2002-08-13 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symfile.h"
31 #include "symtab.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "doublest.h"
37 #include "value.h"
38 #include "gdb_assert.h"
39
40 #include "i386-tdep.h"
41
42 /* Names of the registers. The first 10 registers match the register
43 numbering scheme used by GCC for stabs and DWARF. */
44 static char *i386_register_names[] =
45 {
46 "eax", "ecx", "edx", "ebx",
47 "esp", "ebp", "esi", "edi",
48 "eip", "eflags", "cs", "ss",
49 "ds", "es", "fs", "gs",
50 "st0", "st1", "st2", "st3",
51 "st4", "st5", "st6", "st7",
52 "fctrl", "fstat", "ftag", "fiseg",
53 "fioff", "foseg", "fooff", "fop",
54 "xmm0", "xmm1", "xmm2", "xmm3",
55 "xmm4", "xmm5", "xmm6", "xmm7",
56 "mxcsr"
57 };
58
59 /* MMX registers. */
60
61 static char *i386_mmx_names[] =
62 {
63 "mm0", "mm1", "mm2", "mm3",
64 "mm4", "mm5", "mm6", "mm7"
65 };
66 static const int mmx_num_regs = (sizeof (i386_mmx_names)
67 / sizeof (i386_mmx_names[0]));
68 #define MM0_REGNUM (NUM_REGS)
69
70 static int
71 mmx_regnum_p (int reg)
72 {
73 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
74 }
75
76 /* Return the name of register REG. */
77
78 const char *
79 i386_register_name (int reg)
80 {
81 if (reg < 0)
82 return NULL;
83 if (mmx_regnum_p (reg))
84 return i386_mmx_names[reg - MM0_REGNUM];
85 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
86 return NULL;
87
88 return i386_register_names[reg];
89 }
90
91 /* Convert stabs register number REG to the appropriate register
92 number used by GDB. */
93
94 static int
95 i386_stab_reg_to_regnum (int reg)
96 {
97 /* This implements what GCC calls the "default" register map. */
98 if (reg >= 0 && reg <= 7)
99 {
100 /* General registers. */
101 return reg;
102 }
103 else if (reg >= 12 && reg <= 19)
104 {
105 /* Floating-point registers. */
106 return reg - 12 + FP0_REGNUM;
107 }
108 else if (reg >= 21 && reg <= 28)
109 {
110 /* SSE registers. */
111 return reg - 21 + XMM0_REGNUM;
112 }
113 else if (reg >= 29 && reg <= 36)
114 {
115 /* MMX registers. */
116 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
117 as pseudo-registers? */
118 return reg - 29 + FP0_REGNUM;
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123 }
124
125 /* Convert DWARF register number REG to the appropriate register
126 number used by GDB. */
127
128 static int
129 i386_dwarf_reg_to_regnum (int reg)
130 {
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151 }
152 \f
153
154 /* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
156 static const char att_flavor[] = "att";
157 static const char intel_flavor[] = "intel";
158 static const char *valid_flavors[] =
159 {
160 att_flavor,
161 intel_flavor,
162 NULL
163 };
164 static const char *disassembly_flavor = att_flavor;
165
166 /* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
185 static CORE_ADDR codestream_next_addr;
186 static CORE_ADDR codestream_addr;
187 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188 static int codestream_off;
189 static int codestream_cnt;
190
191 #define codestream_tell() (codestream_addr + codestream_off)
192 #define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195 #define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
198
199 static unsigned char
200 codestream_fill (int peek_flag)
201 {
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
207
208 if (peek_flag)
209 return (codestream_peek ());
210 else
211 return (codestream_get ());
212 }
213
214 static void
215 codestream_seek (CORE_ADDR place)
216 {
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
221 while (codestream_tell () != place)
222 codestream_get ();
223 }
224
225 static void
226 codestream_read (unsigned char *buf, int count)
227 {
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233 }
234 \f
235
236 /* If the next instruction is a jump, move to its target. */
237
238 static void
239 i386_follow_jump (void)
240 {
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
259 /* Relative jump: if data16 == 0, disp32, else disp16. */
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
267 pos += delta + 4;
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
278 /* Relative jump, disp8 (ignore data16). */
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287 }
288
289 /* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
294
295 static long
296 i386_get_frame_setup (CORE_ADDR pc)
297 {
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
319 int pos;
320 unsigned char buf[4];
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
332 op = codestream_get (); /* Update next opcode. */
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
348 int pos;
349 unsigned char buf[8];
350
351 /* Skip past the `pushl' instruction; it has either a one-byte
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
366 op = codestream_get (); /* Update next opcode. */
367 }
368
369 if (op == 0x55) /* pushl %ebp */
370 {
371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
376 return -1;
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
380 return -1;
381 break;
382 default:
383 return -1;
384 }
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
394 /* `subl' with 8 bit immediate. */
395 codestream_get ();
396 if (codestream_get () != 0xec)
397 /* Some instruction starting with 0x83 other than `subl'. */
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
404 return (codestream_get ());
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
409 /* Maybe it is `subl' with a 32 bit immedediate. */
410 codestream_get ();
411 if (codestream_get () != 0xec)
412 /* Some instruction starting with 0x81 other than `subl'. */
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
417 /* It is `subl' with a 32 bit immediate. */
418 codestream_read ((unsigned char *) buf, 4);
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
423 return 0;
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
429 /* `enter' with 16 bit unsigned immediate. */
430 codestream_read ((unsigned char *) buf, 2);
431 codestream_get (); /* Flush final byte of enter instruction. */
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435 }
436
437 /* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
461
462 /* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465 static int
466 i386_frameless_signal_p (struct frame_info *frame)
467 {
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
471 }
472
473 /* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
477 static CORE_ADDR
478 i386_frame_chain (struct frame_info *frame)
479 {
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491 }
492
493 /* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
497 static int
498 i386_frameless_function_invocation (struct frame_info *frame)
499 {
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504 }
505
506 /* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509 static CORE_ADDR
510 i386_sigtramp_saved_pc (struct frame_info *frame)
511 {
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517 }
518
519 /* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522 static CORE_ADDR
523 i386_sigtramp_saved_sp (struct frame_info *frame)
524 {
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530 }
531
532 /* Return the saved program counter for FRAME. */
533
534 static CORE_ADDR
535 i386_frame_saved_pc (struct frame_info *frame)
536 {
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 return generic_read_register_dummy (frame->pc, frame->frame,
539 PC_REGNUM);
540
541 if (frame->signal_handler_caller)
542 return i386_sigtramp_saved_pc (frame);
543
544 if (i386_frameless_signal_p (frame))
545 {
546 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
547 return read_memory_unsigned_integer (sp, 4);
548 }
549
550 return read_memory_unsigned_integer (frame->frame + 4, 4);
551 }
552
553 /* Immediately after a function call, return the saved pc. */
554
555 static CORE_ADDR
556 i386_saved_pc_after_call (struct frame_info *frame)
557 {
558 if (frame->signal_handler_caller)
559 return i386_sigtramp_saved_pc (frame);
560
561 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
562 }
563
564 /* Return number of args passed to a frame.
565 Can return -1, meaning no way to tell. */
566
567 static int
568 i386_frame_num_args (struct frame_info *fi)
569 {
570 #if 1
571 return -1;
572 #else
573 /* This loses because not only might the compiler not be popping the
574 args right after the function call, it might be popping args from
575 both this call and a previous one, and we would say there are
576 more args than there really are. */
577
578 int retpc;
579 unsigned char op;
580 struct frame_info *pfi;
581
582 /* On the i386, the instruction following the call could be:
583 popl %ecx - one arg
584 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
585 anything else - zero args. */
586
587 int frameless;
588
589 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
590 if (frameless)
591 /* In the absence of a frame pointer, GDB doesn't get correct
592 values for nameless arguments. Return -1, so it doesn't print
593 any nameless arguments. */
594 return -1;
595
596 pfi = get_prev_frame (fi);
597 if (pfi == 0)
598 {
599 /* NOTE: This can happen if we are looking at the frame for
600 main, because FRAME_CHAIN_VALID won't let us go into start.
601 If we have debugging symbols, that's not really a big deal;
602 it just means it will only show as many arguments to main as
603 are declared. */
604 return -1;
605 }
606 else
607 {
608 retpc = pfi->pc;
609 op = read_memory_integer (retpc, 1);
610 if (op == 0x59) /* pop %ecx */
611 return 1;
612 else if (op == 0x83)
613 {
614 op = read_memory_integer (retpc + 1, 1);
615 if (op == 0xc4)
616 /* addl $<signed imm 8 bits>, %esp */
617 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
618 else
619 return 0;
620 }
621 else if (op == 0x81) /* `add' with 32 bit immediate. */
622 {
623 op = read_memory_integer (retpc + 1, 1);
624 if (op == 0xc4)
625 /* addl $<imm 32>, %esp */
626 return read_memory_integer (retpc + 2, 4) / 4;
627 else
628 return 0;
629 }
630 else
631 {
632 return 0;
633 }
634 }
635 #endif
636 }
637
638 /* Parse the first few instructions the function to see what registers
639 were stored.
640
641 We handle these cases:
642
643 The startup sequence can be at the start of the function, or the
644 function can start with a branch to startup code at the end.
645
646 %ebp can be set up with either the 'enter' instruction, or "pushl
647 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
648 once used in the System V compiler).
649
650 Local space is allocated just below the saved %ebp by either the
651 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
652 bit unsigned argument for space to allocate, and the 'addl'
653 instruction could have either a signed byte, or 32 bit immediate.
654
655 Next, the registers used by this function are pushed. With the
656 System V compiler they will always be in the order: %edi, %esi,
657 %ebx (and sometimes a harmless bug causes it to also save but not
658 restore %eax); however, the code below is willing to see the pushes
659 in any order, and will handle up to 8 of them.
660
661 If the setup sequence is at the end of the function, then the next
662 instruction will be a branch back to the start. */
663
664 static void
665 i386_frame_init_saved_regs (struct frame_info *fip)
666 {
667 long locals = -1;
668 unsigned char op;
669 CORE_ADDR addr;
670 CORE_ADDR pc;
671 int i;
672
673 if (fip->saved_regs)
674 return;
675
676 frame_saved_regs_zalloc (fip);
677
678 pc = get_pc_function_start (fip->pc);
679 if (pc != 0)
680 locals = i386_get_frame_setup (pc);
681
682 if (locals >= 0)
683 {
684 addr = fip->frame - 4 - locals;
685 for (i = 0; i < 8; i++)
686 {
687 op = codestream_get ();
688 if (op < 0x50 || op > 0x57)
689 break;
690 #ifdef I386_REGNO_TO_SYMMETRY
691 /* Dynix uses different internal numbering. Ick. */
692 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
693 #else
694 fip->saved_regs[op - 0x50] = addr;
695 #endif
696 addr -= 4;
697 }
698 }
699
700 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
701 fip->saved_regs[FP_REGNUM] = fip->frame;
702 }
703
704 /* Return PC of first real instruction. */
705
706 static CORE_ADDR
707 i386_skip_prologue (CORE_ADDR pc)
708 {
709 unsigned char op;
710 int i;
711 static unsigned char pic_pat[6] =
712 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
713 0x5b, /* popl %ebx */
714 };
715 CORE_ADDR pos;
716
717 if (i386_get_frame_setup (pc) < 0)
718 return (pc);
719
720 /* Found valid frame setup -- codestream now points to start of push
721 instructions for saving registers. */
722
723 /* Skip over register saves. */
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_peek ();
727 /* Break if not `pushl' instrunction. */
728 if (op < 0x50 || op > 0x57)
729 break;
730 codestream_get ();
731 }
732
733 /* The native cc on SVR4 in -K PIC mode inserts the following code
734 to get the address of the global offset table (GOT) into register
735 %ebx
736
737 call 0x0
738 popl %ebx
739 movl %ebx,x(%ebp) (optional)
740 addl y,%ebx
741
742 This code is with the rest of the prologue (at the end of the
743 function), so we have to skip it to get to the first real
744 instruction at the start of the function. */
745
746 pos = codestream_tell ();
747 for (i = 0; i < 6; i++)
748 {
749 op = codestream_get ();
750 if (pic_pat[i] != op)
751 break;
752 }
753 if (i == 6)
754 {
755 unsigned char buf[4];
756 long delta = 6;
757
758 op = codestream_get ();
759 if (op == 0x89) /* movl %ebx, x(%ebp) */
760 {
761 op = codestream_get ();
762 if (op == 0x5d) /* One byte offset from %ebp. */
763 {
764 delta += 3;
765 codestream_read (buf, 1);
766 }
767 else if (op == 0x9d) /* Four byte offset from %ebp. */
768 {
769 delta += 6;
770 codestream_read (buf, 4);
771 }
772 else /* Unexpected instruction. */
773 delta = -1;
774 op = codestream_get ();
775 }
776 /* addl y,%ebx */
777 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
778 {
779 pos += delta + 6;
780 }
781 }
782 codestream_seek (pos);
783
784 i386_follow_jump ();
785
786 return (codestream_tell ());
787 }
788
789 /* Use the program counter to determine the contents and size of a
790 breakpoint instruction. Return a pointer to a string of bytes that
791 encode a breakpoint instruction, store the length of the string in
792 *LEN and optionally adjust *PC to point to the correct memory
793 location for inserting the breakpoint.
794
795 On the i386 we have a single breakpoint that fits in a single byte
796 and can be inserted anywhere. */
797
798 static const unsigned char *
799 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800 {
801 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
802
803 *len = sizeof (break_insn);
804 return break_insn;
805 }
806
807 /* Push the return address (pointing to the call dummy) onto the stack
808 and return the new value for the stack pointer. */
809
810 static CORE_ADDR
811 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
812 {
813 char buf[4];
814
815 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
816 write_memory (sp - 4, buf, 4);
817 return sp - 4;
818 }
819
820 static void
821 i386_do_pop_frame (struct frame_info *frame)
822 {
823 CORE_ADDR fp;
824 int regnum;
825 char regbuf[I386_MAX_REGISTER_SIZE];
826
827 fp = FRAME_FP (frame);
828 i386_frame_init_saved_regs (frame);
829
830 for (regnum = 0; regnum < NUM_REGS; regnum++)
831 {
832 CORE_ADDR addr;
833 addr = frame->saved_regs[regnum];
834 if (addr)
835 {
836 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
837 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
838 REGISTER_RAW_SIZE (regnum));
839 }
840 }
841 write_register (FP_REGNUM, read_memory_integer (fp, 4));
842 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
843 write_register (SP_REGNUM, fp + 8);
844 flush_cached_frames ();
845 }
846
847 static void
848 i386_pop_frame (void)
849 {
850 generic_pop_current_frame (i386_do_pop_frame);
851 }
852 \f
853
854 /* Figure out where the longjmp will land. Slurp the args out of the
855 stack. We expect the first arg to be a pointer to the jmp_buf
856 structure from which we extract the address that we will land at.
857 This address is copied into PC. This routine returns true on
858 success. */
859
860 static int
861 i386_get_longjmp_target (CORE_ADDR *pc)
862 {
863 char buf[4];
864 CORE_ADDR sp, jb_addr;
865 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
866
867 /* If JB_PC_OFFSET is -1, we have no way to find out where the
868 longjmp will land. */
869 if (jb_pc_offset == -1)
870 return 0;
871
872 sp = read_register (SP_REGNUM);
873 if (target_read_memory (sp + 4, buf, 4))
874 return 0;
875
876 jb_addr = extract_address (buf, 4);
877 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
878 return 0;
879
880 *pc = extract_address (buf, 4);
881 return 1;
882 }
883 \f
884
885 static CORE_ADDR
886 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
887 int struct_return, CORE_ADDR struct_addr)
888 {
889 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
890
891 if (struct_return)
892 {
893 char buf[4];
894
895 sp -= 4;
896 store_address (buf, 4, struct_addr);
897 write_memory (sp, buf, 4);
898 }
899
900 return sp;
901 }
902
903 static void
904 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
905 {
906 /* Do nothing. Everything was already done by i386_push_arguments. */
907 }
908
909 /* These registers are used for returning integers (and on some
910 targets also for returning `struct' and `union' values when their
911 size and alignment match an integer type). */
912 #define LOW_RETURN_REGNUM 0 /* %eax */
913 #define HIGH_RETURN_REGNUM 2 /* %edx */
914
915 /* Extract from an array REGBUF containing the (raw) register state, a
916 function return value of TYPE, and copy that, in virtual format,
917 into VALBUF. */
918
919 static void
920 i386_extract_return_value (struct type *type, struct regcache *regcache,
921 char *valbuf)
922 {
923 int len = TYPE_LENGTH (type);
924 char buf[I386_MAX_REGISTER_SIZE];
925
926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
927 && TYPE_NFIELDS (type) == 1)
928 {
929 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
930 return;
931 }
932
933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
934 {
935 if (FP0_REGNUM == 0)
936 {
937 warning ("Cannot find floating-point return value.");
938 memset (valbuf, 0, len);
939 return;
940 }
941
942 /* Floating-point return values can be found in %st(0). Convert
943 its contents to the desired type. This is probably not
944 exactly how it would happen on the target itself, but it is
945 the best we can do. */
946 regcache_raw_read (regcache, FP0_REGNUM, buf);
947 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
948 }
949 else
950 {
951 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
952 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
953
954 if (len <= low_size)
955 {
956 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
957 memcpy (valbuf, buf, len);
958 }
959 else if (len <= (low_size + high_size))
960 {
961 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
962 memcpy (valbuf, buf, low_size);
963 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
964 memcpy (valbuf + low_size, buf, len - low_size);
965 }
966 else
967 internal_error (__FILE__, __LINE__,
968 "Cannot extract return value of %d bytes long.", len);
969 }
970 }
971
972 /* Write into the appropriate registers a function return value stored
973 in VALBUF of type TYPE, given in virtual format. */
974
975 static void
976 i386_store_return_value (struct type *type, char *valbuf)
977 {
978 int len = TYPE_LENGTH (type);
979
980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
981 && TYPE_NFIELDS (type) == 1)
982 {
983 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
984 return;
985 }
986
987 if (TYPE_CODE (type) == TYPE_CODE_FLT)
988 {
989 unsigned int fstat;
990 char buf[FPU_REG_RAW_SIZE];
991
992 if (FP0_REGNUM == 0)
993 {
994 warning ("Cannot set floating-point return value.");
995 return;
996 }
997
998 /* Returning floating-point values is a bit tricky. Apart from
999 storing the return value in %st(0), we have to simulate the
1000 state of the FPU at function return point. */
1001
1002 /* Convert the value found in VALBUF to the extended
1003 floating-point format used by the FPU. This is probably
1004 not exactly how it would happen on the target itself, but
1005 it is the best we can do. */
1006 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1007 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1008 FPU_REG_RAW_SIZE);
1009
1010 /* Set the top of the floating-point register stack to 7. The
1011 actual value doesn't really matter, but 7 is what a normal
1012 function return would end up with if the program started out
1013 with a freshly initialized FPU. */
1014 fstat = read_register (FSTAT_REGNUM);
1015 fstat |= (7 << 11);
1016 write_register (FSTAT_REGNUM, fstat);
1017
1018 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1019 the floating-point register stack to 7, the appropriate value
1020 for the tag word is 0x3fff. */
1021 write_register (FTAG_REGNUM, 0x3fff);
1022 }
1023 else
1024 {
1025 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1026 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1027
1028 if (len <= low_size)
1029 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1030 else if (len <= (low_size + high_size))
1031 {
1032 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1033 valbuf, low_size);
1034 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1035 valbuf + low_size, len - low_size);
1036 }
1037 else
1038 internal_error (__FILE__, __LINE__,
1039 "Cannot store return value of %d bytes long.", len);
1040 }
1041 }
1042
1043 /* Extract from an array REGBUF containing the (raw) register state
1044 the address in which a function should return its structure value,
1045 as a CORE_ADDR. */
1046
1047 static CORE_ADDR
1048 i386_extract_struct_value_address (struct regcache *regcache)
1049 {
1050 /* NOTE: cagney/2002-08-12: Replaced a call to
1051 regcache_raw_read_as_address() with a call to
1052 regcache_cooked_read_unsigned(). The old, ...as_address function
1053 was eventually calling extract_unsigned_integer (via
1054 extract_address) to unpack the registers value. The below is
1055 doing an unsigned extract so that it is functionally equivalent.
1056 The read needs to be cooked as, otherwise, it will never
1057 correctly return the value of a register in the [NUM_REGS
1058 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1059 ULONGEST val;
1060 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1061 return val;
1062 }
1063 \f
1064
1065 /* This is the variable that is set with "set struct-convention", and
1066 its legitimate values. */
1067 static const char default_struct_convention[] = "default";
1068 static const char pcc_struct_convention[] = "pcc";
1069 static const char reg_struct_convention[] = "reg";
1070 static const char *valid_conventions[] =
1071 {
1072 default_struct_convention,
1073 pcc_struct_convention,
1074 reg_struct_convention,
1075 NULL
1076 };
1077 static const char *struct_convention = default_struct_convention;
1078
1079 static int
1080 i386_use_struct_convention (int gcc_p, struct type *type)
1081 {
1082 enum struct_return struct_return;
1083
1084 if (struct_convention == default_struct_convention)
1085 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1086 else if (struct_convention == pcc_struct_convention)
1087 struct_return = pcc_struct_return;
1088 else
1089 struct_return = reg_struct_return;
1090
1091 return generic_use_struct_convention (struct_return == reg_struct_return,
1092 type);
1093 }
1094 \f
1095
1096 /* Return the GDB type object for the "standard" data type of data in
1097 register REGNUM. Perhaps %esi and %edi should go here, but
1098 potentially they could be used for things other than address. */
1099
1100 static struct type *
1101 i386_register_virtual_type (int regnum)
1102 {
1103 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1104 return lookup_pointer_type (builtin_type_void);
1105
1106 if (IS_FP_REGNUM (regnum))
1107 return builtin_type_i387_ext;
1108
1109 if (IS_SSE_REGNUM (regnum))
1110 return builtin_type_vec128i;
1111
1112 if (mmx_regnum_p (regnum))
1113 return builtin_type_vec64i;
1114
1115 return builtin_type_int;
1116 }
1117
1118 /* Map a cooked register onto a raw register or memory. For the i386,
1119 the MMX registers need to be mapped onto floating point registers. */
1120
1121 static int
1122 mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1123 {
1124 int mmxi;
1125 ULONGEST fstat;
1126 int tos;
1127 int fpi;
1128 mmxi = regnum - MM0_REGNUM;
1129 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1130 tos = (fstat >> 11) & 0x7;
1131 fpi = (mmxi + tos) % 8;
1132 return (FP0_REGNUM + fpi);
1133 }
1134
1135 static void
1136 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1137 int regnum, void *buf)
1138 {
1139 if (mmx_regnum_p (regnum))
1140 {
1141 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1142 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1143 regcache_raw_read (regcache, fpnum, mmx_buf);
1144 /* Extract (always little endian). */
1145 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1146 }
1147 else
1148 regcache_raw_read (regcache, regnum, buf);
1149 }
1150
1151 static void
1152 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1153 int regnum, const void *buf)
1154 {
1155 if (mmx_regnum_p (regnum))
1156 {
1157 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1158 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1159 /* Read ... */
1160 regcache_raw_read (regcache, fpnum, mmx_buf);
1161 /* ... Modify ... (always little endian). */
1162 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1163 /* ... Write. */
1164 regcache_raw_write (regcache, fpnum, mmx_buf);
1165 }
1166 else
1167 regcache_raw_write (regcache, regnum, buf);
1168 }
1169
1170 /* Return true iff register REGNUM's virtual format is different from
1171 its raw format. Note that this definition assumes that the host
1172 supports IEEE 32-bit floats, since it doesn't say that SSE
1173 registers need conversion. Even if we can't find a counterexample,
1174 this is still sloppy. */
1175
1176 static int
1177 i386_register_convertible (int regnum)
1178 {
1179 return IS_FP_REGNUM (regnum);
1180 }
1181
1182 /* Convert data from raw format for register REGNUM in buffer FROM to
1183 virtual format with type TYPE in buffer TO. */
1184
1185 static void
1186 i386_register_convert_to_virtual (int regnum, struct type *type,
1187 char *from, char *to)
1188 {
1189 gdb_assert (IS_FP_REGNUM (regnum));
1190
1191 /* We only support floating-point values. */
1192 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1193 {
1194 warning ("Cannot convert floating-point register value "
1195 "to non-floating-point type.");
1196 memset (to, 0, TYPE_LENGTH (type));
1197 return;
1198 }
1199
1200 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1201 the extended floating-point format used by the FPU. */
1202 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1203 }
1204
1205 /* Convert data from virtual format with type TYPE in buffer FROM to
1206 raw format for register REGNUM in buffer TO. */
1207
1208 static void
1209 i386_register_convert_to_raw (struct type *type, int regnum,
1210 char *from, char *to)
1211 {
1212 gdb_assert (IS_FP_REGNUM (regnum));
1213
1214 /* We only support floating-point values. */
1215 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1216 {
1217 warning ("Cannot convert non-floating-point type "
1218 "to floating-point register value.");
1219 memset (to, 0, TYPE_LENGTH (type));
1220 return;
1221 }
1222
1223 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1224 to the extended floating-point format used by the FPU. */
1225 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1226 }
1227 \f
1228
1229 #ifdef STATIC_TRANSFORM_NAME
1230 /* SunPRO encodes the static variables. This is not related to C++
1231 mangling, it is done for C too. */
1232
1233 char *
1234 sunpro_static_transform_name (char *name)
1235 {
1236 char *p;
1237 if (IS_STATIC_TRANSFORM_NAME (name))
1238 {
1239 /* For file-local statics there will be a period, a bunch of
1240 junk (the contents of which match a string given in the
1241 N_OPT), a period and the name. For function-local statics
1242 there will be a bunch of junk (which seems to change the
1243 second character from 'A' to 'B'), a period, the name of the
1244 function, and the name. So just skip everything before the
1245 last period. */
1246 p = strrchr (name, '.');
1247 if (p != NULL)
1248 name = p + 1;
1249 }
1250 return name;
1251 }
1252 #endif /* STATIC_TRANSFORM_NAME */
1253 \f
1254
1255 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1256
1257 CORE_ADDR
1258 skip_trampoline_code (CORE_ADDR pc, char *name)
1259 {
1260 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1261 {
1262 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1263 struct minimal_symbol *indsym =
1264 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1265 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1266
1267 if (symname)
1268 {
1269 if (strncmp (symname, "__imp_", 6) == 0
1270 || strncmp (symname, "_imp_", 5) == 0)
1271 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1272 }
1273 }
1274 return 0; /* Not a trampoline. */
1275 }
1276 \f
1277
1278 /* Return non-zero if PC and NAME show that we are in a signal
1279 trampoline. */
1280
1281 static int
1282 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1283 {
1284 return (name && strcmp ("_sigtramp", name) == 0);
1285 }
1286 \f
1287
1288 /* We have two flavours of disassembly. The machinery on this page
1289 deals with switching between those. */
1290
1291 static int
1292 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1293 {
1294 if (disassembly_flavor == att_flavor)
1295 return print_insn_i386_att (memaddr, info);
1296 else if (disassembly_flavor == intel_flavor)
1297 return print_insn_i386_intel (memaddr, info);
1298 /* Never reached -- disassembly_flavour is always either att_flavor
1299 or intel_flavor. */
1300 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1301 }
1302 \f
1303
1304 /* There are a few i386 architecture variants that differ only
1305 slightly from the generic i386 target. For now, we don't give them
1306 their own source file, but include them here. As a consequence,
1307 they'll always be included. */
1308
1309 /* System V Release 4 (SVR4). */
1310
1311 static int
1312 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1313 {
1314 return (name && (strcmp ("_sigreturn", name) == 0
1315 || strcmp ("_sigacthandler", name) == 0
1316 || strcmp ("sigvechandler", name) == 0));
1317 }
1318
1319 /* Get address of the pushed ucontext (sigcontext) on the stack for
1320 all three variants of SVR4 sigtramps. */
1321
1322 static CORE_ADDR
1323 i386_svr4_sigcontext_addr (struct frame_info *frame)
1324 {
1325 int sigcontext_offset = -1;
1326 char *name = NULL;
1327
1328 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1329 if (name)
1330 {
1331 if (strcmp (name, "_sigreturn") == 0)
1332 sigcontext_offset = 132;
1333 else if (strcmp (name, "_sigacthandler") == 0)
1334 sigcontext_offset = 80;
1335 else if (strcmp (name, "sigvechandler") == 0)
1336 sigcontext_offset = 120;
1337 }
1338
1339 gdb_assert (sigcontext_offset != -1);
1340
1341 if (frame->next)
1342 return frame->next->frame + sigcontext_offset;
1343 return read_register (SP_REGNUM) + sigcontext_offset;
1344 }
1345 \f
1346
1347 /* DJGPP. */
1348
1349 static int
1350 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1351 {
1352 /* DJGPP doesn't have any special frames for signal handlers. */
1353 return 0;
1354 }
1355 \f
1356
1357 /* Generic ELF. */
1358
1359 void
1360 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1361 {
1362 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1363 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1364 }
1365
1366 /* System V Release 4 (SVR4). */
1367
1368 void
1369 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1370 {
1371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1372
1373 /* System V Release 4 uses ELF. */
1374 i386_elf_init_abi (info, gdbarch);
1375
1376 /* FIXME: kettenis/20020511: Why do we override this function here? */
1377 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1378
1379 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1380 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1381 tdep->sc_pc_offset = 14 * 4;
1382 tdep->sc_sp_offset = 7 * 4;
1383
1384 tdep->jb_pc_offset = 20;
1385 }
1386
1387 /* DJGPP. */
1388
1389 static void
1390 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1391 {
1392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1393
1394 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1395
1396 tdep->jb_pc_offset = 36;
1397 }
1398
1399 /* NetWare. */
1400
1401 static void
1402 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1403 {
1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1405
1406 /* FIXME: kettenis/20020511: Why do we override this function here? */
1407 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1408
1409 tdep->jb_pc_offset = 24;
1410 }
1411 \f
1412
1413 static struct gdbarch *
1414 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1415 {
1416 struct gdbarch_tdep *tdep;
1417 struct gdbarch *gdbarch;
1418 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1419
1420 /* Try to determine the OS ABI of the object we're loading. */
1421 if (info.abfd != NULL)
1422 osabi = gdbarch_lookup_osabi (info.abfd);
1423
1424 /* Find a candidate among extant architectures. */
1425 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1426 arches != NULL;
1427 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1428 {
1429 /* Make sure the OS ABI selection matches. */
1430 tdep = gdbarch_tdep (arches->gdbarch);
1431 if (tdep && tdep->osabi == osabi)
1432 return arches->gdbarch;
1433 }
1434
1435 /* Allocate space for the new architecture. */
1436 tdep = XMALLOC (struct gdbarch_tdep);
1437 gdbarch = gdbarch_alloc (&info, tdep);
1438
1439 tdep->osabi = osabi;
1440
1441 /* The i386 default settings don't include the SSE registers.
1442 FIXME: kettenis/20020614: They do include the FPU registers for
1443 now, which probably is not quite right. */
1444 tdep->num_xmm_regs = 0;
1445
1446 tdep->jb_pc_offset = -1;
1447 tdep->struct_return = pcc_struct_return;
1448 tdep->sigtramp_start = 0;
1449 tdep->sigtramp_end = 0;
1450 tdep->sigcontext_addr = NULL;
1451 tdep->sc_pc_offset = -1;
1452 tdep->sc_sp_offset = -1;
1453
1454 /* The format used for `long double' on almost all i386 targets is
1455 the i387 extended floating-point format. In fact, of all targets
1456 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1457 on having a `long double' that's not `long' at all. */
1458 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1459
1460 /* Although the i386 extended floating-point has only 80 significant
1461 bits, a `long double' actually takes up 96, probably to enforce
1462 alignment. */
1463 set_gdbarch_long_double_bit (gdbarch, 96);
1464
1465 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1466 tm-symmetry.h currently override this. Sigh. */
1467 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1468
1469 set_gdbarch_sp_regnum (gdbarch, 4);
1470 set_gdbarch_fp_regnum (gdbarch, 5);
1471 set_gdbarch_pc_regnum (gdbarch, 8);
1472 set_gdbarch_ps_regnum (gdbarch, 9);
1473 set_gdbarch_fp0_regnum (gdbarch, 16);
1474
1475 /* Use the "default" register numbering scheme for stabs and COFF. */
1476 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1477 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1478
1479 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1480 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1481 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1482
1483 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1484 be in use on any of the supported i386 targets. */
1485
1486 set_gdbarch_register_name (gdbarch, i386_register_name);
1487 set_gdbarch_register_size (gdbarch, 4);
1488 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1489 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1490 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1491 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1492
1493 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1494
1495 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1496
1497 /* Call dummy code. */
1498 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1499 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1500 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1501 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1502 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1503 set_gdbarch_call_dummy_length (gdbarch, 0);
1504 set_gdbarch_call_dummy_p (gdbarch, 1);
1505 set_gdbarch_call_dummy_words (gdbarch, NULL);
1506 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1507 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1508 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1509
1510 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1511 set_gdbarch_register_convert_to_virtual (gdbarch,
1512 i386_register_convert_to_virtual);
1513 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1514
1515 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1516 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1517
1518 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1519
1520 /* "An argument's size is increased, if necessary, to make it a
1521 multiple of [32-bit] words. This may require tail padding,
1522 depending on the size of the argument" -- from the x86 ABI. */
1523 set_gdbarch_parm_boundary (gdbarch, 32);
1524
1525 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1526 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1527 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1528 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1529 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1530 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1531 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1532 set_gdbarch_extract_struct_value_address (gdbarch,
1533 i386_extract_struct_value_address);
1534 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1535
1536 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1537 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1538
1539 /* Stack grows downward. */
1540 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1541
1542 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1543 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1544 set_gdbarch_function_start_offset (gdbarch, 0);
1545
1546 /* The following redefines make backtracing through sigtramp work.
1547 They manufacture a fake sigtramp frame and obtain the saved pc in
1548 sigtramp from the sigcontext structure which is pushed by the
1549 kernel on the user stack, along with a pointer to it. */
1550
1551 set_gdbarch_frame_args_skip (gdbarch, 8);
1552 set_gdbarch_frameless_function_invocation (gdbarch,
1553 i386_frameless_function_invocation);
1554 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1555 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1556 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1557 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1558 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1559 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1560 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1561 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1562
1563 /* Wire in the MMX registers. */
1564 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1565 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1566 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1567
1568 /* Hook in ABI-specific overrides, if they have been registered. */
1569 gdbarch_init_osabi (info, gdbarch, osabi);
1570
1571 return gdbarch;
1572 }
1573
1574 static enum gdb_osabi
1575 i386_coff_osabi_sniffer (bfd *abfd)
1576 {
1577 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1578 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1579 return GDB_OSABI_GO32;
1580
1581 return GDB_OSABI_UNKNOWN;
1582 }
1583
1584 static enum gdb_osabi
1585 i386_nlm_osabi_sniffer (bfd *abfd)
1586 {
1587 return GDB_OSABI_NETWARE;
1588 }
1589 \f
1590
1591 /* Provide a prototype to silence -Wmissing-prototypes. */
1592 void _initialize_i386_tdep (void);
1593
1594 void
1595 _initialize_i386_tdep (void)
1596 {
1597 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1598
1599 tm_print_insn = gdb_print_insn_i386;
1600 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1601
1602 /* Add the variable that controls the disassembly flavor. */
1603 {
1604 struct cmd_list_element *new_cmd;
1605
1606 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1607 valid_flavors,
1608 &disassembly_flavor,
1609 "\
1610 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1611 and the default value is \"att\".",
1612 &setlist);
1613 add_show_from_set (new_cmd, &showlist);
1614 }
1615
1616 /* Add the variable that controls the convention for returning
1617 structs. */
1618 {
1619 struct cmd_list_element *new_cmd;
1620
1621 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1622 valid_conventions,
1623 &struct_convention, "\
1624 Set the convention for returning small structs, valid values \
1625 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1626 &setlist);
1627 add_show_from_set (new_cmd, &showlist);
1628 }
1629
1630 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1631 i386_coff_osabi_sniffer);
1632 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1633 i386_nlm_osabi_sniffer);
1634
1635 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1636 i386_svr4_init_abi);
1637 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1638 i386_go32_init_abi);
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1640 i386_nw_init_abi);
1641 }