[gdb] Don't use gdb_stdlog for inferior-events
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70
71 /* Register names. */
72
73 static const char * const i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char * const i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char * const i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char * const i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char * const i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char * const i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char * const i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char * const i386_pkeys_names[] =
124 {
125 "pkru"
126 };
127
128 /* Register names for MPX pseudo-registers. */
129
130 static const char * const i386_bnd_names[] =
131 {
132 "bnd0", "bnd1", "bnd2", "bnd3"
133 };
134
135 /* Register names for MMX pseudo-registers. */
136
137 static const char * const i386_mmx_names[] =
138 {
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141 };
142
143 /* Register names for byte pseudo-registers. */
144
145 static const char * const i386_byte_names[] =
146 {
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149 };
150
151 /* Register names for word pseudo-registers. */
152
153 static const char * const i386_word_names[] =
154 {
155 "ax", "cx", "dx", "bx",
156 "", "bp", "si", "di"
157 };
158
159 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163 const int num_lower_zmm_regs = 16;
164
165 /* MMX register? */
166
167 static int
168 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
169 {
170 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
172
173 if (mm0_regnum < 0)
174 return 0;
175
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178 }
179
180 /* Byte register? */
181
182 int
183 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184 {
185 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189 }
190
191 /* Word register? */
192
193 int
194 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195 {
196 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200 }
201
202 /* Dword register? */
203
204 int
205 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206 {
207 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 }
216
217 /* AVX512 register? */
218
219 int
220 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 }
231
232 int
233 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 }
244
245 int
246 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 }
257
258 static int
259 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260 {
261 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269 }
270
271 /* AVX register? */
272
273 int
274 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 }
285
286 static int
287 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288 {
289 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 }
298
299 int
300 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301 {
302 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310 }
311
312 /* BND register? */
313
314 int
315 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316 {
317 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325 }
326
327 /* SSE register? */
328
329 int
330 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
331 {
332 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
334
335 if (num_xmm_regs == 0)
336 return 0;
337
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
340 }
341
342 /* XMM_512 register? */
343
344 int
345 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346 {
347 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 }
356
357 static int
358 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
359 {
360 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
361
362 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return 0;
364
365 return (regnum == I387_MXCSR_REGNUM (tdep));
366 }
367
368 /* FP register? */
369
370 int
371 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
372 {
373 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
376 return 0;
377
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
380 }
381
382 int
383 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
384 {
385 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
388 return 0;
389
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
392 }
393
394 /* BNDr (raw) register? */
395
396 static int
397 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398 {
399 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 }
407
408 /* BND control register? */
409
410 static int
411 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412 {
413 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420 }
421
422 /* PKRU register? */
423
424 bool
425 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426 {
427 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 }
436
437 /* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440 static const char *
441 i386_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
455 return tdesc_register_name (gdbarch, regnum);
456 }
457
458 /* Return the name of register REGNUM. */
459
460 const char *
461 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
462 {
463 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 }
479
480 /* Convert a dbx register number REG to the appropriate register
481 number used by GDB. */
482
483 static int
484 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
485 {
486 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
487
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
491 if (reg >= 0 && reg <= 7)
492 {
493 /* General-purpose registers. The debug info calls %ebp
494 register 4, and %esp register 5. */
495 if (reg == 4)
496 return 5;
497 else if (reg == 5)
498 return 4;
499 else return reg;
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
504 return reg - 12 + I387_ST0_REGNUM (tdep);
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
520 return reg - 29 + I387_MM0_REGNUM (tdep);
521 }
522
523 /* This will hopefully provoke a warning. */
524 return gdbarch_num_cooked_regs (gdbarch);
525 }
526
527 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 used by GDB. */
529
530 static int
531 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
532 {
533 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
534
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
542 /* General-purpose registers. */
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
548 return reg - 11 + I387_ST0_REGNUM (tdep);
549 }
550 else if (reg >= 21 && reg <= 36)
551 {
552 /* The SSE and MMX registers have the same numbers as with dbx. */
553 return i386_dbx_reg_to_regnum (gdbarch, reg);
554 }
555
556 switch (reg)
557 {
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
569 return -1;
570 }
571
572 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
575 int
576 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577 {
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
581 return gdbarch_num_cooked_regs (gdbarch);
582 return regnum;
583 }
584
585 \f
586
587 /* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
589 static const char att_flavor[] = "att";
590 static const char intel_flavor[] = "intel";
591 static const char *const valid_flavors[] =
592 {
593 att_flavor,
594 intel_flavor,
595 NULL
596 };
597 static const char *disassembly_flavor = att_flavor;
598 \f
599
600 /* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
605
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
608
609 This function is 64-bit safe. */
610
611 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614
615 \f
616 /* Displaced instruction handling. */
617
618 /* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624 static gdb_byte *
625 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626 {
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652 }
653
654 static int
655 i386_absolute_jmp_p (const gdb_byte *insn)
656 {
657 /* jmp far (absolute address in operand). */
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
663 /* jump near, absolute indirect (/4). */
664 if ((insn[1] & 0x38) == 0x20)
665 return 1;
666
667 /* jump far, absolute indirect (/5). */
668 if ((insn[1] & 0x38) == 0x28)
669 return 1;
670 }
671
672 return 0;
673 }
674
675 /* Return non-zero if INSN is a jump, zero otherwise. */
676
677 static int
678 i386_jmp_p (const gdb_byte *insn)
679 {
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689 }
690
691 static int
692 i386_absolute_call_p (const gdb_byte *insn)
693 {
694 /* call far, absolute. */
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
700 /* Call near, absolute indirect (/2). */
701 if ((insn[1] & 0x38) == 0x10)
702 return 1;
703
704 /* Call far, absolute indirect (/3). */
705 if ((insn[1] & 0x38) == 0x18)
706 return 1;
707 }
708
709 return 0;
710 }
711
712 static int
713 i386_ret_p (const gdb_byte *insn)
714 {
715 switch (insn[0])
716 {
717 case 0xc2: /* ret near, pop N bytes. */
718 case 0xc3: /* ret near */
719 case 0xca: /* ret far, pop N bytes. */
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727 }
728
729 static int
730 i386_call_p (const gdb_byte *insn)
731 {
732 if (i386_absolute_call_p (insn))
733 return 1;
734
735 /* call near, relative. */
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740 }
741
742 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
744
745 static int
746 i386_syscall_p (const gdb_byte *insn, int *lengthp)
747 {
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760 }
761
762 /* The gdbarch insn_is_call method. */
763
764 static int
765 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766 {
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773 }
774
775 /* The gdbarch insn_is_ret method. */
776
777 static int
778 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779 {
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786 }
787
788 /* The gdbarch insn_is_jump method. */
789
790 static int
791 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792 {
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799 }
800
801 /* Some kernels may run one past a syscall insn, so we have to cope. */
802
803 displaced_step_copy_insn_closure_up
804 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 size_t len = gdbarch_max_insn_length (gdbarch);
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
811 gdb_byte *buf = closure->buf.data ();
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 displaced_debug_printf ("%s->%s: %s",
830 paddress (gdbarch, from), paddress (gdbarch, to),
831 displaced_step_dump_bytes (buf, len).c_str ());
832
833 /* This is a work around for a problem with g++ 4.8. */
834 return displaced_step_copy_insn_closure_up (closure.release ());
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_copy_insn_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
918 else
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
921
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
925
926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
927
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
931 }
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
952
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
956 }
957 }
958
959 static void
960 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961 {
962 target_write_memory (*to, buf, len);
963 *to += len;
964 }
965
966 static void
967 i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
994 push_buf[0] = 0x68; /* pushq $... */
995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 static i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB addressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520 /* Check whether PC points to an endbr32 instruction. */
1521 static CORE_ADDR
1522 i386_skip_endbr (CORE_ADDR pc)
1523 {
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537 }
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_endbr (pc);
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* LLVM backend (Clang/Flang) always emits a line note before the
1850 prologue and another one after. We trust clang and newer Intel
1851 compilers to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
1856 || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && s.minsym->linkage_name () != NULL
1955 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 try
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 catch (const gdb_exception_error &ex)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw;
2097 }
2098
2099 return cache;
2100 }
2101
2102 static void
2103 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2104 struct frame_id *this_id)
2105 {
2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2107
2108 if (!cache->base_p)
2109 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2110 else if (cache->base == 0)
2111 {
2112 /* This marks the outermost frame. */
2113 }
2114 else
2115 {
2116 /* See the end of i386_push_dummy_call. */
2117 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 }
2119 }
2120
2121 static enum unwind_stop_reason
2122 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 if (!cache->base_p)
2128 return UNWIND_UNAVAILABLE;
2129
2130 /* This marks the outermost frame. */
2131 if (cache->base == 0)
2132 return UNWIND_OUTERMOST;
2133
2134 return UNWIND_NO_REASON;
2135 }
2136
2137 static struct value *
2138 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2139 int regnum)
2140 {
2141 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2142
2143 gdb_assert (regnum >= 0);
2144
2145 /* The System V ABI says that:
2146
2147 "The flags register contains the system flags, such as the
2148 direction flag and the carry flag. The direction flag must be
2149 set to the forward (that is, zero) direction before entry and
2150 upon exit from a function. Other user flags have no specified
2151 role in the standard calling sequence and are not preserved."
2152
2153 To guarantee the "upon exit" part of that statement we fake a
2154 saved flags register that has its direction flag cleared.
2155
2156 Note that GCC doesn't seem to rely on the fact that the direction
2157 flag is cleared after a function return; it always explicitly
2158 clears the flag before operations where it matters.
2159
2160 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2161 right thing to do. The way we fake the flags register here makes
2162 it impossible to change it. */
2163
2164 if (regnum == I386_EFLAGS_REGNUM)
2165 {
2166 ULONGEST val;
2167
2168 val = get_frame_register_unsigned (this_frame, regnum);
2169 val &= ~(1 << 10);
2170 return frame_unwind_got_constant (this_frame, regnum, val);
2171 }
2172
2173 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2174 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2175
2176 if (regnum == I386_ESP_REGNUM
2177 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2178 {
2179 /* If the SP has been saved, but we don't know where, then this
2180 means that SAVED_SP_REG register was found unavailable back
2181 when we built the cache. */
2182 if (cache->saved_sp == 0)
2183 return frame_unwind_got_register (this_frame, regnum,
2184 cache->saved_sp_reg);
2185 else
2186 return frame_unwind_got_constant (this_frame, regnum,
2187 cache->saved_sp);
2188 }
2189
2190 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2191 return frame_unwind_got_memory (this_frame, regnum,
2192 cache->saved_regs[regnum]);
2193
2194 return frame_unwind_got_register (this_frame, regnum, regnum);
2195 }
2196
2197 static const struct frame_unwind i386_frame_unwind =
2198 {
2199 "i386 prologue",
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 try
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 catch (const gdb_exception_error &ex)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw;
2277 }
2278
2279 return cache;
2280 }
2281
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285 {
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293 }
2294
2295 static void
2296 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
2302
2303 if (!cache->base_p)
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2307 }
2308
2309 static struct value *
2310 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312 {
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317 }
2318
2319 static const struct frame_unwind i386_epilogue_frame_unwind =
2320 {
2321 "i386 epilogue",
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 static i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 static i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 "i386 stack tramp",
2404 NORMAL_FRAME,
2405 i386_epilogue_frame_unwind_stop_reason,
2406 i386_epilogue_frame_this_id,
2407 i386_epilogue_frame_prev_register,
2408 NULL,
2409 i386_stack_tramp_frame_sniffer
2410 };
2411 \f
2412 /* Generate a bytecode expression to get the value of the saved PC. */
2413
2414 static void
2415 i386_gen_return_address (struct gdbarch *gdbarch,
2416 struct agent_expr *ax, struct axs_value *value,
2417 CORE_ADDR scope)
2418 {
2419 /* The following sequence assumes the traditional use of the base
2420 register. */
2421 ax_reg (ax, I386_EBP_REGNUM);
2422 ax_const_l (ax, 4);
2423 ax_simple (ax, aop_add);
2424 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2425 value->kind = axs_lvalue_memory;
2426 }
2427 \f
2428
2429 /* Signal trampolines. */
2430
2431 static struct i386_frame_cache *
2432 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2433 {
2434 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2435 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2437 struct i386_frame_cache *cache;
2438 CORE_ADDR addr;
2439 gdb_byte buf[4];
2440
2441 if (*this_cache)
2442 return (struct i386_frame_cache *) *this_cache;
2443
2444 cache = i386_alloc_frame_cache ();
2445
2446 try
2447 {
2448 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2449 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2450
2451 addr = tdep->sigcontext_addr (this_frame);
2452 if (tdep->sc_reg_offset)
2453 {
2454 int i;
2455
2456 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2457
2458 for (i = 0; i < tdep->sc_num_regs; i++)
2459 if (tdep->sc_reg_offset[i] != -1)
2460 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2461 }
2462 else
2463 {
2464 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2465 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2466 }
2467
2468 cache->base_p = 1;
2469 }
2470 catch (const gdb_exception_error &ex)
2471 {
2472 if (ex.error != NOT_AVAILABLE_ERROR)
2473 throw;
2474 }
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 gdbarch *arch = get_frame_arch (this_frame);
2525 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
2526
2527 /* We shouldn't even bother if we don't have a sigcontext_addr
2528 handler. */
2529 if (tdep->sigcontext_addr == NULL)
2530 return 0;
2531
2532 if (tdep->sigtramp_p != NULL)
2533 {
2534 if (tdep->sigtramp_p (this_frame))
2535 return 1;
2536 }
2537
2538 if (tdep->sigtramp_start != 0)
2539 {
2540 CORE_ADDR pc = get_frame_pc (this_frame);
2541
2542 gdb_assert (tdep->sigtramp_end != 0);
2543 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2544 return 1;
2545 }
2546
2547 return 0;
2548 }
2549
2550 static const struct frame_unwind i386_sigtramp_frame_unwind =
2551 {
2552 "i386 sigtramp",
2553 SIGTRAMP_FRAME,
2554 i386_sigtramp_frame_unwind_stop_reason,
2555 i386_sigtramp_frame_this_id,
2556 i386_sigtramp_frame_prev_register,
2557 NULL,
2558 i386_sigtramp_frame_sniffer
2559 };
2560 \f
2561
2562 static CORE_ADDR
2563 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2564 {
2565 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2566
2567 return cache->base;
2568 }
2569
2570 static const struct frame_base i386_frame_base =
2571 {
2572 &i386_frame_unwind,
2573 i386_frame_base_address,
2574 i386_frame_base_address,
2575 i386_frame_base_address
2576 };
2577
2578 static struct frame_id
2579 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2580 {
2581 CORE_ADDR fp;
2582
2583 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2584
2585 /* See the end of i386_push_dummy_call. */
2586 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2587 }
2588
2589 /* _Decimal128 function return values need 16-byte alignment on the
2590 stack. */
2591
2592 static CORE_ADDR
2593 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2594 {
2595 return sp & -(CORE_ADDR)16;
2596 }
2597 \f
2598
2599 /* Figure out where the longjmp will land. Slurp the args out of the
2600 stack. We expect the first arg to be a pointer to the jmp_buf
2601 structure from which we extract the address that we will land at.
2602 This address is copied into PC. This routine returns non-zero on
2603 success. */
2604
2605 static int
2606 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2607 {
2608 gdb_byte buf[4];
2609 CORE_ADDR sp, jb_addr;
2610 struct gdbarch *gdbarch = get_frame_arch (frame);
2611 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2612 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2613 int jb_pc_offset = tdep->jb_pc_offset;
2614
2615 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2616 longjmp will land. */
2617 if (jb_pc_offset == -1)
2618 return 0;
2619
2620 get_frame_register (frame, I386_ESP_REGNUM, buf);
2621 sp = extract_unsigned_integer (buf, 4, byte_order);
2622 if (target_read_memory (sp + 4, buf, 4))
2623 return 0;
2624
2625 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2626 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2627 return 0;
2628
2629 *pc = extract_unsigned_integer (buf, 4, byte_order);
2630 return 1;
2631 }
2632 \f
2633
2634 /* Check whether TYPE must be 16-byte-aligned when passed as a
2635 function argument. 16-byte vectors, _Decimal128 and structures or
2636 unions containing such types must be 16-byte-aligned; other
2637 arguments are 4-byte-aligned. */
2638
2639 static int
2640 i386_16_byte_align_p (struct type *type)
2641 {
2642 type = check_typedef (type);
2643 if ((type->code () == TYPE_CODE_DECFLOAT
2644 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2645 && TYPE_LENGTH (type) == 16)
2646 return 1;
2647 if (type->code () == TYPE_CODE_ARRAY)
2648 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2649 if (type->code () == TYPE_CODE_STRUCT
2650 || type->code () == TYPE_CODE_UNION)
2651 {
2652 int i;
2653 for (i = 0; i < type->num_fields (); i++)
2654 {
2655 if (field_is_static (&type->field (i)))
2656 continue;
2657 if (i386_16_byte_align_p (type->field (i).type ()))
2658 return 1;
2659 }
2660 }
2661 return 0;
2662 }
2663
2664 /* Implementation for set_gdbarch_push_dummy_code. */
2665
2666 static CORE_ADDR
2667 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2668 struct value **args, int nargs, struct type *value_type,
2669 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2670 struct regcache *regcache)
2671 {
2672 /* Use 0xcc breakpoint - 1 byte. */
2673 *bp_addr = sp - 1;
2674 *real_pc = funaddr;
2675
2676 /* Keep the stack aligned. */
2677 return sp - 16;
2678 }
2679
2680 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2681 calling convention. */
2682
2683 CORE_ADDR
2684 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2685 struct regcache *regcache, CORE_ADDR bp_addr,
2686 int nargs, struct value **args, CORE_ADDR sp,
2687 function_call_return_method return_method,
2688 CORE_ADDR struct_addr, bool thiscall)
2689 {
2690 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2691 gdb_byte buf[4];
2692 int i;
2693 int write_pass;
2694 int args_space = 0;
2695
2696 /* BND registers can be in arbitrary values at the moment of the
2697 inferior call. This can cause boundary violations that are not
2698 due to a real bug or even desired by the user. The best to be done
2699 is set the BND registers to allow access to the whole memory, INIT
2700 state, before pushing the inferior call. */
2701 i387_reset_bnd_regs (gdbarch, regcache);
2702
2703 /* Determine the total space required for arguments and struct
2704 return address in a first pass (allowing for 16-byte-aligned
2705 arguments), then push arguments in a second pass. */
2706
2707 for (write_pass = 0; write_pass < 2; write_pass++)
2708 {
2709 int args_space_used = 0;
2710
2711 if (return_method == return_method_struct)
2712 {
2713 if (write_pass)
2714 {
2715 /* Push value address. */
2716 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2717 write_memory (sp, buf, 4);
2718 args_space_used += 4;
2719 }
2720 else
2721 args_space += 4;
2722 }
2723
2724 for (i = thiscall ? 1 : 0; i < nargs; i++)
2725 {
2726 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2727
2728 if (write_pass)
2729 {
2730 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2731 args_space_used = align_up (args_space_used, 16);
2732
2733 write_memory (sp + args_space_used,
2734 value_contents_all (args[i]).data (), len);
2735 /* The System V ABI says that:
2736
2737 "An argument's size is increased, if necessary, to make it a
2738 multiple of [32-bit] words. This may require tail padding,
2739 depending on the size of the argument."
2740
2741 This makes sure the stack stays word-aligned. */
2742 args_space_used += align_up (len, 4);
2743 }
2744 else
2745 {
2746 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2747 args_space = align_up (args_space, 16);
2748 args_space += align_up (len, 4);
2749 }
2750 }
2751
2752 if (!write_pass)
2753 {
2754 sp -= args_space;
2755
2756 /* The original System V ABI only requires word alignment,
2757 but modern incarnations need 16-byte alignment in order
2758 to support SSE. Since wasting a few bytes here isn't
2759 harmful we unconditionally enforce 16-byte alignment. */
2760 sp &= ~0xf;
2761 }
2762 }
2763
2764 /* Store return address. */
2765 sp -= 4;
2766 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2767 write_memory (sp, buf, 4);
2768
2769 /* Finally, update the stack pointer... */
2770 store_unsigned_integer (buf, 4, byte_order, sp);
2771 regcache->cooked_write (I386_ESP_REGNUM, buf);
2772
2773 /* ...and fake a frame pointer. */
2774 regcache->cooked_write (I386_EBP_REGNUM, buf);
2775
2776 /* The 'this' pointer needs to be in ECX. */
2777 if (thiscall)
2778 regcache->cooked_write (I386_ECX_REGNUM,
2779 value_contents_all (args[0]).data ());
2780
2781 /* MarkK wrote: This "+ 8" is all over the place:
2782 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2783 i386_dummy_id). It's there, since all frame unwinders for
2784 a given target have to agree (within a certain margin) on the
2785 definition of the stack address of a frame. Otherwise frame id
2786 comparison might not work correctly. Since DWARF2/GCC uses the
2787 stack address *before* the function call as a frame's CFA. On
2788 the i386, when %ebp is used as a frame pointer, the offset
2789 between the contents %ebp and the CFA as defined by GCC. */
2790 return sp + 8;
2791 }
2792
2793 /* Implement the "push_dummy_call" gdbarch method. */
2794
2795 static CORE_ADDR
2796 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2797 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2798 struct value **args, CORE_ADDR sp,
2799 function_call_return_method return_method,
2800 CORE_ADDR struct_addr)
2801 {
2802 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2803 nargs, args, sp, return_method,
2804 struct_addr, false);
2805 }
2806
2807 /* These registers are used for returning integers (and on some
2808 targets also for returning `struct' and `union' values when their
2809 size and alignment match an integer type). */
2810 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2811 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2812
2813 /* Read, for architecture GDBARCH, a function return value of TYPE
2814 from REGCACHE, and copy that into VALBUF. */
2815
2816 static void
2817 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2818 struct regcache *regcache, gdb_byte *valbuf)
2819 {
2820 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2821 int len = TYPE_LENGTH (type);
2822 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2823
2824 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2825 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2826 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2827 {
2828 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2829 return;
2830 }
2831 else if (type->code () == TYPE_CODE_FLT)
2832 {
2833 if (tdep->st0_regnum < 0)
2834 {
2835 warning (_("Cannot find floating-point return value."));
2836 memset (valbuf, 0, len);
2837 return;
2838 }
2839
2840 /* Floating-point return values can be found in %st(0). Convert
2841 its contents to the desired type. This is probably not
2842 exactly how it would happen on the target itself, but it is
2843 the best we can do. */
2844 regcache->raw_read (I386_ST0_REGNUM, buf);
2845 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2846 }
2847 else
2848 {
2849 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2850 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2851
2852 if (len <= low_size)
2853 {
2854 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2855 memcpy (valbuf, buf, len);
2856 }
2857 else if (len <= (low_size + high_size))
2858 {
2859 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2860 memcpy (valbuf, buf, low_size);
2861 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2862 memcpy (valbuf + low_size, buf, len - low_size);
2863 }
2864 else
2865 internal_error (__FILE__, __LINE__,
2866 _("Cannot extract return value of %d bytes long."),
2867 len);
2868 }
2869 }
2870
2871 /* Write, for architecture GDBARCH, a function return value of TYPE
2872 from VALBUF into REGCACHE. */
2873
2874 static void
2875 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2876 struct regcache *regcache, const gdb_byte *valbuf)
2877 {
2878 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2879 int len = TYPE_LENGTH (type);
2880
2881 if (type->code () == TYPE_CODE_FLT)
2882 {
2883 ULONGEST fstat;
2884 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2885
2886 if (tdep->st0_regnum < 0)
2887 {
2888 warning (_("Cannot set floating-point return value."));
2889 return;
2890 }
2891
2892 /* Returning floating-point values is a bit tricky. Apart from
2893 storing the return value in %st(0), we have to simulate the
2894 state of the FPU at function return point. */
2895
2896 /* Convert the value found in VALBUF to the extended
2897 floating-point format used by the FPU. This is probably
2898 not exactly how it would happen on the target itself, but
2899 it is the best we can do. */
2900 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2901 regcache->raw_write (I386_ST0_REGNUM, buf);
2902
2903 /* Set the top of the floating-point register stack to 7. The
2904 actual value doesn't really matter, but 7 is what a normal
2905 function return would end up with if the program started out
2906 with a freshly initialized FPU. */
2907 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2908 fstat |= (7 << 11);
2909 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2910
2911 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2912 the floating-point register stack to 7, the appropriate value
2913 for the tag word is 0x3fff. */
2914 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2915 }
2916 else
2917 {
2918 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2919 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2920
2921 if (len <= low_size)
2922 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2923 else if (len <= (low_size + high_size))
2924 {
2925 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2926 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2927 valbuf + low_size);
2928 }
2929 else
2930 internal_error (__FILE__, __LINE__,
2931 _("Cannot store return value of %d bytes long."), len);
2932 }
2933 }
2934 \f
2935
2936 /* This is the variable that is set with "set struct-convention", and
2937 its legitimate values. */
2938 static const char default_struct_convention[] = "default";
2939 static const char pcc_struct_convention[] = "pcc";
2940 static const char reg_struct_convention[] = "reg";
2941 static const char *const valid_conventions[] =
2942 {
2943 default_struct_convention,
2944 pcc_struct_convention,
2945 reg_struct_convention,
2946 NULL
2947 };
2948 static const char *struct_convention = default_struct_convention;
2949
2950 /* Return non-zero if TYPE, which is assumed to be a structure,
2951 a union type, or an array type, should be returned in registers
2952 for architecture GDBARCH. */
2953
2954 static int
2955 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2956 {
2957 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
2958 enum type_code code = type->code ();
2959 int len = TYPE_LENGTH (type);
2960
2961 gdb_assert (code == TYPE_CODE_STRUCT
2962 || code == TYPE_CODE_UNION
2963 || code == TYPE_CODE_ARRAY);
2964
2965 if (struct_convention == pcc_struct_convention
2966 || (struct_convention == default_struct_convention
2967 && tdep->struct_return == pcc_struct_return))
2968 return 0;
2969
2970 /* Structures consisting of a single `float', `double' or 'long
2971 double' member are returned in %st(0). */
2972 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2973 {
2974 type = check_typedef (type->field (0).type ());
2975 if (type->code () == TYPE_CODE_FLT)
2976 return (len == 4 || len == 8 || len == 12);
2977 }
2978
2979 return (len == 1 || len == 2 || len == 4 || len == 8);
2980 }
2981
2982 /* Determine, for architecture GDBARCH, how a return value of TYPE
2983 should be returned. If it is supposed to be returned in registers,
2984 and READBUF is non-zero, read the appropriate value from REGCACHE,
2985 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2986 from WRITEBUF into REGCACHE. */
2987
2988 static enum return_value_convention
2989 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2990 struct type *type, struct regcache *regcache,
2991 gdb_byte *readbuf, const gdb_byte *writebuf)
2992 {
2993 enum type_code code = type->code ();
2994
2995 if (((code == TYPE_CODE_STRUCT
2996 || code == TYPE_CODE_UNION
2997 || code == TYPE_CODE_ARRAY)
2998 && !i386_reg_struct_return_p (gdbarch, type))
2999 /* Complex double and long double uses the struct return convention. */
3000 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
3001 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
3002 /* 128-bit decimal float uses the struct return convention. */
3003 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
3004 {
3005 /* The System V ABI says that:
3006
3007 "A function that returns a structure or union also sets %eax
3008 to the value of the original address of the caller's area
3009 before it returns. Thus when the caller receives control
3010 again, the address of the returned object resides in register
3011 %eax and can be used to access the object."
3012
3013 So the ABI guarantees that we can always find the return
3014 value just after the function has returned. */
3015
3016 /* Note that the ABI doesn't mention functions returning arrays,
3017 which is something possible in certain languages such as Ada.
3018 In this case, the value is returned as if it was wrapped in
3019 a record, so the convention applied to records also applies
3020 to arrays. */
3021
3022 if (readbuf)
3023 {
3024 ULONGEST addr;
3025
3026 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3027 read_memory (addr, readbuf, TYPE_LENGTH (type));
3028 }
3029
3030 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3031 }
3032
3033 /* This special case is for structures consisting of a single
3034 `float', `double' or 'long double' member. These structures are
3035 returned in %st(0). For these structures, we call ourselves
3036 recursively, changing TYPE into the type of the first member of
3037 the structure. Since that should work for all structures that
3038 have only one member, we don't bother to check the member's type
3039 here. */
3040 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3041 {
3042 type = check_typedef (type->field (0).type ());
3043 return i386_return_value (gdbarch, function, type, regcache,
3044 readbuf, writebuf);
3045 }
3046
3047 if (readbuf)
3048 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3049 if (writebuf)
3050 i386_store_return_value (gdbarch, type, regcache, writebuf);
3051
3052 return RETURN_VALUE_REGISTER_CONVENTION;
3053 }
3054 \f
3055
3056 struct type *
3057 i387_ext_type (struct gdbarch *gdbarch)
3058 {
3059 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3060
3061 if (!tdep->i387_ext_type)
3062 {
3063 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3064 gdb_assert (tdep->i387_ext_type != NULL);
3065 }
3066
3067 return tdep->i387_ext_type;
3068 }
3069
3070 /* Construct type for pseudo BND registers. We can't use
3071 tdesc_find_type since a complement of one value has to be used
3072 to describe the upper bound. */
3073
3074 static struct type *
3075 i386_bnd_type (struct gdbarch *gdbarch)
3076 {
3077 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3078
3079
3080 if (!tdep->i386_bnd_type)
3081 {
3082 struct type *t;
3083 const struct builtin_type *bt = builtin_type (gdbarch);
3084
3085 /* The type we're building is described bellow: */
3086 #if 0
3087 struct __bound128
3088 {
3089 void *lbound;
3090 void *ubound; /* One complement of raw ubound field. */
3091 };
3092 #endif
3093
3094 t = arch_composite_type (gdbarch,
3095 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3096
3097 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3098 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3099
3100 t->set_name ("builtin_type_bound128");
3101 tdep->i386_bnd_type = t;
3102 }
3103
3104 return tdep->i386_bnd_type;
3105 }
3106
3107 /* Construct vector type for pseudo ZMM registers. We can't use
3108 tdesc_find_type since ZMM isn't described in target description. */
3109
3110 static struct type *
3111 i386_zmm_type (struct gdbarch *gdbarch)
3112 {
3113 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3114
3115 if (!tdep->i386_zmm_type)
3116 {
3117 const struct builtin_type *bt = builtin_type (gdbarch);
3118
3119 /* The type we're building is this: */
3120 #if 0
3121 union __gdb_builtin_type_vec512i
3122 {
3123 int128_t v4_int128[4];
3124 int64_t v8_int64[8];
3125 int32_t v16_int32[16];
3126 int16_t v32_int16[32];
3127 int8_t v64_int8[64];
3128 double v8_double[8];
3129 float v16_float[16];
3130 float16_t v32_half[32];
3131 bfloat16_t v32_bfloat16[32];
3132 };
3133 #endif
3134
3135 struct type *t;
3136
3137 t = arch_composite_type (gdbarch,
3138 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3139 append_composite_type_field (t, "v32_bfloat16",
3140 init_vector_type (bt->builtin_bfloat16, 32));
3141 append_composite_type_field (t, "v32_half",
3142 init_vector_type (bt->builtin_half, 32));
3143 append_composite_type_field (t, "v16_float",
3144 init_vector_type (bt->builtin_float, 16));
3145 append_composite_type_field (t, "v8_double",
3146 init_vector_type (bt->builtin_double, 8));
3147 append_composite_type_field (t, "v64_int8",
3148 init_vector_type (bt->builtin_int8, 64));
3149 append_composite_type_field (t, "v32_int16",
3150 init_vector_type (bt->builtin_int16, 32));
3151 append_composite_type_field (t, "v16_int32",
3152 init_vector_type (bt->builtin_int32, 16));
3153 append_composite_type_field (t, "v8_int64",
3154 init_vector_type (bt->builtin_int64, 8));
3155 append_composite_type_field (t, "v4_int128",
3156 init_vector_type (bt->builtin_int128, 4));
3157
3158 t->set_is_vector (true);
3159 t->set_name ("builtin_type_vec512i");
3160 tdep->i386_zmm_type = t;
3161 }
3162
3163 return tdep->i386_zmm_type;
3164 }
3165
3166 /* Construct vector type for pseudo YMM registers. We can't use
3167 tdesc_find_type since YMM isn't described in target description. */
3168
3169 static struct type *
3170 i386_ymm_type (struct gdbarch *gdbarch)
3171 {
3172 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3173
3174 if (!tdep->i386_ymm_type)
3175 {
3176 const struct builtin_type *bt = builtin_type (gdbarch);
3177
3178 /* The type we're building is this: */
3179 #if 0
3180 union __gdb_builtin_type_vec256i
3181 {
3182 int128_t v2_int128[2];
3183 int64_t v4_int64[4];
3184 int32_t v8_int32[8];
3185 int16_t v16_int16[16];
3186 int8_t v32_int8[32];
3187 double v4_double[4];
3188 float v8_float[8];
3189 float16_t v16_half[16];
3190 bfloat16_t v16_bfloat16[16];
3191 };
3192 #endif
3193
3194 struct type *t;
3195
3196 t = arch_composite_type (gdbarch,
3197 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3198 append_composite_type_field (t, "v16_bfloat16",
3199 init_vector_type (bt->builtin_bfloat16, 16));
3200 append_composite_type_field (t, "v16_half",
3201 init_vector_type (bt->builtin_half, 16));
3202 append_composite_type_field (t, "v8_float",
3203 init_vector_type (bt->builtin_float, 8));
3204 append_composite_type_field (t, "v4_double",
3205 init_vector_type (bt->builtin_double, 4));
3206 append_composite_type_field (t, "v32_int8",
3207 init_vector_type (bt->builtin_int8, 32));
3208 append_composite_type_field (t, "v16_int16",
3209 init_vector_type (bt->builtin_int16, 16));
3210 append_composite_type_field (t, "v8_int32",
3211 init_vector_type (bt->builtin_int32, 8));
3212 append_composite_type_field (t, "v4_int64",
3213 init_vector_type (bt->builtin_int64, 4));
3214 append_composite_type_field (t, "v2_int128",
3215 init_vector_type (bt->builtin_int128, 2));
3216
3217 t->set_is_vector (true);
3218 t->set_name ("builtin_type_vec256i");
3219 tdep->i386_ymm_type = t;
3220 }
3221
3222 return tdep->i386_ymm_type;
3223 }
3224
3225 /* Construct vector type for MMX registers. */
3226 static struct type *
3227 i386_mmx_type (struct gdbarch *gdbarch)
3228 {
3229 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3230
3231 if (!tdep->i386_mmx_type)
3232 {
3233 const struct builtin_type *bt = builtin_type (gdbarch);
3234
3235 /* The type we're building is this: */
3236 #if 0
3237 union __gdb_builtin_type_vec64i
3238 {
3239 int64_t uint64;
3240 int32_t v2_int32[2];
3241 int16_t v4_int16[4];
3242 int8_t v8_int8[8];
3243 };
3244 #endif
3245
3246 struct type *t;
3247
3248 t = arch_composite_type (gdbarch,
3249 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3250
3251 append_composite_type_field (t, "uint64", bt->builtin_int64);
3252 append_composite_type_field (t, "v2_int32",
3253 init_vector_type (bt->builtin_int32, 2));
3254 append_composite_type_field (t, "v4_int16",
3255 init_vector_type (bt->builtin_int16, 4));
3256 append_composite_type_field (t, "v8_int8",
3257 init_vector_type (bt->builtin_int8, 8));
3258
3259 t->set_is_vector (true);
3260 t->set_name ("builtin_type_vec64i");
3261 tdep->i386_mmx_type = t;
3262 }
3263
3264 return tdep->i386_mmx_type;
3265 }
3266
3267 /* Return the GDB type object for the "standard" data type of data in
3268 register REGNUM. */
3269
3270 struct type *
3271 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3272 {
3273 if (i386_bnd_regnum_p (gdbarch, regnum))
3274 return i386_bnd_type (gdbarch);
3275 if (i386_mmx_regnum_p (gdbarch, regnum))
3276 return i386_mmx_type (gdbarch);
3277 else if (i386_ymm_regnum_p (gdbarch, regnum))
3278 return i386_ymm_type (gdbarch);
3279 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3280 return i386_ymm_type (gdbarch);
3281 else if (i386_zmm_regnum_p (gdbarch, regnum))
3282 return i386_zmm_type (gdbarch);
3283 else
3284 {
3285 const struct builtin_type *bt = builtin_type (gdbarch);
3286 if (i386_byte_regnum_p (gdbarch, regnum))
3287 return bt->builtin_int8;
3288 else if (i386_word_regnum_p (gdbarch, regnum))
3289 return bt->builtin_int16;
3290 else if (i386_dword_regnum_p (gdbarch, regnum))
3291 return bt->builtin_int32;
3292 else if (i386_k_regnum_p (gdbarch, regnum))
3293 return bt->builtin_int64;
3294 }
3295
3296 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3297 }
3298
3299 /* Map a cooked register onto a raw register or memory. For the i386,
3300 the MMX registers need to be mapped onto floating point registers. */
3301
3302 static int
3303 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3304 {
3305 gdbarch *arch = regcache->arch ();
3306 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
3307 int mmxreg, fpreg;
3308 ULONGEST fstat;
3309 int tos;
3310
3311 mmxreg = regnum - tdep->mm0_regnum;
3312 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3313 tos = (fstat >> 11) & 0x7;
3314 fpreg = (mmxreg + tos) % 8;
3315
3316 return (I387_ST0_REGNUM (tdep) + fpreg);
3317 }
3318
3319 /* A helper function for us by i386_pseudo_register_read_value and
3320 amd64_pseudo_register_read_value. It does all the work but reads
3321 the data into an already-allocated value. */
3322
3323 void
3324 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3325 readable_regcache *regcache,
3326 int regnum,
3327 struct value *result_value)
3328 {
3329 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3330 enum register_status status;
3331 gdb_byte *buf = value_contents_raw (result_value).data ();
3332
3333 if (i386_mmx_regnum_p (gdbarch, regnum))
3334 {
3335 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3336
3337 /* Extract (always little endian). */
3338 status = regcache->raw_read (fpnum, raw_buf);
3339 if (status != REG_VALID)
3340 mark_value_bytes_unavailable (result_value, 0,
3341 TYPE_LENGTH (value_type (result_value)));
3342 else
3343 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3344 }
3345 else
3346 {
3347 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3348 if (i386_bnd_regnum_p (gdbarch, regnum))
3349 {
3350 regnum -= tdep->bnd0_regnum;
3351
3352 /* Extract (always little endian). Read lower 128bits. */
3353 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 {
3359 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3360 LONGEST upper, lower;
3361 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3362
3363 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3364 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3365 upper = ~upper;
3366
3367 memcpy (buf, &lower, size);
3368 memcpy (buf + size, &upper, size);
3369 }
3370 }
3371 else if (i386_k_regnum_p (gdbarch, regnum))
3372 {
3373 regnum -= tdep->k0_regnum;
3374
3375 /* Extract (always little endian). */
3376 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 0, 8);
3379 else
3380 memcpy (buf, raw_buf, 8);
3381 }
3382 else if (i386_zmm_regnum_p (gdbarch, regnum))
3383 {
3384 regnum -= tdep->zmm0_regnum;
3385
3386 if (regnum < num_lower_zmm_regs)
3387 {
3388 /* Extract (always little endian). Read lower 128bits. */
3389 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3390 raw_buf);
3391 if (status != REG_VALID)
3392 mark_value_bytes_unavailable (result_value, 0, 16);
3393 else
3394 memcpy (buf, raw_buf, 16);
3395
3396 /* Extract (always little endian). Read upper 128bits. */
3397 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3398 raw_buf);
3399 if (status != REG_VALID)
3400 mark_value_bytes_unavailable (result_value, 16, 16);
3401 else
3402 memcpy (buf + 16, raw_buf, 16);
3403 }
3404 else
3405 {
3406 /* Extract (always little endian). Read lower 128bits. */
3407 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3408 - num_lower_zmm_regs,
3409 raw_buf);
3410 if (status != REG_VALID)
3411 mark_value_bytes_unavailable (result_value, 0, 16);
3412 else
3413 memcpy (buf, raw_buf, 16);
3414
3415 /* Extract (always little endian). Read upper 128bits. */
3416 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3417 - num_lower_zmm_regs,
3418 raw_buf);
3419 if (status != REG_VALID)
3420 mark_value_bytes_unavailable (result_value, 16, 16);
3421 else
3422 memcpy (buf + 16, raw_buf, 16);
3423 }
3424
3425 /* Read upper 256bits. */
3426 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3427 raw_buf);
3428 if (status != REG_VALID)
3429 mark_value_bytes_unavailable (result_value, 32, 32);
3430 else
3431 memcpy (buf + 32, raw_buf, 32);
3432 }
3433 else if (i386_ymm_regnum_p (gdbarch, regnum))
3434 {
3435 regnum -= tdep->ymm0_regnum;
3436
3437 /* Extract (always little endian). Read lower 128bits. */
3438 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3439 raw_buf);
3440 if (status != REG_VALID)
3441 mark_value_bytes_unavailable (result_value, 0, 16);
3442 else
3443 memcpy (buf, raw_buf, 16);
3444 /* Read upper 128bits. */
3445 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3446 raw_buf);
3447 if (status != REG_VALID)
3448 mark_value_bytes_unavailable (result_value, 16, 32);
3449 else
3450 memcpy (buf + 16, raw_buf, 16);
3451 }
3452 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3453 {
3454 regnum -= tdep->ymm16_regnum;
3455 /* Extract (always little endian). Read lower 128bits. */
3456 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3457 raw_buf);
3458 if (status != REG_VALID)
3459 mark_value_bytes_unavailable (result_value, 0, 16);
3460 else
3461 memcpy (buf, raw_buf, 16);
3462 /* Read upper 128bits. */
3463 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3464 raw_buf);
3465 if (status != REG_VALID)
3466 mark_value_bytes_unavailable (result_value, 16, 16);
3467 else
3468 memcpy (buf + 16, raw_buf, 16);
3469 }
3470 else if (i386_word_regnum_p (gdbarch, regnum))
3471 {
3472 int gpnum = regnum - tdep->ax_regnum;
3473
3474 /* Extract (always little endian). */
3475 status = regcache->raw_read (gpnum, raw_buf);
3476 if (status != REG_VALID)
3477 mark_value_bytes_unavailable (result_value, 0,
3478 TYPE_LENGTH (value_type (result_value)));
3479 else
3480 memcpy (buf, raw_buf, 2);
3481 }
3482 else if (i386_byte_regnum_p (gdbarch, regnum))
3483 {
3484 int gpnum = regnum - tdep->al_regnum;
3485
3486 /* Extract (always little endian). We read both lower and
3487 upper registers. */
3488 status = regcache->raw_read (gpnum % 4, raw_buf);
3489 if (status != REG_VALID)
3490 mark_value_bytes_unavailable (result_value, 0,
3491 TYPE_LENGTH (value_type (result_value)));
3492 else if (gpnum >= 4)
3493 memcpy (buf, raw_buf + 1, 1);
3494 else
3495 memcpy (buf, raw_buf, 1);
3496 }
3497 else
3498 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3499 }
3500 }
3501
3502 static struct value *
3503 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3504 readable_regcache *regcache,
3505 int regnum)
3506 {
3507 struct value *result;
3508
3509 result = allocate_value (register_type (gdbarch, regnum));
3510 VALUE_LVAL (result) = lval_register;
3511 VALUE_REGNUM (result) = regnum;
3512
3513 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3514
3515 return result;
3516 }
3517
3518 void
3519 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3520 int regnum, const gdb_byte *buf)
3521 {
3522 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3523
3524 if (i386_mmx_regnum_p (gdbarch, regnum))
3525 {
3526 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3527
3528 /* Read ... */
3529 regcache->raw_read (fpnum, raw_buf);
3530 /* ... Modify ... (always little endian). */
3531 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3532 /* ... Write. */
3533 regcache->raw_write (fpnum, raw_buf);
3534 }
3535 else
3536 {
3537 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3538
3539 if (i386_bnd_regnum_p (gdbarch, regnum))
3540 {
3541 ULONGEST upper, lower;
3542 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3543 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3544
3545 /* New values from input value. */
3546 regnum -= tdep->bnd0_regnum;
3547 lower = extract_unsigned_integer (buf, size, byte_order);
3548 upper = extract_unsigned_integer (buf + size, size, byte_order);
3549
3550 /* Fetching register buffer. */
3551 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3552 raw_buf);
3553
3554 upper = ~upper;
3555
3556 /* Set register bits. */
3557 memcpy (raw_buf, &lower, 8);
3558 memcpy (raw_buf + 8, &upper, 8);
3559
3560 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3561 }
3562 else if (i386_k_regnum_p (gdbarch, regnum))
3563 {
3564 regnum -= tdep->k0_regnum;
3565
3566 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3567 }
3568 else if (i386_zmm_regnum_p (gdbarch, regnum))
3569 {
3570 regnum -= tdep->zmm0_regnum;
3571
3572 if (regnum < num_lower_zmm_regs)
3573 {
3574 /* Write lower 128bits. */
3575 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3576 /* Write upper 128bits. */
3577 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3578 }
3579 else
3580 {
3581 /* Write lower 128bits. */
3582 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3583 - num_lower_zmm_regs, buf);
3584 /* Write upper 128bits. */
3585 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3586 - num_lower_zmm_regs, buf + 16);
3587 }
3588 /* Write upper 256bits. */
3589 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3590 }
3591 else if (i386_ymm_regnum_p (gdbarch, regnum))
3592 {
3593 regnum -= tdep->ymm0_regnum;
3594
3595 /* ... Write lower 128bits. */
3596 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3597 /* ... Write upper 128bits. */
3598 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3599 }
3600 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3601 {
3602 regnum -= tdep->ymm16_regnum;
3603
3604 /* ... Write lower 128bits. */
3605 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3606 /* ... Write upper 128bits. */
3607 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3608 }
3609 else if (i386_word_regnum_p (gdbarch, regnum))
3610 {
3611 int gpnum = regnum - tdep->ax_regnum;
3612
3613 /* Read ... */
3614 regcache->raw_read (gpnum, raw_buf);
3615 /* ... Modify ... (always little endian). */
3616 memcpy (raw_buf, buf, 2);
3617 /* ... Write. */
3618 regcache->raw_write (gpnum, raw_buf);
3619 }
3620 else if (i386_byte_regnum_p (gdbarch, regnum))
3621 {
3622 int gpnum = regnum - tdep->al_regnum;
3623
3624 /* Read ... We read both lower and upper registers. */
3625 regcache->raw_read (gpnum % 4, raw_buf);
3626 /* ... Modify ... (always little endian). */
3627 if (gpnum >= 4)
3628 memcpy (raw_buf + 1, buf, 1);
3629 else
3630 memcpy (raw_buf, buf, 1);
3631 /* ... Write. */
3632 regcache->raw_write (gpnum % 4, raw_buf);
3633 }
3634 else
3635 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3636 }
3637 }
3638
3639 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3640
3641 int
3642 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3643 struct agent_expr *ax, int regnum)
3644 {
3645 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3646
3647 if (i386_mmx_regnum_p (gdbarch, regnum))
3648 {
3649 /* MMX to FPU register mapping depends on current TOS. Let's just
3650 not care and collect everything... */
3651 int i;
3652
3653 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3654 for (i = 0; i < 8; i++)
3655 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3656 return 0;
3657 }
3658 else if (i386_bnd_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->bnd0_regnum;
3661 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3662 return 0;
3663 }
3664 else if (i386_k_regnum_p (gdbarch, regnum))
3665 {
3666 regnum -= tdep->k0_regnum;
3667 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3668 return 0;
3669 }
3670 else if (i386_zmm_regnum_p (gdbarch, regnum))
3671 {
3672 regnum -= tdep->zmm0_regnum;
3673 if (regnum < num_lower_zmm_regs)
3674 {
3675 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3676 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3677 }
3678 else
3679 {
3680 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3681 - num_lower_zmm_regs);
3682 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3683 - num_lower_zmm_regs);
3684 }
3685 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3686 return 0;
3687 }
3688 else if (i386_ymm_regnum_p (gdbarch, regnum))
3689 {
3690 regnum -= tdep->ymm0_regnum;
3691 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3692 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3693 return 0;
3694 }
3695 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3696 {
3697 regnum -= tdep->ymm16_regnum;
3698 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3699 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3700 return 0;
3701 }
3702 else if (i386_word_regnum_p (gdbarch, regnum))
3703 {
3704 int gpnum = regnum - tdep->ax_regnum;
3705
3706 ax_reg_mask (ax, gpnum);
3707 return 0;
3708 }
3709 else if (i386_byte_regnum_p (gdbarch, regnum))
3710 {
3711 int gpnum = regnum - tdep->al_regnum;
3712
3713 ax_reg_mask (ax, gpnum % 4);
3714 return 0;
3715 }
3716 else
3717 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3718 return 1;
3719 }
3720 \f
3721
3722 /* Return the register number of the register allocated by GCC after
3723 REGNUM, or -1 if there is no such register. */
3724
3725 static int
3726 i386_next_regnum (int regnum)
3727 {
3728 /* GCC allocates the registers in the order:
3729
3730 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3731
3732 Since storing a variable in %esp doesn't make any sense we return
3733 -1 for %ebp and for %esp itself. */
3734 static int next_regnum[] =
3735 {
3736 I386_EDX_REGNUM, /* Slot for %eax. */
3737 I386_EBX_REGNUM, /* Slot for %ecx. */
3738 I386_ECX_REGNUM, /* Slot for %edx. */
3739 I386_ESI_REGNUM, /* Slot for %ebx. */
3740 -1, -1, /* Slots for %esp and %ebp. */
3741 I386_EDI_REGNUM, /* Slot for %esi. */
3742 I386_EBP_REGNUM /* Slot for %edi. */
3743 };
3744
3745 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3746 return next_regnum[regnum];
3747
3748 return -1;
3749 }
3750
3751 /* Return nonzero if a value of type TYPE stored in register REGNUM
3752 needs any special handling. */
3753
3754 static int
3755 i386_convert_register_p (struct gdbarch *gdbarch,
3756 int regnum, struct type *type)
3757 {
3758 int len = TYPE_LENGTH (type);
3759
3760 /* Values may be spread across multiple registers. Most debugging
3761 formats aren't expressive enough to specify the locations, so
3762 some heuristics is involved. Right now we only handle types that
3763 have a length that is a multiple of the word size, since GCC
3764 doesn't seem to put any other types into registers. */
3765 if (len > 4 && len % 4 == 0)
3766 {
3767 int last_regnum = regnum;
3768
3769 while (len > 4)
3770 {
3771 last_regnum = i386_next_regnum (last_regnum);
3772 len -= 4;
3773 }
3774
3775 if (last_regnum != -1)
3776 return 1;
3777 }
3778
3779 return i387_convert_register_p (gdbarch, regnum, type);
3780 }
3781
3782 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3783 return its contents in TO. */
3784
3785 static int
3786 i386_register_to_value (struct frame_info *frame, int regnum,
3787 struct type *type, gdb_byte *to,
3788 int *optimizedp, int *unavailablep)
3789 {
3790 struct gdbarch *gdbarch = get_frame_arch (frame);
3791 int len = TYPE_LENGTH (type);
3792
3793 if (i386_fp_regnum_p (gdbarch, regnum))
3794 return i387_register_to_value (frame, regnum, type, to,
3795 optimizedp, unavailablep);
3796
3797 /* Read a value spread across multiple registers. */
3798
3799 gdb_assert (len > 4 && len % 4 == 0);
3800
3801 while (len > 0)
3802 {
3803 gdb_assert (regnum != -1);
3804 gdb_assert (register_size (gdbarch, regnum) == 4);
3805
3806 if (!get_frame_register_bytes (frame, regnum, 0,
3807 gdb::make_array_view (to,
3808 register_size (gdbarch,
3809 regnum)),
3810 optimizedp, unavailablep))
3811 return 0;
3812
3813 regnum = i386_next_regnum (regnum);
3814 len -= 4;
3815 to += 4;
3816 }
3817
3818 *optimizedp = *unavailablep = 0;
3819 return 1;
3820 }
3821
3822 /* Write the contents FROM of a value of type TYPE into register
3823 REGNUM in frame FRAME. */
3824
3825 static void
3826 i386_value_to_register (struct frame_info *frame, int regnum,
3827 struct type *type, const gdb_byte *from)
3828 {
3829 int len = TYPE_LENGTH (type);
3830
3831 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3832 {
3833 i387_value_to_register (frame, regnum, type, from);
3834 return;
3835 }
3836
3837 /* Write a value spread across multiple registers. */
3838
3839 gdb_assert (len > 4 && len % 4 == 0);
3840
3841 while (len > 0)
3842 {
3843 gdb_assert (regnum != -1);
3844 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3845
3846 put_frame_register (frame, regnum, from);
3847 regnum = i386_next_regnum (regnum);
3848 len -= 4;
3849 from += 4;
3850 }
3851 }
3852 \f
3853 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3854 in the general-purpose register set REGSET to register cache
3855 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3856
3857 void
3858 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3859 int regnum, const void *gregs, size_t len)
3860 {
3861 struct gdbarch *gdbarch = regcache->arch ();
3862 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3863 const gdb_byte *regs = (const gdb_byte *) gregs;
3864 int i;
3865
3866 gdb_assert (len >= tdep->sizeof_gregset);
3867
3868 for (i = 0; i < tdep->gregset_num_regs; i++)
3869 {
3870 if ((regnum == i || regnum == -1)
3871 && tdep->gregset_reg_offset[i] != -1)
3872 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3873 }
3874 }
3875
3876 /* Collect register REGNUM from the register cache REGCACHE and store
3877 it in the buffer specified by GREGS and LEN as described by the
3878 general-purpose register set REGSET. If REGNUM is -1, do this for
3879 all registers in REGSET. */
3880
3881 static void
3882 i386_collect_gregset (const struct regset *regset,
3883 const struct regcache *regcache,
3884 int regnum, void *gregs, size_t len)
3885 {
3886 struct gdbarch *gdbarch = regcache->arch ();
3887 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3888 gdb_byte *regs = (gdb_byte *) gregs;
3889 int i;
3890
3891 gdb_assert (len >= tdep->sizeof_gregset);
3892
3893 for (i = 0; i < tdep->gregset_num_regs; i++)
3894 {
3895 if ((regnum == i || regnum == -1)
3896 && tdep->gregset_reg_offset[i] != -1)
3897 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3898 }
3899 }
3900
3901 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3902 in the floating-point register set REGSET to register cache
3903 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3904
3905 static void
3906 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3907 int regnum, const void *fpregs, size_t len)
3908 {
3909 struct gdbarch *gdbarch = regcache->arch ();
3910 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3911
3912 if (len == I387_SIZEOF_FXSAVE)
3913 {
3914 i387_supply_fxsave (regcache, regnum, fpregs);
3915 return;
3916 }
3917
3918 gdb_assert (len >= tdep->sizeof_fpregset);
3919 i387_supply_fsave (regcache, regnum, fpregs);
3920 }
3921
3922 /* Collect register REGNUM from the register cache REGCACHE and store
3923 it in the buffer specified by FPREGS and LEN as described by the
3924 floating-point register set REGSET. If REGNUM is -1, do this for
3925 all registers in REGSET. */
3926
3927 static void
3928 i386_collect_fpregset (const struct regset *regset,
3929 const struct regcache *regcache,
3930 int regnum, void *fpregs, size_t len)
3931 {
3932 struct gdbarch *gdbarch = regcache->arch ();
3933 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3934
3935 if (len == I387_SIZEOF_FXSAVE)
3936 {
3937 i387_collect_fxsave (regcache, regnum, fpregs);
3938 return;
3939 }
3940
3941 gdb_assert (len >= tdep->sizeof_fpregset);
3942 i387_collect_fsave (regcache, regnum, fpregs);
3943 }
3944
3945 /* Register set definitions. */
3946
3947 const struct regset i386_gregset =
3948 {
3949 NULL, i386_supply_gregset, i386_collect_gregset
3950 };
3951
3952 const struct regset i386_fpregset =
3953 {
3954 NULL, i386_supply_fpregset, i386_collect_fpregset
3955 };
3956
3957 /* Default iterator over core file register note sections. */
3958
3959 void
3960 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3961 iterate_over_regset_sections_cb *cb,
3962 void *cb_data,
3963 const struct regcache *regcache)
3964 {
3965 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
3966
3967 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3968 cb_data);
3969 if (tdep->sizeof_fpregset)
3970 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3971 NULL, cb_data);
3972 }
3973 \f
3974
3975 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3976
3977 CORE_ADDR
3978 i386_pe_skip_trampoline_code (struct frame_info *frame,
3979 CORE_ADDR pc, char *name)
3980 {
3981 struct gdbarch *gdbarch = get_frame_arch (frame);
3982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3983
3984 /* jmp *(dest) */
3985 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3986 {
3987 unsigned long indirect =
3988 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3989 struct minimal_symbol *indsym =
3990 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3991 const char *symname = indsym ? indsym->linkage_name () : 0;
3992
3993 if (symname)
3994 {
3995 if (startswith (symname, "__imp_")
3996 || startswith (symname, "_imp_"))
3997 return name ? 1 :
3998 read_memory_unsigned_integer (indirect, 4, byte_order);
3999 }
4000 }
4001 return 0; /* Not a trampoline. */
4002 }
4003 \f
4004
4005 /* Return whether the THIS_FRAME corresponds to a sigtramp
4006 routine. */
4007
4008 int
4009 i386_sigtramp_p (struct frame_info *this_frame)
4010 {
4011 CORE_ADDR pc = get_frame_pc (this_frame);
4012 const char *name;
4013
4014 find_pc_partial_function (pc, &name, NULL, NULL);
4015 return (name && strcmp ("_sigtramp", name) == 0);
4016 }
4017 \f
4018
4019 /* We have two flavours of disassembly. The machinery on this page
4020 deals with switching between those. */
4021
4022 static int
4023 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4024 {
4025 gdb_assert (disassembly_flavor == att_flavor
4026 || disassembly_flavor == intel_flavor);
4027
4028 info->disassembler_options = disassembly_flavor;
4029
4030 return default_print_insn (pc, info);
4031 }
4032 \f
4033
4034 /* There are a few i386 architecture variants that differ only
4035 slightly from the generic i386 target. For now, we don't give them
4036 their own source file, but include them here. As a consequence,
4037 they'll always be included. */
4038
4039 /* System V Release 4 (SVR4). */
4040
4041 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4042 routine. */
4043
4044 static int
4045 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4046 {
4047 CORE_ADDR pc = get_frame_pc (this_frame);
4048 const char *name;
4049
4050 /* The origin of these symbols is currently unknown. */
4051 find_pc_partial_function (pc, &name, NULL, NULL);
4052 return (name && (strcmp ("_sigreturn", name) == 0
4053 || strcmp ("sigvechandler", name) == 0));
4054 }
4055
4056 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4057 address of the associated sigcontext (ucontext) structure. */
4058
4059 static CORE_ADDR
4060 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4061 {
4062 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4063 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4064 gdb_byte buf[4];
4065 CORE_ADDR sp;
4066
4067 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4068 sp = extract_unsigned_integer (buf, 4, byte_order);
4069
4070 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4071 }
4072
4073 \f
4074
4075 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4076 gdbarch.h. */
4077
4078 int
4079 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4080 {
4081 return (*s == '$' /* Literal number. */
4082 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4083 || (*s == '(' && s[1] == '%') /* Register indirection. */
4084 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4085 }
4086
4087 /* Helper function for i386_stap_parse_special_token.
4088
4089 This function parses operands of the form `-8+3+1(%rbp)', which
4090 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4091
4092 Return true if the operand was parsed successfully, false
4093 otherwise. */
4094
4095 static expr::operation_up
4096 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4097 struct stap_parse_info *p)
4098 {
4099 const char *s = p->arg;
4100
4101 if (isdigit (*s) || *s == '-' || *s == '+')
4102 {
4103 bool got_minus[3];
4104 int i;
4105 long displacements[3];
4106 const char *start;
4107 int len;
4108 char *endp;
4109
4110 got_minus[0] = false;
4111 if (*s == '+')
4112 ++s;
4113 else if (*s == '-')
4114 {
4115 ++s;
4116 got_minus[0] = true;
4117 }
4118
4119 if (!isdigit ((unsigned char) *s))
4120 return {};
4121
4122 displacements[0] = strtol (s, &endp, 10);
4123 s = endp;
4124
4125 if (*s != '+' && *s != '-')
4126 {
4127 /* We are not dealing with a triplet. */
4128 return {};
4129 }
4130
4131 got_minus[1] = false;
4132 if (*s == '+')
4133 ++s;
4134 else
4135 {
4136 ++s;
4137 got_minus[1] = true;
4138 }
4139
4140 if (!isdigit ((unsigned char) *s))
4141 return {};
4142
4143 displacements[1] = strtol (s, &endp, 10);
4144 s = endp;
4145
4146 if (*s != '+' && *s != '-')
4147 {
4148 /* We are not dealing with a triplet. */
4149 return {};
4150 }
4151
4152 got_minus[2] = false;
4153 if (*s == '+')
4154 ++s;
4155 else
4156 {
4157 ++s;
4158 got_minus[2] = true;
4159 }
4160
4161 if (!isdigit ((unsigned char) *s))
4162 return {};
4163
4164 displacements[2] = strtol (s, &endp, 10);
4165 s = endp;
4166
4167 if (*s != '(' || s[1] != '%')
4168 return {};
4169
4170 s += 2;
4171 start = s;
4172
4173 while (isalnum (*s))
4174 ++s;
4175
4176 if (*s++ != ')')
4177 return {};
4178
4179 len = s - start - 1;
4180 std::string regname (start, len);
4181
4182 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4183 error (_("Invalid register name `%s' on expression `%s'."),
4184 regname.c_str (), p->saved_arg);
4185
4186 LONGEST value = 0;
4187 for (i = 0; i < 3; i++)
4188 {
4189 LONGEST this_val = displacements[i];
4190 if (got_minus[i])
4191 this_val = -this_val;
4192 value += this_val;
4193 }
4194
4195 p->arg = s;
4196
4197 using namespace expr;
4198
4199 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4200 operation_up offset
4201 = make_operation<long_const_operation> (long_type, value);
4202
4203 operation_up reg
4204 = make_operation<register_operation> (std::move (regname));
4205 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4206 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4207
4208 operation_up sum
4209 = make_operation<add_operation> (std::move (reg), std::move (offset));
4210 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4211 sum = make_operation<unop_cast_operation> (std::move (sum),
4212 arg_ptr_type);
4213 return make_operation<unop_ind_operation> (std::move (sum));
4214 }
4215
4216 return {};
4217 }
4218
4219 /* Helper function for i386_stap_parse_special_token.
4220
4221 This function parses operands of the form `register base +
4222 (register index * size) + offset', as represented in
4223 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4224
4225 Return true if the operand was parsed successfully, false
4226 otherwise. */
4227
4228 static expr::operation_up
4229 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4230 struct stap_parse_info *p)
4231 {
4232 const char *s = p->arg;
4233
4234 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4235 {
4236 bool offset_minus = false;
4237 long offset = 0;
4238 bool size_minus = false;
4239 long size = 0;
4240 const char *start;
4241 int len_base;
4242 int len_index;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = true;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return {};
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return {};
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return {};
4274
4275 len_base = s - start;
4276 std::string base (start, len_base);
4277
4278 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4279 error (_("Invalid register name `%s' on expression `%s'."),
4280 base.c_str (), p->saved_arg);
4281
4282 s += 2;
4283 start = s;
4284
4285 while (isalnum (*s))
4286 ++s;
4287
4288 len_index = s - start;
4289 std::string index (start, len_index);
4290
4291 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4292 len_index) == -1)
4293 error (_("Invalid register name `%s' on expression `%s'."),
4294 index.c_str (), p->saved_arg);
4295
4296 if (*s != ',' && *s != ')')
4297 return {};
4298
4299 if (*s == ',')
4300 {
4301 char *endp;
4302
4303 ++s;
4304 if (*s == '+')
4305 ++s;
4306 else if (*s == '-')
4307 {
4308 ++s;
4309 size_minus = true;
4310 }
4311
4312 size = strtol (s, &endp, 10);
4313 s = endp;
4314
4315 if (*s != ')')
4316 return {};
4317 }
4318
4319 ++s;
4320 p->arg = s;
4321
4322 using namespace expr;
4323
4324 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4325 operation_up reg = make_operation<register_operation> (std::move (base));
4326
4327 if (offset != 0)
4328 {
4329 if (offset_minus)
4330 offset = -offset;
4331 operation_up value
4332 = make_operation<long_const_operation> (long_type, offset);
4333 reg = make_operation<add_operation> (std::move (reg),
4334 std::move (value));
4335 }
4336
4337 operation_up ind_reg
4338 = make_operation<register_operation> (std::move (index));
4339
4340 if (size != 0)
4341 {
4342 if (size_minus)
4343 size = -size;
4344 operation_up value
4345 = make_operation<long_const_operation> (long_type, size);
4346 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4347 std::move (value));
4348 }
4349
4350 operation_up sum
4351 = make_operation<add_operation> (std::move (reg),
4352 std::move (ind_reg));
4353
4354 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4355 sum = make_operation<unop_cast_operation> (std::move (sum),
4356 arg_ptr_type);
4357 return make_operation<unop_ind_operation> (std::move (sum));
4358 }
4359
4360 return {};
4361 }
4362
4363 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4364 gdbarch.h. */
4365
4366 expr::operation_up
4367 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4368 struct stap_parse_info *p)
4369 {
4370 /* The special tokens to be parsed here are:
4371
4372 - `register base + (register index * size) + offset', as represented
4373 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4374
4375 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4376 `*(-8 + 3 - 1 + (void *) $eax)'. */
4377
4378 expr::operation_up result
4379 = i386_stap_parse_special_token_triplet (gdbarch, p);
4380
4381 if (result == nullptr)
4382 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4383
4384 return result;
4385 }
4386
4387 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4388 gdbarch.h. */
4389
4390 static std::string
4391 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4392 const std::string &regname, int regnum)
4393 {
4394 static const std::unordered_set<std::string> reg_assoc
4395 = { "ax", "bx", "cx", "dx",
4396 "si", "di", "bp", "sp" };
4397
4398 /* If we are dealing with a register whose size is less than the size
4399 specified by the "[-]N@" prefix, and it is one of the registers that
4400 we know has an extended variant available, then use the extended
4401 version of the register instead. */
4402 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4403 && reg_assoc.find (regname) != reg_assoc.end ())
4404 return "e" + regname;
4405
4406 /* Otherwise, just use the requested register. */
4407 return regname;
4408 }
4409
4410 \f
4411
4412 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4413 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4414
4415 static const char *
4416 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4417 {
4418 return "(x86_64|i.86)";
4419 }
4420
4421 \f
4422
4423 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4424
4425 static bool
4426 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4427 {
4428 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4429 I386_EAX_REGNUM, I386_EIP_REGNUM);
4430 }
4431
4432 /* Generic ELF. */
4433
4434 void
4435 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4436 {
4437 static const char *const stap_integer_prefixes[] = { "$", NULL };
4438 static const char *const stap_register_prefixes[] = { "%", NULL };
4439 static const char *const stap_register_indirection_prefixes[] = { "(",
4440 NULL };
4441 static const char *const stap_register_indirection_suffixes[] = { ")",
4442 NULL };
4443
4444 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4445 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4446
4447 /* Registering SystemTap handlers. */
4448 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4449 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4450 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4451 stap_register_indirection_prefixes);
4452 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4453 stap_register_indirection_suffixes);
4454 set_gdbarch_stap_is_single_operand (gdbarch,
4455 i386_stap_is_single_operand);
4456 set_gdbarch_stap_parse_special_token (gdbarch,
4457 i386_stap_parse_special_token);
4458 set_gdbarch_stap_adjust_register (gdbarch,
4459 i386_stap_adjust_register);
4460
4461 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4462 i386_in_indirect_branch_thunk);
4463 }
4464
4465 /* System V Release 4 (SVR4). */
4466
4467 void
4468 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4469 {
4470 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4471
4472 /* System V Release 4 uses ELF. */
4473 i386_elf_init_abi (info, gdbarch);
4474
4475 /* System V Release 4 has shared libraries. */
4476 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4477
4478 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4479 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4480 tdep->sc_pc_offset = 36 + 14 * 4;
4481 tdep->sc_sp_offset = 36 + 17 * 4;
4482
4483 tdep->jb_pc_offset = 20;
4484 }
4485
4486 \f
4487
4488 /* i386 register groups. In addition to the normal groups, add "mmx"
4489 and "sse". */
4490
4491 static struct reggroup *i386_sse_reggroup;
4492 static struct reggroup *i386_mmx_reggroup;
4493
4494 static void
4495 i386_init_reggroups (void)
4496 {
4497 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4498 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4499 }
4500
4501 static void
4502 i386_add_reggroups (struct gdbarch *gdbarch)
4503 {
4504 reggroup_add (gdbarch, i386_sse_reggroup);
4505 reggroup_add (gdbarch, i386_mmx_reggroup);
4506 reggroup_add (gdbarch, general_reggroup);
4507 reggroup_add (gdbarch, float_reggroup);
4508 reggroup_add (gdbarch, all_reggroup);
4509 reggroup_add (gdbarch, save_reggroup);
4510 reggroup_add (gdbarch, restore_reggroup);
4511 reggroup_add (gdbarch, vector_reggroup);
4512 reggroup_add (gdbarch, system_reggroup);
4513 }
4514
4515 int
4516 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4517 struct reggroup *group)
4518 {
4519 const i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4520 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4521 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4522 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4523 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4524 avx512_p, avx_p, sse_p, pkru_regnum_p;
4525
4526 /* Don't include pseudo registers, except for MMX, in any register
4527 groups. */
4528 if (i386_byte_regnum_p (gdbarch, regnum))
4529 return 0;
4530
4531 if (i386_word_regnum_p (gdbarch, regnum))
4532 return 0;
4533
4534 if (i386_dword_regnum_p (gdbarch, regnum))
4535 return 0;
4536
4537 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4538 if (group == i386_mmx_reggroup)
4539 return mmx_regnum_p;
4540
4541 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4542 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4543 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4544 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4545 if (group == i386_sse_reggroup)
4546 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4547
4548 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4549 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4550 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4551
4552 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4553 == X86_XSTATE_AVX_AVX512_MASK);
4554 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4555 == X86_XSTATE_AVX_MASK) && !avx512_p;
4556 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4558
4559 if (group == vector_reggroup)
4560 return (mmx_regnum_p
4561 || (zmm_regnum_p && avx512_p)
4562 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4563 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4564 || mxcsr_regnum_p);
4565
4566 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4567 || i386_fpc_regnum_p (gdbarch, regnum));
4568 if (group == float_reggroup)
4569 return fp_regnum_p;
4570
4571 /* For "info reg all", don't include upper YMM registers nor XMM
4572 registers when AVX is supported. */
4573 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4574 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4575 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4576 if (group == all_reggroup
4577 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4578 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4579 || ymmh_regnum_p
4580 || ymmh_avx512_regnum_p
4581 || zmmh_regnum_p))
4582 return 0;
4583
4584 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4585 if (group == all_reggroup
4586 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4587 return bnd_regnum_p;
4588
4589 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4590 if (group == all_reggroup
4591 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4592 return 0;
4593
4594 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4595 if (group == all_reggroup
4596 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4597 return mpx_ctrl_regnum_p;
4598
4599 if (group == general_reggroup)
4600 return (!fp_regnum_p
4601 && !mmx_regnum_p
4602 && !mxcsr_regnum_p
4603 && !xmm_regnum_p
4604 && !xmm_avx512_regnum_p
4605 && !ymm_regnum_p
4606 && !ymmh_regnum_p
4607 && !ymm_avx512_regnum_p
4608 && !ymmh_avx512_regnum_p
4609 && !bndr_regnum_p
4610 && !bnd_regnum_p
4611 && !mpx_ctrl_regnum_p
4612 && !zmm_regnum_p
4613 && !zmmh_regnum_p
4614 && !pkru_regnum_p);
4615
4616 return default_register_reggroup_p (gdbarch, regnum, group);
4617 }
4618 \f
4619
4620 /* Get the ARGIth function argument for the current function. */
4621
4622 static CORE_ADDR
4623 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4624 struct type *type)
4625 {
4626 struct gdbarch *gdbarch = get_frame_arch (frame);
4627 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4628 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4629 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4630 }
4631
4632 #define PREFIX_REPZ 0x01
4633 #define PREFIX_REPNZ 0x02
4634 #define PREFIX_LOCK 0x04
4635 #define PREFIX_DATA 0x08
4636 #define PREFIX_ADDR 0x10
4637
4638 /* operand size */
4639 enum
4640 {
4641 OT_BYTE = 0,
4642 OT_WORD,
4643 OT_LONG,
4644 OT_QUAD,
4645 OT_DQUAD,
4646 };
4647
4648 /* i386 arith/logic operations */
4649 enum
4650 {
4651 OP_ADDL,
4652 OP_ORL,
4653 OP_ADCL,
4654 OP_SBBL,
4655 OP_ANDL,
4656 OP_SUBL,
4657 OP_XORL,
4658 OP_CMPL,
4659 };
4660
4661 struct i386_record_s
4662 {
4663 struct gdbarch *gdbarch;
4664 struct regcache *regcache;
4665 CORE_ADDR orig_addr;
4666 CORE_ADDR addr;
4667 int aflag;
4668 int dflag;
4669 int override;
4670 uint8_t modrm;
4671 uint8_t mod, reg, rm;
4672 int ot;
4673 uint8_t rex_x;
4674 uint8_t rex_b;
4675 int rip_offset;
4676 int popl_esp_hack;
4677 const int *regmap;
4678 };
4679
4680 /* Parse the "modrm" part of the memory address irp->addr points at.
4681 Returns -1 if something goes wrong, 0 otherwise. */
4682
4683 static int
4684 i386_record_modrm (struct i386_record_s *irp)
4685 {
4686 struct gdbarch *gdbarch = irp->gdbarch;
4687
4688 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4689 return -1;
4690
4691 irp->addr++;
4692 irp->mod = (irp->modrm >> 6) & 3;
4693 irp->reg = (irp->modrm >> 3) & 7;
4694 irp->rm = irp->modrm & 7;
4695
4696 return 0;
4697 }
4698
4699 /* Extract the memory address that the current instruction writes to,
4700 and return it in *ADDR. Return -1 if something goes wrong. */
4701
4702 static int
4703 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4704 {
4705 struct gdbarch *gdbarch = irp->gdbarch;
4706 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4707 gdb_byte buf[4];
4708 ULONGEST offset64;
4709
4710 *addr = 0;
4711 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4712 {
4713 /* 32/64 bits */
4714 int havesib = 0;
4715 uint8_t scale = 0;
4716 uint8_t byte;
4717 uint8_t index = 0;
4718 uint8_t base = irp->rm;
4719
4720 if (base == 4)
4721 {
4722 havesib = 1;
4723 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4724 return -1;
4725 irp->addr++;
4726 scale = (byte >> 6) & 3;
4727 index = ((byte >> 3) & 7) | irp->rex_x;
4728 base = (byte & 7);
4729 }
4730 base |= irp->rex_b;
4731
4732 switch (irp->mod)
4733 {
4734 case 0:
4735 if ((base & 7) == 5)
4736 {
4737 base = 0xff;
4738 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4739 return -1;
4740 irp->addr += 4;
4741 *addr = extract_signed_integer (buf, 4, byte_order);
4742 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4743 *addr += irp->addr + irp->rip_offset;
4744 }
4745 break;
4746 case 1:
4747 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4748 return -1;
4749 irp->addr++;
4750 *addr = (int8_t) buf[0];
4751 break;
4752 case 2:
4753 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4754 return -1;
4755 *addr = extract_signed_integer (buf, 4, byte_order);
4756 irp->addr += 4;
4757 break;
4758 }
4759
4760 offset64 = 0;
4761 if (base != 0xff)
4762 {
4763 if (base == 4 && irp->popl_esp_hack)
4764 *addr += irp->popl_esp_hack;
4765 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4766 &offset64);
4767 }
4768 if (irp->aflag == 2)
4769 {
4770 *addr += offset64;
4771 }
4772 else
4773 *addr = (uint32_t) (offset64 + *addr);
4774
4775 if (havesib && (index != 4 || scale != 0))
4776 {
4777 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4778 &offset64);
4779 if (irp->aflag == 2)
4780 *addr += offset64 << scale;
4781 else
4782 *addr = (uint32_t) (*addr + (offset64 << scale));
4783 }
4784
4785 if (!irp->aflag)
4786 {
4787 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4788 address from 32-bit to 64-bit. */
4789 *addr = (uint32_t) *addr;
4790 }
4791 }
4792 else
4793 {
4794 /* 16 bits */
4795 switch (irp->mod)
4796 {
4797 case 0:
4798 if (irp->rm == 6)
4799 {
4800 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4801 return -1;
4802 irp->addr += 2;
4803 *addr = extract_signed_integer (buf, 2, byte_order);
4804 irp->rm = 0;
4805 goto no_rm;
4806 }
4807 break;
4808 case 1:
4809 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4810 return -1;
4811 irp->addr++;
4812 *addr = (int8_t) buf[0];
4813 break;
4814 case 2:
4815 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4816 return -1;
4817 irp->addr += 2;
4818 *addr = extract_signed_integer (buf, 2, byte_order);
4819 break;
4820 }
4821
4822 switch (irp->rm)
4823 {
4824 case 0:
4825 regcache_raw_read_unsigned (irp->regcache,
4826 irp->regmap[X86_RECORD_REBX_REGNUM],
4827 &offset64);
4828 *addr = (uint32_t) (*addr + offset64);
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_RESI_REGNUM],
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
4833 break;
4834 case 1:
4835 regcache_raw_read_unsigned (irp->regcache,
4836 irp->regmap[X86_RECORD_REBX_REGNUM],
4837 &offset64);
4838 *addr = (uint32_t) (*addr + offset64);
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REDI_REGNUM],
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
4843 break;
4844 case 2:
4845 regcache_raw_read_unsigned (irp->regcache,
4846 irp->regmap[X86_RECORD_REBP_REGNUM],
4847 &offset64);
4848 *addr = (uint32_t) (*addr + offset64);
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_RESI_REGNUM],
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
4853 break;
4854 case 3:
4855 regcache_raw_read_unsigned (irp->regcache,
4856 irp->regmap[X86_RECORD_REBP_REGNUM],
4857 &offset64);
4858 *addr = (uint32_t) (*addr + offset64);
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REDI_REGNUM],
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
4863 break;
4864 case 4:
4865 regcache_raw_read_unsigned (irp->regcache,
4866 irp->regmap[X86_RECORD_RESI_REGNUM],
4867 &offset64);
4868 *addr = (uint32_t) (*addr + offset64);
4869 break;
4870 case 5:
4871 regcache_raw_read_unsigned (irp->regcache,
4872 irp->regmap[X86_RECORD_REDI_REGNUM],
4873 &offset64);
4874 *addr = (uint32_t) (*addr + offset64);
4875 break;
4876 case 6:
4877 regcache_raw_read_unsigned (irp->regcache,
4878 irp->regmap[X86_RECORD_REBP_REGNUM],
4879 &offset64);
4880 *addr = (uint32_t) (*addr + offset64);
4881 break;
4882 case 7:
4883 regcache_raw_read_unsigned (irp->regcache,
4884 irp->regmap[X86_RECORD_REBX_REGNUM],
4885 &offset64);
4886 *addr = (uint32_t) (*addr + offset64);
4887 break;
4888 }
4889 *addr &= 0xffff;
4890 }
4891
4892 no_rm:
4893 return 0;
4894 }
4895
4896 /* Record the address and contents of the memory that will be changed
4897 by the current instruction. Return -1 if something goes wrong, 0
4898 otherwise. */
4899
4900 static int
4901 i386_record_lea_modrm (struct i386_record_s *irp)
4902 {
4903 struct gdbarch *gdbarch = irp->gdbarch;
4904 uint64_t addr;
4905
4906 if (irp->override >= 0)
4907 {
4908 if (record_full_memory_query)
4909 {
4910 if (yquery (_("\
4911 Process record ignores the memory change of instruction at address %s\n\
4912 because it can't get the value of the segment register.\n\
4913 Do you want to stop the program?"),
4914 paddress (gdbarch, irp->orig_addr)))
4915 return -1;
4916 }
4917
4918 return 0;
4919 }
4920
4921 if (i386_record_lea_modrm_addr (irp, &addr))
4922 return -1;
4923
4924 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4925 return -1;
4926
4927 return 0;
4928 }
4929
4930 /* Record the effects of a push operation. Return -1 if something
4931 goes wrong, 0 otherwise. */
4932
4933 static int
4934 i386_record_push (struct i386_record_s *irp, int size)
4935 {
4936 ULONGEST addr;
4937
4938 if (record_full_arch_list_add_reg (irp->regcache,
4939 irp->regmap[X86_RECORD_RESP_REGNUM]))
4940 return -1;
4941 regcache_raw_read_unsigned (irp->regcache,
4942 irp->regmap[X86_RECORD_RESP_REGNUM],
4943 &addr);
4944 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4945 return -1;
4946
4947 return 0;
4948 }
4949
4950
4951 /* Defines contents to record. */
4952 #define I386_SAVE_FPU_REGS 0xfffd
4953 #define I386_SAVE_FPU_ENV 0xfffe
4954 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4955
4956 /* Record the values of the floating point registers which will be
4957 changed by the current instruction. Returns -1 if something is
4958 wrong, 0 otherwise. */
4959
4960 static int i386_record_floats (struct gdbarch *gdbarch,
4961 struct i386_record_s *ir,
4962 uint32_t iregnum)
4963 {
4964 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
4965 int i;
4966
4967 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4968 happen. Currently we store st0-st7 registers, but we need not store all
4969 registers all the time, in future we use ftag register and record only
4970 those who are not marked as an empty. */
4971
4972 if (I386_SAVE_FPU_REGS == iregnum)
4973 {
4974 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4975 {
4976 if (record_full_arch_list_add_reg (ir->regcache, i))
4977 return -1;
4978 }
4979 }
4980 else if (I386_SAVE_FPU_ENV == iregnum)
4981 {
4982 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4983 {
4984 if (record_full_arch_list_add_reg (ir->regcache, i))
4985 return -1;
4986 }
4987 }
4988 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4989 {
4990 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4991 if (record_full_arch_list_add_reg (ir->regcache, i))
4992 return -1;
4993 }
4994 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4995 (iregnum <= I387_FOP_REGNUM (tdep)))
4996 {
4997 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4998 return -1;
4999 }
5000 else
5001 {
5002 /* Parameter error. */
5003 return -1;
5004 }
5005 if(I386_SAVE_FPU_ENV != iregnum)
5006 {
5007 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5008 {
5009 if (record_full_arch_list_add_reg (ir->regcache, i))
5010 return -1;
5011 }
5012 }
5013 return 0;
5014 }
5015
5016 /* Parse the current instruction, and record the values of the
5017 registers and memory that will be changed by the current
5018 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5019
5020 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5021 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5022
5023 int
5024 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5025 CORE_ADDR input_addr)
5026 {
5027 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5028 int prefixes = 0;
5029 int regnum = 0;
5030 uint32_t opcode;
5031 uint8_t opcode8;
5032 ULONGEST addr;
5033 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5034 struct i386_record_s ir;
5035 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (gdbarch);
5036 uint8_t rex_w = -1;
5037 uint8_t rex_r = 0;
5038
5039 memset (&ir, 0, sizeof (struct i386_record_s));
5040 ir.regcache = regcache;
5041 ir.addr = input_addr;
5042 ir.orig_addr = input_addr;
5043 ir.aflag = 1;
5044 ir.dflag = 1;
5045 ir.override = -1;
5046 ir.popl_esp_hack = 0;
5047 ir.regmap = tdep->record_regmap;
5048 ir.gdbarch = gdbarch;
5049
5050 if (record_debug > 1)
5051 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5052 "addr = %s\n",
5053 paddress (gdbarch, ir.addr));
5054
5055 /* prefixes */
5056 while (1)
5057 {
5058 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5059 return -1;
5060 ir.addr++;
5061 switch (opcode8) /* Instruction prefixes */
5062 {
5063 case REPE_PREFIX_OPCODE:
5064 prefixes |= PREFIX_REPZ;
5065 break;
5066 case REPNE_PREFIX_OPCODE:
5067 prefixes |= PREFIX_REPNZ;
5068 break;
5069 case LOCK_PREFIX_OPCODE:
5070 prefixes |= PREFIX_LOCK;
5071 break;
5072 case CS_PREFIX_OPCODE:
5073 ir.override = X86_RECORD_CS_REGNUM;
5074 break;
5075 case SS_PREFIX_OPCODE:
5076 ir.override = X86_RECORD_SS_REGNUM;
5077 break;
5078 case DS_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_DS_REGNUM;
5080 break;
5081 case ES_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_ES_REGNUM;
5083 break;
5084 case FS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_FS_REGNUM;
5086 break;
5087 case GS_PREFIX_OPCODE:
5088 ir.override = X86_RECORD_GS_REGNUM;
5089 break;
5090 case DATA_PREFIX_OPCODE:
5091 prefixes |= PREFIX_DATA;
5092 break;
5093 case ADDR_PREFIX_OPCODE:
5094 prefixes |= PREFIX_ADDR;
5095 break;
5096 case 0x40: /* i386 inc %eax */
5097 case 0x41: /* i386 inc %ecx */
5098 case 0x42: /* i386 inc %edx */
5099 case 0x43: /* i386 inc %ebx */
5100 case 0x44: /* i386 inc %esp */
5101 case 0x45: /* i386 inc %ebp */
5102 case 0x46: /* i386 inc %esi */
5103 case 0x47: /* i386 inc %edi */
5104 case 0x48: /* i386 dec %eax */
5105 case 0x49: /* i386 dec %ecx */
5106 case 0x4a: /* i386 dec %edx */
5107 case 0x4b: /* i386 dec %ebx */
5108 case 0x4c: /* i386 dec %esp */
5109 case 0x4d: /* i386 dec %ebp */
5110 case 0x4e: /* i386 dec %esi */
5111 case 0x4f: /* i386 dec %edi */
5112 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5113 {
5114 /* REX */
5115 rex_w = (opcode8 >> 3) & 1;
5116 rex_r = (opcode8 & 0x4) << 1;
5117 ir.rex_x = (opcode8 & 0x2) << 2;
5118 ir.rex_b = (opcode8 & 0x1) << 3;
5119 }
5120 else /* 32 bit target */
5121 goto out_prefixes;
5122 break;
5123 default:
5124 goto out_prefixes;
5125 break;
5126 }
5127 }
5128 out_prefixes:
5129 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5130 {
5131 ir.dflag = 2;
5132 }
5133 else
5134 {
5135 if (prefixes & PREFIX_DATA)
5136 ir.dflag ^= 1;
5137 }
5138 if (prefixes & PREFIX_ADDR)
5139 ir.aflag ^= 1;
5140 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5141 ir.aflag = 2;
5142
5143 /* Now check op code. */
5144 opcode = (uint32_t) opcode8;
5145 reswitch:
5146 switch (opcode)
5147 {
5148 case 0x0f:
5149 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5150 return -1;
5151 ir.addr++;
5152 opcode = (uint32_t) opcode8 | 0x0f00;
5153 goto reswitch;
5154 break;
5155
5156 case 0x00: /* arith & logic */
5157 case 0x01:
5158 case 0x02:
5159 case 0x03:
5160 case 0x04:
5161 case 0x05:
5162 case 0x08:
5163 case 0x09:
5164 case 0x0a:
5165 case 0x0b:
5166 case 0x0c:
5167 case 0x0d:
5168 case 0x10:
5169 case 0x11:
5170 case 0x12:
5171 case 0x13:
5172 case 0x14:
5173 case 0x15:
5174 case 0x18:
5175 case 0x19:
5176 case 0x1a:
5177 case 0x1b:
5178 case 0x1c:
5179 case 0x1d:
5180 case 0x20:
5181 case 0x21:
5182 case 0x22:
5183 case 0x23:
5184 case 0x24:
5185 case 0x25:
5186 case 0x28:
5187 case 0x29:
5188 case 0x2a:
5189 case 0x2b:
5190 case 0x2c:
5191 case 0x2d:
5192 case 0x30:
5193 case 0x31:
5194 case 0x32:
5195 case 0x33:
5196 case 0x34:
5197 case 0x35:
5198 case 0x38:
5199 case 0x39:
5200 case 0x3a:
5201 case 0x3b:
5202 case 0x3c:
5203 case 0x3d:
5204 if (((opcode >> 3) & 7) != OP_CMPL)
5205 {
5206 if ((opcode & 1) == 0)
5207 ir.ot = OT_BYTE;
5208 else
5209 ir.ot = ir.dflag + OT_WORD;
5210
5211 switch ((opcode >> 1) & 3)
5212 {
5213 case 0: /* OP Ev, Gv */
5214 if (i386_record_modrm (&ir))
5215 return -1;
5216 if (ir.mod != 3)
5217 {
5218 if (i386_record_lea_modrm (&ir))
5219 return -1;
5220 }
5221 else
5222 {
5223 ir.rm |= ir.rex_b;
5224 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5225 ir.rm &= 0x3;
5226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5227 }
5228 break;
5229 case 1: /* OP Gv, Ev */
5230 if (i386_record_modrm (&ir))
5231 return -1;
5232 ir.reg |= rex_r;
5233 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5234 ir.reg &= 0x3;
5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5236 break;
5237 case 2: /* OP A, Iv */
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5239 break;
5240 }
5241 }
5242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5243 break;
5244
5245 case 0x80: /* GRP1 */
5246 case 0x81:
5247 case 0x82:
5248 case 0x83:
5249 if (i386_record_modrm (&ir))
5250 return -1;
5251
5252 if (ir.reg != OP_CMPL)
5253 {
5254 if ((opcode & 1) == 0)
5255 ir.ot = OT_BYTE;
5256 else
5257 ir.ot = ir.dflag + OT_WORD;
5258
5259 if (ir.mod != 3)
5260 {
5261 if (opcode == 0x83)
5262 ir.rip_offset = 1;
5263 else
5264 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5265 if (i386_record_lea_modrm (&ir))
5266 return -1;
5267 }
5268 else
5269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5270 }
5271 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5272 break;
5273
5274 case 0x40: /* inc */
5275 case 0x41:
5276 case 0x42:
5277 case 0x43:
5278 case 0x44:
5279 case 0x45:
5280 case 0x46:
5281 case 0x47:
5282
5283 case 0x48: /* dec */
5284 case 0x49:
5285 case 0x4a:
5286 case 0x4b:
5287 case 0x4c:
5288 case 0x4d:
5289 case 0x4e:
5290 case 0x4f:
5291
5292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5293 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5294 break;
5295
5296 case 0xf6: /* GRP3 */
5297 case 0xf7:
5298 if ((opcode & 1) == 0)
5299 ir.ot = OT_BYTE;
5300 else
5301 ir.ot = ir.dflag + OT_WORD;
5302 if (i386_record_modrm (&ir))
5303 return -1;
5304
5305 if (ir.mod != 3 && ir.reg == 0)
5306 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5307
5308 switch (ir.reg)
5309 {
5310 case 0: /* test */
5311 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5312 break;
5313 case 2: /* not */
5314 case 3: /* neg */
5315 if (ir.mod != 3)
5316 {
5317 if (i386_record_lea_modrm (&ir))
5318 return -1;
5319 }
5320 else
5321 {
5322 ir.rm |= ir.rex_b;
5323 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5324 ir.rm &= 0x3;
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5326 }
5327 if (ir.reg == 3) /* neg */
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329 break;
5330 case 4: /* mul */
5331 case 5: /* imul */
5332 case 6: /* div */
5333 case 7: /* idiv */
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5335 if (ir.ot != OT_BYTE)
5336 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5338 break;
5339 default:
5340 ir.addr -= 2;
5341 opcode = opcode << 8 | ir.modrm;
5342 goto no_support;
5343 break;
5344 }
5345 break;
5346
5347 case 0xfe: /* GRP4 */
5348 case 0xff: /* GRP5 */
5349 if (i386_record_modrm (&ir))
5350 return -1;
5351 if (ir.reg >= 2 && opcode == 0xfe)
5352 {
5353 ir.addr -= 2;
5354 opcode = opcode << 8 | ir.modrm;
5355 goto no_support;
5356 }
5357 switch (ir.reg)
5358 {
5359 case 0: /* inc */
5360 case 1: /* dec */
5361 if ((opcode & 1) == 0)
5362 ir.ot = OT_BYTE;
5363 else
5364 ir.ot = ir.dflag + OT_WORD;
5365 if (ir.mod != 3)
5366 {
5367 if (i386_record_lea_modrm (&ir))
5368 return -1;
5369 }
5370 else
5371 {
5372 ir.rm |= ir.rex_b;
5373 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5374 ir.rm &= 0x3;
5375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5376 }
5377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5378 break;
5379 case 2: /* call */
5380 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5381 ir.dflag = 2;
5382 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5383 return -1;
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5385 break;
5386 case 3: /* lcall */
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5389 return -1;
5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5391 break;
5392 case 4: /* jmp */
5393 case 5: /* ljmp */
5394 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5395 break;
5396 case 6: /* push */
5397 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5398 ir.dflag = 2;
5399 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5400 return -1;
5401 break;
5402 default:
5403 ir.addr -= 2;
5404 opcode = opcode << 8 | ir.modrm;
5405 goto no_support;
5406 break;
5407 }
5408 break;
5409
5410 case 0x84: /* test */
5411 case 0x85:
5412 case 0xa8:
5413 case 0xa9:
5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5415 break;
5416
5417 case 0x98: /* CWDE/CBW */
5418 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5419 break;
5420
5421 case 0x99: /* CDQ/CWD */
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5423 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5424 break;
5425
5426 case 0x0faf: /* imul */
5427 case 0x69:
5428 case 0x6b:
5429 ir.ot = ir.dflag + OT_WORD;
5430 if (i386_record_modrm (&ir))
5431 return -1;
5432 if (opcode == 0x69)
5433 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5434 else if (opcode == 0x6b)
5435 ir.rip_offset = 1;
5436 ir.reg |= rex_r;
5437 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5438 ir.reg &= 0x3;
5439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5440 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5441 break;
5442
5443 case 0x0fc0: /* xadd */
5444 case 0x0fc1:
5445 if ((opcode & 1) == 0)
5446 ir.ot = OT_BYTE;
5447 else
5448 ir.ot = ir.dflag + OT_WORD;
5449 if (i386_record_modrm (&ir))
5450 return -1;
5451 ir.reg |= rex_r;
5452 if (ir.mod == 3)
5453 {
5454 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5455 ir.reg &= 0x3;
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5457 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5458 ir.rm &= 0x3;
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5460 }
5461 else
5462 {
5463 if (i386_record_lea_modrm (&ir))
5464 return -1;
5465 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5466 ir.reg &= 0x3;
5467 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5468 }
5469 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5470 break;
5471
5472 case 0x0fb0: /* cmpxchg */
5473 case 0x0fb1:
5474 if ((opcode & 1) == 0)
5475 ir.ot = OT_BYTE;
5476 else
5477 ir.ot = ir.dflag + OT_WORD;
5478 if (i386_record_modrm (&ir))
5479 return -1;
5480 if (ir.mod == 3)
5481 {
5482 ir.reg |= rex_r;
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5484 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5485 ir.reg &= 0x3;
5486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5487 }
5488 else
5489 {
5490 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 if (i386_record_lea_modrm (&ir))
5492 return -1;
5493 }
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5495 break;
5496
5497 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5498 if (i386_record_modrm (&ir))
5499 return -1;
5500 if (ir.mod == 3)
5501 {
5502 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5503 an extended opcode. rdrand has bits 110 (/6) and rdseed
5504 has bits 111 (/7). */
5505 if (ir.reg == 6 || ir.reg == 7)
5506 {
5507 /* The storage register is described by the 3 R/M bits, but the
5508 REX.B prefix may be used to give access to registers
5509 R8~R15. In this case ir.rex_b + R/M will give us the register
5510 in the range R8~R15.
5511
5512 REX.W may also be used to access 64-bit registers, but we
5513 already record entire registers and not just partial bits
5514 of them. */
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5516 /* These instructions also set conditional bits. */
5517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5518 break;
5519 }
5520 else
5521 {
5522 /* We don't handle this particular instruction yet. */
5523 ir.addr -= 2;
5524 opcode = opcode << 8 | ir.modrm;
5525 goto no_support;
5526 }
5527 }
5528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5530 if (i386_record_lea_modrm (&ir))
5531 return -1;
5532 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5533 break;
5534
5535 case 0x50: /* push */
5536 case 0x51:
5537 case 0x52:
5538 case 0x53:
5539 case 0x54:
5540 case 0x55:
5541 case 0x56:
5542 case 0x57:
5543 case 0x68:
5544 case 0x6a:
5545 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5546 ir.dflag = 2;
5547 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5548 return -1;
5549 break;
5550
5551 case 0x06: /* push es */
5552 case 0x0e: /* push cs */
5553 case 0x16: /* push ss */
5554 case 0x1e: /* push ds */
5555 if (ir.regmap[X86_RECORD_R8_REGNUM])
5556 {
5557 ir.addr -= 1;
5558 goto no_support;
5559 }
5560 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5561 return -1;
5562 break;
5563
5564 case 0x0fa0: /* push fs */
5565 case 0x0fa8: /* push gs */
5566 if (ir.regmap[X86_RECORD_R8_REGNUM])
5567 {
5568 ir.addr -= 2;
5569 goto no_support;
5570 }
5571 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5572 return -1;
5573 break;
5574
5575 case 0x60: /* pusha */
5576 if (ir.regmap[X86_RECORD_R8_REGNUM])
5577 {
5578 ir.addr -= 1;
5579 goto no_support;
5580 }
5581 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5582 return -1;
5583 break;
5584
5585 case 0x58: /* pop */
5586 case 0x59:
5587 case 0x5a:
5588 case 0x5b:
5589 case 0x5c:
5590 case 0x5d:
5591 case 0x5e:
5592 case 0x5f:
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5594 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5595 break;
5596
5597 case 0x61: /* popa */
5598 if (ir.regmap[X86_RECORD_R8_REGNUM])
5599 {
5600 ir.addr -= 1;
5601 goto no_support;
5602 }
5603 for (regnum = X86_RECORD_REAX_REGNUM;
5604 regnum <= X86_RECORD_REDI_REGNUM;
5605 regnum++)
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5607 break;
5608
5609 case 0x8f: /* pop */
5610 if (ir.regmap[X86_RECORD_R8_REGNUM])
5611 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5612 else
5613 ir.ot = ir.dflag + OT_WORD;
5614 if (i386_record_modrm (&ir))
5615 return -1;
5616 if (ir.mod == 3)
5617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5618 else
5619 {
5620 ir.popl_esp_hack = 1 << ir.ot;
5621 if (i386_record_lea_modrm (&ir))
5622 return -1;
5623 }
5624 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5625 break;
5626
5627 case 0xc8: /* enter */
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5629 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5630 ir.dflag = 2;
5631 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5632 return -1;
5633 break;
5634
5635 case 0xc9: /* leave */
5636 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5638 break;
5639
5640 case 0x07: /* pop es */
5641 if (ir.regmap[X86_RECORD_R8_REGNUM])
5642 {
5643 ir.addr -= 1;
5644 goto no_support;
5645 }
5646 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5649 break;
5650
5651 case 0x17: /* pop ss */
5652 if (ir.regmap[X86_RECORD_R8_REGNUM])
5653 {
5654 ir.addr -= 1;
5655 goto no_support;
5656 }
5657 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5658 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5660 break;
5661
5662 case 0x1f: /* pop ds */
5663 if (ir.regmap[X86_RECORD_R8_REGNUM])
5664 {
5665 ir.addr -= 1;
5666 goto no_support;
5667 }
5668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5670 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5671 break;
5672
5673 case 0x0fa1: /* pop fs */
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5677 break;
5678
5679 case 0x0fa9: /* pop gs */
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5683 break;
5684
5685 case 0x88: /* mov */
5686 case 0x89:
5687 case 0xc6:
5688 case 0xc7:
5689 if ((opcode & 1) == 0)
5690 ir.ot = OT_BYTE;
5691 else
5692 ir.ot = ir.dflag + OT_WORD;
5693
5694 if (i386_record_modrm (&ir))
5695 return -1;
5696
5697 if (ir.mod != 3)
5698 {
5699 if (opcode == 0xc6 || opcode == 0xc7)
5700 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5701 if (i386_record_lea_modrm (&ir))
5702 return -1;
5703 }
5704 else
5705 {
5706 if (opcode == 0xc6 || opcode == 0xc7)
5707 ir.rm |= ir.rex_b;
5708 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5709 ir.rm &= 0x3;
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5711 }
5712 break;
5713
5714 case 0x8a: /* mov */
5715 case 0x8b:
5716 if ((opcode & 1) == 0)
5717 ir.ot = OT_BYTE;
5718 else
5719 ir.ot = ir.dflag + OT_WORD;
5720 if (i386_record_modrm (&ir))
5721 return -1;
5722 ir.reg |= rex_r;
5723 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5724 ir.reg &= 0x3;
5725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5726 break;
5727
5728 case 0x8c: /* mov seg */
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731 if (ir.reg > 5)
5732 {
5733 ir.addr -= 2;
5734 opcode = opcode << 8 | ir.modrm;
5735 goto no_support;
5736 }
5737
5738 if (ir.mod == 3)
5739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5740 else
5741 {
5742 ir.ot = OT_WORD;
5743 if (i386_record_lea_modrm (&ir))
5744 return -1;
5745 }
5746 break;
5747
5748 case 0x8e: /* mov seg */
5749 if (i386_record_modrm (&ir))
5750 return -1;
5751 switch (ir.reg)
5752 {
5753 case 0:
5754 regnum = X86_RECORD_ES_REGNUM;
5755 break;
5756 case 2:
5757 regnum = X86_RECORD_SS_REGNUM;
5758 break;
5759 case 3:
5760 regnum = X86_RECORD_DS_REGNUM;
5761 break;
5762 case 4:
5763 regnum = X86_RECORD_FS_REGNUM;
5764 break;
5765 case 5:
5766 regnum = X86_RECORD_GS_REGNUM;
5767 break;
5768 default:
5769 ir.addr -= 2;
5770 opcode = opcode << 8 | ir.modrm;
5771 goto no_support;
5772 break;
5773 }
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5776 break;
5777
5778 case 0x0fb6: /* movzbS */
5779 case 0x0fb7: /* movzwS */
5780 case 0x0fbe: /* movsbS */
5781 case 0x0fbf: /* movswS */
5782 if (i386_record_modrm (&ir))
5783 return -1;
5784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5785 break;
5786
5787 case 0x8d: /* lea */
5788 if (i386_record_modrm (&ir))
5789 return -1;
5790 if (ir.mod == 3)
5791 {
5792 ir.addr -= 2;
5793 opcode = opcode << 8 | ir.modrm;
5794 goto no_support;
5795 }
5796 ir.ot = ir.dflag;
5797 ir.reg |= rex_r;
5798 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5799 ir.reg &= 0x3;
5800 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5801 break;
5802
5803 case 0xa0: /* mov EAX */
5804 case 0xa1:
5805
5806 case 0xd7: /* xlat */
5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5808 break;
5809
5810 case 0xa2: /* mov EAX */
5811 case 0xa3:
5812 if (ir.override >= 0)
5813 {
5814 if (record_full_memory_query)
5815 {
5816 if (yquery (_("\
5817 Process record ignores the memory change of instruction at address %s\n\
5818 because it can't get the value of the segment register.\n\
5819 Do you want to stop the program?"),
5820 paddress (gdbarch, ir.orig_addr)))
5821 return -1;
5822 }
5823 }
5824 else
5825 {
5826 if ((opcode & 1) == 0)
5827 ir.ot = OT_BYTE;
5828 else
5829 ir.ot = ir.dflag + OT_WORD;
5830 if (ir.aflag == 2)
5831 {
5832 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5833 return -1;
5834 ir.addr += 8;
5835 addr = extract_unsigned_integer (buf, 8, byte_order);
5836 }
5837 else if (ir.aflag)
5838 {
5839 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5840 return -1;
5841 ir.addr += 4;
5842 addr = extract_unsigned_integer (buf, 4, byte_order);
5843 }
5844 else
5845 {
5846 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5847 return -1;
5848 ir.addr += 2;
5849 addr = extract_unsigned_integer (buf, 2, byte_order);
5850 }
5851 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5852 return -1;
5853 }
5854 break;
5855
5856 case 0xb0: /* mov R, Ib */
5857 case 0xb1:
5858 case 0xb2:
5859 case 0xb3:
5860 case 0xb4:
5861 case 0xb5:
5862 case 0xb6:
5863 case 0xb7:
5864 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5865 ? ((opcode & 0x7) | ir.rex_b)
5866 : ((opcode & 0x7) & 0x3));
5867 break;
5868
5869 case 0xb8: /* mov R, Iv */
5870 case 0xb9:
5871 case 0xba:
5872 case 0xbb:
5873 case 0xbc:
5874 case 0xbd:
5875 case 0xbe:
5876 case 0xbf:
5877 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5878 break;
5879
5880 case 0x91: /* xchg R, EAX */
5881 case 0x92:
5882 case 0x93:
5883 case 0x94:
5884 case 0x95:
5885 case 0x96:
5886 case 0x97:
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5889 break;
5890
5891 case 0x86: /* xchg Ev, Gv */
5892 case 0x87:
5893 if ((opcode & 1) == 0)
5894 ir.ot = OT_BYTE;
5895 else
5896 ir.ot = ir.dflag + OT_WORD;
5897 if (i386_record_modrm (&ir))
5898 return -1;
5899 if (ir.mod == 3)
5900 {
5901 ir.rm |= ir.rex_b;
5902 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5903 ir.rm &= 0x3;
5904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5905 }
5906 else
5907 {
5908 if (i386_record_lea_modrm (&ir))
5909 return -1;
5910 }
5911 ir.reg |= rex_r;
5912 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5913 ir.reg &= 0x3;
5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5915 break;
5916
5917 case 0xc4: /* les Gv */
5918 case 0xc5: /* lds Gv */
5919 if (ir.regmap[X86_RECORD_R8_REGNUM])
5920 {
5921 ir.addr -= 1;
5922 goto no_support;
5923 }
5924 /* FALLTHROUGH */
5925 case 0x0fb2: /* lss Gv */
5926 case 0x0fb4: /* lfs Gv */
5927 case 0x0fb5: /* lgs Gv */
5928 if (i386_record_modrm (&ir))
5929 return -1;
5930 if (ir.mod == 3)
5931 {
5932 if (opcode > 0xff)
5933 ir.addr -= 3;
5934 else
5935 ir.addr -= 2;
5936 opcode = opcode << 8 | ir.modrm;
5937 goto no_support;
5938 }
5939 switch (opcode)
5940 {
5941 case 0xc4: /* les Gv */
5942 regnum = X86_RECORD_ES_REGNUM;
5943 break;
5944 case 0xc5: /* lds Gv */
5945 regnum = X86_RECORD_DS_REGNUM;
5946 break;
5947 case 0x0fb2: /* lss Gv */
5948 regnum = X86_RECORD_SS_REGNUM;
5949 break;
5950 case 0x0fb4: /* lfs Gv */
5951 regnum = X86_RECORD_FS_REGNUM;
5952 break;
5953 case 0x0fb5: /* lgs Gv */
5954 regnum = X86_RECORD_GS_REGNUM;
5955 break;
5956 }
5957 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5960 break;
5961
5962 case 0xc0: /* shifts */
5963 case 0xc1:
5964 case 0xd0:
5965 case 0xd1:
5966 case 0xd2:
5967 case 0xd3:
5968 if ((opcode & 1) == 0)
5969 ir.ot = OT_BYTE;
5970 else
5971 ir.ot = ir.dflag + OT_WORD;
5972 if (i386_record_modrm (&ir))
5973 return -1;
5974 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5975 {
5976 if (i386_record_lea_modrm (&ir))
5977 return -1;
5978 }
5979 else
5980 {
5981 ir.rm |= ir.rex_b;
5982 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5983 ir.rm &= 0x3;
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5985 }
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5987 break;
5988
5989 case 0x0fa4:
5990 case 0x0fa5:
5991 case 0x0fac:
5992 case 0x0fad:
5993 if (i386_record_modrm (&ir))
5994 return -1;
5995 if (ir.mod == 3)
5996 {
5997 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5998 return -1;
5999 }
6000 else
6001 {
6002 if (i386_record_lea_modrm (&ir))
6003 return -1;
6004 }
6005 break;
6006
6007 case 0xd8: /* Floats. */
6008 case 0xd9:
6009 case 0xda:
6010 case 0xdb:
6011 case 0xdc:
6012 case 0xdd:
6013 case 0xde:
6014 case 0xdf:
6015 if (i386_record_modrm (&ir))
6016 return -1;
6017 ir.reg |= ((opcode & 7) << 3);
6018 if (ir.mod != 3)
6019 {
6020 /* Memory. */
6021 uint64_t addr64;
6022
6023 if (i386_record_lea_modrm_addr (&ir, &addr64))
6024 return -1;
6025 switch (ir.reg)
6026 {
6027 case 0x02:
6028 case 0x12:
6029 case 0x22:
6030 case 0x32:
6031 /* For fcom, ficom nothing to do. */
6032 break;
6033 case 0x03:
6034 case 0x13:
6035 case 0x23:
6036 case 0x33:
6037 /* For fcomp, ficomp pop FPU stack, store all. */
6038 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6039 return -1;
6040 break;
6041 case 0x00:
6042 case 0x01:
6043 case 0x04:
6044 case 0x05:
6045 case 0x06:
6046 case 0x07:
6047 case 0x10:
6048 case 0x11:
6049 case 0x14:
6050 case 0x15:
6051 case 0x16:
6052 case 0x17:
6053 case 0x20:
6054 case 0x21:
6055 case 0x24:
6056 case 0x25:
6057 case 0x26:
6058 case 0x27:
6059 case 0x30:
6060 case 0x31:
6061 case 0x34:
6062 case 0x35:
6063 case 0x36:
6064 case 0x37:
6065 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6066 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6067 of code, always affects st(0) register. */
6068 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6069 return -1;
6070 break;
6071 case 0x08:
6072 case 0x0a:
6073 case 0x0b:
6074 case 0x18:
6075 case 0x19:
6076 case 0x1a:
6077 case 0x1b:
6078 case 0x1d:
6079 case 0x28:
6080 case 0x29:
6081 case 0x2a:
6082 case 0x2b:
6083 case 0x38:
6084 case 0x39:
6085 case 0x3a:
6086 case 0x3b:
6087 case 0x3c:
6088 case 0x3d:
6089 switch (ir.reg & 7)
6090 {
6091 case 0:
6092 /* Handling fld, fild. */
6093 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6094 return -1;
6095 break;
6096 case 1:
6097 switch (ir.reg >> 4)
6098 {
6099 case 0:
6100 if (record_full_arch_list_add_mem (addr64, 4))
6101 return -1;
6102 break;
6103 case 2:
6104 if (record_full_arch_list_add_mem (addr64, 8))
6105 return -1;
6106 break;
6107 case 3:
6108 break;
6109 default:
6110 if (record_full_arch_list_add_mem (addr64, 2))
6111 return -1;
6112 break;
6113 }
6114 break;
6115 default:
6116 switch (ir.reg >> 4)
6117 {
6118 case 0:
6119 if (record_full_arch_list_add_mem (addr64, 4))
6120 return -1;
6121 if (3 == (ir.reg & 7))
6122 {
6123 /* For fstp m32fp. */
6124 if (i386_record_floats (gdbarch, &ir,
6125 I386_SAVE_FPU_REGS))
6126 return -1;
6127 }
6128 break;
6129 case 1:
6130 if (record_full_arch_list_add_mem (addr64, 4))
6131 return -1;
6132 if ((3 == (ir.reg & 7))
6133 || (5 == (ir.reg & 7))
6134 || (7 == (ir.reg & 7)))
6135 {
6136 /* For fstp insn. */
6137 if (i386_record_floats (gdbarch, &ir,
6138 I386_SAVE_FPU_REGS))
6139 return -1;
6140 }
6141 break;
6142 case 2:
6143 if (record_full_arch_list_add_mem (addr64, 8))
6144 return -1;
6145 if (3 == (ir.reg & 7))
6146 {
6147 /* For fstp m64fp. */
6148 if (i386_record_floats (gdbarch, &ir,
6149 I386_SAVE_FPU_REGS))
6150 return -1;
6151 }
6152 break;
6153 case 3:
6154 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6155 {
6156 /* For fistp, fbld, fild, fbstp. */
6157 if (i386_record_floats (gdbarch, &ir,
6158 I386_SAVE_FPU_REGS))
6159 return -1;
6160 }
6161 /* Fall through */
6162 default:
6163 if (record_full_arch_list_add_mem (addr64, 2))
6164 return -1;
6165 break;
6166 }
6167 break;
6168 }
6169 break;
6170 case 0x0c:
6171 /* Insn fldenv. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_ENV_REG_STACK))
6174 return -1;
6175 break;
6176 case 0x0d:
6177 /* Insn fldcw. */
6178 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6179 return -1;
6180 break;
6181 case 0x2c:
6182 /* Insn frstor. */
6183 if (i386_record_floats (gdbarch, &ir,
6184 I386_SAVE_FPU_ENV_REG_STACK))
6185 return -1;
6186 break;
6187 case 0x0e:
6188 if (ir.dflag)
6189 {
6190 if (record_full_arch_list_add_mem (addr64, 28))
6191 return -1;
6192 }
6193 else
6194 {
6195 if (record_full_arch_list_add_mem (addr64, 14))
6196 return -1;
6197 }
6198 break;
6199 case 0x0f:
6200 case 0x2f:
6201 if (record_full_arch_list_add_mem (addr64, 2))
6202 return -1;
6203 /* Insn fstp, fbstp. */
6204 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6205 return -1;
6206 break;
6207 case 0x1f:
6208 case 0x3e:
6209 if (record_full_arch_list_add_mem (addr64, 10))
6210 return -1;
6211 break;
6212 case 0x2e:
6213 if (ir.dflag)
6214 {
6215 if (record_full_arch_list_add_mem (addr64, 28))
6216 return -1;
6217 addr64 += 28;
6218 }
6219 else
6220 {
6221 if (record_full_arch_list_add_mem (addr64, 14))
6222 return -1;
6223 addr64 += 14;
6224 }
6225 if (record_full_arch_list_add_mem (addr64, 80))
6226 return -1;
6227 /* Insn fsave. */
6228 if (i386_record_floats (gdbarch, &ir,
6229 I386_SAVE_FPU_ENV_REG_STACK))
6230 return -1;
6231 break;
6232 case 0x3f:
6233 if (record_full_arch_list_add_mem (addr64, 8))
6234 return -1;
6235 /* Insn fistp. */
6236 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6237 return -1;
6238 break;
6239 default:
6240 ir.addr -= 2;
6241 opcode = opcode << 8 | ir.modrm;
6242 goto no_support;
6243 break;
6244 }
6245 }
6246 /* Opcode is an extension of modR/M byte. */
6247 else
6248 {
6249 switch (opcode)
6250 {
6251 case 0xd8:
6252 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6253 return -1;
6254 break;
6255 case 0xd9:
6256 if (0x0c == (ir.modrm >> 4))
6257 {
6258 if ((ir.modrm & 0x0f) <= 7)
6259 {
6260 if (i386_record_floats (gdbarch, &ir,
6261 I386_SAVE_FPU_REGS))
6262 return -1;
6263 }
6264 else
6265 {
6266 if (i386_record_floats (gdbarch, &ir,
6267 I387_ST0_REGNUM (tdep)))
6268 return -1;
6269 /* If only st(0) is changing, then we have already
6270 recorded. */
6271 if ((ir.modrm & 0x0f) - 0x08)
6272 {
6273 if (i386_record_floats (gdbarch, &ir,
6274 I387_ST0_REGNUM (tdep) +
6275 ((ir.modrm & 0x0f) - 0x08)))
6276 return -1;
6277 }
6278 }
6279 }
6280 else
6281 {
6282 switch (ir.modrm)
6283 {
6284 case 0xe0:
6285 case 0xe1:
6286 case 0xf0:
6287 case 0xf5:
6288 case 0xf8:
6289 case 0xfa:
6290 case 0xfc:
6291 case 0xfe:
6292 case 0xff:
6293 if (i386_record_floats (gdbarch, &ir,
6294 I387_ST0_REGNUM (tdep)))
6295 return -1;
6296 break;
6297 case 0xf1:
6298 case 0xf2:
6299 case 0xf3:
6300 case 0xf4:
6301 case 0xf6:
6302 case 0xf7:
6303 case 0xe8:
6304 case 0xe9:
6305 case 0xea:
6306 case 0xeb:
6307 case 0xec:
6308 case 0xed:
6309 case 0xee:
6310 case 0xf9:
6311 case 0xfb:
6312 if (i386_record_floats (gdbarch, &ir,
6313 I386_SAVE_FPU_REGS))
6314 return -1;
6315 break;
6316 case 0xfd:
6317 if (i386_record_floats (gdbarch, &ir,
6318 I387_ST0_REGNUM (tdep)))
6319 return -1;
6320 if (i386_record_floats (gdbarch, &ir,
6321 I387_ST0_REGNUM (tdep) + 1))
6322 return -1;
6323 break;
6324 }
6325 }
6326 break;
6327 case 0xda:
6328 if (0xe9 == ir.modrm)
6329 {
6330 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6331 return -1;
6332 }
6333 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6334 {
6335 if (i386_record_floats (gdbarch, &ir,
6336 I387_ST0_REGNUM (tdep)))
6337 return -1;
6338 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6339 {
6340 if (i386_record_floats (gdbarch, &ir,
6341 I387_ST0_REGNUM (tdep) +
6342 (ir.modrm & 0x0f)))
6343 return -1;
6344 }
6345 else if ((ir.modrm & 0x0f) - 0x08)
6346 {
6347 if (i386_record_floats (gdbarch, &ir,
6348 I387_ST0_REGNUM (tdep) +
6349 ((ir.modrm & 0x0f) - 0x08)))
6350 return -1;
6351 }
6352 }
6353 break;
6354 case 0xdb:
6355 if (0xe3 == ir.modrm)
6356 {
6357 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6358 return -1;
6359 }
6360 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6361 {
6362 if (i386_record_floats (gdbarch, &ir,
6363 I387_ST0_REGNUM (tdep)))
6364 return -1;
6365 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6366 {
6367 if (i386_record_floats (gdbarch, &ir,
6368 I387_ST0_REGNUM (tdep) +
6369 (ir.modrm & 0x0f)))
6370 return -1;
6371 }
6372 else if ((ir.modrm & 0x0f) - 0x08)
6373 {
6374 if (i386_record_floats (gdbarch, &ir,
6375 I387_ST0_REGNUM (tdep) +
6376 ((ir.modrm & 0x0f) - 0x08)))
6377 return -1;
6378 }
6379 }
6380 break;
6381 case 0xdc:
6382 if ((0x0c == ir.modrm >> 4)
6383 || (0x0d == ir.modrm >> 4)
6384 || (0x0f == ir.modrm >> 4))
6385 {
6386 if ((ir.modrm & 0x0f) <= 7)
6387 {
6388 if (i386_record_floats (gdbarch, &ir,
6389 I387_ST0_REGNUM (tdep) +
6390 (ir.modrm & 0x0f)))
6391 return -1;
6392 }
6393 else
6394 {
6395 if (i386_record_floats (gdbarch, &ir,
6396 I387_ST0_REGNUM (tdep) +
6397 ((ir.modrm & 0x0f) - 0x08)))
6398 return -1;
6399 }
6400 }
6401 break;
6402 case 0xdd:
6403 if (0x0c == ir.modrm >> 4)
6404 {
6405 if (i386_record_floats (gdbarch, &ir,
6406 I387_FTAG_REGNUM (tdep)))
6407 return -1;
6408 }
6409 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6410 {
6411 if ((ir.modrm & 0x0f) <= 7)
6412 {
6413 if (i386_record_floats (gdbarch, &ir,
6414 I387_ST0_REGNUM (tdep) +
6415 (ir.modrm & 0x0f)))
6416 return -1;
6417 }
6418 else
6419 {
6420 if (i386_record_floats (gdbarch, &ir,
6421 I386_SAVE_FPU_REGS))
6422 return -1;
6423 }
6424 }
6425 break;
6426 case 0xde:
6427 if ((0x0c == ir.modrm >> 4)
6428 || (0x0e == ir.modrm >> 4)
6429 || (0x0f == ir.modrm >> 4)
6430 || (0xd9 == ir.modrm))
6431 {
6432 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6433 return -1;
6434 }
6435 break;
6436 case 0xdf:
6437 if (0xe0 == ir.modrm)
6438 {
6439 if (record_full_arch_list_add_reg (ir.regcache,
6440 I386_EAX_REGNUM))
6441 return -1;
6442 }
6443 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6444 {
6445 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6446 return -1;
6447 }
6448 break;
6449 }
6450 }
6451 break;
6452 /* string ops */
6453 case 0xa4: /* movsS */
6454 case 0xa5:
6455 case 0xaa: /* stosS */
6456 case 0xab:
6457 case 0x6c: /* insS */
6458 case 0x6d:
6459 regcache_raw_read_unsigned (ir.regcache,
6460 ir.regmap[X86_RECORD_RECX_REGNUM],
6461 &addr);
6462 if (addr)
6463 {
6464 ULONGEST es, ds;
6465
6466 if ((opcode & 1) == 0)
6467 ir.ot = OT_BYTE;
6468 else
6469 ir.ot = ir.dflag + OT_WORD;
6470 regcache_raw_read_unsigned (ir.regcache,
6471 ir.regmap[X86_RECORD_REDI_REGNUM],
6472 &addr);
6473
6474 regcache_raw_read_unsigned (ir.regcache,
6475 ir.regmap[X86_RECORD_ES_REGNUM],
6476 &es);
6477 regcache_raw_read_unsigned (ir.regcache,
6478 ir.regmap[X86_RECORD_DS_REGNUM],
6479 &ds);
6480 if (ir.aflag && (es != ds))
6481 {
6482 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6483 if (record_full_memory_query)
6484 {
6485 if (yquery (_("\
6486 Process record ignores the memory change of instruction at address %s\n\
6487 because it can't get the value of the segment register.\n\
6488 Do you want to stop the program?"),
6489 paddress (gdbarch, ir.orig_addr)))
6490 return -1;
6491 }
6492 }
6493 else
6494 {
6495 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6496 return -1;
6497 }
6498
6499 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6501 if (opcode == 0xa4 || opcode == 0xa5)
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6505 }
6506 break;
6507
6508 case 0xa6: /* cmpsS */
6509 case 0xa7:
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6512 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6515 break;
6516
6517 case 0xac: /* lodsS */
6518 case 0xad:
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6521 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6522 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6524 break;
6525
6526 case 0xae: /* scasS */
6527 case 0xaf:
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6529 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6530 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6532 break;
6533
6534 case 0x6e: /* outsS */
6535 case 0x6f:
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6537 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 break;
6541
6542 case 0xe4: /* port I/O */
6543 case 0xe5:
6544 case 0xec:
6545 case 0xed:
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6548 break;
6549
6550 case 0xe6:
6551 case 0xe7:
6552 case 0xee:
6553 case 0xef:
6554 break;
6555
6556 /* control */
6557 case 0xc2: /* ret im */
6558 case 0xc3: /* ret */
6559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6561 break;
6562
6563 case 0xca: /* lret im */
6564 case 0xcb: /* lret */
6565 case 0xcf: /* iret */
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6568 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6569 break;
6570
6571 case 0xe8: /* call im */
6572 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6573 ir.dflag = 2;
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
6576 break;
6577
6578 case 0x9a: /* lcall im */
6579 if (ir.regmap[X86_RECORD_R8_REGNUM])
6580 {
6581 ir.addr -= 1;
6582 goto no_support;
6583 }
6584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6585 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6586 return -1;
6587 break;
6588
6589 case 0xe9: /* jmp im */
6590 case 0xea: /* ljmp im */
6591 case 0xeb: /* jmp Jb */
6592 case 0x70: /* jcc Jb */
6593 case 0x71:
6594 case 0x72:
6595 case 0x73:
6596 case 0x74:
6597 case 0x75:
6598 case 0x76:
6599 case 0x77:
6600 case 0x78:
6601 case 0x79:
6602 case 0x7a:
6603 case 0x7b:
6604 case 0x7c:
6605 case 0x7d:
6606 case 0x7e:
6607 case 0x7f:
6608 case 0x0f80: /* jcc Jv */
6609 case 0x0f81:
6610 case 0x0f82:
6611 case 0x0f83:
6612 case 0x0f84:
6613 case 0x0f85:
6614 case 0x0f86:
6615 case 0x0f87:
6616 case 0x0f88:
6617 case 0x0f89:
6618 case 0x0f8a:
6619 case 0x0f8b:
6620 case 0x0f8c:
6621 case 0x0f8d:
6622 case 0x0f8e:
6623 case 0x0f8f:
6624 break;
6625
6626 case 0x0f90: /* setcc Gv */
6627 case 0x0f91:
6628 case 0x0f92:
6629 case 0x0f93:
6630 case 0x0f94:
6631 case 0x0f95:
6632 case 0x0f96:
6633 case 0x0f97:
6634 case 0x0f98:
6635 case 0x0f99:
6636 case 0x0f9a:
6637 case 0x0f9b:
6638 case 0x0f9c:
6639 case 0x0f9d:
6640 case 0x0f9e:
6641 case 0x0f9f:
6642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6643 ir.ot = OT_BYTE;
6644 if (i386_record_modrm (&ir))
6645 return -1;
6646 if (ir.mod == 3)
6647 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6648 : (ir.rm & 0x3));
6649 else
6650 {
6651 if (i386_record_lea_modrm (&ir))
6652 return -1;
6653 }
6654 break;
6655
6656 case 0x0f40: /* cmov Gv, Ev */
6657 case 0x0f41:
6658 case 0x0f42:
6659 case 0x0f43:
6660 case 0x0f44:
6661 case 0x0f45:
6662 case 0x0f46:
6663 case 0x0f47:
6664 case 0x0f48:
6665 case 0x0f49:
6666 case 0x0f4a:
6667 case 0x0f4b:
6668 case 0x0f4c:
6669 case 0x0f4d:
6670 case 0x0f4e:
6671 case 0x0f4f:
6672 if (i386_record_modrm (&ir))
6673 return -1;
6674 ir.reg |= rex_r;
6675 if (ir.dflag == OT_BYTE)
6676 ir.reg &= 0x3;
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6678 break;
6679
6680 /* flags */
6681 case 0x9c: /* pushf */
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6683 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6684 ir.dflag = 2;
6685 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6686 return -1;
6687 break;
6688
6689 case 0x9d: /* popf */
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6692 break;
6693
6694 case 0x9e: /* sahf */
6695 if (ir.regmap[X86_RECORD_R8_REGNUM])
6696 {
6697 ir.addr -= 1;
6698 goto no_support;
6699 }
6700 /* FALLTHROUGH */
6701 case 0xf5: /* cmc */
6702 case 0xf8: /* clc */
6703 case 0xf9: /* stc */
6704 case 0xfc: /* cld */
6705 case 0xfd: /* std */
6706 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6707 break;
6708
6709 case 0x9f: /* lahf */
6710 if (ir.regmap[X86_RECORD_R8_REGNUM])
6711 {
6712 ir.addr -= 1;
6713 goto no_support;
6714 }
6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6717 break;
6718
6719 /* bit operations */
6720 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6721 ir.ot = ir.dflag + OT_WORD;
6722 if (i386_record_modrm (&ir))
6723 return -1;
6724 if (ir.reg < 4)
6725 {
6726 ir.addr -= 2;
6727 opcode = opcode << 8 | ir.modrm;
6728 goto no_support;
6729 }
6730 if (ir.reg != 4)
6731 {
6732 if (ir.mod == 3)
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6734 else
6735 {
6736 if (i386_record_lea_modrm (&ir))
6737 return -1;
6738 }
6739 }
6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6741 break;
6742
6743 case 0x0fa3: /* bt Gv, Ev */
6744 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6745 break;
6746
6747 case 0x0fab: /* bts */
6748 case 0x0fb3: /* btr */
6749 case 0x0fbb: /* btc */
6750 ir.ot = ir.dflag + OT_WORD;
6751 if (i386_record_modrm (&ir))
6752 return -1;
6753 if (ir.mod == 3)
6754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6755 else
6756 {
6757 uint64_t addr64;
6758 if (i386_record_lea_modrm_addr (&ir, &addr64))
6759 return -1;
6760 regcache_raw_read_unsigned (ir.regcache,
6761 ir.regmap[ir.reg | rex_r],
6762 &addr);
6763 switch (ir.dflag)
6764 {
6765 case 0:
6766 addr64 += ((int16_t) addr >> 4) << 4;
6767 break;
6768 case 1:
6769 addr64 += ((int32_t) addr >> 5) << 5;
6770 break;
6771 case 2:
6772 addr64 += ((int64_t) addr >> 6) << 6;
6773 break;
6774 }
6775 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6776 return -1;
6777 if (i386_record_lea_modrm (&ir))
6778 return -1;
6779 }
6780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6781 break;
6782
6783 case 0x0fbc: /* bsf */
6784 case 0x0fbd: /* bsr */
6785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6787 break;
6788
6789 /* bcd */
6790 case 0x27: /* daa */
6791 case 0x2f: /* das */
6792 case 0x37: /* aaa */
6793 case 0x3f: /* aas */
6794 case 0xd4: /* aam */
6795 case 0xd5: /* aad */
6796 if (ir.regmap[X86_RECORD_R8_REGNUM])
6797 {
6798 ir.addr -= 1;
6799 goto no_support;
6800 }
6801 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6802 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6803 break;
6804
6805 /* misc */
6806 case 0x90: /* nop */
6807 if (prefixes & PREFIX_LOCK)
6808 {
6809 ir.addr -= 1;
6810 goto no_support;
6811 }
6812 break;
6813
6814 case 0x9b: /* fwait */
6815 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6816 return -1;
6817 opcode = (uint32_t) opcode8;
6818 ir.addr++;
6819 goto reswitch;
6820 break;
6821
6822 /* XXX */
6823 case 0xcc: /* int3 */
6824 printf_unfiltered (_("Process record does not support instruction "
6825 "int3.\n"));
6826 ir.addr -= 1;
6827 goto no_support;
6828 break;
6829
6830 /* XXX */
6831 case 0xcd: /* int */
6832 {
6833 int ret;
6834 uint8_t interrupt;
6835 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6836 return -1;
6837 ir.addr++;
6838 if (interrupt != 0x80
6839 || tdep->i386_intx80_record == NULL)
6840 {
6841 printf_unfiltered (_("Process record does not support "
6842 "instruction int 0x%02x.\n"),
6843 interrupt);
6844 ir.addr -= 2;
6845 goto no_support;
6846 }
6847 ret = tdep->i386_intx80_record (ir.regcache);
6848 if (ret)
6849 return ret;
6850 }
6851 break;
6852
6853 /* XXX */
6854 case 0xce: /* into */
6855 printf_unfiltered (_("Process record does not support "
6856 "instruction into.\n"));
6857 ir.addr -= 1;
6858 goto no_support;
6859 break;
6860
6861 case 0xfa: /* cli */
6862 case 0xfb: /* sti */
6863 break;
6864
6865 case 0x62: /* bound */
6866 printf_unfiltered (_("Process record does not support "
6867 "instruction bound.\n"));
6868 ir.addr -= 1;
6869 goto no_support;
6870 break;
6871
6872 case 0x0fc8: /* bswap reg */
6873 case 0x0fc9:
6874 case 0x0fca:
6875 case 0x0fcb:
6876 case 0x0fcc:
6877 case 0x0fcd:
6878 case 0x0fce:
6879 case 0x0fcf:
6880 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6881 break;
6882
6883 case 0xd6: /* salc */
6884 if (ir.regmap[X86_RECORD_R8_REGNUM])
6885 {
6886 ir.addr -= 1;
6887 goto no_support;
6888 }
6889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6890 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6891 break;
6892
6893 case 0xe0: /* loopnz */
6894 case 0xe1: /* loopz */
6895 case 0xe2: /* loop */
6896 case 0xe3: /* jecxz */
6897 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6898 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6899 break;
6900
6901 case 0x0f30: /* wrmsr */
6902 printf_unfiltered (_("Process record does not support "
6903 "instruction wrmsr.\n"));
6904 ir.addr -= 2;
6905 goto no_support;
6906 break;
6907
6908 case 0x0f32: /* rdmsr */
6909 printf_unfiltered (_("Process record does not support "
6910 "instruction rdmsr.\n"));
6911 ir.addr -= 2;
6912 goto no_support;
6913 break;
6914
6915 case 0x0f31: /* rdtsc */
6916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6917 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6918 break;
6919
6920 case 0x0f34: /* sysenter */
6921 {
6922 int ret;
6923 if (ir.regmap[X86_RECORD_R8_REGNUM])
6924 {
6925 ir.addr -= 2;
6926 goto no_support;
6927 }
6928 if (tdep->i386_sysenter_record == NULL)
6929 {
6930 printf_unfiltered (_("Process record does not support "
6931 "instruction sysenter.\n"));
6932 ir.addr -= 2;
6933 goto no_support;
6934 }
6935 ret = tdep->i386_sysenter_record (ir.regcache);
6936 if (ret)
6937 return ret;
6938 }
6939 break;
6940
6941 case 0x0f35: /* sysexit */
6942 printf_unfiltered (_("Process record does not support "
6943 "instruction sysexit.\n"));
6944 ir.addr -= 2;
6945 goto no_support;
6946 break;
6947
6948 case 0x0f05: /* syscall */
6949 {
6950 int ret;
6951 if (tdep->i386_syscall_record == NULL)
6952 {
6953 printf_unfiltered (_("Process record does not support "
6954 "instruction syscall.\n"));
6955 ir.addr -= 2;
6956 goto no_support;
6957 }
6958 ret = tdep->i386_syscall_record (ir.regcache);
6959 if (ret)
6960 return ret;
6961 }
6962 break;
6963
6964 case 0x0f07: /* sysret */
6965 printf_unfiltered (_("Process record does not support "
6966 "instruction sysret.\n"));
6967 ir.addr -= 2;
6968 goto no_support;
6969 break;
6970
6971 case 0x0fa2: /* cpuid */
6972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6974 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6976 break;
6977
6978 case 0xf4: /* hlt */
6979 printf_unfiltered (_("Process record does not support "
6980 "instruction hlt.\n"));
6981 ir.addr -= 1;
6982 goto no_support;
6983 break;
6984
6985 case 0x0f00:
6986 if (i386_record_modrm (&ir))
6987 return -1;
6988 switch (ir.reg)
6989 {
6990 case 0: /* sldt */
6991 case 1: /* str */
6992 if (ir.mod == 3)
6993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6994 else
6995 {
6996 ir.ot = OT_WORD;
6997 if (i386_record_lea_modrm (&ir))
6998 return -1;
6999 }
7000 break;
7001 case 2: /* lldt */
7002 case 3: /* ltr */
7003 break;
7004 case 4: /* verr */
7005 case 5: /* verw */
7006 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7007 break;
7008 default:
7009 ir.addr -= 3;
7010 opcode = opcode << 8 | ir.modrm;
7011 goto no_support;
7012 break;
7013 }
7014 break;
7015
7016 case 0x0f01:
7017 if (i386_record_modrm (&ir))
7018 return -1;
7019 switch (ir.reg)
7020 {
7021 case 0: /* sgdt */
7022 {
7023 uint64_t addr64;
7024
7025 if (ir.mod == 3)
7026 {
7027 ir.addr -= 3;
7028 opcode = opcode << 8 | ir.modrm;
7029 goto no_support;
7030 }
7031 if (ir.override >= 0)
7032 {
7033 if (record_full_memory_query)
7034 {
7035 if (yquery (_("\
7036 Process record ignores the memory change of instruction at address %s\n\
7037 because it can't get the value of the segment register.\n\
7038 Do you want to stop the program?"),
7039 paddress (gdbarch, ir.orig_addr)))
7040 return -1;
7041 }
7042 }
7043 else
7044 {
7045 if (i386_record_lea_modrm_addr (&ir, &addr64))
7046 return -1;
7047 if (record_full_arch_list_add_mem (addr64, 2))
7048 return -1;
7049 addr64 += 2;
7050 if (ir.regmap[X86_RECORD_R8_REGNUM])
7051 {
7052 if (record_full_arch_list_add_mem (addr64, 8))
7053 return -1;
7054 }
7055 else
7056 {
7057 if (record_full_arch_list_add_mem (addr64, 4))
7058 return -1;
7059 }
7060 }
7061 }
7062 break;
7063 case 1:
7064 if (ir.mod == 3)
7065 {
7066 switch (ir.rm)
7067 {
7068 case 0: /* monitor */
7069 break;
7070 case 1: /* mwait */
7071 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7072 break;
7073 default:
7074 ir.addr -= 3;
7075 opcode = opcode << 8 | ir.modrm;
7076 goto no_support;
7077 break;
7078 }
7079 }
7080 else
7081 {
7082 /* sidt */
7083 if (ir.override >= 0)
7084 {
7085 if (record_full_memory_query)
7086 {
7087 if (yquery (_("\
7088 Process record ignores the memory change of instruction at address %s\n\
7089 because it can't get the value of the segment register.\n\
7090 Do you want to stop the program?"),
7091 paddress (gdbarch, ir.orig_addr)))
7092 return -1;
7093 }
7094 }
7095 else
7096 {
7097 uint64_t addr64;
7098
7099 if (i386_record_lea_modrm_addr (&ir, &addr64))
7100 return -1;
7101 if (record_full_arch_list_add_mem (addr64, 2))
7102 return -1;
7103 addr64 += 2;
7104 if (ir.regmap[X86_RECORD_R8_REGNUM])
7105 {
7106 if (record_full_arch_list_add_mem (addr64, 8))
7107 return -1;
7108 }
7109 else
7110 {
7111 if (record_full_arch_list_add_mem (addr64, 4))
7112 return -1;
7113 }
7114 }
7115 }
7116 break;
7117 case 2: /* lgdt */
7118 if (ir.mod == 3)
7119 {
7120 /* xgetbv */
7121 if (ir.rm == 0)
7122 {
7123 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7124 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7125 break;
7126 }
7127 /* xsetbv */
7128 else if (ir.rm == 1)
7129 break;
7130 }
7131 /* Fall through. */
7132 case 3: /* lidt */
7133 if (ir.mod == 3)
7134 {
7135 ir.addr -= 3;
7136 opcode = opcode << 8 | ir.modrm;
7137 goto no_support;
7138 }
7139 break;
7140 case 4: /* smsw */
7141 if (ir.mod == 3)
7142 {
7143 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7144 return -1;
7145 }
7146 else
7147 {
7148 ir.ot = OT_WORD;
7149 if (i386_record_lea_modrm (&ir))
7150 return -1;
7151 }
7152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7153 break;
7154 case 6: /* lmsw */
7155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7156 break;
7157 case 7: /* invlpg */
7158 if (ir.mod == 3)
7159 {
7160 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7161 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7162 else
7163 {
7164 ir.addr -= 3;
7165 opcode = opcode << 8 | ir.modrm;
7166 goto no_support;
7167 }
7168 }
7169 else
7170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7171 break;
7172 default:
7173 ir.addr -= 3;
7174 opcode = opcode << 8 | ir.modrm;
7175 goto no_support;
7176 break;
7177 }
7178 break;
7179
7180 case 0x0f08: /* invd */
7181 case 0x0f09: /* wbinvd */
7182 break;
7183
7184 case 0x63: /* arpl */
7185 if (i386_record_modrm (&ir))
7186 return -1;
7187 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7188 {
7189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7190 ? (ir.reg | rex_r) : ir.rm);
7191 }
7192 else
7193 {
7194 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7195 if (i386_record_lea_modrm (&ir))
7196 return -1;
7197 }
7198 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7199 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7200 break;
7201
7202 case 0x0f02: /* lar */
7203 case 0x0f03: /* lsl */
7204 if (i386_record_modrm (&ir))
7205 return -1;
7206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7207 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7208 break;
7209
7210 case 0x0f18:
7211 if (i386_record_modrm (&ir))
7212 return -1;
7213 if (ir.mod == 3 && ir.reg == 3)
7214 {
7215 ir.addr -= 3;
7216 opcode = opcode << 8 | ir.modrm;
7217 goto no_support;
7218 }
7219 break;
7220
7221 case 0x0f19:
7222 case 0x0f1a:
7223 case 0x0f1b:
7224 case 0x0f1c:
7225 case 0x0f1d:
7226 case 0x0f1e:
7227 case 0x0f1f:
7228 /* nop (multi byte) */
7229 break;
7230
7231 case 0x0f20: /* mov reg, crN */
7232 case 0x0f22: /* mov crN, reg */
7233 if (i386_record_modrm (&ir))
7234 return -1;
7235 if ((ir.modrm & 0xc0) != 0xc0)
7236 {
7237 ir.addr -= 3;
7238 opcode = opcode << 8 | ir.modrm;
7239 goto no_support;
7240 }
7241 switch (ir.reg)
7242 {
7243 case 0:
7244 case 2:
7245 case 3:
7246 case 4:
7247 case 8:
7248 if (opcode & 2)
7249 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7250 else
7251 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7252 break;
7253 default:
7254 ir.addr -= 3;
7255 opcode = opcode << 8 | ir.modrm;
7256 goto no_support;
7257 break;
7258 }
7259 break;
7260
7261 case 0x0f21: /* mov reg, drN */
7262 case 0x0f23: /* mov drN, reg */
7263 if (i386_record_modrm (&ir))
7264 return -1;
7265 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7266 || ir.reg == 5 || ir.reg >= 8)
7267 {
7268 ir.addr -= 3;
7269 opcode = opcode << 8 | ir.modrm;
7270 goto no_support;
7271 }
7272 if (opcode & 2)
7273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7274 else
7275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7276 break;
7277
7278 case 0x0f06: /* clts */
7279 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7280 break;
7281
7282 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7283
7284 case 0x0f0d: /* 3DNow! prefetch */
7285 break;
7286
7287 case 0x0f0e: /* 3DNow! femms */
7288 case 0x0f77: /* emms */
7289 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7290 goto no_support;
7291 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7292 break;
7293
7294 case 0x0f0f: /* 3DNow! data */
7295 if (i386_record_modrm (&ir))
7296 return -1;
7297 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7298 return -1;
7299 ir.addr++;
7300 switch (opcode8)
7301 {
7302 case 0x0c: /* 3DNow! pi2fw */
7303 case 0x0d: /* 3DNow! pi2fd */
7304 case 0x1c: /* 3DNow! pf2iw */
7305 case 0x1d: /* 3DNow! pf2id */
7306 case 0x8a: /* 3DNow! pfnacc */
7307 case 0x8e: /* 3DNow! pfpnacc */
7308 case 0x90: /* 3DNow! pfcmpge */
7309 case 0x94: /* 3DNow! pfmin */
7310 case 0x96: /* 3DNow! pfrcp */
7311 case 0x97: /* 3DNow! pfrsqrt */
7312 case 0x9a: /* 3DNow! pfsub */
7313 case 0x9e: /* 3DNow! pfadd */
7314 case 0xa0: /* 3DNow! pfcmpgt */
7315 case 0xa4: /* 3DNow! pfmax */
7316 case 0xa6: /* 3DNow! pfrcpit1 */
7317 case 0xa7: /* 3DNow! pfrsqit1 */
7318 case 0xaa: /* 3DNow! pfsubr */
7319 case 0xae: /* 3DNow! pfacc */
7320 case 0xb0: /* 3DNow! pfcmpeq */
7321 case 0xb4: /* 3DNow! pfmul */
7322 case 0xb6: /* 3DNow! pfrcpit2 */
7323 case 0xb7: /* 3DNow! pmulhrw */
7324 case 0xbb: /* 3DNow! pswapd */
7325 case 0xbf: /* 3DNow! pavgusb */
7326 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7327 goto no_support_3dnow_data;
7328 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7329 break;
7330
7331 default:
7332 no_support_3dnow_data:
7333 opcode = (opcode << 8) | opcode8;
7334 goto no_support;
7335 break;
7336 }
7337 break;
7338
7339 case 0x0faa: /* rsm */
7340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7349 break;
7350
7351 case 0x0fae:
7352 if (i386_record_modrm (&ir))
7353 return -1;
7354 switch(ir.reg)
7355 {
7356 case 0: /* fxsave */
7357 {
7358 uint64_t tmpu64;
7359
7360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7361 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7362 return -1;
7363 if (record_full_arch_list_add_mem (tmpu64, 512))
7364 return -1;
7365 }
7366 break;
7367
7368 case 1: /* fxrstor */
7369 {
7370 int i;
7371
7372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7373
7374 for (i = I387_MM0_REGNUM (tdep);
7375 i386_mmx_regnum_p (gdbarch, i); i++)
7376 record_full_arch_list_add_reg (ir.regcache, i);
7377
7378 for (i = I387_XMM0_REGNUM (tdep);
7379 i386_xmm_regnum_p (gdbarch, i); i++)
7380 record_full_arch_list_add_reg (ir.regcache, i);
7381
7382 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7383 record_full_arch_list_add_reg (ir.regcache,
7384 I387_MXCSR_REGNUM(tdep));
7385
7386 for (i = I387_ST0_REGNUM (tdep);
7387 i386_fp_regnum_p (gdbarch, i); i++)
7388 record_full_arch_list_add_reg (ir.regcache, i);
7389
7390 for (i = I387_FCTRL_REGNUM (tdep);
7391 i386_fpc_regnum_p (gdbarch, i); i++)
7392 record_full_arch_list_add_reg (ir.regcache, i);
7393 }
7394 break;
7395
7396 case 2: /* ldmxcsr */
7397 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7398 goto no_support;
7399 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7400 break;
7401
7402 case 3: /* stmxcsr */
7403 ir.ot = OT_LONG;
7404 if (i386_record_lea_modrm (&ir))
7405 return -1;
7406 break;
7407
7408 case 5: /* lfence */
7409 case 6: /* mfence */
7410 case 7: /* sfence clflush */
7411 break;
7412
7413 default:
7414 opcode = (opcode << 8) | ir.modrm;
7415 goto no_support;
7416 break;
7417 }
7418 break;
7419
7420 case 0x0fc3: /* movnti */
7421 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7422 if (i386_record_modrm (&ir))
7423 return -1;
7424 if (ir.mod == 3)
7425 goto no_support;
7426 ir.reg |= rex_r;
7427 if (i386_record_lea_modrm (&ir))
7428 return -1;
7429 break;
7430
7431 /* Add prefix to opcode. */
7432 case 0x0f10:
7433 case 0x0f11:
7434 case 0x0f12:
7435 case 0x0f13:
7436 case 0x0f14:
7437 case 0x0f15:
7438 case 0x0f16:
7439 case 0x0f17:
7440 case 0x0f28:
7441 case 0x0f29:
7442 case 0x0f2a:
7443 case 0x0f2b:
7444 case 0x0f2c:
7445 case 0x0f2d:
7446 case 0x0f2e:
7447 case 0x0f2f:
7448 case 0x0f38:
7449 case 0x0f39:
7450 case 0x0f3a:
7451 case 0x0f50:
7452 case 0x0f51:
7453 case 0x0f52:
7454 case 0x0f53:
7455 case 0x0f54:
7456 case 0x0f55:
7457 case 0x0f56:
7458 case 0x0f57:
7459 case 0x0f58:
7460 case 0x0f59:
7461 case 0x0f5a:
7462 case 0x0f5b:
7463 case 0x0f5c:
7464 case 0x0f5d:
7465 case 0x0f5e:
7466 case 0x0f5f:
7467 case 0x0f60:
7468 case 0x0f61:
7469 case 0x0f62:
7470 case 0x0f63:
7471 case 0x0f64:
7472 case 0x0f65:
7473 case 0x0f66:
7474 case 0x0f67:
7475 case 0x0f68:
7476 case 0x0f69:
7477 case 0x0f6a:
7478 case 0x0f6b:
7479 case 0x0f6c:
7480 case 0x0f6d:
7481 case 0x0f6e:
7482 case 0x0f6f:
7483 case 0x0f70:
7484 case 0x0f71:
7485 case 0x0f72:
7486 case 0x0f73:
7487 case 0x0f74:
7488 case 0x0f75:
7489 case 0x0f76:
7490 case 0x0f7c:
7491 case 0x0f7d:
7492 case 0x0f7e:
7493 case 0x0f7f:
7494 case 0x0fb8:
7495 case 0x0fc2:
7496 case 0x0fc4:
7497 case 0x0fc5:
7498 case 0x0fc6:
7499 case 0x0fd0:
7500 case 0x0fd1:
7501 case 0x0fd2:
7502 case 0x0fd3:
7503 case 0x0fd4:
7504 case 0x0fd5:
7505 case 0x0fd6:
7506 case 0x0fd7:
7507 case 0x0fd8:
7508 case 0x0fd9:
7509 case 0x0fda:
7510 case 0x0fdb:
7511 case 0x0fdc:
7512 case 0x0fdd:
7513 case 0x0fde:
7514 case 0x0fdf:
7515 case 0x0fe0:
7516 case 0x0fe1:
7517 case 0x0fe2:
7518 case 0x0fe3:
7519 case 0x0fe4:
7520 case 0x0fe5:
7521 case 0x0fe6:
7522 case 0x0fe7:
7523 case 0x0fe8:
7524 case 0x0fe9:
7525 case 0x0fea:
7526 case 0x0feb:
7527 case 0x0fec:
7528 case 0x0fed:
7529 case 0x0fee:
7530 case 0x0fef:
7531 case 0x0ff0:
7532 case 0x0ff1:
7533 case 0x0ff2:
7534 case 0x0ff3:
7535 case 0x0ff4:
7536 case 0x0ff5:
7537 case 0x0ff6:
7538 case 0x0ff7:
7539 case 0x0ff8:
7540 case 0x0ff9:
7541 case 0x0ffa:
7542 case 0x0ffb:
7543 case 0x0ffc:
7544 case 0x0ffd:
7545 case 0x0ffe:
7546 /* Mask out PREFIX_ADDR. */
7547 switch ((prefixes & ~PREFIX_ADDR))
7548 {
7549 case PREFIX_REPNZ:
7550 opcode |= 0xf20000;
7551 break;
7552 case PREFIX_DATA:
7553 opcode |= 0x660000;
7554 break;
7555 case PREFIX_REPZ:
7556 opcode |= 0xf30000;
7557 break;
7558 }
7559 reswitch_prefix_add:
7560 switch (opcode)
7561 {
7562 case 0x0f38:
7563 case 0x660f38:
7564 case 0xf20f38:
7565 case 0x0f3a:
7566 case 0x660f3a:
7567 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7568 return -1;
7569 ir.addr++;
7570 opcode = (uint32_t) opcode8 | opcode << 8;
7571 goto reswitch_prefix_add;
7572 break;
7573
7574 case 0x0f10: /* movups */
7575 case 0x660f10: /* movupd */
7576 case 0xf30f10: /* movss */
7577 case 0xf20f10: /* movsd */
7578 case 0x0f12: /* movlps */
7579 case 0x660f12: /* movlpd */
7580 case 0xf30f12: /* movsldup */
7581 case 0xf20f12: /* movddup */
7582 case 0x0f14: /* unpcklps */
7583 case 0x660f14: /* unpcklpd */
7584 case 0x0f15: /* unpckhps */
7585 case 0x660f15: /* unpckhpd */
7586 case 0x0f16: /* movhps */
7587 case 0x660f16: /* movhpd */
7588 case 0xf30f16: /* movshdup */
7589 case 0x0f28: /* movaps */
7590 case 0x660f28: /* movapd */
7591 case 0x0f2a: /* cvtpi2ps */
7592 case 0x660f2a: /* cvtpi2pd */
7593 case 0xf30f2a: /* cvtsi2ss */
7594 case 0xf20f2a: /* cvtsi2sd */
7595 case 0x0f2c: /* cvttps2pi */
7596 case 0x660f2c: /* cvttpd2pi */
7597 case 0x0f2d: /* cvtps2pi */
7598 case 0x660f2d: /* cvtpd2pi */
7599 case 0x660f3800: /* pshufb */
7600 case 0x660f3801: /* phaddw */
7601 case 0x660f3802: /* phaddd */
7602 case 0x660f3803: /* phaddsw */
7603 case 0x660f3804: /* pmaddubsw */
7604 case 0x660f3805: /* phsubw */
7605 case 0x660f3806: /* phsubd */
7606 case 0x660f3807: /* phsubsw */
7607 case 0x660f3808: /* psignb */
7608 case 0x660f3809: /* psignw */
7609 case 0x660f380a: /* psignd */
7610 case 0x660f380b: /* pmulhrsw */
7611 case 0x660f3810: /* pblendvb */
7612 case 0x660f3814: /* blendvps */
7613 case 0x660f3815: /* blendvpd */
7614 case 0x660f381c: /* pabsb */
7615 case 0x660f381d: /* pabsw */
7616 case 0x660f381e: /* pabsd */
7617 case 0x660f3820: /* pmovsxbw */
7618 case 0x660f3821: /* pmovsxbd */
7619 case 0x660f3822: /* pmovsxbq */
7620 case 0x660f3823: /* pmovsxwd */
7621 case 0x660f3824: /* pmovsxwq */
7622 case 0x660f3825: /* pmovsxdq */
7623 case 0x660f3828: /* pmuldq */
7624 case 0x660f3829: /* pcmpeqq */
7625 case 0x660f382a: /* movntdqa */
7626 case 0x660f3a08: /* roundps */
7627 case 0x660f3a09: /* roundpd */
7628 case 0x660f3a0a: /* roundss */
7629 case 0x660f3a0b: /* roundsd */
7630 case 0x660f3a0c: /* blendps */
7631 case 0x660f3a0d: /* blendpd */
7632 case 0x660f3a0e: /* pblendw */
7633 case 0x660f3a0f: /* palignr */
7634 case 0x660f3a20: /* pinsrb */
7635 case 0x660f3a21: /* insertps */
7636 case 0x660f3a22: /* pinsrd pinsrq */
7637 case 0x660f3a40: /* dpps */
7638 case 0x660f3a41: /* dppd */
7639 case 0x660f3a42: /* mpsadbw */
7640 case 0x660f3a60: /* pcmpestrm */
7641 case 0x660f3a61: /* pcmpestri */
7642 case 0x660f3a62: /* pcmpistrm */
7643 case 0x660f3a63: /* pcmpistri */
7644 case 0x0f51: /* sqrtps */
7645 case 0x660f51: /* sqrtpd */
7646 case 0xf20f51: /* sqrtsd */
7647 case 0xf30f51: /* sqrtss */
7648 case 0x0f52: /* rsqrtps */
7649 case 0xf30f52: /* rsqrtss */
7650 case 0x0f53: /* rcpps */
7651 case 0xf30f53: /* rcpss */
7652 case 0x0f54: /* andps */
7653 case 0x660f54: /* andpd */
7654 case 0x0f55: /* andnps */
7655 case 0x660f55: /* andnpd */
7656 case 0x0f56: /* orps */
7657 case 0x660f56: /* orpd */
7658 case 0x0f57: /* xorps */
7659 case 0x660f57: /* xorpd */
7660 case 0x0f58: /* addps */
7661 case 0x660f58: /* addpd */
7662 case 0xf20f58: /* addsd */
7663 case 0xf30f58: /* addss */
7664 case 0x0f59: /* mulps */
7665 case 0x660f59: /* mulpd */
7666 case 0xf20f59: /* mulsd */
7667 case 0xf30f59: /* mulss */
7668 case 0x0f5a: /* cvtps2pd */
7669 case 0x660f5a: /* cvtpd2ps */
7670 case 0xf20f5a: /* cvtsd2ss */
7671 case 0xf30f5a: /* cvtss2sd */
7672 case 0x0f5b: /* cvtdq2ps */
7673 case 0x660f5b: /* cvtps2dq */
7674 case 0xf30f5b: /* cvttps2dq */
7675 case 0x0f5c: /* subps */
7676 case 0x660f5c: /* subpd */
7677 case 0xf20f5c: /* subsd */
7678 case 0xf30f5c: /* subss */
7679 case 0x0f5d: /* minps */
7680 case 0x660f5d: /* minpd */
7681 case 0xf20f5d: /* minsd */
7682 case 0xf30f5d: /* minss */
7683 case 0x0f5e: /* divps */
7684 case 0x660f5e: /* divpd */
7685 case 0xf20f5e: /* divsd */
7686 case 0xf30f5e: /* divss */
7687 case 0x0f5f: /* maxps */
7688 case 0x660f5f: /* maxpd */
7689 case 0xf20f5f: /* maxsd */
7690 case 0xf30f5f: /* maxss */
7691 case 0x660f60: /* punpcklbw */
7692 case 0x660f61: /* punpcklwd */
7693 case 0x660f62: /* punpckldq */
7694 case 0x660f63: /* packsswb */
7695 case 0x660f64: /* pcmpgtb */
7696 case 0x660f65: /* pcmpgtw */
7697 case 0x660f66: /* pcmpgtd */
7698 case 0x660f67: /* packuswb */
7699 case 0x660f68: /* punpckhbw */
7700 case 0x660f69: /* punpckhwd */
7701 case 0x660f6a: /* punpckhdq */
7702 case 0x660f6b: /* packssdw */
7703 case 0x660f6c: /* punpcklqdq */
7704 case 0x660f6d: /* punpckhqdq */
7705 case 0x660f6e: /* movd */
7706 case 0x660f6f: /* movdqa */
7707 case 0xf30f6f: /* movdqu */
7708 case 0x660f70: /* pshufd */
7709 case 0xf20f70: /* pshuflw */
7710 case 0xf30f70: /* pshufhw */
7711 case 0x660f74: /* pcmpeqb */
7712 case 0x660f75: /* pcmpeqw */
7713 case 0x660f76: /* pcmpeqd */
7714 case 0x660f7c: /* haddpd */
7715 case 0xf20f7c: /* haddps */
7716 case 0x660f7d: /* hsubpd */
7717 case 0xf20f7d: /* hsubps */
7718 case 0xf30f7e: /* movq */
7719 case 0x0fc2: /* cmpps */
7720 case 0x660fc2: /* cmppd */
7721 case 0xf20fc2: /* cmpsd */
7722 case 0xf30fc2: /* cmpss */
7723 case 0x660fc4: /* pinsrw */
7724 case 0x0fc6: /* shufps */
7725 case 0x660fc6: /* shufpd */
7726 case 0x660fd0: /* addsubpd */
7727 case 0xf20fd0: /* addsubps */
7728 case 0x660fd1: /* psrlw */
7729 case 0x660fd2: /* psrld */
7730 case 0x660fd3: /* psrlq */
7731 case 0x660fd4: /* paddq */
7732 case 0x660fd5: /* pmullw */
7733 case 0xf30fd6: /* movq2dq */
7734 case 0x660fd8: /* psubusb */
7735 case 0x660fd9: /* psubusw */
7736 case 0x660fda: /* pminub */
7737 case 0x660fdb: /* pand */
7738 case 0x660fdc: /* paddusb */
7739 case 0x660fdd: /* paddusw */
7740 case 0x660fde: /* pmaxub */
7741 case 0x660fdf: /* pandn */
7742 case 0x660fe0: /* pavgb */
7743 case 0x660fe1: /* psraw */
7744 case 0x660fe2: /* psrad */
7745 case 0x660fe3: /* pavgw */
7746 case 0x660fe4: /* pmulhuw */
7747 case 0x660fe5: /* pmulhw */
7748 case 0x660fe6: /* cvttpd2dq */
7749 case 0xf20fe6: /* cvtpd2dq */
7750 case 0xf30fe6: /* cvtdq2pd */
7751 case 0x660fe8: /* psubsb */
7752 case 0x660fe9: /* psubsw */
7753 case 0x660fea: /* pminsw */
7754 case 0x660feb: /* por */
7755 case 0x660fec: /* paddsb */
7756 case 0x660fed: /* paddsw */
7757 case 0x660fee: /* pmaxsw */
7758 case 0x660fef: /* pxor */
7759 case 0xf20ff0: /* lddqu */
7760 case 0x660ff1: /* psllw */
7761 case 0x660ff2: /* pslld */
7762 case 0x660ff3: /* psllq */
7763 case 0x660ff4: /* pmuludq */
7764 case 0x660ff5: /* pmaddwd */
7765 case 0x660ff6: /* psadbw */
7766 case 0x660ff8: /* psubb */
7767 case 0x660ff9: /* psubw */
7768 case 0x660ffa: /* psubd */
7769 case 0x660ffb: /* psubq */
7770 case 0x660ffc: /* paddb */
7771 case 0x660ffd: /* paddw */
7772 case 0x660ffe: /* paddd */
7773 if (i386_record_modrm (&ir))
7774 return -1;
7775 ir.reg |= rex_r;
7776 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7777 goto no_support;
7778 record_full_arch_list_add_reg (ir.regcache,
7779 I387_XMM0_REGNUM (tdep) + ir.reg);
7780 if ((opcode & 0xfffffffc) == 0x660f3a60)
7781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7782 break;
7783
7784 case 0x0f11: /* movups */
7785 case 0x660f11: /* movupd */
7786 case 0xf30f11: /* movss */
7787 case 0xf20f11: /* movsd */
7788 case 0x0f13: /* movlps */
7789 case 0x660f13: /* movlpd */
7790 case 0x0f17: /* movhps */
7791 case 0x660f17: /* movhpd */
7792 case 0x0f29: /* movaps */
7793 case 0x660f29: /* movapd */
7794 case 0x660f3a14: /* pextrb */
7795 case 0x660f3a15: /* pextrw */
7796 case 0x660f3a16: /* pextrd pextrq */
7797 case 0x660f3a17: /* extractps */
7798 case 0x660f7f: /* movdqa */
7799 case 0xf30f7f: /* movdqu */
7800 if (i386_record_modrm (&ir))
7801 return -1;
7802 if (ir.mod == 3)
7803 {
7804 if (opcode == 0x0f13 || opcode == 0x660f13
7805 || opcode == 0x0f17 || opcode == 0x660f17)
7806 goto no_support;
7807 ir.rm |= ir.rex_b;
7808 if (!i386_xmm_regnum_p (gdbarch,
7809 I387_XMM0_REGNUM (tdep) + ir.rm))
7810 goto no_support;
7811 record_full_arch_list_add_reg (ir.regcache,
7812 I387_XMM0_REGNUM (tdep) + ir.rm);
7813 }
7814 else
7815 {
7816 switch (opcode)
7817 {
7818 case 0x660f3a14:
7819 ir.ot = OT_BYTE;
7820 break;
7821 case 0x660f3a15:
7822 ir.ot = OT_WORD;
7823 break;
7824 case 0x660f3a16:
7825 ir.ot = OT_LONG;
7826 break;
7827 case 0x660f3a17:
7828 ir.ot = OT_QUAD;
7829 break;
7830 default:
7831 ir.ot = OT_DQUAD;
7832 break;
7833 }
7834 if (i386_record_lea_modrm (&ir))
7835 return -1;
7836 }
7837 break;
7838
7839 case 0x0f2b: /* movntps */
7840 case 0x660f2b: /* movntpd */
7841 case 0x0fe7: /* movntq */
7842 case 0x660fe7: /* movntdq */
7843 if (ir.mod == 3)
7844 goto no_support;
7845 if (opcode == 0x0fe7)
7846 ir.ot = OT_QUAD;
7847 else
7848 ir.ot = OT_DQUAD;
7849 if (i386_record_lea_modrm (&ir))
7850 return -1;
7851 break;
7852
7853 case 0xf30f2c: /* cvttss2si */
7854 case 0xf20f2c: /* cvttsd2si */
7855 case 0xf30f2d: /* cvtss2si */
7856 case 0xf20f2d: /* cvtsd2si */
7857 case 0xf20f38f0: /* crc32 */
7858 case 0xf20f38f1: /* crc32 */
7859 case 0x0f50: /* movmskps */
7860 case 0x660f50: /* movmskpd */
7861 case 0x0fc5: /* pextrw */
7862 case 0x660fc5: /* pextrw */
7863 case 0x0fd7: /* pmovmskb */
7864 case 0x660fd7: /* pmovmskb */
7865 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7866 break;
7867
7868 case 0x0f3800: /* pshufb */
7869 case 0x0f3801: /* phaddw */
7870 case 0x0f3802: /* phaddd */
7871 case 0x0f3803: /* phaddsw */
7872 case 0x0f3804: /* pmaddubsw */
7873 case 0x0f3805: /* phsubw */
7874 case 0x0f3806: /* phsubd */
7875 case 0x0f3807: /* phsubsw */
7876 case 0x0f3808: /* psignb */
7877 case 0x0f3809: /* psignw */
7878 case 0x0f380a: /* psignd */
7879 case 0x0f380b: /* pmulhrsw */
7880 case 0x0f381c: /* pabsb */
7881 case 0x0f381d: /* pabsw */
7882 case 0x0f381e: /* pabsd */
7883 case 0x0f382b: /* packusdw */
7884 case 0x0f3830: /* pmovzxbw */
7885 case 0x0f3831: /* pmovzxbd */
7886 case 0x0f3832: /* pmovzxbq */
7887 case 0x0f3833: /* pmovzxwd */
7888 case 0x0f3834: /* pmovzxwq */
7889 case 0x0f3835: /* pmovzxdq */
7890 case 0x0f3837: /* pcmpgtq */
7891 case 0x0f3838: /* pminsb */
7892 case 0x0f3839: /* pminsd */
7893 case 0x0f383a: /* pminuw */
7894 case 0x0f383b: /* pminud */
7895 case 0x0f383c: /* pmaxsb */
7896 case 0x0f383d: /* pmaxsd */
7897 case 0x0f383e: /* pmaxuw */
7898 case 0x0f383f: /* pmaxud */
7899 case 0x0f3840: /* pmulld */
7900 case 0x0f3841: /* phminposuw */
7901 case 0x0f3a0f: /* palignr */
7902 case 0x0f60: /* punpcklbw */
7903 case 0x0f61: /* punpcklwd */
7904 case 0x0f62: /* punpckldq */
7905 case 0x0f63: /* packsswb */
7906 case 0x0f64: /* pcmpgtb */
7907 case 0x0f65: /* pcmpgtw */
7908 case 0x0f66: /* pcmpgtd */
7909 case 0x0f67: /* packuswb */
7910 case 0x0f68: /* punpckhbw */
7911 case 0x0f69: /* punpckhwd */
7912 case 0x0f6a: /* punpckhdq */
7913 case 0x0f6b: /* packssdw */
7914 case 0x0f6e: /* movd */
7915 case 0x0f6f: /* movq */
7916 case 0x0f70: /* pshufw */
7917 case 0x0f74: /* pcmpeqb */
7918 case 0x0f75: /* pcmpeqw */
7919 case 0x0f76: /* pcmpeqd */
7920 case 0x0fc4: /* pinsrw */
7921 case 0x0fd1: /* psrlw */
7922 case 0x0fd2: /* psrld */
7923 case 0x0fd3: /* psrlq */
7924 case 0x0fd4: /* paddq */
7925 case 0x0fd5: /* pmullw */
7926 case 0xf20fd6: /* movdq2q */
7927 case 0x0fd8: /* psubusb */
7928 case 0x0fd9: /* psubusw */
7929 case 0x0fda: /* pminub */
7930 case 0x0fdb: /* pand */
7931 case 0x0fdc: /* paddusb */
7932 case 0x0fdd: /* paddusw */
7933 case 0x0fde: /* pmaxub */
7934 case 0x0fdf: /* pandn */
7935 case 0x0fe0: /* pavgb */
7936 case 0x0fe1: /* psraw */
7937 case 0x0fe2: /* psrad */
7938 case 0x0fe3: /* pavgw */
7939 case 0x0fe4: /* pmulhuw */
7940 case 0x0fe5: /* pmulhw */
7941 case 0x0fe8: /* psubsb */
7942 case 0x0fe9: /* psubsw */
7943 case 0x0fea: /* pminsw */
7944 case 0x0feb: /* por */
7945 case 0x0fec: /* paddsb */
7946 case 0x0fed: /* paddsw */
7947 case 0x0fee: /* pmaxsw */
7948 case 0x0fef: /* pxor */
7949 case 0x0ff1: /* psllw */
7950 case 0x0ff2: /* pslld */
7951 case 0x0ff3: /* psllq */
7952 case 0x0ff4: /* pmuludq */
7953 case 0x0ff5: /* pmaddwd */
7954 case 0x0ff6: /* psadbw */
7955 case 0x0ff8: /* psubb */
7956 case 0x0ff9: /* psubw */
7957 case 0x0ffa: /* psubd */
7958 case 0x0ffb: /* psubq */
7959 case 0x0ffc: /* paddb */
7960 case 0x0ffd: /* paddw */
7961 case 0x0ffe: /* paddd */
7962 if (i386_record_modrm (&ir))
7963 return -1;
7964 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7965 goto no_support;
7966 record_full_arch_list_add_reg (ir.regcache,
7967 I387_MM0_REGNUM (tdep) + ir.reg);
7968 break;
7969
7970 case 0x0f71: /* psllw */
7971 case 0x0f72: /* pslld */
7972 case 0x0f73: /* psllq */
7973 if (i386_record_modrm (&ir))
7974 return -1;
7975 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7976 goto no_support;
7977 record_full_arch_list_add_reg (ir.regcache,
7978 I387_MM0_REGNUM (tdep) + ir.rm);
7979 break;
7980
7981 case 0x660f71: /* psllw */
7982 case 0x660f72: /* pslld */
7983 case 0x660f73: /* psllq */
7984 if (i386_record_modrm (&ir))
7985 return -1;
7986 ir.rm |= ir.rex_b;
7987 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7988 goto no_support;
7989 record_full_arch_list_add_reg (ir.regcache,
7990 I387_XMM0_REGNUM (tdep) + ir.rm);
7991 break;
7992
7993 case 0x0f7e: /* movd */
7994 case 0x660f7e: /* movd */
7995 if (i386_record_modrm (&ir))
7996 return -1;
7997 if (ir.mod == 3)
7998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7999 else
8000 {
8001 if (ir.dflag == 2)
8002 ir.ot = OT_QUAD;
8003 else
8004 ir.ot = OT_LONG;
8005 if (i386_record_lea_modrm (&ir))
8006 return -1;
8007 }
8008 break;
8009
8010 case 0x0f7f: /* movq */
8011 if (i386_record_modrm (&ir))
8012 return -1;
8013 if (ir.mod == 3)
8014 {
8015 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8016 goto no_support;
8017 record_full_arch_list_add_reg (ir.regcache,
8018 I387_MM0_REGNUM (tdep) + ir.rm);
8019 }
8020 else
8021 {
8022 ir.ot = OT_QUAD;
8023 if (i386_record_lea_modrm (&ir))
8024 return -1;
8025 }
8026 break;
8027
8028 case 0xf30fb8: /* popcnt */
8029 if (i386_record_modrm (&ir))
8030 return -1;
8031 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8033 break;
8034
8035 case 0x660fd6: /* movq */
8036 if (i386_record_modrm (&ir))
8037 return -1;
8038 if (ir.mod == 3)
8039 {
8040 ir.rm |= ir.rex_b;
8041 if (!i386_xmm_regnum_p (gdbarch,
8042 I387_XMM0_REGNUM (tdep) + ir.rm))
8043 goto no_support;
8044 record_full_arch_list_add_reg (ir.regcache,
8045 I387_XMM0_REGNUM (tdep) + ir.rm);
8046 }
8047 else
8048 {
8049 ir.ot = OT_QUAD;
8050 if (i386_record_lea_modrm (&ir))
8051 return -1;
8052 }
8053 break;
8054
8055 case 0x660f3817: /* ptest */
8056 case 0x0f2e: /* ucomiss */
8057 case 0x660f2e: /* ucomisd */
8058 case 0x0f2f: /* comiss */
8059 case 0x660f2f: /* comisd */
8060 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8061 break;
8062
8063 case 0x0ff7: /* maskmovq */
8064 regcache_raw_read_unsigned (ir.regcache,
8065 ir.regmap[X86_RECORD_REDI_REGNUM],
8066 &addr);
8067 if (record_full_arch_list_add_mem (addr, 64))
8068 return -1;
8069 break;
8070
8071 case 0x660ff7: /* maskmovdqu */
8072 regcache_raw_read_unsigned (ir.regcache,
8073 ir.regmap[X86_RECORD_REDI_REGNUM],
8074 &addr);
8075 if (record_full_arch_list_add_mem (addr, 128))
8076 return -1;
8077 break;
8078
8079 default:
8080 goto no_support;
8081 break;
8082 }
8083 break;
8084
8085 default:
8086 goto no_support;
8087 break;
8088 }
8089
8090 /* In the future, maybe still need to deal with need_dasm. */
8091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8092 if (record_full_arch_list_add_end ())
8093 return -1;
8094
8095 return 0;
8096
8097 no_support:
8098 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8099 "at address %s.\n"),
8100 (unsigned int) (opcode),
8101 paddress (gdbarch, ir.orig_addr));
8102 return -1;
8103 }
8104
8105 static const int i386_record_regmap[] =
8106 {
8107 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8108 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8109 0, 0, 0, 0, 0, 0, 0, 0,
8110 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8111 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8112 };
8113
8114 /* Check that the given address appears suitable for a fast
8115 tracepoint, which on x86-64 means that we need an instruction of at
8116 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8117 jump and not have to worry about program jumps to an address in the
8118 middle of the tracepoint jump. On x86, it may be possible to use
8119 4-byte jumps with a 2-byte offset to a trampoline located in the
8120 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8121 of instruction to replace, and 0 if not, plus an explanatory
8122 string. */
8123
8124 static int
8125 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8126 std::string *msg)
8127 {
8128 int len, jumplen;
8129
8130 /* Ask the target for the minimum instruction length supported. */
8131 jumplen = target_get_min_fast_tracepoint_insn_len ();
8132
8133 if (jumplen < 0)
8134 {
8135 /* If the target does not support the get_min_fast_tracepoint_insn_len
8136 operation, assume that fast tracepoints will always be implemented
8137 using 4-byte relative jumps on both x86 and x86-64. */
8138 jumplen = 5;
8139 }
8140 else if (jumplen == 0)
8141 {
8142 /* If the target does support get_min_fast_tracepoint_insn_len but
8143 returns zero, then the IPA has not loaded yet. In this case,
8144 we optimistically assume that truncated 2-byte relative jumps
8145 will be available on x86, and compensate later if this assumption
8146 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8147 jumps will always be used. */
8148 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8149 }
8150
8151 /* Check for fit. */
8152 len = gdb_insn_length (gdbarch, addr);
8153
8154 if (len < jumplen)
8155 {
8156 /* Return a bit of target-specific detail to add to the caller's
8157 generic failure message. */
8158 if (msg)
8159 *msg = string_printf (_("; instruction is only %d bytes long, "
8160 "need at least %d bytes for the jump"),
8161 len, jumplen);
8162 return 0;
8163 }
8164 else
8165 {
8166 if (msg)
8167 msg->clear ();
8168 return 1;
8169 }
8170 }
8171
8172 /* Return a floating-point format for a floating-point variable of
8173 length LEN in bits. If non-NULL, NAME is the name of its type.
8174 If no suitable type is found, return NULL. */
8175
8176 static const struct floatformat **
8177 i386_floatformat_for_type (struct gdbarch *gdbarch,
8178 const char *name, int len)
8179 {
8180 if (len == 128 && name)
8181 if (strcmp (name, "__float128") == 0
8182 || strcmp (name, "_Float128") == 0
8183 || strcmp (name, "complex _Float128") == 0
8184 || strcmp (name, "complex(kind=16)") == 0
8185 || strcmp (name, "complex*32") == 0
8186 || strcmp (name, "COMPLEX*32") == 0
8187 || strcmp (name, "quad complex") == 0
8188 || strcmp (name, "real(kind=16)") == 0
8189 || strcmp (name, "real*16") == 0
8190 || strcmp (name, "REAL*16") == 0)
8191 return floatformats_ia64_quad;
8192
8193 return default_floatformat_for_type (gdbarch, name, len);
8194 }
8195
8196 static int
8197 i386_validate_tdesc_p (i386_gdbarch_tdep *tdep,
8198 struct tdesc_arch_data *tdesc_data)
8199 {
8200 const struct target_desc *tdesc = tdep->tdesc;
8201 const struct tdesc_feature *feature_core;
8202
8203 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8204 *feature_avx512, *feature_pkeys, *feature_segments;
8205 int i, num_regs, valid_p;
8206
8207 if (! tdesc_has_registers (tdesc))
8208 return 0;
8209
8210 /* Get core registers. */
8211 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8212 if (feature_core == NULL)
8213 return 0;
8214
8215 /* Get SSE registers. */
8216 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8217
8218 /* Try AVX registers. */
8219 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8220
8221 /* Try MPX registers. */
8222 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8223
8224 /* Try AVX512 registers. */
8225 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8226
8227 /* Try segment base registers. */
8228 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8229
8230 /* Try PKEYS */
8231 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8232
8233 valid_p = 1;
8234
8235 /* The XCR0 bits. */
8236 if (feature_avx512)
8237 {
8238 /* AVX512 register description requires AVX register description. */
8239 if (!feature_avx)
8240 return 0;
8241
8242 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8243
8244 /* It may have been set by OSABI initialization function. */
8245 if (tdep->k0_regnum < 0)
8246 {
8247 tdep->k_register_names = i386_k_names;
8248 tdep->k0_regnum = I386_K0_REGNUM;
8249 }
8250
8251 for (i = 0; i < I387_NUM_K_REGS; i++)
8252 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8253 tdep->k0_regnum + i,
8254 i386_k_names[i]);
8255
8256 if (tdep->num_zmm_regs == 0)
8257 {
8258 tdep->zmmh_register_names = i386_zmmh_names;
8259 tdep->num_zmm_regs = 8;
8260 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8261 }
8262
8263 for (i = 0; i < tdep->num_zmm_regs; i++)
8264 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8265 tdep->zmm0h_regnum + i,
8266 tdep->zmmh_register_names[i]);
8267
8268 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8270 tdep->xmm16_regnum + i,
8271 tdep->xmm_avx512_register_names[i]);
8272
8273 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8274 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8275 tdep->ymm16h_regnum + i,
8276 tdep->ymm16h_register_names[i]);
8277 }
8278 if (feature_avx)
8279 {
8280 /* AVX register description requires SSE register description. */
8281 if (!feature_sse)
8282 return 0;
8283
8284 if (!feature_avx512)
8285 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8286
8287 /* It may have been set by OSABI initialization function. */
8288 if (tdep->num_ymm_regs == 0)
8289 {
8290 tdep->ymmh_register_names = i386_ymmh_names;
8291 tdep->num_ymm_regs = 8;
8292 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8293 }
8294
8295 for (i = 0; i < tdep->num_ymm_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8297 tdep->ymm0h_regnum + i,
8298 tdep->ymmh_register_names[i]);
8299 }
8300 else if (feature_sse)
8301 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8302 else
8303 {
8304 tdep->xcr0 = X86_XSTATE_X87_MASK;
8305 tdep->num_xmm_regs = 0;
8306 }
8307
8308 num_regs = tdep->num_core_regs;
8309 for (i = 0; i < num_regs; i++)
8310 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8311 tdep->register_names[i]);
8312
8313 if (feature_sse)
8314 {
8315 /* Need to include %mxcsr, so add one. */
8316 num_regs += tdep->num_xmm_regs + 1;
8317 for (; i < num_regs; i++)
8318 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8319 tdep->register_names[i]);
8320 }
8321
8322 if (feature_mpx)
8323 {
8324 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8325
8326 if (tdep->bnd0r_regnum < 0)
8327 {
8328 tdep->mpx_register_names = i386_mpx_names;
8329 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8330 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8331 }
8332
8333 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8334 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8335 I387_BND0R_REGNUM (tdep) + i,
8336 tdep->mpx_register_names[i]);
8337 }
8338
8339 if (feature_segments)
8340 {
8341 if (tdep->fsbase_regnum < 0)
8342 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8343 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8344 tdep->fsbase_regnum, "fs_base");
8345 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8346 tdep->fsbase_regnum + 1, "gs_base");
8347 }
8348
8349 if (feature_pkeys)
8350 {
8351 tdep->xcr0 |= X86_XSTATE_PKRU;
8352 if (tdep->pkru_regnum < 0)
8353 {
8354 tdep->pkeys_register_names = i386_pkeys_names;
8355 tdep->pkru_regnum = I386_PKRU_REGNUM;
8356 tdep->num_pkeys_regs = 1;
8357 }
8358
8359 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8360 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8361 I387_PKRU_REGNUM (tdep) + i,
8362 tdep->pkeys_register_names[i]);
8363 }
8364
8365 return valid_p;
8366 }
8367
8368 \f
8369
8370 /* Implement the type_align gdbarch function. */
8371
8372 static ULONGEST
8373 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8374 {
8375 type = check_typedef (type);
8376
8377 if (gdbarch_ptr_bit (gdbarch) == 32)
8378 {
8379 if ((type->code () == TYPE_CODE_INT
8380 || type->code () == TYPE_CODE_FLT)
8381 && TYPE_LENGTH (type) > 4)
8382 return 4;
8383
8384 /* Handle x86's funny long double. */
8385 if (type->code () == TYPE_CODE_FLT
8386 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8387 return 4;
8388 }
8389
8390 return 0;
8391 }
8392
8393 \f
8394 /* Note: This is called for both i386 and amd64. */
8395
8396 static struct gdbarch *
8397 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8398 {
8399 struct gdbarch *gdbarch;
8400 const struct target_desc *tdesc;
8401 int mm0_regnum;
8402 int ymm0_regnum;
8403 int bnd0_regnum;
8404 int num_bnd_cooked;
8405
8406 /* If there is already a candidate, use it. */
8407 arches = gdbarch_list_lookup_by_info (arches, &info);
8408 if (arches != NULL)
8409 return arches->gdbarch;
8410
8411 /* Allocate space for the new architecture. Assume i386 for now. */
8412 i386_gdbarch_tdep *tdep = new i386_gdbarch_tdep;
8413 gdbarch = gdbarch_alloc (&info, tdep);
8414
8415 /* General-purpose registers. */
8416 tdep->gregset_reg_offset = NULL;
8417 tdep->gregset_num_regs = I386_NUM_GREGS;
8418 tdep->sizeof_gregset = 0;
8419
8420 /* Floating-point registers. */
8421 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8422 tdep->fpregset = &i386_fpregset;
8423
8424 /* The default settings include the FPU registers, the MMX registers
8425 and the SSE registers. This can be overridden for a specific ABI
8426 by adjusting the members `st0_regnum', `mm0_regnum' and
8427 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8428 will show up in the output of "info all-registers". */
8429
8430 tdep->st0_regnum = I386_ST0_REGNUM;
8431
8432 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8433 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8434
8435 tdep->jb_pc_offset = -1;
8436 tdep->struct_return = pcc_struct_return;
8437 tdep->sigtramp_start = 0;
8438 tdep->sigtramp_end = 0;
8439 tdep->sigtramp_p = i386_sigtramp_p;
8440 tdep->sigcontext_addr = NULL;
8441 tdep->sc_reg_offset = NULL;
8442 tdep->sc_pc_offset = -1;
8443 tdep->sc_sp_offset = -1;
8444
8445 tdep->xsave_xcr0_offset = -1;
8446
8447 tdep->record_regmap = i386_record_regmap;
8448
8449 set_gdbarch_type_align (gdbarch, i386_type_align);
8450
8451 /* The format used for `long double' on almost all i386 targets is
8452 the i387 extended floating-point format. In fact, of all targets
8453 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8454 on having a `long double' that's not `long' at all. */
8455 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8456
8457 /* Although the i387 extended floating-point has only 80 significant
8458 bits, a `long double' actually takes up 96, probably to enforce
8459 alignment. */
8460 set_gdbarch_long_double_bit (gdbarch, 96);
8461
8462 /* Support of bfloat16 format. */
8463 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8464
8465 /* Support for floating-point data type variants. */
8466 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8467
8468 /* Register numbers of various important registers. */
8469 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8470 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8471 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8472 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8473
8474 /* NOTE: kettenis/20040418: GCC does have two possible register
8475 numbering schemes on the i386: dbx and SVR4. These schemes
8476 differ in how they number %ebp, %esp, %eflags, and the
8477 floating-point registers, and are implemented by the arrays
8478 dbx_register_map[] and svr4_dbx_register_map in
8479 gcc/config/i386.c. GCC also defines a third numbering scheme in
8480 gcc/config/i386.c, which it designates as the "default" register
8481 map used in 64bit mode. This last register numbering scheme is
8482 implemented in dbx64_register_map, and is used for AMD64; see
8483 amd64-tdep.c.
8484
8485 Currently, each GCC i386 target always uses the same register
8486 numbering scheme across all its supported debugging formats
8487 i.e. SDB (COFF), stabs and DWARF 2. This is because
8488 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8489 DBX_REGISTER_NUMBER macro which is defined by each target's
8490 respective config header in a manner independent of the requested
8491 output debugging format.
8492
8493 This does not match the arrangement below, which presumes that
8494 the SDB and stabs numbering schemes differ from the DWARF and
8495 DWARF 2 ones. The reason for this arrangement is that it is
8496 likely to get the numbering scheme for the target's
8497 default/native debug format right. For targets where GCC is the
8498 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8499 targets where the native toolchain uses a different numbering
8500 scheme for a particular debug format (stabs-in-ELF on Solaris)
8501 the defaults below will have to be overridden, like
8502 i386_elf_init_abi() does. */
8503
8504 /* Use the dbx register numbering scheme for stabs and COFF. */
8505 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8506 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8507
8508 /* Use the SVR4 register numbering scheme for DWARF 2. */
8509 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8510
8511 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8512 be in use on any of the supported i386 targets. */
8513
8514 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8515
8516 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8517
8518 /* Call dummy code. */
8519 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8520 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8521 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8522 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8523
8524 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8525 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8526 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8527
8528 set_gdbarch_return_value (gdbarch, i386_return_value);
8529
8530 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8531
8532 /* Stack grows downward. */
8533 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8534
8535 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8536 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8537
8538 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8539 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8540
8541 set_gdbarch_frame_args_skip (gdbarch, 8);
8542
8543 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8544
8545 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8546
8547 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8548
8549 /* Add the i386 register groups. */
8550 i386_add_reggroups (gdbarch);
8551 tdep->register_reggroup_p = i386_register_reggroup_p;
8552
8553 /* Helper for function argument information. */
8554 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8555
8556 /* Hook the function epilogue frame unwinder. This unwinder is
8557 appended to the list first, so that it supercedes the DWARF
8558 unwinder in function epilogues (where the DWARF unwinder
8559 currently fails). */
8560 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8561
8562 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8563 to the list before the prologue-based unwinders, so that DWARF
8564 CFI info will be used if it is available. */
8565 dwarf2_append_unwinders (gdbarch);
8566
8567 frame_base_set_default (gdbarch, &i386_frame_base);
8568
8569 /* Pseudo registers may be changed by amd64_init_abi. */
8570 set_gdbarch_pseudo_register_read_value (gdbarch,
8571 i386_pseudo_register_read_value);
8572 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8573 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8574 i386_ax_pseudo_register_collect);
8575
8576 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8577 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8578
8579 /* Override the normal target description method to make the AVX
8580 upper halves anonymous. */
8581 set_gdbarch_register_name (gdbarch, i386_register_name);
8582
8583 /* Even though the default ABI only includes general-purpose registers,
8584 floating-point registers and the SSE registers, we have to leave a
8585 gap for the upper AVX, MPX and AVX512 registers. */
8586 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8587
8588 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8589
8590 /* Get the x86 target description from INFO. */
8591 tdesc = info.target_desc;
8592 if (! tdesc_has_registers (tdesc))
8593 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8594 tdep->tdesc = tdesc;
8595
8596 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8597 tdep->register_names = i386_register_names;
8598
8599 /* No upper YMM registers. */
8600 tdep->ymmh_register_names = NULL;
8601 tdep->ymm0h_regnum = -1;
8602
8603 /* No upper ZMM registers. */
8604 tdep->zmmh_register_names = NULL;
8605 tdep->zmm0h_regnum = -1;
8606
8607 /* No high XMM registers. */
8608 tdep->xmm_avx512_register_names = NULL;
8609 tdep->xmm16_regnum = -1;
8610
8611 /* No upper YMM16-31 registers. */
8612 tdep->ymm16h_register_names = NULL;
8613 tdep->ymm16h_regnum = -1;
8614
8615 tdep->num_byte_regs = 8;
8616 tdep->num_word_regs = 8;
8617 tdep->num_dword_regs = 0;
8618 tdep->num_mmx_regs = 8;
8619 tdep->num_ymm_regs = 0;
8620
8621 /* No MPX registers. */
8622 tdep->bnd0r_regnum = -1;
8623 tdep->bndcfgu_regnum = -1;
8624
8625 /* No AVX512 registers. */
8626 tdep->k0_regnum = -1;
8627 tdep->num_zmm_regs = 0;
8628 tdep->num_ymm_avx512_regs = 0;
8629 tdep->num_xmm_avx512_regs = 0;
8630
8631 /* No PKEYS registers */
8632 tdep->pkru_regnum = -1;
8633 tdep->num_pkeys_regs = 0;
8634
8635 /* No segment base registers. */
8636 tdep->fsbase_regnum = -1;
8637
8638 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8639
8640 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8641
8642 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8643
8644 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8645 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8646 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8647
8648 /* Hook in ABI-specific overrides, if they have been registered.
8649 Note: If INFO specifies a 64 bit arch, this is where we turn
8650 a 32-bit i386 into a 64-bit amd64. */
8651 info.tdesc_data = tdesc_data.get ();
8652 gdbarch_init_osabi (info, gdbarch);
8653
8654 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8655 {
8656 delete tdep;
8657 gdbarch_free (gdbarch);
8658 return NULL;
8659 }
8660
8661 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8662
8663 /* Wire in pseudo registers. Number of pseudo registers may be
8664 changed. */
8665 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8666 + tdep->num_word_regs
8667 + tdep->num_dword_regs
8668 + tdep->num_mmx_regs
8669 + tdep->num_ymm_regs
8670 + num_bnd_cooked
8671 + tdep->num_ymm_avx512_regs
8672 + tdep->num_zmm_regs));
8673
8674 /* Target description may be changed. */
8675 tdesc = tdep->tdesc;
8676
8677 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8678
8679 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8680 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8681
8682 /* Make %al the first pseudo-register. */
8683 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8684 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8685
8686 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8687 if (tdep->num_dword_regs)
8688 {
8689 /* Support dword pseudo-register if it hasn't been disabled. */
8690 tdep->eax_regnum = ymm0_regnum;
8691 ymm0_regnum += tdep->num_dword_regs;
8692 }
8693 else
8694 tdep->eax_regnum = -1;
8695
8696 mm0_regnum = ymm0_regnum;
8697 if (tdep->num_ymm_regs)
8698 {
8699 /* Support YMM pseudo-register if it is available. */
8700 tdep->ymm0_regnum = ymm0_regnum;
8701 mm0_regnum += tdep->num_ymm_regs;
8702 }
8703 else
8704 tdep->ymm0_regnum = -1;
8705
8706 if (tdep->num_ymm_avx512_regs)
8707 {
8708 /* Support YMM16-31 pseudo registers if available. */
8709 tdep->ymm16_regnum = mm0_regnum;
8710 mm0_regnum += tdep->num_ymm_avx512_regs;
8711 }
8712 else
8713 tdep->ymm16_regnum = -1;
8714
8715 if (tdep->num_zmm_regs)
8716 {
8717 /* Support ZMM pseudo-register if it is available. */
8718 tdep->zmm0_regnum = mm0_regnum;
8719 mm0_regnum += tdep->num_zmm_regs;
8720 }
8721 else
8722 tdep->zmm0_regnum = -1;
8723
8724 bnd0_regnum = mm0_regnum;
8725 if (tdep->num_mmx_regs != 0)
8726 {
8727 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8728 tdep->mm0_regnum = mm0_regnum;
8729 bnd0_regnum += tdep->num_mmx_regs;
8730 }
8731 else
8732 tdep->mm0_regnum = -1;
8733
8734 if (tdep->bnd0r_regnum > 0)
8735 tdep->bnd0_regnum = bnd0_regnum;
8736 else
8737 tdep-> bnd0_regnum = -1;
8738
8739 /* Hook in the legacy prologue-based unwinders last (fallback). */
8740 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8741 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8742 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8743
8744 /* If we have a register mapping, enable the generic core file
8745 support, unless it has already been enabled. */
8746 if (tdep->gregset_reg_offset
8747 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8748 set_gdbarch_iterate_over_regset_sections
8749 (gdbarch, i386_iterate_over_regset_sections);
8750
8751 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8752 i386_fast_tracepoint_valid_at);
8753
8754 return gdbarch;
8755 }
8756
8757 \f
8758
8759 /* Return the target description for a specified XSAVE feature mask. */
8760
8761 const struct target_desc *
8762 i386_target_description (uint64_t xcr0, bool segments)
8763 {
8764 static target_desc *i386_tdescs \
8765 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8766 target_desc **tdesc;
8767
8768 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8769 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8771 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8772 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8773 [segments ? 1 : 0];
8774
8775 if (*tdesc == NULL)
8776 *tdesc = i386_create_target_description (xcr0, false, segments);
8777
8778 return *tdesc;
8779 }
8780
8781 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8782
8783 /* Find the bound directory base address. */
8784
8785 static unsigned long
8786 i386_mpx_bd_base (void)
8787 {
8788 struct regcache *rcache;
8789 ULONGEST ret;
8790 enum register_status regstatus;
8791
8792 rcache = get_current_regcache ();
8793 gdbarch *arch = rcache->arch ();
8794 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8795
8796 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8797
8798 if (regstatus != REG_VALID)
8799 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8800
8801 return ret & MPX_BASE_MASK;
8802 }
8803
8804 int
8805 i386_mpx_enabled (void)
8806 {
8807 gdbarch *arch = get_current_arch ();
8808 i386_gdbarch_tdep *tdep = (i386_gdbarch_tdep *) gdbarch_tdep (arch);
8809 const struct target_desc *tdesc = tdep->tdesc;
8810
8811 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8812 }
8813
8814 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8815 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8816 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8817 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8818
8819 /* Find the bound table entry given the pointer location and the base
8820 address of the table. */
8821
8822 static CORE_ADDR
8823 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8824 {
8825 CORE_ADDR offset1;
8826 CORE_ADDR offset2;
8827 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8828 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8829 CORE_ADDR bd_entry_addr;
8830 CORE_ADDR bt_addr;
8831 CORE_ADDR bd_entry;
8832 struct gdbarch *gdbarch = get_current_arch ();
8833 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8834
8835
8836 if (gdbarch_ptr_bit (gdbarch) == 64)
8837 {
8838 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8839 bd_ptr_r_shift = 20;
8840 bd_ptr_l_shift = 3;
8841 bt_select_r_shift = 3;
8842 bt_select_l_shift = 5;
8843 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8844
8845 if ( sizeof (CORE_ADDR) == 4)
8846 error (_("bound table examination not supported\
8847 for 64-bit process with 32-bit GDB"));
8848 }
8849 else
8850 {
8851 mpx_bd_mask = MPX_BD_MASK_32;
8852 bd_ptr_r_shift = 12;
8853 bd_ptr_l_shift = 2;
8854 bt_select_r_shift = 2;
8855 bt_select_l_shift = 4;
8856 bt_mask = MPX_BT_MASK_32;
8857 }
8858
8859 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8860 bd_entry_addr = bd_base + offset1;
8861 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8862
8863 if ((bd_entry & 0x1) == 0)
8864 error (_("Invalid bounds directory entry at %s."),
8865 paddress (get_current_arch (), bd_entry_addr));
8866
8867 /* Clearing status bit. */
8868 bd_entry--;
8869 bt_addr = bd_entry & ~bt_select_r_shift;
8870 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8871
8872 return bt_addr + offset2;
8873 }
8874
8875 /* Print routine for the mpx bounds. */
8876
8877 static void
8878 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8879 {
8880 struct ui_out *uiout = current_uiout;
8881 LONGEST size;
8882 struct gdbarch *gdbarch = get_current_arch ();
8883 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8884 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8885
8886 if (bounds_in_map == 1)
8887 {
8888 uiout->text ("Null bounds on map:");
8889 uiout->text (" pointer value = ");
8890 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8891 uiout->text (".");
8892 uiout->text ("\n");
8893 }
8894 else
8895 {
8896 uiout->text ("{lbound = ");
8897 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8898 uiout->text (", ubound = ");
8899
8900 /* The upper bound is stored in 1's complement. */
8901 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8902 uiout->text ("}: pointer value = ");
8903 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8904
8905 if (gdbarch_ptr_bit (gdbarch) == 64)
8906 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8907 else
8908 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8909
8910 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8911 -1 represents in this sense full memory access, and there is no need
8912 one to the size. */
8913
8914 size = (size > -1 ? size + 1 : size);
8915 uiout->text (", size = ");
8916 uiout->field_string ("size", plongest (size));
8917
8918 uiout->text (", metadata = ");
8919 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8920 uiout->text ("\n");
8921 }
8922 }
8923
8924 /* Implement the command "show mpx bound". */
8925
8926 static void
8927 i386_mpx_info_bounds (const char *args, int from_tty)
8928 {
8929 CORE_ADDR bd_base = 0;
8930 CORE_ADDR addr;
8931 CORE_ADDR bt_entry_addr = 0;
8932 CORE_ADDR bt_entry[4];
8933 int i;
8934 struct gdbarch *gdbarch = get_current_arch ();
8935 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8936
8937 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8938 || !i386_mpx_enabled ())
8939 {
8940 printf_unfiltered (_("Intel Memory Protection Extensions not "
8941 "supported on this target.\n"));
8942 return;
8943 }
8944
8945 if (args == NULL)
8946 {
8947 printf_unfiltered (_("Address of pointer variable expected.\n"));
8948 return;
8949 }
8950
8951 addr = parse_and_eval_address (args);
8952
8953 bd_base = i386_mpx_bd_base ();
8954 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8955
8956 memset (bt_entry, 0, sizeof (bt_entry));
8957
8958 for (i = 0; i < 4; i++)
8959 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8960 + i * TYPE_LENGTH (data_ptr_type),
8961 data_ptr_type);
8962
8963 i386_mpx_print_bounds (bt_entry);
8964 }
8965
8966 /* Implement the command "set mpx bound". */
8967
8968 static void
8969 i386_mpx_set_bounds (const char *args, int from_tty)
8970 {
8971 CORE_ADDR bd_base = 0;
8972 CORE_ADDR addr, lower, upper;
8973 CORE_ADDR bt_entry_addr = 0;
8974 CORE_ADDR bt_entry[2];
8975 const char *input = args;
8976 int i;
8977 struct gdbarch *gdbarch = get_current_arch ();
8978 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8979 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8980
8981 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8982 || !i386_mpx_enabled ())
8983 error (_("Intel Memory Protection Extensions not supported\
8984 on this target."));
8985
8986 if (args == NULL)
8987 error (_("Pointer value expected."));
8988
8989 addr = value_as_address (parse_to_comma_and_eval (&input));
8990
8991 if (input[0] == ',')
8992 ++input;
8993 if (input[0] == '\0')
8994 error (_("wrong number of arguments: missing lower and upper bound."));
8995 lower = value_as_address (parse_to_comma_and_eval (&input));
8996
8997 if (input[0] == ',')
8998 ++input;
8999 if (input[0] == '\0')
9000 error (_("Wrong number of arguments; Missing upper bound."));
9001 upper = value_as_address (parse_to_comma_and_eval (&input));
9002
9003 bd_base = i386_mpx_bd_base ();
9004 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9005 for (i = 0; i < 2; i++)
9006 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9007 + i * TYPE_LENGTH (data_ptr_type),
9008 data_ptr_type);
9009 bt_entry[0] = (uint64_t) lower;
9010 bt_entry[1] = ~(uint64_t) upper;
9011
9012 for (i = 0; i < 2; i++)
9013 write_memory_unsigned_integer (bt_entry_addr
9014 + i * TYPE_LENGTH (data_ptr_type),
9015 TYPE_LENGTH (data_ptr_type), byte_order,
9016 bt_entry[i]);
9017 }
9018
9019 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9020
9021 void _initialize_i386_tdep ();
9022 void
9023 _initialize_i386_tdep ()
9024 {
9025 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9026
9027 /* Add the variable that controls the disassembly flavor. */
9028 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9029 &disassembly_flavor, _("\
9030 Set the disassembly flavor."), _("\
9031 Show the disassembly flavor."), _("\
9032 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9033 NULL,
9034 NULL, /* FIXME: i18n: */
9035 &setlist, &showlist);
9036
9037 /* Add the variable that controls the convention for returning
9038 structs. */
9039 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9040 &struct_convention, _("\
9041 Set the convention for returning small structs."), _("\
9042 Show the convention for returning small structs."), _("\
9043 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9044 is \"default\"."),
9045 NULL,
9046 NULL, /* FIXME: i18n: */
9047 &setlist, &showlist);
9048
9049 /* Add "mpx" prefix for the set and show commands. */
9050
9051 add_setshow_prefix_cmd
9052 ("mpx", class_support,
9053 _("Set Intel Memory Protection Extensions specific variables."),
9054 _("Show Intel Memory Protection Extensions specific variables."),
9055 &mpx_set_cmdlist, &mpx_show_cmdlist, &setlist, &showlist);
9056
9057 /* Add "bound" command for the show mpx commands list. */
9058
9059 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9060 "Show the memory bounds for a given array/pointer storage\
9061 in the bound table.",
9062 &mpx_show_cmdlist);
9063
9064 /* Add "bound" command for the set mpx commands list. */
9065
9066 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9067 "Set the memory bounds for a given array/pointer storage\
9068 in the bound table.",
9069 &mpx_set_cmdlist);
9070
9071 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9072 i386_svr4_init_abi);
9073
9074 /* Initialize the i386-specific register groups. */
9075 i386_init_reggroups ();
9076
9077 /* Tell remote stub that we support XML target description. */
9078 register_remote_support_xml ("i386");
9079 }