c381961eeb23c869ff0b0c0839f519fead7f0c19
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "floatformat.h"
29 #include "symtab.h"
30 #include "gdbcmd.h"
31 #include "command.h"
32
33 static long i386_get_frame_setup PARAMS ((CORE_ADDR));
34
35 static void i386_follow_jump PARAMS ((void));
36
37 static void codestream_read PARAMS ((unsigned char *, int));
38
39 static void codestream_seek PARAMS ((CORE_ADDR));
40
41 static unsigned char codestream_fill PARAMS ((int));
42
43 CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
44
45 static int gdb_print_insn_i386 (bfd_vma, disassemble_info *);
46
47 void _initialize_i386_tdep PARAMS ((void));
48
49 /* i386_register_byte[i] is the offset into the register file of the
50 start of register number i. We initialize this from
51 i386_register_raw_size. */
52 int i386_register_byte[MAX_NUM_REGS];
53
54 /* i386_register_raw_size[i] is the number of bytes of storage in
55 GDB's register array occupied by register i. */
56 int i386_register_raw_size[MAX_NUM_REGS] = {
57 4, 4, 4, 4,
58 4, 4, 4, 4,
59 4, 4, 4, 4,
60 4, 4, 4, 4,
61 10, 10, 10, 10,
62 10, 10, 10, 10,
63 4, 4, 4, 4,
64 4, 4, 4, 4,
65 16, 16, 16, 16,
66 16, 16, 16, 16,
67 4
68 };
69
70 /* i386_register_virtual_size[i] is the size in bytes of the virtual
71 type of register i. */
72 int i386_register_virtual_size[MAX_NUM_REGS];
73
74
75 /* This is the variable the is set with "set disassembly-flavor",
76 and its legitimate values. */
77 static char att_flavor[] = "att";
78 static char intel_flavor[] = "intel";
79 static char *valid_flavors[] =
80 {
81 att_flavor,
82 intel_flavor,
83 NULL
84 };
85 static char *disassembly_flavor = att_flavor;
86
87 static void i386_print_register PARAMS ((char *, int, int));
88
89 /* This is used to keep the bfd arch_info in sync with the disassembly flavor. */
90 static void set_disassembly_flavor_sfunc PARAMS ((char *, int, struct cmd_list_element *));
91 static void set_disassembly_flavor PARAMS ((void));
92
93 /* Stdio style buffering was used to minimize calls to ptrace, but this
94 buffering did not take into account that the code section being accessed
95 may not be an even number of buffers long (even if the buffer is only
96 sizeof(int) long). In cases where the code section size happened to
97 be a non-integral number of buffers long, attempting to read the last
98 buffer would fail. Simply using target_read_memory and ignoring errors,
99 rather than read_memory, is not the correct solution, since legitimate
100 access errors would then be totally ignored. To properly handle this
101 situation and continue to use buffering would require that this code
102 be able to determine the minimum code section size granularity (not the
103 alignment of the section itself, since the actual failing case that
104 pointed out this problem had a section alignment of 4 but was not a
105 multiple of 4 bytes long), on a target by target basis, and then
106 adjust it's buffer size accordingly. This is messy, but potentially
107 feasible. It probably needs the bfd library's help and support. For
108 now, the buffer size is set to 1. (FIXME -fnf) */
109
110 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
111 static CORE_ADDR codestream_next_addr;
112 static CORE_ADDR codestream_addr;
113 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
114 static int codestream_off;
115 static int codestream_cnt;
116
117 #define codestream_tell() (codestream_addr + codestream_off)
118 #define codestream_peek() (codestream_cnt == 0 ? \
119 codestream_fill(1): codestream_buf[codestream_off])
120 #define codestream_get() (codestream_cnt-- == 0 ? \
121 codestream_fill(0) : codestream_buf[codestream_off++])
122
123 static unsigned char
124 codestream_fill (peek_flag)
125 int peek_flag;
126 {
127 codestream_addr = codestream_next_addr;
128 codestream_next_addr += CODESTREAM_BUFSIZ;
129 codestream_off = 0;
130 codestream_cnt = CODESTREAM_BUFSIZ;
131 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
132
133 if (peek_flag)
134 return (codestream_peek ());
135 else
136 return (codestream_get ());
137 }
138
139 static void
140 codestream_seek (place)
141 CORE_ADDR place;
142 {
143 codestream_next_addr = place / CODESTREAM_BUFSIZ;
144 codestream_next_addr *= CODESTREAM_BUFSIZ;
145 codestream_cnt = 0;
146 codestream_fill (1);
147 while (codestream_tell () != place)
148 codestream_get ();
149 }
150
151 static void
152 codestream_read (buf, count)
153 unsigned char *buf;
154 int count;
155 {
156 unsigned char *p;
157 int i;
158 p = buf;
159 for (i = 0; i < count; i++)
160 *p++ = codestream_get ();
161 }
162
163 /* next instruction is a jump, move to target */
164
165 static void
166 i386_follow_jump ()
167 {
168 unsigned char buf[4];
169 long delta;
170
171 int data16;
172 CORE_ADDR pos;
173
174 pos = codestream_tell ();
175
176 data16 = 0;
177 if (codestream_peek () == 0x66)
178 {
179 codestream_get ();
180 data16 = 1;
181 }
182
183 switch (codestream_get ())
184 {
185 case 0xe9:
186 /* relative jump: if data16 == 0, disp32, else disp16 */
187 if (data16)
188 {
189 codestream_read (buf, 2);
190 delta = extract_signed_integer (buf, 2);
191
192 /* include size of jmp inst (including the 0x66 prefix). */
193 pos += delta + 4;
194 }
195 else
196 {
197 codestream_read (buf, 4);
198 delta = extract_signed_integer (buf, 4);
199
200 pos += delta + 5;
201 }
202 break;
203 case 0xeb:
204 /* relative jump, disp8 (ignore data16) */
205 codestream_read (buf, 1);
206 /* Sign-extend it. */
207 delta = extract_signed_integer (buf, 1);
208
209 pos += delta + 2;
210 break;
211 }
212 codestream_seek (pos);
213 }
214
215 /*
216 * find & return amound a local space allocated, and advance codestream to
217 * first register push (if any)
218 *
219 * if entry sequence doesn't make sense, return -1, and leave
220 * codestream pointer random
221 */
222
223 static long
224 i386_get_frame_setup (pc)
225 CORE_ADDR pc;
226 {
227 unsigned char op;
228
229 codestream_seek (pc);
230
231 i386_follow_jump ();
232
233 op = codestream_get ();
234
235 if (op == 0x58) /* popl %eax */
236 {
237 /*
238 * this function must start with
239 *
240 * popl %eax 0x58
241 * xchgl %eax, (%esp) 0x87 0x04 0x24
242 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
243 *
244 * (the system 5 compiler puts out the second xchg
245 * inst, and the assembler doesn't try to optimize it,
246 * so the 'sib' form gets generated)
247 *
248 * this sequence is used to get the address of the return
249 * buffer for a function that returns a structure
250 */
251 int pos;
252 unsigned char buf[4];
253 static unsigned char proto1[3] =
254 {0x87, 0x04, 0x24};
255 static unsigned char proto2[4] =
256 {0x87, 0x44, 0x24, 0x00};
257 pos = codestream_tell ();
258 codestream_read (buf, 4);
259 if (memcmp (buf, proto1, 3) == 0)
260 pos += 3;
261 else if (memcmp (buf, proto2, 4) == 0)
262 pos += 4;
263
264 codestream_seek (pos);
265 op = codestream_get (); /* update next opcode */
266 }
267
268 if (op == 0x68 || op == 0x6a)
269 {
270 /*
271 * this function may start with
272 *
273 * pushl constant
274 * call _probe
275 * addl $4, %esp
276 * followed by
277 * pushl %ebp
278 * etc.
279 */
280 int pos;
281 unsigned char buf[8];
282
283 /* Skip past the pushl instruction; it has either a one-byte
284 or a four-byte operand, depending on the opcode. */
285 pos = codestream_tell ();
286 if (op == 0x68)
287 pos += 4;
288 else
289 pos += 1;
290 codestream_seek (pos);
291
292 /* Read the following 8 bytes, which should be "call _probe" (6 bytes)
293 followed by "addl $4,%esp" (2 bytes). */
294 codestream_read (buf, sizeof (buf));
295 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
296 pos += sizeof (buf);
297 codestream_seek (pos);
298 op = codestream_get (); /* update next opcode */
299 }
300
301 if (op == 0x55) /* pushl %ebp */
302 {
303 /* check for movl %esp, %ebp - can be written two ways */
304 switch (codestream_get ())
305 {
306 case 0x8b:
307 if (codestream_get () != 0xec)
308 return (-1);
309 break;
310 case 0x89:
311 if (codestream_get () != 0xe5)
312 return (-1);
313 break;
314 default:
315 return (-1);
316 }
317 /* check for stack adjustment
318
319 * subl $XXX, %esp
320 *
321 * note: you can't subtract a 16 bit immediate
322 * from a 32 bit reg, so we don't have to worry
323 * about a data16 prefix
324 */
325 op = codestream_peek ();
326 if (op == 0x83)
327 {
328 /* subl with 8 bit immed */
329 codestream_get ();
330 if (codestream_get () != 0xec)
331 /* Some instruction starting with 0x83 other than subl. */
332 {
333 codestream_seek (codestream_tell () - 2);
334 return 0;
335 }
336 /* subl with signed byte immediate
337 * (though it wouldn't make sense to be negative)
338 */
339 return (codestream_get ());
340 }
341 else if (op == 0x81)
342 {
343 char buf[4];
344 /* Maybe it is subl with 32 bit immedediate. */
345 codestream_get ();
346 if (codestream_get () != 0xec)
347 /* Some instruction starting with 0x81 other than subl. */
348 {
349 codestream_seek (codestream_tell () - 2);
350 return 0;
351 }
352 /* It is subl with 32 bit immediate. */
353 codestream_read ((unsigned char *) buf, 4);
354 return extract_signed_integer (buf, 4);
355 }
356 else
357 {
358 return (0);
359 }
360 }
361 else if (op == 0xc8)
362 {
363 char buf[2];
364 /* enter instruction: arg is 16 bit unsigned immed */
365 codestream_read ((unsigned char *) buf, 2);
366 codestream_get (); /* flush final byte of enter instruction */
367 return extract_unsigned_integer (buf, 2);
368 }
369 return (-1);
370 }
371
372 /* Return number of args passed to a frame.
373 Can return -1, meaning no way to tell. */
374
375 int
376 i386_frame_num_args (fi)
377 struct frame_info *fi;
378 {
379 #if 1
380 return -1;
381 #else
382 /* This loses because not only might the compiler not be popping the
383 args right after the function call, it might be popping args from both
384 this call and a previous one, and we would say there are more args
385 than there really are. */
386
387 int retpc;
388 unsigned char op;
389 struct frame_info *pfi;
390
391 /* on the 386, the instruction following the call could be:
392 popl %ecx - one arg
393 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
394 anything else - zero args */
395
396 int frameless;
397
398 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
399 if (frameless)
400 /* In the absence of a frame pointer, GDB doesn't get correct values
401 for nameless arguments. Return -1, so it doesn't print any
402 nameless arguments. */
403 return -1;
404
405 pfi = get_prev_frame (fi);
406 if (pfi == 0)
407 {
408 /* Note: this can happen if we are looking at the frame for
409 main, because FRAME_CHAIN_VALID won't let us go into
410 start. If we have debugging symbols, that's not really
411 a big deal; it just means it will only show as many arguments
412 to main as are declared. */
413 return -1;
414 }
415 else
416 {
417 retpc = pfi->pc;
418 op = read_memory_integer (retpc, 1);
419 if (op == 0x59)
420 /* pop %ecx */
421 return 1;
422 else if (op == 0x83)
423 {
424 op = read_memory_integer (retpc + 1, 1);
425 if (op == 0xc4)
426 /* addl $<signed imm 8 bits>, %esp */
427 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
428 else
429 return 0;
430 }
431 else if (op == 0x81)
432 { /* add with 32 bit immediate */
433 op = read_memory_integer (retpc + 1, 1);
434 if (op == 0xc4)
435 /* addl $<imm 32>, %esp */
436 return read_memory_integer (retpc + 2, 4) / 4;
437 else
438 return 0;
439 }
440 else
441 {
442 return 0;
443 }
444 }
445 #endif
446 }
447
448 /*
449 * parse the first few instructions of the function to see
450 * what registers were stored.
451 *
452 * We handle these cases:
453 *
454 * The startup sequence can be at the start of the function,
455 * or the function can start with a branch to startup code at the end.
456 *
457 * %ebp can be set up with either the 'enter' instruction, or
458 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
459 * but was once used in the sys5 compiler)
460 *
461 * Local space is allocated just below the saved %ebp by either the
462 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
463 * a 16 bit unsigned argument for space to allocate, and the
464 * 'addl' instruction could have either a signed byte, or
465 * 32 bit immediate.
466 *
467 * Next, the registers used by this function are pushed. In
468 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
469 * (and sometimes a harmless bug causes it to also save but not restore %eax);
470 * however, the code below is willing to see the pushes in any order,
471 * and will handle up to 8 of them.
472 *
473 * If the setup sequence is at the end of the function, then the
474 * next instruction will be a branch back to the start.
475 */
476
477 void
478 i386_frame_init_saved_regs (fip)
479 struct frame_info *fip;
480 {
481 long locals = -1;
482 unsigned char op;
483 CORE_ADDR dummy_bottom;
484 CORE_ADDR adr;
485 CORE_ADDR pc;
486 int i;
487
488 if (fip->saved_regs)
489 return;
490
491 frame_saved_regs_zalloc (fip);
492
493 /* if frame is the end of a dummy, compute where the
494 * beginning would be
495 */
496 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
497
498 /* check if the PC is in the stack, in a dummy frame */
499 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
500 {
501 /* all regs were saved by push_call_dummy () */
502 adr = fip->frame;
503 for (i = 0; i < NUM_REGS; i++)
504 {
505 adr -= REGISTER_RAW_SIZE (i);
506 fip->saved_regs[i] = adr;
507 }
508 return;
509 }
510
511 pc = get_pc_function_start (fip->pc);
512 if (pc != 0)
513 locals = i386_get_frame_setup (pc);
514
515 if (locals >= 0)
516 {
517 adr = fip->frame - 4 - locals;
518 for (i = 0; i < 8; i++)
519 {
520 op = codestream_get ();
521 if (op < 0x50 || op > 0x57)
522 break;
523 #ifdef I386_REGNO_TO_SYMMETRY
524 /* Dynix uses different internal numbering. Ick. */
525 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = adr;
526 #else
527 fip->saved_regs[op - 0x50] = adr;
528 #endif
529 adr -= 4;
530 }
531 }
532
533 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
534 fip->saved_regs[FP_REGNUM] = fip->frame;
535 }
536
537 /* return pc of first real instruction */
538
539 int
540 i386_skip_prologue (pc)
541 int pc;
542 {
543 unsigned char op;
544 int i;
545 static unsigned char pic_pat[6] =
546 {0xe8, 0, 0, 0, 0, /* call 0x0 */
547 0x5b, /* popl %ebx */
548 };
549 CORE_ADDR pos;
550
551 if (i386_get_frame_setup (pc) < 0)
552 return (pc);
553
554 /* found valid frame setup - codestream now points to
555 * start of push instructions for saving registers
556 */
557
558 /* skip over register saves */
559 for (i = 0; i < 8; i++)
560 {
561 op = codestream_peek ();
562 /* break if not pushl inst */
563 if (op < 0x50 || op > 0x57)
564 break;
565 codestream_get ();
566 }
567
568 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
569 the address of the global offset table (GOT) into register %ebx.
570 call 0x0
571 popl %ebx
572 movl %ebx,x(%ebp) (optional)
573 addl y,%ebx
574 This code is with the rest of the prologue (at the end of the
575 function), so we have to skip it to get to the first real
576 instruction at the start of the function. */
577
578 pos = codestream_tell ();
579 for (i = 0; i < 6; i++)
580 {
581 op = codestream_get ();
582 if (pic_pat[i] != op)
583 break;
584 }
585 if (i == 6)
586 {
587 unsigned char buf[4];
588 long delta = 6;
589
590 op = codestream_get ();
591 if (op == 0x89) /* movl %ebx, x(%ebp) */
592 {
593 op = codestream_get ();
594 if (op == 0x5d) /* one byte offset from %ebp */
595 {
596 delta += 3;
597 codestream_read (buf, 1);
598 }
599 else if (op == 0x9d) /* four byte offset from %ebp */
600 {
601 delta += 6;
602 codestream_read (buf, 4);
603 }
604 else /* unexpected instruction */
605 delta = -1;
606 op = codestream_get ();
607 }
608 /* addl y,%ebx */
609 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
610 {
611 pos += delta + 6;
612 }
613 }
614 codestream_seek (pos);
615
616 i386_follow_jump ();
617
618 return (codestream_tell ());
619 }
620
621 void
622 i386_push_dummy_frame ()
623 {
624 CORE_ADDR sp = read_register (SP_REGNUM);
625 int regnum;
626 char regbuf[MAX_REGISTER_RAW_SIZE];
627
628 sp = push_word (sp, read_register (PC_REGNUM));
629 sp = push_word (sp, read_register (FP_REGNUM));
630 write_register (FP_REGNUM, sp);
631 for (regnum = 0; regnum < NUM_REGS; regnum++)
632 {
633 read_register_gen (regnum, regbuf);
634 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
635 }
636 write_register (SP_REGNUM, sp);
637 }
638
639 void
640 i386_pop_frame ()
641 {
642 struct frame_info *frame = get_current_frame ();
643 CORE_ADDR fp;
644 int regnum;
645 char regbuf[MAX_REGISTER_RAW_SIZE];
646
647 fp = FRAME_FP (frame);
648 i386_frame_init_saved_regs (frame);
649
650 for (regnum = 0; regnum < NUM_REGS; regnum++)
651 {
652 CORE_ADDR adr;
653 adr = frame->saved_regs[regnum];
654 if (adr)
655 {
656 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
657 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
658 REGISTER_RAW_SIZE (regnum));
659 }
660 }
661 write_register (FP_REGNUM, read_memory_integer (fp, 4));
662 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
663 write_register (SP_REGNUM, fp + 8);
664 flush_cached_frames ();
665 }
666
667 #ifdef GET_LONGJMP_TARGET
668
669 /* Figure out where the longjmp will land. Slurp the args out of the stack.
670 We expect the first arg to be a pointer to the jmp_buf structure from which
671 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
672 This routine returns true on success. */
673
674 int
675 get_longjmp_target (pc)
676 CORE_ADDR *pc;
677 {
678 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
679 CORE_ADDR sp, jb_addr;
680
681 sp = read_register (SP_REGNUM);
682
683 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
684 buf,
685 TARGET_PTR_BIT / TARGET_CHAR_BIT))
686 return 0;
687
688 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
689
690 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
691 TARGET_PTR_BIT / TARGET_CHAR_BIT))
692 return 0;
693
694 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
695
696 return 1;
697 }
698
699 #endif /* GET_LONGJMP_TARGET */
700
701 void
702 i386_extract_return_value (type, regbuf, valbuf)
703 struct type *type;
704 char regbuf[REGISTER_BYTES];
705 char *valbuf;
706 {
707 /* On AIX, i386 GNU/Linux and DJGPP, floating point values are
708 returned in floating point registers. */
709 /* FIXME: cagney/2000-02-29: This function needs to be rewritten
710 using multi-arch. Please don't keep adding to this #ifdef
711 spaghetti. */
712 #if defined(I386_AIX_TARGET) || defined(I386_GNULINUX_TARGET) || defined(I386_DJGPP_TARGET)
713 if (TYPE_CODE_FLT == TYPE_CODE (type))
714 {
715 double d;
716 /* 387 %st(0), gcc uses this */
717 floatformat_to_double (&floatformat_i387_ext,
718 #if defined(FPDATA_REGNUM)
719 &regbuf[REGISTER_BYTE (FPDATA_REGNUM)],
720 #else /* !FPDATA_REGNUM */
721 &regbuf[REGISTER_BYTE (FP0_REGNUM)],
722 #endif /* FPDATA_REGNUM */
723
724 &d);
725 store_floating (valbuf, TYPE_LENGTH (type), d);
726 }
727 else
728 #endif /* I386_AIX_TARGET || I386_GNULINUX_TARGET || I386_DJGPP_TARGET */
729 {
730 #if defined(LOW_RETURN_REGNUM)
731 int len = TYPE_LENGTH (type);
732 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
733 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
734
735 if (len <= low_size)
736 memcpy (valbuf, regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM), len);
737 else if (len <= (low_size + high_size))
738 {
739 memcpy (valbuf,
740 regbuf + REGISTER_BYTE (LOW_RETURN_REGNUM),
741 low_size);
742 memcpy (valbuf + low_size,
743 regbuf + REGISTER_BYTE (HIGH_RETURN_REGNUM),
744 len - low_size);
745 }
746 else
747 error ("GDB bug: i386-tdep.c (i386_extract_return_value): Don't know how to find a return value %d bytes long", len);
748 #else /* !LOW_RETURN_REGNUM */
749 memcpy (valbuf, regbuf, TYPE_LENGTH (type));
750 #endif /* LOW_RETURN_REGNUM */
751 }
752 }
753
754 #ifdef I386V4_SIGTRAMP_SAVED_PC
755 /* Get saved user PC for sigtramp from the pushed ucontext on the stack
756 for all three variants of SVR4 sigtramps. */
757
758 CORE_ADDR
759 i386v4_sigtramp_saved_pc (frame)
760 struct frame_info *frame;
761 {
762 CORE_ADDR saved_pc_offset = 4;
763 char *name = NULL;
764
765 find_pc_partial_function (frame->pc, &name, NULL, NULL);
766 if (name)
767 {
768 if (STREQ (name, "_sigreturn"))
769 saved_pc_offset = 132 + 14 * 4;
770 else if (STREQ (name, "_sigacthandler"))
771 saved_pc_offset = 80 + 14 * 4;
772 else if (STREQ (name, "sigvechandler"))
773 saved_pc_offset = 120 + 14 * 4;
774 }
775
776 if (frame->next)
777 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
778 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
779 }
780 #endif /* I386V4_SIGTRAMP_SAVED_PC */
781
782 #ifdef I386_LINUX_SIGTRAMP
783
784 /* When the i386 Linux kernel calls a signal handler, the return
785 address points to a bit of code on the stack. This function
786 returns whether the PC appears to be within this bit of code.
787
788 The instruction sequence is
789 pop %eax
790 mov $0x77,%eax
791 int $0x80
792 or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.
793
794 Checking for the code sequence should be somewhat reliable, because
795 the effect is to call the system call sigreturn. This is unlikely
796 to occur anywhere other than a signal trampoline.
797
798 It kind of sucks that we have to read memory from the process in
799 order to identify a signal trampoline, but there doesn't seem to be
800 any other way. The IN_SIGTRAMP macro in tm-linux.h arranges to
801 only call us if no function name could be identified, which should
802 be the case since the code is on the stack. */
803
804 #define LINUX_SIGTRAMP_INSN0 (0x58) /* pop %eax */
805 #define LINUX_SIGTRAMP_OFFSET0 (0)
806 #define LINUX_SIGTRAMP_INSN1 (0xb8) /* mov $NNNN,%eax */
807 #define LINUX_SIGTRAMP_OFFSET1 (1)
808 #define LINUX_SIGTRAMP_INSN2 (0xcd) /* int */
809 #define LINUX_SIGTRAMP_OFFSET2 (6)
810
811 static const unsigned char linux_sigtramp_code[] =
812 {
813 LINUX_SIGTRAMP_INSN0, /* pop %eax */
814 LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00, /* mov $0x77,%eax */
815 LINUX_SIGTRAMP_INSN2, 0x80 /* int $0x80 */
816 };
817
818 #define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)
819
820 /* If PC is in a sigtramp routine, return the address of the start of
821 the routine. Otherwise, return 0. */
822
823 static CORE_ADDR
824 i386_linux_sigtramp_start (pc)
825 CORE_ADDR pc;
826 {
827 unsigned char buf[LINUX_SIGTRAMP_LEN];
828
829 /* We only recognize a signal trampoline if PC is at the start of
830 one of the three instructions. We optimize for finding the PC at
831 the start, as will be the case when the trampoline is not the
832 first frame on the stack. We assume that in the case where the
833 PC is not at the start of the instruction sequence, there will be
834 a few trailing readable bytes on the stack. */
835
836 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
837 return 0;
838
839 if (buf[0] != LINUX_SIGTRAMP_INSN0)
840 {
841 int adjust;
842
843 switch (buf[0])
844 {
845 case LINUX_SIGTRAMP_INSN1:
846 adjust = LINUX_SIGTRAMP_OFFSET1;
847 break;
848 case LINUX_SIGTRAMP_INSN2:
849 adjust = LINUX_SIGTRAMP_OFFSET2;
850 break;
851 default:
852 return 0;
853 }
854
855 pc -= adjust;
856
857 if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
858 return 0;
859 }
860
861 if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
862 return 0;
863
864 return pc;
865 }
866
867 /* Return whether PC is in a Linux sigtramp routine. */
868
869 int
870 i386_linux_sigtramp (pc)
871 CORE_ADDR pc;
872 {
873 return i386_linux_sigtramp_start (pc) != 0;
874 }
875
876 /* Assuming FRAME is for a Linux sigtramp routine, return the saved
877 program counter. The Linux kernel will set up a sigcontext
878 structure immediately before the sigtramp routine on the stack. */
879
880 CORE_ADDR
881 i386_linux_sigtramp_saved_pc (frame)
882 struct frame_info *frame;
883 {
884 CORE_ADDR pc;
885
886 pc = i386_linux_sigtramp_start (frame->pc);
887 if (pc == 0)
888 error ("i386_linux_sigtramp_saved_pc called when no sigtramp");
889 return read_memory_integer ((pc
890 - LINUX_SIGCONTEXT_SIZE
891 + LINUX_SIGCONTEXT_PC_OFFSET),
892 4);
893 }
894
895 /* Assuming FRAME is for a Linux sigtramp routine, return the saved
896 stack pointer. The Linux kernel will set up a sigcontext structure
897 immediately before the sigtramp routine on the stack. */
898
899 CORE_ADDR
900 i386_linux_sigtramp_saved_sp (frame)
901 struct frame_info *frame;
902 {
903 CORE_ADDR pc;
904
905 pc = i386_linux_sigtramp_start (frame->pc);
906 if (pc == 0)
907 error ("i386_linux_sigtramp_saved_sp called when no sigtramp");
908 return read_memory_integer ((pc
909 - LINUX_SIGCONTEXT_SIZE
910 + LINUX_SIGCONTEXT_SP_OFFSET),
911 4);
912 }
913
914 #endif /* I386_LINUX_SIGTRAMP */
915
916 #ifdef STATIC_TRANSFORM_NAME
917 /* SunPRO encodes the static variables. This is not related to C++ mangling,
918 it is done for C too. */
919
920 char *
921 sunpro_static_transform_name (name)
922 char *name;
923 {
924 char *p;
925 if (IS_STATIC_TRANSFORM_NAME (name))
926 {
927 /* For file-local statics there will be a period, a bunch
928 of junk (the contents of which match a string given in the
929 N_OPT), a period and the name. For function-local statics
930 there will be a bunch of junk (which seems to change the
931 second character from 'A' to 'B'), a period, the name of the
932 function, and the name. So just skip everything before the
933 last period. */
934 p = strrchr (name, '.');
935 if (p != NULL)
936 name = p + 1;
937 }
938 return name;
939 }
940 #endif /* STATIC_TRANSFORM_NAME */
941
942
943
944 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
945
946 CORE_ADDR
947 skip_trampoline_code (pc, name)
948 CORE_ADDR pc;
949 char *name;
950 {
951 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
952 {
953 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
954 struct minimal_symbol *indsym =
955 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
956 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
957
958 if (symname)
959 {
960 if (strncmp (symname, "__imp_", 6) == 0
961 || strncmp (symname, "_imp_", 5) == 0)
962 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
963 }
964 }
965 return 0; /* not a trampoline */
966 }
967
968 static int
969 gdb_print_insn_i386 (memaddr, info)
970 bfd_vma memaddr;
971 disassemble_info *info;
972 {
973 if (disassembly_flavor == att_flavor)
974 return print_insn_i386_att (memaddr, info);
975 else if (disassembly_flavor == intel_flavor)
976 return print_insn_i386_intel (memaddr, info);
977 /* Never reached - disassembly_flavour is always either att_flavor
978 or intel_flavor */
979 abort ();
980 }
981
982 /* If the disassembly mode is intel, we have to also switch the
983 bfd mach_type. This function is run in the set disassembly_flavor
984 command, and does that. */
985
986 static void
987 set_disassembly_flavor_sfunc (args, from_tty, c)
988 char *args;
989 int from_tty;
990 struct cmd_list_element *c;
991 {
992 set_disassembly_flavor ();
993 }
994
995 static void
996 set_disassembly_flavor ()
997 {
998 if (disassembly_flavor == att_flavor)
999 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
1000 else if (disassembly_flavor == intel_flavor)
1001 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386_intel_syntax);
1002 }
1003
1004
1005 void
1006 _initialize_i386_tdep ()
1007 {
1008 /* Initialize the table saying where each register starts in the
1009 register file. */
1010 {
1011 int i, offset;
1012
1013 offset = 0;
1014 for (i = 0; i < MAX_NUM_REGS; i++)
1015 {
1016 i386_register_byte[i] = offset;
1017 offset += i386_register_raw_size[i];
1018 }
1019 }
1020
1021 /* Initialize the table of virtual register sizes. */
1022 {
1023 int i;
1024
1025 for (i = 0; i < MAX_NUM_REGS; i++)
1026 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
1027 }
1028
1029 tm_print_insn = gdb_print_insn_i386;
1030 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1031
1032 /* Add the variable that controls the disassembly flavor */
1033 {
1034 struct cmd_list_element *new_cmd;
1035
1036 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1037 valid_flavors,
1038 (char *) &disassembly_flavor,
1039 "Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1040 and the default value is \"att\".",
1041 &setlist);
1042 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
1043 add_show_from_set (new_cmd, &showlist);
1044 }
1045
1046 /* Finally, initialize the disassembly flavor to the default given
1047 in the disassembly_flavor variable */
1048
1049 set_disassembly_flavor ();
1050 }