Use target_read_code in skip_prologue (i386)
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 i386_absolute_call_p (const gdb_byte *insn)
535 {
536 /* call far, absolute. */
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
542 /* Call near, absolute indirect (/2). */
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
546 /* Call far, absolute indirect (/3). */
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552 }
553
554 static int
555 i386_ret_p (const gdb_byte *insn)
556 {
557 switch (insn[0])
558 {
559 case 0xc2: /* ret near, pop N bytes. */
560 case 0xc3: /* ret near */
561 case 0xca: /* ret far, pop N bytes. */
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569 }
570
571 static int
572 i386_call_p (const gdb_byte *insn)
573 {
574 if (i386_absolute_call_p (insn))
575 return 1;
576
577 /* call near, relative. */
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
586
587 static int
588 i386_syscall_p (const gdb_byte *insn, int *lengthp)
589 {
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602 }
603
604 /* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607 struct displaced_step_closure *
608 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611 {
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639 }
640
641 /* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
643
644 void
645 i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
666 "displaced: fixup (%s, %s), "
667 "insn = 0x%02x 0x%02x ...\n",
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
699 int insn_len;
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
773 }
774 }
775
776 static void
777 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778 {
779 target_write_memory (*to, buf, len);
780 *to += len;
781 }
782
783 static void
784 i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786 {
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
811 push_buf[0] = 0x68; /* pushq $... */
812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
848 store_signed_integer (insn + offset, 4, byte_order, newrel);
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860 }
861
862 \f
863 #ifdef I386_REGNO_TO_SYMMETRY
864 #error "The Sequent Symmetry is no longer supported."
865 #endif
866
867 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
870
871 /* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
873 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
874
875 struct i386_frame_cache
876 {
877 /* Base address. */
878 CORE_ADDR base;
879 int base_p;
880 LONGEST sp_offset;
881 CORE_ADDR pc;
882
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
885 CORE_ADDR saved_sp;
886 int saved_sp_reg;
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891 };
892
893 /* Allocate and initialize a frame cache. */
894
895 static struct i386_frame_cache *
896 i386_alloc_frame_cache (void)
897 {
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
904 cache->base_p = 0;
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
913 cache->saved_sp = 0;
914 cache->saved_sp_reg = -1;
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921 }
922
923 /* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
925
926 static CORE_ADDR
927 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 gdb_byte op;
931 long delta = 0;
932 int data16 = 0;
933
934 if (target_read_code (pc, &op, 1))
935 return pc;
936
937 if (op == 0x66)
938 {
939 data16 = 1;
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
942 }
943
944 switch (op)
945 {
946 case 0xe9:
947 /* Relative jump: if data16 == 0, disp32, else disp16. */
948 if (data16)
949 {
950 delta = read_memory_integer (pc + 2, 2, byte_order);
951
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
954 delta += 4;
955 }
956 else
957 {
958 delta = read_memory_integer (pc + 1, 4, byte_order);
959
960 /* Include the size of the jmp instruction. */
961 delta += 5;
962 }
963 break;
964 case 0xeb:
965 /* Relative jump, disp8 (ignore data16). */
966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
967
968 delta += data16 + 2;
969 break;
970 }
971
972 return pc + delta;
973 }
974
975 /* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
984 {
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
999
1000 if (current_pc <= pc)
1001 return pc;
1002
1003 if (target_read_code (pc, &op, 1))
1004 return pc;
1005
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
1008
1009 if (target_read_code (pc + 1, buf, 4))
1010 return pc;
1011
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
1014
1015 if (current_pc == pc)
1016 {
1017 cache->sp_offset += 4;
1018 return current_pc;
1019 }
1020
1021 if (current_pc == pc + 1)
1022 {
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031 }
1032
1033 static CORE_ADDR
1034 i386_skip_probe (CORE_ADDR pc)
1035 {
1036 /* A function may start with
1037
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
1041
1042 followed by
1043
1044 pushl %ebp
1045
1046 etc. */
1047 gdb_byte buf[8];
1048 gdb_byte op;
1049
1050 if (target_read_code (pc, &op, 1))
1051 return pc;
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
1056
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
1059 if (op == 0x68)
1060 delta = 5;
1061 else
1062 delta = 2;
1063
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1068 pc += delta + sizeof (buf);
1069 }
1070
1071 return pc;
1072 }
1073
1074 /* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080 static CORE_ADDR
1081 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083 {
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
1118 };
1119
1120 if (target_read_code (pc, buf, sizeof buf))
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
1183 return pc;
1184
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
1187
1188 return min (pc + offset + 3, current_pc);
1189 }
1190
1191 /* Maximum instruction length we need to handle. */
1192 #define I386_MAX_MATCHED_INSN_LEN 6
1193
1194 /* Instruction description. */
1195 struct i386_insn
1196 {
1197 size_t len;
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1200 };
1201
1202 /* Return whether instruction at PC matches PATTERN. */
1203
1204 static int
1205 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1206 {
1207 gdb_byte op;
1208
1209 if (target_read_code (pc, &op, 1))
1210 return 0;
1211
1212 if ((op & pattern.mask[0]) == pattern.insn[0])
1213 {
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
1217
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1220
1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
1222 return 0;
1223
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
1228 }
1229 return insn_matched;
1230 }
1231 return 0;
1232 }
1233
1234 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238 static struct i386_insn *
1239 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240 {
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
1247 }
1248
1249 return NULL;
1250 }
1251
1252 /* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255 static int
1256 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257 {
1258 CORE_ADDR current_pc;
1259 int ix, i;
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
1266 current_pc = pc;
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
1270 current_pc -= insn_patterns[i].len;
1271
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294 struct i386_insn i386_frame_setup_skip_insns[] =
1295 {
1296 /* Check for `movb imm8, r' and `movl imm32, r'.
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341 };
1342
1343
1344 /* Check whether PC points to a no-op instruction. */
1345 static CORE_ADDR
1346 i386_skip_noop (CORE_ADDR pc)
1347 {
1348 gdb_byte op;
1349 int check = 1;
1350
1351 if (target_read_code (pc, &op, 1))
1352 return pc;
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
1361 if (target_read_code (pc, &op, 1))
1362 return pc;
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
1378 if (target_read_code (pc + 1, &op, 1))
1379 return pc;
1380
1381 if (op == 0xff)
1382 {
1383 pc += 2;
1384 if (target_read_code (pc, &op, 1))
1385 return pc;
1386
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392 }
1393
1394 /* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
1398
1399 static CORE_ADDR
1400 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
1402 struct i386_frame_cache *cache)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 struct i386_insn *insn;
1406 gdb_byte op;
1407 int skip = 0;
1408
1409 if (limit <= pc)
1410 return limit;
1411
1412 if (target_read_code (pc, &op, 1))
1413 return pc;
1414
1415 if (op == 0x55) /* pushl %ebp */
1416 {
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
1420 cache->sp_offset += 4;
1421 pc++;
1422
1423 /* If that's all, return now. */
1424 if (limit <= pc)
1425 return limit;
1426
1427 /* Check for some special instructions that might be migrated by
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
1432
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
1435 while (pc + skip < limit)
1436 {
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
1440
1441 skip += insn->len;
1442 }
1443
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
1448 if (target_read_code (pc + skip, &op, 1))
1449 return pc + skip;
1450
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
1465 switch (op)
1466 {
1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1468 case 0x8b:
1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1470 != 0xec)
1471 return pc;
1472 pc += (skip + 2);
1473 break;
1474 case 0x89:
1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1476 != 0xe5)
1477 return pc;
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
1485 break;
1486 default:
1487 return pc;
1488 }
1489
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
1497 if (limit <= pc)
1498 return limit;
1499
1500 /* Check for stack adjustment
1501
1502 subl $XXX, %esp
1503 or
1504 lea -XXX(%esp),%esp
1505
1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1507 reg, so we don't have to worry about a data16 prefix. */
1508 if (target_read_code (pc, &op, 1))
1509 return pc;
1510 if (op == 0x83)
1511 {
1512 /* `subl' with 8-bit immediate. */
1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1514 /* Some instruction starting with 0x83 other than `subl'. */
1515 return pc;
1516
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1520 return pc + 3;
1521 }
1522 else if (op == 0x81)
1523 {
1524 /* Maybe it is `subl' with a 32-bit immediate. */
1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1526 /* Some instruction starting with 0x81 other than `subl'. */
1527 return pc;
1528
1529 /* It is `subl' with a 32-bit immediate. */
1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1531 return pc + 6;
1532 }
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1540 return pc + 4;
1541 }
1542 else
1543 {
1544 /* Some instruction other than `subl' nor 'lea'. */
1545 return pc;
1546 }
1547 }
1548 else if (op == 0xc8) /* enter */
1549 {
1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1551 return pc + 4;
1552 }
1553
1554 return pc;
1555 }
1556
1557 /* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
1561
1562 static CORE_ADDR
1563 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
1565 {
1566 CORE_ADDR offset = 0;
1567 gdb_byte op;
1568 int i;
1569
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
1574 if (target_read_code (pc, &op, 1))
1575 return pc;
1576 if (op < 0x50 || op > 0x57)
1577 break;
1578
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
1583 }
1584
1585 return pc;
1586 }
1587
1588 /* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
1591
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
1614
1615 static CORE_ADDR
1616 i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
1618 struct i386_frame_cache *cache)
1619 {
1620 pc = i386_skip_noop (pc);
1621 pc = i386_follow_jump (gdbarch, pc);
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1626 return i386_analyze_register_saves (pc, current_pc, cache);
1627 }
1628
1629 /* Return PC of first real instruction. */
1630
1631 static CORE_ADDR
1632 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1633 {
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
1636 static gdb_byte pic_pat[6] =
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
1640 };
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
1643 gdb_byte op;
1644 int i;
1645 CORE_ADDR func_addr;
1646
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
1662 cache.locals = -1;
1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1664 if (cache.locals < 0)
1665 return start_pc;
1666
1667 /* Found valid frame setup. */
1668
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
1671 %ebx:
1672
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
1681
1682 for (i = 0; i < 6; i++)
1683 {
1684 if (target_read_code (pc + i, &op, 1))
1685 return pc;
1686
1687 if (pic_pat[i] != op)
1688 break;
1689 }
1690 if (i == 6)
1691 {
1692 int delta = 6;
1693
1694 if (target_read_code (pc + delta, &op, 1))
1695 return pc;
1696
1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
1698 {
1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1700
1701 if (op == 0x5d) /* One byte offset from %ebp. */
1702 delta += 3;
1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
1704 delta += 6;
1705 else /* Unexpected instruction. */
1706 delta = 0;
1707
1708 if (target_read_code (pc + delta, &op, 1))
1709 return pc;
1710 }
1711
1712 /* addl y,%ebx */
1713 if (delta > 0 && op == 0x81
1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1715 == 0xc3)
1716 {
1717 pc += delta + 6;
1718 }
1719 }
1720
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
1726
1727 return pc;
1728 }
1729
1730 /* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733 CORE_ADDR
1734 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 gdb_byte op;
1738
1739 if (target_read_code (pc, &op, 1))
1740 return pc;
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
1749 struct bound_minimal_symbol s;
1750 CORE_ADDR call_dest;
1751
1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* This function is 64-bit safe. */
1766
1767 static CORE_ADDR
1768 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1769 {
1770 gdb_byte buf[8];
1771
1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1774 }
1775 \f
1776
1777 /* Normal frames. */
1778
1779 static void
1780 i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 gdb_byte buf[4];
1786 int i;
1787
1788 cache->pc = get_frame_func (this_frame);
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1801 if (cache->base == 0)
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
1809
1810 if (cache->pc != 0)
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
1824 if (cache->saved_sp_reg != -1)
1825 {
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
1837 else if (cache->pc != 0
1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
1839 {
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
1848 }
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
1855 }
1856
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
1868 else if (cache->saved_sp == 0)
1869 cache->saved_sp = cache->base + 8;
1870
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
1876
1877 cache->base_p = 1;
1878 }
1879
1880 static struct i386_frame_cache *
1881 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static void
1903 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1904 struct frame_id *this_id)
1905 {
1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1907
1908 /* This marks the outermost frame. */
1909 if (cache->base == 0)
1910 return;
1911
1912 /* See the end of i386_push_dummy_call. */
1913 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1914 }
1915
1916 static enum unwind_stop_reason
1917 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1918 void **this_cache)
1919 {
1920 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1921
1922 if (!cache->base_p)
1923 return UNWIND_UNAVAILABLE;
1924
1925 /* This marks the outermost frame. */
1926 if (cache->base == 0)
1927 return UNWIND_OUTERMOST;
1928
1929 return UNWIND_NO_REASON;
1930 }
1931
1932 static struct value *
1933 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1934 int regnum)
1935 {
1936 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1937
1938 gdb_assert (regnum >= 0);
1939
1940 /* The System V ABI says that:
1941
1942 "The flags register contains the system flags, such as the
1943 direction flag and the carry flag. The direction flag must be
1944 set to the forward (that is, zero) direction before entry and
1945 upon exit from a function. Other user flags have no specified
1946 role in the standard calling sequence and are not preserved."
1947
1948 To guarantee the "upon exit" part of that statement we fake a
1949 saved flags register that has its direction flag cleared.
1950
1951 Note that GCC doesn't seem to rely on the fact that the direction
1952 flag is cleared after a function return; it always explicitly
1953 clears the flag before operations where it matters.
1954
1955 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1956 right thing to do. The way we fake the flags register here makes
1957 it impossible to change it. */
1958
1959 if (regnum == I386_EFLAGS_REGNUM)
1960 {
1961 ULONGEST val;
1962
1963 val = get_frame_register_unsigned (this_frame, regnum);
1964 val &= ~(1 << 10);
1965 return frame_unwind_got_constant (this_frame, regnum, val);
1966 }
1967
1968 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1969 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1970
1971 if (regnum == I386_ESP_REGNUM
1972 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1973 {
1974 /* If the SP has been saved, but we don't know where, then this
1975 means that SAVED_SP_REG register was found unavailable back
1976 when we built the cache. */
1977 if (cache->saved_sp == 0)
1978 return frame_unwind_got_register (this_frame, regnum,
1979 cache->saved_sp_reg);
1980 else
1981 return frame_unwind_got_constant (this_frame, regnum,
1982 cache->saved_sp);
1983 }
1984
1985 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1986 return frame_unwind_got_memory (this_frame, regnum,
1987 cache->saved_regs[regnum]);
1988
1989 return frame_unwind_got_register (this_frame, regnum, regnum);
1990 }
1991
1992 static const struct frame_unwind i386_frame_unwind =
1993 {
1994 NORMAL_FRAME,
1995 i386_frame_unwind_stop_reason,
1996 i386_frame_this_id,
1997 i386_frame_prev_register,
1998 NULL,
1999 default_frame_sniffer
2000 };
2001
2002 /* Normal frames, but in a function epilogue. */
2003
2004 /* The epilogue is defined here as the 'ret' instruction, which will
2005 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2006 the function's stack frame. */
2007
2008 static int
2009 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2010 {
2011 gdb_byte insn;
2012 struct symtab *symtab;
2013
2014 symtab = find_pc_symtab (pc);
2015 if (symtab && symtab->epilogue_unwind_valid)
2016 return 0;
2017
2018 if (target_read_memory (pc, &insn, 1))
2019 return 0; /* Can't read memory at pc. */
2020
2021 if (insn != 0xc3) /* 'ret' instruction. */
2022 return 0;
2023
2024 return 1;
2025 }
2026
2027 static int
2028 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2029 struct frame_info *this_frame,
2030 void **this_prologue_cache)
2031 {
2032 if (frame_relative_level (this_frame) == 0)
2033 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2034 get_frame_pc (this_frame));
2035 else
2036 return 0;
2037 }
2038
2039 static struct i386_frame_cache *
2040 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2041 {
2042 volatile struct gdb_exception ex;
2043 struct i386_frame_cache *cache;
2044 CORE_ADDR sp;
2045
2046 if (*this_cache)
2047 return *this_cache;
2048
2049 cache = i386_alloc_frame_cache ();
2050 *this_cache = cache;
2051
2052 TRY_CATCH (ex, RETURN_MASK_ERROR)
2053 {
2054 cache->pc = get_frame_func (this_frame);
2055
2056 /* At this point the stack looks as if we just entered the
2057 function, with the return address at the top of the
2058 stack. */
2059 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2060 cache->base = sp + cache->sp_offset;
2061 cache->saved_sp = cache->base + 8;
2062 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2063
2064 cache->base_p = 1;
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
2069 return cache;
2070 }
2071
2072 static enum unwind_stop_reason
2073 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2074 void **this_cache)
2075 {
2076 struct i386_frame_cache *cache =
2077 i386_epilogue_frame_cache (this_frame, this_cache);
2078
2079 if (!cache->base_p)
2080 return UNWIND_UNAVAILABLE;
2081
2082 return UNWIND_NO_REASON;
2083 }
2084
2085 static void
2086 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2087 void **this_cache,
2088 struct frame_id *this_id)
2089 {
2090 struct i386_frame_cache *cache =
2091 i386_epilogue_frame_cache (this_frame, this_cache);
2092
2093 if (!cache->base_p)
2094 return;
2095
2096 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2097 }
2098
2099 static struct value *
2100 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2101 void **this_cache, int regnum)
2102 {
2103 /* Make sure we've initialized the cache. */
2104 i386_epilogue_frame_cache (this_frame, this_cache);
2105
2106 return i386_frame_prev_register (this_frame, this_cache, regnum);
2107 }
2108
2109 static const struct frame_unwind i386_epilogue_frame_unwind =
2110 {
2111 NORMAL_FRAME,
2112 i386_epilogue_frame_unwind_stop_reason,
2113 i386_epilogue_frame_this_id,
2114 i386_epilogue_frame_prev_register,
2115 NULL,
2116 i386_epilogue_frame_sniffer
2117 };
2118 \f
2119
2120 /* Stack-based trampolines. */
2121
2122 /* These trampolines are used on cross x86 targets, when taking the
2123 address of a nested function. When executing these trampolines,
2124 no stack frame is set up, so we are in a similar situation as in
2125 epilogues and i386_epilogue_frame_this_id can be re-used. */
2126
2127 /* Static chain passed in register. */
2128
2129 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2130 {
2131 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2132 { 5, { 0xb8 }, { 0xfe } },
2133
2134 /* `jmp imm32' */
2135 { 5, { 0xe9 }, { 0xff } },
2136
2137 {0}
2138 };
2139
2140 /* Static chain passed on stack (when regparm=3). */
2141
2142 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2143 {
2144 /* `push imm32' */
2145 { 5, { 0x68 }, { 0xff } },
2146
2147 /* `jmp imm32' */
2148 { 5, { 0xe9 }, { 0xff } },
2149
2150 {0}
2151 };
2152
2153 /* Return whether PC points inside a stack trampoline. */
2154
2155 static int
2156 i386_in_stack_tramp_p (CORE_ADDR pc)
2157 {
2158 gdb_byte insn;
2159 const char *name;
2160
2161 /* A stack trampoline is detected if no name is associated
2162 to the current pc and if it points inside a trampoline
2163 sequence. */
2164
2165 find_pc_partial_function (pc, &name, NULL, NULL);
2166 if (name)
2167 return 0;
2168
2169 if (target_read_memory (pc, &insn, 1))
2170 return 0;
2171
2172 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2173 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2174 return 0;
2175
2176 return 1;
2177 }
2178
2179 static int
2180 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2181 struct frame_info *this_frame,
2182 void **this_cache)
2183 {
2184 if (frame_relative_level (this_frame) == 0)
2185 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2186 else
2187 return 0;
2188 }
2189
2190 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2191 {
2192 NORMAL_FRAME,
2193 i386_epilogue_frame_unwind_stop_reason,
2194 i386_epilogue_frame_this_id,
2195 i386_epilogue_frame_prev_register,
2196 NULL,
2197 i386_stack_tramp_frame_sniffer
2198 };
2199 \f
2200 /* Generate a bytecode expression to get the value of the saved PC. */
2201
2202 static void
2203 i386_gen_return_address (struct gdbarch *gdbarch,
2204 struct agent_expr *ax, struct axs_value *value,
2205 CORE_ADDR scope)
2206 {
2207 /* The following sequence assumes the traditional use of the base
2208 register. */
2209 ax_reg (ax, I386_EBP_REGNUM);
2210 ax_const_l (ax, 4);
2211 ax_simple (ax, aop_add);
2212 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2213 value->kind = axs_lvalue_memory;
2214 }
2215 \f
2216
2217 /* Signal trampolines. */
2218
2219 static struct i386_frame_cache *
2220 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2221 {
2222 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2225 volatile struct gdb_exception ex;
2226 struct i386_frame_cache *cache;
2227 CORE_ADDR addr;
2228 gdb_byte buf[4];
2229
2230 if (*this_cache)
2231 return *this_cache;
2232
2233 cache = i386_alloc_frame_cache ();
2234
2235 TRY_CATCH (ex, RETURN_MASK_ERROR)
2236 {
2237 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2238 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2239
2240 addr = tdep->sigcontext_addr (this_frame);
2241 if (tdep->sc_reg_offset)
2242 {
2243 int i;
2244
2245 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2246
2247 for (i = 0; i < tdep->sc_num_regs; i++)
2248 if (tdep->sc_reg_offset[i] != -1)
2249 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2250 }
2251 else
2252 {
2253 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2254 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2255 }
2256
2257 cache->base_p = 1;
2258 }
2259 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2260 throw_exception (ex);
2261
2262 *this_cache = cache;
2263 return cache;
2264 }
2265
2266 static enum unwind_stop_reason
2267 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2268 void **this_cache)
2269 {
2270 struct i386_frame_cache *cache =
2271 i386_sigtramp_frame_cache (this_frame, this_cache);
2272
2273 if (!cache->base_p)
2274 return UNWIND_UNAVAILABLE;
2275
2276 return UNWIND_NO_REASON;
2277 }
2278
2279 static void
2280 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2281 struct frame_id *this_id)
2282 {
2283 struct i386_frame_cache *cache =
2284 i386_sigtramp_frame_cache (this_frame, this_cache);
2285
2286 if (!cache->base_p)
2287 return;
2288
2289 /* See the end of i386_push_dummy_call. */
2290 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2291 }
2292
2293 static struct value *
2294 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2295 void **this_cache, int regnum)
2296 {
2297 /* Make sure we've initialized the cache. */
2298 i386_sigtramp_frame_cache (this_frame, this_cache);
2299
2300 return i386_frame_prev_register (this_frame, this_cache, regnum);
2301 }
2302
2303 static int
2304 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2305 struct frame_info *this_frame,
2306 void **this_prologue_cache)
2307 {
2308 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2309
2310 /* We shouldn't even bother if we don't have a sigcontext_addr
2311 handler. */
2312 if (tdep->sigcontext_addr == NULL)
2313 return 0;
2314
2315 if (tdep->sigtramp_p != NULL)
2316 {
2317 if (tdep->sigtramp_p (this_frame))
2318 return 1;
2319 }
2320
2321 if (tdep->sigtramp_start != 0)
2322 {
2323 CORE_ADDR pc = get_frame_pc (this_frame);
2324
2325 gdb_assert (tdep->sigtramp_end != 0);
2326 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2327 return 1;
2328 }
2329
2330 return 0;
2331 }
2332
2333 static const struct frame_unwind i386_sigtramp_frame_unwind =
2334 {
2335 SIGTRAMP_FRAME,
2336 i386_sigtramp_frame_unwind_stop_reason,
2337 i386_sigtramp_frame_this_id,
2338 i386_sigtramp_frame_prev_register,
2339 NULL,
2340 i386_sigtramp_frame_sniffer
2341 };
2342 \f
2343
2344 static CORE_ADDR
2345 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2346 {
2347 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2348
2349 return cache->base;
2350 }
2351
2352 static const struct frame_base i386_frame_base =
2353 {
2354 &i386_frame_unwind,
2355 i386_frame_base_address,
2356 i386_frame_base_address,
2357 i386_frame_base_address
2358 };
2359
2360 static struct frame_id
2361 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2362 {
2363 CORE_ADDR fp;
2364
2365 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2366
2367 /* See the end of i386_push_dummy_call. */
2368 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2369 }
2370
2371 /* _Decimal128 function return values need 16-byte alignment on the
2372 stack. */
2373
2374 static CORE_ADDR
2375 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2376 {
2377 return sp & -(CORE_ADDR)16;
2378 }
2379 \f
2380
2381 /* Figure out where the longjmp will land. Slurp the args out of the
2382 stack. We expect the first arg to be a pointer to the jmp_buf
2383 structure from which we extract the address that we will land at.
2384 This address is copied into PC. This routine returns non-zero on
2385 success. */
2386
2387 static int
2388 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2389 {
2390 gdb_byte buf[4];
2391 CORE_ADDR sp, jb_addr;
2392 struct gdbarch *gdbarch = get_frame_arch (frame);
2393 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2394 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2395
2396 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2397 longjmp will land. */
2398 if (jb_pc_offset == -1)
2399 return 0;
2400
2401 get_frame_register (frame, I386_ESP_REGNUM, buf);
2402 sp = extract_unsigned_integer (buf, 4, byte_order);
2403 if (target_read_memory (sp + 4, buf, 4))
2404 return 0;
2405
2406 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2407 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2408 return 0;
2409
2410 *pc = extract_unsigned_integer (buf, 4, byte_order);
2411 return 1;
2412 }
2413 \f
2414
2415 /* Check whether TYPE must be 16-byte-aligned when passed as a
2416 function argument. 16-byte vectors, _Decimal128 and structures or
2417 unions containing such types must be 16-byte-aligned; other
2418 arguments are 4-byte-aligned. */
2419
2420 static int
2421 i386_16_byte_align_p (struct type *type)
2422 {
2423 type = check_typedef (type);
2424 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2425 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2426 && TYPE_LENGTH (type) == 16)
2427 return 1;
2428 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2429 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2430 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2431 || TYPE_CODE (type) == TYPE_CODE_UNION)
2432 {
2433 int i;
2434 for (i = 0; i < TYPE_NFIELDS (type); i++)
2435 {
2436 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2437 return 1;
2438 }
2439 }
2440 return 0;
2441 }
2442
2443 /* Implementation for set_gdbarch_push_dummy_code. */
2444
2445 static CORE_ADDR
2446 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2447 struct value **args, int nargs, struct type *value_type,
2448 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2449 struct regcache *regcache)
2450 {
2451 /* Use 0xcc breakpoint - 1 byte. */
2452 *bp_addr = sp - 1;
2453 *real_pc = funaddr;
2454
2455 /* Keep the stack aligned. */
2456 return sp - 16;
2457 }
2458
2459 static CORE_ADDR
2460 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2461 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2462 struct value **args, CORE_ADDR sp, int struct_return,
2463 CORE_ADDR struct_addr)
2464 {
2465 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2466 gdb_byte buf[4];
2467 int i;
2468 int write_pass;
2469 int args_space = 0;
2470
2471 /* Determine the total space required for arguments and struct
2472 return address in a first pass (allowing for 16-byte-aligned
2473 arguments), then push arguments in a second pass. */
2474
2475 for (write_pass = 0; write_pass < 2; write_pass++)
2476 {
2477 int args_space_used = 0;
2478
2479 if (struct_return)
2480 {
2481 if (write_pass)
2482 {
2483 /* Push value address. */
2484 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2485 write_memory (sp, buf, 4);
2486 args_space_used += 4;
2487 }
2488 else
2489 args_space += 4;
2490 }
2491
2492 for (i = 0; i < nargs; i++)
2493 {
2494 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2495
2496 if (write_pass)
2497 {
2498 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2499 args_space_used = align_up (args_space_used, 16);
2500
2501 write_memory (sp + args_space_used,
2502 value_contents_all (args[i]), len);
2503 /* The System V ABI says that:
2504
2505 "An argument's size is increased, if necessary, to make it a
2506 multiple of [32-bit] words. This may require tail padding,
2507 depending on the size of the argument."
2508
2509 This makes sure the stack stays word-aligned. */
2510 args_space_used += align_up (len, 4);
2511 }
2512 else
2513 {
2514 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2515 args_space = align_up (args_space, 16);
2516 args_space += align_up (len, 4);
2517 }
2518 }
2519
2520 if (!write_pass)
2521 {
2522 sp -= args_space;
2523
2524 /* The original System V ABI only requires word alignment,
2525 but modern incarnations need 16-byte alignment in order
2526 to support SSE. Since wasting a few bytes here isn't
2527 harmful we unconditionally enforce 16-byte alignment. */
2528 sp &= ~0xf;
2529 }
2530 }
2531
2532 /* Store return address. */
2533 sp -= 4;
2534 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2535 write_memory (sp, buf, 4);
2536
2537 /* Finally, update the stack pointer... */
2538 store_unsigned_integer (buf, 4, byte_order, sp);
2539 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2540
2541 /* ...and fake a frame pointer. */
2542 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2543
2544 /* MarkK wrote: This "+ 8" is all over the place:
2545 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2546 i386_dummy_id). It's there, since all frame unwinders for
2547 a given target have to agree (within a certain margin) on the
2548 definition of the stack address of a frame. Otherwise frame id
2549 comparison might not work correctly. Since DWARF2/GCC uses the
2550 stack address *before* the function call as a frame's CFA. On
2551 the i386, when %ebp is used as a frame pointer, the offset
2552 between the contents %ebp and the CFA as defined by GCC. */
2553 return sp + 8;
2554 }
2555
2556 /* These registers are used for returning integers (and on some
2557 targets also for returning `struct' and `union' values when their
2558 size and alignment match an integer type). */
2559 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2560 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2561
2562 /* Read, for architecture GDBARCH, a function return value of TYPE
2563 from REGCACHE, and copy that into VALBUF. */
2564
2565 static void
2566 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2567 struct regcache *regcache, gdb_byte *valbuf)
2568 {
2569 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2570 int len = TYPE_LENGTH (type);
2571 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2572
2573 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2574 {
2575 if (tdep->st0_regnum < 0)
2576 {
2577 warning (_("Cannot find floating-point return value."));
2578 memset (valbuf, 0, len);
2579 return;
2580 }
2581
2582 /* Floating-point return values can be found in %st(0). Convert
2583 its contents to the desired type. This is probably not
2584 exactly how it would happen on the target itself, but it is
2585 the best we can do. */
2586 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2587 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2588 }
2589 else
2590 {
2591 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2592 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2593
2594 if (len <= low_size)
2595 {
2596 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2597 memcpy (valbuf, buf, len);
2598 }
2599 else if (len <= (low_size + high_size))
2600 {
2601 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2602 memcpy (valbuf, buf, low_size);
2603 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2604 memcpy (valbuf + low_size, buf, len - low_size);
2605 }
2606 else
2607 internal_error (__FILE__, __LINE__,
2608 _("Cannot extract return value of %d bytes long."),
2609 len);
2610 }
2611 }
2612
2613 /* Write, for architecture GDBARCH, a function return value of TYPE
2614 from VALBUF into REGCACHE. */
2615
2616 static void
2617 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2618 struct regcache *regcache, const gdb_byte *valbuf)
2619 {
2620 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2621 int len = TYPE_LENGTH (type);
2622
2623 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2624 {
2625 ULONGEST fstat;
2626 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2627
2628 if (tdep->st0_regnum < 0)
2629 {
2630 warning (_("Cannot set floating-point return value."));
2631 return;
2632 }
2633
2634 /* Returning floating-point values is a bit tricky. Apart from
2635 storing the return value in %st(0), we have to simulate the
2636 state of the FPU at function return point. */
2637
2638 /* Convert the value found in VALBUF to the extended
2639 floating-point format used by the FPU. This is probably
2640 not exactly how it would happen on the target itself, but
2641 it is the best we can do. */
2642 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2643 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2644
2645 /* Set the top of the floating-point register stack to 7. The
2646 actual value doesn't really matter, but 7 is what a normal
2647 function return would end up with if the program started out
2648 with a freshly initialized FPU. */
2649 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2650 fstat |= (7 << 11);
2651 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2652
2653 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2654 the floating-point register stack to 7, the appropriate value
2655 for the tag word is 0x3fff. */
2656 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2657 }
2658 else
2659 {
2660 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2661 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2662
2663 if (len <= low_size)
2664 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2665 else if (len <= (low_size + high_size))
2666 {
2667 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2668 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2669 len - low_size, valbuf + low_size);
2670 }
2671 else
2672 internal_error (__FILE__, __LINE__,
2673 _("Cannot store return value of %d bytes long."), len);
2674 }
2675 }
2676 \f
2677
2678 /* This is the variable that is set with "set struct-convention", and
2679 its legitimate values. */
2680 static const char default_struct_convention[] = "default";
2681 static const char pcc_struct_convention[] = "pcc";
2682 static const char reg_struct_convention[] = "reg";
2683 static const char *const valid_conventions[] =
2684 {
2685 default_struct_convention,
2686 pcc_struct_convention,
2687 reg_struct_convention,
2688 NULL
2689 };
2690 static const char *struct_convention = default_struct_convention;
2691
2692 /* Return non-zero if TYPE, which is assumed to be a structure,
2693 a union type, or an array type, should be returned in registers
2694 for architecture GDBARCH. */
2695
2696 static int
2697 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2698 {
2699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2700 enum type_code code = TYPE_CODE (type);
2701 int len = TYPE_LENGTH (type);
2702
2703 gdb_assert (code == TYPE_CODE_STRUCT
2704 || code == TYPE_CODE_UNION
2705 || code == TYPE_CODE_ARRAY);
2706
2707 if (struct_convention == pcc_struct_convention
2708 || (struct_convention == default_struct_convention
2709 && tdep->struct_return == pcc_struct_return))
2710 return 0;
2711
2712 /* Structures consisting of a single `float', `double' or 'long
2713 double' member are returned in %st(0). */
2714 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2715 {
2716 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2717 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2718 return (len == 4 || len == 8 || len == 12);
2719 }
2720
2721 return (len == 1 || len == 2 || len == 4 || len == 8);
2722 }
2723
2724 /* Determine, for architecture GDBARCH, how a return value of TYPE
2725 should be returned. If it is supposed to be returned in registers,
2726 and READBUF is non-zero, read the appropriate value from REGCACHE,
2727 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2728 from WRITEBUF into REGCACHE. */
2729
2730 static enum return_value_convention
2731 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2732 struct type *type, struct regcache *regcache,
2733 gdb_byte *readbuf, const gdb_byte *writebuf)
2734 {
2735 enum type_code code = TYPE_CODE (type);
2736
2737 if (((code == TYPE_CODE_STRUCT
2738 || code == TYPE_CODE_UNION
2739 || code == TYPE_CODE_ARRAY)
2740 && !i386_reg_struct_return_p (gdbarch, type))
2741 /* Complex double and long double uses the struct return covention. */
2742 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2743 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2744 /* 128-bit decimal float uses the struct return convention. */
2745 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2746 {
2747 /* The System V ABI says that:
2748
2749 "A function that returns a structure or union also sets %eax
2750 to the value of the original address of the caller's area
2751 before it returns. Thus when the caller receives control
2752 again, the address of the returned object resides in register
2753 %eax and can be used to access the object."
2754
2755 So the ABI guarantees that we can always find the return
2756 value just after the function has returned. */
2757
2758 /* Note that the ABI doesn't mention functions returning arrays,
2759 which is something possible in certain languages such as Ada.
2760 In this case, the value is returned as if it was wrapped in
2761 a record, so the convention applied to records also applies
2762 to arrays. */
2763
2764 if (readbuf)
2765 {
2766 ULONGEST addr;
2767
2768 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2769 read_memory (addr, readbuf, TYPE_LENGTH (type));
2770 }
2771
2772 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2773 }
2774
2775 /* This special case is for structures consisting of a single
2776 `float', `double' or 'long double' member. These structures are
2777 returned in %st(0). For these structures, we call ourselves
2778 recursively, changing TYPE into the type of the first member of
2779 the structure. Since that should work for all structures that
2780 have only one member, we don't bother to check the member's type
2781 here. */
2782 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2783 {
2784 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2785 return i386_return_value (gdbarch, function, type, regcache,
2786 readbuf, writebuf);
2787 }
2788
2789 if (readbuf)
2790 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2791 if (writebuf)
2792 i386_store_return_value (gdbarch, type, regcache, writebuf);
2793
2794 return RETURN_VALUE_REGISTER_CONVENTION;
2795 }
2796 \f
2797
2798 struct type *
2799 i387_ext_type (struct gdbarch *gdbarch)
2800 {
2801 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2802
2803 if (!tdep->i387_ext_type)
2804 {
2805 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2806 gdb_assert (tdep->i387_ext_type != NULL);
2807 }
2808
2809 return tdep->i387_ext_type;
2810 }
2811
2812 /* Construct type for pseudo BND registers. We can't use
2813 tdesc_find_type since a complement of one value has to be used
2814 to describe the upper bound. */
2815
2816 static struct type *
2817 i386_bnd_type (struct gdbarch *gdbarch)
2818 {
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2820
2821
2822 if (!tdep->i386_bnd_type)
2823 {
2824 struct type *t, *bound_t;
2825 const struct builtin_type *bt = builtin_type (gdbarch);
2826
2827 /* The type we're building is described bellow: */
2828 #if 0
2829 struct __bound128
2830 {
2831 void *lbound;
2832 void *ubound; /* One complement of raw ubound field. */
2833 };
2834 #endif
2835
2836 t = arch_composite_type (gdbarch,
2837 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2838
2839 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2840 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2841
2842 TYPE_NAME (t) = "builtin_type_bound128";
2843 tdep->i386_bnd_type = t;
2844 }
2845
2846 return tdep->i386_bnd_type;
2847 }
2848
2849 /* Construct vector type for pseudo YMM registers. We can't use
2850 tdesc_find_type since YMM isn't described in target description. */
2851
2852 static struct type *
2853 i386_ymm_type (struct gdbarch *gdbarch)
2854 {
2855 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2856
2857 if (!tdep->i386_ymm_type)
2858 {
2859 const struct builtin_type *bt = builtin_type (gdbarch);
2860
2861 /* The type we're building is this: */
2862 #if 0
2863 union __gdb_builtin_type_vec256i
2864 {
2865 int128_t uint128[2];
2866 int64_t v2_int64[4];
2867 int32_t v4_int32[8];
2868 int16_t v8_int16[16];
2869 int8_t v16_int8[32];
2870 double v2_double[4];
2871 float v4_float[8];
2872 };
2873 #endif
2874
2875 struct type *t;
2876
2877 t = arch_composite_type (gdbarch,
2878 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2879 append_composite_type_field (t, "v8_float",
2880 init_vector_type (bt->builtin_float, 8));
2881 append_composite_type_field (t, "v4_double",
2882 init_vector_type (bt->builtin_double, 4));
2883 append_composite_type_field (t, "v32_int8",
2884 init_vector_type (bt->builtin_int8, 32));
2885 append_composite_type_field (t, "v16_int16",
2886 init_vector_type (bt->builtin_int16, 16));
2887 append_composite_type_field (t, "v8_int32",
2888 init_vector_type (bt->builtin_int32, 8));
2889 append_composite_type_field (t, "v4_int64",
2890 init_vector_type (bt->builtin_int64, 4));
2891 append_composite_type_field (t, "v2_int128",
2892 init_vector_type (bt->builtin_int128, 2));
2893
2894 TYPE_VECTOR (t) = 1;
2895 TYPE_NAME (t) = "builtin_type_vec256i";
2896 tdep->i386_ymm_type = t;
2897 }
2898
2899 return tdep->i386_ymm_type;
2900 }
2901
2902 /* Construct vector type for MMX registers. */
2903 static struct type *
2904 i386_mmx_type (struct gdbarch *gdbarch)
2905 {
2906 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2907
2908 if (!tdep->i386_mmx_type)
2909 {
2910 const struct builtin_type *bt = builtin_type (gdbarch);
2911
2912 /* The type we're building is this: */
2913 #if 0
2914 union __gdb_builtin_type_vec64i
2915 {
2916 int64_t uint64;
2917 int32_t v2_int32[2];
2918 int16_t v4_int16[4];
2919 int8_t v8_int8[8];
2920 };
2921 #endif
2922
2923 struct type *t;
2924
2925 t = arch_composite_type (gdbarch,
2926 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2927
2928 append_composite_type_field (t, "uint64", bt->builtin_int64);
2929 append_composite_type_field (t, "v2_int32",
2930 init_vector_type (bt->builtin_int32, 2));
2931 append_composite_type_field (t, "v4_int16",
2932 init_vector_type (bt->builtin_int16, 4));
2933 append_composite_type_field (t, "v8_int8",
2934 init_vector_type (bt->builtin_int8, 8));
2935
2936 TYPE_VECTOR (t) = 1;
2937 TYPE_NAME (t) = "builtin_type_vec64i";
2938 tdep->i386_mmx_type = t;
2939 }
2940
2941 return tdep->i386_mmx_type;
2942 }
2943
2944 /* Return the GDB type object for the "standard" data type of data in
2945 register REGNUM. */
2946
2947 struct type *
2948 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2949 {
2950 if (i386_bnd_regnum_p (gdbarch, regnum))
2951 return i386_bnd_type (gdbarch);
2952 if (i386_mmx_regnum_p (gdbarch, regnum))
2953 return i386_mmx_type (gdbarch);
2954 else if (i386_ymm_regnum_p (gdbarch, regnum))
2955 return i386_ymm_type (gdbarch);
2956 else
2957 {
2958 const struct builtin_type *bt = builtin_type (gdbarch);
2959 if (i386_byte_regnum_p (gdbarch, regnum))
2960 return bt->builtin_int8;
2961 else if (i386_word_regnum_p (gdbarch, regnum))
2962 return bt->builtin_int16;
2963 else if (i386_dword_regnum_p (gdbarch, regnum))
2964 return bt->builtin_int32;
2965 }
2966
2967 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2968 }
2969
2970 /* Map a cooked register onto a raw register or memory. For the i386,
2971 the MMX registers need to be mapped onto floating point registers. */
2972
2973 static int
2974 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2975 {
2976 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2977 int mmxreg, fpreg;
2978 ULONGEST fstat;
2979 int tos;
2980
2981 mmxreg = regnum - tdep->mm0_regnum;
2982 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2983 tos = (fstat >> 11) & 0x7;
2984 fpreg = (mmxreg + tos) % 8;
2985
2986 return (I387_ST0_REGNUM (tdep) + fpreg);
2987 }
2988
2989 /* A helper function for us by i386_pseudo_register_read_value and
2990 amd64_pseudo_register_read_value. It does all the work but reads
2991 the data into an already-allocated value. */
2992
2993 void
2994 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2995 struct regcache *regcache,
2996 int regnum,
2997 struct value *result_value)
2998 {
2999 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3000 enum register_status status;
3001 gdb_byte *buf = value_contents_raw (result_value);
3002
3003 if (i386_mmx_regnum_p (gdbarch, regnum))
3004 {
3005 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3006
3007 /* Extract (always little endian). */
3008 status = regcache_raw_read (regcache, fpnum, raw_buf);
3009 if (status != REG_VALID)
3010 mark_value_bytes_unavailable (result_value, 0,
3011 TYPE_LENGTH (value_type (result_value)));
3012 else
3013 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3014 }
3015 else
3016 {
3017 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018 if (i386_bnd_regnum_p (gdbarch, regnum))
3019 {
3020 regnum -= tdep->bnd0_regnum;
3021
3022 /* Extract (always little endian). Read lower 128bits. */
3023 status = regcache_raw_read (regcache,
3024 I387_BND0R_REGNUM (tdep) + regnum,
3025 raw_buf);
3026 if (status != REG_VALID)
3027 mark_value_bytes_unavailable (result_value, 0, 16);
3028 else
3029 {
3030 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3031 LONGEST upper, lower;
3032 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3033
3034 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3035 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3036 upper = ~upper;
3037
3038 memcpy (buf, &lower, size);
3039 memcpy (buf + size, &upper, size);
3040 }
3041 }
3042 else if (i386_ymm_regnum_p (gdbarch, regnum))
3043 {
3044 regnum -= tdep->ymm0_regnum;
3045
3046 /* Extract (always little endian). Read lower 128bits. */
3047 status = regcache_raw_read (regcache,
3048 I387_XMM0_REGNUM (tdep) + regnum,
3049 raw_buf);
3050 if (status != REG_VALID)
3051 mark_value_bytes_unavailable (result_value, 0, 16);
3052 else
3053 memcpy (buf, raw_buf, 16);
3054 /* Read upper 128bits. */
3055 status = regcache_raw_read (regcache,
3056 tdep->ymm0h_regnum + regnum,
3057 raw_buf);
3058 if (status != REG_VALID)
3059 mark_value_bytes_unavailable (result_value, 16, 32);
3060 else
3061 memcpy (buf + 16, raw_buf, 16);
3062 }
3063 else if (i386_word_regnum_p (gdbarch, regnum))
3064 {
3065 int gpnum = regnum - tdep->ax_regnum;
3066
3067 /* Extract (always little endian). */
3068 status = regcache_raw_read (regcache, gpnum, raw_buf);
3069 if (status != REG_VALID)
3070 mark_value_bytes_unavailable (result_value, 0,
3071 TYPE_LENGTH (value_type (result_value)));
3072 else
3073 memcpy (buf, raw_buf, 2);
3074 }
3075 else if (i386_byte_regnum_p (gdbarch, regnum))
3076 {
3077 /* Check byte pseudo registers last since this function will
3078 be called from amd64_pseudo_register_read, which handles
3079 byte pseudo registers differently. */
3080 int gpnum = regnum - tdep->al_regnum;
3081
3082 /* Extract (always little endian). We read both lower and
3083 upper registers. */
3084 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3085 if (status != REG_VALID)
3086 mark_value_bytes_unavailable (result_value, 0,
3087 TYPE_LENGTH (value_type (result_value)));
3088 else if (gpnum >= 4)
3089 memcpy (buf, raw_buf + 1, 1);
3090 else
3091 memcpy (buf, raw_buf, 1);
3092 }
3093 else
3094 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3095 }
3096 }
3097
3098 static struct value *
3099 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3100 struct regcache *regcache,
3101 int regnum)
3102 {
3103 struct value *result;
3104
3105 result = allocate_value (register_type (gdbarch, regnum));
3106 VALUE_LVAL (result) = lval_register;
3107 VALUE_REGNUM (result) = regnum;
3108
3109 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3110
3111 return result;
3112 }
3113
3114 void
3115 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3116 int regnum, const gdb_byte *buf)
3117 {
3118 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3119
3120 if (i386_mmx_regnum_p (gdbarch, regnum))
3121 {
3122 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3123
3124 /* Read ... */
3125 regcache_raw_read (regcache, fpnum, raw_buf);
3126 /* ... Modify ... (always little endian). */
3127 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3128 /* ... Write. */
3129 regcache_raw_write (regcache, fpnum, raw_buf);
3130 }
3131 else
3132 {
3133 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3134
3135 if (i386_bnd_regnum_p (gdbarch, regnum))
3136 {
3137 ULONGEST upper, lower;
3138 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3139 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3140
3141 /* New values from input value. */
3142 regnum -= tdep->bnd0_regnum;
3143 lower = extract_unsigned_integer (buf, size, byte_order);
3144 upper = extract_unsigned_integer (buf + size, size, byte_order);
3145
3146 /* Fetching register buffer. */
3147 regcache_raw_read (regcache,
3148 I387_BND0R_REGNUM (tdep) + regnum,
3149 raw_buf);
3150
3151 upper = ~upper;
3152
3153 /* Set register bits. */
3154 memcpy (raw_buf, &lower, 8);
3155 memcpy (raw_buf + 8, &upper, 8);
3156
3157
3158 regcache_raw_write (regcache,
3159 I387_BND0R_REGNUM (tdep) + regnum,
3160 raw_buf);
3161 }
3162 else if (i386_ymm_regnum_p (gdbarch, regnum))
3163 {
3164 regnum -= tdep->ymm0_regnum;
3165
3166 /* ... Write lower 128bits. */
3167 regcache_raw_write (regcache,
3168 I387_XMM0_REGNUM (tdep) + regnum,
3169 buf);
3170 /* ... Write upper 128bits. */
3171 regcache_raw_write (regcache,
3172 tdep->ymm0h_regnum + regnum,
3173 buf + 16);
3174 }
3175 else if (i386_word_regnum_p (gdbarch, regnum))
3176 {
3177 int gpnum = regnum - tdep->ax_regnum;
3178
3179 /* Read ... */
3180 regcache_raw_read (regcache, gpnum, raw_buf);
3181 /* ... Modify ... (always little endian). */
3182 memcpy (raw_buf, buf, 2);
3183 /* ... Write. */
3184 regcache_raw_write (regcache, gpnum, raw_buf);
3185 }
3186 else if (i386_byte_regnum_p (gdbarch, regnum))
3187 {
3188 /* Check byte pseudo registers last since this function will
3189 be called from amd64_pseudo_register_read, which handles
3190 byte pseudo registers differently. */
3191 int gpnum = regnum - tdep->al_regnum;
3192
3193 /* Read ... We read both lower and upper registers. */
3194 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3195 /* ... Modify ... (always little endian). */
3196 if (gpnum >= 4)
3197 memcpy (raw_buf + 1, buf, 1);
3198 else
3199 memcpy (raw_buf, buf, 1);
3200 /* ... Write. */
3201 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3202 }
3203 else
3204 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3205 }
3206 }
3207 \f
3208
3209 /* Return the register number of the register allocated by GCC after
3210 REGNUM, or -1 if there is no such register. */
3211
3212 static int
3213 i386_next_regnum (int regnum)
3214 {
3215 /* GCC allocates the registers in the order:
3216
3217 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3218
3219 Since storing a variable in %esp doesn't make any sense we return
3220 -1 for %ebp and for %esp itself. */
3221 static int next_regnum[] =
3222 {
3223 I386_EDX_REGNUM, /* Slot for %eax. */
3224 I386_EBX_REGNUM, /* Slot for %ecx. */
3225 I386_ECX_REGNUM, /* Slot for %edx. */
3226 I386_ESI_REGNUM, /* Slot for %ebx. */
3227 -1, -1, /* Slots for %esp and %ebp. */
3228 I386_EDI_REGNUM, /* Slot for %esi. */
3229 I386_EBP_REGNUM /* Slot for %edi. */
3230 };
3231
3232 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3233 return next_regnum[regnum];
3234
3235 return -1;
3236 }
3237
3238 /* Return nonzero if a value of type TYPE stored in register REGNUM
3239 needs any special handling. */
3240
3241 static int
3242 i386_convert_register_p (struct gdbarch *gdbarch,
3243 int regnum, struct type *type)
3244 {
3245 int len = TYPE_LENGTH (type);
3246
3247 /* Values may be spread across multiple registers. Most debugging
3248 formats aren't expressive enough to specify the locations, so
3249 some heuristics is involved. Right now we only handle types that
3250 have a length that is a multiple of the word size, since GCC
3251 doesn't seem to put any other types into registers. */
3252 if (len > 4 && len % 4 == 0)
3253 {
3254 int last_regnum = regnum;
3255
3256 while (len > 4)
3257 {
3258 last_regnum = i386_next_regnum (last_regnum);
3259 len -= 4;
3260 }
3261
3262 if (last_regnum != -1)
3263 return 1;
3264 }
3265
3266 return i387_convert_register_p (gdbarch, regnum, type);
3267 }
3268
3269 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3270 return its contents in TO. */
3271
3272 static int
3273 i386_register_to_value (struct frame_info *frame, int regnum,
3274 struct type *type, gdb_byte *to,
3275 int *optimizedp, int *unavailablep)
3276 {
3277 struct gdbarch *gdbarch = get_frame_arch (frame);
3278 int len = TYPE_LENGTH (type);
3279
3280 if (i386_fp_regnum_p (gdbarch, regnum))
3281 return i387_register_to_value (frame, regnum, type, to,
3282 optimizedp, unavailablep);
3283
3284 /* Read a value spread across multiple registers. */
3285
3286 gdb_assert (len > 4 && len % 4 == 0);
3287
3288 while (len > 0)
3289 {
3290 gdb_assert (regnum != -1);
3291 gdb_assert (register_size (gdbarch, regnum) == 4);
3292
3293 if (!get_frame_register_bytes (frame, regnum, 0,
3294 register_size (gdbarch, regnum),
3295 to, optimizedp, unavailablep))
3296 return 0;
3297
3298 regnum = i386_next_regnum (regnum);
3299 len -= 4;
3300 to += 4;
3301 }
3302
3303 *optimizedp = *unavailablep = 0;
3304 return 1;
3305 }
3306
3307 /* Write the contents FROM of a value of type TYPE into register
3308 REGNUM in frame FRAME. */
3309
3310 static void
3311 i386_value_to_register (struct frame_info *frame, int regnum,
3312 struct type *type, const gdb_byte *from)
3313 {
3314 int len = TYPE_LENGTH (type);
3315
3316 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3317 {
3318 i387_value_to_register (frame, regnum, type, from);
3319 return;
3320 }
3321
3322 /* Write a value spread across multiple registers. */
3323
3324 gdb_assert (len > 4 && len % 4 == 0);
3325
3326 while (len > 0)
3327 {
3328 gdb_assert (regnum != -1);
3329 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3330
3331 put_frame_register (frame, regnum, from);
3332 regnum = i386_next_regnum (regnum);
3333 len -= 4;
3334 from += 4;
3335 }
3336 }
3337 \f
3338 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3339 in the general-purpose register set REGSET to register cache
3340 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3341
3342 void
3343 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3344 int regnum, const void *gregs, size_t len)
3345 {
3346 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3347 const gdb_byte *regs = gregs;
3348 int i;
3349
3350 gdb_assert (len == tdep->sizeof_gregset);
3351
3352 for (i = 0; i < tdep->gregset_num_regs; i++)
3353 {
3354 if ((regnum == i || regnum == -1)
3355 && tdep->gregset_reg_offset[i] != -1)
3356 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3357 }
3358 }
3359
3360 /* Collect register REGNUM from the register cache REGCACHE and store
3361 it in the buffer specified by GREGS and LEN as described by the
3362 general-purpose register set REGSET. If REGNUM is -1, do this for
3363 all registers in REGSET. */
3364
3365 void
3366 i386_collect_gregset (const struct regset *regset,
3367 const struct regcache *regcache,
3368 int regnum, void *gregs, size_t len)
3369 {
3370 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3371 gdb_byte *regs = gregs;
3372 int i;
3373
3374 gdb_assert (len == tdep->sizeof_gregset);
3375
3376 for (i = 0; i < tdep->gregset_num_regs; i++)
3377 {
3378 if ((regnum == i || regnum == -1)
3379 && tdep->gregset_reg_offset[i] != -1)
3380 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3381 }
3382 }
3383
3384 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3385 in the floating-point register set REGSET to register cache
3386 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3387
3388 static void
3389 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3390 int regnum, const void *fpregs, size_t len)
3391 {
3392 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3393
3394 if (len == I387_SIZEOF_FXSAVE)
3395 {
3396 i387_supply_fxsave (regcache, regnum, fpregs);
3397 return;
3398 }
3399
3400 gdb_assert (len == tdep->sizeof_fpregset);
3401 i387_supply_fsave (regcache, regnum, fpregs);
3402 }
3403
3404 /* Collect register REGNUM from the register cache REGCACHE and store
3405 it in the buffer specified by FPREGS and LEN as described by the
3406 floating-point register set REGSET. If REGNUM is -1, do this for
3407 all registers in REGSET. */
3408
3409 static void
3410 i386_collect_fpregset (const struct regset *regset,
3411 const struct regcache *regcache,
3412 int regnum, void *fpregs, size_t len)
3413 {
3414 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3415
3416 if (len == I387_SIZEOF_FXSAVE)
3417 {
3418 i387_collect_fxsave (regcache, regnum, fpregs);
3419 return;
3420 }
3421
3422 gdb_assert (len == tdep->sizeof_fpregset);
3423 i387_collect_fsave (regcache, regnum, fpregs);
3424 }
3425
3426 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3427
3428 static void
3429 i386_supply_xstateregset (const struct regset *regset,
3430 struct regcache *regcache, int regnum,
3431 const void *xstateregs, size_t len)
3432 {
3433 i387_supply_xsave (regcache, regnum, xstateregs);
3434 }
3435
3436 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3437
3438 static void
3439 i386_collect_xstateregset (const struct regset *regset,
3440 const struct regcache *regcache,
3441 int regnum, void *xstateregs, size_t len)
3442 {
3443 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3444 }
3445
3446 /* Return the appropriate register set for the core section identified
3447 by SECT_NAME and SECT_SIZE. */
3448
3449 const struct regset *
3450 i386_regset_from_core_section (struct gdbarch *gdbarch,
3451 const char *sect_name, size_t sect_size)
3452 {
3453 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3454
3455 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3456 {
3457 if (tdep->gregset == NULL)
3458 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3459 i386_collect_gregset);
3460 return tdep->gregset;
3461 }
3462
3463 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3464 || (strcmp (sect_name, ".reg-xfp") == 0
3465 && sect_size == I387_SIZEOF_FXSAVE))
3466 {
3467 if (tdep->fpregset == NULL)
3468 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3469 i386_collect_fpregset);
3470 return tdep->fpregset;
3471 }
3472
3473 if (strcmp (sect_name, ".reg-xstate") == 0)
3474 {
3475 if (tdep->xstateregset == NULL)
3476 tdep->xstateregset = regset_alloc (gdbarch,
3477 i386_supply_xstateregset,
3478 i386_collect_xstateregset);
3479
3480 return tdep->xstateregset;
3481 }
3482
3483 return NULL;
3484 }
3485 \f
3486
3487 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3488
3489 CORE_ADDR
3490 i386_pe_skip_trampoline_code (struct frame_info *frame,
3491 CORE_ADDR pc, char *name)
3492 {
3493 struct gdbarch *gdbarch = get_frame_arch (frame);
3494 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3495
3496 /* jmp *(dest) */
3497 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3498 {
3499 unsigned long indirect =
3500 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3501 struct minimal_symbol *indsym =
3502 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3503 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3504
3505 if (symname)
3506 {
3507 if (strncmp (symname, "__imp_", 6) == 0
3508 || strncmp (symname, "_imp_", 5) == 0)
3509 return name ? 1 :
3510 read_memory_unsigned_integer (indirect, 4, byte_order);
3511 }
3512 }
3513 return 0; /* Not a trampoline. */
3514 }
3515 \f
3516
3517 /* Return whether the THIS_FRAME corresponds to a sigtramp
3518 routine. */
3519
3520 int
3521 i386_sigtramp_p (struct frame_info *this_frame)
3522 {
3523 CORE_ADDR pc = get_frame_pc (this_frame);
3524 const char *name;
3525
3526 find_pc_partial_function (pc, &name, NULL, NULL);
3527 return (name && strcmp ("_sigtramp", name) == 0);
3528 }
3529 \f
3530
3531 /* We have two flavours of disassembly. The machinery on this page
3532 deals with switching between those. */
3533
3534 static int
3535 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3536 {
3537 gdb_assert (disassembly_flavor == att_flavor
3538 || disassembly_flavor == intel_flavor);
3539
3540 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3541 constified, cast to prevent a compiler warning. */
3542 info->disassembler_options = (char *) disassembly_flavor;
3543
3544 return print_insn_i386 (pc, info);
3545 }
3546 \f
3547
3548 /* There are a few i386 architecture variants that differ only
3549 slightly from the generic i386 target. For now, we don't give them
3550 their own source file, but include them here. As a consequence,
3551 they'll always be included. */
3552
3553 /* System V Release 4 (SVR4). */
3554
3555 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3556 routine. */
3557
3558 static int
3559 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3560 {
3561 CORE_ADDR pc = get_frame_pc (this_frame);
3562 const char *name;
3563
3564 /* The origin of these symbols is currently unknown. */
3565 find_pc_partial_function (pc, &name, NULL, NULL);
3566 return (name && (strcmp ("_sigreturn", name) == 0
3567 || strcmp ("sigvechandler", name) == 0));
3568 }
3569
3570 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3571 address of the associated sigcontext (ucontext) structure. */
3572
3573 static CORE_ADDR
3574 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3575 {
3576 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3577 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3578 gdb_byte buf[4];
3579 CORE_ADDR sp;
3580
3581 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3582 sp = extract_unsigned_integer (buf, 4, byte_order);
3583
3584 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3585 }
3586
3587 \f
3588
3589 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3590 gdbarch.h. */
3591
3592 int
3593 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3594 {
3595 return (*s == '$' /* Literal number. */
3596 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3597 || (*s == '(' && s[1] == '%') /* Register indirection. */
3598 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3599 }
3600
3601 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3602 gdbarch.h. */
3603
3604 int
3605 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3606 struct stap_parse_info *p)
3607 {
3608 /* In order to parse special tokens, we use a state-machine that go
3609 through every known token and try to get a match. */
3610 enum
3611 {
3612 TRIPLET,
3613 THREE_ARG_DISPLACEMENT,
3614 DONE
3615 } current_state;
3616
3617 current_state = TRIPLET;
3618
3619 /* The special tokens to be parsed here are:
3620
3621 - `register base + (register index * size) + offset', as represented
3622 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3623
3624 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3625 `*(-8 + 3 - 1 + (void *) $eax)'. */
3626
3627 while (current_state != DONE)
3628 {
3629 const char *s = p->arg;
3630
3631 switch (current_state)
3632 {
3633 case TRIPLET:
3634 {
3635 if (isdigit (*s) || *s == '-' || *s == '+')
3636 {
3637 int got_minus[3];
3638 int i;
3639 long displacements[3];
3640 const char *start;
3641 char *regname;
3642 int len;
3643 struct stoken str;
3644 char *endp;
3645
3646 got_minus[0] = 0;
3647 if (*s == '+')
3648 ++s;
3649 else if (*s == '-')
3650 {
3651 ++s;
3652 got_minus[0] = 1;
3653 }
3654
3655 displacements[0] = strtol (s, &endp, 10);
3656 s = endp;
3657
3658 if (*s != '+' && *s != '-')
3659 {
3660 /* We are not dealing with a triplet. */
3661 break;
3662 }
3663
3664 got_minus[1] = 0;
3665 if (*s == '+')
3666 ++s;
3667 else
3668 {
3669 ++s;
3670 got_minus[1] = 1;
3671 }
3672
3673 displacements[1] = strtol (s, &endp, 10);
3674 s = endp;
3675
3676 if (*s != '+' && *s != '-')
3677 {
3678 /* We are not dealing with a triplet. */
3679 break;
3680 }
3681
3682 got_minus[2] = 0;
3683 if (*s == '+')
3684 ++s;
3685 else
3686 {
3687 ++s;
3688 got_minus[2] = 1;
3689 }
3690
3691 displacements[2] = strtol (s, &endp, 10);
3692 s = endp;
3693
3694 if (*s != '(' || s[1] != '%')
3695 break;
3696
3697 s += 2;
3698 start = s;
3699
3700 while (isalnum (*s))
3701 ++s;
3702
3703 if (*s++ != ')')
3704 break;
3705
3706 len = s - start;
3707 regname = alloca (len + 1);
3708
3709 strncpy (regname, start, len);
3710 regname[len] = '\0';
3711
3712 if (user_reg_map_name_to_regnum (gdbarch,
3713 regname, len) == -1)
3714 error (_("Invalid register name `%s' "
3715 "on expression `%s'."),
3716 regname, p->saved_arg);
3717
3718 for (i = 0; i < 3; i++)
3719 {
3720 write_exp_elt_opcode (OP_LONG);
3721 write_exp_elt_type
3722 (builtin_type (gdbarch)->builtin_long);
3723 write_exp_elt_longcst (displacements[i]);
3724 write_exp_elt_opcode (OP_LONG);
3725 if (got_minus[i])
3726 write_exp_elt_opcode (UNOP_NEG);
3727 }
3728
3729 write_exp_elt_opcode (OP_REGISTER);
3730 str.ptr = regname;
3731 str.length = len;
3732 write_exp_string (str);
3733 write_exp_elt_opcode (OP_REGISTER);
3734
3735 write_exp_elt_opcode (UNOP_CAST);
3736 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3737 write_exp_elt_opcode (UNOP_CAST);
3738
3739 write_exp_elt_opcode (BINOP_ADD);
3740 write_exp_elt_opcode (BINOP_ADD);
3741 write_exp_elt_opcode (BINOP_ADD);
3742
3743 write_exp_elt_opcode (UNOP_CAST);
3744 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3745 write_exp_elt_opcode (UNOP_CAST);
3746
3747 write_exp_elt_opcode (UNOP_IND);
3748
3749 p->arg = s;
3750
3751 return 1;
3752 }
3753 break;
3754 }
3755 case THREE_ARG_DISPLACEMENT:
3756 {
3757 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3758 {
3759 int offset_minus = 0;
3760 long offset = 0;
3761 int size_minus = 0;
3762 long size = 0;
3763 const char *start;
3764 char *base;
3765 int len_base;
3766 char *index;
3767 int len_index;
3768 struct stoken base_token, index_token;
3769
3770 if (*s == '+')
3771 ++s;
3772 else if (*s == '-')
3773 {
3774 ++s;
3775 offset_minus = 1;
3776 }
3777
3778 if (offset_minus && !isdigit (*s))
3779 break;
3780
3781 if (isdigit (*s))
3782 {
3783 char *endp;
3784
3785 offset = strtol (s, &endp, 10);
3786 s = endp;
3787 }
3788
3789 if (*s != '(' || s[1] != '%')
3790 break;
3791
3792 s += 2;
3793 start = s;
3794
3795 while (isalnum (*s))
3796 ++s;
3797
3798 if (*s != ',' || s[1] != '%')
3799 break;
3800
3801 len_base = s - start;
3802 base = alloca (len_base + 1);
3803 strncpy (base, start, len_base);
3804 base[len_base] = '\0';
3805
3806 if (user_reg_map_name_to_regnum (gdbarch,
3807 base, len_base) == -1)
3808 error (_("Invalid register name `%s' "
3809 "on expression `%s'."),
3810 base, p->saved_arg);
3811
3812 s += 2;
3813 start = s;
3814
3815 while (isalnum (*s))
3816 ++s;
3817
3818 len_index = s - start;
3819 index = alloca (len_index + 1);
3820 strncpy (index, start, len_index);
3821 index[len_index] = '\0';
3822
3823 if (user_reg_map_name_to_regnum (gdbarch,
3824 index, len_index) == -1)
3825 error (_("Invalid register name `%s' "
3826 "on expression `%s'."),
3827 index, p->saved_arg);
3828
3829 if (*s != ',' && *s != ')')
3830 break;
3831
3832 if (*s == ',')
3833 {
3834 char *endp;
3835
3836 ++s;
3837 if (*s == '+')
3838 ++s;
3839 else if (*s == '-')
3840 {
3841 ++s;
3842 size_minus = 1;
3843 }
3844
3845 size = strtol (s, &endp, 10);
3846 s = endp;
3847
3848 if (*s != ')')
3849 break;
3850 }
3851
3852 ++s;
3853
3854 if (offset)
3855 {
3856 write_exp_elt_opcode (OP_LONG);
3857 write_exp_elt_type
3858 (builtin_type (gdbarch)->builtin_long);
3859 write_exp_elt_longcst (offset);
3860 write_exp_elt_opcode (OP_LONG);
3861 if (offset_minus)
3862 write_exp_elt_opcode (UNOP_NEG);
3863 }
3864
3865 write_exp_elt_opcode (OP_REGISTER);
3866 base_token.ptr = base;
3867 base_token.length = len_base;
3868 write_exp_string (base_token);
3869 write_exp_elt_opcode (OP_REGISTER);
3870
3871 if (offset)
3872 write_exp_elt_opcode (BINOP_ADD);
3873
3874 write_exp_elt_opcode (OP_REGISTER);
3875 index_token.ptr = index;
3876 index_token.length = len_index;
3877 write_exp_string (index_token);
3878 write_exp_elt_opcode (OP_REGISTER);
3879
3880 if (size)
3881 {
3882 write_exp_elt_opcode (OP_LONG);
3883 write_exp_elt_type
3884 (builtin_type (gdbarch)->builtin_long);
3885 write_exp_elt_longcst (size);
3886 write_exp_elt_opcode (OP_LONG);
3887 if (size_minus)
3888 write_exp_elt_opcode (UNOP_NEG);
3889 write_exp_elt_opcode (BINOP_MUL);
3890 }
3891
3892 write_exp_elt_opcode (BINOP_ADD);
3893
3894 write_exp_elt_opcode (UNOP_CAST);
3895 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3896 write_exp_elt_opcode (UNOP_CAST);
3897
3898 write_exp_elt_opcode (UNOP_IND);
3899
3900 p->arg = s;
3901
3902 return 1;
3903 }
3904 break;
3905 }
3906 }
3907
3908 /* Advancing to the next state. */
3909 ++current_state;
3910 }
3911
3912 return 0;
3913 }
3914
3915 \f
3916
3917 /* Generic ELF. */
3918
3919 void
3920 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3921 {
3922 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3923 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3924
3925 /* Registering SystemTap handlers. */
3926 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3927 set_gdbarch_stap_register_prefix (gdbarch, "%");
3928 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3929 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3930 set_gdbarch_stap_is_single_operand (gdbarch,
3931 i386_stap_is_single_operand);
3932 set_gdbarch_stap_parse_special_token (gdbarch,
3933 i386_stap_parse_special_token);
3934 }
3935
3936 /* System V Release 4 (SVR4). */
3937
3938 void
3939 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3940 {
3941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3942
3943 /* System V Release 4 uses ELF. */
3944 i386_elf_init_abi (info, gdbarch);
3945
3946 /* System V Release 4 has shared libraries. */
3947 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3948
3949 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3950 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3951 tdep->sc_pc_offset = 36 + 14 * 4;
3952 tdep->sc_sp_offset = 36 + 17 * 4;
3953
3954 tdep->jb_pc_offset = 20;
3955 }
3956
3957 /* DJGPP. */
3958
3959 static void
3960 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3961 {
3962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3963
3964 /* DJGPP doesn't have any special frames for signal handlers. */
3965 tdep->sigtramp_p = NULL;
3966
3967 tdep->jb_pc_offset = 36;
3968
3969 /* DJGPP does not support the SSE registers. */
3970 if (! tdesc_has_registers (info.target_desc))
3971 tdep->tdesc = tdesc_i386_mmx;
3972
3973 /* Native compiler is GCC, which uses the SVR4 register numbering
3974 even in COFF and STABS. See the comment in i386_gdbarch_init,
3975 before the calls to set_gdbarch_stab_reg_to_regnum and
3976 set_gdbarch_sdb_reg_to_regnum. */
3977 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3978 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3979
3980 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3981 }
3982 \f
3983
3984 /* i386 register groups. In addition to the normal groups, add "mmx"
3985 and "sse". */
3986
3987 static struct reggroup *i386_sse_reggroup;
3988 static struct reggroup *i386_mmx_reggroup;
3989
3990 static void
3991 i386_init_reggroups (void)
3992 {
3993 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3994 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3995 }
3996
3997 static void
3998 i386_add_reggroups (struct gdbarch *gdbarch)
3999 {
4000 reggroup_add (gdbarch, i386_sse_reggroup);
4001 reggroup_add (gdbarch, i386_mmx_reggroup);
4002 reggroup_add (gdbarch, general_reggroup);
4003 reggroup_add (gdbarch, float_reggroup);
4004 reggroup_add (gdbarch, all_reggroup);
4005 reggroup_add (gdbarch, save_reggroup);
4006 reggroup_add (gdbarch, restore_reggroup);
4007 reggroup_add (gdbarch, vector_reggroup);
4008 reggroup_add (gdbarch, system_reggroup);
4009 }
4010
4011 int
4012 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4013 struct reggroup *group)
4014 {
4015 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4016 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4017 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4018 mpx_ctrl_regnum_p;
4019
4020 /* Don't include pseudo registers, except for MMX, in any register
4021 groups. */
4022 if (i386_byte_regnum_p (gdbarch, regnum))
4023 return 0;
4024
4025 if (i386_word_regnum_p (gdbarch, regnum))
4026 return 0;
4027
4028 if (i386_dword_regnum_p (gdbarch, regnum))
4029 return 0;
4030
4031 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4032 if (group == i386_mmx_reggroup)
4033 return mmx_regnum_p;
4034
4035 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4036 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4037 if (group == i386_sse_reggroup)
4038 return xmm_regnum_p || mxcsr_regnum_p;
4039
4040 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4041 if (group == vector_reggroup)
4042 return (mmx_regnum_p
4043 || ymm_regnum_p
4044 || mxcsr_regnum_p
4045 || (xmm_regnum_p
4046 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4047 == I386_XSTATE_SSE_MASK)));
4048
4049 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4050 || i386_fpc_regnum_p (gdbarch, regnum));
4051 if (group == float_reggroup)
4052 return fp_regnum_p;
4053
4054 /* For "info reg all", don't include upper YMM registers nor XMM
4055 registers when AVX is supported. */
4056 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4057 if (group == all_reggroup
4058 && ((xmm_regnum_p
4059 && (tdep->xcr0 & I386_XSTATE_AVX))
4060 || ymmh_regnum_p))
4061 return 0;
4062
4063 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4064 if (group == all_reggroup
4065 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4066 return bnd_regnum_p;
4067
4068 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4069 if (group == all_reggroup
4070 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4071 return 0;
4072
4073 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4074 if (group == all_reggroup
4075 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4076 return mpx_ctrl_regnum_p;
4077
4078 if (group == general_reggroup)
4079 return (!fp_regnum_p
4080 && !mmx_regnum_p
4081 && !mxcsr_regnum_p
4082 && !xmm_regnum_p
4083 && !ymm_regnum_p
4084 && !ymmh_regnum_p
4085 && !bndr_regnum_p
4086 && !bnd_regnum_p
4087 && !mpx_ctrl_regnum_p);
4088
4089 return default_register_reggroup_p (gdbarch, regnum, group);
4090 }
4091 \f
4092
4093 /* Get the ARGIth function argument for the current function. */
4094
4095 static CORE_ADDR
4096 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4097 struct type *type)
4098 {
4099 struct gdbarch *gdbarch = get_frame_arch (frame);
4100 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4101 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4102 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4103 }
4104
4105 static void
4106 i386_skip_permanent_breakpoint (struct regcache *regcache)
4107 {
4108 CORE_ADDR current_pc = regcache_read_pc (regcache);
4109
4110 /* On i386, breakpoint is exactly 1 byte long, so we just
4111 adjust the PC in the regcache. */
4112 current_pc += 1;
4113 regcache_write_pc (regcache, current_pc);
4114 }
4115
4116
4117 #define PREFIX_REPZ 0x01
4118 #define PREFIX_REPNZ 0x02
4119 #define PREFIX_LOCK 0x04
4120 #define PREFIX_DATA 0x08
4121 #define PREFIX_ADDR 0x10
4122
4123 /* operand size */
4124 enum
4125 {
4126 OT_BYTE = 0,
4127 OT_WORD,
4128 OT_LONG,
4129 OT_QUAD,
4130 OT_DQUAD,
4131 };
4132
4133 /* i386 arith/logic operations */
4134 enum
4135 {
4136 OP_ADDL,
4137 OP_ORL,
4138 OP_ADCL,
4139 OP_SBBL,
4140 OP_ANDL,
4141 OP_SUBL,
4142 OP_XORL,
4143 OP_CMPL,
4144 };
4145
4146 struct i386_record_s
4147 {
4148 struct gdbarch *gdbarch;
4149 struct regcache *regcache;
4150 CORE_ADDR orig_addr;
4151 CORE_ADDR addr;
4152 int aflag;
4153 int dflag;
4154 int override;
4155 uint8_t modrm;
4156 uint8_t mod, reg, rm;
4157 int ot;
4158 uint8_t rex_x;
4159 uint8_t rex_b;
4160 int rip_offset;
4161 int popl_esp_hack;
4162 const int *regmap;
4163 };
4164
4165 /* Parse the "modrm" part of the memory address irp->addr points at.
4166 Returns -1 if something goes wrong, 0 otherwise. */
4167
4168 static int
4169 i386_record_modrm (struct i386_record_s *irp)
4170 {
4171 struct gdbarch *gdbarch = irp->gdbarch;
4172
4173 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4174 return -1;
4175
4176 irp->addr++;
4177 irp->mod = (irp->modrm >> 6) & 3;
4178 irp->reg = (irp->modrm >> 3) & 7;
4179 irp->rm = irp->modrm & 7;
4180
4181 return 0;
4182 }
4183
4184 /* Extract the memory address that the current instruction writes to,
4185 and return it in *ADDR. Return -1 if something goes wrong. */
4186
4187 static int
4188 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4189 {
4190 struct gdbarch *gdbarch = irp->gdbarch;
4191 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4192 gdb_byte buf[4];
4193 ULONGEST offset64;
4194
4195 *addr = 0;
4196 if (irp->aflag)
4197 {
4198 /* 32 bits */
4199 int havesib = 0;
4200 uint8_t scale = 0;
4201 uint8_t byte;
4202 uint8_t index = 0;
4203 uint8_t base = irp->rm;
4204
4205 if (base == 4)
4206 {
4207 havesib = 1;
4208 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4209 return -1;
4210 irp->addr++;
4211 scale = (byte >> 6) & 3;
4212 index = ((byte >> 3) & 7) | irp->rex_x;
4213 base = (byte & 7);
4214 }
4215 base |= irp->rex_b;
4216
4217 switch (irp->mod)
4218 {
4219 case 0:
4220 if ((base & 7) == 5)
4221 {
4222 base = 0xff;
4223 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4224 return -1;
4225 irp->addr += 4;
4226 *addr = extract_signed_integer (buf, 4, byte_order);
4227 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4228 *addr += irp->addr + irp->rip_offset;
4229 }
4230 break;
4231 case 1:
4232 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4233 return -1;
4234 irp->addr++;
4235 *addr = (int8_t) buf[0];
4236 break;
4237 case 2:
4238 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4239 return -1;
4240 *addr = extract_signed_integer (buf, 4, byte_order);
4241 irp->addr += 4;
4242 break;
4243 }
4244
4245 offset64 = 0;
4246 if (base != 0xff)
4247 {
4248 if (base == 4 && irp->popl_esp_hack)
4249 *addr += irp->popl_esp_hack;
4250 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4251 &offset64);
4252 }
4253 if (irp->aflag == 2)
4254 {
4255 *addr += offset64;
4256 }
4257 else
4258 *addr = (uint32_t) (offset64 + *addr);
4259
4260 if (havesib && (index != 4 || scale != 0))
4261 {
4262 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4263 &offset64);
4264 if (irp->aflag == 2)
4265 *addr += offset64 << scale;
4266 else
4267 *addr = (uint32_t) (*addr + (offset64 << scale));
4268 }
4269 }
4270 else
4271 {
4272 /* 16 bits */
4273 switch (irp->mod)
4274 {
4275 case 0:
4276 if (irp->rm == 6)
4277 {
4278 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4279 return -1;
4280 irp->addr += 2;
4281 *addr = extract_signed_integer (buf, 2, byte_order);
4282 irp->rm = 0;
4283 goto no_rm;
4284 }
4285 break;
4286 case 1:
4287 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4288 return -1;
4289 irp->addr++;
4290 *addr = (int8_t) buf[0];
4291 break;
4292 case 2:
4293 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4294 return -1;
4295 irp->addr += 2;
4296 *addr = extract_signed_integer (buf, 2, byte_order);
4297 break;
4298 }
4299
4300 switch (irp->rm)
4301 {
4302 case 0:
4303 regcache_raw_read_unsigned (irp->regcache,
4304 irp->regmap[X86_RECORD_REBX_REGNUM],
4305 &offset64);
4306 *addr = (uint32_t) (*addr + offset64);
4307 regcache_raw_read_unsigned (irp->regcache,
4308 irp->regmap[X86_RECORD_RESI_REGNUM],
4309 &offset64);
4310 *addr = (uint32_t) (*addr + offset64);
4311 break;
4312 case 1:
4313 regcache_raw_read_unsigned (irp->regcache,
4314 irp->regmap[X86_RECORD_REBX_REGNUM],
4315 &offset64);
4316 *addr = (uint32_t) (*addr + offset64);
4317 regcache_raw_read_unsigned (irp->regcache,
4318 irp->regmap[X86_RECORD_REDI_REGNUM],
4319 &offset64);
4320 *addr = (uint32_t) (*addr + offset64);
4321 break;
4322 case 2:
4323 regcache_raw_read_unsigned (irp->regcache,
4324 irp->regmap[X86_RECORD_REBP_REGNUM],
4325 &offset64);
4326 *addr = (uint32_t) (*addr + offset64);
4327 regcache_raw_read_unsigned (irp->regcache,
4328 irp->regmap[X86_RECORD_RESI_REGNUM],
4329 &offset64);
4330 *addr = (uint32_t) (*addr + offset64);
4331 break;
4332 case 3:
4333 regcache_raw_read_unsigned (irp->regcache,
4334 irp->regmap[X86_RECORD_REBP_REGNUM],
4335 &offset64);
4336 *addr = (uint32_t) (*addr + offset64);
4337 regcache_raw_read_unsigned (irp->regcache,
4338 irp->regmap[X86_RECORD_REDI_REGNUM],
4339 &offset64);
4340 *addr = (uint32_t) (*addr + offset64);
4341 break;
4342 case 4:
4343 regcache_raw_read_unsigned (irp->regcache,
4344 irp->regmap[X86_RECORD_RESI_REGNUM],
4345 &offset64);
4346 *addr = (uint32_t) (*addr + offset64);
4347 break;
4348 case 5:
4349 regcache_raw_read_unsigned (irp->regcache,
4350 irp->regmap[X86_RECORD_REDI_REGNUM],
4351 &offset64);
4352 *addr = (uint32_t) (*addr + offset64);
4353 break;
4354 case 6:
4355 regcache_raw_read_unsigned (irp->regcache,
4356 irp->regmap[X86_RECORD_REBP_REGNUM],
4357 &offset64);
4358 *addr = (uint32_t) (*addr + offset64);
4359 break;
4360 case 7:
4361 regcache_raw_read_unsigned (irp->regcache,
4362 irp->regmap[X86_RECORD_REBX_REGNUM],
4363 &offset64);
4364 *addr = (uint32_t) (*addr + offset64);
4365 break;
4366 }
4367 *addr &= 0xffff;
4368 }
4369
4370 no_rm:
4371 return 0;
4372 }
4373
4374 /* Record the address and contents of the memory that will be changed
4375 by the current instruction. Return -1 if something goes wrong, 0
4376 otherwise. */
4377
4378 static int
4379 i386_record_lea_modrm (struct i386_record_s *irp)
4380 {
4381 struct gdbarch *gdbarch = irp->gdbarch;
4382 uint64_t addr;
4383
4384 if (irp->override >= 0)
4385 {
4386 if (record_full_memory_query)
4387 {
4388 int q;
4389
4390 target_terminal_ours ();
4391 q = yquery (_("\
4392 Process record ignores the memory change of instruction at address %s\n\
4393 because it can't get the value of the segment register.\n\
4394 Do you want to stop the program?"),
4395 paddress (gdbarch, irp->orig_addr));
4396 target_terminal_inferior ();
4397 if (q)
4398 return -1;
4399 }
4400
4401 return 0;
4402 }
4403
4404 if (i386_record_lea_modrm_addr (irp, &addr))
4405 return -1;
4406
4407 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4408 return -1;
4409
4410 return 0;
4411 }
4412
4413 /* Record the effects of a push operation. Return -1 if something
4414 goes wrong, 0 otherwise. */
4415
4416 static int
4417 i386_record_push (struct i386_record_s *irp, int size)
4418 {
4419 ULONGEST addr;
4420
4421 if (record_full_arch_list_add_reg (irp->regcache,
4422 irp->regmap[X86_RECORD_RESP_REGNUM]))
4423 return -1;
4424 regcache_raw_read_unsigned (irp->regcache,
4425 irp->regmap[X86_RECORD_RESP_REGNUM],
4426 &addr);
4427 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4428 return -1;
4429
4430 return 0;
4431 }
4432
4433
4434 /* Defines contents to record. */
4435 #define I386_SAVE_FPU_REGS 0xfffd
4436 #define I386_SAVE_FPU_ENV 0xfffe
4437 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4438
4439 /* Record the values of the floating point registers which will be
4440 changed by the current instruction. Returns -1 if something is
4441 wrong, 0 otherwise. */
4442
4443 static int i386_record_floats (struct gdbarch *gdbarch,
4444 struct i386_record_s *ir,
4445 uint32_t iregnum)
4446 {
4447 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4448 int i;
4449
4450 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4451 happen. Currently we store st0-st7 registers, but we need not store all
4452 registers all the time, in future we use ftag register and record only
4453 those who are not marked as an empty. */
4454
4455 if (I386_SAVE_FPU_REGS == iregnum)
4456 {
4457 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4458 {
4459 if (record_full_arch_list_add_reg (ir->regcache, i))
4460 return -1;
4461 }
4462 }
4463 else if (I386_SAVE_FPU_ENV == iregnum)
4464 {
4465 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4466 {
4467 if (record_full_arch_list_add_reg (ir->regcache, i))
4468 return -1;
4469 }
4470 }
4471 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4472 {
4473 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4474 {
4475 if (record_full_arch_list_add_reg (ir->regcache, i))
4476 return -1;
4477 }
4478 }
4479 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4480 (iregnum <= I387_FOP_REGNUM (tdep)))
4481 {
4482 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4483 return -1;
4484 }
4485 else
4486 {
4487 /* Parameter error. */
4488 return -1;
4489 }
4490 if(I386_SAVE_FPU_ENV != iregnum)
4491 {
4492 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4493 {
4494 if (record_full_arch_list_add_reg (ir->regcache, i))
4495 return -1;
4496 }
4497 }
4498 return 0;
4499 }
4500
4501 /* Parse the current instruction, and record the values of the
4502 registers and memory that will be changed by the current
4503 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4504
4505 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4506 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4507
4508 int
4509 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4510 CORE_ADDR input_addr)
4511 {
4512 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4513 int prefixes = 0;
4514 int regnum = 0;
4515 uint32_t opcode;
4516 uint8_t opcode8;
4517 ULONGEST addr;
4518 gdb_byte buf[MAX_REGISTER_SIZE];
4519 struct i386_record_s ir;
4520 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4521 uint8_t rex_w = -1;
4522 uint8_t rex_r = 0;
4523
4524 memset (&ir, 0, sizeof (struct i386_record_s));
4525 ir.regcache = regcache;
4526 ir.addr = input_addr;
4527 ir.orig_addr = input_addr;
4528 ir.aflag = 1;
4529 ir.dflag = 1;
4530 ir.override = -1;
4531 ir.popl_esp_hack = 0;
4532 ir.regmap = tdep->record_regmap;
4533 ir.gdbarch = gdbarch;
4534
4535 if (record_debug > 1)
4536 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4537 "addr = %s\n",
4538 paddress (gdbarch, ir.addr));
4539
4540 /* prefixes */
4541 while (1)
4542 {
4543 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4544 return -1;
4545 ir.addr++;
4546 switch (opcode8) /* Instruction prefixes */
4547 {
4548 case REPE_PREFIX_OPCODE:
4549 prefixes |= PREFIX_REPZ;
4550 break;
4551 case REPNE_PREFIX_OPCODE:
4552 prefixes |= PREFIX_REPNZ;
4553 break;
4554 case LOCK_PREFIX_OPCODE:
4555 prefixes |= PREFIX_LOCK;
4556 break;
4557 case CS_PREFIX_OPCODE:
4558 ir.override = X86_RECORD_CS_REGNUM;
4559 break;
4560 case SS_PREFIX_OPCODE:
4561 ir.override = X86_RECORD_SS_REGNUM;
4562 break;
4563 case DS_PREFIX_OPCODE:
4564 ir.override = X86_RECORD_DS_REGNUM;
4565 break;
4566 case ES_PREFIX_OPCODE:
4567 ir.override = X86_RECORD_ES_REGNUM;
4568 break;
4569 case FS_PREFIX_OPCODE:
4570 ir.override = X86_RECORD_FS_REGNUM;
4571 break;
4572 case GS_PREFIX_OPCODE:
4573 ir.override = X86_RECORD_GS_REGNUM;
4574 break;
4575 case DATA_PREFIX_OPCODE:
4576 prefixes |= PREFIX_DATA;
4577 break;
4578 case ADDR_PREFIX_OPCODE:
4579 prefixes |= PREFIX_ADDR;
4580 break;
4581 case 0x40: /* i386 inc %eax */
4582 case 0x41: /* i386 inc %ecx */
4583 case 0x42: /* i386 inc %edx */
4584 case 0x43: /* i386 inc %ebx */
4585 case 0x44: /* i386 inc %esp */
4586 case 0x45: /* i386 inc %ebp */
4587 case 0x46: /* i386 inc %esi */
4588 case 0x47: /* i386 inc %edi */
4589 case 0x48: /* i386 dec %eax */
4590 case 0x49: /* i386 dec %ecx */
4591 case 0x4a: /* i386 dec %edx */
4592 case 0x4b: /* i386 dec %ebx */
4593 case 0x4c: /* i386 dec %esp */
4594 case 0x4d: /* i386 dec %ebp */
4595 case 0x4e: /* i386 dec %esi */
4596 case 0x4f: /* i386 dec %edi */
4597 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4598 {
4599 /* REX */
4600 rex_w = (opcode8 >> 3) & 1;
4601 rex_r = (opcode8 & 0x4) << 1;
4602 ir.rex_x = (opcode8 & 0x2) << 2;
4603 ir.rex_b = (opcode8 & 0x1) << 3;
4604 }
4605 else /* 32 bit target */
4606 goto out_prefixes;
4607 break;
4608 default:
4609 goto out_prefixes;
4610 break;
4611 }
4612 }
4613 out_prefixes:
4614 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4615 {
4616 ir.dflag = 2;
4617 }
4618 else
4619 {
4620 if (prefixes & PREFIX_DATA)
4621 ir.dflag ^= 1;
4622 }
4623 if (prefixes & PREFIX_ADDR)
4624 ir.aflag ^= 1;
4625 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4626 ir.aflag = 2;
4627
4628 /* Now check op code. */
4629 opcode = (uint32_t) opcode8;
4630 reswitch:
4631 switch (opcode)
4632 {
4633 case 0x0f:
4634 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4635 return -1;
4636 ir.addr++;
4637 opcode = (uint32_t) opcode8 | 0x0f00;
4638 goto reswitch;
4639 break;
4640
4641 case 0x00: /* arith & logic */
4642 case 0x01:
4643 case 0x02:
4644 case 0x03:
4645 case 0x04:
4646 case 0x05:
4647 case 0x08:
4648 case 0x09:
4649 case 0x0a:
4650 case 0x0b:
4651 case 0x0c:
4652 case 0x0d:
4653 case 0x10:
4654 case 0x11:
4655 case 0x12:
4656 case 0x13:
4657 case 0x14:
4658 case 0x15:
4659 case 0x18:
4660 case 0x19:
4661 case 0x1a:
4662 case 0x1b:
4663 case 0x1c:
4664 case 0x1d:
4665 case 0x20:
4666 case 0x21:
4667 case 0x22:
4668 case 0x23:
4669 case 0x24:
4670 case 0x25:
4671 case 0x28:
4672 case 0x29:
4673 case 0x2a:
4674 case 0x2b:
4675 case 0x2c:
4676 case 0x2d:
4677 case 0x30:
4678 case 0x31:
4679 case 0x32:
4680 case 0x33:
4681 case 0x34:
4682 case 0x35:
4683 case 0x38:
4684 case 0x39:
4685 case 0x3a:
4686 case 0x3b:
4687 case 0x3c:
4688 case 0x3d:
4689 if (((opcode >> 3) & 7) != OP_CMPL)
4690 {
4691 if ((opcode & 1) == 0)
4692 ir.ot = OT_BYTE;
4693 else
4694 ir.ot = ir.dflag + OT_WORD;
4695
4696 switch ((opcode >> 1) & 3)
4697 {
4698 case 0: /* OP Ev, Gv */
4699 if (i386_record_modrm (&ir))
4700 return -1;
4701 if (ir.mod != 3)
4702 {
4703 if (i386_record_lea_modrm (&ir))
4704 return -1;
4705 }
4706 else
4707 {
4708 ir.rm |= ir.rex_b;
4709 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4710 ir.rm &= 0x3;
4711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4712 }
4713 break;
4714 case 1: /* OP Gv, Ev */
4715 if (i386_record_modrm (&ir))
4716 return -1;
4717 ir.reg |= rex_r;
4718 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4719 ir.reg &= 0x3;
4720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4721 break;
4722 case 2: /* OP A, Iv */
4723 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4724 break;
4725 }
4726 }
4727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4728 break;
4729
4730 case 0x80: /* GRP1 */
4731 case 0x81:
4732 case 0x82:
4733 case 0x83:
4734 if (i386_record_modrm (&ir))
4735 return -1;
4736
4737 if (ir.reg != OP_CMPL)
4738 {
4739 if ((opcode & 1) == 0)
4740 ir.ot = OT_BYTE;
4741 else
4742 ir.ot = ir.dflag + OT_WORD;
4743
4744 if (ir.mod != 3)
4745 {
4746 if (opcode == 0x83)
4747 ir.rip_offset = 1;
4748 else
4749 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4750 if (i386_record_lea_modrm (&ir))
4751 return -1;
4752 }
4753 else
4754 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4755 }
4756 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4757 break;
4758
4759 case 0x40: /* inc */
4760 case 0x41:
4761 case 0x42:
4762 case 0x43:
4763 case 0x44:
4764 case 0x45:
4765 case 0x46:
4766 case 0x47:
4767
4768 case 0x48: /* dec */
4769 case 0x49:
4770 case 0x4a:
4771 case 0x4b:
4772 case 0x4c:
4773 case 0x4d:
4774 case 0x4e:
4775 case 0x4f:
4776
4777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4779 break;
4780
4781 case 0xf6: /* GRP3 */
4782 case 0xf7:
4783 if ((opcode & 1) == 0)
4784 ir.ot = OT_BYTE;
4785 else
4786 ir.ot = ir.dflag + OT_WORD;
4787 if (i386_record_modrm (&ir))
4788 return -1;
4789
4790 if (ir.mod != 3 && ir.reg == 0)
4791 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4792
4793 switch (ir.reg)
4794 {
4795 case 0: /* test */
4796 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4797 break;
4798 case 2: /* not */
4799 case 3: /* neg */
4800 if (ir.mod != 3)
4801 {
4802 if (i386_record_lea_modrm (&ir))
4803 return -1;
4804 }
4805 else
4806 {
4807 ir.rm |= ir.rex_b;
4808 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4809 ir.rm &= 0x3;
4810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4811 }
4812 if (ir.reg == 3) /* neg */
4813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4814 break;
4815 case 4: /* mul */
4816 case 5: /* imul */
4817 case 6: /* div */
4818 case 7: /* idiv */
4819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4820 if (ir.ot != OT_BYTE)
4821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4823 break;
4824 default:
4825 ir.addr -= 2;
4826 opcode = opcode << 8 | ir.modrm;
4827 goto no_support;
4828 break;
4829 }
4830 break;
4831
4832 case 0xfe: /* GRP4 */
4833 case 0xff: /* GRP5 */
4834 if (i386_record_modrm (&ir))
4835 return -1;
4836 if (ir.reg >= 2 && opcode == 0xfe)
4837 {
4838 ir.addr -= 2;
4839 opcode = opcode << 8 | ir.modrm;
4840 goto no_support;
4841 }
4842 switch (ir.reg)
4843 {
4844 case 0: /* inc */
4845 case 1: /* dec */
4846 if ((opcode & 1) == 0)
4847 ir.ot = OT_BYTE;
4848 else
4849 ir.ot = ir.dflag + OT_WORD;
4850 if (ir.mod != 3)
4851 {
4852 if (i386_record_lea_modrm (&ir))
4853 return -1;
4854 }
4855 else
4856 {
4857 ir.rm |= ir.rex_b;
4858 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4859 ir.rm &= 0x3;
4860 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4861 }
4862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4863 break;
4864 case 2: /* call */
4865 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4866 ir.dflag = 2;
4867 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4868 return -1;
4869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4870 break;
4871 case 3: /* lcall */
4872 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4873 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4874 return -1;
4875 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4876 break;
4877 case 4: /* jmp */
4878 case 5: /* ljmp */
4879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4880 break;
4881 case 6: /* push */
4882 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4883 ir.dflag = 2;
4884 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4885 return -1;
4886 break;
4887 default:
4888 ir.addr -= 2;
4889 opcode = opcode << 8 | ir.modrm;
4890 goto no_support;
4891 break;
4892 }
4893 break;
4894
4895 case 0x84: /* test */
4896 case 0x85:
4897 case 0xa8:
4898 case 0xa9:
4899 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4900 break;
4901
4902 case 0x98: /* CWDE/CBW */
4903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4904 break;
4905
4906 case 0x99: /* CDQ/CWD */
4907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4909 break;
4910
4911 case 0x0faf: /* imul */
4912 case 0x69:
4913 case 0x6b:
4914 ir.ot = ir.dflag + OT_WORD;
4915 if (i386_record_modrm (&ir))
4916 return -1;
4917 if (opcode == 0x69)
4918 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4919 else if (opcode == 0x6b)
4920 ir.rip_offset = 1;
4921 ir.reg |= rex_r;
4922 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4923 ir.reg &= 0x3;
4924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4926 break;
4927
4928 case 0x0fc0: /* xadd */
4929 case 0x0fc1:
4930 if ((opcode & 1) == 0)
4931 ir.ot = OT_BYTE;
4932 else
4933 ir.ot = ir.dflag + OT_WORD;
4934 if (i386_record_modrm (&ir))
4935 return -1;
4936 ir.reg |= rex_r;
4937 if (ir.mod == 3)
4938 {
4939 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4940 ir.reg &= 0x3;
4941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4942 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4943 ir.rm &= 0x3;
4944 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4945 }
4946 else
4947 {
4948 if (i386_record_lea_modrm (&ir))
4949 return -1;
4950 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4951 ir.reg &= 0x3;
4952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4953 }
4954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4955 break;
4956
4957 case 0x0fb0: /* cmpxchg */
4958 case 0x0fb1:
4959 if ((opcode & 1) == 0)
4960 ir.ot = OT_BYTE;
4961 else
4962 ir.ot = ir.dflag + OT_WORD;
4963 if (i386_record_modrm (&ir))
4964 return -1;
4965 if (ir.mod == 3)
4966 {
4967 ir.reg |= rex_r;
4968 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4969 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4970 ir.reg &= 0x3;
4971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4972 }
4973 else
4974 {
4975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4976 if (i386_record_lea_modrm (&ir))
4977 return -1;
4978 }
4979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4980 break;
4981
4982 case 0x0fc7: /* cmpxchg8b */
4983 if (i386_record_modrm (&ir))
4984 return -1;
4985 if (ir.mod == 3)
4986 {
4987 ir.addr -= 2;
4988 opcode = opcode << 8 | ir.modrm;
4989 goto no_support;
4990 }
4991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4993 if (i386_record_lea_modrm (&ir))
4994 return -1;
4995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4996 break;
4997
4998 case 0x50: /* push */
4999 case 0x51:
5000 case 0x52:
5001 case 0x53:
5002 case 0x54:
5003 case 0x55:
5004 case 0x56:
5005 case 0x57:
5006 case 0x68:
5007 case 0x6a:
5008 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5009 ir.dflag = 2;
5010 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5011 return -1;
5012 break;
5013
5014 case 0x06: /* push es */
5015 case 0x0e: /* push cs */
5016 case 0x16: /* push ss */
5017 case 0x1e: /* push ds */
5018 if (ir.regmap[X86_RECORD_R8_REGNUM])
5019 {
5020 ir.addr -= 1;
5021 goto no_support;
5022 }
5023 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5024 return -1;
5025 break;
5026
5027 case 0x0fa0: /* push fs */
5028 case 0x0fa8: /* push gs */
5029 if (ir.regmap[X86_RECORD_R8_REGNUM])
5030 {
5031 ir.addr -= 2;
5032 goto no_support;
5033 }
5034 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5035 return -1;
5036 break;
5037
5038 case 0x60: /* pusha */
5039 if (ir.regmap[X86_RECORD_R8_REGNUM])
5040 {
5041 ir.addr -= 1;
5042 goto no_support;
5043 }
5044 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5045 return -1;
5046 break;
5047
5048 case 0x58: /* pop */
5049 case 0x59:
5050 case 0x5a:
5051 case 0x5b:
5052 case 0x5c:
5053 case 0x5d:
5054 case 0x5e:
5055 case 0x5f:
5056 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5057 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5058 break;
5059
5060 case 0x61: /* popa */
5061 if (ir.regmap[X86_RECORD_R8_REGNUM])
5062 {
5063 ir.addr -= 1;
5064 goto no_support;
5065 }
5066 for (regnum = X86_RECORD_REAX_REGNUM;
5067 regnum <= X86_RECORD_REDI_REGNUM;
5068 regnum++)
5069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5070 break;
5071
5072 case 0x8f: /* pop */
5073 if (ir.regmap[X86_RECORD_R8_REGNUM])
5074 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5075 else
5076 ir.ot = ir.dflag + OT_WORD;
5077 if (i386_record_modrm (&ir))
5078 return -1;
5079 if (ir.mod == 3)
5080 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5081 else
5082 {
5083 ir.popl_esp_hack = 1 << ir.ot;
5084 if (i386_record_lea_modrm (&ir))
5085 return -1;
5086 }
5087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5088 break;
5089
5090 case 0xc8: /* enter */
5091 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5092 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5093 ir.dflag = 2;
5094 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5095 return -1;
5096 break;
5097
5098 case 0xc9: /* leave */
5099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5100 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5101 break;
5102
5103 case 0x07: /* pop es */
5104 if (ir.regmap[X86_RECORD_R8_REGNUM])
5105 {
5106 ir.addr -= 1;
5107 goto no_support;
5108 }
5109 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5110 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5111 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5112 break;
5113
5114 case 0x17: /* pop ss */
5115 if (ir.regmap[X86_RECORD_R8_REGNUM])
5116 {
5117 ir.addr -= 1;
5118 goto no_support;
5119 }
5120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5123 break;
5124
5125 case 0x1f: /* pop ds */
5126 if (ir.regmap[X86_RECORD_R8_REGNUM])
5127 {
5128 ir.addr -= 1;
5129 goto no_support;
5130 }
5131 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5132 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5134 break;
5135
5136 case 0x0fa1: /* pop fs */
5137 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5140 break;
5141
5142 case 0x0fa9: /* pop gs */
5143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5146 break;
5147
5148 case 0x88: /* mov */
5149 case 0x89:
5150 case 0xc6:
5151 case 0xc7:
5152 if ((opcode & 1) == 0)
5153 ir.ot = OT_BYTE;
5154 else
5155 ir.ot = ir.dflag + OT_WORD;
5156
5157 if (i386_record_modrm (&ir))
5158 return -1;
5159
5160 if (ir.mod != 3)
5161 {
5162 if (opcode == 0xc6 || opcode == 0xc7)
5163 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5164 if (i386_record_lea_modrm (&ir))
5165 return -1;
5166 }
5167 else
5168 {
5169 if (opcode == 0xc6 || opcode == 0xc7)
5170 ir.rm |= ir.rex_b;
5171 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5172 ir.rm &= 0x3;
5173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5174 }
5175 break;
5176
5177 case 0x8a: /* mov */
5178 case 0x8b:
5179 if ((opcode & 1) == 0)
5180 ir.ot = OT_BYTE;
5181 else
5182 ir.ot = ir.dflag + OT_WORD;
5183 if (i386_record_modrm (&ir))
5184 return -1;
5185 ir.reg |= rex_r;
5186 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5187 ir.reg &= 0x3;
5188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5189 break;
5190
5191 case 0x8c: /* mov seg */
5192 if (i386_record_modrm (&ir))
5193 return -1;
5194 if (ir.reg > 5)
5195 {
5196 ir.addr -= 2;
5197 opcode = opcode << 8 | ir.modrm;
5198 goto no_support;
5199 }
5200
5201 if (ir.mod == 3)
5202 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5203 else
5204 {
5205 ir.ot = OT_WORD;
5206 if (i386_record_lea_modrm (&ir))
5207 return -1;
5208 }
5209 break;
5210
5211 case 0x8e: /* mov seg */
5212 if (i386_record_modrm (&ir))
5213 return -1;
5214 switch (ir.reg)
5215 {
5216 case 0:
5217 regnum = X86_RECORD_ES_REGNUM;
5218 break;
5219 case 2:
5220 regnum = X86_RECORD_SS_REGNUM;
5221 break;
5222 case 3:
5223 regnum = X86_RECORD_DS_REGNUM;
5224 break;
5225 case 4:
5226 regnum = X86_RECORD_FS_REGNUM;
5227 break;
5228 case 5:
5229 regnum = X86_RECORD_GS_REGNUM;
5230 break;
5231 default:
5232 ir.addr -= 2;
5233 opcode = opcode << 8 | ir.modrm;
5234 goto no_support;
5235 break;
5236 }
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5239 break;
5240
5241 case 0x0fb6: /* movzbS */
5242 case 0x0fb7: /* movzwS */
5243 case 0x0fbe: /* movsbS */
5244 case 0x0fbf: /* movswS */
5245 if (i386_record_modrm (&ir))
5246 return -1;
5247 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5248 break;
5249
5250 case 0x8d: /* lea */
5251 if (i386_record_modrm (&ir))
5252 return -1;
5253 if (ir.mod == 3)
5254 {
5255 ir.addr -= 2;
5256 opcode = opcode << 8 | ir.modrm;
5257 goto no_support;
5258 }
5259 ir.ot = ir.dflag;
5260 ir.reg |= rex_r;
5261 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5262 ir.reg &= 0x3;
5263 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5264 break;
5265
5266 case 0xa0: /* mov EAX */
5267 case 0xa1:
5268
5269 case 0xd7: /* xlat */
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5271 break;
5272
5273 case 0xa2: /* mov EAX */
5274 case 0xa3:
5275 if (ir.override >= 0)
5276 {
5277 if (record_full_memory_query)
5278 {
5279 int q;
5280
5281 target_terminal_ours ();
5282 q = yquery (_("\
5283 Process record ignores the memory change of instruction at address %s\n\
5284 because it can't get the value of the segment register.\n\
5285 Do you want to stop the program?"),
5286 paddress (gdbarch, ir.orig_addr));
5287 target_terminal_inferior ();
5288 if (q)
5289 return -1;
5290 }
5291 }
5292 else
5293 {
5294 if ((opcode & 1) == 0)
5295 ir.ot = OT_BYTE;
5296 else
5297 ir.ot = ir.dflag + OT_WORD;
5298 if (ir.aflag == 2)
5299 {
5300 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5301 return -1;
5302 ir.addr += 8;
5303 addr = extract_unsigned_integer (buf, 8, byte_order);
5304 }
5305 else if (ir.aflag)
5306 {
5307 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5308 return -1;
5309 ir.addr += 4;
5310 addr = extract_unsigned_integer (buf, 4, byte_order);
5311 }
5312 else
5313 {
5314 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5315 return -1;
5316 ir.addr += 2;
5317 addr = extract_unsigned_integer (buf, 2, byte_order);
5318 }
5319 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5320 return -1;
5321 }
5322 break;
5323
5324 case 0xb0: /* mov R, Ib */
5325 case 0xb1:
5326 case 0xb2:
5327 case 0xb3:
5328 case 0xb4:
5329 case 0xb5:
5330 case 0xb6:
5331 case 0xb7:
5332 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5333 ? ((opcode & 0x7) | ir.rex_b)
5334 : ((opcode & 0x7) & 0x3));
5335 break;
5336
5337 case 0xb8: /* mov R, Iv */
5338 case 0xb9:
5339 case 0xba:
5340 case 0xbb:
5341 case 0xbc:
5342 case 0xbd:
5343 case 0xbe:
5344 case 0xbf:
5345 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5346 break;
5347
5348 case 0x91: /* xchg R, EAX */
5349 case 0x92:
5350 case 0x93:
5351 case 0x94:
5352 case 0x95:
5353 case 0x96:
5354 case 0x97:
5355 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5356 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5357 break;
5358
5359 case 0x86: /* xchg Ev, Gv */
5360 case 0x87:
5361 if ((opcode & 1) == 0)
5362 ir.ot = OT_BYTE;
5363 else
5364 ir.ot = ir.dflag + OT_WORD;
5365 if (i386_record_modrm (&ir))
5366 return -1;
5367 if (ir.mod == 3)
5368 {
5369 ir.rm |= ir.rex_b;
5370 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5371 ir.rm &= 0x3;
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5373 }
5374 else
5375 {
5376 if (i386_record_lea_modrm (&ir))
5377 return -1;
5378 }
5379 ir.reg |= rex_r;
5380 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5381 ir.reg &= 0x3;
5382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5383 break;
5384
5385 case 0xc4: /* les Gv */
5386 case 0xc5: /* lds Gv */
5387 if (ir.regmap[X86_RECORD_R8_REGNUM])
5388 {
5389 ir.addr -= 1;
5390 goto no_support;
5391 }
5392 /* FALLTHROUGH */
5393 case 0x0fb2: /* lss Gv */
5394 case 0x0fb4: /* lfs Gv */
5395 case 0x0fb5: /* lgs Gv */
5396 if (i386_record_modrm (&ir))
5397 return -1;
5398 if (ir.mod == 3)
5399 {
5400 if (opcode > 0xff)
5401 ir.addr -= 3;
5402 else
5403 ir.addr -= 2;
5404 opcode = opcode << 8 | ir.modrm;
5405 goto no_support;
5406 }
5407 switch (opcode)
5408 {
5409 case 0xc4: /* les Gv */
5410 regnum = X86_RECORD_ES_REGNUM;
5411 break;
5412 case 0xc5: /* lds Gv */
5413 regnum = X86_RECORD_DS_REGNUM;
5414 break;
5415 case 0x0fb2: /* lss Gv */
5416 regnum = X86_RECORD_SS_REGNUM;
5417 break;
5418 case 0x0fb4: /* lfs Gv */
5419 regnum = X86_RECORD_FS_REGNUM;
5420 break;
5421 case 0x0fb5: /* lgs Gv */
5422 regnum = X86_RECORD_GS_REGNUM;
5423 break;
5424 }
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5426 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5428 break;
5429
5430 case 0xc0: /* shifts */
5431 case 0xc1:
5432 case 0xd0:
5433 case 0xd1:
5434 case 0xd2:
5435 case 0xd3:
5436 if ((opcode & 1) == 0)
5437 ir.ot = OT_BYTE;
5438 else
5439 ir.ot = ir.dflag + OT_WORD;
5440 if (i386_record_modrm (&ir))
5441 return -1;
5442 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5443 {
5444 if (i386_record_lea_modrm (&ir))
5445 return -1;
5446 }
5447 else
5448 {
5449 ir.rm |= ir.rex_b;
5450 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5451 ir.rm &= 0x3;
5452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5453 }
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5455 break;
5456
5457 case 0x0fa4:
5458 case 0x0fa5:
5459 case 0x0fac:
5460 case 0x0fad:
5461 if (i386_record_modrm (&ir))
5462 return -1;
5463 if (ir.mod == 3)
5464 {
5465 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5466 return -1;
5467 }
5468 else
5469 {
5470 if (i386_record_lea_modrm (&ir))
5471 return -1;
5472 }
5473 break;
5474
5475 case 0xd8: /* Floats. */
5476 case 0xd9:
5477 case 0xda:
5478 case 0xdb:
5479 case 0xdc:
5480 case 0xdd:
5481 case 0xde:
5482 case 0xdf:
5483 if (i386_record_modrm (&ir))
5484 return -1;
5485 ir.reg |= ((opcode & 7) << 3);
5486 if (ir.mod != 3)
5487 {
5488 /* Memory. */
5489 uint64_t addr64;
5490
5491 if (i386_record_lea_modrm_addr (&ir, &addr64))
5492 return -1;
5493 switch (ir.reg)
5494 {
5495 case 0x02:
5496 case 0x12:
5497 case 0x22:
5498 case 0x32:
5499 /* For fcom, ficom nothing to do. */
5500 break;
5501 case 0x03:
5502 case 0x13:
5503 case 0x23:
5504 case 0x33:
5505 /* For fcomp, ficomp pop FPU stack, store all. */
5506 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5507 return -1;
5508 break;
5509 case 0x00:
5510 case 0x01:
5511 case 0x04:
5512 case 0x05:
5513 case 0x06:
5514 case 0x07:
5515 case 0x10:
5516 case 0x11:
5517 case 0x14:
5518 case 0x15:
5519 case 0x16:
5520 case 0x17:
5521 case 0x20:
5522 case 0x21:
5523 case 0x24:
5524 case 0x25:
5525 case 0x26:
5526 case 0x27:
5527 case 0x30:
5528 case 0x31:
5529 case 0x34:
5530 case 0x35:
5531 case 0x36:
5532 case 0x37:
5533 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5534 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5535 of code, always affects st(0) register. */
5536 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5537 return -1;
5538 break;
5539 case 0x08:
5540 case 0x0a:
5541 case 0x0b:
5542 case 0x18:
5543 case 0x19:
5544 case 0x1a:
5545 case 0x1b:
5546 case 0x1d:
5547 case 0x28:
5548 case 0x29:
5549 case 0x2a:
5550 case 0x2b:
5551 case 0x38:
5552 case 0x39:
5553 case 0x3a:
5554 case 0x3b:
5555 case 0x3c:
5556 case 0x3d:
5557 switch (ir.reg & 7)
5558 {
5559 case 0:
5560 /* Handling fld, fild. */
5561 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5562 return -1;
5563 break;
5564 case 1:
5565 switch (ir.reg >> 4)
5566 {
5567 case 0:
5568 if (record_full_arch_list_add_mem (addr64, 4))
5569 return -1;
5570 break;
5571 case 2:
5572 if (record_full_arch_list_add_mem (addr64, 8))
5573 return -1;
5574 break;
5575 case 3:
5576 break;
5577 default:
5578 if (record_full_arch_list_add_mem (addr64, 2))
5579 return -1;
5580 break;
5581 }
5582 break;
5583 default:
5584 switch (ir.reg >> 4)
5585 {
5586 case 0:
5587 if (record_full_arch_list_add_mem (addr64, 4))
5588 return -1;
5589 if (3 == (ir.reg & 7))
5590 {
5591 /* For fstp m32fp. */
5592 if (i386_record_floats (gdbarch, &ir,
5593 I386_SAVE_FPU_REGS))
5594 return -1;
5595 }
5596 break;
5597 case 1:
5598 if (record_full_arch_list_add_mem (addr64, 4))
5599 return -1;
5600 if ((3 == (ir.reg & 7))
5601 || (5 == (ir.reg & 7))
5602 || (7 == (ir.reg & 7)))
5603 {
5604 /* For fstp insn. */
5605 if (i386_record_floats (gdbarch, &ir,
5606 I386_SAVE_FPU_REGS))
5607 return -1;
5608 }
5609 break;
5610 case 2:
5611 if (record_full_arch_list_add_mem (addr64, 8))
5612 return -1;
5613 if (3 == (ir.reg & 7))
5614 {
5615 /* For fstp m64fp. */
5616 if (i386_record_floats (gdbarch, &ir,
5617 I386_SAVE_FPU_REGS))
5618 return -1;
5619 }
5620 break;
5621 case 3:
5622 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5623 {
5624 /* For fistp, fbld, fild, fbstp. */
5625 if (i386_record_floats (gdbarch, &ir,
5626 I386_SAVE_FPU_REGS))
5627 return -1;
5628 }
5629 /* Fall through */
5630 default:
5631 if (record_full_arch_list_add_mem (addr64, 2))
5632 return -1;
5633 break;
5634 }
5635 break;
5636 }
5637 break;
5638 case 0x0c:
5639 /* Insn fldenv. */
5640 if (i386_record_floats (gdbarch, &ir,
5641 I386_SAVE_FPU_ENV_REG_STACK))
5642 return -1;
5643 break;
5644 case 0x0d:
5645 /* Insn fldcw. */
5646 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5647 return -1;
5648 break;
5649 case 0x2c:
5650 /* Insn frstor. */
5651 if (i386_record_floats (gdbarch, &ir,
5652 I386_SAVE_FPU_ENV_REG_STACK))
5653 return -1;
5654 break;
5655 case 0x0e:
5656 if (ir.dflag)
5657 {
5658 if (record_full_arch_list_add_mem (addr64, 28))
5659 return -1;
5660 }
5661 else
5662 {
5663 if (record_full_arch_list_add_mem (addr64, 14))
5664 return -1;
5665 }
5666 break;
5667 case 0x0f:
5668 case 0x2f:
5669 if (record_full_arch_list_add_mem (addr64, 2))
5670 return -1;
5671 /* Insn fstp, fbstp. */
5672 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5673 return -1;
5674 break;
5675 case 0x1f:
5676 case 0x3e:
5677 if (record_full_arch_list_add_mem (addr64, 10))
5678 return -1;
5679 break;
5680 case 0x2e:
5681 if (ir.dflag)
5682 {
5683 if (record_full_arch_list_add_mem (addr64, 28))
5684 return -1;
5685 addr64 += 28;
5686 }
5687 else
5688 {
5689 if (record_full_arch_list_add_mem (addr64, 14))
5690 return -1;
5691 addr64 += 14;
5692 }
5693 if (record_full_arch_list_add_mem (addr64, 80))
5694 return -1;
5695 /* Insn fsave. */
5696 if (i386_record_floats (gdbarch, &ir,
5697 I386_SAVE_FPU_ENV_REG_STACK))
5698 return -1;
5699 break;
5700 case 0x3f:
5701 if (record_full_arch_list_add_mem (addr64, 8))
5702 return -1;
5703 /* Insn fistp. */
5704 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5705 return -1;
5706 break;
5707 default:
5708 ir.addr -= 2;
5709 opcode = opcode << 8 | ir.modrm;
5710 goto no_support;
5711 break;
5712 }
5713 }
5714 /* Opcode is an extension of modR/M byte. */
5715 else
5716 {
5717 switch (opcode)
5718 {
5719 case 0xd8:
5720 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5721 return -1;
5722 break;
5723 case 0xd9:
5724 if (0x0c == (ir.modrm >> 4))
5725 {
5726 if ((ir.modrm & 0x0f) <= 7)
5727 {
5728 if (i386_record_floats (gdbarch, &ir,
5729 I386_SAVE_FPU_REGS))
5730 return -1;
5731 }
5732 else
5733 {
5734 if (i386_record_floats (gdbarch, &ir,
5735 I387_ST0_REGNUM (tdep)))
5736 return -1;
5737 /* If only st(0) is changing, then we have already
5738 recorded. */
5739 if ((ir.modrm & 0x0f) - 0x08)
5740 {
5741 if (i386_record_floats (gdbarch, &ir,
5742 I387_ST0_REGNUM (tdep) +
5743 ((ir.modrm & 0x0f) - 0x08)))
5744 return -1;
5745 }
5746 }
5747 }
5748 else
5749 {
5750 switch (ir.modrm)
5751 {
5752 case 0xe0:
5753 case 0xe1:
5754 case 0xf0:
5755 case 0xf5:
5756 case 0xf8:
5757 case 0xfa:
5758 case 0xfc:
5759 case 0xfe:
5760 case 0xff:
5761 if (i386_record_floats (gdbarch, &ir,
5762 I387_ST0_REGNUM (tdep)))
5763 return -1;
5764 break;
5765 case 0xf1:
5766 case 0xf2:
5767 case 0xf3:
5768 case 0xf4:
5769 case 0xf6:
5770 case 0xf7:
5771 case 0xe8:
5772 case 0xe9:
5773 case 0xea:
5774 case 0xeb:
5775 case 0xec:
5776 case 0xed:
5777 case 0xee:
5778 case 0xf9:
5779 case 0xfb:
5780 if (i386_record_floats (gdbarch, &ir,
5781 I386_SAVE_FPU_REGS))
5782 return -1;
5783 break;
5784 case 0xfd:
5785 if (i386_record_floats (gdbarch, &ir,
5786 I387_ST0_REGNUM (tdep)))
5787 return -1;
5788 if (i386_record_floats (gdbarch, &ir,
5789 I387_ST0_REGNUM (tdep) + 1))
5790 return -1;
5791 break;
5792 }
5793 }
5794 break;
5795 case 0xda:
5796 if (0xe9 == ir.modrm)
5797 {
5798 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5799 return -1;
5800 }
5801 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5802 {
5803 if (i386_record_floats (gdbarch, &ir,
5804 I387_ST0_REGNUM (tdep)))
5805 return -1;
5806 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5807 {
5808 if (i386_record_floats (gdbarch, &ir,
5809 I387_ST0_REGNUM (tdep) +
5810 (ir.modrm & 0x0f)))
5811 return -1;
5812 }
5813 else if ((ir.modrm & 0x0f) - 0x08)
5814 {
5815 if (i386_record_floats (gdbarch, &ir,
5816 I387_ST0_REGNUM (tdep) +
5817 ((ir.modrm & 0x0f) - 0x08)))
5818 return -1;
5819 }
5820 }
5821 break;
5822 case 0xdb:
5823 if (0xe3 == ir.modrm)
5824 {
5825 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5826 return -1;
5827 }
5828 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5829 {
5830 if (i386_record_floats (gdbarch, &ir,
5831 I387_ST0_REGNUM (tdep)))
5832 return -1;
5833 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5834 {
5835 if (i386_record_floats (gdbarch, &ir,
5836 I387_ST0_REGNUM (tdep) +
5837 (ir.modrm & 0x0f)))
5838 return -1;
5839 }
5840 else if ((ir.modrm & 0x0f) - 0x08)
5841 {
5842 if (i386_record_floats (gdbarch, &ir,
5843 I387_ST0_REGNUM (tdep) +
5844 ((ir.modrm & 0x0f) - 0x08)))
5845 return -1;
5846 }
5847 }
5848 break;
5849 case 0xdc:
5850 if ((0x0c == ir.modrm >> 4)
5851 || (0x0d == ir.modrm >> 4)
5852 || (0x0f == ir.modrm >> 4))
5853 {
5854 if ((ir.modrm & 0x0f) <= 7)
5855 {
5856 if (i386_record_floats (gdbarch, &ir,
5857 I387_ST0_REGNUM (tdep) +
5858 (ir.modrm & 0x0f)))
5859 return -1;
5860 }
5861 else
5862 {
5863 if (i386_record_floats (gdbarch, &ir,
5864 I387_ST0_REGNUM (tdep) +
5865 ((ir.modrm & 0x0f) - 0x08)))
5866 return -1;
5867 }
5868 }
5869 break;
5870 case 0xdd:
5871 if (0x0c == ir.modrm >> 4)
5872 {
5873 if (i386_record_floats (gdbarch, &ir,
5874 I387_FTAG_REGNUM (tdep)))
5875 return -1;
5876 }
5877 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5878 {
5879 if ((ir.modrm & 0x0f) <= 7)
5880 {
5881 if (i386_record_floats (gdbarch, &ir,
5882 I387_ST0_REGNUM (tdep) +
5883 (ir.modrm & 0x0f)))
5884 return -1;
5885 }
5886 else
5887 {
5888 if (i386_record_floats (gdbarch, &ir,
5889 I386_SAVE_FPU_REGS))
5890 return -1;
5891 }
5892 }
5893 break;
5894 case 0xde:
5895 if ((0x0c == ir.modrm >> 4)
5896 || (0x0e == ir.modrm >> 4)
5897 || (0x0f == ir.modrm >> 4)
5898 || (0xd9 == ir.modrm))
5899 {
5900 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5901 return -1;
5902 }
5903 break;
5904 case 0xdf:
5905 if (0xe0 == ir.modrm)
5906 {
5907 if (record_full_arch_list_add_reg (ir.regcache,
5908 I386_EAX_REGNUM))
5909 return -1;
5910 }
5911 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5912 {
5913 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5914 return -1;
5915 }
5916 break;
5917 }
5918 }
5919 break;
5920 /* string ops */
5921 case 0xa4: /* movsS */
5922 case 0xa5:
5923 case 0xaa: /* stosS */
5924 case 0xab:
5925 case 0x6c: /* insS */
5926 case 0x6d:
5927 regcache_raw_read_unsigned (ir.regcache,
5928 ir.regmap[X86_RECORD_RECX_REGNUM],
5929 &addr);
5930 if (addr)
5931 {
5932 ULONGEST es, ds;
5933
5934 if ((opcode & 1) == 0)
5935 ir.ot = OT_BYTE;
5936 else
5937 ir.ot = ir.dflag + OT_WORD;
5938 regcache_raw_read_unsigned (ir.regcache,
5939 ir.regmap[X86_RECORD_REDI_REGNUM],
5940 &addr);
5941
5942 regcache_raw_read_unsigned (ir.regcache,
5943 ir.regmap[X86_RECORD_ES_REGNUM],
5944 &es);
5945 regcache_raw_read_unsigned (ir.regcache,
5946 ir.regmap[X86_RECORD_DS_REGNUM],
5947 &ds);
5948 if (ir.aflag && (es != ds))
5949 {
5950 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5951 if (record_full_memory_query)
5952 {
5953 int q;
5954
5955 target_terminal_ours ();
5956 q = yquery (_("\
5957 Process record ignores the memory change of instruction at address %s\n\
5958 because it can't get the value of the segment register.\n\
5959 Do you want to stop the program?"),
5960 paddress (gdbarch, ir.orig_addr));
5961 target_terminal_inferior ();
5962 if (q)
5963 return -1;
5964 }
5965 }
5966 else
5967 {
5968 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5969 return -1;
5970 }
5971
5972 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5973 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5974 if (opcode == 0xa4 || opcode == 0xa5)
5975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5977 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5978 }
5979 break;
5980
5981 case 0xa6: /* cmpsS */
5982 case 0xa7:
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5985 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5987 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5988 break;
5989
5990 case 0xac: /* lodsS */
5991 case 0xad:
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5994 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5996 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5997 break;
5998
5999 case 0xae: /* scasS */
6000 case 0xaf:
6001 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6002 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6005 break;
6006
6007 case 0x6e: /* outsS */
6008 case 0x6f:
6009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6010 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6013 break;
6014
6015 case 0xe4: /* port I/O */
6016 case 0xe5:
6017 case 0xec:
6018 case 0xed:
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6020 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6021 break;
6022
6023 case 0xe6:
6024 case 0xe7:
6025 case 0xee:
6026 case 0xef:
6027 break;
6028
6029 /* control */
6030 case 0xc2: /* ret im */
6031 case 0xc3: /* ret */
6032 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6034 break;
6035
6036 case 0xca: /* lret im */
6037 case 0xcb: /* lret */
6038 case 0xcf: /* iret */
6039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6042 break;
6043
6044 case 0xe8: /* call im */
6045 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6046 ir.dflag = 2;
6047 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6048 return -1;
6049 break;
6050
6051 case 0x9a: /* lcall im */
6052 if (ir.regmap[X86_RECORD_R8_REGNUM])
6053 {
6054 ir.addr -= 1;
6055 goto no_support;
6056 }
6057 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6058 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6059 return -1;
6060 break;
6061
6062 case 0xe9: /* jmp im */
6063 case 0xea: /* ljmp im */
6064 case 0xeb: /* jmp Jb */
6065 case 0x70: /* jcc Jb */
6066 case 0x71:
6067 case 0x72:
6068 case 0x73:
6069 case 0x74:
6070 case 0x75:
6071 case 0x76:
6072 case 0x77:
6073 case 0x78:
6074 case 0x79:
6075 case 0x7a:
6076 case 0x7b:
6077 case 0x7c:
6078 case 0x7d:
6079 case 0x7e:
6080 case 0x7f:
6081 case 0x0f80: /* jcc Jv */
6082 case 0x0f81:
6083 case 0x0f82:
6084 case 0x0f83:
6085 case 0x0f84:
6086 case 0x0f85:
6087 case 0x0f86:
6088 case 0x0f87:
6089 case 0x0f88:
6090 case 0x0f89:
6091 case 0x0f8a:
6092 case 0x0f8b:
6093 case 0x0f8c:
6094 case 0x0f8d:
6095 case 0x0f8e:
6096 case 0x0f8f:
6097 break;
6098
6099 case 0x0f90: /* setcc Gv */
6100 case 0x0f91:
6101 case 0x0f92:
6102 case 0x0f93:
6103 case 0x0f94:
6104 case 0x0f95:
6105 case 0x0f96:
6106 case 0x0f97:
6107 case 0x0f98:
6108 case 0x0f99:
6109 case 0x0f9a:
6110 case 0x0f9b:
6111 case 0x0f9c:
6112 case 0x0f9d:
6113 case 0x0f9e:
6114 case 0x0f9f:
6115 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6116 ir.ot = OT_BYTE;
6117 if (i386_record_modrm (&ir))
6118 return -1;
6119 if (ir.mod == 3)
6120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6121 : (ir.rm & 0x3));
6122 else
6123 {
6124 if (i386_record_lea_modrm (&ir))
6125 return -1;
6126 }
6127 break;
6128
6129 case 0x0f40: /* cmov Gv, Ev */
6130 case 0x0f41:
6131 case 0x0f42:
6132 case 0x0f43:
6133 case 0x0f44:
6134 case 0x0f45:
6135 case 0x0f46:
6136 case 0x0f47:
6137 case 0x0f48:
6138 case 0x0f49:
6139 case 0x0f4a:
6140 case 0x0f4b:
6141 case 0x0f4c:
6142 case 0x0f4d:
6143 case 0x0f4e:
6144 case 0x0f4f:
6145 if (i386_record_modrm (&ir))
6146 return -1;
6147 ir.reg |= rex_r;
6148 if (ir.dflag == OT_BYTE)
6149 ir.reg &= 0x3;
6150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6151 break;
6152
6153 /* flags */
6154 case 0x9c: /* pushf */
6155 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6156 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6157 ir.dflag = 2;
6158 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6159 return -1;
6160 break;
6161
6162 case 0x9d: /* popf */
6163 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6164 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6165 break;
6166
6167 case 0x9e: /* sahf */
6168 if (ir.regmap[X86_RECORD_R8_REGNUM])
6169 {
6170 ir.addr -= 1;
6171 goto no_support;
6172 }
6173 /* FALLTHROUGH */
6174 case 0xf5: /* cmc */
6175 case 0xf8: /* clc */
6176 case 0xf9: /* stc */
6177 case 0xfc: /* cld */
6178 case 0xfd: /* std */
6179 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6180 break;
6181
6182 case 0x9f: /* lahf */
6183 if (ir.regmap[X86_RECORD_R8_REGNUM])
6184 {
6185 ir.addr -= 1;
6186 goto no_support;
6187 }
6188 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6190 break;
6191
6192 /* bit operations */
6193 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6194 ir.ot = ir.dflag + OT_WORD;
6195 if (i386_record_modrm (&ir))
6196 return -1;
6197 if (ir.reg < 4)
6198 {
6199 ir.addr -= 2;
6200 opcode = opcode << 8 | ir.modrm;
6201 goto no_support;
6202 }
6203 if (ir.reg != 4)
6204 {
6205 if (ir.mod == 3)
6206 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6207 else
6208 {
6209 if (i386_record_lea_modrm (&ir))
6210 return -1;
6211 }
6212 }
6213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6214 break;
6215
6216 case 0x0fa3: /* bt Gv, Ev */
6217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6218 break;
6219
6220 case 0x0fab: /* bts */
6221 case 0x0fb3: /* btr */
6222 case 0x0fbb: /* btc */
6223 ir.ot = ir.dflag + OT_WORD;
6224 if (i386_record_modrm (&ir))
6225 return -1;
6226 if (ir.mod == 3)
6227 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6228 else
6229 {
6230 uint64_t addr64;
6231 if (i386_record_lea_modrm_addr (&ir, &addr64))
6232 return -1;
6233 regcache_raw_read_unsigned (ir.regcache,
6234 ir.regmap[ir.reg | rex_r],
6235 &addr);
6236 switch (ir.dflag)
6237 {
6238 case 0:
6239 addr64 += ((int16_t) addr >> 4) << 4;
6240 break;
6241 case 1:
6242 addr64 += ((int32_t) addr >> 5) << 5;
6243 break;
6244 case 2:
6245 addr64 += ((int64_t) addr >> 6) << 6;
6246 break;
6247 }
6248 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6249 return -1;
6250 if (i386_record_lea_modrm (&ir))
6251 return -1;
6252 }
6253 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6254 break;
6255
6256 case 0x0fbc: /* bsf */
6257 case 0x0fbd: /* bsr */
6258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6259 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6260 break;
6261
6262 /* bcd */
6263 case 0x27: /* daa */
6264 case 0x2f: /* das */
6265 case 0x37: /* aaa */
6266 case 0x3f: /* aas */
6267 case 0xd4: /* aam */
6268 case 0xd5: /* aad */
6269 if (ir.regmap[X86_RECORD_R8_REGNUM])
6270 {
6271 ir.addr -= 1;
6272 goto no_support;
6273 }
6274 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6276 break;
6277
6278 /* misc */
6279 case 0x90: /* nop */
6280 if (prefixes & PREFIX_LOCK)
6281 {
6282 ir.addr -= 1;
6283 goto no_support;
6284 }
6285 break;
6286
6287 case 0x9b: /* fwait */
6288 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6289 return -1;
6290 opcode = (uint32_t) opcode8;
6291 ir.addr++;
6292 goto reswitch;
6293 break;
6294
6295 /* XXX */
6296 case 0xcc: /* int3 */
6297 printf_unfiltered (_("Process record does not support instruction "
6298 "int3.\n"));
6299 ir.addr -= 1;
6300 goto no_support;
6301 break;
6302
6303 /* XXX */
6304 case 0xcd: /* int */
6305 {
6306 int ret;
6307 uint8_t interrupt;
6308 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6309 return -1;
6310 ir.addr++;
6311 if (interrupt != 0x80
6312 || tdep->i386_intx80_record == NULL)
6313 {
6314 printf_unfiltered (_("Process record does not support "
6315 "instruction int 0x%02x.\n"),
6316 interrupt);
6317 ir.addr -= 2;
6318 goto no_support;
6319 }
6320 ret = tdep->i386_intx80_record (ir.regcache);
6321 if (ret)
6322 return ret;
6323 }
6324 break;
6325
6326 /* XXX */
6327 case 0xce: /* into */
6328 printf_unfiltered (_("Process record does not support "
6329 "instruction into.\n"));
6330 ir.addr -= 1;
6331 goto no_support;
6332 break;
6333
6334 case 0xfa: /* cli */
6335 case 0xfb: /* sti */
6336 break;
6337
6338 case 0x62: /* bound */
6339 printf_unfiltered (_("Process record does not support "
6340 "instruction bound.\n"));
6341 ir.addr -= 1;
6342 goto no_support;
6343 break;
6344
6345 case 0x0fc8: /* bswap reg */
6346 case 0x0fc9:
6347 case 0x0fca:
6348 case 0x0fcb:
6349 case 0x0fcc:
6350 case 0x0fcd:
6351 case 0x0fce:
6352 case 0x0fcf:
6353 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6354 break;
6355
6356 case 0xd6: /* salc */
6357 if (ir.regmap[X86_RECORD_R8_REGNUM])
6358 {
6359 ir.addr -= 1;
6360 goto no_support;
6361 }
6362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6364 break;
6365
6366 case 0xe0: /* loopnz */
6367 case 0xe1: /* loopz */
6368 case 0xe2: /* loop */
6369 case 0xe3: /* jecxz */
6370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6372 break;
6373
6374 case 0x0f30: /* wrmsr */
6375 printf_unfiltered (_("Process record does not support "
6376 "instruction wrmsr.\n"));
6377 ir.addr -= 2;
6378 goto no_support;
6379 break;
6380
6381 case 0x0f32: /* rdmsr */
6382 printf_unfiltered (_("Process record does not support "
6383 "instruction rdmsr.\n"));
6384 ir.addr -= 2;
6385 goto no_support;
6386 break;
6387
6388 case 0x0f31: /* rdtsc */
6389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6391 break;
6392
6393 case 0x0f34: /* sysenter */
6394 {
6395 int ret;
6396 if (ir.regmap[X86_RECORD_R8_REGNUM])
6397 {
6398 ir.addr -= 2;
6399 goto no_support;
6400 }
6401 if (tdep->i386_sysenter_record == NULL)
6402 {
6403 printf_unfiltered (_("Process record does not support "
6404 "instruction sysenter.\n"));
6405 ir.addr -= 2;
6406 goto no_support;
6407 }
6408 ret = tdep->i386_sysenter_record (ir.regcache);
6409 if (ret)
6410 return ret;
6411 }
6412 break;
6413
6414 case 0x0f35: /* sysexit */
6415 printf_unfiltered (_("Process record does not support "
6416 "instruction sysexit.\n"));
6417 ir.addr -= 2;
6418 goto no_support;
6419 break;
6420
6421 case 0x0f05: /* syscall */
6422 {
6423 int ret;
6424 if (tdep->i386_syscall_record == NULL)
6425 {
6426 printf_unfiltered (_("Process record does not support "
6427 "instruction syscall.\n"));
6428 ir.addr -= 2;
6429 goto no_support;
6430 }
6431 ret = tdep->i386_syscall_record (ir.regcache);
6432 if (ret)
6433 return ret;
6434 }
6435 break;
6436
6437 case 0x0f07: /* sysret */
6438 printf_unfiltered (_("Process record does not support "
6439 "instruction sysret.\n"));
6440 ir.addr -= 2;
6441 goto no_support;
6442 break;
6443
6444 case 0x0fa2: /* cpuid */
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6447 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6449 break;
6450
6451 case 0xf4: /* hlt */
6452 printf_unfiltered (_("Process record does not support "
6453 "instruction hlt.\n"));
6454 ir.addr -= 1;
6455 goto no_support;
6456 break;
6457
6458 case 0x0f00:
6459 if (i386_record_modrm (&ir))
6460 return -1;
6461 switch (ir.reg)
6462 {
6463 case 0: /* sldt */
6464 case 1: /* str */
6465 if (ir.mod == 3)
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6467 else
6468 {
6469 ir.ot = OT_WORD;
6470 if (i386_record_lea_modrm (&ir))
6471 return -1;
6472 }
6473 break;
6474 case 2: /* lldt */
6475 case 3: /* ltr */
6476 break;
6477 case 4: /* verr */
6478 case 5: /* verw */
6479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6480 break;
6481 default:
6482 ir.addr -= 3;
6483 opcode = opcode << 8 | ir.modrm;
6484 goto no_support;
6485 break;
6486 }
6487 break;
6488
6489 case 0x0f01:
6490 if (i386_record_modrm (&ir))
6491 return -1;
6492 switch (ir.reg)
6493 {
6494 case 0: /* sgdt */
6495 {
6496 uint64_t addr64;
6497
6498 if (ir.mod == 3)
6499 {
6500 ir.addr -= 3;
6501 opcode = opcode << 8 | ir.modrm;
6502 goto no_support;
6503 }
6504 if (ir.override >= 0)
6505 {
6506 if (record_full_memory_query)
6507 {
6508 int q;
6509
6510 target_terminal_ours ();
6511 q = yquery (_("\
6512 Process record ignores the memory change of instruction at address %s\n\
6513 because it can't get the value of the segment register.\n\
6514 Do you want to stop the program?"),
6515 paddress (gdbarch, ir.orig_addr));
6516 target_terminal_inferior ();
6517 if (q)
6518 return -1;
6519 }
6520 }
6521 else
6522 {
6523 if (i386_record_lea_modrm_addr (&ir, &addr64))
6524 return -1;
6525 if (record_full_arch_list_add_mem (addr64, 2))
6526 return -1;
6527 addr64 += 2;
6528 if (ir.regmap[X86_RECORD_R8_REGNUM])
6529 {
6530 if (record_full_arch_list_add_mem (addr64, 8))
6531 return -1;
6532 }
6533 else
6534 {
6535 if (record_full_arch_list_add_mem (addr64, 4))
6536 return -1;
6537 }
6538 }
6539 }
6540 break;
6541 case 1:
6542 if (ir.mod == 3)
6543 {
6544 switch (ir.rm)
6545 {
6546 case 0: /* monitor */
6547 break;
6548 case 1: /* mwait */
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551 default:
6552 ir.addr -= 3;
6553 opcode = opcode << 8 | ir.modrm;
6554 goto no_support;
6555 break;
6556 }
6557 }
6558 else
6559 {
6560 /* sidt */
6561 if (ir.override >= 0)
6562 {
6563 if (record_full_memory_query)
6564 {
6565 int q;
6566
6567 target_terminal_ours ();
6568 q = yquery (_("\
6569 Process record ignores the memory change of instruction at address %s\n\
6570 because it can't get the value of the segment register.\n\
6571 Do you want to stop the program?"),
6572 paddress (gdbarch, ir.orig_addr));
6573 target_terminal_inferior ();
6574 if (q)
6575 return -1;
6576 }
6577 }
6578 else
6579 {
6580 uint64_t addr64;
6581
6582 if (i386_record_lea_modrm_addr (&ir, &addr64))
6583 return -1;
6584 if (record_full_arch_list_add_mem (addr64, 2))
6585 return -1;
6586 addr64 += 2;
6587 if (ir.regmap[X86_RECORD_R8_REGNUM])
6588 {
6589 if (record_full_arch_list_add_mem (addr64, 8))
6590 return -1;
6591 }
6592 else
6593 {
6594 if (record_full_arch_list_add_mem (addr64, 4))
6595 return -1;
6596 }
6597 }
6598 }
6599 break;
6600 case 2: /* lgdt */
6601 if (ir.mod == 3)
6602 {
6603 /* xgetbv */
6604 if (ir.rm == 0)
6605 {
6606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6608 break;
6609 }
6610 /* xsetbv */
6611 else if (ir.rm == 1)
6612 break;
6613 }
6614 case 3: /* lidt */
6615 if (ir.mod == 3)
6616 {
6617 ir.addr -= 3;
6618 opcode = opcode << 8 | ir.modrm;
6619 goto no_support;
6620 }
6621 break;
6622 case 4: /* smsw */
6623 if (ir.mod == 3)
6624 {
6625 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6626 return -1;
6627 }
6628 else
6629 {
6630 ir.ot = OT_WORD;
6631 if (i386_record_lea_modrm (&ir))
6632 return -1;
6633 }
6634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6635 break;
6636 case 6: /* lmsw */
6637 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6638 break;
6639 case 7: /* invlpg */
6640 if (ir.mod == 3)
6641 {
6642 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6644 else
6645 {
6646 ir.addr -= 3;
6647 opcode = opcode << 8 | ir.modrm;
6648 goto no_support;
6649 }
6650 }
6651 else
6652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6653 break;
6654 default:
6655 ir.addr -= 3;
6656 opcode = opcode << 8 | ir.modrm;
6657 goto no_support;
6658 break;
6659 }
6660 break;
6661
6662 case 0x0f08: /* invd */
6663 case 0x0f09: /* wbinvd */
6664 break;
6665
6666 case 0x63: /* arpl */
6667 if (i386_record_modrm (&ir))
6668 return -1;
6669 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6670 {
6671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6672 ? (ir.reg | rex_r) : ir.rm);
6673 }
6674 else
6675 {
6676 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6677 if (i386_record_lea_modrm (&ir))
6678 return -1;
6679 }
6680 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6682 break;
6683
6684 case 0x0f02: /* lar */
6685 case 0x0f03: /* lsl */
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6690 break;
6691
6692 case 0x0f18:
6693 if (i386_record_modrm (&ir))
6694 return -1;
6695 if (ir.mod == 3 && ir.reg == 3)
6696 {
6697 ir.addr -= 3;
6698 opcode = opcode << 8 | ir.modrm;
6699 goto no_support;
6700 }
6701 break;
6702
6703 case 0x0f19:
6704 case 0x0f1a:
6705 case 0x0f1b:
6706 case 0x0f1c:
6707 case 0x0f1d:
6708 case 0x0f1e:
6709 case 0x0f1f:
6710 /* nop (multi byte) */
6711 break;
6712
6713 case 0x0f20: /* mov reg, crN */
6714 case 0x0f22: /* mov crN, reg */
6715 if (i386_record_modrm (&ir))
6716 return -1;
6717 if ((ir.modrm & 0xc0) != 0xc0)
6718 {
6719 ir.addr -= 3;
6720 opcode = opcode << 8 | ir.modrm;
6721 goto no_support;
6722 }
6723 switch (ir.reg)
6724 {
6725 case 0:
6726 case 2:
6727 case 3:
6728 case 4:
6729 case 8:
6730 if (opcode & 2)
6731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6732 else
6733 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6734 break;
6735 default:
6736 ir.addr -= 3;
6737 opcode = opcode << 8 | ir.modrm;
6738 goto no_support;
6739 break;
6740 }
6741 break;
6742
6743 case 0x0f21: /* mov reg, drN */
6744 case 0x0f23: /* mov drN, reg */
6745 if (i386_record_modrm (&ir))
6746 return -1;
6747 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6748 || ir.reg == 5 || ir.reg >= 8)
6749 {
6750 ir.addr -= 3;
6751 opcode = opcode << 8 | ir.modrm;
6752 goto no_support;
6753 }
6754 if (opcode & 2)
6755 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6756 else
6757 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6758 break;
6759
6760 case 0x0f06: /* clts */
6761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6762 break;
6763
6764 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6765
6766 case 0x0f0d: /* 3DNow! prefetch */
6767 break;
6768
6769 case 0x0f0e: /* 3DNow! femms */
6770 case 0x0f77: /* emms */
6771 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6772 goto no_support;
6773 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6774 break;
6775
6776 case 0x0f0f: /* 3DNow! data */
6777 if (i386_record_modrm (&ir))
6778 return -1;
6779 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6780 return -1;
6781 ir.addr++;
6782 switch (opcode8)
6783 {
6784 case 0x0c: /* 3DNow! pi2fw */
6785 case 0x0d: /* 3DNow! pi2fd */
6786 case 0x1c: /* 3DNow! pf2iw */
6787 case 0x1d: /* 3DNow! pf2id */
6788 case 0x8a: /* 3DNow! pfnacc */
6789 case 0x8e: /* 3DNow! pfpnacc */
6790 case 0x90: /* 3DNow! pfcmpge */
6791 case 0x94: /* 3DNow! pfmin */
6792 case 0x96: /* 3DNow! pfrcp */
6793 case 0x97: /* 3DNow! pfrsqrt */
6794 case 0x9a: /* 3DNow! pfsub */
6795 case 0x9e: /* 3DNow! pfadd */
6796 case 0xa0: /* 3DNow! pfcmpgt */
6797 case 0xa4: /* 3DNow! pfmax */
6798 case 0xa6: /* 3DNow! pfrcpit1 */
6799 case 0xa7: /* 3DNow! pfrsqit1 */
6800 case 0xaa: /* 3DNow! pfsubr */
6801 case 0xae: /* 3DNow! pfacc */
6802 case 0xb0: /* 3DNow! pfcmpeq */
6803 case 0xb4: /* 3DNow! pfmul */
6804 case 0xb6: /* 3DNow! pfrcpit2 */
6805 case 0xb7: /* 3DNow! pmulhrw */
6806 case 0xbb: /* 3DNow! pswapd */
6807 case 0xbf: /* 3DNow! pavgusb */
6808 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6809 goto no_support_3dnow_data;
6810 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6811 break;
6812
6813 default:
6814 no_support_3dnow_data:
6815 opcode = (opcode << 8) | opcode8;
6816 goto no_support;
6817 break;
6818 }
6819 break;
6820
6821 case 0x0faa: /* rsm */
6822 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6823 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6827 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6831 break;
6832
6833 case 0x0fae:
6834 if (i386_record_modrm (&ir))
6835 return -1;
6836 switch(ir.reg)
6837 {
6838 case 0: /* fxsave */
6839 {
6840 uint64_t tmpu64;
6841
6842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6843 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6844 return -1;
6845 if (record_full_arch_list_add_mem (tmpu64, 512))
6846 return -1;
6847 }
6848 break;
6849
6850 case 1: /* fxrstor */
6851 {
6852 int i;
6853
6854 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6855
6856 for (i = I387_MM0_REGNUM (tdep);
6857 i386_mmx_regnum_p (gdbarch, i); i++)
6858 record_full_arch_list_add_reg (ir.regcache, i);
6859
6860 for (i = I387_XMM0_REGNUM (tdep);
6861 i386_xmm_regnum_p (gdbarch, i); i++)
6862 record_full_arch_list_add_reg (ir.regcache, i);
6863
6864 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6865 record_full_arch_list_add_reg (ir.regcache,
6866 I387_MXCSR_REGNUM(tdep));
6867
6868 for (i = I387_ST0_REGNUM (tdep);
6869 i386_fp_regnum_p (gdbarch, i); i++)
6870 record_full_arch_list_add_reg (ir.regcache, i);
6871
6872 for (i = I387_FCTRL_REGNUM (tdep);
6873 i386_fpc_regnum_p (gdbarch, i); i++)
6874 record_full_arch_list_add_reg (ir.regcache, i);
6875 }
6876 break;
6877
6878 case 2: /* ldmxcsr */
6879 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6880 goto no_support;
6881 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6882 break;
6883
6884 case 3: /* stmxcsr */
6885 ir.ot = OT_LONG;
6886 if (i386_record_lea_modrm (&ir))
6887 return -1;
6888 break;
6889
6890 case 5: /* lfence */
6891 case 6: /* mfence */
6892 case 7: /* sfence clflush */
6893 break;
6894
6895 default:
6896 opcode = (opcode << 8) | ir.modrm;
6897 goto no_support;
6898 break;
6899 }
6900 break;
6901
6902 case 0x0fc3: /* movnti */
6903 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6904 if (i386_record_modrm (&ir))
6905 return -1;
6906 if (ir.mod == 3)
6907 goto no_support;
6908 ir.reg |= rex_r;
6909 if (i386_record_lea_modrm (&ir))
6910 return -1;
6911 break;
6912
6913 /* Add prefix to opcode. */
6914 case 0x0f10:
6915 case 0x0f11:
6916 case 0x0f12:
6917 case 0x0f13:
6918 case 0x0f14:
6919 case 0x0f15:
6920 case 0x0f16:
6921 case 0x0f17:
6922 case 0x0f28:
6923 case 0x0f29:
6924 case 0x0f2a:
6925 case 0x0f2b:
6926 case 0x0f2c:
6927 case 0x0f2d:
6928 case 0x0f2e:
6929 case 0x0f2f:
6930 case 0x0f38:
6931 case 0x0f39:
6932 case 0x0f3a:
6933 case 0x0f50:
6934 case 0x0f51:
6935 case 0x0f52:
6936 case 0x0f53:
6937 case 0x0f54:
6938 case 0x0f55:
6939 case 0x0f56:
6940 case 0x0f57:
6941 case 0x0f58:
6942 case 0x0f59:
6943 case 0x0f5a:
6944 case 0x0f5b:
6945 case 0x0f5c:
6946 case 0x0f5d:
6947 case 0x0f5e:
6948 case 0x0f5f:
6949 case 0x0f60:
6950 case 0x0f61:
6951 case 0x0f62:
6952 case 0x0f63:
6953 case 0x0f64:
6954 case 0x0f65:
6955 case 0x0f66:
6956 case 0x0f67:
6957 case 0x0f68:
6958 case 0x0f69:
6959 case 0x0f6a:
6960 case 0x0f6b:
6961 case 0x0f6c:
6962 case 0x0f6d:
6963 case 0x0f6e:
6964 case 0x0f6f:
6965 case 0x0f70:
6966 case 0x0f71:
6967 case 0x0f72:
6968 case 0x0f73:
6969 case 0x0f74:
6970 case 0x0f75:
6971 case 0x0f76:
6972 case 0x0f7c:
6973 case 0x0f7d:
6974 case 0x0f7e:
6975 case 0x0f7f:
6976 case 0x0fb8:
6977 case 0x0fc2:
6978 case 0x0fc4:
6979 case 0x0fc5:
6980 case 0x0fc6:
6981 case 0x0fd0:
6982 case 0x0fd1:
6983 case 0x0fd2:
6984 case 0x0fd3:
6985 case 0x0fd4:
6986 case 0x0fd5:
6987 case 0x0fd6:
6988 case 0x0fd7:
6989 case 0x0fd8:
6990 case 0x0fd9:
6991 case 0x0fda:
6992 case 0x0fdb:
6993 case 0x0fdc:
6994 case 0x0fdd:
6995 case 0x0fde:
6996 case 0x0fdf:
6997 case 0x0fe0:
6998 case 0x0fe1:
6999 case 0x0fe2:
7000 case 0x0fe3:
7001 case 0x0fe4:
7002 case 0x0fe5:
7003 case 0x0fe6:
7004 case 0x0fe7:
7005 case 0x0fe8:
7006 case 0x0fe9:
7007 case 0x0fea:
7008 case 0x0feb:
7009 case 0x0fec:
7010 case 0x0fed:
7011 case 0x0fee:
7012 case 0x0fef:
7013 case 0x0ff0:
7014 case 0x0ff1:
7015 case 0x0ff2:
7016 case 0x0ff3:
7017 case 0x0ff4:
7018 case 0x0ff5:
7019 case 0x0ff6:
7020 case 0x0ff7:
7021 case 0x0ff8:
7022 case 0x0ff9:
7023 case 0x0ffa:
7024 case 0x0ffb:
7025 case 0x0ffc:
7026 case 0x0ffd:
7027 case 0x0ffe:
7028 switch (prefixes)
7029 {
7030 case PREFIX_REPNZ:
7031 opcode |= 0xf20000;
7032 break;
7033 case PREFIX_DATA:
7034 opcode |= 0x660000;
7035 break;
7036 case PREFIX_REPZ:
7037 opcode |= 0xf30000;
7038 break;
7039 }
7040 reswitch_prefix_add:
7041 switch (opcode)
7042 {
7043 case 0x0f38:
7044 case 0x660f38:
7045 case 0xf20f38:
7046 case 0x0f3a:
7047 case 0x660f3a:
7048 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7049 return -1;
7050 ir.addr++;
7051 opcode = (uint32_t) opcode8 | opcode << 8;
7052 goto reswitch_prefix_add;
7053 break;
7054
7055 case 0x0f10: /* movups */
7056 case 0x660f10: /* movupd */
7057 case 0xf30f10: /* movss */
7058 case 0xf20f10: /* movsd */
7059 case 0x0f12: /* movlps */
7060 case 0x660f12: /* movlpd */
7061 case 0xf30f12: /* movsldup */
7062 case 0xf20f12: /* movddup */
7063 case 0x0f14: /* unpcklps */
7064 case 0x660f14: /* unpcklpd */
7065 case 0x0f15: /* unpckhps */
7066 case 0x660f15: /* unpckhpd */
7067 case 0x0f16: /* movhps */
7068 case 0x660f16: /* movhpd */
7069 case 0xf30f16: /* movshdup */
7070 case 0x0f28: /* movaps */
7071 case 0x660f28: /* movapd */
7072 case 0x0f2a: /* cvtpi2ps */
7073 case 0x660f2a: /* cvtpi2pd */
7074 case 0xf30f2a: /* cvtsi2ss */
7075 case 0xf20f2a: /* cvtsi2sd */
7076 case 0x0f2c: /* cvttps2pi */
7077 case 0x660f2c: /* cvttpd2pi */
7078 case 0x0f2d: /* cvtps2pi */
7079 case 0x660f2d: /* cvtpd2pi */
7080 case 0x660f3800: /* pshufb */
7081 case 0x660f3801: /* phaddw */
7082 case 0x660f3802: /* phaddd */
7083 case 0x660f3803: /* phaddsw */
7084 case 0x660f3804: /* pmaddubsw */
7085 case 0x660f3805: /* phsubw */
7086 case 0x660f3806: /* phsubd */
7087 case 0x660f3807: /* phsubsw */
7088 case 0x660f3808: /* psignb */
7089 case 0x660f3809: /* psignw */
7090 case 0x660f380a: /* psignd */
7091 case 0x660f380b: /* pmulhrsw */
7092 case 0x660f3810: /* pblendvb */
7093 case 0x660f3814: /* blendvps */
7094 case 0x660f3815: /* blendvpd */
7095 case 0x660f381c: /* pabsb */
7096 case 0x660f381d: /* pabsw */
7097 case 0x660f381e: /* pabsd */
7098 case 0x660f3820: /* pmovsxbw */
7099 case 0x660f3821: /* pmovsxbd */
7100 case 0x660f3822: /* pmovsxbq */
7101 case 0x660f3823: /* pmovsxwd */
7102 case 0x660f3824: /* pmovsxwq */
7103 case 0x660f3825: /* pmovsxdq */
7104 case 0x660f3828: /* pmuldq */
7105 case 0x660f3829: /* pcmpeqq */
7106 case 0x660f382a: /* movntdqa */
7107 case 0x660f3a08: /* roundps */
7108 case 0x660f3a09: /* roundpd */
7109 case 0x660f3a0a: /* roundss */
7110 case 0x660f3a0b: /* roundsd */
7111 case 0x660f3a0c: /* blendps */
7112 case 0x660f3a0d: /* blendpd */
7113 case 0x660f3a0e: /* pblendw */
7114 case 0x660f3a0f: /* palignr */
7115 case 0x660f3a20: /* pinsrb */
7116 case 0x660f3a21: /* insertps */
7117 case 0x660f3a22: /* pinsrd pinsrq */
7118 case 0x660f3a40: /* dpps */
7119 case 0x660f3a41: /* dppd */
7120 case 0x660f3a42: /* mpsadbw */
7121 case 0x660f3a60: /* pcmpestrm */
7122 case 0x660f3a61: /* pcmpestri */
7123 case 0x660f3a62: /* pcmpistrm */
7124 case 0x660f3a63: /* pcmpistri */
7125 case 0x0f51: /* sqrtps */
7126 case 0x660f51: /* sqrtpd */
7127 case 0xf20f51: /* sqrtsd */
7128 case 0xf30f51: /* sqrtss */
7129 case 0x0f52: /* rsqrtps */
7130 case 0xf30f52: /* rsqrtss */
7131 case 0x0f53: /* rcpps */
7132 case 0xf30f53: /* rcpss */
7133 case 0x0f54: /* andps */
7134 case 0x660f54: /* andpd */
7135 case 0x0f55: /* andnps */
7136 case 0x660f55: /* andnpd */
7137 case 0x0f56: /* orps */
7138 case 0x660f56: /* orpd */
7139 case 0x0f57: /* xorps */
7140 case 0x660f57: /* xorpd */
7141 case 0x0f58: /* addps */
7142 case 0x660f58: /* addpd */
7143 case 0xf20f58: /* addsd */
7144 case 0xf30f58: /* addss */
7145 case 0x0f59: /* mulps */
7146 case 0x660f59: /* mulpd */
7147 case 0xf20f59: /* mulsd */
7148 case 0xf30f59: /* mulss */
7149 case 0x0f5a: /* cvtps2pd */
7150 case 0x660f5a: /* cvtpd2ps */
7151 case 0xf20f5a: /* cvtsd2ss */
7152 case 0xf30f5a: /* cvtss2sd */
7153 case 0x0f5b: /* cvtdq2ps */
7154 case 0x660f5b: /* cvtps2dq */
7155 case 0xf30f5b: /* cvttps2dq */
7156 case 0x0f5c: /* subps */
7157 case 0x660f5c: /* subpd */
7158 case 0xf20f5c: /* subsd */
7159 case 0xf30f5c: /* subss */
7160 case 0x0f5d: /* minps */
7161 case 0x660f5d: /* minpd */
7162 case 0xf20f5d: /* minsd */
7163 case 0xf30f5d: /* minss */
7164 case 0x0f5e: /* divps */
7165 case 0x660f5e: /* divpd */
7166 case 0xf20f5e: /* divsd */
7167 case 0xf30f5e: /* divss */
7168 case 0x0f5f: /* maxps */
7169 case 0x660f5f: /* maxpd */
7170 case 0xf20f5f: /* maxsd */
7171 case 0xf30f5f: /* maxss */
7172 case 0x660f60: /* punpcklbw */
7173 case 0x660f61: /* punpcklwd */
7174 case 0x660f62: /* punpckldq */
7175 case 0x660f63: /* packsswb */
7176 case 0x660f64: /* pcmpgtb */
7177 case 0x660f65: /* pcmpgtw */
7178 case 0x660f66: /* pcmpgtd */
7179 case 0x660f67: /* packuswb */
7180 case 0x660f68: /* punpckhbw */
7181 case 0x660f69: /* punpckhwd */
7182 case 0x660f6a: /* punpckhdq */
7183 case 0x660f6b: /* packssdw */
7184 case 0x660f6c: /* punpcklqdq */
7185 case 0x660f6d: /* punpckhqdq */
7186 case 0x660f6e: /* movd */
7187 case 0x660f6f: /* movdqa */
7188 case 0xf30f6f: /* movdqu */
7189 case 0x660f70: /* pshufd */
7190 case 0xf20f70: /* pshuflw */
7191 case 0xf30f70: /* pshufhw */
7192 case 0x660f74: /* pcmpeqb */
7193 case 0x660f75: /* pcmpeqw */
7194 case 0x660f76: /* pcmpeqd */
7195 case 0x660f7c: /* haddpd */
7196 case 0xf20f7c: /* haddps */
7197 case 0x660f7d: /* hsubpd */
7198 case 0xf20f7d: /* hsubps */
7199 case 0xf30f7e: /* movq */
7200 case 0x0fc2: /* cmpps */
7201 case 0x660fc2: /* cmppd */
7202 case 0xf20fc2: /* cmpsd */
7203 case 0xf30fc2: /* cmpss */
7204 case 0x660fc4: /* pinsrw */
7205 case 0x0fc6: /* shufps */
7206 case 0x660fc6: /* shufpd */
7207 case 0x660fd0: /* addsubpd */
7208 case 0xf20fd0: /* addsubps */
7209 case 0x660fd1: /* psrlw */
7210 case 0x660fd2: /* psrld */
7211 case 0x660fd3: /* psrlq */
7212 case 0x660fd4: /* paddq */
7213 case 0x660fd5: /* pmullw */
7214 case 0xf30fd6: /* movq2dq */
7215 case 0x660fd8: /* psubusb */
7216 case 0x660fd9: /* psubusw */
7217 case 0x660fda: /* pminub */
7218 case 0x660fdb: /* pand */
7219 case 0x660fdc: /* paddusb */
7220 case 0x660fdd: /* paddusw */
7221 case 0x660fde: /* pmaxub */
7222 case 0x660fdf: /* pandn */
7223 case 0x660fe0: /* pavgb */
7224 case 0x660fe1: /* psraw */
7225 case 0x660fe2: /* psrad */
7226 case 0x660fe3: /* pavgw */
7227 case 0x660fe4: /* pmulhuw */
7228 case 0x660fe5: /* pmulhw */
7229 case 0x660fe6: /* cvttpd2dq */
7230 case 0xf20fe6: /* cvtpd2dq */
7231 case 0xf30fe6: /* cvtdq2pd */
7232 case 0x660fe8: /* psubsb */
7233 case 0x660fe9: /* psubsw */
7234 case 0x660fea: /* pminsw */
7235 case 0x660feb: /* por */
7236 case 0x660fec: /* paddsb */
7237 case 0x660fed: /* paddsw */
7238 case 0x660fee: /* pmaxsw */
7239 case 0x660fef: /* pxor */
7240 case 0xf20ff0: /* lddqu */
7241 case 0x660ff1: /* psllw */
7242 case 0x660ff2: /* pslld */
7243 case 0x660ff3: /* psllq */
7244 case 0x660ff4: /* pmuludq */
7245 case 0x660ff5: /* pmaddwd */
7246 case 0x660ff6: /* psadbw */
7247 case 0x660ff8: /* psubb */
7248 case 0x660ff9: /* psubw */
7249 case 0x660ffa: /* psubd */
7250 case 0x660ffb: /* psubq */
7251 case 0x660ffc: /* paddb */
7252 case 0x660ffd: /* paddw */
7253 case 0x660ffe: /* paddd */
7254 if (i386_record_modrm (&ir))
7255 return -1;
7256 ir.reg |= rex_r;
7257 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7258 goto no_support;
7259 record_full_arch_list_add_reg (ir.regcache,
7260 I387_XMM0_REGNUM (tdep) + ir.reg);
7261 if ((opcode & 0xfffffffc) == 0x660f3a60)
7262 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7263 break;
7264
7265 case 0x0f11: /* movups */
7266 case 0x660f11: /* movupd */
7267 case 0xf30f11: /* movss */
7268 case 0xf20f11: /* movsd */
7269 case 0x0f13: /* movlps */
7270 case 0x660f13: /* movlpd */
7271 case 0x0f17: /* movhps */
7272 case 0x660f17: /* movhpd */
7273 case 0x0f29: /* movaps */
7274 case 0x660f29: /* movapd */
7275 case 0x660f3a14: /* pextrb */
7276 case 0x660f3a15: /* pextrw */
7277 case 0x660f3a16: /* pextrd pextrq */
7278 case 0x660f3a17: /* extractps */
7279 case 0x660f7f: /* movdqa */
7280 case 0xf30f7f: /* movdqu */
7281 if (i386_record_modrm (&ir))
7282 return -1;
7283 if (ir.mod == 3)
7284 {
7285 if (opcode == 0x0f13 || opcode == 0x660f13
7286 || opcode == 0x0f17 || opcode == 0x660f17)
7287 goto no_support;
7288 ir.rm |= ir.rex_b;
7289 if (!i386_xmm_regnum_p (gdbarch,
7290 I387_XMM0_REGNUM (tdep) + ir.rm))
7291 goto no_support;
7292 record_full_arch_list_add_reg (ir.regcache,
7293 I387_XMM0_REGNUM (tdep) + ir.rm);
7294 }
7295 else
7296 {
7297 switch (opcode)
7298 {
7299 case 0x660f3a14:
7300 ir.ot = OT_BYTE;
7301 break;
7302 case 0x660f3a15:
7303 ir.ot = OT_WORD;
7304 break;
7305 case 0x660f3a16:
7306 ir.ot = OT_LONG;
7307 break;
7308 case 0x660f3a17:
7309 ir.ot = OT_QUAD;
7310 break;
7311 default:
7312 ir.ot = OT_DQUAD;
7313 break;
7314 }
7315 if (i386_record_lea_modrm (&ir))
7316 return -1;
7317 }
7318 break;
7319
7320 case 0x0f2b: /* movntps */
7321 case 0x660f2b: /* movntpd */
7322 case 0x0fe7: /* movntq */
7323 case 0x660fe7: /* movntdq */
7324 if (ir.mod == 3)
7325 goto no_support;
7326 if (opcode == 0x0fe7)
7327 ir.ot = OT_QUAD;
7328 else
7329 ir.ot = OT_DQUAD;
7330 if (i386_record_lea_modrm (&ir))
7331 return -1;
7332 break;
7333
7334 case 0xf30f2c: /* cvttss2si */
7335 case 0xf20f2c: /* cvttsd2si */
7336 case 0xf30f2d: /* cvtss2si */
7337 case 0xf20f2d: /* cvtsd2si */
7338 case 0xf20f38f0: /* crc32 */
7339 case 0xf20f38f1: /* crc32 */
7340 case 0x0f50: /* movmskps */
7341 case 0x660f50: /* movmskpd */
7342 case 0x0fc5: /* pextrw */
7343 case 0x660fc5: /* pextrw */
7344 case 0x0fd7: /* pmovmskb */
7345 case 0x660fd7: /* pmovmskb */
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7347 break;
7348
7349 case 0x0f3800: /* pshufb */
7350 case 0x0f3801: /* phaddw */
7351 case 0x0f3802: /* phaddd */
7352 case 0x0f3803: /* phaddsw */
7353 case 0x0f3804: /* pmaddubsw */
7354 case 0x0f3805: /* phsubw */
7355 case 0x0f3806: /* phsubd */
7356 case 0x0f3807: /* phsubsw */
7357 case 0x0f3808: /* psignb */
7358 case 0x0f3809: /* psignw */
7359 case 0x0f380a: /* psignd */
7360 case 0x0f380b: /* pmulhrsw */
7361 case 0x0f381c: /* pabsb */
7362 case 0x0f381d: /* pabsw */
7363 case 0x0f381e: /* pabsd */
7364 case 0x0f382b: /* packusdw */
7365 case 0x0f3830: /* pmovzxbw */
7366 case 0x0f3831: /* pmovzxbd */
7367 case 0x0f3832: /* pmovzxbq */
7368 case 0x0f3833: /* pmovzxwd */
7369 case 0x0f3834: /* pmovzxwq */
7370 case 0x0f3835: /* pmovzxdq */
7371 case 0x0f3837: /* pcmpgtq */
7372 case 0x0f3838: /* pminsb */
7373 case 0x0f3839: /* pminsd */
7374 case 0x0f383a: /* pminuw */
7375 case 0x0f383b: /* pminud */
7376 case 0x0f383c: /* pmaxsb */
7377 case 0x0f383d: /* pmaxsd */
7378 case 0x0f383e: /* pmaxuw */
7379 case 0x0f383f: /* pmaxud */
7380 case 0x0f3840: /* pmulld */
7381 case 0x0f3841: /* phminposuw */
7382 case 0x0f3a0f: /* palignr */
7383 case 0x0f60: /* punpcklbw */
7384 case 0x0f61: /* punpcklwd */
7385 case 0x0f62: /* punpckldq */
7386 case 0x0f63: /* packsswb */
7387 case 0x0f64: /* pcmpgtb */
7388 case 0x0f65: /* pcmpgtw */
7389 case 0x0f66: /* pcmpgtd */
7390 case 0x0f67: /* packuswb */
7391 case 0x0f68: /* punpckhbw */
7392 case 0x0f69: /* punpckhwd */
7393 case 0x0f6a: /* punpckhdq */
7394 case 0x0f6b: /* packssdw */
7395 case 0x0f6e: /* movd */
7396 case 0x0f6f: /* movq */
7397 case 0x0f70: /* pshufw */
7398 case 0x0f74: /* pcmpeqb */
7399 case 0x0f75: /* pcmpeqw */
7400 case 0x0f76: /* pcmpeqd */
7401 case 0x0fc4: /* pinsrw */
7402 case 0x0fd1: /* psrlw */
7403 case 0x0fd2: /* psrld */
7404 case 0x0fd3: /* psrlq */
7405 case 0x0fd4: /* paddq */
7406 case 0x0fd5: /* pmullw */
7407 case 0xf20fd6: /* movdq2q */
7408 case 0x0fd8: /* psubusb */
7409 case 0x0fd9: /* psubusw */
7410 case 0x0fda: /* pminub */
7411 case 0x0fdb: /* pand */
7412 case 0x0fdc: /* paddusb */
7413 case 0x0fdd: /* paddusw */
7414 case 0x0fde: /* pmaxub */
7415 case 0x0fdf: /* pandn */
7416 case 0x0fe0: /* pavgb */
7417 case 0x0fe1: /* psraw */
7418 case 0x0fe2: /* psrad */
7419 case 0x0fe3: /* pavgw */
7420 case 0x0fe4: /* pmulhuw */
7421 case 0x0fe5: /* pmulhw */
7422 case 0x0fe8: /* psubsb */
7423 case 0x0fe9: /* psubsw */
7424 case 0x0fea: /* pminsw */
7425 case 0x0feb: /* por */
7426 case 0x0fec: /* paddsb */
7427 case 0x0fed: /* paddsw */
7428 case 0x0fee: /* pmaxsw */
7429 case 0x0fef: /* pxor */
7430 case 0x0ff1: /* psllw */
7431 case 0x0ff2: /* pslld */
7432 case 0x0ff3: /* psllq */
7433 case 0x0ff4: /* pmuludq */
7434 case 0x0ff5: /* pmaddwd */
7435 case 0x0ff6: /* psadbw */
7436 case 0x0ff8: /* psubb */
7437 case 0x0ff9: /* psubw */
7438 case 0x0ffa: /* psubd */
7439 case 0x0ffb: /* psubq */
7440 case 0x0ffc: /* paddb */
7441 case 0x0ffd: /* paddw */
7442 case 0x0ffe: /* paddd */
7443 if (i386_record_modrm (&ir))
7444 return -1;
7445 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7446 goto no_support;
7447 record_full_arch_list_add_reg (ir.regcache,
7448 I387_MM0_REGNUM (tdep) + ir.reg);
7449 break;
7450
7451 case 0x0f71: /* psllw */
7452 case 0x0f72: /* pslld */
7453 case 0x0f73: /* psllq */
7454 if (i386_record_modrm (&ir))
7455 return -1;
7456 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7457 goto no_support;
7458 record_full_arch_list_add_reg (ir.regcache,
7459 I387_MM0_REGNUM (tdep) + ir.rm);
7460 break;
7461
7462 case 0x660f71: /* psllw */
7463 case 0x660f72: /* pslld */
7464 case 0x660f73: /* psllq */
7465 if (i386_record_modrm (&ir))
7466 return -1;
7467 ir.rm |= ir.rex_b;
7468 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7469 goto no_support;
7470 record_full_arch_list_add_reg (ir.regcache,
7471 I387_XMM0_REGNUM (tdep) + ir.rm);
7472 break;
7473
7474 case 0x0f7e: /* movd */
7475 case 0x660f7e: /* movd */
7476 if (i386_record_modrm (&ir))
7477 return -1;
7478 if (ir.mod == 3)
7479 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7480 else
7481 {
7482 if (ir.dflag == 2)
7483 ir.ot = OT_QUAD;
7484 else
7485 ir.ot = OT_LONG;
7486 if (i386_record_lea_modrm (&ir))
7487 return -1;
7488 }
7489 break;
7490
7491 case 0x0f7f: /* movq */
7492 if (i386_record_modrm (&ir))
7493 return -1;
7494 if (ir.mod == 3)
7495 {
7496 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7497 goto no_support;
7498 record_full_arch_list_add_reg (ir.regcache,
7499 I387_MM0_REGNUM (tdep) + ir.rm);
7500 }
7501 else
7502 {
7503 ir.ot = OT_QUAD;
7504 if (i386_record_lea_modrm (&ir))
7505 return -1;
7506 }
7507 break;
7508
7509 case 0xf30fb8: /* popcnt */
7510 if (i386_record_modrm (&ir))
7511 return -1;
7512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7513 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7514 break;
7515
7516 case 0x660fd6: /* movq */
7517 if (i386_record_modrm (&ir))
7518 return -1;
7519 if (ir.mod == 3)
7520 {
7521 ir.rm |= ir.rex_b;
7522 if (!i386_xmm_regnum_p (gdbarch,
7523 I387_XMM0_REGNUM (tdep) + ir.rm))
7524 goto no_support;
7525 record_full_arch_list_add_reg (ir.regcache,
7526 I387_XMM0_REGNUM (tdep) + ir.rm);
7527 }
7528 else
7529 {
7530 ir.ot = OT_QUAD;
7531 if (i386_record_lea_modrm (&ir))
7532 return -1;
7533 }
7534 break;
7535
7536 case 0x660f3817: /* ptest */
7537 case 0x0f2e: /* ucomiss */
7538 case 0x660f2e: /* ucomisd */
7539 case 0x0f2f: /* comiss */
7540 case 0x660f2f: /* comisd */
7541 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7542 break;
7543
7544 case 0x0ff7: /* maskmovq */
7545 regcache_raw_read_unsigned (ir.regcache,
7546 ir.regmap[X86_RECORD_REDI_REGNUM],
7547 &addr);
7548 if (record_full_arch_list_add_mem (addr, 64))
7549 return -1;
7550 break;
7551
7552 case 0x660ff7: /* maskmovdqu */
7553 regcache_raw_read_unsigned (ir.regcache,
7554 ir.regmap[X86_RECORD_REDI_REGNUM],
7555 &addr);
7556 if (record_full_arch_list_add_mem (addr, 128))
7557 return -1;
7558 break;
7559
7560 default:
7561 goto no_support;
7562 break;
7563 }
7564 break;
7565
7566 default:
7567 goto no_support;
7568 break;
7569 }
7570
7571 /* In the future, maybe still need to deal with need_dasm. */
7572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7573 if (record_full_arch_list_add_end ())
7574 return -1;
7575
7576 return 0;
7577
7578 no_support:
7579 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7580 "at address %s.\n"),
7581 (unsigned int) (opcode),
7582 paddress (gdbarch, ir.orig_addr));
7583 return -1;
7584 }
7585
7586 static const int i386_record_regmap[] =
7587 {
7588 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7589 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7590 0, 0, 0, 0, 0, 0, 0, 0,
7591 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7592 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7593 };
7594
7595 /* Check that the given address appears suitable for a fast
7596 tracepoint, which on x86-64 means that we need an instruction of at
7597 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7598 jump and not have to worry about program jumps to an address in the
7599 middle of the tracepoint jump. On x86, it may be possible to use
7600 4-byte jumps with a 2-byte offset to a trampoline located in the
7601 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7602 of instruction to replace, and 0 if not, plus an explanatory
7603 string. */
7604
7605 static int
7606 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7607 CORE_ADDR addr, int *isize, char **msg)
7608 {
7609 int len, jumplen;
7610 static struct ui_file *gdb_null = NULL;
7611
7612 /* Ask the target for the minimum instruction length supported. */
7613 jumplen = target_get_min_fast_tracepoint_insn_len ();
7614
7615 if (jumplen < 0)
7616 {
7617 /* If the target does not support the get_min_fast_tracepoint_insn_len
7618 operation, assume that fast tracepoints will always be implemented
7619 using 4-byte relative jumps on both x86 and x86-64. */
7620 jumplen = 5;
7621 }
7622 else if (jumplen == 0)
7623 {
7624 /* If the target does support get_min_fast_tracepoint_insn_len but
7625 returns zero, then the IPA has not loaded yet. In this case,
7626 we optimistically assume that truncated 2-byte relative jumps
7627 will be available on x86, and compensate later if this assumption
7628 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7629 jumps will always be used. */
7630 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7631 }
7632
7633 /* Dummy file descriptor for the disassembler. */
7634 if (!gdb_null)
7635 gdb_null = ui_file_new ();
7636
7637 /* Check for fit. */
7638 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7639 if (isize)
7640 *isize = len;
7641
7642 if (len < jumplen)
7643 {
7644 /* Return a bit of target-specific detail to add to the caller's
7645 generic failure message. */
7646 if (msg)
7647 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7648 "need at least %d bytes for the jump"),
7649 len, jumplen);
7650 return 0;
7651 }
7652 else
7653 {
7654 if (msg)
7655 *msg = NULL;
7656 return 1;
7657 }
7658 }
7659
7660 static int
7661 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7662 struct tdesc_arch_data *tdesc_data)
7663 {
7664 const struct target_desc *tdesc = tdep->tdesc;
7665 const struct tdesc_feature *feature_core;
7666 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7667 int i, num_regs, valid_p;
7668
7669 if (! tdesc_has_registers (tdesc))
7670 return 0;
7671
7672 /* Get core registers. */
7673 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7674 if (feature_core == NULL)
7675 return 0;
7676
7677 /* Get SSE registers. */
7678 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7679
7680 /* Try AVX registers. */
7681 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7682
7683 /* Try MPX registers. */
7684 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7685
7686 valid_p = 1;
7687
7688 /* The XCR0 bits. */
7689 if (feature_avx)
7690 {
7691 /* AVX register description requires SSE register description. */
7692 if (!feature_sse)
7693 return 0;
7694
7695 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7696
7697 /* It may have been set by OSABI initialization function. */
7698 if (tdep->num_ymm_regs == 0)
7699 {
7700 tdep->ymmh_register_names = i386_ymmh_names;
7701 tdep->num_ymm_regs = 8;
7702 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7703 }
7704
7705 for (i = 0; i < tdep->num_ymm_regs; i++)
7706 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7707 tdep->ymm0h_regnum + i,
7708 tdep->ymmh_register_names[i]);
7709 }
7710 else if (feature_sse)
7711 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7712 else
7713 {
7714 tdep->xcr0 = I386_XSTATE_X87_MASK;
7715 tdep->num_xmm_regs = 0;
7716 }
7717
7718 num_regs = tdep->num_core_regs;
7719 for (i = 0; i < num_regs; i++)
7720 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7721 tdep->register_names[i]);
7722
7723 if (feature_sse)
7724 {
7725 /* Need to include %mxcsr, so add one. */
7726 num_regs += tdep->num_xmm_regs + 1;
7727 for (; i < num_regs; i++)
7728 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7729 tdep->register_names[i]);
7730 }
7731
7732 if (feature_mpx)
7733 {
7734 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7735
7736 if (tdep->bnd0r_regnum < 0)
7737 {
7738 tdep->mpx_register_names = i386_mpx_names;
7739 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7740 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7741 }
7742
7743 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7744 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7745 I387_BND0R_REGNUM (tdep) + i,
7746 tdep->mpx_register_names[i]);
7747 }
7748
7749 return valid_p;
7750 }
7751
7752 \f
7753 static struct gdbarch *
7754 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7755 {
7756 struct gdbarch_tdep *tdep;
7757 struct gdbarch *gdbarch;
7758 struct tdesc_arch_data *tdesc_data;
7759 const struct target_desc *tdesc;
7760 int mm0_regnum;
7761 int ymm0_regnum;
7762 int bnd0_regnum;
7763 int num_bnd_cooked;
7764
7765 /* If there is already a candidate, use it. */
7766 arches = gdbarch_list_lookup_by_info (arches, &info);
7767 if (arches != NULL)
7768 return arches->gdbarch;
7769
7770 /* Allocate space for the new architecture. */
7771 tdep = XCALLOC (1, struct gdbarch_tdep);
7772 gdbarch = gdbarch_alloc (&info, tdep);
7773
7774 /* General-purpose registers. */
7775 tdep->gregset = NULL;
7776 tdep->gregset_reg_offset = NULL;
7777 tdep->gregset_num_regs = I386_NUM_GREGS;
7778 tdep->sizeof_gregset = 0;
7779
7780 /* Floating-point registers. */
7781 tdep->fpregset = NULL;
7782 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7783
7784 tdep->xstateregset = NULL;
7785
7786 /* The default settings include the FPU registers, the MMX registers
7787 and the SSE registers. This can be overridden for a specific ABI
7788 by adjusting the members `st0_regnum', `mm0_regnum' and
7789 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7790 will show up in the output of "info all-registers". */
7791
7792 tdep->st0_regnum = I386_ST0_REGNUM;
7793
7794 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7795 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7796
7797 tdep->jb_pc_offset = -1;
7798 tdep->struct_return = pcc_struct_return;
7799 tdep->sigtramp_start = 0;
7800 tdep->sigtramp_end = 0;
7801 tdep->sigtramp_p = i386_sigtramp_p;
7802 tdep->sigcontext_addr = NULL;
7803 tdep->sc_reg_offset = NULL;
7804 tdep->sc_pc_offset = -1;
7805 tdep->sc_sp_offset = -1;
7806
7807 tdep->xsave_xcr0_offset = -1;
7808
7809 tdep->record_regmap = i386_record_regmap;
7810
7811 set_gdbarch_long_long_align_bit (gdbarch, 32);
7812
7813 /* The format used for `long double' on almost all i386 targets is
7814 the i387 extended floating-point format. In fact, of all targets
7815 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7816 on having a `long double' that's not `long' at all. */
7817 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7818
7819 /* Although the i387 extended floating-point has only 80 significant
7820 bits, a `long double' actually takes up 96, probably to enforce
7821 alignment. */
7822 set_gdbarch_long_double_bit (gdbarch, 96);
7823
7824 /* Register numbers of various important registers. */
7825 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7826 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7827 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7828 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7829
7830 /* NOTE: kettenis/20040418: GCC does have two possible register
7831 numbering schemes on the i386: dbx and SVR4. These schemes
7832 differ in how they number %ebp, %esp, %eflags, and the
7833 floating-point registers, and are implemented by the arrays
7834 dbx_register_map[] and svr4_dbx_register_map in
7835 gcc/config/i386.c. GCC also defines a third numbering scheme in
7836 gcc/config/i386.c, which it designates as the "default" register
7837 map used in 64bit mode. This last register numbering scheme is
7838 implemented in dbx64_register_map, and is used for AMD64; see
7839 amd64-tdep.c.
7840
7841 Currently, each GCC i386 target always uses the same register
7842 numbering scheme across all its supported debugging formats
7843 i.e. SDB (COFF), stabs and DWARF 2. This is because
7844 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7845 DBX_REGISTER_NUMBER macro which is defined by each target's
7846 respective config header in a manner independent of the requested
7847 output debugging format.
7848
7849 This does not match the arrangement below, which presumes that
7850 the SDB and stabs numbering schemes differ from the DWARF and
7851 DWARF 2 ones. The reason for this arrangement is that it is
7852 likely to get the numbering scheme for the target's
7853 default/native debug format right. For targets where GCC is the
7854 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7855 targets where the native toolchain uses a different numbering
7856 scheme for a particular debug format (stabs-in-ELF on Solaris)
7857 the defaults below will have to be overridden, like
7858 i386_elf_init_abi() does. */
7859
7860 /* Use the dbx register numbering scheme for stabs and COFF. */
7861 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7862 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7863
7864 /* Use the SVR4 register numbering scheme for DWARF 2. */
7865 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7866
7867 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7868 be in use on any of the supported i386 targets. */
7869
7870 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7871
7872 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7873
7874 /* Call dummy code. */
7875 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7876 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7877 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7878 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7879
7880 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7881 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7882 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7883
7884 set_gdbarch_return_value (gdbarch, i386_return_value);
7885
7886 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7887
7888 /* Stack grows downward. */
7889 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7890
7891 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7892 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7893 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7894
7895 set_gdbarch_frame_args_skip (gdbarch, 8);
7896
7897 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7898
7899 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7900
7901 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7902
7903 /* Add the i386 register groups. */
7904 i386_add_reggroups (gdbarch);
7905 tdep->register_reggroup_p = i386_register_reggroup_p;
7906
7907 /* Helper for function argument information. */
7908 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7909
7910 /* Hook the function epilogue frame unwinder. This unwinder is
7911 appended to the list first, so that it supercedes the DWARF
7912 unwinder in function epilogues (where the DWARF unwinder
7913 currently fails). */
7914 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7915
7916 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7917 to the list before the prologue-based unwinders, so that DWARF
7918 CFI info will be used if it is available. */
7919 dwarf2_append_unwinders (gdbarch);
7920
7921 frame_base_set_default (gdbarch, &i386_frame_base);
7922
7923 /* Pseudo registers may be changed by amd64_init_abi. */
7924 set_gdbarch_pseudo_register_read_value (gdbarch,
7925 i386_pseudo_register_read_value);
7926 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7927
7928 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7929 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7930
7931 /* Override the normal target description method to make the AVX
7932 upper halves anonymous. */
7933 set_gdbarch_register_name (gdbarch, i386_register_name);
7934
7935 /* Even though the default ABI only includes general-purpose registers,
7936 floating-point registers and the SSE registers, we have to leave a
7937 gap for the upper AVX registers and the MPX registers. */
7938 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
7939
7940 /* Get the x86 target description from INFO. */
7941 tdesc = info.target_desc;
7942 if (! tdesc_has_registers (tdesc))
7943 tdesc = tdesc_i386;
7944 tdep->tdesc = tdesc;
7945
7946 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7947 tdep->register_names = i386_register_names;
7948
7949 /* No upper YMM registers. */
7950 tdep->ymmh_register_names = NULL;
7951 tdep->ymm0h_regnum = -1;
7952
7953 tdep->num_byte_regs = 8;
7954 tdep->num_word_regs = 8;
7955 tdep->num_dword_regs = 0;
7956 tdep->num_mmx_regs = 8;
7957 tdep->num_ymm_regs = 0;
7958
7959 /* No MPX registers. */
7960 tdep->bnd0r_regnum = -1;
7961 tdep->bndcfgu_regnum = -1;
7962
7963 tdesc_data = tdesc_data_alloc ();
7964
7965 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7966
7967 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7968
7969 /* Hook in ABI-specific overrides, if they have been registered. */
7970 info.tdep_info = (void *) tdesc_data;
7971 gdbarch_init_osabi (info, gdbarch);
7972
7973 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7974 {
7975 tdesc_data_cleanup (tdesc_data);
7976 xfree (tdep);
7977 gdbarch_free (gdbarch);
7978 return NULL;
7979 }
7980
7981 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
7982
7983 /* Wire in pseudo registers. Number of pseudo registers may be
7984 changed. */
7985 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7986 + tdep->num_word_regs
7987 + tdep->num_dword_regs
7988 + tdep->num_mmx_regs
7989 + tdep->num_ymm_regs
7990 + num_bnd_cooked));
7991
7992 /* Target description may be changed. */
7993 tdesc = tdep->tdesc;
7994
7995 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7996
7997 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7998 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7999
8000 /* Make %al the first pseudo-register. */
8001 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8002 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8003
8004 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8005 if (tdep->num_dword_regs)
8006 {
8007 /* Support dword pseudo-register if it hasn't been disabled. */
8008 tdep->eax_regnum = ymm0_regnum;
8009 ymm0_regnum += tdep->num_dword_regs;
8010 }
8011 else
8012 tdep->eax_regnum = -1;
8013
8014 mm0_regnum = ymm0_regnum;
8015 if (tdep->num_ymm_regs)
8016 {
8017 /* Support YMM pseudo-register if it is available. */
8018 tdep->ymm0_regnum = ymm0_regnum;
8019 mm0_regnum += tdep->num_ymm_regs;
8020 }
8021 else
8022 tdep->ymm0_regnum = -1;
8023
8024 bnd0_regnum = mm0_regnum;
8025 if (tdep->num_mmx_regs != 0)
8026 {
8027 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8028 tdep->mm0_regnum = mm0_regnum;
8029 bnd0_regnum += tdep->num_mmx_regs;
8030 }
8031 else
8032 tdep->mm0_regnum = -1;
8033
8034 if (tdep->bnd0r_regnum > 0)
8035 tdep->bnd0_regnum = bnd0_regnum;
8036 else
8037 tdep-> bnd0_regnum = -1;
8038
8039 /* Hook in the legacy prologue-based unwinders last (fallback). */
8040 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8041 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8042 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8043
8044 /* If we have a register mapping, enable the generic core file
8045 support, unless it has already been enabled. */
8046 if (tdep->gregset_reg_offset
8047 && !gdbarch_regset_from_core_section_p (gdbarch))
8048 set_gdbarch_regset_from_core_section (gdbarch,
8049 i386_regset_from_core_section);
8050
8051 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8052 i386_skip_permanent_breakpoint);
8053
8054 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8055 i386_fast_tracepoint_valid_at);
8056
8057 return gdbarch;
8058 }
8059
8060 static enum gdb_osabi
8061 i386_coff_osabi_sniffer (bfd *abfd)
8062 {
8063 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8064 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8065 return GDB_OSABI_GO32;
8066
8067 return GDB_OSABI_UNKNOWN;
8068 }
8069 \f
8070
8071 /* Provide a prototype to silence -Wmissing-prototypes. */
8072 void _initialize_i386_tdep (void);
8073
8074 void
8075 _initialize_i386_tdep (void)
8076 {
8077 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8078
8079 /* Add the variable that controls the disassembly flavor. */
8080 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8081 &disassembly_flavor, _("\
8082 Set the disassembly flavor."), _("\
8083 Show the disassembly flavor."), _("\
8084 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8085 NULL,
8086 NULL, /* FIXME: i18n: */
8087 &setlist, &showlist);
8088
8089 /* Add the variable that controls the convention for returning
8090 structs. */
8091 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8092 &struct_convention, _("\
8093 Set the convention for returning small structs."), _("\
8094 Show the convention for returning small structs."), _("\
8095 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8096 is \"default\"."),
8097 NULL,
8098 NULL, /* FIXME: i18n: */
8099 &setlist, &showlist);
8100
8101 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8102 i386_coff_osabi_sniffer);
8103
8104 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8105 i386_svr4_init_abi);
8106 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8107 i386_go32_init_abi);
8108
8109 /* Initialize the i386-specific register groups. */
8110 i386_init_reggroups ();
8111
8112 /* Initialize the standard target descriptions. */
8113 initialize_tdesc_i386 ();
8114 initialize_tdesc_i386_mmx ();
8115 initialize_tdesc_i386_avx ();
8116 initialize_tdesc_i386_mpx ();
8117
8118 /* Tell remote stub that we support XML target description. */
8119 register_remote_support_xml ("i386");
8120 }