0f92:
6665 case 0x0f93:
6666 case 0x0f94:
6667 case 0x0f95:
6668 case 0x0f96:
6669 case 0x0f97:
6670 case 0x0f98:
6671 case 0x0f99:
6672 case 0x0f9a:
6673 case 0x0f9b:
6674 case 0x0f9c:
6675 case 0x0f9d:
6676 case 0x0f9e:
6677 case 0x0f9f:
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6679 ir.ot = OT_BYTE;
6680 if (i386_record_modrm (&ir))
6681 return -1;
6682 if (ir.mod == 3)
6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6684 : (ir.rm & 0x3));
6685 else
6686 {
6687 if (i386_record_lea_modrm (&ir))
6688 return -1;
6689 }
6690 break;
6691
6692 case 0x0f40: /* cmov Gv, Ev */
6693 case 0x0f41:
6694 case 0x0f42:
6695 case 0x0f43:
6696 case 0x0f44:
6697 case 0x0f45:
6698 case 0x0f46:
6699 case 0x0f47:
6700 case 0x0f48:
6701 case 0x0f49:
6702 case 0x0f4a:
6703 case 0x0f4b:
6704 case 0x0f4c:
6705 case 0x0f4d:
6706 case 0x0f4e:
6707 case 0x0f4f:
6708 if (i386_record_modrm (&ir))
6709 return -1;
6710 ir.reg |= rex_r;
6711 if (ir.dflag == OT_BYTE)
6712 ir.reg &= 0x3;
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6714 break;
6715
6716 /* flags */
6717 case 0x9c: /* pushf */
6718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6719 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6720 ir.dflag = 2;
6721 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6722 return -1;
6723 break;
6724
6725 case 0x9d: /* popf */
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6728 break;
6729
6730 case 0x9e: /* sahf */
6731 if (ir.regmap[X86_RECORD_R8_REGNUM])
6732 {
6733 ir.addr -= 1;
6734 goto no_support;
6735 }
6736 /* FALLTHROUGH */
6737 case 0xf5: /* cmc */
6738 case 0xf8: /* clc */
6739 case 0xf9: /* stc */
6740 case 0xfc: /* cld */
6741 case 0xfd: /* std */
6742 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6743 break;
6744
6745 case 0x9f: /* lahf */
6746 if (ir.regmap[X86_RECORD_R8_REGNUM])
6747 {
6748 ir.addr -= 1;
6749 goto no_support;
6750 }
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6752 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6753 break;
6754
6755 /* bit operations */
6756 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6757 ir.ot = ir.dflag + OT_WORD;
6758 if (i386_record_modrm (&ir))
6759 return -1;
6760 if (ir.reg < 4)
6761 {
6762 ir.addr -= 2;
6763 opcode = opcode << 8 | ir.modrm;
6764 goto no_support;
6765 }
6766 if (ir.reg != 4)
6767 {
6768 if (ir.mod == 3)
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6770 else
6771 {
6772 if (i386_record_lea_modrm (&ir))
6773 return -1;
6774 }
6775 }
6776 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6777 break;
6778
6779 case 0x0fa3: /* bt Gv, Ev */
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6781 break;
6782
6783 case 0x0fab: /* bts */
6784 case 0x0fb3: /* btr */
6785 case 0x0fbb: /* btc */
6786 ir.ot = ir.dflag + OT_WORD;
6787 if (i386_record_modrm (&ir))
6788 return -1;
6789 if (ir.mod == 3)
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6791 else
6792 {
6793 uint64_t addr64;
6794 if (i386_record_lea_modrm_addr (&ir, &addr64))
6795 return -1;
6796 regcache_raw_read_unsigned (ir.regcache,
6797 ir.regmap[ir.reg | rex_r],
6798 &addr);
6799 switch (ir.dflag)
6800 {
6801 case 0:
6802 addr64 += ((int16_t) addr >> 4) << 4;
6803 break;
6804 case 1:
6805 addr64 += ((int32_t) addr >> 5) << 5;
6806 break;
6807 case 2:
6808 addr64 += ((int64_t) addr >> 6) << 6;
6809 break;
6810 }
6811 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6812 return -1;
6813 if (i386_record_lea_modrm (&ir))
6814 return -1;
6815 }
6816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6817 break;
6818
6819 case 0x0fbc: /* bsf */
6820 case 0x0fbd: /* bsr */
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6823 break;
6824
6825 /* bcd */
6826 case 0x27: /* daa */
6827 case 0x2f: /* das */
6828 case 0x37: /* aaa */
6829 case 0x3f: /* aas */
6830 case 0xd4: /* aam */
6831 case 0xd5: /* aad */
6832 if (ir.regmap[X86_RECORD_R8_REGNUM])
6833 {
6834 ir.addr -= 1;
6835 goto no_support;
6836 }
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6838 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6839 break;
6840
6841 /* misc */
6842 case 0x90: /* nop */
6843 if (prefixes & PREFIX_LOCK)
6844 {
6845 ir.addr -= 1;
6846 goto no_support;
6847 }
6848 break;
6849
6850 case 0x9b: /* fwait */
6851 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6852 return -1;
6853 opcode = (uint32_t) opcode8;
6854 ir.addr++;
6855 goto reswitch;
6856 break;
6857
6858 /* XXX */
6859 case 0xcc: /* int3 */
6860 gdb_printf (gdb_stderr,
6861 _("Process record does not support instruction "
6862 "int3.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
6867 /* XXX */
6868 case 0xcd: /* int */
6869 {
6870 int ret;
6871 uint8_t interrupt;
6872 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6873 return -1;
6874 ir.addr++;
6875 if (interrupt != 0x80
6876 || tdep->i386_intx80_record == NULL)
6877 {
6878 gdb_printf (gdb_stderr,
6879 _("Process record does not support "
6880 "instruction int 0x%02x.\n"),
6881 interrupt);
6882 ir.addr -= 2;
6883 goto no_support;
6884 }
6885 ret = tdep->i386_intx80_record (ir.regcache);
6886 if (ret)
6887 return ret;
6888 }
6889 break;
6890
6891 /* XXX */
6892 case 0xce: /* into */
6893 gdb_printf (gdb_stderr,
6894 _("Process record does not support "
6895 "instruction into.\n"));
6896 ir.addr -= 1;
6897 goto no_support;
6898 break;
6899
6900 case 0xfa: /* cli */
6901 case 0xfb: /* sti */
6902 break;
6903
6904 case 0x62: /* bound */
6905 gdb_printf (gdb_stderr,
6906 _("Process record does not support "
6907 "instruction bound.\n"));
6908 ir.addr -= 1;
6909 goto no_support;
6910 break;
6911
6912 case 0x0fc8: /* bswap reg */
6913 case 0x0fc9:
6914 case 0x0fca:
6915 case 0x0fcb:
6916 case 0x0fcc:
6917 case 0x0fcd:
6918 case 0x0fce:
6919 case 0x0fcf:
6920 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6921 break;
6922
6923 case 0xd6: /* salc */
6924 if (ir.regmap[X86_RECORD_R8_REGNUM])
6925 {
6926 ir.addr -= 1;
6927 goto no_support;
6928 }
6929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6931 break;
6932
6933 case 0xe0: /* loopnz */
6934 case 0xe1: /* loopz */
6935 case 0xe2: /* loop */
6936 case 0xe3: /* jecxz */
6937 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6938 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6939 break;
6940
6941 case 0x0f30: /* wrmsr */
6942 gdb_printf (gdb_stderr,
6943 _("Process record does not support "
6944 "instruction wrmsr.\n"));
6945 ir.addr -= 2;
6946 goto no_support;
6947 break;
6948
6949 case 0x0f32: /* rdmsr */
6950 gdb_printf (gdb_stderr,
6951 _("Process record does not support "
6952 "instruction rdmsr.\n"));
6953 ir.addr -= 2;
6954 goto no_support;
6955 break;
6956
6957 case 0x0f31: /* rdtsc */
6958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6960 break;
6961
6962 case 0x0f34: /* sysenter */
6963 {
6964 int ret;
6965 if (ir.regmap[X86_RECORD_R8_REGNUM])
6966 {
6967 ir.addr -= 2;
6968 goto no_support;
6969 }
6970 if (tdep->i386_sysenter_record == NULL)
6971 {
6972 gdb_printf (gdb_stderr,
6973 _("Process record does not support "
6974 "instruction sysenter.\n"));
6975 ir.addr -= 2;
6976 goto no_support;
6977 }
6978 ret = tdep->i386_sysenter_record (ir.regcache);
6979 if (ret)
6980 return ret;
6981 }
6982 break;
6983
6984 case 0x0f35: /* sysexit */
6985 gdb_printf (gdb_stderr,
6986 _("Process record does not support "
6987 "instruction sysexit.\n"));
6988 ir.addr -= 2;
6989 goto no_support;
6990 break;
6991
6992 case 0x0f05: /* syscall */
6993 {
6994 int ret;
6995 if (tdep->i386_syscall_record == NULL)
6996 {
6997 gdb_printf (gdb_stderr,
6998 _("Process record does not support "
6999 "instruction syscall.\n"));
7000 ir.addr -= 2;
7001 goto no_support;
7002 }
7003 ret = tdep->i386_syscall_record (ir.regcache);
7004 if (ret)
7005 return ret;
7006 }
7007 break;
7008
7009 case 0x0f07: /* sysret */
7010 gdb_printf (gdb_stderr,
7011 _("Process record does not support "
7012 "instruction sysret.\n"));
7013 ir.addr -= 2;
7014 goto no_support;
7015 break;
7016
7017 case 0x0fa2: /* cpuid */
7018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7022 break;
7023
7024 case 0xf4: /* hlt */
7025 gdb_printf (gdb_stderr,
7026 _("Process record does not support "
7027 "instruction hlt.\n"));
7028 ir.addr -= 1;
7029 goto no_support;
7030 break;
7031
7032 case 0x0f00:
7033 if (i386_record_modrm (&ir))
7034 return -1;
7035 switch (ir.reg)
7036 {
7037 case 0: /* sldt */
7038 case 1: /* str */
7039 if (ir.mod == 3)
7040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7041 else
7042 {
7043 ir.ot = OT_WORD;
7044 if (i386_record_lea_modrm (&ir))
7045 return -1;
7046 }
7047 break;
7048 case 2: /* lldt */
7049 case 3: /* ltr */
7050 break;
7051 case 4: /* verr */
7052 case 5: /* verw */
7053 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7054 break;
7055 default:
7056 ir.addr -= 3;
7057 opcode = opcode << 8 | ir.modrm;
7058 goto no_support;
7059 break;
7060 }
7061 break;
7062
7063 case 0x0f01:
7064 if (i386_record_modrm (&ir))
7065 return -1;
7066 switch (ir.reg)
7067 {
7068 case 0: /* sgdt */
7069 {
7070 uint64_t addr64;
7071
7072 if (ir.mod == 3)
7073 {
7074 ir.addr -= 3;
7075 opcode = opcode << 8 | ir.modrm;
7076 goto no_support;
7077 }
7078 if (ir.override >= 0)
7079 {
7080 if (record_full_memory_query)
7081 {
7082 if (yquery (_("\
7083 Process record ignores the memory change of instruction at address %s\n\
7084 because it can't get the value of the segment register.\n\
7085 Do you want to stop the program?"),
7086 paddress (gdbarch, ir.orig_addr)))
7087 return -1;
7088 }
7089 }
7090 else
7091 {
7092 if (i386_record_lea_modrm_addr (&ir, &addr64))
7093 return -1;
7094 if (record_full_arch_list_add_mem (addr64, 2))
7095 return -1;
7096 addr64 += 2;
7097 if (ir.regmap[X86_RECORD_R8_REGNUM])
7098 {
7099 if (record_full_arch_list_add_mem (addr64, 8))
7100 return -1;
7101 }
7102 else
7103 {
7104 if (record_full_arch_list_add_mem (addr64, 4))
7105 return -1;
7106 }
7107 }
7108 }
7109 break;
7110 case 1:
7111 if (ir.mod == 3)
7112 {
7113 switch (ir.rm)
7114 {
7115 case 0: /* monitor */
7116 break;
7117 case 1: /* mwait */
7118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7119 break;
7120 default:
7121 ir.addr -= 3;
7122 opcode = opcode << 8 | ir.modrm;
7123 goto no_support;
7124 break;
7125 }
7126 }
7127 else
7128 {
7129 /* sidt */
7130 if (ir.override >= 0)
7131 {
7132 if (record_full_memory_query)
7133 {
7134 if (yquery (_("\
7135 Process record ignores the memory change of instruction at address %s\n\
7136 because it can't get the value of the segment register.\n\
7137 Do you want to stop the program?"),
7138 paddress (gdbarch, ir.orig_addr)))
7139 return -1;
7140 }
7141 }
7142 else
7143 {
7144 uint64_t addr64;
7145
7146 if (i386_record_lea_modrm_addr (&ir, &addr64))
7147 return -1;
7148 if (record_full_arch_list_add_mem (addr64, 2))
7149 return -1;
7150 addr64 += 2;
7151 if (ir.regmap[X86_RECORD_R8_REGNUM])
7152 {
7153 if (record_full_arch_list_add_mem (addr64, 8))
7154 return -1;
7155 }
7156 else
7157 {
7158 if (record_full_arch_list_add_mem (addr64, 4))
7159 return -1;
7160 }
7161 }
7162 }
7163 break;
7164 case 2: /* lgdt */
7165 if (ir.mod == 3)
7166 {
7167 /* xgetbv */
7168 if (ir.rm == 0)
7169 {
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7172 break;
7173 }
7174 /* xsetbv */
7175 else if (ir.rm == 1)
7176 break;
7177 }
7178 /* Fall through. */
7179 case 3: /* lidt */
7180 if (ir.mod == 3)
7181 {
7182 ir.addr -= 3;
7183 opcode = opcode << 8 | ir.modrm;
7184 goto no_support;
7185 }
7186 break;
7187 case 4: /* smsw */
7188 if (ir.mod == 3)
7189 {
7190 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7191 return -1;
7192 }
7193 else
7194 {
7195 ir.ot = OT_WORD;
7196 if (i386_record_lea_modrm (&ir))
7197 return -1;
7198 }
7199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7200 break;
7201 case 6: /* lmsw */
7202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7203 break;
7204 case 7: /* invlpg */
7205 if (ir.mod == 3)
7206 {
7207 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7208 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7209 else
7210 {
7211 ir.addr -= 3;
7212 opcode = opcode << 8 | ir.modrm;
7213 goto no_support;
7214 }
7215 }
7216 else
7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7218 break;
7219 default:
7220 ir.addr -= 3;
7221 opcode = opcode << 8 | ir.modrm;
7222 goto no_support;
7223 break;
7224 }
7225 break;
7226
7227 case 0x0f08: /* invd */
7228 case 0x0f09: /* wbinvd */
7229 break;
7230
7231 case 0x63: /* arpl */
7232 if (i386_record_modrm (&ir))
7233 return -1;
7234 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7235 {
7236 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7237 ? (ir.reg | rex_r) : ir.rm);
7238 }
7239 else
7240 {
7241 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7242 if (i386_record_lea_modrm (&ir))
7243 return -1;
7244 }
7245 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7247 break;
7248
7249 case 0x0f02: /* lar */
7250 case 0x0f03: /* lsl */
7251 if (i386_record_modrm (&ir))
7252 return -1;
7253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7255 break;
7256
7257 case 0x0f18:
7258 if (i386_record_modrm (&ir))
7259 return -1;
7260 if (ir.mod == 3 && ir.reg == 3)
7261 {
7262 ir.addr -= 3;
7263 opcode = opcode << 8 | ir.modrm;
7264 goto no_support;
7265 }
7266 break;
7267
7268 case 0x0f19:
7269 case 0x0f1a:
7270 case 0x0f1b:
7271 case 0x0f1c:
7272 case 0x0f1d:
7273 case 0x0f1e:
7274 case 0x0f1f:
7275 /* nop (multi byte) */
7276 break;
7277
7278 case 0x0f20: /* mov reg, crN */
7279 case 0x0f22: /* mov crN, reg */
7280 if (i386_record_modrm (&ir))
7281 return -1;
7282 if ((ir.modrm & 0xc0) != 0xc0)
7283 {
7284 ir.addr -= 3;
7285 opcode = opcode << 8 | ir.modrm;
7286 goto no_support;
7287 }
7288 switch (ir.reg)
7289 {
7290 case 0:
7291 case 2:
7292 case 3:
7293 case 4:
7294 case 8:
7295 if (opcode & 2)
7296 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7297 else
7298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7299 break;
7300 default:
7301 ir.addr -= 3;
7302 opcode = opcode << 8 | ir.modrm;
7303 goto no_support;
7304 break;
7305 }
7306 break;
7307
7308 case 0x0f21: /* mov reg, drN */
7309 case 0x0f23: /* mov drN, reg */
7310 if (i386_record_modrm (&ir))
7311 return -1;
7312 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7313 || ir.reg == 5 || ir.reg >= 8)
7314 {
7315 ir.addr -= 3;
7316 opcode = opcode << 8 | ir.modrm;
7317 goto no_support;
7318 }
7319 if (opcode & 2)
7320 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7321 else
7322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7323 break;
7324
7325 case 0x0f06: /* clts */
7326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7327 break;
7328
7329 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7330
7331 case 0x0f0d: /* 3DNow! prefetch */
7332 break;
7333
7334 case 0x0f0e: /* 3DNow! femms */
7335 case 0x0f77: /* emms */
7336 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7337 goto no_support;
7338 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7339 break;
7340
7341 case 0x0f0f: /* 3DNow! data */
7342 if (i386_record_modrm (&ir))
7343 return -1;
7344 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7345 return -1;
7346 ir.addr++;
7347 switch (opcode8)
7348 {
7349 case 0x0c: /* 3DNow! pi2fw */
7350 case 0x0d: /* 3DNow! pi2fd */
7351 case 0x1c: /* 3DNow! pf2iw */
7352 case 0x1d: /* 3DNow! pf2id */
7353 case 0x8a: /* 3DNow! pfnacc */
7354 case 0x8e: /* 3DNow! pfpnacc */
7355 case 0x90: /* 3DNow! pfcmpge */
7356 case 0x94: /* 3DNow! pfmin */
7357 case 0x96: /* 3DNow! pfrcp */
7358 case 0x97: /* 3DNow! pfrsqrt */
7359 case 0x9a: /* 3DNow! pfsub */
7360 case 0x9e: /* 3DNow! pfadd */
7361 case 0xa0: /* 3DNow! pfcmpgt */
7362 case 0xa4: /* 3DNow! pfmax */
7363 case 0xa6: /* 3DNow! pfrcpit1 */
7364 case 0xa7: /* 3DNow! pfrsqit1 */
7365 case 0xaa: /* 3DNow! pfsubr */
7366 case 0xae: /* 3DNow! pfacc */
7367 case 0xb0: /* 3DNow! pfcmpeq */
7368 case 0xb4: /* 3DNow! pfmul */
7369 case 0xb6: /* 3DNow! pfrcpit2 */
7370 case 0xb7: /* 3DNow! pmulhrw */
7371 case 0xbb: /* 3DNow! pswapd */
7372 case 0xbf: /* 3DNow! pavgusb */
7373 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7374 goto no_support_3dnow_data;
7375 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7376 break;
7377
7378 default:
7379 no_support_3dnow_data:
7380 opcode = (opcode << 8) | opcode8;
7381 goto no_support;
7382 break;
7383 }
7384 break;
7385
7386 case 0x0faa: /* rsm */
7387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7388 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7396 break;
7397
7398 case 0x0fae:
7399 if (i386_record_modrm (&ir))
7400 return -1;
7401 switch(ir.reg)
7402 {
7403 case 0: /* fxsave */
7404 {
7405 uint64_t tmpu64;
7406
7407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7408 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7409 return -1;
7410 if (record_full_arch_list_add_mem (tmpu64, 512))
7411 return -1;
7412 }
7413 break;
7414
7415 case 1: /* fxrstor */
7416 {
7417 int i;
7418
7419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7420
7421 for (i = I387_MM0_REGNUM (tdep);
7422 i386_mmx_regnum_p (gdbarch, i); i++)
7423 record_full_arch_list_add_reg (ir.regcache, i);
7424
7425 for (i = I387_XMM0_REGNUM (tdep);
7426 i386_xmm_regnum_p (gdbarch, i); i++)
7427 record_full_arch_list_add_reg (ir.regcache, i);
7428
7429 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7430 record_full_arch_list_add_reg (ir.regcache,
7431 I387_MXCSR_REGNUM(tdep));
7432
7433 for (i = I387_ST0_REGNUM (tdep);
7434 i386_fp_regnum_p (gdbarch, i); i++)
7435 record_full_arch_list_add_reg (ir.regcache, i);
7436
7437 for (i = I387_FCTRL_REGNUM (tdep);
7438 i386_fpc_regnum_p (gdbarch, i); i++)
7439 record_full_arch_list_add_reg (ir.regcache, i);
7440 }
7441 break;
7442
7443 case 2: /* ldmxcsr */
7444 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7445 goto no_support;
7446 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7447 break;
7448
7449 case 3: /* stmxcsr */
7450 ir.ot = OT_LONG;
7451 if (i386_record_lea_modrm (&ir))
7452 return -1;
7453 break;
7454
7455 case 5: /* lfence */
7456 case 6: /* mfence */
7457 case 7: /* sfence clflush */
7458 break;
7459
7460 default:
7461 opcode = (opcode << 8) | ir.modrm;
7462 goto no_support;
7463 break;
7464 }
7465 break;
7466
7467 case 0x0fc3: /* movnti */
7468 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7469 if (i386_record_modrm (&ir))
7470 return -1;
7471 if (ir.mod == 3)
7472 goto no_support;
7473 ir.reg |= rex_r;
7474 if (i386_record_lea_modrm (&ir))
7475 return -1;
7476 break;
7477
7478 /* Add prefix to opcode. */
7479 case 0x0f10:
7480 case 0x0f11:
7481 case 0x0f12:
7482 case 0x0f13:
7483 case 0x0f14:
7484 case 0x0f15:
7485 case 0x0f16:
7486 case 0x0f17:
7487 case 0x0f28:
7488 case 0x0f29:
7489 case 0x0f2a:
7490 case 0x0f2b:
7491 case 0x0f2c:
7492 case 0x0f2d:
7493 case 0x0f2e:
7494 case 0x0f2f:
7495 case 0x0f38:
7496 case 0x0f39:
7497 case 0x0f3a:
7498 case 0x0f50:
7499 case 0x0f51:
7500 case 0x0f52:
7501 case 0x0f53:
7502 case 0x0f54:
7503 case 0x0f55:
7504 case 0x0f56:
7505 case 0x0f57:
7506 case 0x0f58:
7507 case 0x0f59:
7508 case 0x0f5a:
7509 case 0x0f5b:
7510 case 0x0f5c:
7511 case 0x0f5d:
7512 case 0x0f5e:
7513 case 0x0f5f:
7514 case 0x0f60:
7515 case 0x0f61:
7516 case 0x0f62:
7517 case 0x0f63:
7518 case 0x0f64:
7519 case 0x0f65:
7520 case 0x0f66:
7521 case 0x0f67:
7522 case 0x0f68:
7523 case 0x0f69:
7524 case 0x0f6a:
7525 case 0x0f6b:
7526 case 0x0f6c:
7527 case 0x0f6d:
7528 case 0x0f6e:
7529 case 0x0f6f:
7530 case 0x0f70:
7531 case 0x0f71:
7532 case 0x0f72:
7533 case 0x0f73:
7534 case 0x0f74:
7535 case 0x0f75:
7536 case 0x0f76:
7537 case 0x0f7c:
7538 case 0x0f7d:
7539 case 0x0f7e:
7540 case 0x0f7f:
7541 case 0x0fb8:
7542 case 0x0fc2:
7543 case 0x0fc4:
7544 case 0x0fc5:
7545 case 0x0fc6:
7546 case 0x0fd0:
7547 case 0x0fd1:
7548 case 0x0fd2:
7549 case 0x0fd3:
7550 case 0x0fd4:
7551 case 0x0fd5:
7552 case 0x0fd6:
7553 case 0x0fd7:
7554 case 0x0fd8:
7555 case 0x0fd9:
7556 case 0x0fda:
7557 case 0x0fdb:
7558 case 0x0fdc:
7559 case 0x0fdd:
7560 case 0x0fde:
7561 case 0x0fdf:
7562 case 0x0fe0:
7563 case 0x0fe1:
7564 case 0x0fe2:
7565 case 0x0fe3:
7566 case 0x0fe4:
7567 case 0x0fe5:
7568 case 0x0fe6:
7569 case 0x0fe7:
7570 case 0x0fe8:
7571 case 0x0fe9:
7572 case 0x0fea:
7573 case 0x0feb:
7574 case 0x0fec:
7575 case 0x0fed:
7576 case 0x0fee:
7577 case 0x0fef:
7578 case 0x0ff0:
7579 case 0x0ff1:
7580 case 0x0ff2:
7581 case 0x0ff3:
7582 case 0x0ff4:
7583 case 0x0ff5:
7584 case 0x0ff6:
7585 case 0x0ff7:
7586 case 0x0ff8:
7587 case 0x0ff9:
7588 case 0x0ffa:
7589 case 0x0ffb:
7590 case 0x0ffc:
7591 case 0x0ffd:
7592 case 0x0ffe:
7593 /* Mask out PREFIX_ADDR. */
7594 switch ((prefixes & ~PREFIX_ADDR))
7595 {
7596 case PREFIX_REPNZ:
7597 opcode |= 0xf20000;
7598 break;
7599 case PREFIX_DATA:
7600 opcode |= 0x660000;
7601 break;
7602 case PREFIX_REPZ:
7603 opcode |= 0xf30000;
7604 break;
7605 }
7606 reswitch_prefix_add:
7607 switch (opcode)
7608 {
7609 case 0x0f38:
7610 case 0x660f38:
7611 case 0xf20f38:
7612 case 0x0f3a:
7613 case 0x660f3a:
7614 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7615 return -1;
7616 ir.addr++;
7617 opcode = (uint32_t) opcode8 | opcode << 8;
7618 goto reswitch_prefix_add;
7619 break;
7620
7621 case 0x0f10: /* movups */
7622 case 0x660f10: /* movupd */
7623 case 0xf30f10: /* movss */
7624 case 0xf20f10: /* movsd */
7625 case 0x0f12: /* movlps */
7626 case 0x660f12: /* movlpd */
7627 case 0xf30f12: /* movsldup */
7628 case 0xf20f12: /* movddup */
7629 case 0x0f14: /* unpcklps */
7630 case 0x660f14: /* unpcklpd */
7631 case 0x0f15: /* unpckhps */
7632 case 0x660f15: /* unpckhpd */
7633 case 0x0f16: /* movhps */
7634 case 0x660f16: /* movhpd */
7635 case 0xf30f16: /* movshdup */
7636 case 0x0f28: /* movaps */
7637 case 0x660f28: /* movapd */
7638 case 0x0f2a: /* cvtpi2ps */
7639 case 0x660f2a: /* cvtpi2pd */
7640 case 0xf30f2a: /* cvtsi2ss */
7641 case 0xf20f2a: /* cvtsi2sd */
7642 case 0x0f2c: /* cvttps2pi */
7643 case 0x660f2c: /* cvttpd2pi */
7644 case 0x0f2d: /* cvtps2pi */
7645 case 0x660f2d: /* cvtpd2pi */
7646 case 0x660f3800: /* pshufb */
7647 case 0x660f3801: /* phaddw */
7648 case 0x660f3802: /* phaddd */
7649 case 0x660f3803: /* phaddsw */
7650 case 0x660f3804: /* pmaddubsw */
7651 case 0x660f3805: /* phsubw */
7652 case 0x660f3806: /* phsubd */
7653 case 0x660f3807: /* phsubsw */
7654 case 0x660f3808: /* psignb */
7655 case 0x660f3809: /* psignw */
7656 case 0x660f380a: /* psignd */
7657 case 0x660f380b: /* pmulhrsw */
7658 case 0x660f3810: /* pblendvb */
7659 case 0x660f3814: /* blendvps */
7660 case 0x660f3815: /* blendvpd */
7661 case 0x660f381c: /* pabsb */
7662 case 0x660f381d: /* pabsw */
7663 case 0x660f381e: /* pabsd */
7664 case 0x660f3820: /* pmovsxbw */
7665 case 0x660f3821: /* pmovsxbd */
7666 case 0x660f3822: /* pmovsxbq */
7667 case 0x660f3823: /* pmovsxwd */
7668 case 0x660f3824: /* pmovsxwq */
7669 case 0x660f3825: /* pmovsxdq */
7670 case 0x660f3828: /* pmuldq */
7671 case 0x660f3829: /* pcmpeqq */
7672 case 0x660f382a: /* movntdqa */
7673 case 0x660f3a08: /* roundps */
7674 case 0x660f3a09: /* roundpd */
7675 case 0x660f3a0a: /* roundss */
7676 case 0x660f3a0b: /* roundsd */
7677 case 0x660f3a0c: /* blendps */
7678 case 0x660f3a0d: /* blendpd */
7679 case 0x660f3a0e: /* pblendw */
7680 case 0x660f3a0f: /* palignr */
7681 case 0x660f3a20: /* pinsrb */
7682 case 0x660f3a21: /* insertps */
7683 case 0x660f3a22: /* pinsrd pinsrq */
7684 case 0x660f3a40: /* dpps */
7685 case 0x660f3a41: /* dppd */
7686 case 0x660f3a42: /* mpsadbw */
7687 case 0x660f3a60: /* pcmpestrm */
7688 case 0x660f3a61: /* pcmpestri */
7689 case 0x660f3a62: /* pcmpistrm */
7690 case 0x660f3a63: /* pcmpistri */
7691 case 0x0f51: /* sqrtps */
7692 case 0x660f51: /* sqrtpd */
7693 case 0xf20f51: /* sqrtsd */
7694 case 0xf30f51: /* sqrtss */
7695 case 0x0f52: /* rsqrtps */
7696 case 0xf30f52: /* rsqrtss */
7697 case 0x0f53: /* rcpps */
7698 case 0xf30f53: /* rcpss */
7699 case 0x0f54: /* andps */
7700 case 0x660f54: /* andpd */
7701 case 0x0f55: /* andnps */
7702 case 0x660f55: /* andnpd */
7703 case 0x0f56: /* orps */
7704 case 0x660f56: /* orpd */
7705 case 0x0f57: /* xorps */
7706 case 0x660f57: /* xorpd */
7707 case 0x0f58: /* addps */
7708 case 0x660f58: /* addpd */
7709 case 0xf20f58: /* addsd */
7710 case 0xf30f58: /* addss */
7711 case 0x0f59: /* mulps */
7712 case 0x660f59: /* mulpd */
7713 case 0xf20f59: /* mulsd */
7714 case 0xf30f59: /* mulss */
7715 case 0x0f5a: /* cvtps2pd */
7716 case 0x660f5a: /* cvtpd2ps */
7717 case 0xf20f5a: /* cvtsd2ss */
7718 case 0xf30f5a: /* cvtss2sd */
7719 case 0x0f5b: /* cvtdq2ps */
7720 case 0x660f5b: /* cvtps2dq */
7721 case 0xf30f5b: /* cvttps2dq */
7722 case 0x0f5c: /* subps */
7723 case 0x660f5c: /* subpd */
7724 case 0xf20f5c: /* subsd */
7725 case 0xf30f5c: /* subss */
7726 case 0x0f5d: /* minps */
7727 case 0x660f5d: /* minpd */
7728 case 0xf20f5d: /* minsd */
7729 case 0xf30f5d: /* minss */
7730 case 0x0f5e: /* divps */
7731 case 0x660f5e: /* divpd */
7732 case 0xf20f5e: /* divsd */
7733 case 0xf30f5e: /* divss */
7734 case 0x0f5f: /* maxps */
7735 case 0x660f5f: /* maxpd */
7736 case 0xf20f5f: /* maxsd */
7737 case 0xf30f5f: /* maxss */
7738 case 0x660f60: /* punpcklbw */
7739 case 0x660f61: /* punpcklwd */
7740 case 0x660f62: /* punpckldq */
7741 case 0x660f63: /* packsswb */
7742 case 0x660f64: /* pcmpgtb */
7743 case 0x660f65: /* pcmpgtw */
7744 case 0x660f66: /* pcmpgtd */
7745 case 0x660f67: /* packuswb */
7746 case 0x660f68: /* punpckhbw */
7747 case 0x660f69: /* punpckhwd */
7748 case 0x660f6a: /* punpckhdq */
7749 case 0x660f6b: /* packssdw */
7750 case 0x660f6c: /* punpcklqdq */
7751 case 0x660f6d: /* punpckhqdq */
7752 case 0x660f6e: /* movd */
7753 case 0x660f6f: /* movdqa */
7754 case 0xf30f6f: /* movdqu */
7755 case 0x660f70: /* pshufd */
7756 case 0xf20f70: /* pshuflw */
7757 case 0xf30f70: /* pshufhw */
7758 case 0x660f74: /* pcmpeqb */
7759 case 0x660f75: /* pcmpeqw */
7760 case 0x660f76: /* pcmpeqd */
7761 case 0x660f7c: /* haddpd */
7762 case 0xf20f7c: /* haddps */
7763 case 0x660f7d: /* hsubpd */
7764 case 0xf20f7d: /* hsubps */
7765 case 0xf30f7e: /* movq */
7766 case 0x0fc2: /* cmpps */
7767 case 0x660fc2: /* cmppd */
7768 case 0xf20fc2: /* cmpsd */
7769 case 0xf30fc2: /* cmpss */
7770 case 0x660fc4: /* pinsrw */
7771 case 0x0fc6: /* shufps */
7772 case 0x660fc6: /* shufpd */
7773 case 0x660fd0: /* addsubpd */
7774 case 0xf20fd0: /* addsubps */
7775 case 0x660fd1: /* psrlw */
7776 case 0x660fd2: /* psrld */
7777 case 0x660fd3: /* psrlq */
7778 case 0x660fd4: /* paddq */
7779 case 0x660fd5: /* pmullw */
7780 case 0xf30fd6: /* movq2dq */
7781 case 0x660fd8: /* psubusb */
7782 case 0x660fd9: /* psubusw */
7783 case 0x660fda: /* pminub */
7784 case 0x660fdb: /* pand */
7785 case 0x660fdc: /* paddusb */
7786 case 0x660fdd: /* paddusw */
7787 case 0x660fde: /* pmaxub */
7788 case 0x660fdf: /* pandn */
7789 case 0x660fe0: /* pavgb */
7790 case 0x660fe1: /* psraw */
7791 case 0x660fe2: /* psrad */
7792 case 0x660fe3: /* pavgw */
7793 case 0x660fe4: /* pmulhuw */
7794 case 0x660fe5: /* pmulhw */
7795 case 0x660fe6: /* cvttpd2dq */
7796 case 0xf20fe6: /* cvtpd2dq */
7797 case 0xf30fe6: /* cvtdq2pd */
7798 case 0x660fe8: /* psubsb */
7799 case 0x660fe9: /* psubsw */
7800 case 0x660fea: /* pminsw */
7801 case 0x660feb: /* por */
7802 case 0x660fec: /* paddsb */
7803 case 0x660fed: /* paddsw */
7804 case 0x660fee: /* pmaxsw */
7805 case 0x660fef: /* pxor */
7806 case 0xf20ff0: /* lddqu */
7807 case 0x660ff1: /* psllw */
7808 case 0x660ff2: /* pslld */
7809 case 0x660ff3: /* psllq */
7810 case 0x660ff4: /* pmuludq */
7811 case 0x660ff5: /* pmaddwd */
7812 case 0x660ff6: /* psadbw */
7813 case 0x660ff8: /* psubb */
7814 case 0x660ff9: /* psubw */
7815 case 0x660ffa: /* psubd */
7816 case 0x660ffb: /* psubq */
7817 case 0x660ffc: /* paddb */
7818 case 0x660ffd: /* paddw */
7819 case 0x660ffe: /* paddd */
7820 if (i386_record_modrm (&ir))
7821 return -1;
7822 ir.reg |= rex_r;
7823 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7824 goto no_support;
7825 record_full_arch_list_add_reg (ir.regcache,
7826 I387_XMM0_REGNUM (tdep) + ir.reg);
7827 if ((opcode & 0xfffffffc) == 0x660f3a60)
7828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7829 break;
7830
7831 case 0x0f11: /* movups */
7832 case 0x660f11: /* movupd */
7833 case 0xf30f11: /* movss */
7834 case 0xf20f11: /* movsd */
7835 case 0x0f13: /* movlps */
7836 case 0x660f13: /* movlpd */
7837 case 0x0f17: /* movhps */
7838 case 0x660f17: /* movhpd */
7839 case 0x0f29: /* movaps */
7840 case 0x660f29: /* movapd */
7841 case 0x660f3a14: /* pextrb */
7842 case 0x660f3a15: /* pextrw */
7843 case 0x660f3a16: /* pextrd pextrq */
7844 case 0x660f3a17: /* extractps */
7845 case 0x660f7f: /* movdqa */
7846 case 0xf30f7f: /* movdqu */
7847 if (i386_record_modrm (&ir))
7848 return -1;
7849 if (ir.mod == 3)
7850 {
7851 if (opcode == 0x0f13 || opcode == 0x660f13
7852 || opcode == 0x0f17 || opcode == 0x660f17)
7853 goto no_support;
7854 ir.rm |= ir.rex_b;
7855 if (!i386_xmm_regnum_p (gdbarch,
7856 I387_XMM0_REGNUM (tdep) + ir.rm))
7857 goto no_support;
7858 record_full_arch_list_add_reg (ir.regcache,
7859 I387_XMM0_REGNUM (tdep) + ir.rm);
7860 }
7861 else
7862 {
7863 switch (opcode)
7864 {
7865 case 0x660f3a14:
7866 ir.ot = OT_BYTE;
7867 break;
7868 case 0x660f3a15:
7869 ir.ot = OT_WORD;
7870 break;
7871 case 0x660f3a16:
7872 ir.ot = OT_LONG;
7873 break;
7874 case 0x660f3a17:
7875 ir.ot = OT_QUAD;
7876 break;
7877 default:
7878 ir.ot = OT_DQUAD;
7879 break;
7880 }
7881 if (i386_record_lea_modrm (&ir))
7882 return -1;
7883 }
7884 break;
7885
7886 case 0x0f2b: /* movntps */
7887 case 0x660f2b: /* movntpd */
7888 case 0x0fe7: /* movntq */
7889 case 0x660fe7: /* movntdq */
7890 if (ir.mod == 3)
7891 goto no_support;
7892 if (opcode == 0x0fe7)
7893 ir.ot = OT_QUAD;
7894 else
7895 ir.ot = OT_DQUAD;
7896 if (i386_record_lea_modrm (&ir))
7897 return -1;
7898 break;
7899
7900 case 0xf30f2c: /* cvttss2si */
7901 case 0xf20f2c: /* cvttsd2si */
7902 case 0xf30f2d: /* cvtss2si */
7903 case 0xf20f2d: /* cvtsd2si */
7904 case 0xf20f38f0: /* crc32 */
7905 case 0xf20f38f1: /* crc32 */
7906 case 0x0f50: /* movmskps */
7907 case 0x660f50: /* movmskpd */
7908 case 0x0fc5: /* pextrw */
7909 case 0x660fc5: /* pextrw */
7910 case 0x0fd7: /* pmovmskb */
7911 case 0x660fd7: /* pmovmskb */
7912 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7913 break;
7914
7915 case 0x0f3800: /* pshufb */
7916 case 0x0f3801: /* phaddw */
7917 case 0x0f3802: /* phaddd */
7918 case 0x0f3803: /* phaddsw */
7919 case 0x0f3804: /* pmaddubsw */
7920 case 0x0f3805: /* phsubw */
7921 case 0x0f3806: /* phsubd */
7922 case 0x0f3807: /* phsubsw */
7923 case 0x0f3808: /* psignb */
7924 case 0x0f3809: /* psignw */
7925 case 0x0f380a: /* psignd */
7926 case 0x0f380b: /* pmulhrsw */
7927 case 0x0f381c: /* pabsb */
7928 case 0x0f381d: /* pabsw */
7929 case 0x0f381e: /* pabsd */
7930 case 0x0f382b: /* packusdw */
7931 case 0x0f3830: /* pmovzxbw */
7932 case 0x0f3831: /* pmovzxbd */
7933 case 0x0f3832: /* pmovzxbq */
7934 case 0x0f3833: /* pmovzxwd */
7935 case 0x0f3834: /* pmovzxwq */
7936 case 0x0f3835: /* pmovzxdq */
7937 case 0x0f3837: /* pcmpgtq */
7938 case 0x0f3838: /* pminsb */
7939 case 0x0f3839: /* pminsd */
7940 case 0x0f383a: /* pminuw */
7941 case 0x0f383b: /* pminud */
7942 case 0x0f383c: /* pmaxsb */
7943 case 0x0f383d: /* pmaxsd */
7944 case 0x0f383e: /* pmaxuw */
7945 case 0x0f383f: /* pmaxud */
7946 case 0x0f3840: /* pmulld */
7947 case 0x0f3841: /* phminposuw */
7948 case 0x0f3a0f: /* palignr */
7949 case 0x0f60: /* punpcklbw */
7950 case 0x0f61: /* punpcklwd */
7951 case 0x0f62: /* punpckldq */
7952 case 0x0f63: /* packsswb */
7953 case 0x0f64: /* pcmpgtb */
7954 case 0x0f65: /* pcmpgtw */
7955 case 0x0f66: /* pcmpgtd */
7956 case 0x0f67: /* packuswb */
7957 case 0x0f68: /* punpckhbw */
7958 case 0x0f69: /* punpckhwd */
7959 case 0x0f6a: /* punpckhdq */
7960 case 0x0f6b: /* packssdw */
7961 case 0x0f6e: /* movd */
7962 case 0x0f6f: /* movq */
7963 case 0x0f70: /* pshufw */
7964 case 0x0f74: /* pcmpeqb */
7965 case 0x0f75: /* pcmpeqw */
7966 case 0x0f76: /* pcmpeqd */
7967 case 0x0fc4: /* pinsrw */
7968 case 0x0fd1: /* psrlw */
7969 case 0x0fd2: /* psrld */
7970 case 0x0fd3: /* psrlq */
7971 case 0x0fd4: /* paddq */
7972 case 0x0fd5: /* pmullw */
7973 case 0xf20fd6: /* movdq2q */
7974 case 0x0fd8: /* psubusb */
7975 case 0x0fd9: /* psubusw */
7976 case 0x0fda: /* pminub */
7977 case 0x0fdb: /* pand */
7978 case 0x0fdc: /* paddusb */
7979 case 0x0fdd: /* paddusw */
7980 case 0x0fde: /* pmaxub */
7981 case 0x0fdf: /* pandn */
7982 case 0x0fe0: /* pavgb */
7983 case 0x0fe1: /* psraw */
7984 case 0x0fe2: /* psrad */
7985 case 0x0fe3: /* pavgw */
7986 case 0x0fe4: /* pmulhuw */
7987 case 0x0fe5: /* pmulhw */
7988 case 0x0fe8: /* psubsb */
7989 case 0x0fe9: /* psubsw */
7990 case 0x0fea: /* pminsw */
7991 case 0x0feb: /* por */
7992 case 0x0fec: /* paddsb */
7993 case 0x0fed: /* paddsw */
7994 case 0x0fee: /* pmaxsw */
7995 case 0x0fef: /* pxor */
7996 case 0x0ff1: /* psllw */
7997 case 0x0ff2: /* pslld */
7998 case 0x0ff3: /* psllq */
7999 case 0x0ff4: /* pmuludq */
8000 case 0x0ff5: /* pmaddwd */
8001 case 0x0ff6: /* psadbw */
8002 case 0x0ff8: /* psubb */
8003 case 0x0ff9: /* psubw */
8004 case 0x0ffa: /* psubd */
8005 case 0x0ffb: /* psubq */
8006 case 0x0ffc: /* paddb */
8007 case 0x0ffd: /* paddw */
8008 case 0x0ffe: /* paddd */
8009 if (i386_record_modrm (&ir))
8010 return -1;
8011 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8012 goto no_support;
8013 record_full_arch_list_add_reg (ir.regcache,
8014 I387_MM0_REGNUM (tdep) + ir.reg);
8015 break;
8016
8017 case 0x0f71: /* psllw */
8018 case 0x0f72: /* pslld */
8019 case 0x0f73: /* psllq */
8020 if (i386_record_modrm (&ir))
8021 return -1;
8022 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_MM0_REGNUM (tdep) + ir.rm);
8026 break;
8027
8028 case 0x660f71: /* psllw */
8029 case 0x660f72: /* pslld */
8030 case 0x660f73: /* psllq */
8031 if (i386_record_modrm (&ir))
8032 return -1;
8033 ir.rm |= ir.rex_b;
8034 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8035 goto no_support;
8036 record_full_arch_list_add_reg (ir.regcache,
8037 I387_XMM0_REGNUM (tdep) + ir.rm);
8038 break;
8039
8040 case 0x0f7e: /* movd */
8041 case 0x660f7e: /* movd */
8042 if (i386_record_modrm (&ir))
8043 return -1;
8044 if (ir.mod == 3)
8045 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8046 else
8047 {
8048 if (ir.dflag == 2)
8049 ir.ot = OT_QUAD;
8050 else
8051 ir.ot = OT_LONG;
8052 if (i386_record_lea_modrm (&ir))
8053 return -1;
8054 }
8055 break;
8056
8057 case 0x0f7f: /* movq */
8058 if (i386_record_modrm (&ir))
8059 return -1;
8060 if (ir.mod == 3)
8061 {
8062 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8063 goto no_support;
8064 record_full_arch_list_add_reg (ir.regcache,
8065 I387_MM0_REGNUM (tdep) + ir.rm);
8066 }
8067 else
8068 {
8069 ir.ot = OT_QUAD;
8070 if (i386_record_lea_modrm (&ir))
8071 return -1;
8072 }
8073 break;
8074
8075 case 0xf30fb8: /* popcnt */
8076 if (i386_record_modrm (&ir))
8077 return -1;
8078 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8079 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8080 break;
8081
8082 case 0x660fd6: /* movq */
8083 if (i386_record_modrm (&ir))
8084 return -1;
8085 if (ir.mod == 3)
8086 {
8087 ir.rm |= ir.rex_b;
8088 if (!i386_xmm_regnum_p (gdbarch,
8089 I387_XMM0_REGNUM (tdep) + ir.rm))
8090 goto no_support;
8091 record_full_arch_list_add_reg (ir.regcache,
8092 I387_XMM0_REGNUM (tdep) + ir.rm);
8093 }
8094 else
8095 {
8096 ir.ot = OT_QUAD;
8097 if (i386_record_lea_modrm (&ir))
8098 return -1;
8099 }
8100 break;
8101
8102 case 0x660f3817: /* ptest */
8103 case 0x0f2e: /* ucomiss */
8104 case 0x660f2e: /* ucomisd */
8105 case 0x0f2f: /* comiss */
8106 case 0x660f2f: /* comisd */
8107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8108 break;
8109
8110 case 0x0ff7: /* maskmovq */
8111 regcache_raw_read_unsigned (ir.regcache,
8112 ir.regmap[X86_RECORD_REDI_REGNUM],
8113 &addr);
8114 if (record_full_arch_list_add_mem (addr, 64))
8115 return -1;
8116 break;
8117
8118 case 0x660ff7: /* maskmovdqu */
8119 regcache_raw_read_unsigned (ir.regcache,
8120 ir.regmap[X86_RECORD_REDI_REGNUM],
8121 &addr);
8122 if (record_full_arch_list_add_mem (addr, 128))
8123 return -1;
8124 break;
8125
8126 default:
8127 goto no_support;
8128 break;
8129 }
8130 break;
8131
8132 default:
8133 goto no_support;
8134 break;
8135 }
8136
8137 /* In the future, maybe still need to deal with need_dasm. */
8138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8139 if (record_full_arch_list_add_end ())
8140 return -1;
8141
8142 return 0;
8143
8144 no_support:
8145 gdb_printf (gdb_stderr,
8146 _("Process record does not support instruction 0x%02x "
8147 "at address %s.\n"),
8148 (unsigned int) (opcode),
8149 paddress (gdbarch, ir.orig_addr));
8150 return -1;
8151 }
8152
8153 static const int i386_record_regmap[] =
8154 {
8155 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8156 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8157 0, 0, 0, 0, 0, 0, 0, 0,
8158 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8159 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8160 };
8161
8162 /* Check that the given address appears suitable for a fast
8163 tracepoint, which on x86-64 means that we need an instruction of at
8164 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8165 jump and not have to worry about program jumps to an address in the
8166 middle of the tracepoint jump. On x86, it may be possible to use
8167 4-byte jumps with a 2-byte offset to a trampoline located in the
8168 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8169 of instruction to replace, and 0 if not, plus an explanatory
8170 string. */
8171
8172 static int
8173 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8174 std::string *msg)
8175 {
8176 int len, jumplen;
8177
8178 /* Ask the target for the minimum instruction length supported. */
8179 jumplen = target_get_min_fast_tracepoint_insn_len ();
8180
8181 if (jumplen < 0)
8182 {
8183 /* If the target does not support the get_min_fast_tracepoint_insn_len
8184 operation, assume that fast tracepoints will always be implemented
8185 using 4-byte relative jumps on both x86 and x86-64. */
8186 jumplen = 5;
8187 }
8188 else if (jumplen == 0)
8189 {
8190 /* If the target does support get_min_fast_tracepoint_insn_len but
8191 returns zero, then the IPA has not loaded yet. In this case,
8192 we optimistically assume that truncated 2-byte relative jumps
8193 will be available on x86, and compensate later if this assumption
8194 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8195 jumps will always be used. */
8196 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8197 }
8198
8199 /* Check for fit. */
8200 len = gdb_insn_length (gdbarch, addr);
8201
8202 if (len < jumplen)
8203 {
8204 /* Return a bit of target-specific detail to add to the caller's
8205 generic failure message. */
8206 if (msg)
8207 *msg = string_printf (_("; instruction is only %d bytes long, "
8208 "need at least %d bytes for the jump"),
8209 len, jumplen);
8210 return 0;
8211 }
8212 else
8213 {
8214 if (msg)
8215 msg->clear ();
8216 return 1;
8217 }
8218 }
8219
8220 /* Return a floating-point format for a floating-point variable of
8221 length LEN in bits. If non-NULL, NAME is the name of its type.
8222 If no suitable type is found, return NULL. */
8223
8224 static const struct floatformat **
8225 i386_floatformat_for_type (struct gdbarch *gdbarch,
8226 const char *name, int len)
8227 {
8228 if (len == 128 && name)
8229 if (strcmp (name, "__float128") == 0
8230 || strcmp (name, "_Float128") == 0
8231 || strcmp (name, "complex _Float128") == 0
8232 || strcmp (name, "complex(kind=16)") == 0
8233 || strcmp (name, "complex*32") == 0
8234 || strcmp (name, "COMPLEX*32") == 0
8235 || strcmp (name, "quad complex") == 0
8236 || strcmp (name, "real(kind=16)") == 0
8237 || strcmp (name, "real*16") == 0
8238 || strcmp (name, "REAL*16") == 0)
8239 return floatformats_ieee_quad;
8240
8241 return default_floatformat_for_type (gdbarch, name, len);
8242 }
8243
8244 static int
8245 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8246 struct tdesc_arch_data *tdesc_data)
8247 {
8248 const struct target_desc *tdesc = tdep->tdesc;
8249 const struct tdesc_feature *feature_core;
8250
8251 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8252 *feature_avx512, *feature_pkeys, *feature_segments;
8253 int i, num_regs, valid_p;
8254
8255 if (! tdesc_has_registers (tdesc))
8256 return 0;
8257
8258 /* Get core registers. */
8259 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8260 if (feature_core == NULL)
8261 return 0;
8262
8263 /* Get SSE registers. */
8264 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8265
8266 /* Try AVX registers. */
8267 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8268
8269 /* Try MPX registers. */
8270 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8271
8272 /* Try AVX512 registers. */
8273 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8274
8275 /* Try segment base registers. */
8276 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8277
8278 /* Try PKEYS */
8279 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8280
8281 valid_p = 1;
8282
8283 /* The XCR0 bits. */
8284 if (feature_avx512)
8285 {
8286 /* AVX512 register description requires AVX register description. */
8287 if (!feature_avx)
8288 return 0;
8289
8290 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8291
8292 /* It may have been set by OSABI initialization function. */
8293 if (tdep->k0_regnum < 0)
8294 {
8295 tdep->k_register_names = i386_k_names;
8296 tdep->k0_regnum = I386_K0_REGNUM;
8297 }
8298
8299 for (i = 0; i < I387_NUM_K_REGS; i++)
8300 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8301 tdep->k0_regnum + i,
8302 i386_k_names[i]);
8303
8304 if (tdep->num_zmm_regs == 0)
8305 {
8306 tdep->zmmh_register_names = i386_zmmh_names;
8307 tdep->num_zmm_regs = 8;
8308 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8309 }
8310
8311 for (i = 0; i < tdep->num_zmm_regs; i++)
8312 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8313 tdep->zmm0h_regnum + i,
8314 tdep->zmmh_register_names[i]);
8315
8316 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8317 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8318 tdep->xmm16_regnum + i,
8319 tdep->xmm_avx512_register_names[i]);
8320
8321 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8322 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8323 tdep->ymm16h_regnum + i,
8324 tdep->ymm16h_register_names[i]);
8325 }
8326 if (feature_avx)
8327 {
8328 /* AVX register description requires SSE register description. */
8329 if (!feature_sse)
8330 return 0;
8331
8332 if (!feature_avx512)
8333 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8334
8335 /* It may have been set by OSABI initialization function. */
8336 if (tdep->num_ymm_regs == 0)
8337 {
8338 tdep->ymmh_register_names = i386_ymmh_names;
8339 tdep->num_ymm_regs = 8;
8340 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8341 }
8342
8343 for (i = 0; i < tdep->num_ymm_regs; i++)
8344 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8345 tdep->ymm0h_regnum + i,
8346 tdep->ymmh_register_names[i]);
8347 }
8348 else if (feature_sse)
8349 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8350 else
8351 {
8352 tdep->xcr0 = X86_XSTATE_X87_MASK;
8353 tdep->num_xmm_regs = 0;
8354 }
8355
8356 num_regs = tdep->num_core_regs;
8357 for (i = 0; i < num_regs; i++)
8358 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8359 tdep->register_names[i]);
8360
8361 if (feature_sse)
8362 {
8363 /* Need to include %mxcsr, so add one. */
8364 num_regs += tdep->num_xmm_regs + 1;
8365 for (; i < num_regs; i++)
8366 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8367 tdep->register_names[i]);
8368 }
8369
8370 if (feature_mpx)
8371 {
8372 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8373
8374 if (tdep->bnd0r_regnum < 0)
8375 {
8376 tdep->mpx_register_names = i386_mpx_names;
8377 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8378 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8379 }
8380
8381 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8382 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8383 I387_BND0R_REGNUM (tdep) + i,
8384 tdep->mpx_register_names[i]);
8385 }
8386
8387 if (feature_segments)
8388 {
8389 if (tdep->fsbase_regnum < 0)
8390 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8391 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8392 tdep->fsbase_regnum, "fs_base");
8393 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8394 tdep->fsbase_regnum + 1, "gs_base");
8395 }
8396
8397 if (feature_pkeys)
8398 {
8399 tdep->xcr0 |= X86_XSTATE_PKRU;
8400 if (tdep->pkru_regnum < 0)
8401 {
8402 tdep->pkeys_register_names = i386_pkeys_names;
8403 tdep->pkru_regnum = I386_PKRU_REGNUM;
8404 tdep->num_pkeys_regs = 1;
8405 }
8406
8407 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8408 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8409 I387_PKRU_REGNUM (tdep) + i,
8410 tdep->pkeys_register_names[i]);
8411 }
8412
8413 return valid_p;
8414 }
8415
8416 \f
8417
8418 /* Implement the type_align gdbarch function. */
8419
8420 static ULONGEST
8421 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8422 {
8423 type = check_typedef (type);
8424
8425 if (gdbarch_ptr_bit (gdbarch) == 32)
8426 {
8427 if ((type->code () == TYPE_CODE_INT
8428 || type->code () == TYPE_CODE_FLT)
8429 && TYPE_LENGTH (type) > 4)
8430 return 4;
8431
8432 /* Handle x86's funny long double. */
8433 if (type->code () == TYPE_CODE_FLT
8434 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8435 return 4;
8436 }
8437
8438 return 0;
8439 }
8440
8441 \f
8442 /* Note: This is called for both i386 and amd64. */
8443
8444 static struct gdbarch *
8445 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8446 {
8447 struct gdbarch *gdbarch;
8448 const struct target_desc *tdesc;
8449 int mm0_regnum;
8450 int ymm0_regnum;
8451 int bnd0_regnum;
8452 int num_bnd_cooked;
8453
8454 /* If there is already a candidate, use it. */
8455 arches = gdbarch_list_lookup_by_info (arches, &info);
8456 if (arches != NULL)
8457 return arches->gdbarch;
8458
8459 /* Allocate space for the new architecture. Assume i386 for now. */
8460 i386_gdbarch_tdep *tdep = new i386_gdbarch_tdep;
8461 gdbarch = gdbarch_alloc (&info, tdep);
8462
8463 /* General-purpose registers. */
8464 tdep->gregset_reg_offset = NULL;
8465 tdep->gregset_num_regs = I386_NUM_GREGS;
8466 tdep->sizeof_gregset = 0;
8467
8468 /* Floating-point registers. */
8469 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8470 tdep->fpregset = &i386_fpregset;
8471
8472 /* The default settings include the FPU registers, the MMX registers
8473 and the SSE registers. This can be overridden for a specific ABI
8474 by adjusting the members `st0_regnum', `mm0_regnum' and
8475 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8476 will show up in the output of "info all-registers". */
8477
8478 tdep->st0_regnum = I386_ST0_REGNUM;
8479
8480 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8481 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8482
8483 tdep->jb_pc_offset = -1;
8484 tdep->struct_return = pcc_struct_return;
8485 tdep->sigtramp_start = 0;
8486 tdep->sigtramp_end = 0;
8487 tdep->sigtramp_p = i386_sigtramp_p;
8488 tdep->sigcontext_addr = NULL;
8489 tdep->sc_reg_offset = NULL;
8490 tdep->sc_pc_offset = -1;
8491 tdep->sc_sp_offset = -1;
8492
8493 tdep->xsave_xcr0_offset = -1;
8494
8495 tdep->record_regmap = i386_record_regmap;
8496
8497 set_gdbarch_type_align (gdbarch, i386_type_align);
8498
8499 /* The format used for `long double' on almost all i386 targets is
8500 the i387 extended floating-point format. In fact, of all targets
8501 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8502 on having a `long double' that's not `long' at all. */
8503 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8504
8505 /* Although the i387 extended floating-point has only 80 significant
8506 bits, a `long double' actually takes up 96, probably to enforce
8507 alignment. */
8508 set_gdbarch_long_double_bit (gdbarch, 96);
8509
8510 /* Support of bfloat16 format. */
8511 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8512
8513 /* Support for floating-point data type variants. */
8514 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8515
8516 /* Register numbers of various important registers. */
8517 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8518 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8519 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8520 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8521
8522 /* NOTE: kettenis/20040418: GCC does have two possible register
8523 numbering schemes on the i386: dbx and SVR4. These schemes
8524 differ in how they number %ebp, %esp, %eflags, and the
8525 floating-point registers, and are implemented by the arrays
8526 dbx_register_map[] and svr4_dbx_register_map in
8527 gcc/config/i386.c. GCC also defines a third numbering scheme in
8528 gcc/config/i386.c, which it designates as the "default" register
8529 map used in 64bit mode. This last register numbering scheme is
8530 implemented in dbx64_register_map, and is used for AMD64; see
8531 amd64-tdep.c.
8532
8533 Currently, each GCC i386 target always uses the same register
8534 numbering scheme across all its supported debugging formats
8535 i.e. SDB (COFF), stabs and DWARF 2. This is because
8536 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8537 DBX_REGISTER_NUMBER macro which is defined by each target's
8538 respective config header in a manner independent of the requested
8539 output debugging format.
8540
8541 This does not match the arrangement below, which presumes that
8542 the SDB and stabs numbering schemes differ from the DWARF and
8543 DWARF 2 ones. The reason for this arrangement is that it is
8544 likely to get the numbering scheme for the target's
8545 default/native debug format right. For targets where GCC is the
8546 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8547 targets where the native toolchain uses a different numbering
8548 scheme for a particular debug format (stabs-in-ELF on Solaris)
8549 the defaults below will have to be overridden, like
8550 i386_elf_init_abi() does. */
8551
8552 /* Use the dbx register numbering scheme for stabs and COFF. */
8553 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8554 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8555
8556 /* Use the SVR4 register numbering scheme for DWARF 2. */
8557 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8558
8559 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8560 be in use on any of the supported i386 targets. */
8561
8562 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8563
8564 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8565
8566 /* Call dummy code. */
8567 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8568 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8569 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8570 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8571
8572 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8573 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8574 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8575
8576 set_gdbarch_return_value (gdbarch, i386_return_value);
8577
8578 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8579
8580 /* Stack grows downward. */
8581 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8582
8583 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8584 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8585
8586 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8587 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8588
8589 set_gdbarch_frame_args_skip (gdbarch, 8);
8590
8591 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8592
8593 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8594
8595 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8596
8597 /* Add the i386 register groups. */
8598 i386_add_reggroups (gdbarch);
8599 tdep->register_reggroup_p = i386_register_reggroup_p;
8600
8601 /* Helper for function argument information. */
8602 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8603
8604 /* Hook the function epilogue frame unwinder. This unwinder is
8605 appended to the list first, so that it supercedes the DWARF
8606 unwinder in function epilogues (where the DWARF unwinder
8607 currently fails). */
8608 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8609
8610 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8611 to the list before the prologue-based unwinders, so that DWARF
8612 CFI info will be used if it is available. */
8613 dwarf2_append_unwinders (gdbarch);
8614
8615 frame_base_set_default (gdbarch, &i386_frame_base);
8616
8617 /* Pseudo registers may be changed by amd64_init_abi. */
8618 set_gdbarch_pseudo_register_read_value (gdbarch,
8619 i386_pseudo_register_read_value);
8620 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8621 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8622 i386_ax_pseudo_register_collect);
8623
8624 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8625 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8626
8627 /* Override the normal target description method to make the AVX
8628 upper halves anonymous. */
8629 set_gdbarch_register_name (gdbarch, i386_register_name);
8630
8631 /* Even though the default ABI only includes general-purpose registers,
8632 floating-point registers and the SSE registers, we have to leave a
8633 gap for the upper AVX, MPX and AVX512 registers. */
8634 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8635
8636 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8637
8638 /* Get the x86 target description from INFO. */
8639 tdesc = info.target_desc;
8640 if (! tdesc_has_registers (tdesc))
8641 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8642 tdep->tdesc = tdesc;
8643
8644 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8645 tdep->register_names = i386_register_names;
8646
8647 /* No upper YMM registers. */
8648 tdep->ymmh_register_names = NULL;
8649 tdep->ymm0h_regnum = -1;
8650
8651 /* No upper ZMM registers. */
8652 tdep->zmmh_register_names = NULL;
8653 tdep->zmm0h_regnum = -1;
8654
8655 /* No high XMM registers. */
8656 tdep->xmm_avx512_register_names = NULL;
8657 tdep->xmm16_regnum = -1;
8658
8659 /* No upper YMM16-31 registers. */
8660 tdep->ymm16h_register_names = NULL;
8661 tdep->ymm16h_regnum = -1;
8662
8663 tdep->num_byte_regs = 8;
8664 tdep->num_word_regs = 8;
8665 tdep->num_dword_regs = 0;
8666 tdep->num_mmx_regs = 8;
8667 tdep->num_ymm_regs = 0;
8668
8669 /* No MPX registers. */
8670 tdep->bnd0r_regnum = -1;
8671 tdep->bndcfgu_regnum = -1;
8672
8673 /* No AVX512 registers. */
8674 tdep->k0_regnum = -1;
8675 tdep->num_zmm_regs = 0;
8676 tdep->num_ymm_avx512_regs = 0;
8677 tdep->num_xmm_avx512_regs = 0;
8678
8679 /* No PKEYS registers */
8680 tdep->pkru_regnum = -1;
8681 tdep->num_pkeys_regs = 0;
8682
8683 /* No segment base registers. */
8684 tdep->fsbase_regnum = -1;
8685
8686 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8687
8688 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8689
8690 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8691
8692 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8693 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8694 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8695
8696 /* Hook in ABI-specific overrides, if they have been registered.
8697 Note: If INFO specifies a 64 bit arch, this is where we turn
8698 a 32-bit i386 into a 64-bit amd64. */
8699 info.tdesc_data = tdesc_data.get ();
8700 gdbarch_init_osabi (info, gdbarch);
8701
8702 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8703 {
8704 delete tdep;
8705 gdbarch_free (gdbarch);
8706 return NULL;
8707 }
8708
8709 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8710
8711 /* Wire in pseudo registers. Number of pseudo registers may be
8712 changed. */
8713 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8714 + tdep->num_word_regs
8715 + tdep->num_dword_regs
8716 + tdep->num_mmx_regs
8717 + tdep->num_ymm_regs
8718 + num_bnd_cooked
8719 + tdep->num_ymm_avx512_regs
8720 + tdep->num_zmm_regs));
8721
8722 /* Target description may be changed. */
8723 tdesc = tdep->tdesc;
8724
8725 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8726
8727 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8728 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8729
8730 /* Make %al the first pseudo-register. */
8731 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8732 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8733
8734 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8735 if (tdep->num_dword_regs)
8736 {
8737 /* Support dword pseudo-register if it hasn't been disabled. */
8738 tdep->eax_regnum = ymm0_regnum;
8739 ymm0_regnum += tdep->num_dword_regs;
8740 }
8741 else
8742 tdep->eax_regnum = -1;
8743
8744 mm0_regnum = ymm0_regnum;
8745 if (tdep->num_ymm_regs)
8746 {
8747 /* Support YMM pseudo-register if it is available. */
8748 tdep->ymm0_regnum = ymm0_regnum;
8749 mm0_regnum += tdep->num_ymm_regs;
8750 }
8751 else
8752 tdep->ymm0_regnum = -1;
8753
8754 if (tdep->num_ymm_avx512_regs)
8755 {
8756 /* Support YMM16-31 pseudo registers if available. */
8757 tdep->ymm16_regnum = mm0_regnum;
8758 mm0_regnum += tdep->num_ymm_avx512_regs;
8759 }
8760 else
8761 tdep->ymm16_regnum = -1;
8762
8763 if (tdep->num_zmm_regs)
8764 {
8765 /* Support ZMM pseudo-register if it is available. */
8766 tdep->zmm0_regnum = mm0_regnum;
8767 mm0_regnum += tdep->num_zmm_regs;
8768 }
8769 else
8770 tdep->zmm0_regnum = -1;
8771
8772 bnd0_regnum = mm0_regnum;
8773 if (tdep->num_mmx_regs != 0)
8774 {
8775 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8776 tdep->mm0_regnum = mm0_regnum;
8777 bnd0_regnum += tdep->num_mmx_regs;
8778 }
8779 else
8780 tdep->mm0_regnum = -1;
8781
8782 if (tdep->bnd0r_regnum > 0)
8783 tdep->bnd0_regnum = bnd0_regnum;
8784 else
8785 tdep-> bnd0_regnum = -1;
8786
8787 /* Hook in the legacy prologue-based unwinders last (fallback). */
8788 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8789 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8790 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8791
8792 /* If we have a register mapping, enable the generic core file
8793 support, unless it has already been enabled. */
8794 if (tdep->gregset_reg_offset
8795 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8796 set_gdbarch_iterate_over_regset_sections
8797 (gdbarch, i386_iterate_over_regset_sections);
8798
8799 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8800 i386_fast_tracepoint_valid_at);
8801
8802 return gdbarch;
8803 }
8804
8805 \f
8806
8807 /* Return the target description for a specified XSAVE feature mask. */
8808
8809 const struct target_desc *
8810 i386_target_description (uint64_t xcr0, bool segments)
8811 {
8812 static target_desc *i386_tdescs \
8813 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8814 target_desc **tdesc;
8815
8816 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8817 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8818 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8819 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8820 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8821 [segments ? 1 : 0];
8822
8823 if (*tdesc == NULL)
8824 *tdesc = i386_create_target_description (xcr0, false, segments);
8825
8826 return *tdesc;
8827 }
8828
8829 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8830
8831 /* Find the bound directory base address. */
8832
8833 static unsigned long
8834 i386_mpx_bd_base (void)
8835 {
8836 struct regcache *rcache;
8837 ULONGEST ret;
8838 enum register_status regstatus;
8839
8840 rcache = get_current_regcache ();
8841 gdbarch *arch = rcache->arch ();
8842 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8843
8844 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8845
8846 if (regstatus != REG_VALID)
8847 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8848
8849 return ret & MPX_BASE_MASK;
8850 }
8851
8852 int
8853 i386_mpx_enabled (void)
8854 {
8855 gdbarch *arch = get_current_arch ();
8856 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8857 const struct target_desc *tdesc = tdep->tdesc;
8858
8859 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8860 }
8861
8862 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8863 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8864 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8865 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8866
8867 /* Find the bound table entry given the pointer location and the base
8868 address of the table. */
8869
8870 static CORE_ADDR
8871 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8872 {
8873 CORE_ADDR offset1;
8874 CORE_ADDR offset2;
8875 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8876 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8877 CORE_ADDR bd_entry_addr;
8878 CORE_ADDR bt_addr;
8879 CORE_ADDR bd_entry;
8880 struct gdbarch *gdbarch = get_current_arch ();
8881 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8882
8883
8884 if (gdbarch_ptr_bit (gdbarch) == 64)
8885 {
8886 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8887 bd_ptr_r_shift = 20;
8888 bd_ptr_l_shift = 3;
8889 bt_select_r_shift = 3;
8890 bt_select_l_shift = 5;
8891 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8892
8893 if ( sizeof (CORE_ADDR) == 4)
8894 error (_("bound table examination not supported\
8895 for 64-bit process with 32-bit GDB"));
8896 }
8897 else
8898 {
8899 mpx_bd_mask = MPX_BD_MASK_32;
8900 bd_ptr_r_shift = 12;
8901 bd_ptr_l_shift = 2;
8902 bt_select_r_shift = 2;
8903 bt_select_l_shift = 4;
8904 bt_mask = MPX_BT_MASK_32;
8905 }
8906
8907 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8908 bd_entry_addr = bd_base + offset1;
8909 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8910
8911 if ((bd_entry & 0x1) == 0)
8912 error (_("Invalid bounds directory entry at %s."),
8913 paddress (get_current_arch (), bd_entry_addr));
8914
8915 /* Clearing status bit. */
8916 bd_entry--;
8917 bt_addr = bd_entry & ~bt_select_r_shift;
8918 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8919
8920 return bt_addr + offset2;
8921 }
8922
8923 /* Print routine for the mpx bounds. */
8924
8925 static void
8926 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8927 {
8928 struct ui_out *uiout = current_uiout;
8929 LONGEST size;
8930 struct gdbarch *gdbarch = get_current_arch ();
8931 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8932 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8933
8934 if (bounds_in_map == 1)
8935 {
8936 uiout->text ("Null bounds on map:");
8937 uiout->text (" pointer value = ");
8938 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8939 uiout->text (".");
8940 uiout->text ("\n");
8941 }
8942 else
8943 {
8944 uiout->text ("{lbound = ");
8945 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8946 uiout->text (", ubound = ");
8947
8948 /* The upper bound is stored in 1's complement. */
8949 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8950 uiout->text ("}: pointer value = ");
8951 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8952
8953 if (gdbarch_ptr_bit (gdbarch) == 64)
8954 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8955 else
8956 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8957
8958 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8959 -1 represents in this sense full memory access, and there is no need
8960 one to the size. */
8961
8962 size = (size > -1 ? size + 1 : size);
8963 uiout->text (", size = ");
8964 uiout->field_string ("size", plongest (size));
8965
8966 uiout->text (", metadata = ");
8967 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8968 uiout->text ("\n");
8969 }
8970 }
8971
8972 /* Implement the command "show mpx bound". */
8973
8974 static void
8975 i386_mpx_info_bounds (const char *args, int from_tty)
8976 {
8977 CORE_ADDR bd_base = 0;
8978 CORE_ADDR addr;
8979 CORE_ADDR bt_entry_addr = 0;
8980 CORE_ADDR bt_entry[4];
8981 int i;
8982 struct gdbarch *gdbarch = get_current_arch ();
8983 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8984
8985 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8986 || !i386_mpx_enabled ())
8987 {
8988 gdb_printf (_("Intel Memory Protection Extensions not "
8989 "supported on this target.\n"));
8990 return;
8991 }
8992
8993 if (args == NULL)
8994 {
8995 gdb_printf (_("Address of pointer variable expected.\n"));
8996 return;
8997 }
8998
8999 addr = parse_and_eval_address (args);
9000
9001 bd_base = i386_mpx_bd_base ();
9002 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9003
9004 memset (bt_entry, 0, sizeof (bt_entry));
9005
9006 for (i = 0; i < 4; i++)
9007 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9008 + i * TYPE_LENGTH (data_ptr_type),
9009 data_ptr_type);
9010
9011 i386_mpx_print_bounds (bt_entry);
9012 }
9013
9014 /* Implement the command "set mpx bound". */
9015
9016 static void
9017 i386_mpx_set_bounds (const char *args, int from_tty)
9018 {
9019 CORE_ADDR bd_base = 0;
9020 CORE_ADDR addr, lower, upper;
9021 CORE_ADDR bt_entry_addr = 0;
9022 CORE_ADDR bt_entry[2];
9023 const char *input = args;
9024 int i;
9025 struct gdbarch *gdbarch = get_current_arch ();
9026 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9027 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9028
9029 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9030 || !i386_mpx_enabled ())
9031 error (_("Intel Memory Protection Extensions not supported\
9032 on this target."));
9033
9034 if (args == NULL)
9035 error (_("Pointer value expected."));
9036
9037 addr = value_as_address (parse_to_comma_and_eval (&input));
9038
9039 if (input[0] == ',')
9040 ++input;
9041 if (input[0] == '\0')
9042 error (_("wrong number of arguments: missing lower and upper bound."));
9043 lower = value_as_address (parse_to_comma_and_eval (&input));
9044
9045 if (input[0] == ',')
9046 ++input;
9047 if (input[0] == '\0')
9048 error (_("Wrong number of arguments; Missing upper bound."));
9049 upper = value_as_address (parse_to_comma_and_eval (&input));
9050
9051 bd_base = i386_mpx_bd_base ();
9052 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9053 for (i = 0; i < 2; i++)
9054 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9055 + i * TYPE_LENGTH (data_ptr_type),
9056 data_ptr_type);
9057 bt_entry[0] = (uint64_t) lower;
9058 bt_entry[1] = ~(uint64_t) upper;
9059
9060 for (i = 0; i < 2; i++)
9061 write_memory_unsigned_integer (bt_entry_addr
9062 + i * TYPE_LENGTH (data_ptr_type),
9063 TYPE_LENGTH (data_ptr_type), byte_order,
9064 bt_entry[i]);
9065 }
9066
9067 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9068
9069 void _initialize_i386_tdep ();
9070 void
9071 _initialize_i386_tdep ()
9072 {
9073 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9074
9075 /* Add the variable that controls the disassembly flavor. */
9076 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9077 &disassembly_flavor, _("\
9078 Set the disassembly flavor."), _("\
9079 Show the disassembly flavor."), _("\
9080 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9081 NULL,
9082 NULL, /* FIXME: i18n: */
9083 &setlist, &showlist);
9084
9085 /* Add the variable that controls the convention for returning
9086 structs. */
9087 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9088 &struct_convention, _("\
9089 Set the convention for returning small structs."), _("\
9090 Show the convention for returning small structs."), _("\
9091 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9092 is \"default\"."),
9093 NULL,
9094 NULL, /* FIXME: i18n: */
9095 &setlist, &showlist);
9096
9097 /* Add "mpx" prefix for the set and show commands. */
9098
9099 add_setshow_prefix_cmd
9100 ("mpx", class_support,
9101 _("Set Intel Memory Protection Extensions specific variables."),
9102 _("Show Intel Memory Protection Extensions specific variables."),
9103 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9104
9105 /* Add "bound" command for the show mpx commands list. */
9106
9107 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9108 "Show the memory bounds for a given array/pointer storage\
9109 in the bound table.",
9110 &mpx_show_cmdlist);
9111
9112 /* Add "bound" command for the set mpx commands list. */
9113
9114 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9115 "Set the memory bounds for a given array/pointer storage\
9116 in the bound table.",
9117 &mpx_set_cmdlist);
9118
9119 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9120 i386_svr4_init_abi);
9121
9122 /* Initialize the i386-specific register groups. */
9123 i386_init_reggroups ();
9124
9125 /* Tell remote stub that we support XML target description. */
9126 register_remote_support_xml ("i386");
9127 }