c2835a2458d11882e75d03622b8a84270b5abc82
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70
71 /* Register names. */
72
73 static const char * const i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char * const i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char * const i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char * const i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char * const i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char * const i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char * const i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char * const i386_pkeys_names[] =
124 {
125 "pkru"
126 };
127
128 /* Register names for MPX pseudo-registers. */
129
130 static const char * const i386_bnd_names[] =
131 {
132 "bnd0", "bnd1", "bnd2", "bnd3"
133 };
134
135 /* Register names for MMX pseudo-registers. */
136
137 static const char * const i386_mmx_names[] =
138 {
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141 };
142
143 /* Register names for byte pseudo-registers. */
144
145 static const char * const i386_byte_names[] =
146 {
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149 };
150
151 /* Register names for word pseudo-registers. */
152
153 static const char * const i386_word_names[] =
154 {
155 "ax", "cx", "dx", "bx",
156 "", "bp", "si", "di"
157 };
158
159 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163 const int num_lower_zmm_regs = 16;
164
165 /* MMX register? */
166
167 static int
168 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
172
173 if (mm0_regnum < 0)
174 return 0;
175
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178 }
179
180 /* Byte register? */
181
182 int
183 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184 {
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189 }
190
191 /* Word register? */
192
193 int
194 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200 }
201
202 /* Dword register? */
203
204 int
205 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206 {
207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 }
216
217 /* AVX512 register? */
218
219 int
220 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 }
231
232 int
233 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 }
244
245 int
246 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 }
257
258 static int
259 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269 }
270
271 /* AVX register? */
272
273 int
274 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 }
285
286 static int
287 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 }
298
299 int
300 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310 }
311
312 /* BND register? */
313
314 int
315 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325 }
326
327 /* SSE register? */
328
329 int
330 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
334
335 if (num_xmm_regs == 0)
336 return 0;
337
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
340 }
341
342 /* XMM_512 register? */
343
344 int
345 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 }
356
357 static int
358 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
362 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return 0;
364
365 return (regnum == I387_MXCSR_REGNUM (tdep));
366 }
367
368 /* FP register? */
369
370 int
371 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
372 {
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
376 return 0;
377
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
380 }
381
382 int
383 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
388 return 0;
389
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
392 }
393
394 /* BNDr (raw) register? */
395
396 static int
397 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 }
407
408 /* BND control register? */
409
410 static int
411 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412 {
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420 }
421
422 /* PKRU register? */
423
424 bool
425 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426 {
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 }
436
437 /* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440 static const char *
441 i386_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
455 return tdesc_register_name (gdbarch, regnum);
456 }
457
458 /* Return the name of register REGNUM. */
459
460 const char *
461 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 }
479
480 /* Convert a dbx register number REG to the appropriate register
481 number used by GDB. */
482
483 static int
484 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
485 {
486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
487
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
491 if (reg >= 0 && reg <= 7)
492 {
493 /* General-purpose registers. The debug info calls %ebp
494 register 4, and %esp register 5. */
495 if (reg == 4)
496 return 5;
497 else if (reg == 5)
498 return 4;
499 else return reg;
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
504 return reg - 12 + I387_ST0_REGNUM (tdep);
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
520 return reg - 29 + I387_MM0_REGNUM (tdep);
521 }
522
523 /* This will hopefully provoke a warning. */
524 return gdbarch_num_cooked_regs (gdbarch);
525 }
526
527 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 used by GDB. */
529
530 static int
531 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
542 /* General-purpose registers. */
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
548 return reg - 11 + I387_ST0_REGNUM (tdep);
549 }
550 else if (reg >= 21 && reg <= 36)
551 {
552 /* The SSE and MMX registers have the same numbers as with dbx. */
553 return i386_dbx_reg_to_regnum (gdbarch, reg);
554 }
555
556 switch (reg)
557 {
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
569 return -1;
570 }
571
572 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
575 int
576 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577 {
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
581 return gdbarch_num_cooked_regs (gdbarch);
582 return regnum;
583 }
584
585 \f
586
587 /* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
589 static const char att_flavor[] = "att";
590 static const char intel_flavor[] = "intel";
591 static const char *const valid_flavors[] =
592 {
593 att_flavor,
594 intel_flavor,
595 NULL
596 };
597 static const char *disassembly_flavor = att_flavor;
598 \f
599
600 /* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
605
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
608
609 This function is 64-bit safe. */
610
611 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614
615 \f
616 /* Displaced instruction handling. */
617
618 /* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624 static gdb_byte *
625 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626 {
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652 }
653
654 static int
655 i386_absolute_jmp_p (const gdb_byte *insn)
656 {
657 /* jmp far (absolute address in operand). */
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
663 /* jump near, absolute indirect (/4). */
664 if ((insn[1] & 0x38) == 0x20)
665 return 1;
666
667 /* jump far, absolute indirect (/5). */
668 if ((insn[1] & 0x38) == 0x28)
669 return 1;
670 }
671
672 return 0;
673 }
674
675 /* Return non-zero if INSN is a jump, zero otherwise. */
676
677 static int
678 i386_jmp_p (const gdb_byte *insn)
679 {
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689 }
690
691 static int
692 i386_absolute_call_p (const gdb_byte *insn)
693 {
694 /* call far, absolute. */
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
700 /* Call near, absolute indirect (/2). */
701 if ((insn[1] & 0x38) == 0x10)
702 return 1;
703
704 /* Call far, absolute indirect (/3). */
705 if ((insn[1] & 0x38) == 0x18)
706 return 1;
707 }
708
709 return 0;
710 }
711
712 static int
713 i386_ret_p (const gdb_byte *insn)
714 {
715 switch (insn[0])
716 {
717 case 0xc2: /* ret near, pop N bytes. */
718 case 0xc3: /* ret near */
719 case 0xca: /* ret far, pop N bytes. */
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727 }
728
729 static int
730 i386_call_p (const gdb_byte *insn)
731 {
732 if (i386_absolute_call_p (insn))
733 return 1;
734
735 /* call near, relative. */
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740 }
741
742 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
744
745 static int
746 i386_syscall_p (const gdb_byte *insn, int *lengthp)
747 {
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760 }
761
762 /* The gdbarch insn_is_call method. */
763
764 static int
765 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766 {
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773 }
774
775 /* The gdbarch insn_is_ret method. */
776
777 static int
778 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779 {
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786 }
787
788 /* The gdbarch insn_is_jump method. */
789
790 static int
791 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792 {
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799 }
800
801 /* Some kernels may run one past a syscall insn, so we have to cope. */
802
803 displaced_step_copy_insn_closure_up
804 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 size_t len = gdbarch_max_insn_length (gdbarch);
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
811 gdb_byte *buf = closure->buf.data ();
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 displaced_debug_printf ("%s->%s: %s",
830 paddress (gdbarch, from), paddress (gdbarch, to),
831 displaced_step_dump_bytes (buf, len).c_str ());
832
833 /* This is a work around for a problem with g++ 4.8. */
834 return displaced_step_copy_insn_closure_up (closure.release ());
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_copy_insn_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
918 else
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
921
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
925
926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
927
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
931 }
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
952
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
956 }
957 }
958
959 static void
960 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961 {
962 target_write_memory (*to, buf, len);
963 *to += len;
964 }
965
966 static void
967 i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
994 push_buf[0] = 0x68; /* pushq $... */
995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 static i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB addressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520 /* Check whether PC points to an endbr32 instruction. */
1521 static CORE_ADDR
1522 i386_skip_endbr (CORE_ADDR pc)
1523 {
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537 }
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_endbr (pc);
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* LLVM backend (Clang/Flang) always emits a line note before the
1850 prologue and another one after. We trust clang and newer Intel
1851 compilers to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
1856 || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && s.minsym->linkage_name () != NULL
1955 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 try
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 catch (const gdb_exception_error &ex)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw;
2097 }
2098
2099 return cache;
2100 }
2101
2102 static void
2103 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2104 struct frame_id *this_id)
2105 {
2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2107
2108 if (!cache->base_p)
2109 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2110 else if (cache->base == 0)
2111 {
2112 /* This marks the outermost frame. */
2113 }
2114 else
2115 {
2116 /* See the end of i386_push_dummy_call. */
2117 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 }
2119 }
2120
2121 static enum unwind_stop_reason
2122 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 if (!cache->base_p)
2128 return UNWIND_UNAVAILABLE;
2129
2130 /* This marks the outermost frame. */
2131 if (cache->base == 0)
2132 return UNWIND_OUTERMOST;
2133
2134 return UNWIND_NO_REASON;
2135 }
2136
2137 static struct value *
2138 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2139 int regnum)
2140 {
2141 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2142
2143 gdb_assert (regnum >= 0);
2144
2145 /* The System V ABI says that:
2146
2147 "The flags register contains the system flags, such as the
2148 direction flag and the carry flag. The direction flag must be
2149 set to the forward (that is, zero) direction before entry and
2150 upon exit from a function. Other user flags have no specified
2151 role in the standard calling sequence and are not preserved."
2152
2153 To guarantee the "upon exit" part of that statement we fake a
2154 saved flags register that has its direction flag cleared.
2155
2156 Note that GCC doesn't seem to rely on the fact that the direction
2157 flag is cleared after a function return; it always explicitly
2158 clears the flag before operations where it matters.
2159
2160 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2161 right thing to do. The way we fake the flags register here makes
2162 it impossible to change it. */
2163
2164 if (regnum == I386_EFLAGS_REGNUM)
2165 {
2166 ULONGEST val;
2167
2168 val = get_frame_register_unsigned (this_frame, regnum);
2169 val &= ~(1 << 10);
2170 return frame_unwind_got_constant (this_frame, regnum, val);
2171 }
2172
2173 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2174 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2175
2176 if (regnum == I386_ESP_REGNUM
2177 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2178 {
2179 /* If the SP has been saved, but we don't know where, then this
2180 means that SAVED_SP_REG register was found unavailable back
2181 when we built the cache. */
2182 if (cache->saved_sp == 0)
2183 return frame_unwind_got_register (this_frame, regnum,
2184 cache->saved_sp_reg);
2185 else
2186 return frame_unwind_got_constant (this_frame, regnum,
2187 cache->saved_sp);
2188 }
2189
2190 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2191 return frame_unwind_got_memory (this_frame, regnum,
2192 cache->saved_regs[regnum]);
2193
2194 return frame_unwind_got_register (this_frame, regnum, regnum);
2195 }
2196
2197 static const struct frame_unwind i386_frame_unwind =
2198 {
2199 "i386 prologue",
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 try
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 catch (const gdb_exception_error &ex)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw;
2277 }
2278
2279 return cache;
2280 }
2281
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285 {
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293 }
2294
2295 static void
2296 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
2302
2303 if (!cache->base_p)
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2307 }
2308
2309 static struct value *
2310 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312 {
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317 }
2318
2319 static const struct frame_unwind i386_epilogue_frame_unwind =
2320 {
2321 "i386 epilogue",
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 static i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 static i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 "i386 stack tramp",
2404 NORMAL_FRAME,
2405 i386_epilogue_frame_unwind_stop_reason,
2406 i386_epilogue_frame_this_id,
2407 i386_epilogue_frame_prev_register,
2408 NULL,
2409 i386_stack_tramp_frame_sniffer
2410 };
2411 \f
2412 /* Generate a bytecode expression to get the value of the saved PC. */
2413
2414 static void
2415 i386_gen_return_address (struct gdbarch *gdbarch,
2416 struct agent_expr *ax, struct axs_value *value,
2417 CORE_ADDR scope)
2418 {
2419 /* The following sequence assumes the traditional use of the base
2420 register. */
2421 ax_reg (ax, I386_EBP_REGNUM);
2422 ax_const_l (ax, 4);
2423 ax_simple (ax, aop_add);
2424 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2425 value->kind = axs_lvalue_memory;
2426 }
2427 \f
2428
2429 /* Signal trampolines. */
2430
2431 static struct i386_frame_cache *
2432 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2433 {
2434 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2437 struct i386_frame_cache *cache;
2438 CORE_ADDR addr;
2439 gdb_byte buf[4];
2440
2441 if (*this_cache)
2442 return (struct i386_frame_cache *) *this_cache;
2443
2444 cache = i386_alloc_frame_cache ();
2445
2446 try
2447 {
2448 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2449 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2450
2451 addr = tdep->sigcontext_addr (this_frame);
2452 if (tdep->sc_reg_offset)
2453 {
2454 int i;
2455
2456 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2457
2458 for (i = 0; i < tdep->sc_num_regs; i++)
2459 if (tdep->sc_reg_offset[i] != -1)
2460 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2461 }
2462 else
2463 {
2464 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2465 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2466 }
2467
2468 cache->base_p = 1;
2469 }
2470 catch (const gdb_exception_error &ex)
2471 {
2472 if (ex.error != NOT_AVAILABLE_ERROR)
2473 throw;
2474 }
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 "i386 sigtramp",
2552 SIGTRAMP_FRAME,
2553 i386_sigtramp_frame_unwind_stop_reason,
2554 i386_sigtramp_frame_this_id,
2555 i386_sigtramp_frame_prev_register,
2556 NULL,
2557 i386_sigtramp_frame_sniffer
2558 };
2559 \f
2560
2561 static CORE_ADDR
2562 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2563 {
2564 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2565
2566 return cache->base;
2567 }
2568
2569 static const struct frame_base i386_frame_base =
2570 {
2571 &i386_frame_unwind,
2572 i386_frame_base_address,
2573 i386_frame_base_address,
2574 i386_frame_base_address
2575 };
2576
2577 static struct frame_id
2578 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2579 {
2580 CORE_ADDR fp;
2581
2582 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2583
2584 /* See the end of i386_push_dummy_call. */
2585 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2586 }
2587
2588 /* _Decimal128 function return values need 16-byte alignment on the
2589 stack. */
2590
2591 static CORE_ADDR
2592 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2593 {
2594 return sp & -(CORE_ADDR)16;
2595 }
2596 \f
2597
2598 /* Figure out where the longjmp will land. Slurp the args out of the
2599 stack. We expect the first arg to be a pointer to the jmp_buf
2600 structure from which we extract the address that we will land at.
2601 This address is copied into PC. This routine returns non-zero on
2602 success. */
2603
2604 static int
2605 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2606 {
2607 gdb_byte buf[4];
2608 CORE_ADDR sp, jb_addr;
2609 struct gdbarch *gdbarch = get_frame_arch (frame);
2610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2611 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2612
2613 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2614 longjmp will land. */
2615 if (jb_pc_offset == -1)
2616 return 0;
2617
2618 get_frame_register (frame, I386_ESP_REGNUM, buf);
2619 sp = extract_unsigned_integer (buf, 4, byte_order);
2620 if (target_read_memory (sp + 4, buf, 4))
2621 return 0;
2622
2623 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2625 return 0;
2626
2627 *pc = extract_unsigned_integer (buf, 4, byte_order);
2628 return 1;
2629 }
2630 \f
2631
2632 /* Check whether TYPE must be 16-byte-aligned when passed as a
2633 function argument. 16-byte vectors, _Decimal128 and structures or
2634 unions containing such types must be 16-byte-aligned; other
2635 arguments are 4-byte-aligned. */
2636
2637 static int
2638 i386_16_byte_align_p (struct type *type)
2639 {
2640 type = check_typedef (type);
2641 if ((type->code () == TYPE_CODE_DECFLOAT
2642 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2643 && TYPE_LENGTH (type) == 16)
2644 return 1;
2645 if (type->code () == TYPE_CODE_ARRAY)
2646 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2647 if (type->code () == TYPE_CODE_STRUCT
2648 || type->code () == TYPE_CODE_UNION)
2649 {
2650 int i;
2651 for (i = 0; i < type->num_fields (); i++)
2652 {
2653 if (field_is_static (&type->field (i)))
2654 continue;
2655 if (i386_16_byte_align_p (type->field (i).type ()))
2656 return 1;
2657 }
2658 }
2659 return 0;
2660 }
2661
2662 /* Implementation for set_gdbarch_push_dummy_code. */
2663
2664 static CORE_ADDR
2665 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2666 struct value **args, int nargs, struct type *value_type,
2667 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2668 struct regcache *regcache)
2669 {
2670 /* Use 0xcc breakpoint - 1 byte. */
2671 *bp_addr = sp - 1;
2672 *real_pc = funaddr;
2673
2674 /* Keep the stack aligned. */
2675 return sp - 16;
2676 }
2677
2678 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2679 calling convention. */
2680
2681 CORE_ADDR
2682 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2683 struct regcache *regcache, CORE_ADDR bp_addr,
2684 int nargs, struct value **args, CORE_ADDR sp,
2685 function_call_return_method return_method,
2686 CORE_ADDR struct_addr, bool thiscall)
2687 {
2688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2689 gdb_byte buf[4];
2690 int i;
2691 int write_pass;
2692 int args_space = 0;
2693
2694 /* BND registers can be in arbitrary values at the moment of the
2695 inferior call. This can cause boundary violations that are not
2696 due to a real bug or even desired by the user. The best to be done
2697 is set the BND registers to allow access to the whole memory, INIT
2698 state, before pushing the inferior call. */
2699 i387_reset_bnd_regs (gdbarch, regcache);
2700
2701 /* Determine the total space required for arguments and struct
2702 return address in a first pass (allowing for 16-byte-aligned
2703 arguments), then push arguments in a second pass. */
2704
2705 for (write_pass = 0; write_pass < 2; write_pass++)
2706 {
2707 int args_space_used = 0;
2708
2709 if (return_method == return_method_struct)
2710 {
2711 if (write_pass)
2712 {
2713 /* Push value address. */
2714 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2715 write_memory (sp, buf, 4);
2716 args_space_used += 4;
2717 }
2718 else
2719 args_space += 4;
2720 }
2721
2722 for (i = thiscall ? 1 : 0; i < nargs; i++)
2723 {
2724 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2725
2726 if (write_pass)
2727 {
2728 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2729 args_space_used = align_up (args_space_used, 16);
2730
2731 write_memory (sp + args_space_used,
2732 value_contents_all (args[i]), len);
2733 /* The System V ABI says that:
2734
2735 "An argument's size is increased, if necessary, to make it a
2736 multiple of [32-bit] words. This may require tail padding,
2737 depending on the size of the argument."
2738
2739 This makes sure the stack stays word-aligned. */
2740 args_space_used += align_up (len, 4);
2741 }
2742 else
2743 {
2744 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2745 args_space = align_up (args_space, 16);
2746 args_space += align_up (len, 4);
2747 }
2748 }
2749
2750 if (!write_pass)
2751 {
2752 sp -= args_space;
2753
2754 /* The original System V ABI only requires word alignment,
2755 but modern incarnations need 16-byte alignment in order
2756 to support SSE. Since wasting a few bytes here isn't
2757 harmful we unconditionally enforce 16-byte alignment. */
2758 sp &= ~0xf;
2759 }
2760 }
2761
2762 /* Store return address. */
2763 sp -= 4;
2764 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2765 write_memory (sp, buf, 4);
2766
2767 /* Finally, update the stack pointer... */
2768 store_unsigned_integer (buf, 4, byte_order, sp);
2769 regcache->cooked_write (I386_ESP_REGNUM, buf);
2770
2771 /* ...and fake a frame pointer. */
2772 regcache->cooked_write (I386_EBP_REGNUM, buf);
2773
2774 /* The 'this' pointer needs to be in ECX. */
2775 if (thiscall)
2776 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2777
2778 /* MarkK wrote: This "+ 8" is all over the place:
2779 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2780 i386_dummy_id). It's there, since all frame unwinders for
2781 a given target have to agree (within a certain margin) on the
2782 definition of the stack address of a frame. Otherwise frame id
2783 comparison might not work correctly. Since DWARF2/GCC uses the
2784 stack address *before* the function call as a frame's CFA. On
2785 the i386, when %ebp is used as a frame pointer, the offset
2786 between the contents %ebp and the CFA as defined by GCC. */
2787 return sp + 8;
2788 }
2789
2790 /* Implement the "push_dummy_call" gdbarch method. */
2791
2792 static CORE_ADDR
2793 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2794 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2795 struct value **args, CORE_ADDR sp,
2796 function_call_return_method return_method,
2797 CORE_ADDR struct_addr)
2798 {
2799 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2800 nargs, args, sp, return_method,
2801 struct_addr, false);
2802 }
2803
2804 /* These registers are used for returning integers (and on some
2805 targets also for returning `struct' and `union' values when their
2806 size and alignment match an integer type). */
2807 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2808 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2809
2810 /* Read, for architecture GDBARCH, a function return value of TYPE
2811 from REGCACHE, and copy that into VALBUF. */
2812
2813 static void
2814 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2815 struct regcache *regcache, gdb_byte *valbuf)
2816 {
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int len = TYPE_LENGTH (type);
2819 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2820
2821 if (type->code () == TYPE_CODE_FLT)
2822 {
2823 if (tdep->st0_regnum < 0)
2824 {
2825 warning (_("Cannot find floating-point return value."));
2826 memset (valbuf, 0, len);
2827 return;
2828 }
2829
2830 /* Floating-point return values can be found in %st(0). Convert
2831 its contents to the desired type. This is probably not
2832 exactly how it would happen on the target itself, but it is
2833 the best we can do. */
2834 regcache->raw_read (I386_ST0_REGNUM, buf);
2835 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2836 }
2837 else
2838 {
2839 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2840 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2841
2842 if (len <= low_size)
2843 {
2844 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2845 memcpy (valbuf, buf, len);
2846 }
2847 else if (len <= (low_size + high_size))
2848 {
2849 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2850 memcpy (valbuf, buf, low_size);
2851 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2852 memcpy (valbuf + low_size, buf, len - low_size);
2853 }
2854 else
2855 internal_error (__FILE__, __LINE__,
2856 _("Cannot extract return value of %d bytes long."),
2857 len);
2858 }
2859 }
2860
2861 /* Write, for architecture GDBARCH, a function return value of TYPE
2862 from VALBUF into REGCACHE. */
2863
2864 static void
2865 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2866 struct regcache *regcache, const gdb_byte *valbuf)
2867 {
2868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2869 int len = TYPE_LENGTH (type);
2870
2871 if (type->code () == TYPE_CODE_FLT)
2872 {
2873 ULONGEST fstat;
2874 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2875
2876 if (tdep->st0_regnum < 0)
2877 {
2878 warning (_("Cannot set floating-point return value."));
2879 return;
2880 }
2881
2882 /* Returning floating-point values is a bit tricky. Apart from
2883 storing the return value in %st(0), we have to simulate the
2884 state of the FPU at function return point. */
2885
2886 /* Convert the value found in VALBUF to the extended
2887 floating-point format used by the FPU. This is probably
2888 not exactly how it would happen on the target itself, but
2889 it is the best we can do. */
2890 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2891 regcache->raw_write (I386_ST0_REGNUM, buf);
2892
2893 /* Set the top of the floating-point register stack to 7. The
2894 actual value doesn't really matter, but 7 is what a normal
2895 function return would end up with if the program started out
2896 with a freshly initialized FPU. */
2897 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2898 fstat |= (7 << 11);
2899 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2900
2901 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2902 the floating-point register stack to 7, the appropriate value
2903 for the tag word is 0x3fff. */
2904 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2905 }
2906 else
2907 {
2908 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2909 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2910
2911 if (len <= low_size)
2912 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2913 else if (len <= (low_size + high_size))
2914 {
2915 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2916 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2917 valbuf + low_size);
2918 }
2919 else
2920 internal_error (__FILE__, __LINE__,
2921 _("Cannot store return value of %d bytes long."), len);
2922 }
2923 }
2924 \f
2925
2926 /* This is the variable that is set with "set struct-convention", and
2927 its legitimate values. */
2928 static const char default_struct_convention[] = "default";
2929 static const char pcc_struct_convention[] = "pcc";
2930 static const char reg_struct_convention[] = "reg";
2931 static const char *const valid_conventions[] =
2932 {
2933 default_struct_convention,
2934 pcc_struct_convention,
2935 reg_struct_convention,
2936 NULL
2937 };
2938 static const char *struct_convention = default_struct_convention;
2939
2940 /* Return non-zero if TYPE, which is assumed to be a structure,
2941 a union type, or an array type, should be returned in registers
2942 for architecture GDBARCH. */
2943
2944 static int
2945 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2946 {
2947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2948 enum type_code code = type->code ();
2949 int len = TYPE_LENGTH (type);
2950
2951 gdb_assert (code == TYPE_CODE_STRUCT
2952 || code == TYPE_CODE_UNION
2953 || code == TYPE_CODE_ARRAY);
2954
2955 if (struct_convention == pcc_struct_convention
2956 || (struct_convention == default_struct_convention
2957 && tdep->struct_return == pcc_struct_return))
2958 return 0;
2959
2960 /* Structures consisting of a single `float', `double' or 'long
2961 double' member are returned in %st(0). */
2962 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2963 {
2964 type = check_typedef (type->field (0).type ());
2965 if (type->code () == TYPE_CODE_FLT)
2966 return (len == 4 || len == 8 || len == 12);
2967 }
2968
2969 return (len == 1 || len == 2 || len == 4 || len == 8);
2970 }
2971
2972 /* Determine, for architecture GDBARCH, how a return value of TYPE
2973 should be returned. If it is supposed to be returned in registers,
2974 and READBUF is non-zero, read the appropriate value from REGCACHE,
2975 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2976 from WRITEBUF into REGCACHE. */
2977
2978 static enum return_value_convention
2979 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2980 struct type *type, struct regcache *regcache,
2981 gdb_byte *readbuf, const gdb_byte *writebuf)
2982 {
2983 enum type_code code = type->code ();
2984
2985 if (((code == TYPE_CODE_STRUCT
2986 || code == TYPE_CODE_UNION
2987 || code == TYPE_CODE_ARRAY)
2988 && !i386_reg_struct_return_p (gdbarch, type))
2989 /* Complex double and long double uses the struct return convention. */
2990 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2991 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2992 /* 128-bit decimal float uses the struct return convention. */
2993 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2994 {
2995 /* The System V ABI says that:
2996
2997 "A function that returns a structure or union also sets %eax
2998 to the value of the original address of the caller's area
2999 before it returns. Thus when the caller receives control
3000 again, the address of the returned object resides in register
3001 %eax and can be used to access the object."
3002
3003 So the ABI guarantees that we can always find the return
3004 value just after the function has returned. */
3005
3006 /* Note that the ABI doesn't mention functions returning arrays,
3007 which is something possible in certain languages such as Ada.
3008 In this case, the value is returned as if it was wrapped in
3009 a record, so the convention applied to records also applies
3010 to arrays. */
3011
3012 if (readbuf)
3013 {
3014 ULONGEST addr;
3015
3016 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3017 read_memory (addr, readbuf, TYPE_LENGTH (type));
3018 }
3019
3020 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3021 }
3022
3023 /* This special case is for structures consisting of a single
3024 `float', `double' or 'long double' member. These structures are
3025 returned in %st(0). For these structures, we call ourselves
3026 recursively, changing TYPE into the type of the first member of
3027 the structure. Since that should work for all structures that
3028 have only one member, we don't bother to check the member's type
3029 here. */
3030 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3031 {
3032 type = check_typedef (type->field (0).type ());
3033 return i386_return_value (gdbarch, function, type, regcache,
3034 readbuf, writebuf);
3035 }
3036
3037 if (readbuf)
3038 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3039 if (writebuf)
3040 i386_store_return_value (gdbarch, type, regcache, writebuf);
3041
3042 return RETURN_VALUE_REGISTER_CONVENTION;
3043 }
3044 \f
3045
3046 struct type *
3047 i387_ext_type (struct gdbarch *gdbarch)
3048 {
3049 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3050
3051 if (!tdep->i387_ext_type)
3052 {
3053 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3054 gdb_assert (tdep->i387_ext_type != NULL);
3055 }
3056
3057 return tdep->i387_ext_type;
3058 }
3059
3060 /* Construct type for pseudo BND registers. We can't use
3061 tdesc_find_type since a complement of one value has to be used
3062 to describe the upper bound. */
3063
3064 static struct type *
3065 i386_bnd_type (struct gdbarch *gdbarch)
3066 {
3067 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3068
3069
3070 if (!tdep->i386_bnd_type)
3071 {
3072 struct type *t;
3073 const struct builtin_type *bt = builtin_type (gdbarch);
3074
3075 /* The type we're building is described bellow: */
3076 #if 0
3077 struct __bound128
3078 {
3079 void *lbound;
3080 void *ubound; /* One complement of raw ubound field. */
3081 };
3082 #endif
3083
3084 t = arch_composite_type (gdbarch,
3085 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3086
3087 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3088 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3089
3090 t->set_name ("builtin_type_bound128");
3091 tdep->i386_bnd_type = t;
3092 }
3093
3094 return tdep->i386_bnd_type;
3095 }
3096
3097 /* Construct vector type for pseudo ZMM registers. We can't use
3098 tdesc_find_type since ZMM isn't described in target description. */
3099
3100 static struct type *
3101 i386_zmm_type (struct gdbarch *gdbarch)
3102 {
3103 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3104
3105 if (!tdep->i386_zmm_type)
3106 {
3107 const struct builtin_type *bt = builtin_type (gdbarch);
3108
3109 /* The type we're building is this: */
3110 #if 0
3111 union __gdb_builtin_type_vec512i
3112 {
3113 int128_t v4_int128[4];
3114 int64_t v8_int64[8];
3115 int32_t v16_int32[16];
3116 int16_t v32_int16[32];
3117 int8_t v64_int8[64];
3118 double v8_double[8];
3119 float v16_float[16];
3120 float16_t v32_half[32];
3121 bfloat16_t v32_bfloat16[32];
3122 };
3123 #endif
3124
3125 struct type *t;
3126
3127 t = arch_composite_type (gdbarch,
3128 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3129 append_composite_type_field (t, "v32_bfloat16",
3130 init_vector_type (bt->builtin_bfloat16, 32));
3131 append_composite_type_field (t, "v32_half",
3132 init_vector_type (bt->builtin_half, 32));
3133 append_composite_type_field (t, "v16_float",
3134 init_vector_type (bt->builtin_float, 16));
3135 append_composite_type_field (t, "v8_double",
3136 init_vector_type (bt->builtin_double, 8));
3137 append_composite_type_field (t, "v64_int8",
3138 init_vector_type (bt->builtin_int8, 64));
3139 append_composite_type_field (t, "v32_int16",
3140 init_vector_type (bt->builtin_int16, 32));
3141 append_composite_type_field (t, "v16_int32",
3142 init_vector_type (bt->builtin_int32, 16));
3143 append_composite_type_field (t, "v8_int64",
3144 init_vector_type (bt->builtin_int64, 8));
3145 append_composite_type_field (t, "v4_int128",
3146 init_vector_type (bt->builtin_int128, 4));
3147
3148 t->set_is_vector (true);
3149 t->set_name ("builtin_type_vec512i");
3150 tdep->i386_zmm_type = t;
3151 }
3152
3153 return tdep->i386_zmm_type;
3154 }
3155
3156 /* Construct vector type for pseudo YMM registers. We can't use
3157 tdesc_find_type since YMM isn't described in target description. */
3158
3159 static struct type *
3160 i386_ymm_type (struct gdbarch *gdbarch)
3161 {
3162 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3163
3164 if (!tdep->i386_ymm_type)
3165 {
3166 const struct builtin_type *bt = builtin_type (gdbarch);
3167
3168 /* The type we're building is this: */
3169 #if 0
3170 union __gdb_builtin_type_vec256i
3171 {
3172 int128_t v2_int128[2];
3173 int64_t v4_int64[4];
3174 int32_t v8_int32[8];
3175 int16_t v16_int16[16];
3176 int8_t v32_int8[32];
3177 double v4_double[4];
3178 float v8_float[8];
3179 float16_t v16_half[16];
3180 bfloat16_t v16_bfloat16[16];
3181 };
3182 #endif
3183
3184 struct type *t;
3185
3186 t = arch_composite_type (gdbarch,
3187 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3188 append_composite_type_field (t, "v16_bfloat16",
3189 init_vector_type (bt->builtin_bfloat16, 16));
3190 append_composite_type_field (t, "v16_half",
3191 init_vector_type (bt->builtin_half, 16));
3192 append_composite_type_field (t, "v8_float",
3193 init_vector_type (bt->builtin_float, 8));
3194 append_composite_type_field (t, "v4_double",
3195 init_vector_type (bt->builtin_double, 4));
3196 append_composite_type_field (t, "v32_int8",
3197 init_vector_type (bt->builtin_int8, 32));
3198 append_composite_type_field (t, "v16_int16",
3199 init_vector_type (bt->builtin_int16, 16));
3200 append_composite_type_field (t, "v8_int32",
3201 init_vector_type (bt->builtin_int32, 8));
3202 append_composite_type_field (t, "v4_int64",
3203 init_vector_type (bt->builtin_int64, 4));
3204 append_composite_type_field (t, "v2_int128",
3205 init_vector_type (bt->builtin_int128, 2));
3206
3207 t->set_is_vector (true);
3208 t->set_name ("builtin_type_vec256i");
3209 tdep->i386_ymm_type = t;
3210 }
3211
3212 return tdep->i386_ymm_type;
3213 }
3214
3215 /* Construct vector type for MMX registers. */
3216 static struct type *
3217 i386_mmx_type (struct gdbarch *gdbarch)
3218 {
3219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3220
3221 if (!tdep->i386_mmx_type)
3222 {
3223 const struct builtin_type *bt = builtin_type (gdbarch);
3224
3225 /* The type we're building is this: */
3226 #if 0
3227 union __gdb_builtin_type_vec64i
3228 {
3229 int64_t uint64;
3230 int32_t v2_int32[2];
3231 int16_t v4_int16[4];
3232 int8_t v8_int8[8];
3233 };
3234 #endif
3235
3236 struct type *t;
3237
3238 t = arch_composite_type (gdbarch,
3239 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3240
3241 append_composite_type_field (t, "uint64", bt->builtin_int64);
3242 append_composite_type_field (t, "v2_int32",
3243 init_vector_type (bt->builtin_int32, 2));
3244 append_composite_type_field (t, "v4_int16",
3245 init_vector_type (bt->builtin_int16, 4));
3246 append_composite_type_field (t, "v8_int8",
3247 init_vector_type (bt->builtin_int8, 8));
3248
3249 t->set_is_vector (true);
3250 t->set_name ("builtin_type_vec64i");
3251 tdep->i386_mmx_type = t;
3252 }
3253
3254 return tdep->i386_mmx_type;
3255 }
3256
3257 /* Return the GDB type object for the "standard" data type of data in
3258 register REGNUM. */
3259
3260 struct type *
3261 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3262 {
3263 if (i386_bnd_regnum_p (gdbarch, regnum))
3264 return i386_bnd_type (gdbarch);
3265 if (i386_mmx_regnum_p (gdbarch, regnum))
3266 return i386_mmx_type (gdbarch);
3267 else if (i386_ymm_regnum_p (gdbarch, regnum))
3268 return i386_ymm_type (gdbarch);
3269 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3270 return i386_ymm_type (gdbarch);
3271 else if (i386_zmm_regnum_p (gdbarch, regnum))
3272 return i386_zmm_type (gdbarch);
3273 else
3274 {
3275 const struct builtin_type *bt = builtin_type (gdbarch);
3276 if (i386_byte_regnum_p (gdbarch, regnum))
3277 return bt->builtin_int8;
3278 else if (i386_word_regnum_p (gdbarch, regnum))
3279 return bt->builtin_int16;
3280 else if (i386_dword_regnum_p (gdbarch, regnum))
3281 return bt->builtin_int32;
3282 else if (i386_k_regnum_p (gdbarch, regnum))
3283 return bt->builtin_int64;
3284 }
3285
3286 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3287 }
3288
3289 /* Map a cooked register onto a raw register or memory. For the i386,
3290 the MMX registers need to be mapped onto floating point registers. */
3291
3292 static int
3293 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3294 {
3295 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3296 int mmxreg, fpreg;
3297 ULONGEST fstat;
3298 int tos;
3299
3300 mmxreg = regnum - tdep->mm0_regnum;
3301 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3302 tos = (fstat >> 11) & 0x7;
3303 fpreg = (mmxreg + tos) % 8;
3304
3305 return (I387_ST0_REGNUM (tdep) + fpreg);
3306 }
3307
3308 /* A helper function for us by i386_pseudo_register_read_value and
3309 amd64_pseudo_register_read_value. It does all the work but reads
3310 the data into an already-allocated value. */
3311
3312 void
3313 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3314 readable_regcache *regcache,
3315 int regnum,
3316 struct value *result_value)
3317 {
3318 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3319 enum register_status status;
3320 gdb_byte *buf = value_contents_raw (result_value);
3321
3322 if (i386_mmx_regnum_p (gdbarch, regnum))
3323 {
3324 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3325
3326 /* Extract (always little endian). */
3327 status = regcache->raw_read (fpnum, raw_buf);
3328 if (status != REG_VALID)
3329 mark_value_bytes_unavailable (result_value, 0,
3330 TYPE_LENGTH (value_type (result_value)));
3331 else
3332 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3333 }
3334 else
3335 {
3336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3337 if (i386_bnd_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->bnd0_regnum;
3340
3341 /* Extract (always little endian). Read lower 128bits. */
3342 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3343 raw_buf);
3344 if (status != REG_VALID)
3345 mark_value_bytes_unavailable (result_value, 0, 16);
3346 else
3347 {
3348 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3349 LONGEST upper, lower;
3350 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3351
3352 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3353 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3354 upper = ~upper;
3355
3356 memcpy (buf, &lower, size);
3357 memcpy (buf + size, &upper, size);
3358 }
3359 }
3360 else if (i386_k_regnum_p (gdbarch, regnum))
3361 {
3362 regnum -= tdep->k0_regnum;
3363
3364 /* Extract (always little endian). */
3365 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3366 if (status != REG_VALID)
3367 mark_value_bytes_unavailable (result_value, 0, 8);
3368 else
3369 memcpy (buf, raw_buf, 8);
3370 }
3371 else if (i386_zmm_regnum_p (gdbarch, regnum))
3372 {
3373 regnum -= tdep->zmm0_regnum;
3374
3375 if (regnum < num_lower_zmm_regs)
3376 {
3377 /* Extract (always little endian). Read lower 128bits. */
3378 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3379 raw_buf);
3380 if (status != REG_VALID)
3381 mark_value_bytes_unavailable (result_value, 0, 16);
3382 else
3383 memcpy (buf, raw_buf, 16);
3384
3385 /* Extract (always little endian). Read upper 128bits. */
3386 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 16, 16);
3390 else
3391 memcpy (buf + 16, raw_buf, 16);
3392 }
3393 else
3394 {
3395 /* Extract (always little endian). Read lower 128bits. */
3396 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3397 - num_lower_zmm_regs,
3398 raw_buf);
3399 if (status != REG_VALID)
3400 mark_value_bytes_unavailable (result_value, 0, 16);
3401 else
3402 memcpy (buf, raw_buf, 16);
3403
3404 /* Extract (always little endian). Read upper 128bits. */
3405 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3406 - num_lower_zmm_regs,
3407 raw_buf);
3408 if (status != REG_VALID)
3409 mark_value_bytes_unavailable (result_value, 16, 16);
3410 else
3411 memcpy (buf + 16, raw_buf, 16);
3412 }
3413
3414 /* Read upper 256bits. */
3415 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3416 raw_buf);
3417 if (status != REG_VALID)
3418 mark_value_bytes_unavailable (result_value, 32, 32);
3419 else
3420 memcpy (buf + 32, raw_buf, 32);
3421 }
3422 else if (i386_ymm_regnum_p (gdbarch, regnum))
3423 {
3424 regnum -= tdep->ymm0_regnum;
3425
3426 /* Extract (always little endian). Read lower 128bits. */
3427 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 0, 16);
3431 else
3432 memcpy (buf, raw_buf, 16);
3433 /* Read upper 128bits. */
3434 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3435 raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 16, 32);
3438 else
3439 memcpy (buf + 16, raw_buf, 16);
3440 }
3441 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3442 {
3443 regnum -= tdep->ymm16_regnum;
3444 /* Extract (always little endian). Read lower 128bits. */
3445 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3446 raw_buf);
3447 if (status != REG_VALID)
3448 mark_value_bytes_unavailable (result_value, 0, 16);
3449 else
3450 memcpy (buf, raw_buf, 16);
3451 /* Read upper 128bits. */
3452 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3453 raw_buf);
3454 if (status != REG_VALID)
3455 mark_value_bytes_unavailable (result_value, 16, 16);
3456 else
3457 memcpy (buf + 16, raw_buf, 16);
3458 }
3459 else if (i386_word_regnum_p (gdbarch, regnum))
3460 {
3461 int gpnum = regnum - tdep->ax_regnum;
3462
3463 /* Extract (always little endian). */
3464 status = regcache->raw_read (gpnum, raw_buf);
3465 if (status != REG_VALID)
3466 mark_value_bytes_unavailable (result_value, 0,
3467 TYPE_LENGTH (value_type (result_value)));
3468 else
3469 memcpy (buf, raw_buf, 2);
3470 }
3471 else if (i386_byte_regnum_p (gdbarch, regnum))
3472 {
3473 int gpnum = regnum - tdep->al_regnum;
3474
3475 /* Extract (always little endian). We read both lower and
3476 upper registers. */
3477 status = regcache->raw_read (gpnum % 4, raw_buf);
3478 if (status != REG_VALID)
3479 mark_value_bytes_unavailable (result_value, 0,
3480 TYPE_LENGTH (value_type (result_value)));
3481 else if (gpnum >= 4)
3482 memcpy (buf, raw_buf + 1, 1);
3483 else
3484 memcpy (buf, raw_buf, 1);
3485 }
3486 else
3487 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3488 }
3489 }
3490
3491 static struct value *
3492 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3493 readable_regcache *regcache,
3494 int regnum)
3495 {
3496 struct value *result;
3497
3498 result = allocate_value (register_type (gdbarch, regnum));
3499 VALUE_LVAL (result) = lval_register;
3500 VALUE_REGNUM (result) = regnum;
3501
3502 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3503
3504 return result;
3505 }
3506
3507 void
3508 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3509 int regnum, const gdb_byte *buf)
3510 {
3511 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3512
3513 if (i386_mmx_regnum_p (gdbarch, regnum))
3514 {
3515 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3516
3517 /* Read ... */
3518 regcache->raw_read (fpnum, raw_buf);
3519 /* ... Modify ... (always little endian). */
3520 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3521 /* ... Write. */
3522 regcache->raw_write (fpnum, raw_buf);
3523 }
3524 else
3525 {
3526 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3527
3528 if (i386_bnd_regnum_p (gdbarch, regnum))
3529 {
3530 ULONGEST upper, lower;
3531 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3532 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3533
3534 /* New values from input value. */
3535 regnum -= tdep->bnd0_regnum;
3536 lower = extract_unsigned_integer (buf, size, byte_order);
3537 upper = extract_unsigned_integer (buf + size, size, byte_order);
3538
3539 /* Fetching register buffer. */
3540 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3541 raw_buf);
3542
3543 upper = ~upper;
3544
3545 /* Set register bits. */
3546 memcpy (raw_buf, &lower, 8);
3547 memcpy (raw_buf + 8, &upper, 8);
3548
3549 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3550 }
3551 else if (i386_k_regnum_p (gdbarch, regnum))
3552 {
3553 regnum -= tdep->k0_regnum;
3554
3555 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3556 }
3557 else if (i386_zmm_regnum_p (gdbarch, regnum))
3558 {
3559 regnum -= tdep->zmm0_regnum;
3560
3561 if (regnum < num_lower_zmm_regs)
3562 {
3563 /* Write lower 128bits. */
3564 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3565 /* Write upper 128bits. */
3566 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3567 }
3568 else
3569 {
3570 /* Write lower 128bits. */
3571 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3572 - num_lower_zmm_regs, buf);
3573 /* Write upper 128bits. */
3574 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3575 - num_lower_zmm_regs, buf + 16);
3576 }
3577 /* Write upper 256bits. */
3578 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3579 }
3580 else if (i386_ymm_regnum_p (gdbarch, regnum))
3581 {
3582 regnum -= tdep->ymm0_regnum;
3583
3584 /* ... Write lower 128bits. */
3585 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3586 /* ... Write upper 128bits. */
3587 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3588 }
3589 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3590 {
3591 regnum -= tdep->ymm16_regnum;
3592
3593 /* ... Write lower 128bits. */
3594 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3595 /* ... Write upper 128bits. */
3596 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3597 }
3598 else if (i386_word_regnum_p (gdbarch, regnum))
3599 {
3600 int gpnum = regnum - tdep->ax_regnum;
3601
3602 /* Read ... */
3603 regcache->raw_read (gpnum, raw_buf);
3604 /* ... Modify ... (always little endian). */
3605 memcpy (raw_buf, buf, 2);
3606 /* ... Write. */
3607 regcache->raw_write (gpnum, raw_buf);
3608 }
3609 else if (i386_byte_regnum_p (gdbarch, regnum))
3610 {
3611 int gpnum = regnum - tdep->al_regnum;
3612
3613 /* Read ... We read both lower and upper registers. */
3614 regcache->raw_read (gpnum % 4, raw_buf);
3615 /* ... Modify ... (always little endian). */
3616 if (gpnum >= 4)
3617 memcpy (raw_buf + 1, buf, 1);
3618 else
3619 memcpy (raw_buf, buf, 1);
3620 /* ... Write. */
3621 regcache->raw_write (gpnum % 4, raw_buf);
3622 }
3623 else
3624 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3625 }
3626 }
3627
3628 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3629
3630 int
3631 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3632 struct agent_expr *ax, int regnum)
3633 {
3634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3635
3636 if (i386_mmx_regnum_p (gdbarch, regnum))
3637 {
3638 /* MMX to FPU register mapping depends on current TOS. Let's just
3639 not care and collect everything... */
3640 int i;
3641
3642 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3643 for (i = 0; i < 8; i++)
3644 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3645 return 0;
3646 }
3647 else if (i386_bnd_regnum_p (gdbarch, regnum))
3648 {
3649 regnum -= tdep->bnd0_regnum;
3650 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3651 return 0;
3652 }
3653 else if (i386_k_regnum_p (gdbarch, regnum))
3654 {
3655 regnum -= tdep->k0_regnum;
3656 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3657 return 0;
3658 }
3659 else if (i386_zmm_regnum_p (gdbarch, regnum))
3660 {
3661 regnum -= tdep->zmm0_regnum;
3662 if (regnum < num_lower_zmm_regs)
3663 {
3664 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3665 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3666 }
3667 else
3668 {
3669 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3670 - num_lower_zmm_regs);
3671 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3672 - num_lower_zmm_regs);
3673 }
3674 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3675 return 0;
3676 }
3677 else if (i386_ymm_regnum_p (gdbarch, regnum))
3678 {
3679 regnum -= tdep->ymm0_regnum;
3680 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3681 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3682 return 0;
3683 }
3684 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3685 {
3686 regnum -= tdep->ymm16_regnum;
3687 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3688 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3689 return 0;
3690 }
3691 else if (i386_word_regnum_p (gdbarch, regnum))
3692 {
3693 int gpnum = regnum - tdep->ax_regnum;
3694
3695 ax_reg_mask (ax, gpnum);
3696 return 0;
3697 }
3698 else if (i386_byte_regnum_p (gdbarch, regnum))
3699 {
3700 int gpnum = regnum - tdep->al_regnum;
3701
3702 ax_reg_mask (ax, gpnum % 4);
3703 return 0;
3704 }
3705 else
3706 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3707 return 1;
3708 }
3709 \f
3710
3711 /* Return the register number of the register allocated by GCC after
3712 REGNUM, or -1 if there is no such register. */
3713
3714 static int
3715 i386_next_regnum (int regnum)
3716 {
3717 /* GCC allocates the registers in the order:
3718
3719 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3720
3721 Since storing a variable in %esp doesn't make any sense we return
3722 -1 for %ebp and for %esp itself. */
3723 static int next_regnum[] =
3724 {
3725 I386_EDX_REGNUM, /* Slot for %eax. */
3726 I386_EBX_REGNUM, /* Slot for %ecx. */
3727 I386_ECX_REGNUM, /* Slot for %edx. */
3728 I386_ESI_REGNUM, /* Slot for %ebx. */
3729 -1, -1, /* Slots for %esp and %ebp. */
3730 I386_EDI_REGNUM, /* Slot for %esi. */
3731 I386_EBP_REGNUM /* Slot for %edi. */
3732 };
3733
3734 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3735 return next_regnum[regnum];
3736
3737 return -1;
3738 }
3739
3740 /* Return nonzero if a value of type TYPE stored in register REGNUM
3741 needs any special handling. */
3742
3743 static int
3744 i386_convert_register_p (struct gdbarch *gdbarch,
3745 int regnum, struct type *type)
3746 {
3747 int len = TYPE_LENGTH (type);
3748
3749 /* Values may be spread across multiple registers. Most debugging
3750 formats aren't expressive enough to specify the locations, so
3751 some heuristics is involved. Right now we only handle types that
3752 have a length that is a multiple of the word size, since GCC
3753 doesn't seem to put any other types into registers. */
3754 if (len > 4 && len % 4 == 0)
3755 {
3756 int last_regnum = regnum;
3757
3758 while (len > 4)
3759 {
3760 last_regnum = i386_next_regnum (last_regnum);
3761 len -= 4;
3762 }
3763
3764 if (last_regnum != -1)
3765 return 1;
3766 }
3767
3768 return i387_convert_register_p (gdbarch, regnum, type);
3769 }
3770
3771 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3772 return its contents in TO. */
3773
3774 static int
3775 i386_register_to_value (struct frame_info *frame, int regnum,
3776 struct type *type, gdb_byte *to,
3777 int *optimizedp, int *unavailablep)
3778 {
3779 struct gdbarch *gdbarch = get_frame_arch (frame);
3780 int len = TYPE_LENGTH (type);
3781
3782 if (i386_fp_regnum_p (gdbarch, regnum))
3783 return i387_register_to_value (frame, regnum, type, to,
3784 optimizedp, unavailablep);
3785
3786 /* Read a value spread across multiple registers. */
3787
3788 gdb_assert (len > 4 && len % 4 == 0);
3789
3790 while (len > 0)
3791 {
3792 gdb_assert (regnum != -1);
3793 gdb_assert (register_size (gdbarch, regnum) == 4);
3794
3795 if (!get_frame_register_bytes (frame, regnum, 0,
3796 gdb::make_array_view (to,
3797 register_size (gdbarch,
3798 regnum)),
3799 optimizedp, unavailablep))
3800 return 0;
3801
3802 regnum = i386_next_regnum (regnum);
3803 len -= 4;
3804 to += 4;
3805 }
3806
3807 *optimizedp = *unavailablep = 0;
3808 return 1;
3809 }
3810
3811 /* Write the contents FROM of a value of type TYPE into register
3812 REGNUM in frame FRAME. */
3813
3814 static void
3815 i386_value_to_register (struct frame_info *frame, int regnum,
3816 struct type *type, const gdb_byte *from)
3817 {
3818 int len = TYPE_LENGTH (type);
3819
3820 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3821 {
3822 i387_value_to_register (frame, regnum, type, from);
3823 return;
3824 }
3825
3826 /* Write a value spread across multiple registers. */
3827
3828 gdb_assert (len > 4 && len % 4 == 0);
3829
3830 while (len > 0)
3831 {
3832 gdb_assert (regnum != -1);
3833 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3834
3835 put_frame_register (frame, regnum, from);
3836 regnum = i386_next_regnum (regnum);
3837 len -= 4;
3838 from += 4;
3839 }
3840 }
3841 \f
3842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3843 in the general-purpose register set REGSET to register cache
3844 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3845
3846 void
3847 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3848 int regnum, const void *gregs, size_t len)
3849 {
3850 struct gdbarch *gdbarch = regcache->arch ();
3851 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3852 const gdb_byte *regs = (const gdb_byte *) gregs;
3853 int i;
3854
3855 gdb_assert (len >= tdep->sizeof_gregset);
3856
3857 for (i = 0; i < tdep->gregset_num_regs; i++)
3858 {
3859 if ((regnum == i || regnum == -1)
3860 && tdep->gregset_reg_offset[i] != -1)
3861 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3862 }
3863 }
3864
3865 /* Collect register REGNUM from the register cache REGCACHE and store
3866 it in the buffer specified by GREGS and LEN as described by the
3867 general-purpose register set REGSET. If REGNUM is -1, do this for
3868 all registers in REGSET. */
3869
3870 static void
3871 i386_collect_gregset (const struct regset *regset,
3872 const struct regcache *regcache,
3873 int regnum, void *gregs, size_t len)
3874 {
3875 struct gdbarch *gdbarch = regcache->arch ();
3876 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3877 gdb_byte *regs = (gdb_byte *) gregs;
3878 int i;
3879
3880 gdb_assert (len >= tdep->sizeof_gregset);
3881
3882 for (i = 0; i < tdep->gregset_num_regs; i++)
3883 {
3884 if ((regnum == i || regnum == -1)
3885 && tdep->gregset_reg_offset[i] != -1)
3886 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3887 }
3888 }
3889
3890 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3891 in the floating-point register set REGSET to register cache
3892 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3893
3894 static void
3895 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3896 int regnum, const void *fpregs, size_t len)
3897 {
3898 struct gdbarch *gdbarch = regcache->arch ();
3899 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3900
3901 if (len == I387_SIZEOF_FXSAVE)
3902 {
3903 i387_supply_fxsave (regcache, regnum, fpregs);
3904 return;
3905 }
3906
3907 gdb_assert (len >= tdep->sizeof_fpregset);
3908 i387_supply_fsave (regcache, regnum, fpregs);
3909 }
3910
3911 /* Collect register REGNUM from the register cache REGCACHE and store
3912 it in the buffer specified by FPREGS and LEN as described by the
3913 floating-point register set REGSET. If REGNUM is -1, do this for
3914 all registers in REGSET. */
3915
3916 static void
3917 i386_collect_fpregset (const struct regset *regset,
3918 const struct regcache *regcache,
3919 int regnum, void *fpregs, size_t len)
3920 {
3921 struct gdbarch *gdbarch = regcache->arch ();
3922 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3923
3924 if (len == I387_SIZEOF_FXSAVE)
3925 {
3926 i387_collect_fxsave (regcache, regnum, fpregs);
3927 return;
3928 }
3929
3930 gdb_assert (len >= tdep->sizeof_fpregset);
3931 i387_collect_fsave (regcache, regnum, fpregs);
3932 }
3933
3934 /* Register set definitions. */
3935
3936 const struct regset i386_gregset =
3937 {
3938 NULL, i386_supply_gregset, i386_collect_gregset
3939 };
3940
3941 const struct regset i386_fpregset =
3942 {
3943 NULL, i386_supply_fpregset, i386_collect_fpregset
3944 };
3945
3946 /* Default iterator over core file register note sections. */
3947
3948 void
3949 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3950 iterate_over_regset_sections_cb *cb,
3951 void *cb_data,
3952 const struct regcache *regcache)
3953 {
3954 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3955
3956 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3957 cb_data);
3958 if (tdep->sizeof_fpregset)
3959 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3960 NULL, cb_data);
3961 }
3962 \f
3963
3964 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3965
3966 CORE_ADDR
3967 i386_pe_skip_trampoline_code (struct frame_info *frame,
3968 CORE_ADDR pc, char *name)
3969 {
3970 struct gdbarch *gdbarch = get_frame_arch (frame);
3971 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3972
3973 /* jmp *(dest) */
3974 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3975 {
3976 unsigned long indirect =
3977 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3978 struct minimal_symbol *indsym =
3979 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3980 const char *symname = indsym ? indsym->linkage_name () : 0;
3981
3982 if (symname)
3983 {
3984 if (startswith (symname, "__imp_")
3985 || startswith (symname, "_imp_"))
3986 return name ? 1 :
3987 read_memory_unsigned_integer (indirect, 4, byte_order);
3988 }
3989 }
3990 return 0; /* Not a trampoline. */
3991 }
3992 \f
3993
3994 /* Return whether the THIS_FRAME corresponds to a sigtramp
3995 routine. */
3996
3997 int
3998 i386_sigtramp_p (struct frame_info *this_frame)
3999 {
4000 CORE_ADDR pc = get_frame_pc (this_frame);
4001 const char *name;
4002
4003 find_pc_partial_function (pc, &name, NULL, NULL);
4004 return (name && strcmp ("_sigtramp", name) == 0);
4005 }
4006 \f
4007
4008 /* We have two flavours of disassembly. The machinery on this page
4009 deals with switching between those. */
4010
4011 static int
4012 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4013 {
4014 gdb_assert (disassembly_flavor == att_flavor
4015 || disassembly_flavor == intel_flavor);
4016
4017 info->disassembler_options = disassembly_flavor;
4018
4019 return default_print_insn (pc, info);
4020 }
4021 \f
4022
4023 /* There are a few i386 architecture variants that differ only
4024 slightly from the generic i386 target. For now, we don't give them
4025 their own source file, but include them here. As a consequence,
4026 they'll always be included. */
4027
4028 /* System V Release 4 (SVR4). */
4029
4030 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4031 routine. */
4032
4033 static int
4034 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4035 {
4036 CORE_ADDR pc = get_frame_pc (this_frame);
4037 const char *name;
4038
4039 /* The origin of these symbols is currently unknown. */
4040 find_pc_partial_function (pc, &name, NULL, NULL);
4041 return (name && (strcmp ("_sigreturn", name) == 0
4042 || strcmp ("sigvechandler", name) == 0));
4043 }
4044
4045 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4046 address of the associated sigcontext (ucontext) structure. */
4047
4048 static CORE_ADDR
4049 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4050 {
4051 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4052 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4053 gdb_byte buf[4];
4054 CORE_ADDR sp;
4055
4056 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4057 sp = extract_unsigned_integer (buf, 4, byte_order);
4058
4059 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4060 }
4061
4062 \f
4063
4064 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4065 gdbarch.h. */
4066
4067 int
4068 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4069 {
4070 return (*s == '$' /* Literal number. */
4071 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4072 || (*s == '(' && s[1] == '%') /* Register indirection. */
4073 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4074 }
4075
4076 /* Helper function for i386_stap_parse_special_token.
4077
4078 This function parses operands of the form `-8+3+1(%rbp)', which
4079 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4080
4081 Return true if the operand was parsed successfully, false
4082 otherwise. */
4083
4084 static expr::operation_up
4085 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4086 struct stap_parse_info *p)
4087 {
4088 const char *s = p->arg;
4089
4090 if (isdigit (*s) || *s == '-' || *s == '+')
4091 {
4092 bool got_minus[3];
4093 int i;
4094 long displacements[3];
4095 const char *start;
4096 int len;
4097 char *endp;
4098
4099 got_minus[0] = false;
4100 if (*s == '+')
4101 ++s;
4102 else if (*s == '-')
4103 {
4104 ++s;
4105 got_minus[0] = true;
4106 }
4107
4108 if (!isdigit ((unsigned char) *s))
4109 return {};
4110
4111 displacements[0] = strtol (s, &endp, 10);
4112 s = endp;
4113
4114 if (*s != '+' && *s != '-')
4115 {
4116 /* We are not dealing with a triplet. */
4117 return {};
4118 }
4119
4120 got_minus[1] = false;
4121 if (*s == '+')
4122 ++s;
4123 else
4124 {
4125 ++s;
4126 got_minus[1] = true;
4127 }
4128
4129 if (!isdigit ((unsigned char) *s))
4130 return {};
4131
4132 displacements[1] = strtol (s, &endp, 10);
4133 s = endp;
4134
4135 if (*s != '+' && *s != '-')
4136 {
4137 /* We are not dealing with a triplet. */
4138 return {};
4139 }
4140
4141 got_minus[2] = false;
4142 if (*s == '+')
4143 ++s;
4144 else
4145 {
4146 ++s;
4147 got_minus[2] = true;
4148 }
4149
4150 if (!isdigit ((unsigned char) *s))
4151 return {};
4152
4153 displacements[2] = strtol (s, &endp, 10);
4154 s = endp;
4155
4156 if (*s != '(' || s[1] != '%')
4157 return {};
4158
4159 s += 2;
4160 start = s;
4161
4162 while (isalnum (*s))
4163 ++s;
4164
4165 if (*s++ != ')')
4166 return {};
4167
4168 len = s - start - 1;
4169 std::string regname (start, len);
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname.c_str (), p->saved_arg);
4174
4175 LONGEST value = 0;
4176 for (i = 0; i < 3; i++)
4177 {
4178 LONGEST this_val = displacements[i];
4179 if (got_minus[i])
4180 this_val = -this_val;
4181 value += this_val;
4182 }
4183
4184 p->arg = s;
4185
4186 using namespace expr;
4187
4188 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4189 operation_up offset
4190 = make_operation<long_const_operation> (long_type, value);
4191
4192 operation_up reg
4193 = make_operation<register_operation> (std::move (regname));
4194 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4195 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4196
4197 operation_up sum
4198 = make_operation<add_operation> (std::move (reg), std::move (offset));
4199 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4200 sum = make_operation<unop_cast_operation> (std::move (sum),
4201 arg_ptr_type);
4202 return make_operation<unop_ind_operation> (std::move (sum));
4203 }
4204
4205 return {};
4206 }
4207
4208 /* Helper function for i386_stap_parse_special_token.
4209
4210 This function parses operands of the form `register base +
4211 (register index * size) + offset', as represented in
4212 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4213
4214 Return true if the operand was parsed successfully, false
4215 otherwise. */
4216
4217 static expr::operation_up
4218 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4219 struct stap_parse_info *p)
4220 {
4221 const char *s = p->arg;
4222
4223 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4224 {
4225 bool offset_minus = false;
4226 long offset = 0;
4227 bool size_minus = false;
4228 long size = 0;
4229 const char *start;
4230 int len_base;
4231 int len_index;
4232
4233 if (*s == '+')
4234 ++s;
4235 else if (*s == '-')
4236 {
4237 ++s;
4238 offset_minus = true;
4239 }
4240
4241 if (offset_minus && !isdigit (*s))
4242 return {};
4243
4244 if (isdigit (*s))
4245 {
4246 char *endp;
4247
4248 offset = strtol (s, &endp, 10);
4249 s = endp;
4250 }
4251
4252 if (*s != '(' || s[1] != '%')
4253 return {};
4254
4255 s += 2;
4256 start = s;
4257
4258 while (isalnum (*s))
4259 ++s;
4260
4261 if (*s != ',' || s[1] != '%')
4262 return {};
4263
4264 len_base = s - start;
4265 std::string base (start, len_base);
4266
4267 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4268 error (_("Invalid register name `%s' on expression `%s'."),
4269 base.c_str (), p->saved_arg);
4270
4271 s += 2;
4272 start = s;
4273
4274 while (isalnum (*s))
4275 ++s;
4276
4277 len_index = s - start;
4278 std::string index (start, len_index);
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4281 len_index) == -1)
4282 error (_("Invalid register name `%s' on expression `%s'."),
4283 index.c_str (), p->saved_arg);
4284
4285 if (*s != ',' && *s != ')')
4286 return {};
4287
4288 if (*s == ',')
4289 {
4290 char *endp;
4291
4292 ++s;
4293 if (*s == '+')
4294 ++s;
4295 else if (*s == '-')
4296 {
4297 ++s;
4298 size_minus = true;
4299 }
4300
4301 size = strtol (s, &endp, 10);
4302 s = endp;
4303
4304 if (*s != ')')
4305 return {};
4306 }
4307
4308 ++s;
4309 p->arg = s;
4310
4311 using namespace expr;
4312
4313 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4314 operation_up reg = make_operation<register_operation> (std::move (base));
4315
4316 if (offset != 0)
4317 {
4318 if (offset_minus)
4319 offset = -offset;
4320 operation_up value
4321 = make_operation<long_const_operation> (long_type, offset);
4322 reg = make_operation<add_operation> (std::move (reg),
4323 std::move (value));
4324 }
4325
4326 operation_up ind_reg
4327 = make_operation<register_operation> (std::move (index));
4328
4329 if (size != 0)
4330 {
4331 if (size_minus)
4332 size = -size;
4333 operation_up value
4334 = make_operation<long_const_operation> (long_type, size);
4335 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4336 std::move (value));
4337 }
4338
4339 operation_up sum
4340 = make_operation<add_operation> (std::move (reg),
4341 std::move (ind_reg));
4342
4343 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4344 sum = make_operation<unop_cast_operation> (std::move (sum),
4345 arg_ptr_type);
4346 return make_operation<unop_ind_operation> (std::move (sum));
4347 }
4348
4349 return {};
4350 }
4351
4352 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4353 gdbarch.h. */
4354
4355 expr::operation_up
4356 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4357 struct stap_parse_info *p)
4358 {
4359 /* The special tokens to be parsed here are:
4360
4361 - `register base + (register index * size) + offset', as represented
4362 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4363
4364 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4365 `*(-8 + 3 - 1 + (void *) $eax)'. */
4366
4367 expr::operation_up result
4368 = i386_stap_parse_special_token_triplet (gdbarch, p);
4369
4370 if (result == nullptr)
4371 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4372
4373 return result;
4374 }
4375
4376 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4377 gdbarch.h. */
4378
4379 static std::string
4380 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4381 const std::string &regname, int regnum)
4382 {
4383 static const std::unordered_set<std::string> reg_assoc
4384 = { "ax", "bx", "cx", "dx",
4385 "si", "di", "bp", "sp" };
4386
4387 /* If we are dealing with a register whose size is less than the size
4388 specified by the "[-]N@" prefix, and it is one of the registers that
4389 we know has an extended variant available, then use the extended
4390 version of the register instead. */
4391 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4392 && reg_assoc.find (regname) != reg_assoc.end ())
4393 return "e" + regname;
4394
4395 /* Otherwise, just use the requested register. */
4396 return regname;
4397 }
4398
4399 \f
4400
4401 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4402 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4403
4404 static const char *
4405 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4406 {
4407 return "(x86_64|i.86)";
4408 }
4409
4410 \f
4411
4412 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4413
4414 static bool
4415 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4416 {
4417 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4418 I386_EAX_REGNUM, I386_EIP_REGNUM);
4419 }
4420
4421 /* Generic ELF. */
4422
4423 void
4424 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4425 {
4426 static const char *const stap_integer_prefixes[] = { "$", NULL };
4427 static const char *const stap_register_prefixes[] = { "%", NULL };
4428 static const char *const stap_register_indirection_prefixes[] = { "(",
4429 NULL };
4430 static const char *const stap_register_indirection_suffixes[] = { ")",
4431 NULL };
4432
4433 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4434 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4435
4436 /* Registering SystemTap handlers. */
4437 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4438 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4439 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4440 stap_register_indirection_prefixes);
4441 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4442 stap_register_indirection_suffixes);
4443 set_gdbarch_stap_is_single_operand (gdbarch,
4444 i386_stap_is_single_operand);
4445 set_gdbarch_stap_parse_special_token (gdbarch,
4446 i386_stap_parse_special_token);
4447 set_gdbarch_stap_adjust_register (gdbarch,
4448 i386_stap_adjust_register);
4449
4450 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4451 i386_in_indirect_branch_thunk);
4452 }
4453
4454 /* System V Release 4 (SVR4). */
4455
4456 void
4457 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4458 {
4459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4460
4461 /* System V Release 4 uses ELF. */
4462 i386_elf_init_abi (info, gdbarch);
4463
4464 /* System V Release 4 has shared libraries. */
4465 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4466
4467 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4468 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4469 tdep->sc_pc_offset = 36 + 14 * 4;
4470 tdep->sc_sp_offset = 36 + 17 * 4;
4471
4472 tdep->jb_pc_offset = 20;
4473 }
4474
4475 \f
4476
4477 /* i386 register groups. In addition to the normal groups, add "mmx"
4478 and "sse". */
4479
4480 static struct reggroup *i386_sse_reggroup;
4481 static struct reggroup *i386_mmx_reggroup;
4482
4483 static void
4484 i386_init_reggroups (void)
4485 {
4486 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4487 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4488 }
4489
4490 static void
4491 i386_add_reggroups (struct gdbarch *gdbarch)
4492 {
4493 reggroup_add (gdbarch, i386_sse_reggroup);
4494 reggroup_add (gdbarch, i386_mmx_reggroup);
4495 reggroup_add (gdbarch, general_reggroup);
4496 reggroup_add (gdbarch, float_reggroup);
4497 reggroup_add (gdbarch, all_reggroup);
4498 reggroup_add (gdbarch, save_reggroup);
4499 reggroup_add (gdbarch, restore_reggroup);
4500 reggroup_add (gdbarch, vector_reggroup);
4501 reggroup_add (gdbarch, system_reggroup);
4502 }
4503
4504 int
4505 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4506 struct reggroup *group)
4507 {
4508 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4509 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4510 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4511 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4512 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4513 avx512_p, avx_p, sse_p, pkru_regnum_p;
4514
4515 /* Don't include pseudo registers, except for MMX, in any register
4516 groups. */
4517 if (i386_byte_regnum_p (gdbarch, regnum))
4518 return 0;
4519
4520 if (i386_word_regnum_p (gdbarch, regnum))
4521 return 0;
4522
4523 if (i386_dword_regnum_p (gdbarch, regnum))
4524 return 0;
4525
4526 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4527 if (group == i386_mmx_reggroup)
4528 return mmx_regnum_p;
4529
4530 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4531 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4532 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4533 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4534 if (group == i386_sse_reggroup)
4535 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4536
4537 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4538 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4539 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4540
4541 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4542 == X86_XSTATE_AVX_AVX512_MASK);
4543 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4544 == X86_XSTATE_AVX_MASK) && !avx512_p;
4545 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4546 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4547
4548 if (group == vector_reggroup)
4549 return (mmx_regnum_p
4550 || (zmm_regnum_p && avx512_p)
4551 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4552 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4553 || mxcsr_regnum_p);
4554
4555 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4556 || i386_fpc_regnum_p (gdbarch, regnum));
4557 if (group == float_reggroup)
4558 return fp_regnum_p;
4559
4560 /* For "info reg all", don't include upper YMM registers nor XMM
4561 registers when AVX is supported. */
4562 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4563 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4564 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4565 if (group == all_reggroup
4566 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4567 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4568 || ymmh_regnum_p
4569 || ymmh_avx512_regnum_p
4570 || zmmh_regnum_p))
4571 return 0;
4572
4573 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4574 if (group == all_reggroup
4575 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4576 return bnd_regnum_p;
4577
4578 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4579 if (group == all_reggroup
4580 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4581 return 0;
4582
4583 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4584 if (group == all_reggroup
4585 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4586 return mpx_ctrl_regnum_p;
4587
4588 if (group == general_reggroup)
4589 return (!fp_regnum_p
4590 && !mmx_regnum_p
4591 && !mxcsr_regnum_p
4592 && !xmm_regnum_p
4593 && !xmm_avx512_regnum_p
4594 && !ymm_regnum_p
4595 && !ymmh_regnum_p
4596 && !ymm_avx512_regnum_p
4597 && !ymmh_avx512_regnum_p
4598 && !bndr_regnum_p
4599 && !bnd_regnum_p
4600 && !mpx_ctrl_regnum_p
4601 && !zmm_regnum_p
4602 && !zmmh_regnum_p
4603 && !pkru_regnum_p);
4604
4605 return default_register_reggroup_p (gdbarch, regnum, group);
4606 }
4607 \f
4608
4609 /* Get the ARGIth function argument for the current function. */
4610
4611 static CORE_ADDR
4612 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4613 struct type *type)
4614 {
4615 struct gdbarch *gdbarch = get_frame_arch (frame);
4616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4617 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4618 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4619 }
4620
4621 #define PREFIX_REPZ 0x01
4622 #define PREFIX_REPNZ 0x02
4623 #define PREFIX_LOCK 0x04
4624 #define PREFIX_DATA 0x08
4625 #define PREFIX_ADDR 0x10
4626
4627 /* operand size */
4628 enum
4629 {
4630 OT_BYTE = 0,
4631 OT_WORD,
4632 OT_LONG,
4633 OT_QUAD,
4634 OT_DQUAD,
4635 };
4636
4637 /* i386 arith/logic operations */
4638 enum
4639 {
4640 OP_ADDL,
4641 OP_ORL,
4642 OP_ADCL,
4643 OP_SBBL,
4644 OP_ANDL,
4645 OP_SUBL,
4646 OP_XORL,
4647 OP_CMPL,
4648 };
4649
4650 struct i386_record_s
4651 {
4652 struct gdbarch *gdbarch;
4653 struct regcache *regcache;
4654 CORE_ADDR orig_addr;
4655 CORE_ADDR addr;
4656 int aflag;
4657 int dflag;
4658 int override;
4659 uint8_t modrm;
4660 uint8_t mod, reg, rm;
4661 int ot;
4662 uint8_t rex_x;
4663 uint8_t rex_b;
4664 int rip_offset;
4665 int popl_esp_hack;
4666 const int *regmap;
4667 };
4668
4669 /* Parse the "modrm" part of the memory address irp->addr points at.
4670 Returns -1 if something goes wrong, 0 otherwise. */
4671
4672 static int
4673 i386_record_modrm (struct i386_record_s *irp)
4674 {
4675 struct gdbarch *gdbarch = irp->gdbarch;
4676
4677 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4678 return -1;
4679
4680 irp->addr++;
4681 irp->mod = (irp->modrm >> 6) & 3;
4682 irp->reg = (irp->modrm >> 3) & 7;
4683 irp->rm = irp->modrm & 7;
4684
4685 return 0;
4686 }
4687
4688 /* Extract the memory address that the current instruction writes to,
4689 and return it in *ADDR. Return -1 if something goes wrong. */
4690
4691 static int
4692 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4693 {
4694 struct gdbarch *gdbarch = irp->gdbarch;
4695 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4696 gdb_byte buf[4];
4697 ULONGEST offset64;
4698
4699 *addr = 0;
4700 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4701 {
4702 /* 32/64 bits */
4703 int havesib = 0;
4704 uint8_t scale = 0;
4705 uint8_t byte;
4706 uint8_t index = 0;
4707 uint8_t base = irp->rm;
4708
4709 if (base == 4)
4710 {
4711 havesib = 1;
4712 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4713 return -1;
4714 irp->addr++;
4715 scale = (byte >> 6) & 3;
4716 index = ((byte >> 3) & 7) | irp->rex_x;
4717 base = (byte & 7);
4718 }
4719 base |= irp->rex_b;
4720
4721 switch (irp->mod)
4722 {
4723 case 0:
4724 if ((base & 7) == 5)
4725 {
4726 base = 0xff;
4727 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4728 return -1;
4729 irp->addr += 4;
4730 *addr = extract_signed_integer (buf, 4, byte_order);
4731 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4732 *addr += irp->addr + irp->rip_offset;
4733 }
4734 break;
4735 case 1:
4736 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4737 return -1;
4738 irp->addr++;
4739 *addr = (int8_t) buf[0];
4740 break;
4741 case 2:
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
4744 *addr = extract_signed_integer (buf, 4, byte_order);
4745 irp->addr += 4;
4746 break;
4747 }
4748
4749 offset64 = 0;
4750 if (base != 0xff)
4751 {
4752 if (base == 4 && irp->popl_esp_hack)
4753 *addr += irp->popl_esp_hack;
4754 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4755 &offset64);
4756 }
4757 if (irp->aflag == 2)
4758 {
4759 *addr += offset64;
4760 }
4761 else
4762 *addr = (uint32_t) (offset64 + *addr);
4763
4764 if (havesib && (index != 4 || scale != 0))
4765 {
4766 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4767 &offset64);
4768 if (irp->aflag == 2)
4769 *addr += offset64 << scale;
4770 else
4771 *addr = (uint32_t) (*addr + (offset64 << scale));
4772 }
4773
4774 if (!irp->aflag)
4775 {
4776 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4777 address from 32-bit to 64-bit. */
4778 *addr = (uint32_t) *addr;
4779 }
4780 }
4781 else
4782 {
4783 /* 16 bits */
4784 switch (irp->mod)
4785 {
4786 case 0:
4787 if (irp->rm == 6)
4788 {
4789 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4790 return -1;
4791 irp->addr += 2;
4792 *addr = extract_signed_integer (buf, 2, byte_order);
4793 irp->rm = 0;
4794 goto no_rm;
4795 }
4796 break;
4797 case 1:
4798 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4799 return -1;
4800 irp->addr++;
4801 *addr = (int8_t) buf[0];
4802 break;
4803 case 2:
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
4806 irp->addr += 2;
4807 *addr = extract_signed_integer (buf, 2, byte_order);
4808 break;
4809 }
4810
4811 switch (irp->rm)
4812 {
4813 case 0:
4814 regcache_raw_read_unsigned (irp->regcache,
4815 irp->regmap[X86_RECORD_REBX_REGNUM],
4816 &offset64);
4817 *addr = (uint32_t) (*addr + offset64);
4818 regcache_raw_read_unsigned (irp->regcache,
4819 irp->regmap[X86_RECORD_RESI_REGNUM],
4820 &offset64);
4821 *addr = (uint32_t) (*addr + offset64);
4822 break;
4823 case 1:
4824 regcache_raw_read_unsigned (irp->regcache,
4825 irp->regmap[X86_RECORD_REBX_REGNUM],
4826 &offset64);
4827 *addr = (uint32_t) (*addr + offset64);
4828 regcache_raw_read_unsigned (irp->regcache,
4829 irp->regmap[X86_RECORD_REDI_REGNUM],
4830 &offset64);
4831 *addr = (uint32_t) (*addr + offset64);
4832 break;
4833 case 2:
4834 regcache_raw_read_unsigned (irp->regcache,
4835 irp->regmap[X86_RECORD_REBP_REGNUM],
4836 &offset64);
4837 *addr = (uint32_t) (*addr + offset64);
4838 regcache_raw_read_unsigned (irp->regcache,
4839 irp->regmap[X86_RECORD_RESI_REGNUM],
4840 &offset64);
4841 *addr = (uint32_t) (*addr + offset64);
4842 break;
4843 case 3:
4844 regcache_raw_read_unsigned (irp->regcache,
4845 irp->regmap[X86_RECORD_REBP_REGNUM],
4846 &offset64);
4847 *addr = (uint32_t) (*addr + offset64);
4848 regcache_raw_read_unsigned (irp->regcache,
4849 irp->regmap[X86_RECORD_REDI_REGNUM],
4850 &offset64);
4851 *addr = (uint32_t) (*addr + offset64);
4852 break;
4853 case 4:
4854 regcache_raw_read_unsigned (irp->regcache,
4855 irp->regmap[X86_RECORD_RESI_REGNUM],
4856 &offset64);
4857 *addr = (uint32_t) (*addr + offset64);
4858 break;
4859 case 5:
4860 regcache_raw_read_unsigned (irp->regcache,
4861 irp->regmap[X86_RECORD_REDI_REGNUM],
4862 &offset64);
4863 *addr = (uint32_t) (*addr + offset64);
4864 break;
4865 case 6:
4866 regcache_raw_read_unsigned (irp->regcache,
4867 irp->regmap[X86_RECORD_REBP_REGNUM],
4868 &offset64);
4869 *addr = (uint32_t) (*addr + offset64);
4870 break;
4871 case 7:
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REBX_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 }
4878 *addr &= 0xffff;
4879 }
4880
4881 no_rm:
4882 return 0;
4883 }
4884
4885 /* Record the address and contents of the memory that will be changed
4886 by the current instruction. Return -1 if something goes wrong, 0
4887 otherwise. */
4888
4889 static int
4890 i386_record_lea_modrm (struct i386_record_s *irp)
4891 {
4892 struct gdbarch *gdbarch = irp->gdbarch;
4893 uint64_t addr;
4894
4895 if (irp->override >= 0)
4896 {
4897 if (record_full_memory_query)
4898 {
4899 if (yquery (_("\
4900 Process record ignores the memory change of instruction at address %s\n\
4901 because it can't get the value of the segment register.\n\
4902 Do you want to stop the program?"),
4903 paddress (gdbarch, irp->orig_addr)))
4904 return -1;
4905 }
4906
4907 return 0;
4908 }
4909
4910 if (i386_record_lea_modrm_addr (irp, &addr))
4911 return -1;
4912
4913 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4914 return -1;
4915
4916 return 0;
4917 }
4918
4919 /* Record the effects of a push operation. Return -1 if something
4920 goes wrong, 0 otherwise. */
4921
4922 static int
4923 i386_record_push (struct i386_record_s *irp, int size)
4924 {
4925 ULONGEST addr;
4926
4927 if (record_full_arch_list_add_reg (irp->regcache,
4928 irp->regmap[X86_RECORD_RESP_REGNUM]))
4929 return -1;
4930 regcache_raw_read_unsigned (irp->regcache,
4931 irp->regmap[X86_RECORD_RESP_REGNUM],
4932 &addr);
4933 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4934 return -1;
4935
4936 return 0;
4937 }
4938
4939
4940 /* Defines contents to record. */
4941 #define I386_SAVE_FPU_REGS 0xfffd
4942 #define I386_SAVE_FPU_ENV 0xfffe
4943 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4944
4945 /* Record the values of the floating point registers which will be
4946 changed by the current instruction. Returns -1 if something is
4947 wrong, 0 otherwise. */
4948
4949 static int i386_record_floats (struct gdbarch *gdbarch,
4950 struct i386_record_s *ir,
4951 uint32_t iregnum)
4952 {
4953 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4954 int i;
4955
4956 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4957 happen. Currently we store st0-st7 registers, but we need not store all
4958 registers all the time, in future we use ftag register and record only
4959 those who are not marked as an empty. */
4960
4961 if (I386_SAVE_FPU_REGS == iregnum)
4962 {
4963 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4964 {
4965 if (record_full_arch_list_add_reg (ir->regcache, i))
4966 return -1;
4967 }
4968 }
4969 else if (I386_SAVE_FPU_ENV == iregnum)
4970 {
4971 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4972 {
4973 if (record_full_arch_list_add_reg (ir->regcache, i))
4974 return -1;
4975 }
4976 }
4977 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4978 {
4979 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4980 if (record_full_arch_list_add_reg (ir->regcache, i))
4981 return -1;
4982 }
4983 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4984 (iregnum <= I387_FOP_REGNUM (tdep)))
4985 {
4986 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4987 return -1;
4988 }
4989 else
4990 {
4991 /* Parameter error. */
4992 return -1;
4993 }
4994 if(I386_SAVE_FPU_ENV != iregnum)
4995 {
4996 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4997 {
4998 if (record_full_arch_list_add_reg (ir->regcache, i))
4999 return -1;
5000 }
5001 }
5002 return 0;
5003 }
5004
5005 /* Parse the current instruction, and record the values of the
5006 registers and memory that will be changed by the current
5007 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5008
5009 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5010 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5011
5012 int
5013 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5014 CORE_ADDR input_addr)
5015 {
5016 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5017 int prefixes = 0;
5018 int regnum = 0;
5019 uint32_t opcode;
5020 uint8_t opcode8;
5021 ULONGEST addr;
5022 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5023 struct i386_record_s ir;
5024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5025 uint8_t rex_w = -1;
5026 uint8_t rex_r = 0;
5027
5028 memset (&ir, 0, sizeof (struct i386_record_s));
5029 ir.regcache = regcache;
5030 ir.addr = input_addr;
5031 ir.orig_addr = input_addr;
5032 ir.aflag = 1;
5033 ir.dflag = 1;
5034 ir.override = -1;
5035 ir.popl_esp_hack = 0;
5036 ir.regmap = tdep->record_regmap;
5037 ir.gdbarch = gdbarch;
5038
5039 if (record_debug > 1)
5040 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5041 "addr = %s\n",
5042 paddress (gdbarch, ir.addr));
5043
5044 /* prefixes */
5045 while (1)
5046 {
5047 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5048 return -1;
5049 ir.addr++;
5050 switch (opcode8) /* Instruction prefixes */
5051 {
5052 case REPE_PREFIX_OPCODE:
5053 prefixes |= PREFIX_REPZ;
5054 break;
5055 case REPNE_PREFIX_OPCODE:
5056 prefixes |= PREFIX_REPNZ;
5057 break;
5058 case LOCK_PREFIX_OPCODE:
5059 prefixes |= PREFIX_LOCK;
5060 break;
5061 case CS_PREFIX_OPCODE:
5062 ir.override = X86_RECORD_CS_REGNUM;
5063 break;
5064 case SS_PREFIX_OPCODE:
5065 ir.override = X86_RECORD_SS_REGNUM;
5066 break;
5067 case DS_PREFIX_OPCODE:
5068 ir.override = X86_RECORD_DS_REGNUM;
5069 break;
5070 case ES_PREFIX_OPCODE:
5071 ir.override = X86_RECORD_ES_REGNUM;
5072 break;
5073 case FS_PREFIX_OPCODE:
5074 ir.override = X86_RECORD_FS_REGNUM;
5075 break;
5076 case GS_PREFIX_OPCODE:
5077 ir.override = X86_RECORD_GS_REGNUM;
5078 break;
5079 case DATA_PREFIX_OPCODE:
5080 prefixes |= PREFIX_DATA;
5081 break;
5082 case ADDR_PREFIX_OPCODE:
5083 prefixes |= PREFIX_ADDR;
5084 break;
5085 case 0x40: /* i386 inc %eax */
5086 case 0x41: /* i386 inc %ecx */
5087 case 0x42: /* i386 inc %edx */
5088 case 0x43: /* i386 inc %ebx */
5089 case 0x44: /* i386 inc %esp */
5090 case 0x45: /* i386 inc %ebp */
5091 case 0x46: /* i386 inc %esi */
5092 case 0x47: /* i386 inc %edi */
5093 case 0x48: /* i386 dec %eax */
5094 case 0x49: /* i386 dec %ecx */
5095 case 0x4a: /* i386 dec %edx */
5096 case 0x4b: /* i386 dec %ebx */
5097 case 0x4c: /* i386 dec %esp */
5098 case 0x4d: /* i386 dec %ebp */
5099 case 0x4e: /* i386 dec %esi */
5100 case 0x4f: /* i386 dec %edi */
5101 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5102 {
5103 /* REX */
5104 rex_w = (opcode8 >> 3) & 1;
5105 rex_r = (opcode8 & 0x4) << 1;
5106 ir.rex_x = (opcode8 & 0x2) << 2;
5107 ir.rex_b = (opcode8 & 0x1) << 3;
5108 }
5109 else /* 32 bit target */
5110 goto out_prefixes;
5111 break;
5112 default:
5113 goto out_prefixes;
5114 break;
5115 }
5116 }
5117 out_prefixes:
5118 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5119 {
5120 ir.dflag = 2;
5121 }
5122 else
5123 {
5124 if (prefixes & PREFIX_DATA)
5125 ir.dflag ^= 1;
5126 }
5127 if (prefixes & PREFIX_ADDR)
5128 ir.aflag ^= 1;
5129 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5130 ir.aflag = 2;
5131
5132 /* Now check op code. */
5133 opcode = (uint32_t) opcode8;
5134 reswitch:
5135 switch (opcode)
5136 {
5137 case 0x0f:
5138 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5139 return -1;
5140 ir.addr++;
5141 opcode = (uint32_t) opcode8 | 0x0f00;
5142 goto reswitch;
5143 break;
5144
5145 case 0x00: /* arith & logic */
5146 case 0x01:
5147 case 0x02:
5148 case 0x03:
5149 case 0x04:
5150 case 0x05:
5151 case 0x08:
5152 case 0x09:
5153 case 0x0a:
5154 case 0x0b:
5155 case 0x0c:
5156 case 0x0d:
5157 case 0x10:
5158 case 0x11:
5159 case 0x12:
5160 case 0x13:
5161 case 0x14:
5162 case 0x15:
5163 case 0x18:
5164 case 0x19:
5165 case 0x1a:
5166 case 0x1b:
5167 case 0x1c:
5168 case 0x1d:
5169 case 0x20:
5170 case 0x21:
5171 case 0x22:
5172 case 0x23:
5173 case 0x24:
5174 case 0x25:
5175 case 0x28:
5176 case 0x29:
5177 case 0x2a:
5178 case 0x2b:
5179 case 0x2c:
5180 case 0x2d:
5181 case 0x30:
5182 case 0x31:
5183 case 0x32:
5184 case 0x33:
5185 case 0x34:
5186 case 0x35:
5187 case 0x38:
5188 case 0x39:
5189 case 0x3a:
5190 case 0x3b:
5191 case 0x3c:
5192 case 0x3d:
5193 if (((opcode >> 3) & 7) != OP_CMPL)
5194 {
5195 if ((opcode & 1) == 0)
5196 ir.ot = OT_BYTE;
5197 else
5198 ir.ot = ir.dflag + OT_WORD;
5199
5200 switch ((opcode >> 1) & 3)
5201 {
5202 case 0: /* OP Ev, Gv */
5203 if (i386_record_modrm (&ir))
5204 return -1;
5205 if (ir.mod != 3)
5206 {
5207 if (i386_record_lea_modrm (&ir))
5208 return -1;
5209 }
5210 else
5211 {
5212 ir.rm |= ir.rex_b;
5213 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5214 ir.rm &= 0x3;
5215 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5216 }
5217 break;
5218 case 1: /* OP Gv, Ev */
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 ir.reg |= rex_r;
5222 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5223 ir.reg &= 0x3;
5224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5225 break;
5226 case 2: /* OP A, Iv */
5227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5228 break;
5229 }
5230 }
5231 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5232 break;
5233
5234 case 0x80: /* GRP1 */
5235 case 0x81:
5236 case 0x82:
5237 case 0x83:
5238 if (i386_record_modrm (&ir))
5239 return -1;
5240
5241 if (ir.reg != OP_CMPL)
5242 {
5243 if ((opcode & 1) == 0)
5244 ir.ot = OT_BYTE;
5245 else
5246 ir.ot = ir.dflag + OT_WORD;
5247
5248 if (ir.mod != 3)
5249 {
5250 if (opcode == 0x83)
5251 ir.rip_offset = 1;
5252 else
5253 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5254 if (i386_record_lea_modrm (&ir))
5255 return -1;
5256 }
5257 else
5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5259 }
5260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5261 break;
5262
5263 case 0x40: /* inc */
5264 case 0x41:
5265 case 0x42:
5266 case 0x43:
5267 case 0x44:
5268 case 0x45:
5269 case 0x46:
5270 case 0x47:
5271
5272 case 0x48: /* dec */
5273 case 0x49:
5274 case 0x4a:
5275 case 0x4b:
5276 case 0x4c:
5277 case 0x4d:
5278 case 0x4e:
5279 case 0x4f:
5280
5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5283 break;
5284
5285 case 0xf6: /* GRP3 */
5286 case 0xf7:
5287 if ((opcode & 1) == 0)
5288 ir.ot = OT_BYTE;
5289 else
5290 ir.ot = ir.dflag + OT_WORD;
5291 if (i386_record_modrm (&ir))
5292 return -1;
5293
5294 if (ir.mod != 3 && ir.reg == 0)
5295 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5296
5297 switch (ir.reg)
5298 {
5299 case 0: /* test */
5300 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5301 break;
5302 case 2: /* not */
5303 case 3: /* neg */
5304 if (ir.mod != 3)
5305 {
5306 if (i386_record_lea_modrm (&ir))
5307 return -1;
5308 }
5309 else
5310 {
5311 ir.rm |= ir.rex_b;
5312 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5313 ir.rm &= 0x3;
5314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5315 }
5316 if (ir.reg == 3) /* neg */
5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5318 break;
5319 case 4: /* mul */
5320 case 5: /* imul */
5321 case 6: /* div */
5322 case 7: /* idiv */
5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5324 if (ir.ot != OT_BYTE)
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5326 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5327 break;
5328 default:
5329 ir.addr -= 2;
5330 opcode = opcode << 8 | ir.modrm;
5331 goto no_support;
5332 break;
5333 }
5334 break;
5335
5336 case 0xfe: /* GRP4 */
5337 case 0xff: /* GRP5 */
5338 if (i386_record_modrm (&ir))
5339 return -1;
5340 if (ir.reg >= 2 && opcode == 0xfe)
5341 {
5342 ir.addr -= 2;
5343 opcode = opcode << 8 | ir.modrm;
5344 goto no_support;
5345 }
5346 switch (ir.reg)
5347 {
5348 case 0: /* inc */
5349 case 1: /* dec */
5350 if ((opcode & 1) == 0)
5351 ir.ot = OT_BYTE;
5352 else
5353 ir.ot = ir.dflag + OT_WORD;
5354 if (ir.mod != 3)
5355 {
5356 if (i386_record_lea_modrm (&ir))
5357 return -1;
5358 }
5359 else
5360 {
5361 ir.rm |= ir.rex_b;
5362 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5363 ir.rm &= 0x3;
5364 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5365 }
5366 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5367 break;
5368 case 2: /* call */
5369 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5370 ir.dflag = 2;
5371 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5372 return -1;
5373 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5374 break;
5375 case 3: /* lcall */
5376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5377 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5378 return -1;
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5380 break;
5381 case 4: /* jmp */
5382 case 5: /* ljmp */
5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5384 break;
5385 case 6: /* push */
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 break;
5391 default:
5392 ir.addr -= 2;
5393 opcode = opcode << 8 | ir.modrm;
5394 goto no_support;
5395 break;
5396 }
5397 break;
5398
5399 case 0x84: /* test */
5400 case 0x85:
5401 case 0xa8:
5402 case 0xa9:
5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5404 break;
5405
5406 case 0x98: /* CWDE/CBW */
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5408 break;
5409
5410 case 0x99: /* CDQ/CWD */
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5413 break;
5414
5415 case 0x0faf: /* imul */
5416 case 0x69:
5417 case 0x6b:
5418 ir.ot = ir.dflag + OT_WORD;
5419 if (i386_record_modrm (&ir))
5420 return -1;
5421 if (opcode == 0x69)
5422 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5423 else if (opcode == 0x6b)
5424 ir.rip_offset = 1;
5425 ir.reg |= rex_r;
5426 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5427 ir.reg &= 0x3;
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5430 break;
5431
5432 case 0x0fc0: /* xadd */
5433 case 0x0fc1:
5434 if ((opcode & 1) == 0)
5435 ir.ot = OT_BYTE;
5436 else
5437 ir.ot = ir.dflag + OT_WORD;
5438 if (i386_record_modrm (&ir))
5439 return -1;
5440 ir.reg |= rex_r;
5441 if (ir.mod == 3)
5442 {
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5444 ir.reg &= 0x3;
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5447 ir.rm &= 0x3;
5448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5449 }
5450 else
5451 {
5452 if (i386_record_lea_modrm (&ir))
5453 return -1;
5454 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5455 ir.reg &= 0x3;
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5457 }
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5459 break;
5460
5461 case 0x0fb0: /* cmpxchg */
5462 case 0x0fb1:
5463 if ((opcode & 1) == 0)
5464 ir.ot = OT_BYTE;
5465 else
5466 ir.ot = ir.dflag + OT_WORD;
5467 if (i386_record_modrm (&ir))
5468 return -1;
5469 if (ir.mod == 3)
5470 {
5471 ir.reg |= rex_r;
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5473 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5474 ir.reg &= 0x3;
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5476 }
5477 else
5478 {
5479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5480 if (i386_record_lea_modrm (&ir))
5481 return -1;
5482 }
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5484 break;
5485
5486 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5487 if (i386_record_modrm (&ir))
5488 return -1;
5489 if (ir.mod == 3)
5490 {
5491 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5492 an extended opcode. rdrand has bits 110 (/6) and rdseed
5493 has bits 111 (/7). */
5494 if (ir.reg == 6 || ir.reg == 7)
5495 {
5496 /* The storage register is described by the 3 R/M bits, but the
5497 REX.B prefix may be used to give access to registers
5498 R8~R15. In this case ir.rex_b + R/M will give us the register
5499 in the range R8~R15.
5500
5501 REX.W may also be used to access 64-bit registers, but we
5502 already record entire registers and not just partial bits
5503 of them. */
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5505 /* These instructions also set conditional bits. */
5506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5507 break;
5508 }
5509 else
5510 {
5511 /* We don't handle this particular instruction yet. */
5512 ir.addr -= 2;
5513 opcode = opcode << 8 | ir.modrm;
5514 goto no_support;
5515 }
5516 }
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5519 if (i386_record_lea_modrm (&ir))
5520 return -1;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5522 break;
5523
5524 case 0x50: /* push */
5525 case 0x51:
5526 case 0x52:
5527 case 0x53:
5528 case 0x54:
5529 case 0x55:
5530 case 0x56:
5531 case 0x57:
5532 case 0x68:
5533 case 0x6a:
5534 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5535 ir.dflag = 2;
5536 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5537 return -1;
5538 break;
5539
5540 case 0x06: /* push es */
5541 case 0x0e: /* push cs */
5542 case 0x16: /* push ss */
5543 case 0x1e: /* push ds */
5544 if (ir.regmap[X86_RECORD_R8_REGNUM])
5545 {
5546 ir.addr -= 1;
5547 goto no_support;
5548 }
5549 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5550 return -1;
5551 break;
5552
5553 case 0x0fa0: /* push fs */
5554 case 0x0fa8: /* push gs */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 2;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5561 return -1;
5562 break;
5563
5564 case 0x60: /* pusha */
5565 if (ir.regmap[X86_RECORD_R8_REGNUM])
5566 {
5567 ir.addr -= 1;
5568 goto no_support;
5569 }
5570 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5571 return -1;
5572 break;
5573
5574 case 0x58: /* pop */
5575 case 0x59:
5576 case 0x5a:
5577 case 0x5b:
5578 case 0x5c:
5579 case 0x5d:
5580 case 0x5e:
5581 case 0x5f:
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5584 break;
5585
5586 case 0x61: /* popa */
5587 if (ir.regmap[X86_RECORD_R8_REGNUM])
5588 {
5589 ir.addr -= 1;
5590 goto no_support;
5591 }
5592 for (regnum = X86_RECORD_REAX_REGNUM;
5593 regnum <= X86_RECORD_REDI_REGNUM;
5594 regnum++)
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5596 break;
5597
5598 case 0x8f: /* pop */
5599 if (ir.regmap[X86_RECORD_R8_REGNUM])
5600 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5601 else
5602 ir.ot = ir.dflag + OT_WORD;
5603 if (i386_record_modrm (&ir))
5604 return -1;
5605 if (ir.mod == 3)
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5607 else
5608 {
5609 ir.popl_esp_hack = 1 << ir.ot;
5610 if (i386_record_lea_modrm (&ir))
5611 return -1;
5612 }
5613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5614 break;
5615
5616 case 0xc8: /* enter */
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5619 ir.dflag = 2;
5620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5621 return -1;
5622 break;
5623
5624 case 0xc9: /* leave */
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5627 break;
5628
5629 case 0x07: /* pop es */
5630 if (ir.regmap[X86_RECORD_R8_REGNUM])
5631 {
5632 ir.addr -= 1;
5633 goto no_support;
5634 }
5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5638 break;
5639
5640 case 0x17: /* pop ss */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 break;
5650
5651 case 0x1f: /* pop ds */
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 ir.addr -= 1;
5655 goto no_support;
5656 }
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 break;
5661
5662 case 0x0fa1: /* pop fs */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5666 break;
5667
5668 case 0x0fa9: /* pop gs */
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5672 break;
5673
5674 case 0x88: /* mov */
5675 case 0x89:
5676 case 0xc6:
5677 case 0xc7:
5678 if ((opcode & 1) == 0)
5679 ir.ot = OT_BYTE;
5680 else
5681 ir.ot = ir.dflag + OT_WORD;
5682
5683 if (i386_record_modrm (&ir))
5684 return -1;
5685
5686 if (ir.mod != 3)
5687 {
5688 if (opcode == 0xc6 || opcode == 0xc7)
5689 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5690 if (i386_record_lea_modrm (&ir))
5691 return -1;
5692 }
5693 else
5694 {
5695 if (opcode == 0xc6 || opcode == 0xc7)
5696 ir.rm |= ir.rex_b;
5697 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5698 ir.rm &= 0x3;
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5700 }
5701 break;
5702
5703 case 0x8a: /* mov */
5704 case 0x8b:
5705 if ((opcode & 1) == 0)
5706 ir.ot = OT_BYTE;
5707 else
5708 ir.ot = ir.dflag + OT_WORD;
5709 if (i386_record_modrm (&ir))
5710 return -1;
5711 ir.reg |= rex_r;
5712 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5713 ir.reg &= 0x3;
5714 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5715 break;
5716
5717 case 0x8c: /* mov seg */
5718 if (i386_record_modrm (&ir))
5719 return -1;
5720 if (ir.reg > 5)
5721 {
5722 ir.addr -= 2;
5723 opcode = opcode << 8 | ir.modrm;
5724 goto no_support;
5725 }
5726
5727 if (ir.mod == 3)
5728 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5729 else
5730 {
5731 ir.ot = OT_WORD;
5732 if (i386_record_lea_modrm (&ir))
5733 return -1;
5734 }
5735 break;
5736
5737 case 0x8e: /* mov seg */
5738 if (i386_record_modrm (&ir))
5739 return -1;
5740 switch (ir.reg)
5741 {
5742 case 0:
5743 regnum = X86_RECORD_ES_REGNUM;
5744 break;
5745 case 2:
5746 regnum = X86_RECORD_SS_REGNUM;
5747 break;
5748 case 3:
5749 regnum = X86_RECORD_DS_REGNUM;
5750 break;
5751 case 4:
5752 regnum = X86_RECORD_FS_REGNUM;
5753 break;
5754 case 5:
5755 regnum = X86_RECORD_GS_REGNUM;
5756 break;
5757 default:
5758 ir.addr -= 2;
5759 opcode = opcode << 8 | ir.modrm;
5760 goto no_support;
5761 break;
5762 }
5763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5765 break;
5766
5767 case 0x0fb6: /* movzbS */
5768 case 0x0fb7: /* movzwS */
5769 case 0x0fbe: /* movsbS */
5770 case 0x0fbf: /* movswS */
5771 if (i386_record_modrm (&ir))
5772 return -1;
5773 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5774 break;
5775
5776 case 0x8d: /* lea */
5777 if (i386_record_modrm (&ir))
5778 return -1;
5779 if (ir.mod == 3)
5780 {
5781 ir.addr -= 2;
5782 opcode = opcode << 8 | ir.modrm;
5783 goto no_support;
5784 }
5785 ir.ot = ir.dflag;
5786 ir.reg |= rex_r;
5787 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5788 ir.reg &= 0x3;
5789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5790 break;
5791
5792 case 0xa0: /* mov EAX */
5793 case 0xa1:
5794
5795 case 0xd7: /* xlat */
5796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5797 break;
5798
5799 case 0xa2: /* mov EAX */
5800 case 0xa3:
5801 if (ir.override >= 0)
5802 {
5803 if (record_full_memory_query)
5804 {
5805 if (yquery (_("\
5806 Process record ignores the memory change of instruction at address %s\n\
5807 because it can't get the value of the segment register.\n\
5808 Do you want to stop the program?"),
5809 paddress (gdbarch, ir.orig_addr)))
5810 return -1;
5811 }
5812 }
5813 else
5814 {
5815 if ((opcode & 1) == 0)
5816 ir.ot = OT_BYTE;
5817 else
5818 ir.ot = ir.dflag + OT_WORD;
5819 if (ir.aflag == 2)
5820 {
5821 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5822 return -1;
5823 ir.addr += 8;
5824 addr = extract_unsigned_integer (buf, 8, byte_order);
5825 }
5826 else if (ir.aflag)
5827 {
5828 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5829 return -1;
5830 ir.addr += 4;
5831 addr = extract_unsigned_integer (buf, 4, byte_order);
5832 }
5833 else
5834 {
5835 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5836 return -1;
5837 ir.addr += 2;
5838 addr = extract_unsigned_integer (buf, 2, byte_order);
5839 }
5840 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5841 return -1;
5842 }
5843 break;
5844
5845 case 0xb0: /* mov R, Ib */
5846 case 0xb1:
5847 case 0xb2:
5848 case 0xb3:
5849 case 0xb4:
5850 case 0xb5:
5851 case 0xb6:
5852 case 0xb7:
5853 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5854 ? ((opcode & 0x7) | ir.rex_b)
5855 : ((opcode & 0x7) & 0x3));
5856 break;
5857
5858 case 0xb8: /* mov R, Iv */
5859 case 0xb9:
5860 case 0xba:
5861 case 0xbb:
5862 case 0xbc:
5863 case 0xbd:
5864 case 0xbe:
5865 case 0xbf:
5866 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5867 break;
5868
5869 case 0x91: /* xchg R, EAX */
5870 case 0x92:
5871 case 0x93:
5872 case 0x94:
5873 case 0x95:
5874 case 0x96:
5875 case 0x97:
5876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5877 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5878 break;
5879
5880 case 0x86: /* xchg Ev, Gv */
5881 case 0x87:
5882 if ((opcode & 1) == 0)
5883 ir.ot = OT_BYTE;
5884 else
5885 ir.ot = ir.dflag + OT_WORD;
5886 if (i386_record_modrm (&ir))
5887 return -1;
5888 if (ir.mod == 3)
5889 {
5890 ir.rm |= ir.rex_b;
5891 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5892 ir.rm &= 0x3;
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5894 }
5895 else
5896 {
5897 if (i386_record_lea_modrm (&ir))
5898 return -1;
5899 }
5900 ir.reg |= rex_r;
5901 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5902 ir.reg &= 0x3;
5903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5904 break;
5905
5906 case 0xc4: /* les Gv */
5907 case 0xc5: /* lds Gv */
5908 if (ir.regmap[X86_RECORD_R8_REGNUM])
5909 {
5910 ir.addr -= 1;
5911 goto no_support;
5912 }
5913 /* FALLTHROUGH */
5914 case 0x0fb2: /* lss Gv */
5915 case 0x0fb4: /* lfs Gv */
5916 case 0x0fb5: /* lgs Gv */
5917 if (i386_record_modrm (&ir))
5918 return -1;
5919 if (ir.mod == 3)
5920 {
5921 if (opcode > 0xff)
5922 ir.addr -= 3;
5923 else
5924 ir.addr -= 2;
5925 opcode = opcode << 8 | ir.modrm;
5926 goto no_support;
5927 }
5928 switch (opcode)
5929 {
5930 case 0xc4: /* les Gv */
5931 regnum = X86_RECORD_ES_REGNUM;
5932 break;
5933 case 0xc5: /* lds Gv */
5934 regnum = X86_RECORD_DS_REGNUM;
5935 break;
5936 case 0x0fb2: /* lss Gv */
5937 regnum = X86_RECORD_SS_REGNUM;
5938 break;
5939 case 0x0fb4: /* lfs Gv */
5940 regnum = X86_RECORD_FS_REGNUM;
5941 break;
5942 case 0x0fb5: /* lgs Gv */
5943 regnum = X86_RECORD_GS_REGNUM;
5944 break;
5945 }
5946 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5947 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5949 break;
5950
5951 case 0xc0: /* shifts */
5952 case 0xc1:
5953 case 0xd0:
5954 case 0xd1:
5955 case 0xd2:
5956 case 0xd3:
5957 if ((opcode & 1) == 0)
5958 ir.ot = OT_BYTE;
5959 else
5960 ir.ot = ir.dflag + OT_WORD;
5961 if (i386_record_modrm (&ir))
5962 return -1;
5963 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5964 {
5965 if (i386_record_lea_modrm (&ir))
5966 return -1;
5967 }
5968 else
5969 {
5970 ir.rm |= ir.rex_b;
5971 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5972 ir.rm &= 0x3;
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5974 }
5975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5976 break;
5977
5978 case 0x0fa4:
5979 case 0x0fa5:
5980 case 0x0fac:
5981 case 0x0fad:
5982 if (i386_record_modrm (&ir))
5983 return -1;
5984 if (ir.mod == 3)
5985 {
5986 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5987 return -1;
5988 }
5989 else
5990 {
5991 if (i386_record_lea_modrm (&ir))
5992 return -1;
5993 }
5994 break;
5995
5996 case 0xd8: /* Floats. */
5997 case 0xd9:
5998 case 0xda:
5999 case 0xdb:
6000 case 0xdc:
6001 case 0xdd:
6002 case 0xde:
6003 case 0xdf:
6004 if (i386_record_modrm (&ir))
6005 return -1;
6006 ir.reg |= ((opcode & 7) << 3);
6007 if (ir.mod != 3)
6008 {
6009 /* Memory. */
6010 uint64_t addr64;
6011
6012 if (i386_record_lea_modrm_addr (&ir, &addr64))
6013 return -1;
6014 switch (ir.reg)
6015 {
6016 case 0x02:
6017 case 0x12:
6018 case 0x22:
6019 case 0x32:
6020 /* For fcom, ficom nothing to do. */
6021 break;
6022 case 0x03:
6023 case 0x13:
6024 case 0x23:
6025 case 0x33:
6026 /* For fcomp, ficomp pop FPU stack, store all. */
6027 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6028 return -1;
6029 break;
6030 case 0x00:
6031 case 0x01:
6032 case 0x04:
6033 case 0x05:
6034 case 0x06:
6035 case 0x07:
6036 case 0x10:
6037 case 0x11:
6038 case 0x14:
6039 case 0x15:
6040 case 0x16:
6041 case 0x17:
6042 case 0x20:
6043 case 0x21:
6044 case 0x24:
6045 case 0x25:
6046 case 0x26:
6047 case 0x27:
6048 case 0x30:
6049 case 0x31:
6050 case 0x34:
6051 case 0x35:
6052 case 0x36:
6053 case 0x37:
6054 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6055 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6056 of code, always affects st(0) register. */
6057 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6058 return -1;
6059 break;
6060 case 0x08:
6061 case 0x0a:
6062 case 0x0b:
6063 case 0x18:
6064 case 0x19:
6065 case 0x1a:
6066 case 0x1b:
6067 case 0x1d:
6068 case 0x28:
6069 case 0x29:
6070 case 0x2a:
6071 case 0x2b:
6072 case 0x38:
6073 case 0x39:
6074 case 0x3a:
6075 case 0x3b:
6076 case 0x3c:
6077 case 0x3d:
6078 switch (ir.reg & 7)
6079 {
6080 case 0:
6081 /* Handling fld, fild. */
6082 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6083 return -1;
6084 break;
6085 case 1:
6086 switch (ir.reg >> 4)
6087 {
6088 case 0:
6089 if (record_full_arch_list_add_mem (addr64, 4))
6090 return -1;
6091 break;
6092 case 2:
6093 if (record_full_arch_list_add_mem (addr64, 8))
6094 return -1;
6095 break;
6096 case 3:
6097 break;
6098 default:
6099 if (record_full_arch_list_add_mem (addr64, 2))
6100 return -1;
6101 break;
6102 }
6103 break;
6104 default:
6105 switch (ir.reg >> 4)
6106 {
6107 case 0:
6108 if (record_full_arch_list_add_mem (addr64, 4))
6109 return -1;
6110 if (3 == (ir.reg & 7))
6111 {
6112 /* For fstp m32fp. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_REGS))
6115 return -1;
6116 }
6117 break;
6118 case 1:
6119 if (record_full_arch_list_add_mem (addr64, 4))
6120 return -1;
6121 if ((3 == (ir.reg & 7))
6122 || (5 == (ir.reg & 7))
6123 || (7 == (ir.reg & 7)))
6124 {
6125 /* For fstp insn. */
6126 if (i386_record_floats (gdbarch, &ir,
6127 I386_SAVE_FPU_REGS))
6128 return -1;
6129 }
6130 break;
6131 case 2:
6132 if (record_full_arch_list_add_mem (addr64, 8))
6133 return -1;
6134 if (3 == (ir.reg & 7))
6135 {
6136 /* For fstp m64fp. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 break;
6142 case 3:
6143 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6144 {
6145 /* For fistp, fbld, fild, fbstp. */
6146 if (i386_record_floats (gdbarch, &ir,
6147 I386_SAVE_FPU_REGS))
6148 return -1;
6149 }
6150 /* Fall through */
6151 default:
6152 if (record_full_arch_list_add_mem (addr64, 2))
6153 return -1;
6154 break;
6155 }
6156 break;
6157 }
6158 break;
6159 case 0x0c:
6160 /* Insn fldenv. */
6161 if (i386_record_floats (gdbarch, &ir,
6162 I386_SAVE_FPU_ENV_REG_STACK))
6163 return -1;
6164 break;
6165 case 0x0d:
6166 /* Insn fldcw. */
6167 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6168 return -1;
6169 break;
6170 case 0x2c:
6171 /* Insn frstor. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_ENV_REG_STACK))
6174 return -1;
6175 break;
6176 case 0x0e:
6177 if (ir.dflag)
6178 {
6179 if (record_full_arch_list_add_mem (addr64, 28))
6180 return -1;
6181 }
6182 else
6183 {
6184 if (record_full_arch_list_add_mem (addr64, 14))
6185 return -1;
6186 }
6187 break;
6188 case 0x0f:
6189 case 0x2f:
6190 if (record_full_arch_list_add_mem (addr64, 2))
6191 return -1;
6192 /* Insn fstp, fbstp. */
6193 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6194 return -1;
6195 break;
6196 case 0x1f:
6197 case 0x3e:
6198 if (record_full_arch_list_add_mem (addr64, 10))
6199 return -1;
6200 break;
6201 case 0x2e:
6202 if (ir.dflag)
6203 {
6204 if (record_full_arch_list_add_mem (addr64, 28))
6205 return -1;
6206 addr64 += 28;
6207 }
6208 else
6209 {
6210 if (record_full_arch_list_add_mem (addr64, 14))
6211 return -1;
6212 addr64 += 14;
6213 }
6214 if (record_full_arch_list_add_mem (addr64, 80))
6215 return -1;
6216 /* Insn fsave. */
6217 if (i386_record_floats (gdbarch, &ir,
6218 I386_SAVE_FPU_ENV_REG_STACK))
6219 return -1;
6220 break;
6221 case 0x3f:
6222 if (record_full_arch_list_add_mem (addr64, 8))
6223 return -1;
6224 /* Insn fistp. */
6225 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6226 return -1;
6227 break;
6228 default:
6229 ir.addr -= 2;
6230 opcode = opcode << 8 | ir.modrm;
6231 goto no_support;
6232 break;
6233 }
6234 }
6235 /* Opcode is an extension of modR/M byte. */
6236 else
6237 {
6238 switch (opcode)
6239 {
6240 case 0xd8:
6241 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6242 return -1;
6243 break;
6244 case 0xd9:
6245 if (0x0c == (ir.modrm >> 4))
6246 {
6247 if ((ir.modrm & 0x0f) <= 7)
6248 {
6249 if (i386_record_floats (gdbarch, &ir,
6250 I386_SAVE_FPU_REGS))
6251 return -1;
6252 }
6253 else
6254 {
6255 if (i386_record_floats (gdbarch, &ir,
6256 I387_ST0_REGNUM (tdep)))
6257 return -1;
6258 /* If only st(0) is changing, then we have already
6259 recorded. */
6260 if ((ir.modrm & 0x0f) - 0x08)
6261 {
6262 if (i386_record_floats (gdbarch, &ir,
6263 I387_ST0_REGNUM (tdep) +
6264 ((ir.modrm & 0x0f) - 0x08)))
6265 return -1;
6266 }
6267 }
6268 }
6269 else
6270 {
6271 switch (ir.modrm)
6272 {
6273 case 0xe0:
6274 case 0xe1:
6275 case 0xf0:
6276 case 0xf5:
6277 case 0xf8:
6278 case 0xfa:
6279 case 0xfc:
6280 case 0xfe:
6281 case 0xff:
6282 if (i386_record_floats (gdbarch, &ir,
6283 I387_ST0_REGNUM (tdep)))
6284 return -1;
6285 break;
6286 case 0xf1:
6287 case 0xf2:
6288 case 0xf3:
6289 case 0xf4:
6290 case 0xf6:
6291 case 0xf7:
6292 case 0xe8:
6293 case 0xe9:
6294 case 0xea:
6295 case 0xeb:
6296 case 0xec:
6297 case 0xed:
6298 case 0xee:
6299 case 0xf9:
6300 case 0xfb:
6301 if (i386_record_floats (gdbarch, &ir,
6302 I386_SAVE_FPU_REGS))
6303 return -1;
6304 break;
6305 case 0xfd:
6306 if (i386_record_floats (gdbarch, &ir,
6307 I387_ST0_REGNUM (tdep)))
6308 return -1;
6309 if (i386_record_floats (gdbarch, &ir,
6310 I387_ST0_REGNUM (tdep) + 1))
6311 return -1;
6312 break;
6313 }
6314 }
6315 break;
6316 case 0xda:
6317 if (0xe9 == ir.modrm)
6318 {
6319 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6320 return -1;
6321 }
6322 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6323 {
6324 if (i386_record_floats (gdbarch, &ir,
6325 I387_ST0_REGNUM (tdep)))
6326 return -1;
6327 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6328 {
6329 if (i386_record_floats (gdbarch, &ir,
6330 I387_ST0_REGNUM (tdep) +
6331 (ir.modrm & 0x0f)))
6332 return -1;
6333 }
6334 else if ((ir.modrm & 0x0f) - 0x08)
6335 {
6336 if (i386_record_floats (gdbarch, &ir,
6337 I387_ST0_REGNUM (tdep) +
6338 ((ir.modrm & 0x0f) - 0x08)))
6339 return -1;
6340 }
6341 }
6342 break;
6343 case 0xdb:
6344 if (0xe3 == ir.modrm)
6345 {
6346 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6347 return -1;
6348 }
6349 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6350 {
6351 if (i386_record_floats (gdbarch, &ir,
6352 I387_ST0_REGNUM (tdep)))
6353 return -1;
6354 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6355 {
6356 if (i386_record_floats (gdbarch, &ir,
6357 I387_ST0_REGNUM (tdep) +
6358 (ir.modrm & 0x0f)))
6359 return -1;
6360 }
6361 else if ((ir.modrm & 0x0f) - 0x08)
6362 {
6363 if (i386_record_floats (gdbarch, &ir,
6364 I387_ST0_REGNUM (tdep) +
6365 ((ir.modrm & 0x0f) - 0x08)))
6366 return -1;
6367 }
6368 }
6369 break;
6370 case 0xdc:
6371 if ((0x0c == ir.modrm >> 4)
6372 || (0x0d == ir.modrm >> 4)
6373 || (0x0f == ir.modrm >> 4))
6374 {
6375 if ((ir.modrm & 0x0f) <= 7)
6376 {
6377 if (i386_record_floats (gdbarch, &ir,
6378 I387_ST0_REGNUM (tdep) +
6379 (ir.modrm & 0x0f)))
6380 return -1;
6381 }
6382 else
6383 {
6384 if (i386_record_floats (gdbarch, &ir,
6385 I387_ST0_REGNUM (tdep) +
6386 ((ir.modrm & 0x0f) - 0x08)))
6387 return -1;
6388 }
6389 }
6390 break;
6391 case 0xdd:
6392 if (0x0c == ir.modrm >> 4)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_FTAG_REGNUM (tdep)))
6396 return -1;
6397 }
6398 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6399 {
6400 if ((ir.modrm & 0x0f) <= 7)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I386_SAVE_FPU_REGS))
6411 return -1;
6412 }
6413 }
6414 break;
6415 case 0xde:
6416 if ((0x0c == ir.modrm >> 4)
6417 || (0x0e == ir.modrm >> 4)
6418 || (0x0f == ir.modrm >> 4)
6419 || (0xd9 == ir.modrm))
6420 {
6421 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6422 return -1;
6423 }
6424 break;
6425 case 0xdf:
6426 if (0xe0 == ir.modrm)
6427 {
6428 if (record_full_arch_list_add_reg (ir.regcache,
6429 I386_EAX_REGNUM))
6430 return -1;
6431 }
6432 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6433 {
6434 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6435 return -1;
6436 }
6437 break;
6438 }
6439 }
6440 break;
6441 /* string ops */
6442 case 0xa4: /* movsS */
6443 case 0xa5:
6444 case 0xaa: /* stosS */
6445 case 0xab:
6446 case 0x6c: /* insS */
6447 case 0x6d:
6448 regcache_raw_read_unsigned (ir.regcache,
6449 ir.regmap[X86_RECORD_RECX_REGNUM],
6450 &addr);
6451 if (addr)
6452 {
6453 ULONGEST es, ds;
6454
6455 if ((opcode & 1) == 0)
6456 ir.ot = OT_BYTE;
6457 else
6458 ir.ot = ir.dflag + OT_WORD;
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_REDI_REGNUM],
6461 &addr);
6462
6463 regcache_raw_read_unsigned (ir.regcache,
6464 ir.regmap[X86_RECORD_ES_REGNUM],
6465 &es);
6466 regcache_raw_read_unsigned (ir.regcache,
6467 ir.regmap[X86_RECORD_DS_REGNUM],
6468 &ds);
6469 if (ir.aflag && (es != ds))
6470 {
6471 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6472 if (record_full_memory_query)
6473 {
6474 if (yquery (_("\
6475 Process record ignores the memory change of instruction at address %s\n\
6476 because it can't get the value of the segment register.\n\
6477 Do you want to stop the program?"),
6478 paddress (gdbarch, ir.orig_addr)))
6479 return -1;
6480 }
6481 }
6482 else
6483 {
6484 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6485 return -1;
6486 }
6487
6488 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6490 if (opcode == 0xa4 || opcode == 0xa5)
6491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6493 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6494 }
6495 break;
6496
6497 case 0xa6: /* cmpsS */
6498 case 0xa7:
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6501 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6504 break;
6505
6506 case 0xac: /* lodsS */
6507 case 0xad:
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6510 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6513 break;
6514
6515 case 0xae: /* scasS */
6516 case 0xaf:
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0x6e: /* outsS */
6524 case 0x6f:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0xe4: /* port I/O */
6532 case 0xe5:
6533 case 0xec:
6534 case 0xed:
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6537 break;
6538
6539 case 0xe6:
6540 case 0xe7:
6541 case 0xee:
6542 case 0xef:
6543 break;
6544
6545 /* control */
6546 case 0xc2: /* ret im */
6547 case 0xc3: /* ret */
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xca: /* lret im */
6553 case 0xcb: /* lret */
6554 case 0xcf: /* iret */
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xe8: /* call im */
6561 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6562 ir.dflag = 2;
6563 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6564 return -1;
6565 break;
6566
6567 case 0x9a: /* lcall im */
6568 if (ir.regmap[X86_RECORD_R8_REGNUM])
6569 {
6570 ir.addr -= 1;
6571 goto no_support;
6572 }
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
6576 break;
6577
6578 case 0xe9: /* jmp im */
6579 case 0xea: /* ljmp im */
6580 case 0xeb: /* jmp Jb */
6581 case 0x70: /* jcc Jb */
6582 case 0x71:
6583 case 0x72:
6584 case 0x73:
6585 case 0x74:
6586 case 0x75:
6587 case 0x76:
6588 case 0x77:
6589 case 0x78:
6590 case 0x79:
6591 case 0x7a:
6592 case 0x7b:
6593 case 0x7c:
6594 case 0x7d:
6595 case 0x7e:
6596 case 0x7f:
6597 case 0x0f80: /* jcc Jv */
6598 case 0x0f81:
6599 case 0x0f82:
6600 case 0x0f83:
6601 case 0x0f84:
6602 case 0x0f85:
6603 case 0x0f86:
6604 case 0x0f87:
6605 case 0x0f88:
6606 case 0x0f89:
6607 case 0x0f8a:
6608 case 0x0f8b:
6609 case 0x0f8c:
6610 case 0x0f8d:
6611 case 0x0f8e:
6612 case 0x0f8f:
6613 break;
6614
6615 case 0x0f90: /* setcc Gv */
6616 case 0x0f91:
6617 case 0x0f92:
6618 case 0x0f93:
6619 case 0x0f94:
6620 case 0x0f95:
6621 case 0x0f96:
6622 case 0x0f97:
6623 case 0x0f98:
6624 case 0x0f99:
6625 case 0x0f9a:
6626 case 0x0f9b:
6627 case 0x0f9c:
6628 case 0x0f9d:
6629 case 0x0f9e:
6630 case 0x0f9f:
6631 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6632 ir.ot = OT_BYTE;
6633 if (i386_record_modrm (&ir))
6634 return -1;
6635 if (ir.mod == 3)
6636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6637 : (ir.rm & 0x3));
6638 else
6639 {
6640 if (i386_record_lea_modrm (&ir))
6641 return -1;
6642 }
6643 break;
6644
6645 case 0x0f40: /* cmov Gv, Ev */
6646 case 0x0f41:
6647 case 0x0f42:
6648 case 0x0f43:
6649 case 0x0f44:
6650 case 0x0f45:
6651 case 0x0f46:
6652 case 0x0f47:
6653 case 0x0f48:
6654 case 0x0f49:
6655 case 0x0f4a:
6656 case 0x0f4b:
6657 case 0x0f4c:
6658 case 0x0f4d:
6659 case 0x0f4e:
6660 case 0x0f4f:
6661 if (i386_record_modrm (&ir))
6662 return -1;
6663 ir.reg |= rex_r;
6664 if (ir.dflag == OT_BYTE)
6665 ir.reg &= 0x3;
6666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6667 break;
6668
6669 /* flags */
6670 case 0x9c: /* pushf */
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6672 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6673 ir.dflag = 2;
6674 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6675 return -1;
6676 break;
6677
6678 case 0x9d: /* popf */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6681 break;
6682
6683 case 0x9e: /* sahf */
6684 if (ir.regmap[X86_RECORD_R8_REGNUM])
6685 {
6686 ir.addr -= 1;
6687 goto no_support;
6688 }
6689 /* FALLTHROUGH */
6690 case 0xf5: /* cmc */
6691 case 0xf8: /* clc */
6692 case 0xf9: /* stc */
6693 case 0xfc: /* cld */
6694 case 0xfd: /* std */
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6696 break;
6697
6698 case 0x9f: /* lahf */
6699 if (ir.regmap[X86_RECORD_R8_REGNUM])
6700 {
6701 ir.addr -= 1;
6702 goto no_support;
6703 }
6704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6706 break;
6707
6708 /* bit operations */
6709 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6710 ir.ot = ir.dflag + OT_WORD;
6711 if (i386_record_modrm (&ir))
6712 return -1;
6713 if (ir.reg < 4)
6714 {
6715 ir.addr -= 2;
6716 opcode = opcode << 8 | ir.modrm;
6717 goto no_support;
6718 }
6719 if (ir.reg != 4)
6720 {
6721 if (ir.mod == 3)
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6723 else
6724 {
6725 if (i386_record_lea_modrm (&ir))
6726 return -1;
6727 }
6728 }
6729 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6730 break;
6731
6732 case 0x0fa3: /* bt Gv, Ev */
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6734 break;
6735
6736 case 0x0fab: /* bts */
6737 case 0x0fb3: /* btr */
6738 case 0x0fbb: /* btc */
6739 ir.ot = ir.dflag + OT_WORD;
6740 if (i386_record_modrm (&ir))
6741 return -1;
6742 if (ir.mod == 3)
6743 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6744 else
6745 {
6746 uint64_t addr64;
6747 if (i386_record_lea_modrm_addr (&ir, &addr64))
6748 return -1;
6749 regcache_raw_read_unsigned (ir.regcache,
6750 ir.regmap[ir.reg | rex_r],
6751 &addr);
6752 switch (ir.dflag)
6753 {
6754 case 0:
6755 addr64 += ((int16_t) addr >> 4) << 4;
6756 break;
6757 case 1:
6758 addr64 += ((int32_t) addr >> 5) << 5;
6759 break;
6760 case 2:
6761 addr64 += ((int64_t) addr >> 6) << 6;
6762 break;
6763 }
6764 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6765 return -1;
6766 if (i386_record_lea_modrm (&ir))
6767 return -1;
6768 }
6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6770 break;
6771
6772 case 0x0fbc: /* bsf */
6773 case 0x0fbd: /* bsr */
6774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776 break;
6777
6778 /* bcd */
6779 case 0x27: /* daa */
6780 case 0x2f: /* das */
6781 case 0x37: /* aaa */
6782 case 0x3f: /* aas */
6783 case 0xd4: /* aam */
6784 case 0xd5: /* aad */
6785 if (ir.regmap[X86_RECORD_R8_REGNUM])
6786 {
6787 ir.addr -= 1;
6788 goto no_support;
6789 }
6790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6792 break;
6793
6794 /* misc */
6795 case 0x90: /* nop */
6796 if (prefixes & PREFIX_LOCK)
6797 {
6798 ir.addr -= 1;
6799 goto no_support;
6800 }
6801 break;
6802
6803 case 0x9b: /* fwait */
6804 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6805 return -1;
6806 opcode = (uint32_t) opcode8;
6807 ir.addr++;
6808 goto reswitch;
6809 break;
6810
6811 /* XXX */
6812 case 0xcc: /* int3 */
6813 printf_unfiltered (_("Process record does not support instruction "
6814 "int3.\n"));
6815 ir.addr -= 1;
6816 goto no_support;
6817 break;
6818
6819 /* XXX */
6820 case 0xcd: /* int */
6821 {
6822 int ret;
6823 uint8_t interrupt;
6824 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6825 return -1;
6826 ir.addr++;
6827 if (interrupt != 0x80
6828 || tdep->i386_intx80_record == NULL)
6829 {
6830 printf_unfiltered (_("Process record does not support "
6831 "instruction int 0x%02x.\n"),
6832 interrupt);
6833 ir.addr -= 2;
6834 goto no_support;
6835 }
6836 ret = tdep->i386_intx80_record (ir.regcache);
6837 if (ret)
6838 return ret;
6839 }
6840 break;
6841
6842 /* XXX */
6843 case 0xce: /* into */
6844 printf_unfiltered (_("Process record does not support "
6845 "instruction into.\n"));
6846 ir.addr -= 1;
6847 goto no_support;
6848 break;
6849
6850 case 0xfa: /* cli */
6851 case 0xfb: /* sti */
6852 break;
6853
6854 case 0x62: /* bound */
6855 printf_unfiltered (_("Process record does not support "
6856 "instruction bound.\n"));
6857 ir.addr -= 1;
6858 goto no_support;
6859 break;
6860
6861 case 0x0fc8: /* bswap reg */
6862 case 0x0fc9:
6863 case 0x0fca:
6864 case 0x0fcb:
6865 case 0x0fcc:
6866 case 0x0fcd:
6867 case 0x0fce:
6868 case 0x0fcf:
6869 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6870 break;
6871
6872 case 0xd6: /* salc */
6873 if (ir.regmap[X86_RECORD_R8_REGNUM])
6874 {
6875 ir.addr -= 1;
6876 goto no_support;
6877 }
6878 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6880 break;
6881
6882 case 0xe0: /* loopnz */
6883 case 0xe1: /* loopz */
6884 case 0xe2: /* loop */
6885 case 0xe3: /* jecxz */
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6888 break;
6889
6890 case 0x0f30: /* wrmsr */
6891 printf_unfiltered (_("Process record does not support "
6892 "instruction wrmsr.\n"));
6893 ir.addr -= 2;
6894 goto no_support;
6895 break;
6896
6897 case 0x0f32: /* rdmsr */
6898 printf_unfiltered (_("Process record does not support "
6899 "instruction rdmsr.\n"));
6900 ir.addr -= 2;
6901 goto no_support;
6902 break;
6903
6904 case 0x0f31: /* rdtsc */
6905 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6907 break;
6908
6909 case 0x0f34: /* sysenter */
6910 {
6911 int ret;
6912 if (ir.regmap[X86_RECORD_R8_REGNUM])
6913 {
6914 ir.addr -= 2;
6915 goto no_support;
6916 }
6917 if (tdep->i386_sysenter_record == NULL)
6918 {
6919 printf_unfiltered (_("Process record does not support "
6920 "instruction sysenter.\n"));
6921 ir.addr -= 2;
6922 goto no_support;
6923 }
6924 ret = tdep->i386_sysenter_record (ir.regcache);
6925 if (ret)
6926 return ret;
6927 }
6928 break;
6929
6930 case 0x0f35: /* sysexit */
6931 printf_unfiltered (_("Process record does not support "
6932 "instruction sysexit.\n"));
6933 ir.addr -= 2;
6934 goto no_support;
6935 break;
6936
6937 case 0x0f05: /* syscall */
6938 {
6939 int ret;
6940 if (tdep->i386_syscall_record == NULL)
6941 {
6942 printf_unfiltered (_("Process record does not support "
6943 "instruction syscall.\n"));
6944 ir.addr -= 2;
6945 goto no_support;
6946 }
6947 ret = tdep->i386_syscall_record (ir.regcache);
6948 if (ret)
6949 return ret;
6950 }
6951 break;
6952
6953 case 0x0f07: /* sysret */
6954 printf_unfiltered (_("Process record does not support "
6955 "instruction sysret.\n"));
6956 ir.addr -= 2;
6957 goto no_support;
6958 break;
6959
6960 case 0x0fa2: /* cpuid */
6961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6962 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6965 break;
6966
6967 case 0xf4: /* hlt */
6968 printf_unfiltered (_("Process record does not support "
6969 "instruction hlt.\n"));
6970 ir.addr -= 1;
6971 goto no_support;
6972 break;
6973
6974 case 0x0f00:
6975 if (i386_record_modrm (&ir))
6976 return -1;
6977 switch (ir.reg)
6978 {
6979 case 0: /* sldt */
6980 case 1: /* str */
6981 if (ir.mod == 3)
6982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6983 else
6984 {
6985 ir.ot = OT_WORD;
6986 if (i386_record_lea_modrm (&ir))
6987 return -1;
6988 }
6989 break;
6990 case 2: /* lldt */
6991 case 3: /* ltr */
6992 break;
6993 case 4: /* verr */
6994 case 5: /* verw */
6995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6996 break;
6997 default:
6998 ir.addr -= 3;
6999 opcode = opcode << 8 | ir.modrm;
7000 goto no_support;
7001 break;
7002 }
7003 break;
7004
7005 case 0x0f01:
7006 if (i386_record_modrm (&ir))
7007 return -1;
7008 switch (ir.reg)
7009 {
7010 case 0: /* sgdt */
7011 {
7012 uint64_t addr64;
7013
7014 if (ir.mod == 3)
7015 {
7016 ir.addr -= 3;
7017 opcode = opcode << 8 | ir.modrm;
7018 goto no_support;
7019 }
7020 if (ir.override >= 0)
7021 {
7022 if (record_full_memory_query)
7023 {
7024 if (yquery (_("\
7025 Process record ignores the memory change of instruction at address %s\n\
7026 because it can't get the value of the segment register.\n\
7027 Do you want to stop the program?"),
7028 paddress (gdbarch, ir.orig_addr)))
7029 return -1;
7030 }
7031 }
7032 else
7033 {
7034 if (i386_record_lea_modrm_addr (&ir, &addr64))
7035 return -1;
7036 if (record_full_arch_list_add_mem (addr64, 2))
7037 return -1;
7038 addr64 += 2;
7039 if (ir.regmap[X86_RECORD_R8_REGNUM])
7040 {
7041 if (record_full_arch_list_add_mem (addr64, 8))
7042 return -1;
7043 }
7044 else
7045 {
7046 if (record_full_arch_list_add_mem (addr64, 4))
7047 return -1;
7048 }
7049 }
7050 }
7051 break;
7052 case 1:
7053 if (ir.mod == 3)
7054 {
7055 switch (ir.rm)
7056 {
7057 case 0: /* monitor */
7058 break;
7059 case 1: /* mwait */
7060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7061 break;
7062 default:
7063 ir.addr -= 3;
7064 opcode = opcode << 8 | ir.modrm;
7065 goto no_support;
7066 break;
7067 }
7068 }
7069 else
7070 {
7071 /* sidt */
7072 if (ir.override >= 0)
7073 {
7074 if (record_full_memory_query)
7075 {
7076 if (yquery (_("\
7077 Process record ignores the memory change of instruction at address %s\n\
7078 because it can't get the value of the segment register.\n\
7079 Do you want to stop the program?"),
7080 paddress (gdbarch, ir.orig_addr)))
7081 return -1;
7082 }
7083 }
7084 else
7085 {
7086 uint64_t addr64;
7087
7088 if (i386_record_lea_modrm_addr (&ir, &addr64))
7089 return -1;
7090 if (record_full_arch_list_add_mem (addr64, 2))
7091 return -1;
7092 addr64 += 2;
7093 if (ir.regmap[X86_RECORD_R8_REGNUM])
7094 {
7095 if (record_full_arch_list_add_mem (addr64, 8))
7096 return -1;
7097 }
7098 else
7099 {
7100 if (record_full_arch_list_add_mem (addr64, 4))
7101 return -1;
7102 }
7103 }
7104 }
7105 break;
7106 case 2: /* lgdt */
7107 if (ir.mod == 3)
7108 {
7109 /* xgetbv */
7110 if (ir.rm == 0)
7111 {
7112 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7113 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7114 break;
7115 }
7116 /* xsetbv */
7117 else if (ir.rm == 1)
7118 break;
7119 }
7120 /* Fall through. */
7121 case 3: /* lidt */
7122 if (ir.mod == 3)
7123 {
7124 ir.addr -= 3;
7125 opcode = opcode << 8 | ir.modrm;
7126 goto no_support;
7127 }
7128 break;
7129 case 4: /* smsw */
7130 if (ir.mod == 3)
7131 {
7132 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7133 return -1;
7134 }
7135 else
7136 {
7137 ir.ot = OT_WORD;
7138 if (i386_record_lea_modrm (&ir))
7139 return -1;
7140 }
7141 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7142 break;
7143 case 6: /* lmsw */
7144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7145 break;
7146 case 7: /* invlpg */
7147 if (ir.mod == 3)
7148 {
7149 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7151 else
7152 {
7153 ir.addr -= 3;
7154 opcode = opcode << 8 | ir.modrm;
7155 goto no_support;
7156 }
7157 }
7158 else
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7160 break;
7161 default:
7162 ir.addr -= 3;
7163 opcode = opcode << 8 | ir.modrm;
7164 goto no_support;
7165 break;
7166 }
7167 break;
7168
7169 case 0x0f08: /* invd */
7170 case 0x0f09: /* wbinvd */
7171 break;
7172
7173 case 0x63: /* arpl */
7174 if (i386_record_modrm (&ir))
7175 return -1;
7176 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7177 {
7178 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7179 ? (ir.reg | rex_r) : ir.rm);
7180 }
7181 else
7182 {
7183 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7184 if (i386_record_lea_modrm (&ir))
7185 return -1;
7186 }
7187 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7189 break;
7190
7191 case 0x0f02: /* lar */
7192 case 0x0f03: /* lsl */
7193 if (i386_record_modrm (&ir))
7194 return -1;
7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7197 break;
7198
7199 case 0x0f18:
7200 if (i386_record_modrm (&ir))
7201 return -1;
7202 if (ir.mod == 3 && ir.reg == 3)
7203 {
7204 ir.addr -= 3;
7205 opcode = opcode << 8 | ir.modrm;
7206 goto no_support;
7207 }
7208 break;
7209
7210 case 0x0f19:
7211 case 0x0f1a:
7212 case 0x0f1b:
7213 case 0x0f1c:
7214 case 0x0f1d:
7215 case 0x0f1e:
7216 case 0x0f1f:
7217 /* nop (multi byte) */
7218 break;
7219
7220 case 0x0f20: /* mov reg, crN */
7221 case 0x0f22: /* mov crN, reg */
7222 if (i386_record_modrm (&ir))
7223 return -1;
7224 if ((ir.modrm & 0xc0) != 0xc0)
7225 {
7226 ir.addr -= 3;
7227 opcode = opcode << 8 | ir.modrm;
7228 goto no_support;
7229 }
7230 switch (ir.reg)
7231 {
7232 case 0:
7233 case 2:
7234 case 3:
7235 case 4:
7236 case 8:
7237 if (opcode & 2)
7238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7239 else
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7241 break;
7242 default:
7243 ir.addr -= 3;
7244 opcode = opcode << 8 | ir.modrm;
7245 goto no_support;
7246 break;
7247 }
7248 break;
7249
7250 case 0x0f21: /* mov reg, drN */
7251 case 0x0f23: /* mov drN, reg */
7252 if (i386_record_modrm (&ir))
7253 return -1;
7254 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7255 || ir.reg == 5 || ir.reg >= 8)
7256 {
7257 ir.addr -= 3;
7258 opcode = opcode << 8 | ir.modrm;
7259 goto no_support;
7260 }
7261 if (opcode & 2)
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7263 else
7264 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7265 break;
7266
7267 case 0x0f06: /* clts */
7268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7269 break;
7270
7271 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7272
7273 case 0x0f0d: /* 3DNow! prefetch */
7274 break;
7275
7276 case 0x0f0e: /* 3DNow! femms */
7277 case 0x0f77: /* emms */
7278 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7279 goto no_support;
7280 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7281 break;
7282
7283 case 0x0f0f: /* 3DNow! data */
7284 if (i386_record_modrm (&ir))
7285 return -1;
7286 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7287 return -1;
7288 ir.addr++;
7289 switch (opcode8)
7290 {
7291 case 0x0c: /* 3DNow! pi2fw */
7292 case 0x0d: /* 3DNow! pi2fd */
7293 case 0x1c: /* 3DNow! pf2iw */
7294 case 0x1d: /* 3DNow! pf2id */
7295 case 0x8a: /* 3DNow! pfnacc */
7296 case 0x8e: /* 3DNow! pfpnacc */
7297 case 0x90: /* 3DNow! pfcmpge */
7298 case 0x94: /* 3DNow! pfmin */
7299 case 0x96: /* 3DNow! pfrcp */
7300 case 0x97: /* 3DNow! pfrsqrt */
7301 case 0x9a: /* 3DNow! pfsub */
7302 case 0x9e: /* 3DNow! pfadd */
7303 case 0xa0: /* 3DNow! pfcmpgt */
7304 case 0xa4: /* 3DNow! pfmax */
7305 case 0xa6: /* 3DNow! pfrcpit1 */
7306 case 0xa7: /* 3DNow! pfrsqit1 */
7307 case 0xaa: /* 3DNow! pfsubr */
7308 case 0xae: /* 3DNow! pfacc */
7309 case 0xb0: /* 3DNow! pfcmpeq */
7310 case 0xb4: /* 3DNow! pfmul */
7311 case 0xb6: /* 3DNow! pfrcpit2 */
7312 case 0xb7: /* 3DNow! pmulhrw */
7313 case 0xbb: /* 3DNow! pswapd */
7314 case 0xbf: /* 3DNow! pavgusb */
7315 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7316 goto no_support_3dnow_data;
7317 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7318 break;
7319
7320 default:
7321 no_support_3dnow_data:
7322 opcode = (opcode << 8) | opcode8;
7323 goto no_support;
7324 break;
7325 }
7326 break;
7327
7328 case 0x0faa: /* rsm */
7329 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7330 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7332 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7335 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7338 break;
7339
7340 case 0x0fae:
7341 if (i386_record_modrm (&ir))
7342 return -1;
7343 switch(ir.reg)
7344 {
7345 case 0: /* fxsave */
7346 {
7347 uint64_t tmpu64;
7348
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7350 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7351 return -1;
7352 if (record_full_arch_list_add_mem (tmpu64, 512))
7353 return -1;
7354 }
7355 break;
7356
7357 case 1: /* fxrstor */
7358 {
7359 int i;
7360
7361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7362
7363 for (i = I387_MM0_REGNUM (tdep);
7364 i386_mmx_regnum_p (gdbarch, i); i++)
7365 record_full_arch_list_add_reg (ir.regcache, i);
7366
7367 for (i = I387_XMM0_REGNUM (tdep);
7368 i386_xmm_regnum_p (gdbarch, i); i++)
7369 record_full_arch_list_add_reg (ir.regcache, i);
7370
7371 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7372 record_full_arch_list_add_reg (ir.regcache,
7373 I387_MXCSR_REGNUM(tdep));
7374
7375 for (i = I387_ST0_REGNUM (tdep);
7376 i386_fp_regnum_p (gdbarch, i); i++)
7377 record_full_arch_list_add_reg (ir.regcache, i);
7378
7379 for (i = I387_FCTRL_REGNUM (tdep);
7380 i386_fpc_regnum_p (gdbarch, i); i++)
7381 record_full_arch_list_add_reg (ir.regcache, i);
7382 }
7383 break;
7384
7385 case 2: /* ldmxcsr */
7386 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7387 goto no_support;
7388 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7389 break;
7390
7391 case 3: /* stmxcsr */
7392 ir.ot = OT_LONG;
7393 if (i386_record_lea_modrm (&ir))
7394 return -1;
7395 break;
7396
7397 case 5: /* lfence */
7398 case 6: /* mfence */
7399 case 7: /* sfence clflush */
7400 break;
7401
7402 default:
7403 opcode = (opcode << 8) | ir.modrm;
7404 goto no_support;
7405 break;
7406 }
7407 break;
7408
7409 case 0x0fc3: /* movnti */
7410 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7411 if (i386_record_modrm (&ir))
7412 return -1;
7413 if (ir.mod == 3)
7414 goto no_support;
7415 ir.reg |= rex_r;
7416 if (i386_record_lea_modrm (&ir))
7417 return -1;
7418 break;
7419
7420 /* Add prefix to opcode. */
7421 case 0x0f10:
7422 case 0x0f11:
7423 case 0x0f12:
7424 case 0x0f13:
7425 case 0x0f14:
7426 case 0x0f15:
7427 case 0x0f16:
7428 case 0x0f17:
7429 case 0x0f28:
7430 case 0x0f29:
7431 case 0x0f2a:
7432 case 0x0f2b:
7433 case 0x0f2c:
7434 case 0x0f2d:
7435 case 0x0f2e:
7436 case 0x0f2f:
7437 case 0x0f38:
7438 case 0x0f39:
7439 case 0x0f3a:
7440 case 0x0f50:
7441 case 0x0f51:
7442 case 0x0f52:
7443 case 0x0f53:
7444 case 0x0f54:
7445 case 0x0f55:
7446 case 0x0f56:
7447 case 0x0f57:
7448 case 0x0f58:
7449 case 0x0f59:
7450 case 0x0f5a:
7451 case 0x0f5b:
7452 case 0x0f5c:
7453 case 0x0f5d:
7454 case 0x0f5e:
7455 case 0x0f5f:
7456 case 0x0f60:
7457 case 0x0f61:
7458 case 0x0f62:
7459 case 0x0f63:
7460 case 0x0f64:
7461 case 0x0f65:
7462 case 0x0f66:
7463 case 0x0f67:
7464 case 0x0f68:
7465 case 0x0f69:
7466 case 0x0f6a:
7467 case 0x0f6b:
7468 case 0x0f6c:
7469 case 0x0f6d:
7470 case 0x0f6e:
7471 case 0x0f6f:
7472 case 0x0f70:
7473 case 0x0f71:
7474 case 0x0f72:
7475 case 0x0f73:
7476 case 0x0f74:
7477 case 0x0f75:
7478 case 0x0f76:
7479 case 0x0f7c:
7480 case 0x0f7d:
7481 case 0x0f7e:
7482 case 0x0f7f:
7483 case 0x0fb8:
7484 case 0x0fc2:
7485 case 0x0fc4:
7486 case 0x0fc5:
7487 case 0x0fc6:
7488 case 0x0fd0:
7489 case 0x0fd1:
7490 case 0x0fd2:
7491 case 0x0fd3:
7492 case 0x0fd4:
7493 case 0x0fd5:
7494 case 0x0fd6:
7495 case 0x0fd7:
7496 case 0x0fd8:
7497 case 0x0fd9:
7498 case 0x0fda:
7499 case 0x0fdb:
7500 case 0x0fdc:
7501 case 0x0fdd:
7502 case 0x0fde:
7503 case 0x0fdf:
7504 case 0x0fe0:
7505 case 0x0fe1:
7506 case 0x0fe2:
7507 case 0x0fe3:
7508 case 0x0fe4:
7509 case 0x0fe5:
7510 case 0x0fe6:
7511 case 0x0fe7:
7512 case 0x0fe8:
7513 case 0x0fe9:
7514 case 0x0fea:
7515 case 0x0feb:
7516 case 0x0fec:
7517 case 0x0fed:
7518 case 0x0fee:
7519 case 0x0fef:
7520 case 0x0ff0:
7521 case 0x0ff1:
7522 case 0x0ff2:
7523 case 0x0ff3:
7524 case 0x0ff4:
7525 case 0x0ff5:
7526 case 0x0ff6:
7527 case 0x0ff7:
7528 case 0x0ff8:
7529 case 0x0ff9:
7530 case 0x0ffa:
7531 case 0x0ffb:
7532 case 0x0ffc:
7533 case 0x0ffd:
7534 case 0x0ffe:
7535 /* Mask out PREFIX_ADDR. */
7536 switch ((prefixes & ~PREFIX_ADDR))
7537 {
7538 case PREFIX_REPNZ:
7539 opcode |= 0xf20000;
7540 break;
7541 case PREFIX_DATA:
7542 opcode |= 0x660000;
7543 break;
7544 case PREFIX_REPZ:
7545 opcode |= 0xf30000;
7546 break;
7547 }
7548 reswitch_prefix_add:
7549 switch (opcode)
7550 {
7551 case 0x0f38:
7552 case 0x660f38:
7553 case 0xf20f38:
7554 case 0x0f3a:
7555 case 0x660f3a:
7556 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7557 return -1;
7558 ir.addr++;
7559 opcode = (uint32_t) opcode8 | opcode << 8;
7560 goto reswitch_prefix_add;
7561 break;
7562
7563 case 0x0f10: /* movups */
7564 case 0x660f10: /* movupd */
7565 case 0xf30f10: /* movss */
7566 case 0xf20f10: /* movsd */
7567 case 0x0f12: /* movlps */
7568 case 0x660f12: /* movlpd */
7569 case 0xf30f12: /* movsldup */
7570 case 0xf20f12: /* movddup */
7571 case 0x0f14: /* unpcklps */
7572 case 0x660f14: /* unpcklpd */
7573 case 0x0f15: /* unpckhps */
7574 case 0x660f15: /* unpckhpd */
7575 case 0x0f16: /* movhps */
7576 case 0x660f16: /* movhpd */
7577 case 0xf30f16: /* movshdup */
7578 case 0x0f28: /* movaps */
7579 case 0x660f28: /* movapd */
7580 case 0x0f2a: /* cvtpi2ps */
7581 case 0x660f2a: /* cvtpi2pd */
7582 case 0xf30f2a: /* cvtsi2ss */
7583 case 0xf20f2a: /* cvtsi2sd */
7584 case 0x0f2c: /* cvttps2pi */
7585 case 0x660f2c: /* cvttpd2pi */
7586 case 0x0f2d: /* cvtps2pi */
7587 case 0x660f2d: /* cvtpd2pi */
7588 case 0x660f3800: /* pshufb */
7589 case 0x660f3801: /* phaddw */
7590 case 0x660f3802: /* phaddd */
7591 case 0x660f3803: /* phaddsw */
7592 case 0x660f3804: /* pmaddubsw */
7593 case 0x660f3805: /* phsubw */
7594 case 0x660f3806: /* phsubd */
7595 case 0x660f3807: /* phsubsw */
7596 case 0x660f3808: /* psignb */
7597 case 0x660f3809: /* psignw */
7598 case 0x660f380a: /* psignd */
7599 case 0x660f380b: /* pmulhrsw */
7600 case 0x660f3810: /* pblendvb */
7601 case 0x660f3814: /* blendvps */
7602 case 0x660f3815: /* blendvpd */
7603 case 0x660f381c: /* pabsb */
7604 case 0x660f381d: /* pabsw */
7605 case 0x660f381e: /* pabsd */
7606 case 0x660f3820: /* pmovsxbw */
7607 case 0x660f3821: /* pmovsxbd */
7608 case 0x660f3822: /* pmovsxbq */
7609 case 0x660f3823: /* pmovsxwd */
7610 case 0x660f3824: /* pmovsxwq */
7611 case 0x660f3825: /* pmovsxdq */
7612 case 0x660f3828: /* pmuldq */
7613 case 0x660f3829: /* pcmpeqq */
7614 case 0x660f382a: /* movntdqa */
7615 case 0x660f3a08: /* roundps */
7616 case 0x660f3a09: /* roundpd */
7617 case 0x660f3a0a: /* roundss */
7618 case 0x660f3a0b: /* roundsd */
7619 case 0x660f3a0c: /* blendps */
7620 case 0x660f3a0d: /* blendpd */
7621 case 0x660f3a0e: /* pblendw */
7622 case 0x660f3a0f: /* palignr */
7623 case 0x660f3a20: /* pinsrb */
7624 case 0x660f3a21: /* insertps */
7625 case 0x660f3a22: /* pinsrd pinsrq */
7626 case 0x660f3a40: /* dpps */
7627 case 0x660f3a41: /* dppd */
7628 case 0x660f3a42: /* mpsadbw */
7629 case 0x660f3a60: /* pcmpestrm */
7630 case 0x660f3a61: /* pcmpestri */
7631 case 0x660f3a62: /* pcmpistrm */
7632 case 0x660f3a63: /* pcmpistri */
7633 case 0x0f51: /* sqrtps */
7634 case 0x660f51: /* sqrtpd */
7635 case 0xf20f51: /* sqrtsd */
7636 case 0xf30f51: /* sqrtss */
7637 case 0x0f52: /* rsqrtps */
7638 case 0xf30f52: /* rsqrtss */
7639 case 0x0f53: /* rcpps */
7640 case 0xf30f53: /* rcpss */
7641 case 0x0f54: /* andps */
7642 case 0x660f54: /* andpd */
7643 case 0x0f55: /* andnps */
7644 case 0x660f55: /* andnpd */
7645 case 0x0f56: /* orps */
7646 case 0x660f56: /* orpd */
7647 case 0x0f57: /* xorps */
7648 case 0x660f57: /* xorpd */
7649 case 0x0f58: /* addps */
7650 case 0x660f58: /* addpd */
7651 case 0xf20f58: /* addsd */
7652 case 0xf30f58: /* addss */
7653 case 0x0f59: /* mulps */
7654 case 0x660f59: /* mulpd */
7655 case 0xf20f59: /* mulsd */
7656 case 0xf30f59: /* mulss */
7657 case 0x0f5a: /* cvtps2pd */
7658 case 0x660f5a: /* cvtpd2ps */
7659 case 0xf20f5a: /* cvtsd2ss */
7660 case 0xf30f5a: /* cvtss2sd */
7661 case 0x0f5b: /* cvtdq2ps */
7662 case 0x660f5b: /* cvtps2dq */
7663 case 0xf30f5b: /* cvttps2dq */
7664 case 0x0f5c: /* subps */
7665 case 0x660f5c: /* subpd */
7666 case 0xf20f5c: /* subsd */
7667 case 0xf30f5c: /* subss */
7668 case 0x0f5d: /* minps */
7669 case 0x660f5d: /* minpd */
7670 case 0xf20f5d: /* minsd */
7671 case 0xf30f5d: /* minss */
7672 case 0x0f5e: /* divps */
7673 case 0x660f5e: /* divpd */
7674 case 0xf20f5e: /* divsd */
7675 case 0xf30f5e: /* divss */
7676 case 0x0f5f: /* maxps */
7677 case 0x660f5f: /* maxpd */
7678 case 0xf20f5f: /* maxsd */
7679 case 0xf30f5f: /* maxss */
7680 case 0x660f60: /* punpcklbw */
7681 case 0x660f61: /* punpcklwd */
7682 case 0x660f62: /* punpckldq */
7683 case 0x660f63: /* packsswb */
7684 case 0x660f64: /* pcmpgtb */
7685 case 0x660f65: /* pcmpgtw */
7686 case 0x660f66: /* pcmpgtd */
7687 case 0x660f67: /* packuswb */
7688 case 0x660f68: /* punpckhbw */
7689 case 0x660f69: /* punpckhwd */
7690 case 0x660f6a: /* punpckhdq */
7691 case 0x660f6b: /* packssdw */
7692 case 0x660f6c: /* punpcklqdq */
7693 case 0x660f6d: /* punpckhqdq */
7694 case 0x660f6e: /* movd */
7695 case 0x660f6f: /* movdqa */
7696 case 0xf30f6f: /* movdqu */
7697 case 0x660f70: /* pshufd */
7698 case 0xf20f70: /* pshuflw */
7699 case 0xf30f70: /* pshufhw */
7700 case 0x660f74: /* pcmpeqb */
7701 case 0x660f75: /* pcmpeqw */
7702 case 0x660f76: /* pcmpeqd */
7703 case 0x660f7c: /* haddpd */
7704 case 0xf20f7c: /* haddps */
7705 case 0x660f7d: /* hsubpd */
7706 case 0xf20f7d: /* hsubps */
7707 case 0xf30f7e: /* movq */
7708 case 0x0fc2: /* cmpps */
7709 case 0x660fc2: /* cmppd */
7710 case 0xf20fc2: /* cmpsd */
7711 case 0xf30fc2: /* cmpss */
7712 case 0x660fc4: /* pinsrw */
7713 case 0x0fc6: /* shufps */
7714 case 0x660fc6: /* shufpd */
7715 case 0x660fd0: /* addsubpd */
7716 case 0xf20fd0: /* addsubps */
7717 case 0x660fd1: /* psrlw */
7718 case 0x660fd2: /* psrld */
7719 case 0x660fd3: /* psrlq */
7720 case 0x660fd4: /* paddq */
7721 case 0x660fd5: /* pmullw */
7722 case 0xf30fd6: /* movq2dq */
7723 case 0x660fd8: /* psubusb */
7724 case 0x660fd9: /* psubusw */
7725 case 0x660fda: /* pminub */
7726 case 0x660fdb: /* pand */
7727 case 0x660fdc: /* paddusb */
7728 case 0x660fdd: /* paddusw */
7729 case 0x660fde: /* pmaxub */
7730 case 0x660fdf: /* pandn */
7731 case 0x660fe0: /* pavgb */
7732 case 0x660fe1: /* psraw */
7733 case 0x660fe2: /* psrad */
7734 case 0x660fe3: /* pavgw */
7735 case 0x660fe4: /* pmulhuw */
7736 case 0x660fe5: /* pmulhw */
7737 case 0x660fe6: /* cvttpd2dq */
7738 case 0xf20fe6: /* cvtpd2dq */
7739 case 0xf30fe6: /* cvtdq2pd */
7740 case 0x660fe8: /* psubsb */
7741 case 0x660fe9: /* psubsw */
7742 case 0x660fea: /* pminsw */
7743 case 0x660feb: /* por */
7744 case 0x660fec: /* paddsb */
7745 case 0x660fed: /* paddsw */
7746 case 0x660fee: /* pmaxsw */
7747 case 0x660fef: /* pxor */
7748 case 0xf20ff0: /* lddqu */
7749 case 0x660ff1: /* psllw */
7750 case 0x660ff2: /* pslld */
7751 case 0x660ff3: /* psllq */
7752 case 0x660ff4: /* pmuludq */
7753 case 0x660ff5: /* pmaddwd */
7754 case 0x660ff6: /* psadbw */
7755 case 0x660ff8: /* psubb */
7756 case 0x660ff9: /* psubw */
7757 case 0x660ffa: /* psubd */
7758 case 0x660ffb: /* psubq */
7759 case 0x660ffc: /* paddb */
7760 case 0x660ffd: /* paddw */
7761 case 0x660ffe: /* paddd */
7762 if (i386_record_modrm (&ir))
7763 return -1;
7764 ir.reg |= rex_r;
7765 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7766 goto no_support;
7767 record_full_arch_list_add_reg (ir.regcache,
7768 I387_XMM0_REGNUM (tdep) + ir.reg);
7769 if ((opcode & 0xfffffffc) == 0x660f3a60)
7770 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7771 break;
7772
7773 case 0x0f11: /* movups */
7774 case 0x660f11: /* movupd */
7775 case 0xf30f11: /* movss */
7776 case 0xf20f11: /* movsd */
7777 case 0x0f13: /* movlps */
7778 case 0x660f13: /* movlpd */
7779 case 0x0f17: /* movhps */
7780 case 0x660f17: /* movhpd */
7781 case 0x0f29: /* movaps */
7782 case 0x660f29: /* movapd */
7783 case 0x660f3a14: /* pextrb */
7784 case 0x660f3a15: /* pextrw */
7785 case 0x660f3a16: /* pextrd pextrq */
7786 case 0x660f3a17: /* extractps */
7787 case 0x660f7f: /* movdqa */
7788 case 0xf30f7f: /* movdqu */
7789 if (i386_record_modrm (&ir))
7790 return -1;
7791 if (ir.mod == 3)
7792 {
7793 if (opcode == 0x0f13 || opcode == 0x660f13
7794 || opcode == 0x0f17 || opcode == 0x660f17)
7795 goto no_support;
7796 ir.rm |= ir.rex_b;
7797 if (!i386_xmm_regnum_p (gdbarch,
7798 I387_XMM0_REGNUM (tdep) + ir.rm))
7799 goto no_support;
7800 record_full_arch_list_add_reg (ir.regcache,
7801 I387_XMM0_REGNUM (tdep) + ir.rm);
7802 }
7803 else
7804 {
7805 switch (opcode)
7806 {
7807 case 0x660f3a14:
7808 ir.ot = OT_BYTE;
7809 break;
7810 case 0x660f3a15:
7811 ir.ot = OT_WORD;
7812 break;
7813 case 0x660f3a16:
7814 ir.ot = OT_LONG;
7815 break;
7816 case 0x660f3a17:
7817 ir.ot = OT_QUAD;
7818 break;
7819 default:
7820 ir.ot = OT_DQUAD;
7821 break;
7822 }
7823 if (i386_record_lea_modrm (&ir))
7824 return -1;
7825 }
7826 break;
7827
7828 case 0x0f2b: /* movntps */
7829 case 0x660f2b: /* movntpd */
7830 case 0x0fe7: /* movntq */
7831 case 0x660fe7: /* movntdq */
7832 if (ir.mod == 3)
7833 goto no_support;
7834 if (opcode == 0x0fe7)
7835 ir.ot = OT_QUAD;
7836 else
7837 ir.ot = OT_DQUAD;
7838 if (i386_record_lea_modrm (&ir))
7839 return -1;
7840 break;
7841
7842 case 0xf30f2c: /* cvttss2si */
7843 case 0xf20f2c: /* cvttsd2si */
7844 case 0xf30f2d: /* cvtss2si */
7845 case 0xf20f2d: /* cvtsd2si */
7846 case 0xf20f38f0: /* crc32 */
7847 case 0xf20f38f1: /* crc32 */
7848 case 0x0f50: /* movmskps */
7849 case 0x660f50: /* movmskpd */
7850 case 0x0fc5: /* pextrw */
7851 case 0x660fc5: /* pextrw */
7852 case 0x0fd7: /* pmovmskb */
7853 case 0x660fd7: /* pmovmskb */
7854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7855 break;
7856
7857 case 0x0f3800: /* pshufb */
7858 case 0x0f3801: /* phaddw */
7859 case 0x0f3802: /* phaddd */
7860 case 0x0f3803: /* phaddsw */
7861 case 0x0f3804: /* pmaddubsw */
7862 case 0x0f3805: /* phsubw */
7863 case 0x0f3806: /* phsubd */
7864 case 0x0f3807: /* phsubsw */
7865 case 0x0f3808: /* psignb */
7866 case 0x0f3809: /* psignw */
7867 case 0x0f380a: /* psignd */
7868 case 0x0f380b: /* pmulhrsw */
7869 case 0x0f381c: /* pabsb */
7870 case 0x0f381d: /* pabsw */
7871 case 0x0f381e: /* pabsd */
7872 case 0x0f382b: /* packusdw */
7873 case 0x0f3830: /* pmovzxbw */
7874 case 0x0f3831: /* pmovzxbd */
7875 case 0x0f3832: /* pmovzxbq */
7876 case 0x0f3833: /* pmovzxwd */
7877 case 0x0f3834: /* pmovzxwq */
7878 case 0x0f3835: /* pmovzxdq */
7879 case 0x0f3837: /* pcmpgtq */
7880 case 0x0f3838: /* pminsb */
7881 case 0x0f3839: /* pminsd */
7882 case 0x0f383a: /* pminuw */
7883 case 0x0f383b: /* pminud */
7884 case 0x0f383c: /* pmaxsb */
7885 case 0x0f383d: /* pmaxsd */
7886 case 0x0f383e: /* pmaxuw */
7887 case 0x0f383f: /* pmaxud */
7888 case 0x0f3840: /* pmulld */
7889 case 0x0f3841: /* phminposuw */
7890 case 0x0f3a0f: /* palignr */
7891 case 0x0f60: /* punpcklbw */
7892 case 0x0f61: /* punpcklwd */
7893 case 0x0f62: /* punpckldq */
7894 case 0x0f63: /* packsswb */
7895 case 0x0f64: /* pcmpgtb */
7896 case 0x0f65: /* pcmpgtw */
7897 case 0x0f66: /* pcmpgtd */
7898 case 0x0f67: /* packuswb */
7899 case 0x0f68: /* punpckhbw */
7900 case 0x0f69: /* punpckhwd */
7901 case 0x0f6a: /* punpckhdq */
7902 case 0x0f6b: /* packssdw */
7903 case 0x0f6e: /* movd */
7904 case 0x0f6f: /* movq */
7905 case 0x0f70: /* pshufw */
7906 case 0x0f74: /* pcmpeqb */
7907 case 0x0f75: /* pcmpeqw */
7908 case 0x0f76: /* pcmpeqd */
7909 case 0x0fc4: /* pinsrw */
7910 case 0x0fd1: /* psrlw */
7911 case 0x0fd2: /* psrld */
7912 case 0x0fd3: /* psrlq */
7913 case 0x0fd4: /* paddq */
7914 case 0x0fd5: /* pmullw */
7915 case 0xf20fd6: /* movdq2q */
7916 case 0x0fd8: /* psubusb */
7917 case 0x0fd9: /* psubusw */
7918 case 0x0fda: /* pminub */
7919 case 0x0fdb: /* pand */
7920 case 0x0fdc: /* paddusb */
7921 case 0x0fdd: /* paddusw */
7922 case 0x0fde: /* pmaxub */
7923 case 0x0fdf: /* pandn */
7924 case 0x0fe0: /* pavgb */
7925 case 0x0fe1: /* psraw */
7926 case 0x0fe2: /* psrad */
7927 case 0x0fe3: /* pavgw */
7928 case 0x0fe4: /* pmulhuw */
7929 case 0x0fe5: /* pmulhw */
7930 case 0x0fe8: /* psubsb */
7931 case 0x0fe9: /* psubsw */
7932 case 0x0fea: /* pminsw */
7933 case 0x0feb: /* por */
7934 case 0x0fec: /* paddsb */
7935 case 0x0fed: /* paddsw */
7936 case 0x0fee: /* pmaxsw */
7937 case 0x0fef: /* pxor */
7938 case 0x0ff1: /* psllw */
7939 case 0x0ff2: /* pslld */
7940 case 0x0ff3: /* psllq */
7941 case 0x0ff4: /* pmuludq */
7942 case 0x0ff5: /* pmaddwd */
7943 case 0x0ff6: /* psadbw */
7944 case 0x0ff8: /* psubb */
7945 case 0x0ff9: /* psubw */
7946 case 0x0ffa: /* psubd */
7947 case 0x0ffb: /* psubq */
7948 case 0x0ffc: /* paddb */
7949 case 0x0ffd: /* paddw */
7950 case 0x0ffe: /* paddd */
7951 if (i386_record_modrm (&ir))
7952 return -1;
7953 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7954 goto no_support;
7955 record_full_arch_list_add_reg (ir.regcache,
7956 I387_MM0_REGNUM (tdep) + ir.reg);
7957 break;
7958
7959 case 0x0f71: /* psllw */
7960 case 0x0f72: /* pslld */
7961 case 0x0f73: /* psllq */
7962 if (i386_record_modrm (&ir))
7963 return -1;
7964 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7965 goto no_support;
7966 record_full_arch_list_add_reg (ir.regcache,
7967 I387_MM0_REGNUM (tdep) + ir.rm);
7968 break;
7969
7970 case 0x660f71: /* psllw */
7971 case 0x660f72: /* pslld */
7972 case 0x660f73: /* psllq */
7973 if (i386_record_modrm (&ir))
7974 return -1;
7975 ir.rm |= ir.rex_b;
7976 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7977 goto no_support;
7978 record_full_arch_list_add_reg (ir.regcache,
7979 I387_XMM0_REGNUM (tdep) + ir.rm);
7980 break;
7981
7982 case 0x0f7e: /* movd */
7983 case 0x660f7e: /* movd */
7984 if (i386_record_modrm (&ir))
7985 return -1;
7986 if (ir.mod == 3)
7987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7988 else
7989 {
7990 if (ir.dflag == 2)
7991 ir.ot = OT_QUAD;
7992 else
7993 ir.ot = OT_LONG;
7994 if (i386_record_lea_modrm (&ir))
7995 return -1;
7996 }
7997 break;
7998
7999 case 0x0f7f: /* movq */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (ir.mod == 3)
8003 {
8004 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8005 goto no_support;
8006 record_full_arch_list_add_reg (ir.regcache,
8007 I387_MM0_REGNUM (tdep) + ir.rm);
8008 }
8009 else
8010 {
8011 ir.ot = OT_QUAD;
8012 if (i386_record_lea_modrm (&ir))
8013 return -1;
8014 }
8015 break;
8016
8017 case 0xf30fb8: /* popcnt */
8018 if (i386_record_modrm (&ir))
8019 return -1;
8020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8022 break;
8023
8024 case 0x660fd6: /* movq */
8025 if (i386_record_modrm (&ir))
8026 return -1;
8027 if (ir.mod == 3)
8028 {
8029 ir.rm |= ir.rex_b;
8030 if (!i386_xmm_regnum_p (gdbarch,
8031 I387_XMM0_REGNUM (tdep) + ir.rm))
8032 goto no_support;
8033 record_full_arch_list_add_reg (ir.regcache,
8034 I387_XMM0_REGNUM (tdep) + ir.rm);
8035 }
8036 else
8037 {
8038 ir.ot = OT_QUAD;
8039 if (i386_record_lea_modrm (&ir))
8040 return -1;
8041 }
8042 break;
8043
8044 case 0x660f3817: /* ptest */
8045 case 0x0f2e: /* ucomiss */
8046 case 0x660f2e: /* ucomisd */
8047 case 0x0f2f: /* comiss */
8048 case 0x660f2f: /* comisd */
8049 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8050 break;
8051
8052 case 0x0ff7: /* maskmovq */
8053 regcache_raw_read_unsigned (ir.regcache,
8054 ir.regmap[X86_RECORD_REDI_REGNUM],
8055 &addr);
8056 if (record_full_arch_list_add_mem (addr, 64))
8057 return -1;
8058 break;
8059
8060 case 0x660ff7: /* maskmovdqu */
8061 regcache_raw_read_unsigned (ir.regcache,
8062 ir.regmap[X86_RECORD_REDI_REGNUM],
8063 &addr);
8064 if (record_full_arch_list_add_mem (addr, 128))
8065 return -1;
8066 break;
8067
8068 default:
8069 goto no_support;
8070 break;
8071 }
8072 break;
8073
8074 default:
8075 goto no_support;
8076 break;
8077 }
8078
8079 /* In the future, maybe still need to deal with need_dasm. */
8080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8081 if (record_full_arch_list_add_end ())
8082 return -1;
8083
8084 return 0;
8085
8086 no_support:
8087 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8088 "at address %s.\n"),
8089 (unsigned int) (opcode),
8090 paddress (gdbarch, ir.orig_addr));
8091 return -1;
8092 }
8093
8094 static const int i386_record_regmap[] =
8095 {
8096 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8097 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8098 0, 0, 0, 0, 0, 0, 0, 0,
8099 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8100 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8101 };
8102
8103 /* Check that the given address appears suitable for a fast
8104 tracepoint, which on x86-64 means that we need an instruction of at
8105 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8106 jump and not have to worry about program jumps to an address in the
8107 middle of the tracepoint jump. On x86, it may be possible to use
8108 4-byte jumps with a 2-byte offset to a trampoline located in the
8109 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8110 of instruction to replace, and 0 if not, plus an explanatory
8111 string. */
8112
8113 static int
8114 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8115 std::string *msg)
8116 {
8117 int len, jumplen;
8118
8119 /* Ask the target for the minimum instruction length supported. */
8120 jumplen = target_get_min_fast_tracepoint_insn_len ();
8121
8122 if (jumplen < 0)
8123 {
8124 /* If the target does not support the get_min_fast_tracepoint_insn_len
8125 operation, assume that fast tracepoints will always be implemented
8126 using 4-byte relative jumps on both x86 and x86-64. */
8127 jumplen = 5;
8128 }
8129 else if (jumplen == 0)
8130 {
8131 /* If the target does support get_min_fast_tracepoint_insn_len but
8132 returns zero, then the IPA has not loaded yet. In this case,
8133 we optimistically assume that truncated 2-byte relative jumps
8134 will be available on x86, and compensate later if this assumption
8135 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8136 jumps will always be used. */
8137 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8138 }
8139
8140 /* Check for fit. */
8141 len = gdb_insn_length (gdbarch, addr);
8142
8143 if (len < jumplen)
8144 {
8145 /* Return a bit of target-specific detail to add to the caller's
8146 generic failure message. */
8147 if (msg)
8148 *msg = string_printf (_("; instruction is only %d bytes long, "
8149 "need at least %d bytes for the jump"),
8150 len, jumplen);
8151 return 0;
8152 }
8153 else
8154 {
8155 if (msg)
8156 msg->clear ();
8157 return 1;
8158 }
8159 }
8160
8161 /* Return a floating-point format for a floating-point variable of
8162 length LEN in bits. If non-NULL, NAME is the name of its type.
8163 If no suitable type is found, return NULL. */
8164
8165 static const struct floatformat **
8166 i386_floatformat_for_type (struct gdbarch *gdbarch,
8167 const char *name, int len)
8168 {
8169 if (len == 128 && name)
8170 if (strcmp (name, "__float128") == 0
8171 || strcmp (name, "_Float128") == 0
8172 || strcmp (name, "complex _Float128") == 0
8173 || strcmp (name, "complex(kind=16)") == 0
8174 || strcmp (name, "complex*32") == 0
8175 || strcmp (name, "COMPLEX*32") == 0
8176 || strcmp (name, "quad complex") == 0
8177 || strcmp (name, "real(kind=16)") == 0
8178 || strcmp (name, "real*16") == 0
8179 || strcmp (name, "REAL*16") == 0)
8180 return floatformats_ia64_quad;
8181
8182 return default_floatformat_for_type (gdbarch, name, len);
8183 }
8184
8185 static int
8186 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8187 struct tdesc_arch_data *tdesc_data)
8188 {
8189 const struct target_desc *tdesc = tdep->tdesc;
8190 const struct tdesc_feature *feature_core;
8191
8192 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8193 *feature_avx512, *feature_pkeys, *feature_segments;
8194 int i, num_regs, valid_p;
8195
8196 if (! tdesc_has_registers (tdesc))
8197 return 0;
8198
8199 /* Get core registers. */
8200 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8201 if (feature_core == NULL)
8202 return 0;
8203
8204 /* Get SSE registers. */
8205 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8206
8207 /* Try AVX registers. */
8208 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8209
8210 /* Try MPX registers. */
8211 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8212
8213 /* Try AVX512 registers. */
8214 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8215
8216 /* Try segment base registers. */
8217 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8218
8219 /* Try PKEYS */
8220 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8221
8222 valid_p = 1;
8223
8224 /* The XCR0 bits. */
8225 if (feature_avx512)
8226 {
8227 /* AVX512 register description requires AVX register description. */
8228 if (!feature_avx)
8229 return 0;
8230
8231 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8232
8233 /* It may have been set by OSABI initialization function. */
8234 if (tdep->k0_regnum < 0)
8235 {
8236 tdep->k_register_names = i386_k_names;
8237 tdep->k0_regnum = I386_K0_REGNUM;
8238 }
8239
8240 for (i = 0; i < I387_NUM_K_REGS; i++)
8241 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8242 tdep->k0_regnum + i,
8243 i386_k_names[i]);
8244
8245 if (tdep->num_zmm_regs == 0)
8246 {
8247 tdep->zmmh_register_names = i386_zmmh_names;
8248 tdep->num_zmm_regs = 8;
8249 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8250 }
8251
8252 for (i = 0; i < tdep->num_zmm_regs; i++)
8253 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8254 tdep->zmm0h_regnum + i,
8255 tdep->zmmh_register_names[i]);
8256
8257 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8258 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8259 tdep->xmm16_regnum + i,
8260 tdep->xmm_avx512_register_names[i]);
8261
8262 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8263 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8264 tdep->ymm16h_regnum + i,
8265 tdep->ymm16h_register_names[i]);
8266 }
8267 if (feature_avx)
8268 {
8269 /* AVX register description requires SSE register description. */
8270 if (!feature_sse)
8271 return 0;
8272
8273 if (!feature_avx512)
8274 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8275
8276 /* It may have been set by OSABI initialization function. */
8277 if (tdep->num_ymm_regs == 0)
8278 {
8279 tdep->ymmh_register_names = i386_ymmh_names;
8280 tdep->num_ymm_regs = 8;
8281 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8282 }
8283
8284 for (i = 0; i < tdep->num_ymm_regs; i++)
8285 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8286 tdep->ymm0h_regnum + i,
8287 tdep->ymmh_register_names[i]);
8288 }
8289 else if (feature_sse)
8290 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8291 else
8292 {
8293 tdep->xcr0 = X86_XSTATE_X87_MASK;
8294 tdep->num_xmm_regs = 0;
8295 }
8296
8297 num_regs = tdep->num_core_regs;
8298 for (i = 0; i < num_regs; i++)
8299 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8300 tdep->register_names[i]);
8301
8302 if (feature_sse)
8303 {
8304 /* Need to include %mxcsr, so add one. */
8305 num_regs += tdep->num_xmm_regs + 1;
8306 for (; i < num_regs; i++)
8307 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8308 tdep->register_names[i]);
8309 }
8310
8311 if (feature_mpx)
8312 {
8313 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8314
8315 if (tdep->bnd0r_regnum < 0)
8316 {
8317 tdep->mpx_register_names = i386_mpx_names;
8318 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8319 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8320 }
8321
8322 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8323 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8324 I387_BND0R_REGNUM (tdep) + i,
8325 tdep->mpx_register_names[i]);
8326 }
8327
8328 if (feature_segments)
8329 {
8330 if (tdep->fsbase_regnum < 0)
8331 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8332 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8333 tdep->fsbase_regnum, "fs_base");
8334 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8335 tdep->fsbase_regnum + 1, "gs_base");
8336 }
8337
8338 if (feature_pkeys)
8339 {
8340 tdep->xcr0 |= X86_XSTATE_PKRU;
8341 if (tdep->pkru_regnum < 0)
8342 {
8343 tdep->pkeys_register_names = i386_pkeys_names;
8344 tdep->pkru_regnum = I386_PKRU_REGNUM;
8345 tdep->num_pkeys_regs = 1;
8346 }
8347
8348 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8349 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8350 I387_PKRU_REGNUM (tdep) + i,
8351 tdep->pkeys_register_names[i]);
8352 }
8353
8354 return valid_p;
8355 }
8356
8357 \f
8358
8359 /* Implement the type_align gdbarch function. */
8360
8361 static ULONGEST
8362 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8363 {
8364 type = check_typedef (type);
8365
8366 if (gdbarch_ptr_bit (gdbarch) == 32)
8367 {
8368 if ((type->code () == TYPE_CODE_INT
8369 || type->code () == TYPE_CODE_FLT)
8370 && TYPE_LENGTH (type) > 4)
8371 return 4;
8372
8373 /* Handle x86's funny long double. */
8374 if (type->code () == TYPE_CODE_FLT
8375 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8376 return 4;
8377 }
8378
8379 return 0;
8380 }
8381
8382 \f
8383 /* Note: This is called for both i386 and amd64. */
8384
8385 static struct gdbarch *
8386 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8387 {
8388 struct gdbarch_tdep *tdep;
8389 struct gdbarch *gdbarch;
8390 const struct target_desc *tdesc;
8391 int mm0_regnum;
8392 int ymm0_regnum;
8393 int bnd0_regnum;
8394 int num_bnd_cooked;
8395
8396 /* If there is already a candidate, use it. */
8397 arches = gdbarch_list_lookup_by_info (arches, &info);
8398 if (arches != NULL)
8399 return arches->gdbarch;
8400
8401 /* Allocate space for the new architecture. Assume i386 for now. */
8402 tdep = XCNEW (struct gdbarch_tdep);
8403 gdbarch = gdbarch_alloc (&info, tdep);
8404
8405 /* General-purpose registers. */
8406 tdep->gregset_reg_offset = NULL;
8407 tdep->gregset_num_regs = I386_NUM_GREGS;
8408 tdep->sizeof_gregset = 0;
8409
8410 /* Floating-point registers. */
8411 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8412 tdep->fpregset = &i386_fpregset;
8413
8414 /* The default settings include the FPU registers, the MMX registers
8415 and the SSE registers. This can be overridden for a specific ABI
8416 by adjusting the members `st0_regnum', `mm0_regnum' and
8417 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8418 will show up in the output of "info all-registers". */
8419
8420 tdep->st0_regnum = I386_ST0_REGNUM;
8421
8422 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8423 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8424
8425 tdep->jb_pc_offset = -1;
8426 tdep->struct_return = pcc_struct_return;
8427 tdep->sigtramp_start = 0;
8428 tdep->sigtramp_end = 0;
8429 tdep->sigtramp_p = i386_sigtramp_p;
8430 tdep->sigcontext_addr = NULL;
8431 tdep->sc_reg_offset = NULL;
8432 tdep->sc_pc_offset = -1;
8433 tdep->sc_sp_offset = -1;
8434
8435 tdep->xsave_xcr0_offset = -1;
8436
8437 tdep->record_regmap = i386_record_regmap;
8438
8439 set_gdbarch_type_align (gdbarch, i386_type_align);
8440
8441 /* The format used for `long double' on almost all i386 targets is
8442 the i387 extended floating-point format. In fact, of all targets
8443 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8444 on having a `long double' that's not `long' at all. */
8445 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8446
8447 /* Although the i387 extended floating-point has only 80 significant
8448 bits, a `long double' actually takes up 96, probably to enforce
8449 alignment. */
8450 set_gdbarch_long_double_bit (gdbarch, 96);
8451
8452 /* Support of bfloat16 format. */
8453 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8454
8455 /* Support for floating-point data type variants. */
8456 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8457
8458 /* Register numbers of various important registers. */
8459 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8460 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8461 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8462 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8463
8464 /* NOTE: kettenis/20040418: GCC does have two possible register
8465 numbering schemes on the i386: dbx and SVR4. These schemes
8466 differ in how they number %ebp, %esp, %eflags, and the
8467 floating-point registers, and are implemented by the arrays
8468 dbx_register_map[] and svr4_dbx_register_map in
8469 gcc/config/i386.c. GCC also defines a third numbering scheme in
8470 gcc/config/i386.c, which it designates as the "default" register
8471 map used in 64bit mode. This last register numbering scheme is
8472 implemented in dbx64_register_map, and is used for AMD64; see
8473 amd64-tdep.c.
8474
8475 Currently, each GCC i386 target always uses the same register
8476 numbering scheme across all its supported debugging formats
8477 i.e. SDB (COFF), stabs and DWARF 2. This is because
8478 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8479 DBX_REGISTER_NUMBER macro which is defined by each target's
8480 respective config header in a manner independent of the requested
8481 output debugging format.
8482
8483 This does not match the arrangement below, which presumes that
8484 the SDB and stabs numbering schemes differ from the DWARF and
8485 DWARF 2 ones. The reason for this arrangement is that it is
8486 likely to get the numbering scheme for the target's
8487 default/native debug format right. For targets where GCC is the
8488 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8489 targets where the native toolchain uses a different numbering
8490 scheme for a particular debug format (stabs-in-ELF on Solaris)
8491 the defaults below will have to be overridden, like
8492 i386_elf_init_abi() does. */
8493
8494 /* Use the dbx register numbering scheme for stabs and COFF. */
8495 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8496 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8497
8498 /* Use the SVR4 register numbering scheme for DWARF 2. */
8499 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8500
8501 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8502 be in use on any of the supported i386 targets. */
8503
8504 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8505
8506 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8507
8508 /* Call dummy code. */
8509 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8510 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8511 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8512 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8513
8514 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8515 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8516 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8517
8518 set_gdbarch_return_value (gdbarch, i386_return_value);
8519
8520 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8521
8522 /* Stack grows downward. */
8523 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8524
8525 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8526 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8527
8528 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8529 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8530
8531 set_gdbarch_frame_args_skip (gdbarch, 8);
8532
8533 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8534
8535 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8536
8537 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8538
8539 /* Add the i386 register groups. */
8540 i386_add_reggroups (gdbarch);
8541 tdep->register_reggroup_p = i386_register_reggroup_p;
8542
8543 /* Helper for function argument information. */
8544 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8545
8546 /* Hook the function epilogue frame unwinder. This unwinder is
8547 appended to the list first, so that it supercedes the DWARF
8548 unwinder in function epilogues (where the DWARF unwinder
8549 currently fails). */
8550 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8551
8552 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8553 to the list before the prologue-based unwinders, so that DWARF
8554 CFI info will be used if it is available. */
8555 dwarf2_append_unwinders (gdbarch);
8556
8557 frame_base_set_default (gdbarch, &i386_frame_base);
8558
8559 /* Pseudo registers may be changed by amd64_init_abi. */
8560 set_gdbarch_pseudo_register_read_value (gdbarch,
8561 i386_pseudo_register_read_value);
8562 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8563 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8564 i386_ax_pseudo_register_collect);
8565
8566 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8567 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8568
8569 /* Override the normal target description method to make the AVX
8570 upper halves anonymous. */
8571 set_gdbarch_register_name (gdbarch, i386_register_name);
8572
8573 /* Even though the default ABI only includes general-purpose registers,
8574 floating-point registers and the SSE registers, we have to leave a
8575 gap for the upper AVX, MPX and AVX512 registers. */
8576 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8577
8578 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8579
8580 /* Get the x86 target description from INFO. */
8581 tdesc = info.target_desc;
8582 if (! tdesc_has_registers (tdesc))
8583 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8584 tdep->tdesc = tdesc;
8585
8586 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8587 tdep->register_names = i386_register_names;
8588
8589 /* No upper YMM registers. */
8590 tdep->ymmh_register_names = NULL;
8591 tdep->ymm0h_regnum = -1;
8592
8593 /* No upper ZMM registers. */
8594 tdep->zmmh_register_names = NULL;
8595 tdep->zmm0h_regnum = -1;
8596
8597 /* No high XMM registers. */
8598 tdep->xmm_avx512_register_names = NULL;
8599 tdep->xmm16_regnum = -1;
8600
8601 /* No upper YMM16-31 registers. */
8602 tdep->ymm16h_register_names = NULL;
8603 tdep->ymm16h_regnum = -1;
8604
8605 tdep->num_byte_regs = 8;
8606 tdep->num_word_regs = 8;
8607 tdep->num_dword_regs = 0;
8608 tdep->num_mmx_regs = 8;
8609 tdep->num_ymm_regs = 0;
8610
8611 /* No MPX registers. */
8612 tdep->bnd0r_regnum = -1;
8613 tdep->bndcfgu_regnum = -1;
8614
8615 /* No AVX512 registers. */
8616 tdep->k0_regnum = -1;
8617 tdep->num_zmm_regs = 0;
8618 tdep->num_ymm_avx512_regs = 0;
8619 tdep->num_xmm_avx512_regs = 0;
8620
8621 /* No PKEYS registers */
8622 tdep->pkru_regnum = -1;
8623 tdep->num_pkeys_regs = 0;
8624
8625 /* No segment base registers. */
8626 tdep->fsbase_regnum = -1;
8627
8628 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8629
8630 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8631
8632 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8633
8634 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8635 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8636 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8637
8638 /* Hook in ABI-specific overrides, if they have been registered.
8639 Note: If INFO specifies a 64 bit arch, this is where we turn
8640 a 32-bit i386 into a 64-bit amd64. */
8641 info.tdesc_data = tdesc_data.get ();
8642 gdbarch_init_osabi (info, gdbarch);
8643
8644 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8645 {
8646 xfree (tdep);
8647 gdbarch_free (gdbarch);
8648 return NULL;
8649 }
8650
8651 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8652
8653 /* Wire in pseudo registers. Number of pseudo registers may be
8654 changed. */
8655 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8656 + tdep->num_word_regs
8657 + tdep->num_dword_regs
8658 + tdep->num_mmx_regs
8659 + tdep->num_ymm_regs
8660 + num_bnd_cooked
8661 + tdep->num_ymm_avx512_regs
8662 + tdep->num_zmm_regs));
8663
8664 /* Target description may be changed. */
8665 tdesc = tdep->tdesc;
8666
8667 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8668
8669 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8670 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8671
8672 /* Make %al the first pseudo-register. */
8673 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8674 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8675
8676 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8677 if (tdep->num_dword_regs)
8678 {
8679 /* Support dword pseudo-register if it hasn't been disabled. */
8680 tdep->eax_regnum = ymm0_regnum;
8681 ymm0_regnum += tdep->num_dword_regs;
8682 }
8683 else
8684 tdep->eax_regnum = -1;
8685
8686 mm0_regnum = ymm0_regnum;
8687 if (tdep->num_ymm_regs)
8688 {
8689 /* Support YMM pseudo-register if it is available. */
8690 tdep->ymm0_regnum = ymm0_regnum;
8691 mm0_regnum += tdep->num_ymm_regs;
8692 }
8693 else
8694 tdep->ymm0_regnum = -1;
8695
8696 if (tdep->num_ymm_avx512_regs)
8697 {
8698 /* Support YMM16-31 pseudo registers if available. */
8699 tdep->ymm16_regnum = mm0_regnum;
8700 mm0_regnum += tdep->num_ymm_avx512_regs;
8701 }
8702 else
8703 tdep->ymm16_regnum = -1;
8704
8705 if (tdep->num_zmm_regs)
8706 {
8707 /* Support ZMM pseudo-register if it is available. */
8708 tdep->zmm0_regnum = mm0_regnum;
8709 mm0_regnum += tdep->num_zmm_regs;
8710 }
8711 else
8712 tdep->zmm0_regnum = -1;
8713
8714 bnd0_regnum = mm0_regnum;
8715 if (tdep->num_mmx_regs != 0)
8716 {
8717 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8718 tdep->mm0_regnum = mm0_regnum;
8719 bnd0_regnum += tdep->num_mmx_regs;
8720 }
8721 else
8722 tdep->mm0_regnum = -1;
8723
8724 if (tdep->bnd0r_regnum > 0)
8725 tdep->bnd0_regnum = bnd0_regnum;
8726 else
8727 tdep-> bnd0_regnum = -1;
8728
8729 /* Hook in the legacy prologue-based unwinders last (fallback). */
8730 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8731 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8732 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8733
8734 /* If we have a register mapping, enable the generic core file
8735 support, unless it has already been enabled. */
8736 if (tdep->gregset_reg_offset
8737 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8738 set_gdbarch_iterate_over_regset_sections
8739 (gdbarch, i386_iterate_over_regset_sections);
8740
8741 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8742 i386_fast_tracepoint_valid_at);
8743
8744 return gdbarch;
8745 }
8746
8747 \f
8748
8749 /* Return the target description for a specified XSAVE feature mask. */
8750
8751 const struct target_desc *
8752 i386_target_description (uint64_t xcr0, bool segments)
8753 {
8754 static target_desc *i386_tdescs \
8755 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8756 target_desc **tdesc;
8757
8758 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8759 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8760 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8761 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8762 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8763 [segments ? 1 : 0];
8764
8765 if (*tdesc == NULL)
8766 *tdesc = i386_create_target_description (xcr0, false, segments);
8767
8768 return *tdesc;
8769 }
8770
8771 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8772
8773 /* Find the bound directory base address. */
8774
8775 static unsigned long
8776 i386_mpx_bd_base (void)
8777 {
8778 struct regcache *rcache;
8779 struct gdbarch_tdep *tdep;
8780 ULONGEST ret;
8781 enum register_status regstatus;
8782
8783 rcache = get_current_regcache ();
8784 tdep = gdbarch_tdep (rcache->arch ());
8785
8786 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8787
8788 if (regstatus != REG_VALID)
8789 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8790
8791 return ret & MPX_BASE_MASK;
8792 }
8793
8794 int
8795 i386_mpx_enabled (void)
8796 {
8797 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8798 const struct target_desc *tdesc = tdep->tdesc;
8799
8800 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8801 }
8802
8803 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8804 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8805 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8806 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8807
8808 /* Find the bound table entry given the pointer location and the base
8809 address of the table. */
8810
8811 static CORE_ADDR
8812 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8813 {
8814 CORE_ADDR offset1;
8815 CORE_ADDR offset2;
8816 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8817 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8818 CORE_ADDR bd_entry_addr;
8819 CORE_ADDR bt_addr;
8820 CORE_ADDR bd_entry;
8821 struct gdbarch *gdbarch = get_current_arch ();
8822 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8823
8824
8825 if (gdbarch_ptr_bit (gdbarch) == 64)
8826 {
8827 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8828 bd_ptr_r_shift = 20;
8829 bd_ptr_l_shift = 3;
8830 bt_select_r_shift = 3;
8831 bt_select_l_shift = 5;
8832 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8833
8834 if ( sizeof (CORE_ADDR) == 4)
8835 error (_("bound table examination not supported\
8836 for 64-bit process with 32-bit GDB"));
8837 }
8838 else
8839 {
8840 mpx_bd_mask = MPX_BD_MASK_32;
8841 bd_ptr_r_shift = 12;
8842 bd_ptr_l_shift = 2;
8843 bt_select_r_shift = 2;
8844 bt_select_l_shift = 4;
8845 bt_mask = MPX_BT_MASK_32;
8846 }
8847
8848 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8849 bd_entry_addr = bd_base + offset1;
8850 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8851
8852 if ((bd_entry & 0x1) == 0)
8853 error (_("Invalid bounds directory entry at %s."),
8854 paddress (get_current_arch (), bd_entry_addr));
8855
8856 /* Clearing status bit. */
8857 bd_entry--;
8858 bt_addr = bd_entry & ~bt_select_r_shift;
8859 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8860
8861 return bt_addr + offset2;
8862 }
8863
8864 /* Print routine for the mpx bounds. */
8865
8866 static void
8867 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8868 {
8869 struct ui_out *uiout = current_uiout;
8870 LONGEST size;
8871 struct gdbarch *gdbarch = get_current_arch ();
8872 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8873 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8874
8875 if (bounds_in_map == 1)
8876 {
8877 uiout->text ("Null bounds on map:");
8878 uiout->text (" pointer value = ");
8879 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8880 uiout->text (".");
8881 uiout->text ("\n");
8882 }
8883 else
8884 {
8885 uiout->text ("{lbound = ");
8886 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8887 uiout->text (", ubound = ");
8888
8889 /* The upper bound is stored in 1's complement. */
8890 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8891 uiout->text ("}: pointer value = ");
8892 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8893
8894 if (gdbarch_ptr_bit (gdbarch) == 64)
8895 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8896 else
8897 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8898
8899 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8900 -1 represents in this sense full memory access, and there is no need
8901 one to the size. */
8902
8903 size = (size > -1 ? size + 1 : size);
8904 uiout->text (", size = ");
8905 uiout->field_string ("size", plongest (size));
8906
8907 uiout->text (", metadata = ");
8908 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8909 uiout->text ("\n");
8910 }
8911 }
8912
8913 /* Implement the command "show mpx bound". */
8914
8915 static void
8916 i386_mpx_info_bounds (const char *args, int from_tty)
8917 {
8918 CORE_ADDR bd_base = 0;
8919 CORE_ADDR addr;
8920 CORE_ADDR bt_entry_addr = 0;
8921 CORE_ADDR bt_entry[4];
8922 int i;
8923 struct gdbarch *gdbarch = get_current_arch ();
8924 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8925
8926 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8927 || !i386_mpx_enabled ())
8928 {
8929 printf_unfiltered (_("Intel Memory Protection Extensions not "
8930 "supported on this target.\n"));
8931 return;
8932 }
8933
8934 if (args == NULL)
8935 {
8936 printf_unfiltered (_("Address of pointer variable expected.\n"));
8937 return;
8938 }
8939
8940 addr = parse_and_eval_address (args);
8941
8942 bd_base = i386_mpx_bd_base ();
8943 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8944
8945 memset (bt_entry, 0, sizeof (bt_entry));
8946
8947 for (i = 0; i < 4; i++)
8948 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8949 + i * TYPE_LENGTH (data_ptr_type),
8950 data_ptr_type);
8951
8952 i386_mpx_print_bounds (bt_entry);
8953 }
8954
8955 /* Implement the command "set mpx bound". */
8956
8957 static void
8958 i386_mpx_set_bounds (const char *args, int from_tty)
8959 {
8960 CORE_ADDR bd_base = 0;
8961 CORE_ADDR addr, lower, upper;
8962 CORE_ADDR bt_entry_addr = 0;
8963 CORE_ADDR bt_entry[2];
8964 const char *input = args;
8965 int i;
8966 struct gdbarch *gdbarch = get_current_arch ();
8967 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8968 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8969
8970 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8971 || !i386_mpx_enabled ())
8972 error (_("Intel Memory Protection Extensions not supported\
8973 on this target."));
8974
8975 if (args == NULL)
8976 error (_("Pointer value expected."));
8977
8978 addr = value_as_address (parse_to_comma_and_eval (&input));
8979
8980 if (input[0] == ',')
8981 ++input;
8982 if (input[0] == '\0')
8983 error (_("wrong number of arguments: missing lower and upper bound."));
8984 lower = value_as_address (parse_to_comma_and_eval (&input));
8985
8986 if (input[0] == ',')
8987 ++input;
8988 if (input[0] == '\0')
8989 error (_("Wrong number of arguments; Missing upper bound."));
8990 upper = value_as_address (parse_to_comma_and_eval (&input));
8991
8992 bd_base = i386_mpx_bd_base ();
8993 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8994 for (i = 0; i < 2; i++)
8995 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8996 + i * TYPE_LENGTH (data_ptr_type),
8997 data_ptr_type);
8998 bt_entry[0] = (uint64_t) lower;
8999 bt_entry[1] = ~(uint64_t) upper;
9000
9001 for (i = 0; i < 2; i++)
9002 write_memory_unsigned_integer (bt_entry_addr
9003 + i * TYPE_LENGTH (data_ptr_type),
9004 TYPE_LENGTH (data_ptr_type), byte_order,
9005 bt_entry[i]);
9006 }
9007
9008 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9009
9010 void _initialize_i386_tdep ();
9011 void
9012 _initialize_i386_tdep ()
9013 {
9014 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9015
9016 /* Add the variable that controls the disassembly flavor. */
9017 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9018 &disassembly_flavor, _("\
9019 Set the disassembly flavor."), _("\
9020 Show the disassembly flavor."), _("\
9021 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9022 NULL,
9023 NULL, /* FIXME: i18n: */
9024 &setlist, &showlist);
9025
9026 /* Add the variable that controls the convention for returning
9027 structs. */
9028 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9029 &struct_convention, _("\
9030 Set the convention for returning small structs."), _("\
9031 Show the convention for returning small structs."), _("\
9032 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9033 is \"default\"."),
9034 NULL,
9035 NULL, /* FIXME: i18n: */
9036 &setlist, &showlist);
9037
9038 /* Add "mpx" prefix for the set commands. */
9039
9040 add_basic_prefix_cmd ("mpx", class_support, _("\
9041 Set Intel Memory Protection Extensions specific variables."),
9042 &mpx_set_cmdlist,
9043 0 /* allow-unknown */, &setlist);
9044
9045 /* Add "mpx" prefix for the show commands. */
9046
9047 add_show_prefix_cmd ("mpx", class_support, _("\
9048 Show Intel Memory Protection Extensions specific variables."),
9049 &mpx_show_cmdlist,
9050 0 /* allow-unknown */, &showlist);
9051
9052 /* Add "bound" command for the show mpx commands list. */
9053
9054 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9055 "Show the memory bounds for a given array/pointer storage\
9056 in the bound table.",
9057 &mpx_show_cmdlist);
9058
9059 /* Add "bound" command for the set mpx commands list. */
9060
9061 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9062 "Set the memory bounds for a given array/pointer storage\
9063 in the bound table.",
9064 &mpx_set_cmdlist);
9065
9066 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9067 i386_svr4_init_abi);
9068
9069 /* Initialize the i386-specific register groups. */
9070 i386_init_reggroups ();
9071
9072 /* Tell remote stub that we support XML target description. */
9073 register_remote_support_xml ("i386");
9074 }