* i386-tdep.h (i386_supply_gregset): Provide prototype.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "floatformat.h"
30 #include "frame.h"
31 #include "frame-base.h"
32 #include "frame-unwind.h"
33 #include "inferior.h"
34 #include "gdbcmd.h"
35 #include "gdbcore.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52
53 /* Names of the registers. The first 10 registers match the register
54 numbering scheme used by GCC for stabs and DWARF. */
55
56 static char *i386_register_names[] =
57 {
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69 };
70
71 static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
72
73 /* MMX registers. */
74
75 static char *i386_mmx_names[] =
76 {
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79 };
80
81 static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
82
83 static int
84 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
85 {
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
92 }
93
94 /* SSE register? */
95
96 static int
97 i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
98 {
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101 #define I387_ST0_REGNUM tdep->st0_regnum
102 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109 #undef I387_ST0_REGNUM
110 #undef I387_NUM_XMM_REGS
111 }
112
113 static int
114 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
115 {
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118 #define I387_ST0_REGNUM tdep->st0_regnum
119 #define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126 #undef I387_ST0_REGNUM
127 #undef I387_NUM_XMM_REGS
128 }
129
130 #define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131 #define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132 #define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134 /* FP register? */
135
136 int
137 i386_fp_regnum_p (int regnum)
138 {
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
143 }
144
145 int
146 i386_fpc_regnum_p (int regnum)
147 {
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
152 }
153
154 /* Return the name of register REG. */
155
156 const char *
157 i386_register_name (int reg)
158 {
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
161
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
165 return NULL;
166 }
167
168 /* Convert stabs register number REG to the appropriate register
169 number used by GDB. */
170
171 static int
172 i386_stab_reg_to_regnum (int reg)
173 {
174 /* This implements what GCC calls the "default" register map. */
175 if (reg >= 0 && reg <= 7)
176 {
177 /* General-purpose registers. */
178 return reg;
179 }
180 else if (reg >= 12 && reg <= 19)
181 {
182 /* Floating-point registers. */
183 return reg - 12 + I387_ST0_REGNUM;
184 }
185 else if (reg >= 21 && reg <= 28)
186 {
187 /* SSE registers. */
188 return reg - 21 + I387_XMM0_REGNUM;
189 }
190 else if (reg >= 29 && reg <= 36)
191 {
192 /* MMX registers. */
193 return reg - 29 + I387_MM0_REGNUM;
194 }
195
196 /* This will hopefully provoke a warning. */
197 return NUM_REGS + NUM_PSEUDO_REGS;
198 }
199
200 /* Convert DWARF register number REG to the appropriate register
201 number used by GDB. */
202
203 static int
204 i386_dwarf_reg_to_regnum (int reg)
205 {
206 /* The DWARF register numbering includes %eip and %eflags, and
207 numbers the floating point registers differently. */
208 if (reg >= 0 && reg <= 9)
209 {
210 /* General-purpose registers. */
211 return reg;
212 }
213 else if (reg >= 11 && reg <= 18)
214 {
215 /* Floating-point registers. */
216 return reg - 11 + I387_ST0_REGNUM;
217 }
218 else if (reg >= 21)
219 {
220 /* The SSE and MMX registers have identical numbers as in stabs. */
221 return i386_stab_reg_to_regnum (reg);
222 }
223
224 /* This will hopefully provoke a warning. */
225 return NUM_REGS + NUM_PSEUDO_REGS;
226 }
227
228 #undef I387_ST0_REGNUM
229 #undef I387_MM0_REGNUM
230 #undef I387_NUM_XMM_REGS
231 \f
232
233 /* This is the variable that is set with "set disassembly-flavor", and
234 its legitimate values. */
235 static const char att_flavor[] = "att";
236 static const char intel_flavor[] = "intel";
237 static const char *valid_flavors[] =
238 {
239 att_flavor,
240 intel_flavor,
241 NULL
242 };
243 static const char *disassembly_flavor = att_flavor;
244 \f
245
246 /* Use the program counter to determine the contents and size of a
247 breakpoint instruction. Return a pointer to a string of bytes that
248 encode a breakpoint instruction, store the length of the string in
249 *LEN and optionally adjust *PC to point to the correct memory
250 location for inserting the breakpoint.
251
252 On the i386 we have a single breakpoint that fits in a single byte
253 and can be inserted anywhere.
254
255 This function is 64-bit safe. */
256
257 static const unsigned char *
258 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
259 {
260 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
261
262 *len = sizeof (break_insn);
263 return break_insn;
264 }
265 \f
266 #ifdef I386_REGNO_TO_SYMMETRY
267 #error "The Sequent Symmetry is no longer supported."
268 #endif
269
270 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
271 and %esp "belong" to the calling function. Therefore these
272 registers should be saved if they're going to be modified. */
273
274 /* The maximum number of saved registers. This should include all
275 registers mentioned above, and %eip. */
276 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
277
278 struct i386_frame_cache
279 {
280 /* Base address. */
281 CORE_ADDR base;
282 CORE_ADDR sp_offset;
283 CORE_ADDR pc;
284
285 /* Saved registers. */
286 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
287 CORE_ADDR saved_sp;
288 int pc_in_eax;
289
290 /* Stack space reserved for local variables. */
291 long locals;
292 };
293
294 /* Allocate and initialize a frame cache. */
295
296 static struct i386_frame_cache *
297 i386_alloc_frame_cache (void)
298 {
299 struct i386_frame_cache *cache;
300 int i;
301
302 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
303
304 /* Base address. */
305 cache->base = 0;
306 cache->sp_offset = -4;
307 cache->pc = 0;
308
309 /* Saved registers. We initialize these to -1 since zero is a valid
310 offset (that's where %ebp is supposed to be stored). */
311 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
312 cache->saved_regs[i] = -1;
313 cache->saved_sp = 0;
314 cache->pc_in_eax = 0;
315
316 /* Frameless until proven otherwise. */
317 cache->locals = -1;
318
319 return cache;
320 }
321
322 /* If the instruction at PC is a jump, return the address of its
323 target. Otherwise, return PC. */
324
325 static CORE_ADDR
326 i386_follow_jump (CORE_ADDR pc)
327 {
328 unsigned char op;
329 long delta = 0;
330 int data16 = 0;
331
332 op = read_memory_unsigned_integer (pc, 1);
333 if (op == 0x66)
334 {
335 data16 = 1;
336 op = read_memory_unsigned_integer (pc + 1, 1);
337 }
338
339 switch (op)
340 {
341 case 0xe9:
342 /* Relative jump: if data16 == 0, disp32, else disp16. */
343 if (data16)
344 {
345 delta = read_memory_integer (pc + 2, 2);
346
347 /* Include the size of the jmp instruction (including the
348 0x66 prefix). */
349 delta += 4;
350 }
351 else
352 {
353 delta = read_memory_integer (pc + 1, 4);
354
355 /* Include the size of the jmp instruction. */
356 delta += 5;
357 }
358 break;
359 case 0xeb:
360 /* Relative jump, disp8 (ignore data16). */
361 delta = read_memory_integer (pc + data16 + 1, 1);
362
363 delta += data16 + 2;
364 break;
365 }
366
367 return pc + delta;
368 }
369
370 /* Check whether PC points at a prologue for a function returning a
371 structure or union. If so, it updates CACHE and returns the
372 address of the first instruction after the code sequence that
373 removes the "hidden" argument from the stack or CURRENT_PC,
374 whichever is smaller. Otherwise, return PC. */
375
376 static CORE_ADDR
377 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
378 struct i386_frame_cache *cache)
379 {
380 /* Functions that return a structure or union start with:
381
382 popl %eax 0x58
383 xchgl %eax, (%esp) 0x87 0x04 0x24
384 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
385
386 (the System V compiler puts out the second `xchg' instruction,
387 and the assembler doesn't try to optimize it, so the 'sib' form
388 gets generated). This sequence is used to get the address of the
389 return buffer for a function that returns a structure. */
390 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
391 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
392 unsigned char buf[4];
393 unsigned char op;
394
395 if (current_pc <= pc)
396 return pc;
397
398 op = read_memory_unsigned_integer (pc, 1);
399
400 if (op != 0x58) /* popl %eax */
401 return pc;
402
403 read_memory (pc + 1, buf, 4);
404 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
405 return pc;
406
407 if (current_pc == pc)
408 {
409 cache->sp_offset += 4;
410 return current_pc;
411 }
412
413 if (current_pc == pc + 1)
414 {
415 cache->pc_in_eax = 1;
416 return current_pc;
417 }
418
419 if (buf[1] == proto1[1])
420 return pc + 4;
421 else
422 return pc + 5;
423 }
424
425 static CORE_ADDR
426 i386_skip_probe (CORE_ADDR pc)
427 {
428 /* A function may start with
429
430 pushl constant
431 call _probe
432 addl $4, %esp
433
434 followed by
435
436 pushl %ebp
437
438 etc. */
439 unsigned char buf[8];
440 unsigned char op;
441
442 op = read_memory_unsigned_integer (pc, 1);
443
444 if (op == 0x68 || op == 0x6a)
445 {
446 int delta;
447
448 /* Skip past the `pushl' instruction; it has either a one-byte or a
449 four-byte operand, depending on the opcode. */
450 if (op == 0x68)
451 delta = 5;
452 else
453 delta = 2;
454
455 /* Read the following 8 bytes, which should be `call _probe' (6
456 bytes) followed by `addl $4,%esp' (2 bytes). */
457 read_memory (pc + delta, buf, sizeof (buf));
458 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
459 pc += delta + sizeof (buf);
460 }
461
462 return pc;
463 }
464
465 /* Check whether PC points at a code that sets up a new stack frame.
466 If so, it updates CACHE and returns the address of the first
467 instruction after the sequence that sets removes the "hidden"
468 argument from the stack or CURRENT_PC, whichever is smaller.
469 Otherwise, return PC. */
470
471 static CORE_ADDR
472 i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
473 struct i386_frame_cache *cache)
474 {
475 unsigned char op;
476 int skip = 0;
477
478 if (current_pc <= pc)
479 return current_pc;
480
481 op = read_memory_unsigned_integer (pc, 1);
482
483 if (op == 0x55) /* pushl %ebp */
484 {
485 /* Take into account that we've executed the `pushl %ebp' that
486 starts this instruction sequence. */
487 cache->saved_regs[I386_EBP_REGNUM] = 0;
488 cache->sp_offset += 4;
489
490 /* If that's all, return now. */
491 if (current_pc <= pc + 1)
492 return current_pc;
493
494 op = read_memory_unsigned_integer (pc + 1, 1);
495
496 /* Check for some special instructions that might be migrated
497 by GCC into the prologue. We check for
498
499 xorl %ebx, %ebx
500 xorl %ecx, %ecx
501 xorl %edx, %edx
502 xorl %eax, %eax
503
504 and the equivalent
505
506 subl %ebx, %ebx
507 subl %ecx, %ecx
508 subl %edx, %edx
509 subl %eax, %eax
510
511 Make sure we only skip these instructions if we later see the
512 `movl %esp, %ebp' that actually sets up the frame. */
513 while (op == 0x29 || op == 0x31)
514 {
515 op = read_memory_unsigned_integer (pc + skip + 2, 1);
516 switch (op)
517 {
518 case 0xdb: /* %ebx */
519 case 0xc9: /* %ecx */
520 case 0xd2: /* %edx */
521 case 0xc0: /* %eax */
522 skip += 2;
523 break;
524 default:
525 return pc + 1;
526 }
527
528 op = read_memory_unsigned_integer (pc + skip + 1, 1);
529 }
530
531 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
532 switch (op)
533 {
534 case 0x8b:
535 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
536 return pc + 1;
537 break;
538 case 0x89:
539 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
540 return pc + 1;
541 break;
542 default:
543 return pc + 1;
544 }
545
546 /* OK, we actually have a frame. We just don't know how large
547 it is yet. Set its size to zero. We'll adjust it if
548 necessary. We also now commit to skipping the special
549 instructions mentioned before. */
550 cache->locals = 0;
551 pc += skip;
552
553 /* If that's all, return now. */
554 if (current_pc <= pc + 3)
555 return current_pc;
556
557 /* Check for stack adjustment
558
559 subl $XXX, %esp
560
561 NOTE: You can't subtract a 16 bit immediate from a 32 bit
562 reg, so we don't have to worry about a data16 prefix. */
563 op = read_memory_unsigned_integer (pc + 3, 1);
564 if (op == 0x83)
565 {
566 /* `subl' with 8 bit immediate. */
567 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
568 /* Some instruction starting with 0x83 other than `subl'. */
569 return pc + 3;
570
571 /* `subl' with signed byte immediate (though it wouldn't make
572 sense to be negative). */
573 cache->locals = read_memory_integer (pc + 5, 1);
574 return pc + 6;
575 }
576 else if (op == 0x81)
577 {
578 /* Maybe it is `subl' with a 32 bit immedediate. */
579 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
580 /* Some instruction starting with 0x81 other than `subl'. */
581 return pc + 3;
582
583 /* It is `subl' with a 32 bit immediate. */
584 cache->locals = read_memory_integer (pc + 5, 4);
585 return pc + 9;
586 }
587 else
588 {
589 /* Some instruction other than `subl'. */
590 return pc + 3;
591 }
592 }
593 else if (op == 0xc8) /* enter $XXX */
594 {
595 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
596 return pc + 4;
597 }
598
599 return pc;
600 }
601
602 /* Check whether PC points at code that saves registers on the stack.
603 If so, it updates CACHE and returns the address of the first
604 instruction after the register saves or CURRENT_PC, whichever is
605 smaller. Otherwise, return PC. */
606
607 static CORE_ADDR
608 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
609 struct i386_frame_cache *cache)
610 {
611 CORE_ADDR offset = 0;
612 unsigned char op;
613 int i;
614
615 if (cache->locals > 0)
616 offset -= cache->locals;
617 for (i = 0; i < 8 && pc < current_pc; i++)
618 {
619 op = read_memory_unsigned_integer (pc, 1);
620 if (op < 0x50 || op > 0x57)
621 break;
622
623 offset -= 4;
624 cache->saved_regs[op - 0x50] = offset;
625 cache->sp_offset += 4;
626 pc++;
627 }
628
629 return pc;
630 }
631
632 /* Do a full analysis of the prologue at PC and update CACHE
633 accordingly. Bail out early if CURRENT_PC is reached. Return the
634 address where the analysis stopped.
635
636 We handle these cases:
637
638 The startup sequence can be at the start of the function, or the
639 function can start with a branch to startup code at the end.
640
641 %ebp can be set up with either the 'enter' instruction, or "pushl
642 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
643 once used in the System V compiler).
644
645 Local space is allocated just below the saved %ebp by either the
646 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
647 bit unsigned argument for space to allocate, and the 'addl'
648 instruction could have either a signed byte, or 32 bit immediate.
649
650 Next, the registers used by this function are pushed. With the
651 System V compiler they will always be in the order: %edi, %esi,
652 %ebx (and sometimes a harmless bug causes it to also save but not
653 restore %eax); however, the code below is willing to see the pushes
654 in any order, and will handle up to 8 of them.
655
656 If the setup sequence is at the end of the function, then the next
657 instruction will be a branch back to the start. */
658
659 static CORE_ADDR
660 i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
661 struct i386_frame_cache *cache)
662 {
663 pc = i386_follow_jump (pc);
664 pc = i386_analyze_struct_return (pc, current_pc, cache);
665 pc = i386_skip_probe (pc);
666 pc = i386_analyze_frame_setup (pc, current_pc, cache);
667 return i386_analyze_register_saves (pc, current_pc, cache);
668 }
669
670 /* Return PC of first real instruction. */
671
672 static CORE_ADDR
673 i386_skip_prologue (CORE_ADDR start_pc)
674 {
675 static unsigned char pic_pat[6] =
676 {
677 0xe8, 0, 0, 0, 0, /* call 0x0 */
678 0x5b, /* popl %ebx */
679 };
680 struct i386_frame_cache cache;
681 CORE_ADDR pc;
682 unsigned char op;
683 int i;
684
685 cache.locals = -1;
686 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
687 if (cache.locals < 0)
688 return start_pc;
689
690 /* Found valid frame setup. */
691
692 /* The native cc on SVR4 in -K PIC mode inserts the following code
693 to get the address of the global offset table (GOT) into register
694 %ebx:
695
696 call 0x0
697 popl %ebx
698 movl %ebx,x(%ebp) (optional)
699 addl y,%ebx
700
701 This code is with the rest of the prologue (at the end of the
702 function), so we have to skip it to get to the first real
703 instruction at the start of the function. */
704
705 for (i = 0; i < 6; i++)
706 {
707 op = read_memory_unsigned_integer (pc + i, 1);
708 if (pic_pat[i] != op)
709 break;
710 }
711 if (i == 6)
712 {
713 int delta = 6;
714
715 op = read_memory_unsigned_integer (pc + delta, 1);
716
717 if (op == 0x89) /* movl %ebx, x(%ebp) */
718 {
719 op = read_memory_unsigned_integer (pc + delta + 1, 1);
720
721 if (op == 0x5d) /* One byte offset from %ebp. */
722 delta += 3;
723 else if (op == 0x9d) /* Four byte offset from %ebp. */
724 delta += 6;
725 else /* Unexpected instruction. */
726 delta = 0;
727
728 op = read_memory_unsigned_integer (pc + delta, 1);
729 }
730
731 /* addl y,%ebx */
732 if (delta > 0 && op == 0x81
733 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
734 {
735 pc += delta + 6;
736 }
737 }
738
739 return i386_follow_jump (pc);
740 }
741
742 /* This function is 64-bit safe. */
743
744 static CORE_ADDR
745 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
746 {
747 char buf[8];
748
749 frame_unwind_register (next_frame, PC_REGNUM, buf);
750 return extract_typed_address (buf, builtin_type_void_func_ptr);
751 }
752 \f
753
754 /* Normal frames. */
755
756 static struct i386_frame_cache *
757 i386_frame_cache (struct frame_info *next_frame, void **this_cache)
758 {
759 struct i386_frame_cache *cache;
760 char buf[4];
761 int i;
762
763 if (*this_cache)
764 return *this_cache;
765
766 cache = i386_alloc_frame_cache ();
767 *this_cache = cache;
768
769 /* In principle, for normal frames, %ebp holds the frame pointer,
770 which holds the base address for the current stack frame.
771 However, for functions that don't need it, the frame pointer is
772 optional. For these "frameless" functions the frame pointer is
773 actually the frame pointer of the calling frame. Signal
774 trampolines are just a special case of a "frameless" function.
775 They (usually) share their frame pointer with the frame that was
776 in progress when the signal occurred. */
777
778 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
779 cache->base = extract_unsigned_integer (buf, 4);
780 if (cache->base == 0)
781 return cache;
782
783 /* For normal frames, %eip is stored at 4(%ebp). */
784 cache->saved_regs[I386_EIP_REGNUM] = 4;
785
786 cache->pc = frame_func_unwind (next_frame);
787 if (cache->pc != 0)
788 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
789
790 if (cache->locals < 0)
791 {
792 /* We didn't find a valid frame, which means that CACHE->base
793 currently holds the frame pointer for our calling frame. If
794 we're at the start of a function, or somewhere half-way its
795 prologue, the function's frame probably hasn't been fully
796 setup yet. Try to reconstruct the base address for the stack
797 frame by looking at the stack pointer. For truly "frameless"
798 functions this might work too. */
799
800 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
801 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
802 }
803
804 /* Now that we have the base address for the stack frame we can
805 calculate the value of %esp in the calling frame. */
806 cache->saved_sp = cache->base + 8;
807
808 /* Adjust all the saved registers such that they contain addresses
809 instead of offsets. */
810 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
811 if (cache->saved_regs[i] != -1)
812 cache->saved_regs[i] += cache->base;
813
814 return cache;
815 }
816
817 static void
818 i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
819 struct frame_id *this_id)
820 {
821 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
822
823 /* This marks the outermost frame. */
824 if (cache->base == 0)
825 return;
826
827 /* See the end of i386_push_dummy_call. */
828 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
829 }
830
831 static void
832 i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
833 int regnum, int *optimizedp,
834 enum lval_type *lvalp, CORE_ADDR *addrp,
835 int *realnump, void *valuep)
836 {
837 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
838
839 gdb_assert (regnum >= 0);
840
841 /* The System V ABI says that:
842
843 "The flags register contains the system flags, such as the
844 direction flag and the carry flag. The direction flag must be
845 set to the forward (that is, zero) direction before entry and
846 upon exit from a function. Other user flags have no specified
847 role in the standard calling sequence and are not preserved."
848
849 To guarantee the "upon exit" part of that statement we fake a
850 saved flags register that has its direction flag cleared.
851
852 Note that GCC doesn't seem to rely on the fact that the direction
853 flag is cleared after a function return; it always explicitly
854 clears the flag before operations where it matters.
855
856 FIXME: kettenis/20030316: I'm not quite sure whether this is the
857 right thing to do. The way we fake the flags register here makes
858 it impossible to change it. */
859
860 if (regnum == I386_EFLAGS_REGNUM)
861 {
862 *optimizedp = 0;
863 *lvalp = not_lval;
864 *addrp = 0;
865 *realnump = -1;
866 if (valuep)
867 {
868 ULONGEST val;
869
870 /* Clear the direction flag. */
871 val = frame_unwind_register_unsigned (next_frame,
872 I386_EFLAGS_REGNUM);
873 val &= ~(1 << 10);
874 store_unsigned_integer (valuep, 4, val);
875 }
876
877 return;
878 }
879
880 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
881 {
882 frame_register_unwind (next_frame, I386_EAX_REGNUM,
883 optimizedp, lvalp, addrp, realnump, valuep);
884 return;
885 }
886
887 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
888 {
889 *optimizedp = 0;
890 *lvalp = not_lval;
891 *addrp = 0;
892 *realnump = -1;
893 if (valuep)
894 {
895 /* Store the value. */
896 store_unsigned_integer (valuep, 4, cache->saved_sp);
897 }
898 return;
899 }
900
901 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
902 {
903 *optimizedp = 0;
904 *lvalp = lval_memory;
905 *addrp = cache->saved_regs[regnum];
906 *realnump = -1;
907 if (valuep)
908 {
909 /* Read the value in from memory. */
910 read_memory (*addrp, valuep,
911 register_size (current_gdbarch, regnum));
912 }
913 return;
914 }
915
916 frame_register_unwind (next_frame, regnum,
917 optimizedp, lvalp, addrp, realnump, valuep);
918 }
919
920 static const struct frame_unwind i386_frame_unwind =
921 {
922 NORMAL_FRAME,
923 i386_frame_this_id,
924 i386_frame_prev_register
925 };
926
927 static const struct frame_unwind *
928 i386_frame_sniffer (struct frame_info *next_frame)
929 {
930 return &i386_frame_unwind;
931 }
932 \f
933
934 /* Signal trampolines. */
935
936 static struct i386_frame_cache *
937 i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
938 {
939 struct i386_frame_cache *cache;
940 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
941 CORE_ADDR addr;
942 char buf[4];
943
944 if (*this_cache)
945 return *this_cache;
946
947 cache = i386_alloc_frame_cache ();
948
949 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
950 cache->base = extract_unsigned_integer (buf, 4) - 4;
951
952 addr = tdep->sigcontext_addr (next_frame);
953 if (tdep->sc_reg_offset)
954 {
955 int i;
956
957 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
958
959 for (i = 0; i < tdep->sc_num_regs; i++)
960 if (tdep->sc_reg_offset[i] != -1)
961 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
962 }
963 else
964 {
965 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
966 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
967 }
968
969 *this_cache = cache;
970 return cache;
971 }
972
973 static void
974 i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
975 struct frame_id *this_id)
976 {
977 struct i386_frame_cache *cache =
978 i386_sigtramp_frame_cache (next_frame, this_cache);
979
980 /* See the end of i386_push_dummy_call. */
981 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
982 }
983
984 static void
985 i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
986 void **this_cache,
987 int regnum, int *optimizedp,
988 enum lval_type *lvalp, CORE_ADDR *addrp,
989 int *realnump, void *valuep)
990 {
991 /* Make sure we've initialized the cache. */
992 i386_sigtramp_frame_cache (next_frame, this_cache);
993
994 i386_frame_prev_register (next_frame, this_cache, regnum,
995 optimizedp, lvalp, addrp, realnump, valuep);
996 }
997
998 static const struct frame_unwind i386_sigtramp_frame_unwind =
999 {
1000 SIGTRAMP_FRAME,
1001 i386_sigtramp_frame_this_id,
1002 i386_sigtramp_frame_prev_register
1003 };
1004
1005 static const struct frame_unwind *
1006 i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
1007 {
1008 CORE_ADDR pc = frame_pc_unwind (next_frame);
1009 char *name;
1010
1011 /* We shouldn't even bother to try if the OSABI didn't register
1012 a sigcontext_addr handler. */
1013 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
1014 return NULL;
1015
1016 find_pc_partial_function (pc, &name, NULL, NULL);
1017 if (PC_IN_SIGTRAMP (pc, name))
1018 return &i386_sigtramp_frame_unwind;
1019
1020 return NULL;
1021 }
1022 \f
1023
1024 static CORE_ADDR
1025 i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1026 {
1027 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1028
1029 return cache->base;
1030 }
1031
1032 static const struct frame_base i386_frame_base =
1033 {
1034 &i386_frame_unwind,
1035 i386_frame_base_address,
1036 i386_frame_base_address,
1037 i386_frame_base_address
1038 };
1039
1040 static struct frame_id
1041 i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1042 {
1043 char buf[4];
1044 CORE_ADDR fp;
1045
1046 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1047 fp = extract_unsigned_integer (buf, 4);
1048
1049 /* See the end of i386_push_dummy_call. */
1050 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
1051 }
1052 \f
1053
1054 /* Figure out where the longjmp will land. Slurp the args out of the
1055 stack. We expect the first arg to be a pointer to the jmp_buf
1056 structure from which we extract the address that we will land at.
1057 This address is copied into PC. This routine returns non-zero on
1058 success.
1059
1060 This function is 64-bit safe. */
1061
1062 static int
1063 i386_get_longjmp_target (CORE_ADDR *pc)
1064 {
1065 char buf[8];
1066 CORE_ADDR sp, jb_addr;
1067 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
1068 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
1069
1070 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1071 longjmp will land. */
1072 if (jb_pc_offset == -1)
1073 return 0;
1074
1075 /* Don't use I386_ESP_REGNUM here, since this function is also used
1076 for AMD64. */
1077 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1078 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
1079 if (target_read_memory (sp + len, buf, len))
1080 return 0;
1081
1082 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
1083 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
1084 return 0;
1085
1086 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
1087 return 1;
1088 }
1089 \f
1090
1091 static CORE_ADDR
1092 i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1093 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1094 struct value **args, CORE_ADDR sp, int struct_return,
1095 CORE_ADDR struct_addr)
1096 {
1097 char buf[4];
1098 int i;
1099
1100 /* Push arguments in reverse order. */
1101 for (i = nargs - 1; i >= 0; i--)
1102 {
1103 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1104
1105 /* The System V ABI says that:
1106
1107 "An argument's size is increased, if necessary, to make it a
1108 multiple of [32-bit] words. This may require tail padding,
1109 depending on the size of the argument."
1110
1111 This makes sure the stack says word-aligned. */
1112 sp -= (len + 3) & ~3;
1113 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1114 }
1115
1116 /* Push value address. */
1117 if (struct_return)
1118 {
1119 sp -= 4;
1120 store_unsigned_integer (buf, 4, struct_addr);
1121 write_memory (sp, buf, 4);
1122 }
1123
1124 /* Store return address. */
1125 sp -= 4;
1126 store_unsigned_integer (buf, 4, bp_addr);
1127 write_memory (sp, buf, 4);
1128
1129 /* Finally, update the stack pointer... */
1130 store_unsigned_integer (buf, 4, sp);
1131 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1132
1133 /* ...and fake a frame pointer. */
1134 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1135
1136 /* MarkK wrote: This "+ 8" is all over the place:
1137 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1138 i386_unwind_dummy_id). It's there, since all frame unwinders for
1139 a given target have to agree (within a certain margin) on the
1140 defenition of the stack address of a frame. Otherwise
1141 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1142 stack address *before* the function call as a frame's CFA. On
1143 the i386, when %ebp is used as a frame pointer, the offset
1144 between the contents %ebp and the CFA as defined by GCC. */
1145 return sp + 8;
1146 }
1147
1148 /* These registers are used for returning integers (and on some
1149 targets also for returning `struct' and `union' values when their
1150 size and alignment match an integer type). */
1151 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1152 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1153
1154 /* Extract from an array REGBUF containing the (raw) register state, a
1155 function return value of TYPE, and copy that, in virtual format,
1156 into VALBUF. */
1157
1158 static void
1159 i386_extract_return_value (struct type *type, struct regcache *regcache,
1160 void *valbuf)
1161 {
1162 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1163 int len = TYPE_LENGTH (type);
1164 char buf[I386_MAX_REGISTER_SIZE];
1165
1166 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1167 && TYPE_NFIELDS (type) == 1)
1168 {
1169 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1170 return;
1171 }
1172
1173 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1174 {
1175 if (tdep->st0_regnum < 0)
1176 {
1177 warning ("Cannot find floating-point return value.");
1178 memset (valbuf, 0, len);
1179 return;
1180 }
1181
1182 /* Floating-point return values can be found in %st(0). Convert
1183 its contents to the desired type. This is probably not
1184 exactly how it would happen on the target itself, but it is
1185 the best we can do. */
1186 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
1187 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
1188 }
1189 else
1190 {
1191 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1192 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1193
1194 if (len <= low_size)
1195 {
1196 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1197 memcpy (valbuf, buf, len);
1198 }
1199 else if (len <= (low_size + high_size))
1200 {
1201 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
1202 memcpy (valbuf, buf, low_size);
1203 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
1204 memcpy ((char *) valbuf + low_size, buf, len - low_size);
1205 }
1206 else
1207 internal_error (__FILE__, __LINE__,
1208 "Cannot extract return value of %d bytes long.", len);
1209 }
1210 }
1211
1212 /* Write into the appropriate registers a function return value stored
1213 in VALBUF of type TYPE, given in virtual format. */
1214
1215 static void
1216 i386_store_return_value (struct type *type, struct regcache *regcache,
1217 const void *valbuf)
1218 {
1219 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1220 int len = TYPE_LENGTH (type);
1221
1222 /* Define I387_ST0_REGNUM such that we use the proper definitions
1223 for the architecture. */
1224 #define I387_ST0_REGNUM I386_ST0_REGNUM
1225
1226 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1227 && TYPE_NFIELDS (type) == 1)
1228 {
1229 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
1230 return;
1231 }
1232
1233 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1234 {
1235 ULONGEST fstat;
1236 char buf[I386_MAX_REGISTER_SIZE];
1237
1238 if (tdep->st0_regnum < 0)
1239 {
1240 warning ("Cannot set floating-point return value.");
1241 return;
1242 }
1243
1244 /* Returning floating-point values is a bit tricky. Apart from
1245 storing the return value in %st(0), we have to simulate the
1246 state of the FPU at function return point. */
1247
1248 /* Convert the value found in VALBUF to the extended
1249 floating-point format used by the FPU. This is probably
1250 not exactly how it would happen on the target itself, but
1251 it is the best we can do. */
1252 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1253 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
1254
1255 /* Set the top of the floating-point register stack to 7. The
1256 actual value doesn't really matter, but 7 is what a normal
1257 function return would end up with if the program started out
1258 with a freshly initialized FPU. */
1259 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1260 fstat |= (7 << 11);
1261 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
1262
1263 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1264 the floating-point register stack to 7, the appropriate value
1265 for the tag word is 0x3fff. */
1266 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
1267 }
1268 else
1269 {
1270 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1271 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
1272
1273 if (len <= low_size)
1274 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
1275 else if (len <= (low_size + high_size))
1276 {
1277 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1278 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1279 len - low_size, (char *) valbuf + low_size);
1280 }
1281 else
1282 internal_error (__FILE__, __LINE__,
1283 "Cannot store return value of %d bytes long.", len);
1284 }
1285
1286 #undef I387_ST0_REGNUM
1287 }
1288
1289 /* Extract from REGCACHE, which contains the (raw) register state, the
1290 address in which a function should return its structure value, as a
1291 CORE_ADDR. */
1292
1293 static CORE_ADDR
1294 i386_extract_struct_value_address (struct regcache *regcache)
1295 {
1296 char buf[4];
1297
1298 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1299 return extract_unsigned_integer (buf, 4);
1300 }
1301 \f
1302
1303 /* This is the variable that is set with "set struct-convention", and
1304 its legitimate values. */
1305 static const char default_struct_convention[] = "default";
1306 static const char pcc_struct_convention[] = "pcc";
1307 static const char reg_struct_convention[] = "reg";
1308 static const char *valid_conventions[] =
1309 {
1310 default_struct_convention,
1311 pcc_struct_convention,
1312 reg_struct_convention,
1313 NULL
1314 };
1315 static const char *struct_convention = default_struct_convention;
1316
1317 static int
1318 i386_use_struct_convention (int gcc_p, struct type *type)
1319 {
1320 enum struct_return struct_return;
1321
1322 if (struct_convention == default_struct_convention)
1323 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1324 else if (struct_convention == pcc_struct_convention)
1325 struct_return = pcc_struct_return;
1326 else
1327 struct_return = reg_struct_return;
1328
1329 return generic_use_struct_convention (struct_return == reg_struct_return,
1330 type);
1331 }
1332 \f
1333
1334 /* Return the GDB type object for the "standard" data type of data in
1335 register REGNUM. Perhaps %esi and %edi should go here, but
1336 potentially they could be used for things other than address. */
1337
1338 static struct type *
1339 i386_register_type (struct gdbarch *gdbarch, int regnum)
1340 {
1341 if (regnum == I386_EIP_REGNUM
1342 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1343 return lookup_pointer_type (builtin_type_void);
1344
1345 if (i386_fp_regnum_p (regnum))
1346 return builtin_type_i387_ext;
1347
1348 if (i386_sse_regnum_p (gdbarch, regnum))
1349 return builtin_type_vec128i;
1350
1351 if (i386_mmx_regnum_p (gdbarch, regnum))
1352 return builtin_type_vec64i;
1353
1354 return builtin_type_int;
1355 }
1356
1357 /* Map a cooked register onto a raw register or memory. For the i386,
1358 the MMX registers need to be mapped onto floating point registers. */
1359
1360 static int
1361 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1362 {
1363 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1364 int mmxreg, fpreg;
1365 ULONGEST fstat;
1366 int tos;
1367
1368 /* Define I387_ST0_REGNUM such that we use the proper definitions
1369 for REGCACHE's architecture. */
1370 #define I387_ST0_REGNUM tdep->st0_regnum
1371
1372 mmxreg = regnum - tdep->mm0_regnum;
1373 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
1374 tos = (fstat >> 11) & 0x7;
1375 fpreg = (mmxreg + tos) % 8;
1376
1377 return (I387_ST0_REGNUM + fpreg);
1378
1379 #undef I387_ST0_REGNUM
1380 }
1381
1382 static void
1383 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1384 int regnum, void *buf)
1385 {
1386 if (i386_mmx_regnum_p (gdbarch, regnum))
1387 {
1388 char mmx_buf[MAX_REGISTER_SIZE];
1389 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1390
1391 /* Extract (always little endian). */
1392 regcache_raw_read (regcache, fpnum, mmx_buf);
1393 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
1394 }
1395 else
1396 regcache_raw_read (regcache, regnum, buf);
1397 }
1398
1399 static void
1400 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1401 int regnum, const void *buf)
1402 {
1403 if (i386_mmx_regnum_p (gdbarch, regnum))
1404 {
1405 char mmx_buf[MAX_REGISTER_SIZE];
1406 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1407
1408 /* Read ... */
1409 regcache_raw_read (regcache, fpnum, mmx_buf);
1410 /* ... Modify ... (always little endian). */
1411 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
1412 /* ... Write. */
1413 regcache_raw_write (regcache, fpnum, mmx_buf);
1414 }
1415 else
1416 regcache_raw_write (regcache, regnum, buf);
1417 }
1418 \f
1419
1420 /* Return the register number of the register allocated by GCC after
1421 REGNUM, or -1 if there is no such register. */
1422
1423 static int
1424 i386_next_regnum (int regnum)
1425 {
1426 /* GCC allocates the registers in the order:
1427
1428 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1429
1430 Since storing a variable in %esp doesn't make any sense we return
1431 -1 for %ebp and for %esp itself. */
1432 static int next_regnum[] =
1433 {
1434 I386_EDX_REGNUM, /* Slot for %eax. */
1435 I386_EBX_REGNUM, /* Slot for %ecx. */
1436 I386_ECX_REGNUM, /* Slot for %edx. */
1437 I386_ESI_REGNUM, /* Slot for %ebx. */
1438 -1, -1, /* Slots for %esp and %ebp. */
1439 I386_EDI_REGNUM, /* Slot for %esi. */
1440 I386_EBP_REGNUM /* Slot for %edi. */
1441 };
1442
1443 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
1444 return next_regnum[regnum];
1445
1446 return -1;
1447 }
1448
1449 /* Return nonzero if a value of type TYPE stored in register REGNUM
1450 needs any special handling. */
1451
1452 static int
1453 i386_convert_register_p (int regnum, struct type *type)
1454 {
1455 int len = TYPE_LENGTH (type);
1456
1457 /* Values may be spread across multiple registers. Most debugging
1458 formats aren't expressive enough to specify the locations, so
1459 some heuristics is involved. Right now we only handle types that
1460 have a length that is a multiple of the word size, since GCC
1461 doesn't seem to put any other types into registers. */
1462 if (len > 4 && len % 4 == 0)
1463 {
1464 int last_regnum = regnum;
1465
1466 while (len > 4)
1467 {
1468 last_regnum = i386_next_regnum (last_regnum);
1469 len -= 4;
1470 }
1471
1472 if (last_regnum != -1)
1473 return 1;
1474 }
1475
1476 return i386_fp_regnum_p (regnum);
1477 }
1478
1479 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
1480 return its contents in TO. */
1481
1482 static void
1483 i386_register_to_value (struct frame_info *frame, int regnum,
1484 struct type *type, void *to)
1485 {
1486 int len = TYPE_LENGTH (type);
1487 char *buf = to;
1488
1489 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1490 available in FRAME (i.e. if it wasn't saved)? */
1491
1492 if (i386_fp_regnum_p (regnum))
1493 {
1494 i387_register_to_value (frame, regnum, type, to);
1495 return;
1496 }
1497
1498 /* Read a value spread accross multiple registers. */
1499
1500 gdb_assert (len > 4 && len % 4 == 0);
1501
1502 while (len > 0)
1503 {
1504 gdb_assert (regnum != -1);
1505 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1506
1507 get_frame_register (frame, regnum, buf);
1508 regnum = i386_next_regnum (regnum);
1509 len -= 4;
1510 buf += 4;
1511 }
1512 }
1513
1514 /* Write the contents FROM of a value of type TYPE into register
1515 REGNUM in frame FRAME. */
1516
1517 static void
1518 i386_value_to_register (struct frame_info *frame, int regnum,
1519 struct type *type, const void *from)
1520 {
1521 int len = TYPE_LENGTH (type);
1522 const char *buf = from;
1523
1524 if (i386_fp_regnum_p (regnum))
1525 {
1526 i387_value_to_register (frame, regnum, type, from);
1527 return;
1528 }
1529
1530 /* Write a value spread accross multiple registers. */
1531
1532 gdb_assert (len > 4 && len % 4 == 0);
1533
1534 while (len > 0)
1535 {
1536 gdb_assert (regnum != -1);
1537 gdb_assert (register_size (current_gdbarch, regnum) == 4);
1538
1539 put_frame_register (frame, regnum, buf);
1540 regnum = i386_next_regnum (regnum);
1541 len -= 4;
1542 buf += 4;
1543 }
1544 }
1545 \f
1546 /* Supply register REGNUM from the general-purpose register set REGSET
1547 to register cache REGCACHE. If REGNUM is -1, do this for all
1548 registers in REGSET. */
1549
1550 void
1551 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1552 int regnum, const void *gregs, size_t len)
1553 {
1554 const struct gdbarch_tdep *tdep = regset->descr;
1555 const char *regs = gregs;
1556 int i;
1557
1558 gdb_assert (len == tdep->sizeof_gregset);
1559
1560 for (i = 0; i < tdep->gregset_num_regs; i++)
1561 {
1562 if ((regnum == i || regnum == -1)
1563 && tdep->gregset_reg_offset[i] != -1)
1564 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1565 }
1566 }
1567
1568 /* Supply register REGNUM from the floating-point register set REGSET
1569 to register cache REGCACHE. If REGNUM is -1, do this for all
1570 registers in REGSET. */
1571
1572 static void
1573 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1574 int regnum, const void *fpregs, size_t len)
1575 {
1576 const struct gdbarch_tdep *tdep = regset->descr;
1577
1578 if (len == I387_SIZEOF_FXSAVE)
1579 {
1580 i387_supply_fxsave (regcache, regnum, fpregs);
1581 return;
1582 }
1583
1584 gdb_assert (len == tdep->sizeof_fpregset);
1585 i387_supply_fsave (regcache, regnum, fpregs);
1586 }
1587
1588 /* Return the appropriate register set for the core section identified
1589 by SECT_NAME and SECT_SIZE. */
1590
1591 const struct regset *
1592 i386_regset_from_core_section (struct gdbarch *gdbarch,
1593 const char *sect_name, size_t sect_size)
1594 {
1595 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1596
1597 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1598 {
1599 if (tdep->gregset == NULL)
1600 {
1601 tdep->gregset = XMALLOC (struct regset);
1602 tdep->gregset->descr = tdep;
1603 tdep->gregset->supply_regset = i386_supply_gregset;
1604 }
1605 return tdep->gregset;
1606 }
1607
1608 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1609 || (strcmp (sect_name, ".reg-xfp") == 0
1610 && sect_size == I387_SIZEOF_FXSAVE))
1611 {
1612 if (tdep->fpregset == NULL)
1613 {
1614 tdep->fpregset = XMALLOC (struct regset);
1615 tdep->fpregset->descr = tdep;
1616 tdep->fpregset->supply_regset = i386_supply_fpregset;
1617 }
1618 return tdep->fpregset;
1619 }
1620
1621 return NULL;
1622 }
1623 \f
1624
1625 #ifdef STATIC_TRANSFORM_NAME
1626 /* SunPRO encodes the static variables. This is not related to C++
1627 mangling, it is done for C too. */
1628
1629 char *
1630 sunpro_static_transform_name (char *name)
1631 {
1632 char *p;
1633 if (IS_STATIC_TRANSFORM_NAME (name))
1634 {
1635 /* For file-local statics there will be a period, a bunch of
1636 junk (the contents of which match a string given in the
1637 N_OPT), a period and the name. For function-local statics
1638 there will be a bunch of junk (which seems to change the
1639 second character from 'A' to 'B'), a period, the name of the
1640 function, and the name. So just skip everything before the
1641 last period. */
1642 p = strrchr (name, '.');
1643 if (p != NULL)
1644 name = p + 1;
1645 }
1646 return name;
1647 }
1648 #endif /* STATIC_TRANSFORM_NAME */
1649 \f
1650
1651 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1652
1653 CORE_ADDR
1654 i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
1655 {
1656 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1657 {
1658 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1659 struct minimal_symbol *indsym =
1660 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1661 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
1662
1663 if (symname)
1664 {
1665 if (strncmp (symname, "__imp_", 6) == 0
1666 || strncmp (symname, "_imp_", 5) == 0)
1667 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1668 }
1669 }
1670 return 0; /* Not a trampoline. */
1671 }
1672 \f
1673
1674 /* Return non-zero if PC and NAME show that we are in a signal
1675 trampoline. */
1676
1677 static int
1678 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1679 {
1680 return (name && strcmp ("_sigtramp", name) == 0);
1681 }
1682 \f
1683
1684 /* We have two flavours of disassembly. The machinery on this page
1685 deals with switching between those. */
1686
1687 static int
1688 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
1689 {
1690 gdb_assert (disassembly_flavor == att_flavor
1691 || disassembly_flavor == intel_flavor);
1692
1693 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1694 constified, cast to prevent a compiler warning. */
1695 info->disassembler_options = (char *) disassembly_flavor;
1696 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1697
1698 return print_insn_i386 (pc, info);
1699 }
1700 \f
1701
1702 /* There are a few i386 architecture variants that differ only
1703 slightly from the generic i386 target. For now, we don't give them
1704 their own source file, but include them here. As a consequence,
1705 they'll always be included. */
1706
1707 /* System V Release 4 (SVR4). */
1708
1709 static int
1710 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1711 {
1712 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1713 currently unknown. */
1714 return (name && (strcmp ("_sigreturn", name) == 0
1715 || strcmp ("_sigacthandler", name) == 0
1716 || strcmp ("sigvechandler", name) == 0));
1717 }
1718
1719 /* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1720 routine, return the address of the associated sigcontext (ucontext)
1721 structure. */
1722
1723 static CORE_ADDR
1724 i386_svr4_sigcontext_addr (struct frame_info *next_frame)
1725 {
1726 char buf[4];
1727 CORE_ADDR sp;
1728
1729 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1730 sp = extract_unsigned_integer (buf, 4);
1731
1732 return read_memory_unsigned_integer (sp + 8, 4);
1733 }
1734 \f
1735
1736 /* DJGPP. */
1737
1738 static int
1739 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1740 {
1741 /* DJGPP doesn't have any special frames for signal handlers. */
1742 return 0;
1743 }
1744 \f
1745
1746 /* Generic ELF. */
1747
1748 void
1749 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1750 {
1751 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1752 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1753 }
1754
1755 /* System V Release 4 (SVR4). */
1756
1757 void
1758 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1759 {
1760 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1761
1762 /* System V Release 4 uses ELF. */
1763 i386_elf_init_abi (info, gdbarch);
1764
1765 /* System V Release 4 has shared libraries. */
1766 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1767 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1768
1769 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1770 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1771 tdep->sc_pc_offset = 36 + 14 * 4;
1772 tdep->sc_sp_offset = 36 + 17 * 4;
1773
1774 tdep->jb_pc_offset = 20;
1775 }
1776
1777 /* DJGPP. */
1778
1779 static void
1780 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1781 {
1782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1783
1784 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1785
1786 tdep->jb_pc_offset = 36;
1787 }
1788
1789 /* NetWare. */
1790
1791 static void
1792 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1793 {
1794 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1795
1796 tdep->jb_pc_offset = 24;
1797 }
1798 \f
1799
1800 /* i386 register groups. In addition to the normal groups, add "mmx"
1801 and "sse". */
1802
1803 static struct reggroup *i386_sse_reggroup;
1804 static struct reggroup *i386_mmx_reggroup;
1805
1806 static void
1807 i386_init_reggroups (void)
1808 {
1809 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1810 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1811 }
1812
1813 static void
1814 i386_add_reggroups (struct gdbarch *gdbarch)
1815 {
1816 reggroup_add (gdbarch, i386_sse_reggroup);
1817 reggroup_add (gdbarch, i386_mmx_reggroup);
1818 reggroup_add (gdbarch, general_reggroup);
1819 reggroup_add (gdbarch, float_reggroup);
1820 reggroup_add (gdbarch, all_reggroup);
1821 reggroup_add (gdbarch, save_reggroup);
1822 reggroup_add (gdbarch, restore_reggroup);
1823 reggroup_add (gdbarch, vector_reggroup);
1824 reggroup_add (gdbarch, system_reggroup);
1825 }
1826
1827 int
1828 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1829 struct reggroup *group)
1830 {
1831 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1832 || i386_mxcsr_regnum_p (gdbarch, regnum));
1833 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1834 || i386_fpc_regnum_p (regnum));
1835 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
1836
1837 if (group == i386_mmx_reggroup)
1838 return mmx_regnum_p;
1839 if (group == i386_sse_reggroup)
1840 return sse_regnum_p;
1841 if (group == vector_reggroup)
1842 return (mmx_regnum_p || sse_regnum_p);
1843 if (group == float_reggroup)
1844 return fp_regnum_p;
1845 if (group == general_reggroup)
1846 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
1847
1848 return default_register_reggroup_p (gdbarch, regnum, group);
1849 }
1850 \f
1851
1852 /* Get the ARGIth function argument for the current function. */
1853
1854 static CORE_ADDR
1855 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1856 struct type *type)
1857 {
1858 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1859 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
1860 }
1861
1862 \f
1863 static struct gdbarch *
1864 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1865 {
1866 struct gdbarch_tdep *tdep;
1867 struct gdbarch *gdbarch;
1868
1869 /* If there is already a candidate, use it. */
1870 arches = gdbarch_list_lookup_by_info (arches, &info);
1871 if (arches != NULL)
1872 return arches->gdbarch;
1873
1874 /* Allocate space for the new architecture. */
1875 tdep = XMALLOC (struct gdbarch_tdep);
1876 gdbarch = gdbarch_alloc (&info, tdep);
1877
1878 /* General-purpose registers. */
1879 tdep->gregset = NULL;
1880 tdep->gregset_reg_offset = NULL;
1881 tdep->gregset_num_regs = I386_NUM_GREGS;
1882 tdep->sizeof_gregset = 0;
1883
1884 /* Floating-point registers. */
1885 tdep->fpregset = NULL;
1886 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1887
1888 /* The default settings include the FPU registers, the MMX registers
1889 and the SSE registers. This can be overidden for a specific ABI
1890 by adjusting the members `st0_regnum', `mm0_regnum' and
1891 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1892 will show up in the output of "info all-registers". Ideally we
1893 should try to autodetect whether they are available, such that we
1894 can prevent "info all-registers" from displaying registers that
1895 aren't available.
1896
1897 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
1898 [the SSE registers] always (even when they don't exist) or never
1899 showing them to the user (even when they do exist), I prefer the
1900 former over the latter. */
1901
1902 tdep->st0_regnum = I386_ST0_REGNUM;
1903
1904 /* The MMX registers are implemented as pseudo-registers. Put off
1905 caclulating the register number for %mm0 until we know the number
1906 of raw registers. */
1907 tdep->mm0_regnum = 0;
1908
1909 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
1910 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
1911
1912 tdep->jb_pc_offset = -1;
1913 tdep->struct_return = pcc_struct_return;
1914 tdep->sigtramp_start = 0;
1915 tdep->sigtramp_end = 0;
1916 tdep->sigcontext_addr = NULL;
1917 tdep->sc_reg_offset = NULL;
1918 tdep->sc_pc_offset = -1;
1919 tdep->sc_sp_offset = -1;
1920
1921 /* The format used for `long double' on almost all i386 targets is
1922 the i387 extended floating-point format. In fact, of all targets
1923 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1924 on having a `long double' that's not `long' at all. */
1925 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1926
1927 /* Although the i387 extended floating-point has only 80 significant
1928 bits, a `long double' actually takes up 96, probably to enforce
1929 alignment. */
1930 set_gdbarch_long_double_bit (gdbarch, 96);
1931
1932 /* The default ABI includes general-purpose registers,
1933 floating-point registers, and the SSE registers. */
1934 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
1935 set_gdbarch_register_name (gdbarch, i386_register_name);
1936 set_gdbarch_register_type (gdbarch, i386_register_type);
1937
1938 /* Register numbers of various important registers. */
1939 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1940 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1941 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1942 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
1943
1944 /* Use the "default" register numbering scheme for stabs and COFF. */
1945 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1946 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1947
1948 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1949 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1950 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1951
1952 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1953 be in use on any of the supported i386 targets. */
1954
1955 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1956
1957 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1958
1959 /* Call dummy code. */
1960 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
1961
1962 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1963 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1964 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
1965
1966 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1967 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1968 set_gdbarch_extract_struct_value_address (gdbarch,
1969 i386_extract_struct_value_address);
1970 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1971
1972 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1973
1974 /* Stack grows downward. */
1975 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1976
1977 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1978 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1979 set_gdbarch_function_start_offset (gdbarch, 0);
1980
1981 set_gdbarch_frame_args_skip (gdbarch, 8);
1982 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1983
1984 /* Wire in the MMX registers. */
1985 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
1986 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1987 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1988
1989 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1990
1991 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
1992
1993 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1994
1995 /* Add the i386 register groups. */
1996 i386_add_reggroups (gdbarch);
1997 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1998
1999 /* Helper for function argument information. */
2000 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2001
2002 /* Hook in the DWARF CFI frame unwinder. */
2003 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2004
2005 frame_base_set_default (gdbarch, &i386_frame_base);
2006
2007 /* Hook in ABI-specific overrides, if they have been registered. */
2008 gdbarch_init_osabi (info, gdbarch);
2009
2010 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2011 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
2012
2013 /* If we have a register mapping, enable the generic core file
2014 support, unless it has already been enabled. */
2015 if (tdep->gregset_reg_offset
2016 && !gdbarch_regset_from_core_section_p (gdbarch))
2017 set_gdbarch_regset_from_core_section (gdbarch,
2018 i386_regset_from_core_section);
2019
2020 /* Unless support for MMX has been disabled, make %mm0 the first
2021 pseudo-register. */
2022 if (tdep->mm0_regnum == 0)
2023 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2024
2025 return gdbarch;
2026 }
2027
2028 static enum gdb_osabi
2029 i386_coff_osabi_sniffer (bfd *abfd)
2030 {
2031 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2032 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
2033 return GDB_OSABI_GO32;
2034
2035 return GDB_OSABI_UNKNOWN;
2036 }
2037
2038 static enum gdb_osabi
2039 i386_nlm_osabi_sniffer (bfd *abfd)
2040 {
2041 return GDB_OSABI_NETWARE;
2042 }
2043 \f
2044
2045 /* Provide a prototype to silence -Wmissing-prototypes. */
2046 void _initialize_i386_tdep (void);
2047
2048 void
2049 _initialize_i386_tdep (void)
2050 {
2051 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2052
2053 /* Add the variable that controls the disassembly flavor. */
2054 {
2055 struct cmd_list_element *new_cmd;
2056
2057 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2058 valid_flavors,
2059 &disassembly_flavor,
2060 "\
2061 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
2062 and the default value is \"att\".",
2063 &setlist);
2064 add_show_from_set (new_cmd, &showlist);
2065 }
2066
2067 /* Add the variable that controls the convention for returning
2068 structs. */
2069 {
2070 struct cmd_list_element *new_cmd;
2071
2072 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
2073 valid_conventions,
2074 &struct_convention, "\
2075 Set the convention for returning small structs, valid values \
2076 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2077 &setlist);
2078 add_show_from_set (new_cmd, &showlist);
2079 }
2080
2081 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2082 i386_coff_osabi_sniffer);
2083 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2084 i386_nlm_osabi_sniffer);
2085
2086 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
2087 i386_svr4_init_abi);
2088 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
2089 i386_go32_init_abi);
2090 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
2091 i386_nw_init_abi);
2092
2093 /* Initialize the i386 specific register groups. */
2094 i386_init_reggroups ();
2095 }