Add bfloat16 support for AVX512 register view.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51
52 #include "record.h"
53 #include "record-full.h"
54 #include "target-descriptions.h"
55 #include "arch/i386.h"
56
57 #include "ax.h"
58 #include "ax-gdb.h"
59
60 #include "stap-probe.h"
61 #include "user-regs.h"
62 #include "cli/cli-utils.h"
63 #include "expression.h"
64 #include "parser-defs.h"
65 #include <ctype.h>
66 #include <algorithm>
67 #include <unordered_set>
68 #include "producer.h"
69
70 /* Register names. */
71
72 static const char *i386_register_names[] =
73 {
74 "eax", "ecx", "edx", "ebx",
75 "esp", "ebp", "esi", "edi",
76 "eip", "eflags", "cs", "ss",
77 "ds", "es", "fs", "gs",
78 "st0", "st1", "st2", "st3",
79 "st4", "st5", "st6", "st7",
80 "fctrl", "fstat", "ftag", "fiseg",
81 "fioff", "foseg", "fooff", "fop",
82 "xmm0", "xmm1", "xmm2", "xmm3",
83 "xmm4", "xmm5", "xmm6", "xmm7",
84 "mxcsr"
85 };
86
87 static const char *i386_zmm_names[] =
88 {
89 "zmm0", "zmm1", "zmm2", "zmm3",
90 "zmm4", "zmm5", "zmm6", "zmm7"
91 };
92
93 static const char *i386_zmmh_names[] =
94 {
95 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
96 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
97 };
98
99 static const char *i386_k_names[] =
100 {
101 "k0", "k1", "k2", "k3",
102 "k4", "k5", "k6", "k7"
103 };
104
105 static const char *i386_ymm_names[] =
106 {
107 "ymm0", "ymm1", "ymm2", "ymm3",
108 "ymm4", "ymm5", "ymm6", "ymm7",
109 };
110
111 static const char *i386_ymmh_names[] =
112 {
113 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
114 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
115 };
116
117 static const char *i386_mpx_names[] =
118 {
119 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
120 };
121
122 static const char* i386_pkeys_names[] =
123 {
124 "pkru"
125 };
126
127 /* Register names for MPX pseudo-registers. */
128
129 static const char *i386_bnd_names[] =
130 {
131 "bnd0", "bnd1", "bnd2", "bnd3"
132 };
133
134 /* Register names for MMX pseudo-registers. */
135
136 static const char *i386_mmx_names[] =
137 {
138 "mm0", "mm1", "mm2", "mm3",
139 "mm4", "mm5", "mm6", "mm7"
140 };
141
142 /* Register names for byte pseudo-registers. */
143
144 static const char *i386_byte_names[] =
145 {
146 "al", "cl", "dl", "bl",
147 "ah", "ch", "dh", "bh"
148 };
149
150 /* Register names for word pseudo-registers. */
151
152 static const char *i386_word_names[] =
153 {
154 "ax", "cx", "dx", "bx",
155 "", "bp", "si", "di"
156 };
157
158 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
159 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
160 we have 16 upper ZMM regs that have to be handled differently. */
161
162 const int num_lower_zmm_regs = 16;
163
164 /* MMX register? */
165
166 static int
167 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170 int mm0_regnum = tdep->mm0_regnum;
171
172 if (mm0_regnum < 0)
173 return 0;
174
175 regnum -= mm0_regnum;
176 return regnum >= 0 && regnum < tdep->num_mmx_regs;
177 }
178
179 /* Byte register? */
180
181 int
182 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185
186 regnum -= tdep->al_regnum;
187 return regnum >= 0 && regnum < tdep->num_byte_regs;
188 }
189
190 /* Word register? */
191
192 int
193 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
194 {
195 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
196
197 regnum -= tdep->ax_regnum;
198 return regnum >= 0 && regnum < tdep->num_word_regs;
199 }
200
201 /* Dword register? */
202
203 int
204 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
205 {
206 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
207 int eax_regnum = tdep->eax_regnum;
208
209 if (eax_regnum < 0)
210 return 0;
211
212 regnum -= eax_regnum;
213 return regnum >= 0 && regnum < tdep->num_dword_regs;
214 }
215
216 /* AVX512 register? */
217
218 int
219 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
220 {
221 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
222 int zmm0h_regnum = tdep->zmm0h_regnum;
223
224 if (zmm0h_regnum < 0)
225 return 0;
226
227 regnum -= zmm0h_regnum;
228 return regnum >= 0 && regnum < tdep->num_zmm_regs;
229 }
230
231 int
232 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
233 {
234 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
235 int zmm0_regnum = tdep->zmm0_regnum;
236
237 if (zmm0_regnum < 0)
238 return 0;
239
240 regnum -= zmm0_regnum;
241 return regnum >= 0 && regnum < tdep->num_zmm_regs;
242 }
243
244 int
245 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248 int k0_regnum = tdep->k0_regnum;
249
250 if (k0_regnum < 0)
251 return 0;
252
253 regnum -= k0_regnum;
254 return regnum >= 0 && regnum < I387_NUM_K_REGS;
255 }
256
257 static int
258 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
259 {
260 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
261 int ymm0h_regnum = tdep->ymm0h_regnum;
262
263 if (ymm0h_regnum < 0)
264 return 0;
265
266 regnum -= ymm0h_regnum;
267 return regnum >= 0 && regnum < tdep->num_ymm_regs;
268 }
269
270 /* AVX register? */
271
272 int
273 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
274 {
275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
276 int ymm0_regnum = tdep->ymm0_regnum;
277
278 if (ymm0_regnum < 0)
279 return 0;
280
281 regnum -= ymm0_regnum;
282 return regnum >= 0 && regnum < tdep->num_ymm_regs;
283 }
284
285 static int
286 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
287 {
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 int ymm16h_regnum = tdep->ymm16h_regnum;
290
291 if (ymm16h_regnum < 0)
292 return 0;
293
294 regnum -= ymm16h_regnum;
295 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
296 }
297
298 int
299 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
300 {
301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
302 int ymm16_regnum = tdep->ymm16_regnum;
303
304 if (ymm16_regnum < 0)
305 return 0;
306
307 regnum -= ymm16_regnum;
308 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
309 }
310
311 /* BND register? */
312
313 int
314 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
315 {
316 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
317 int bnd0_regnum = tdep->bnd0_regnum;
318
319 if (bnd0_regnum < 0)
320 return 0;
321
322 regnum -= bnd0_regnum;
323 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
324 }
325
326 /* SSE register? */
327
328 int
329 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
333
334 if (num_xmm_regs == 0)
335 return 0;
336
337 regnum -= I387_XMM0_REGNUM (tdep);
338 return regnum >= 0 && regnum < num_xmm_regs;
339 }
340
341 /* XMM_512 register? */
342
343 int
344 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
345 {
346 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
347 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
348
349 if (num_xmm_avx512_regs == 0)
350 return 0;
351
352 regnum -= I387_XMM16_REGNUM (tdep);
353 return regnum >= 0 && regnum < num_xmm_avx512_regs;
354 }
355
356 static int
357 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
358 {
359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
360
361 if (I387_NUM_XMM_REGS (tdep) == 0)
362 return 0;
363
364 return (regnum == I387_MXCSR_REGNUM (tdep));
365 }
366
367 /* FP register? */
368
369 int
370 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
371 {
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373
374 if (I387_ST0_REGNUM (tdep) < 0)
375 return 0;
376
377 return (I387_ST0_REGNUM (tdep) <= regnum
378 && regnum < I387_FCTRL_REGNUM (tdep));
379 }
380
381 int
382 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
383 {
384 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
385
386 if (I387_ST0_REGNUM (tdep) < 0)
387 return 0;
388
389 return (I387_FCTRL_REGNUM (tdep) <= regnum
390 && regnum < I387_XMM0_REGNUM (tdep));
391 }
392
393 /* BNDr (raw) register? */
394
395 static int
396 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
397 {
398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
399
400 if (I387_BND0R_REGNUM (tdep) < 0)
401 return 0;
402
403 regnum -= tdep->bnd0r_regnum;
404 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
405 }
406
407 /* BND control register? */
408
409 static int
410 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
411 {
412 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
413
414 if (I387_BNDCFGU_REGNUM (tdep) < 0)
415 return 0;
416
417 regnum -= I387_BNDCFGU_REGNUM (tdep);
418 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
419 }
420
421 /* PKRU register? */
422
423 bool
424 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
425 {
426 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
427 int pkru_regnum = tdep->pkru_regnum;
428
429 if (pkru_regnum < 0)
430 return false;
431
432 regnum -= pkru_regnum;
433 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
434 }
435
436 /* Return the name of register REGNUM, or the empty string if it is
437 an anonymous register. */
438
439 static const char *
440 i386_register_name (struct gdbarch *gdbarch, int regnum)
441 {
442 /* Hide the upper YMM registers. */
443 if (i386_ymmh_regnum_p (gdbarch, regnum))
444 return "";
445
446 /* Hide the upper YMM16-31 registers. */
447 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
448 return "";
449
450 /* Hide the upper ZMM registers. */
451 if (i386_zmmh_regnum_p (gdbarch, regnum))
452 return "";
453
454 return tdesc_register_name (gdbarch, regnum);
455 }
456
457 /* Return the name of register REGNUM. */
458
459 const char *
460 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
461 {
462 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
463 if (i386_bnd_regnum_p (gdbarch, regnum))
464 return i386_bnd_names[regnum - tdep->bnd0_regnum];
465 if (i386_mmx_regnum_p (gdbarch, regnum))
466 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
467 else if (i386_ymm_regnum_p (gdbarch, regnum))
468 return i386_ymm_names[regnum - tdep->ymm0_regnum];
469 else if (i386_zmm_regnum_p (gdbarch, regnum))
470 return i386_zmm_names[regnum - tdep->zmm0_regnum];
471 else if (i386_byte_regnum_p (gdbarch, regnum))
472 return i386_byte_names[regnum - tdep->al_regnum];
473 else if (i386_word_regnum_p (gdbarch, regnum))
474 return i386_word_names[regnum - tdep->ax_regnum];
475
476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
477 }
478
479 /* Convert a dbx register number REG to the appropriate register
480 number used by GDB. */
481
482 static int
483 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
484 {
485 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
486
487 /* This implements what GCC calls the "default" register map
488 (dbx_register_map[]). */
489
490 if (reg >= 0 && reg <= 7)
491 {
492 /* General-purpose registers. The debug info calls %ebp
493 register 4, and %esp register 5. */
494 if (reg == 4)
495 return 5;
496 else if (reg == 5)
497 return 4;
498 else return reg;
499 }
500 else if (reg >= 12 && reg <= 19)
501 {
502 /* Floating-point registers. */
503 return reg - 12 + I387_ST0_REGNUM (tdep);
504 }
505 else if (reg >= 21 && reg <= 28)
506 {
507 /* SSE registers. */
508 int ymm0_regnum = tdep->ymm0_regnum;
509
510 if (ymm0_regnum >= 0
511 && i386_xmm_regnum_p (gdbarch, reg))
512 return reg - 21 + ymm0_regnum;
513 else
514 return reg - 21 + I387_XMM0_REGNUM (tdep);
515 }
516 else if (reg >= 29 && reg <= 36)
517 {
518 /* MMX registers. */
519 return reg - 29 + I387_MM0_REGNUM (tdep);
520 }
521
522 /* This will hopefully provoke a warning. */
523 return gdbarch_num_cooked_regs (gdbarch);
524 }
525
526 /* Convert SVR4 DWARF register number REG to the appropriate register number
527 used by GDB. */
528
529 static int
530 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
531 {
532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
533
534 /* This implements the GCC register map that tries to be compatible
535 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
536
537 /* The SVR4 register numbering includes %eip and %eflags, and
538 numbers the floating point registers differently. */
539 if (reg >= 0 && reg <= 9)
540 {
541 /* General-purpose registers. */
542 return reg;
543 }
544 else if (reg >= 11 && reg <= 18)
545 {
546 /* Floating-point registers. */
547 return reg - 11 + I387_ST0_REGNUM (tdep);
548 }
549 else if (reg >= 21 && reg <= 36)
550 {
551 /* The SSE and MMX registers have the same numbers as with dbx. */
552 return i386_dbx_reg_to_regnum (gdbarch, reg);
553 }
554
555 switch (reg)
556 {
557 case 37: return I387_FCTRL_REGNUM (tdep);
558 case 38: return I387_FSTAT_REGNUM (tdep);
559 case 39: return I387_MXCSR_REGNUM (tdep);
560 case 40: return I386_ES_REGNUM;
561 case 41: return I386_CS_REGNUM;
562 case 42: return I386_SS_REGNUM;
563 case 43: return I386_DS_REGNUM;
564 case 44: return I386_FS_REGNUM;
565 case 45: return I386_GS_REGNUM;
566 }
567
568 return -1;
569 }
570
571 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
572 num_regs + num_pseudo_regs for other debug formats. */
573
574 int
575 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
576 {
577 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
578
579 if (regnum == -1)
580 return gdbarch_num_cooked_regs (gdbarch);
581 return regnum;
582 }
583
584 \f
585
586 /* This is the variable that is set with "set disassembly-flavor", and
587 its legitimate values. */
588 static const char att_flavor[] = "att";
589 static const char intel_flavor[] = "intel";
590 static const char *const valid_flavors[] =
591 {
592 att_flavor,
593 intel_flavor,
594 NULL
595 };
596 static const char *disassembly_flavor = att_flavor;
597 \f
598
599 /* Use the program counter to determine the contents and size of a
600 breakpoint instruction. Return a pointer to a string of bytes that
601 encode a breakpoint instruction, store the length of the string in
602 *LEN and optionally adjust *PC to point to the correct memory
603 location for inserting the breakpoint.
604
605 On the i386 we have a single breakpoint that fits in a single byte
606 and can be inserted anywhere.
607
608 This function is 64-bit safe. */
609
610 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
611
612 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
613
614 \f
615 /* Displaced instruction handling. */
616
617 /* Skip the legacy instruction prefixes in INSN.
618 Not all prefixes are valid for any particular insn
619 but we needn't care, the insn will fault if it's invalid.
620 The result is a pointer to the first opcode byte,
621 or NULL if we run off the end of the buffer. */
622
623 static gdb_byte *
624 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
625 {
626 gdb_byte *end = insn + max_len;
627
628 while (insn < end)
629 {
630 switch (*insn)
631 {
632 case DATA_PREFIX_OPCODE:
633 case ADDR_PREFIX_OPCODE:
634 case CS_PREFIX_OPCODE:
635 case DS_PREFIX_OPCODE:
636 case ES_PREFIX_OPCODE:
637 case FS_PREFIX_OPCODE:
638 case GS_PREFIX_OPCODE:
639 case SS_PREFIX_OPCODE:
640 case LOCK_PREFIX_OPCODE:
641 case REPE_PREFIX_OPCODE:
642 case REPNE_PREFIX_OPCODE:
643 ++insn;
644 continue;
645 default:
646 return insn;
647 }
648 }
649
650 return NULL;
651 }
652
653 static int
654 i386_absolute_jmp_p (const gdb_byte *insn)
655 {
656 /* jmp far (absolute address in operand). */
657 if (insn[0] == 0xea)
658 return 1;
659
660 if (insn[0] == 0xff)
661 {
662 /* jump near, absolute indirect (/4). */
663 if ((insn[1] & 0x38) == 0x20)
664 return 1;
665
666 /* jump far, absolute indirect (/5). */
667 if ((insn[1] & 0x38) == 0x28)
668 return 1;
669 }
670
671 return 0;
672 }
673
674 /* Return non-zero if INSN is a jump, zero otherwise. */
675
676 static int
677 i386_jmp_p (const gdb_byte *insn)
678 {
679 /* jump short, relative. */
680 if (insn[0] == 0xeb)
681 return 1;
682
683 /* jump near, relative. */
684 if (insn[0] == 0xe9)
685 return 1;
686
687 return i386_absolute_jmp_p (insn);
688 }
689
690 static int
691 i386_absolute_call_p (const gdb_byte *insn)
692 {
693 /* call far, absolute. */
694 if (insn[0] == 0x9a)
695 return 1;
696
697 if (insn[0] == 0xff)
698 {
699 /* Call near, absolute indirect (/2). */
700 if ((insn[1] & 0x38) == 0x10)
701 return 1;
702
703 /* Call far, absolute indirect (/3). */
704 if ((insn[1] & 0x38) == 0x18)
705 return 1;
706 }
707
708 return 0;
709 }
710
711 static int
712 i386_ret_p (const gdb_byte *insn)
713 {
714 switch (insn[0])
715 {
716 case 0xc2: /* ret near, pop N bytes. */
717 case 0xc3: /* ret near */
718 case 0xca: /* ret far, pop N bytes. */
719 case 0xcb: /* ret far */
720 case 0xcf: /* iret */
721 return 1;
722
723 default:
724 return 0;
725 }
726 }
727
728 static int
729 i386_call_p (const gdb_byte *insn)
730 {
731 if (i386_absolute_call_p (insn))
732 return 1;
733
734 /* call near, relative. */
735 if (insn[0] == 0xe8)
736 return 1;
737
738 return 0;
739 }
740
741 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
742 length in bytes. Otherwise, return zero. */
743
744 static int
745 i386_syscall_p (const gdb_byte *insn, int *lengthp)
746 {
747 /* Is it 'int $0x80'? */
748 if ((insn[0] == 0xcd && insn[1] == 0x80)
749 /* Or is it 'sysenter'? */
750 || (insn[0] == 0x0f && insn[1] == 0x34)
751 /* Or is it 'syscall'? */
752 || (insn[0] == 0x0f && insn[1] == 0x05))
753 {
754 *lengthp = 2;
755 return 1;
756 }
757
758 return 0;
759 }
760
761 /* The gdbarch insn_is_call method. */
762
763 static int
764 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
765 {
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_call_p (insn);
772 }
773
774 /* The gdbarch insn_is_ret method. */
775
776 static int
777 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
778 {
779 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
780
781 read_code (addr, buf, I386_MAX_INSN_LEN);
782 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
783
784 return i386_ret_p (insn);
785 }
786
787 /* The gdbarch insn_is_jump method. */
788
789 static int
790 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
791 {
792 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
793
794 read_code (addr, buf, I386_MAX_INSN_LEN);
795 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
796
797 return i386_jmp_p (insn);
798 }
799
800 /* Some kernels may run one past a syscall insn, so we have to cope. */
801
802 displaced_step_closure_up
803 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
804 CORE_ADDR from, CORE_ADDR to,
805 struct regcache *regs)
806 {
807 size_t len = gdbarch_max_insn_length (gdbarch);
808 std::unique_ptr<i386_displaced_step_closure> closure
809 (new i386_displaced_step_closure (len));
810 gdb_byte *buf = closure->buf.data ();
811
812 read_memory (from, buf, len);
813
814 /* GDB may get control back after the insn after the syscall.
815 Presumably this is a kernel bug.
816 If this is a syscall, make sure there's a nop afterwards. */
817 {
818 int syscall_length;
819 gdb_byte *insn;
820
821 insn = i386_skip_prefixes (buf, len);
822 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
823 insn[syscall_length] = NOP_OPCODE;
824 }
825
826 write_memory (to, buf, len);
827
828 if (debug_displaced)
829 {
830 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
831 paddress (gdbarch, from), paddress (gdbarch, to));
832 displaced_step_dump_bytes (gdb_stdlog, buf, len);
833 }
834
835 /* This is a work around for a problem with g++ 4.8. */
836 return displaced_step_closure_up (closure.release ());
837 }
838
839 /* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
841
842 void
843 i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure_,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847 {
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 i386_displaced_step_closure *closure
857 = (i386_displaced_step_closure *) closure_;
858 gdb_byte *insn = closure->buf.data ();
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
864 "displaced: fixup (%s, %s), "
865 "insn = 0x%02x 0x%02x ...\n",
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
897 int insn_len;
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
971 }
972 }
973
974 static void
975 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976 {
977 target_write_memory (*to, buf, len);
978 *to += len;
979 }
980
981 static void
982 i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984 {
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1009 push_buf[0] = 0x68; /* pushq $... */
1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058 }
1059
1060 \f
1061 #ifdef I386_REGNO_TO_SYMMETRY
1062 #error "The Sequent Symmetry is no longer supported."
1063 #endif
1064
1065 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
1068
1069 /* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
1071 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1072
1073 struct i386_frame_cache
1074 {
1075 /* Base address. */
1076 CORE_ADDR base;
1077 int base_p;
1078 LONGEST sp_offset;
1079 CORE_ADDR pc;
1080
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1083 CORE_ADDR saved_sp;
1084 int saved_sp_reg;
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089 };
1090
1091 /* Allocate and initialize a frame cache. */
1092
1093 static struct i386_frame_cache *
1094 i386_alloc_frame_cache (void)
1095 {
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
1102 cache->base_p = 0;
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
1111 cache->saved_sp = 0;
1112 cache->saved_sp_reg = -1;
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119 }
1120
1121 /* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
1123
1124 static CORE_ADDR
1125 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1128 gdb_byte op;
1129 long delta = 0;
1130 int data16 = 0;
1131
1132 if (target_read_code (pc, &op, 1))
1133 return pc;
1134
1135 if (op == 0x66)
1136 {
1137 data16 = 1;
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1140 }
1141
1142 switch (op)
1143 {
1144 case 0xe9:
1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
1146 if (data16)
1147 {
1148 delta = read_memory_integer (pc + 2, 2, byte_order);
1149
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
1152 delta += 4;
1153 }
1154 else
1155 {
1156 delta = read_memory_integer (pc + 1, 4, byte_order);
1157
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
1160 }
1161 break;
1162 case 0xeb:
1163 /* Relative jump, disp8 (ignore data16). */
1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1165
1166 delta += data16 + 2;
1167 break;
1168 }
1169
1170 return pc + delta;
1171 }
1172
1173 /* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
1178
1179 static CORE_ADDR
1180 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
1182 {
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
1197
1198 if (current_pc <= pc)
1199 return pc;
1200
1201 if (target_read_code (pc, &op, 1))
1202 return pc;
1203
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
1206
1207 if (target_read_code (pc + 1, buf, 4))
1208 return pc;
1209
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
1212
1213 if (current_pc == pc)
1214 {
1215 cache->sp_offset += 4;
1216 return current_pc;
1217 }
1218
1219 if (current_pc == pc + 1)
1220 {
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229 }
1230
1231 static CORE_ADDR
1232 i386_skip_probe (CORE_ADDR pc)
1233 {
1234 /* A function may start with
1235
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
1239
1240 followed by
1241
1242 pushl %ebp
1243
1244 etc. */
1245 gdb_byte buf[8];
1246 gdb_byte op;
1247
1248 if (target_read_code (pc, &op, 1))
1249 return pc;
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
1254
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
1257 if (op == 0x68)
1258 delta = 5;
1259 else
1260 delta = 2;
1261
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1266 pc += delta + sizeof (buf);
1267 }
1268
1269 return pc;
1270 }
1271
1272 /* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278 static CORE_ADDR
1279 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281 {
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
1316 };
1317
1318 if (target_read_code (pc, buf, sizeof buf))
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
1381 return pc;
1382
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
1385
1386 return std::min (pc + offset + 3, current_pc);
1387 }
1388
1389 /* Maximum instruction length we need to handle. */
1390 #define I386_MAX_MATCHED_INSN_LEN 6
1391
1392 /* Instruction description. */
1393 struct i386_insn
1394 {
1395 size_t len;
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1398 };
1399
1400 /* Return whether instruction at PC matches PATTERN. */
1401
1402 static int
1403 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1404 {
1405 gdb_byte op;
1406
1407 if (target_read_code (pc, &op, 1))
1408 return 0;
1409
1410 if ((op & pattern.mask[0]) == pattern.insn[0])
1411 {
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
1415
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1418
1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
1420 return 0;
1421
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
1426 }
1427 return insn_matched;
1428 }
1429 return 0;
1430 }
1431
1432 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436 static struct i386_insn *
1437 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438 {
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
1445 }
1446
1447 return NULL;
1448 }
1449
1450 /* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453 static int
1454 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455 {
1456 CORE_ADDR current_pc;
1457 int ix, i;
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
1464 current_pc = pc;
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
1468 current_pc -= insn_patterns[i].len;
1469
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484 }
1485
1486 /* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492 struct i386_insn i386_frame_setup_skip_insns[] =
1493 {
1494 /* Check for `movb imm8, r' and `movl imm32, r'.
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB addressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539 };
1540
1541
1542 /* Check whether PC points to a no-op instruction. */
1543 static CORE_ADDR
1544 i386_skip_noop (CORE_ADDR pc)
1545 {
1546 gdb_byte op;
1547 int check = 1;
1548
1549 if (target_read_code (pc, &op, 1))
1550 return pc;
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
1559 if (target_read_code (pc, &op, 1))
1560 return pc;
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
1576 if (target_read_code (pc + 1, &op, 1))
1577 return pc;
1578
1579 if (op == 0xff)
1580 {
1581 pc += 2;
1582 if (target_read_code (pc, &op, 1))
1583 return pc;
1584
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590 }
1591
1592 /* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
1596
1597 static CORE_ADDR
1598 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
1600 struct i386_frame_cache *cache)
1601 {
1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1603 struct i386_insn *insn;
1604 gdb_byte op;
1605 int skip = 0;
1606
1607 if (limit <= pc)
1608 return limit;
1609
1610 if (target_read_code (pc, &op, 1))
1611 return pc;
1612
1613 if (op == 0x55) /* pushl %ebp */
1614 {
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
1618 cache->sp_offset += 4;
1619 pc++;
1620
1621 /* If that's all, return now. */
1622 if (limit <= pc)
1623 return limit;
1624
1625 /* Check for some special instructions that might be migrated by
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of possibilities is sheer,
1629 it is limited.
1630
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
1633 while (pc + skip < limit)
1634 {
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
1638
1639 skip += insn->len;
1640 }
1641
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
1646 if (target_read_code (pc + skip, &op, 1))
1647 return pc + skip;
1648
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
1663 switch (op)
1664 {
1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1666 case 0x8b:
1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1668 != 0xec)
1669 return pc;
1670 pc += (skip + 2);
1671 break;
1672 case 0x89:
1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1674 != 0xe5)
1675 return pc;
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
1683 break;
1684 default:
1685 return pc;
1686 }
1687
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
1695 if (limit <= pc)
1696 return limit;
1697
1698 /* Check for stack adjustment
1699
1700 subl $XXX, %esp
1701 or
1702 lea -XXX(%esp),%esp
1703
1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1705 reg, so we don't have to worry about a data16 prefix. */
1706 if (target_read_code (pc, &op, 1))
1707 return pc;
1708 if (op == 0x83)
1709 {
1710 /* `subl' with 8-bit immediate. */
1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1712 /* Some instruction starting with 0x83 other than `subl'. */
1713 return pc;
1714
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1718 return pc + 3;
1719 }
1720 else if (op == 0x81)
1721 {
1722 /* Maybe it is `subl' with a 32-bit immediate. */
1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1724 /* Some instruction starting with 0x81 other than `subl'. */
1725 return pc;
1726
1727 /* It is `subl' with a 32-bit immediate. */
1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1729 return pc + 6;
1730 }
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1738 return pc + 4;
1739 }
1740 else
1741 {
1742 /* Some instruction other than `subl' nor 'lea'. */
1743 return pc;
1744 }
1745 }
1746 else if (op == 0xc8) /* enter */
1747 {
1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1749 return pc + 4;
1750 }
1751
1752 return pc;
1753 }
1754
1755 /* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
1759
1760 static CORE_ADDR
1761 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
1763 {
1764 CORE_ADDR offset = 0;
1765 gdb_byte op;
1766 int i;
1767
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
1772 if (target_read_code (pc, &op, 1))
1773 return pc;
1774 if (op < 0x50 || op > 0x57)
1775 break;
1776
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
1781 }
1782
1783 return pc;
1784 }
1785
1786 /* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
1789
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
1812
1813 static CORE_ADDR
1814 i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
1816 struct i386_frame_cache *cache)
1817 {
1818 pc = i386_skip_noop (pc);
1819 pc = i386_follow_jump (gdbarch, pc);
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1824 return i386_analyze_register_saves (pc, current_pc, cache);
1825 }
1826
1827 /* Return PC of first real instruction. */
1828
1829 static CORE_ADDR
1830 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
1834 static gdb_byte pic_pat[6] =
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
1838 };
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
1841 gdb_byte op;
1842 int i;
1843 CORE_ADDR func_addr;
1844
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1850
1851 /* LLVM backend (Clang/Flang) always emits a line note before the
1852 prologue and another one after. We trust clang to emit usable
1853 line notes. */
1854 if (post_prologue_pc
1855 && (cust != NULL
1856 && COMPUNIT_PRODUCER (cust) != NULL
1857 && producer_is_llvm (COMPUNIT_PRODUCER (cust))))
1858 return std::max (start_pc, post_prologue_pc);
1859 }
1860
1861 cache.locals = -1;
1862 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1863 if (cache.locals < 0)
1864 return start_pc;
1865
1866 /* Found valid frame setup. */
1867
1868 /* The native cc on SVR4 in -K PIC mode inserts the following code
1869 to get the address of the global offset table (GOT) into register
1870 %ebx:
1871
1872 call 0x0
1873 popl %ebx
1874 movl %ebx,x(%ebp) (optional)
1875 addl y,%ebx
1876
1877 This code is with the rest of the prologue (at the end of the
1878 function), so we have to skip it to get to the first real
1879 instruction at the start of the function. */
1880
1881 for (i = 0; i < 6; i++)
1882 {
1883 if (target_read_code (pc + i, &op, 1))
1884 return pc;
1885
1886 if (pic_pat[i] != op)
1887 break;
1888 }
1889 if (i == 6)
1890 {
1891 int delta = 6;
1892
1893 if (target_read_code (pc + delta, &op, 1))
1894 return pc;
1895
1896 if (op == 0x89) /* movl %ebx, x(%ebp) */
1897 {
1898 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1899
1900 if (op == 0x5d) /* One byte offset from %ebp. */
1901 delta += 3;
1902 else if (op == 0x9d) /* Four byte offset from %ebp. */
1903 delta += 6;
1904 else /* Unexpected instruction. */
1905 delta = 0;
1906
1907 if (target_read_code (pc + delta, &op, 1))
1908 return pc;
1909 }
1910
1911 /* addl y,%ebx */
1912 if (delta > 0 && op == 0x81
1913 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1914 == 0xc3)
1915 {
1916 pc += delta + 6;
1917 }
1918 }
1919
1920 /* If the function starts with a branch (to startup code at the end)
1921 the last instruction should bring us back to the first
1922 instruction of the real code. */
1923 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1924 pc = i386_follow_jump (gdbarch, pc);
1925
1926 return pc;
1927 }
1928
1929 /* Check that the code pointed to by PC corresponds to a call to
1930 __main, skip it if so. Return PC otherwise. */
1931
1932 CORE_ADDR
1933 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1934 {
1935 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1936 gdb_byte op;
1937
1938 if (target_read_code (pc, &op, 1))
1939 return pc;
1940 if (op == 0xe8)
1941 {
1942 gdb_byte buf[4];
1943
1944 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1945 {
1946 /* Make sure address is computed correctly as a 32bit
1947 integer even if CORE_ADDR is 64 bit wide. */
1948 struct bound_minimal_symbol s;
1949 CORE_ADDR call_dest;
1950
1951 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1952 call_dest = call_dest & 0xffffffffU;
1953 s = lookup_minimal_symbol_by_pc (call_dest);
1954 if (s.minsym != NULL
1955 && s.minsym->linkage_name () != NULL
1956 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1957 pc += 5;
1958 }
1959 }
1960
1961 return pc;
1962 }
1963
1964 /* This function is 64-bit safe. */
1965
1966 static CORE_ADDR
1967 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1968 {
1969 gdb_byte buf[8];
1970
1971 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1972 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1973 }
1974 \f
1975
1976 /* Normal frames. */
1977
1978 static void
1979 i386_frame_cache_1 (struct frame_info *this_frame,
1980 struct i386_frame_cache *cache)
1981 {
1982 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1983 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1984 gdb_byte buf[4];
1985 int i;
1986
1987 cache->pc = get_frame_func (this_frame);
1988
1989 /* In principle, for normal frames, %ebp holds the frame pointer,
1990 which holds the base address for the current stack frame.
1991 However, for functions that don't need it, the frame pointer is
1992 optional. For these "frameless" functions the frame pointer is
1993 actually the frame pointer of the calling frame. Signal
1994 trampolines are just a special case of a "frameless" function.
1995 They (usually) share their frame pointer with the frame that was
1996 in progress when the signal occurred. */
1997
1998 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1999 cache->base = extract_unsigned_integer (buf, 4, byte_order);
2000 if (cache->base == 0)
2001 {
2002 cache->base_p = 1;
2003 return;
2004 }
2005
2006 /* For normal frames, %eip is stored at 4(%ebp). */
2007 cache->saved_regs[I386_EIP_REGNUM] = 4;
2008
2009 if (cache->pc != 0)
2010 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2011 cache);
2012
2013 if (cache->locals < 0)
2014 {
2015 /* We didn't find a valid frame, which means that CACHE->base
2016 currently holds the frame pointer for our calling frame. If
2017 we're at the start of a function, or somewhere half-way its
2018 prologue, the function's frame probably hasn't been fully
2019 setup yet. Try to reconstruct the base address for the stack
2020 frame by looking at the stack pointer. For truly "frameless"
2021 functions this might work too. */
2022
2023 if (cache->saved_sp_reg != -1)
2024 {
2025 /* Saved stack pointer has been saved. */
2026 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2027 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2028
2029 /* We're halfway aligning the stack. */
2030 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2031 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2032
2033 /* This will be added back below. */
2034 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2035 }
2036 else if (cache->pc != 0
2037 || target_read_code (get_frame_pc (this_frame), buf, 1))
2038 {
2039 /* We're in a known function, but did not find a frame
2040 setup. Assume that the function does not use %ebp.
2041 Alternatively, we may have jumped to an invalid
2042 address; in that case there is definitely no new
2043 frame in %ebp. */
2044 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2045 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2046 + cache->sp_offset;
2047 }
2048 else
2049 /* We're in an unknown function. We could not find the start
2050 of the function to analyze the prologue; our best option is
2051 to assume a typical frame layout with the caller's %ebp
2052 saved. */
2053 cache->saved_regs[I386_EBP_REGNUM] = 0;
2054 }
2055
2056 if (cache->saved_sp_reg != -1)
2057 {
2058 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2059 register may be unavailable). */
2060 if (cache->saved_sp == 0
2061 && deprecated_frame_register_read (this_frame,
2062 cache->saved_sp_reg, buf))
2063 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2064 }
2065 /* Now that we have the base address for the stack frame we can
2066 calculate the value of %esp in the calling frame. */
2067 else if (cache->saved_sp == 0)
2068 cache->saved_sp = cache->base + 8;
2069
2070 /* Adjust all the saved registers such that they contain addresses
2071 instead of offsets. */
2072 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2073 if (cache->saved_regs[i] != -1)
2074 cache->saved_regs[i] += cache->base;
2075
2076 cache->base_p = 1;
2077 }
2078
2079 static struct i386_frame_cache *
2080 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2081 {
2082 struct i386_frame_cache *cache;
2083
2084 if (*this_cache)
2085 return (struct i386_frame_cache *) *this_cache;
2086
2087 cache = i386_alloc_frame_cache ();
2088 *this_cache = cache;
2089
2090 try
2091 {
2092 i386_frame_cache_1 (this_frame, cache);
2093 }
2094 catch (const gdb_exception_error &ex)
2095 {
2096 if (ex.error != NOT_AVAILABLE_ERROR)
2097 throw;
2098 }
2099
2100 return cache;
2101 }
2102
2103 static void
2104 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2108
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
2120 }
2121
2122 static enum unwind_stop_reason
2123 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125 {
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136 }
2137
2138 static struct value *
2139 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
2141 {
2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
2167 ULONGEST val;
2168
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
2172 }
2173
2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2176
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
2183 if (cache->saved_sp == 0)
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
2190
2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
2194
2195 return frame_unwind_got_register (this_frame, regnum, regnum);
2196 }
2197
2198 static const struct frame_unwind i386_frame_unwind =
2199 {
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 try
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 catch (const gdb_exception_error &ex)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw;
2277 }
2278
2279 return cache;
2280 }
2281
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285 {
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293 }
2294
2295 static void
2296 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
2302
2303 if (!cache->base_p)
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2307 }
2308
2309 static struct value *
2310 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312 {
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317 }
2318
2319 static const struct frame_unwind i386_epilogue_frame_unwind =
2320 {
2321 NORMAL_FRAME,
2322 i386_epilogue_frame_unwind_stop_reason,
2323 i386_epilogue_frame_this_id,
2324 i386_epilogue_frame_prev_register,
2325 NULL,
2326 i386_epilogue_frame_sniffer
2327 };
2328 \f
2329
2330 /* Stack-based trampolines. */
2331
2332 /* These trampolines are used on cross x86 targets, when taking the
2333 address of a nested function. When executing these trampolines,
2334 no stack frame is set up, so we are in a similar situation as in
2335 epilogues and i386_epilogue_frame_this_id can be re-used. */
2336
2337 /* Static chain passed in register. */
2338
2339 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2340 {
2341 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2342 { 5, { 0xb8 }, { 0xfe } },
2343
2344 /* `jmp imm32' */
2345 { 5, { 0xe9 }, { 0xff } },
2346
2347 {0}
2348 };
2349
2350 /* Static chain passed on stack (when regparm=3). */
2351
2352 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2353 {
2354 /* `push imm32' */
2355 { 5, { 0x68 }, { 0xff } },
2356
2357 /* `jmp imm32' */
2358 { 5, { 0xe9 }, { 0xff } },
2359
2360 {0}
2361 };
2362
2363 /* Return whether PC points inside a stack trampoline. */
2364
2365 static int
2366 i386_in_stack_tramp_p (CORE_ADDR pc)
2367 {
2368 gdb_byte insn;
2369 const char *name;
2370
2371 /* A stack trampoline is detected if no name is associated
2372 to the current pc and if it points inside a trampoline
2373 sequence. */
2374
2375 find_pc_partial_function (pc, &name, NULL, NULL);
2376 if (name)
2377 return 0;
2378
2379 if (target_read_memory (pc, &insn, 1))
2380 return 0;
2381
2382 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2383 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2384 return 0;
2385
2386 return 1;
2387 }
2388
2389 static int
2390 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2391 struct frame_info *this_frame,
2392 void **this_cache)
2393 {
2394 if (frame_relative_level (this_frame) == 0)
2395 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2396 else
2397 return 0;
2398 }
2399
2400 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2401 {
2402 NORMAL_FRAME,
2403 i386_epilogue_frame_unwind_stop_reason,
2404 i386_epilogue_frame_this_id,
2405 i386_epilogue_frame_prev_register,
2406 NULL,
2407 i386_stack_tramp_frame_sniffer
2408 };
2409 \f
2410 /* Generate a bytecode expression to get the value of the saved PC. */
2411
2412 static void
2413 i386_gen_return_address (struct gdbarch *gdbarch,
2414 struct agent_expr *ax, struct axs_value *value,
2415 CORE_ADDR scope)
2416 {
2417 /* The following sequence assumes the traditional use of the base
2418 register. */
2419 ax_reg (ax, I386_EBP_REGNUM);
2420 ax_const_l (ax, 4);
2421 ax_simple (ax, aop_add);
2422 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2423 value->kind = axs_lvalue_memory;
2424 }
2425 \f
2426
2427 /* Signal trampolines. */
2428
2429 static struct i386_frame_cache *
2430 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2431 {
2432 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2433 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2434 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2435 struct i386_frame_cache *cache;
2436 CORE_ADDR addr;
2437 gdb_byte buf[4];
2438
2439 if (*this_cache)
2440 return (struct i386_frame_cache *) *this_cache;
2441
2442 cache = i386_alloc_frame_cache ();
2443
2444 try
2445 {
2446 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2447 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2448
2449 addr = tdep->sigcontext_addr (this_frame);
2450 if (tdep->sc_reg_offset)
2451 {
2452 int i;
2453
2454 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2455
2456 for (i = 0; i < tdep->sc_num_regs; i++)
2457 if (tdep->sc_reg_offset[i] != -1)
2458 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2459 }
2460 else
2461 {
2462 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2463 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2464 }
2465
2466 cache->base_p = 1;
2467 }
2468 catch (const gdb_exception_error &ex)
2469 {
2470 if (ex.error != NOT_AVAILABLE_ERROR)
2471 throw;
2472 }
2473
2474 *this_cache = cache;
2475 return cache;
2476 }
2477
2478 static enum unwind_stop_reason
2479 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2480 void **this_cache)
2481 {
2482 struct i386_frame_cache *cache =
2483 i386_sigtramp_frame_cache (this_frame, this_cache);
2484
2485 if (!cache->base_p)
2486 return UNWIND_UNAVAILABLE;
2487
2488 return UNWIND_NO_REASON;
2489 }
2490
2491 static void
2492 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2493 struct frame_id *this_id)
2494 {
2495 struct i386_frame_cache *cache =
2496 i386_sigtramp_frame_cache (this_frame, this_cache);
2497
2498 if (!cache->base_p)
2499 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2500 else
2501 {
2502 /* See the end of i386_push_dummy_call. */
2503 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2504 }
2505 }
2506
2507 static struct value *
2508 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2509 void **this_cache, int regnum)
2510 {
2511 /* Make sure we've initialized the cache. */
2512 i386_sigtramp_frame_cache (this_frame, this_cache);
2513
2514 return i386_frame_prev_register (this_frame, this_cache, regnum);
2515 }
2516
2517 static int
2518 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2519 struct frame_info *this_frame,
2520 void **this_prologue_cache)
2521 {
2522 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2523
2524 /* We shouldn't even bother if we don't have a sigcontext_addr
2525 handler. */
2526 if (tdep->sigcontext_addr == NULL)
2527 return 0;
2528
2529 if (tdep->sigtramp_p != NULL)
2530 {
2531 if (tdep->sigtramp_p (this_frame))
2532 return 1;
2533 }
2534
2535 if (tdep->sigtramp_start != 0)
2536 {
2537 CORE_ADDR pc = get_frame_pc (this_frame);
2538
2539 gdb_assert (tdep->sigtramp_end != 0);
2540 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2541 return 1;
2542 }
2543
2544 return 0;
2545 }
2546
2547 static const struct frame_unwind i386_sigtramp_frame_unwind =
2548 {
2549 SIGTRAMP_FRAME,
2550 i386_sigtramp_frame_unwind_stop_reason,
2551 i386_sigtramp_frame_this_id,
2552 i386_sigtramp_frame_prev_register,
2553 NULL,
2554 i386_sigtramp_frame_sniffer
2555 };
2556 \f
2557
2558 static CORE_ADDR
2559 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2560 {
2561 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2562
2563 return cache->base;
2564 }
2565
2566 static const struct frame_base i386_frame_base =
2567 {
2568 &i386_frame_unwind,
2569 i386_frame_base_address,
2570 i386_frame_base_address,
2571 i386_frame_base_address
2572 };
2573
2574 static struct frame_id
2575 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2576 {
2577 CORE_ADDR fp;
2578
2579 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2580
2581 /* See the end of i386_push_dummy_call. */
2582 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2583 }
2584
2585 /* _Decimal128 function return values need 16-byte alignment on the
2586 stack. */
2587
2588 static CORE_ADDR
2589 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2590 {
2591 return sp & -(CORE_ADDR)16;
2592 }
2593 \f
2594
2595 /* Figure out where the longjmp will land. Slurp the args out of the
2596 stack. We expect the first arg to be a pointer to the jmp_buf
2597 structure from which we extract the address that we will land at.
2598 This address is copied into PC. This routine returns non-zero on
2599 success. */
2600
2601 static int
2602 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2603 {
2604 gdb_byte buf[4];
2605 CORE_ADDR sp, jb_addr;
2606 struct gdbarch *gdbarch = get_frame_arch (frame);
2607 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2608 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2609
2610 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2611 longjmp will land. */
2612 if (jb_pc_offset == -1)
2613 return 0;
2614
2615 get_frame_register (frame, I386_ESP_REGNUM, buf);
2616 sp = extract_unsigned_integer (buf, 4, byte_order);
2617 if (target_read_memory (sp + 4, buf, 4))
2618 return 0;
2619
2620 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2621 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2622 return 0;
2623
2624 *pc = extract_unsigned_integer (buf, 4, byte_order);
2625 return 1;
2626 }
2627 \f
2628
2629 /* Check whether TYPE must be 16-byte-aligned when passed as a
2630 function argument. 16-byte vectors, _Decimal128 and structures or
2631 unions containing such types must be 16-byte-aligned; other
2632 arguments are 4-byte-aligned. */
2633
2634 static int
2635 i386_16_byte_align_p (struct type *type)
2636 {
2637 type = check_typedef (type);
2638 if ((type->code () == TYPE_CODE_DECFLOAT
2639 || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2640 && TYPE_LENGTH (type) == 16)
2641 return 1;
2642 if (type->code () == TYPE_CODE_ARRAY)
2643 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2644 if (type->code () == TYPE_CODE_STRUCT
2645 || type->code () == TYPE_CODE_UNION)
2646 {
2647 int i;
2648 for (i = 0; i < type->num_fields (); i++)
2649 {
2650 if (i386_16_byte_align_p (type->field (i).type ()))
2651 return 1;
2652 }
2653 }
2654 return 0;
2655 }
2656
2657 /* Implementation for set_gdbarch_push_dummy_code. */
2658
2659 static CORE_ADDR
2660 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2661 struct value **args, int nargs, struct type *value_type,
2662 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2663 struct regcache *regcache)
2664 {
2665 /* Use 0xcc breakpoint - 1 byte. */
2666 *bp_addr = sp - 1;
2667 *real_pc = funaddr;
2668
2669 /* Keep the stack aligned. */
2670 return sp - 16;
2671 }
2672
2673 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2674 calling convention. */
2675
2676 CORE_ADDR
2677 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2678 struct regcache *regcache, CORE_ADDR bp_addr,
2679 int nargs, struct value **args, CORE_ADDR sp,
2680 function_call_return_method return_method,
2681 CORE_ADDR struct_addr, bool thiscall)
2682 {
2683 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2684 gdb_byte buf[4];
2685 int i;
2686 int write_pass;
2687 int args_space = 0;
2688
2689 /* BND registers can be in arbitrary values at the moment of the
2690 inferior call. This can cause boundary violations that are not
2691 due to a real bug or even desired by the user. The best to be done
2692 is set the BND registers to allow access to the whole memory, INIT
2693 state, before pushing the inferior call. */
2694 i387_reset_bnd_regs (gdbarch, regcache);
2695
2696 /* Determine the total space required for arguments and struct
2697 return address in a first pass (allowing for 16-byte-aligned
2698 arguments), then push arguments in a second pass. */
2699
2700 for (write_pass = 0; write_pass < 2; write_pass++)
2701 {
2702 int args_space_used = 0;
2703
2704 if (return_method == return_method_struct)
2705 {
2706 if (write_pass)
2707 {
2708 /* Push value address. */
2709 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2710 write_memory (sp, buf, 4);
2711 args_space_used += 4;
2712 }
2713 else
2714 args_space += 4;
2715 }
2716
2717 for (i = thiscall ? 1 : 0; i < nargs; i++)
2718 {
2719 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2720
2721 if (write_pass)
2722 {
2723 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2724 args_space_used = align_up (args_space_used, 16);
2725
2726 write_memory (sp + args_space_used,
2727 value_contents_all (args[i]), len);
2728 /* The System V ABI says that:
2729
2730 "An argument's size is increased, if necessary, to make it a
2731 multiple of [32-bit] words. This may require tail padding,
2732 depending on the size of the argument."
2733
2734 This makes sure the stack stays word-aligned. */
2735 args_space_used += align_up (len, 4);
2736 }
2737 else
2738 {
2739 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2740 args_space = align_up (args_space, 16);
2741 args_space += align_up (len, 4);
2742 }
2743 }
2744
2745 if (!write_pass)
2746 {
2747 sp -= args_space;
2748
2749 /* The original System V ABI only requires word alignment,
2750 but modern incarnations need 16-byte alignment in order
2751 to support SSE. Since wasting a few bytes here isn't
2752 harmful we unconditionally enforce 16-byte alignment. */
2753 sp &= ~0xf;
2754 }
2755 }
2756
2757 /* Store return address. */
2758 sp -= 4;
2759 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2760 write_memory (sp, buf, 4);
2761
2762 /* Finally, update the stack pointer... */
2763 store_unsigned_integer (buf, 4, byte_order, sp);
2764 regcache->cooked_write (I386_ESP_REGNUM, buf);
2765
2766 /* ...and fake a frame pointer. */
2767 regcache->cooked_write (I386_EBP_REGNUM, buf);
2768
2769 /* The 'this' pointer needs to be in ECX. */
2770 if (thiscall)
2771 regcache->cooked_write (I386_ECX_REGNUM, value_contents_all (args[0]));
2772
2773 /* MarkK wrote: This "+ 8" is all over the place:
2774 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2775 i386_dummy_id). It's there, since all frame unwinders for
2776 a given target have to agree (within a certain margin) on the
2777 definition of the stack address of a frame. Otherwise frame id
2778 comparison might not work correctly. Since DWARF2/GCC uses the
2779 stack address *before* the function call as a frame's CFA. On
2780 the i386, when %ebp is used as a frame pointer, the offset
2781 between the contents %ebp and the CFA as defined by GCC. */
2782 return sp + 8;
2783 }
2784
2785 /* Implement the "push_dummy_call" gdbarch method. */
2786
2787 static CORE_ADDR
2788 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2789 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2790 struct value **args, CORE_ADDR sp,
2791 function_call_return_method return_method,
2792 CORE_ADDR struct_addr)
2793 {
2794 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2795 nargs, args, sp, return_method,
2796 struct_addr, false);
2797 }
2798
2799 /* These registers are used for returning integers (and on some
2800 targets also for returning `struct' and `union' values when their
2801 size and alignment match an integer type). */
2802 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2803 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2804
2805 /* Read, for architecture GDBARCH, a function return value of TYPE
2806 from REGCACHE, and copy that into VALBUF. */
2807
2808 static void
2809 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2810 struct regcache *regcache, gdb_byte *valbuf)
2811 {
2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2813 int len = TYPE_LENGTH (type);
2814 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2815
2816 if (type->code () == TYPE_CODE_FLT)
2817 {
2818 if (tdep->st0_regnum < 0)
2819 {
2820 warning (_("Cannot find floating-point return value."));
2821 memset (valbuf, 0, len);
2822 return;
2823 }
2824
2825 /* Floating-point return values can be found in %st(0). Convert
2826 its contents to the desired type. This is probably not
2827 exactly how it would happen on the target itself, but it is
2828 the best we can do. */
2829 regcache->raw_read (I386_ST0_REGNUM, buf);
2830 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2831 }
2832 else
2833 {
2834 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2835 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2836
2837 if (len <= low_size)
2838 {
2839 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2840 memcpy (valbuf, buf, len);
2841 }
2842 else if (len <= (low_size + high_size))
2843 {
2844 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2845 memcpy (valbuf, buf, low_size);
2846 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2847 memcpy (valbuf + low_size, buf, len - low_size);
2848 }
2849 else
2850 internal_error (__FILE__, __LINE__,
2851 _("Cannot extract return value of %d bytes long."),
2852 len);
2853 }
2854 }
2855
2856 /* Write, for architecture GDBARCH, a function return value of TYPE
2857 from VALBUF into REGCACHE. */
2858
2859 static void
2860 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2861 struct regcache *regcache, const gdb_byte *valbuf)
2862 {
2863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2864 int len = TYPE_LENGTH (type);
2865
2866 if (type->code () == TYPE_CODE_FLT)
2867 {
2868 ULONGEST fstat;
2869 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2870
2871 if (tdep->st0_regnum < 0)
2872 {
2873 warning (_("Cannot set floating-point return value."));
2874 return;
2875 }
2876
2877 /* Returning floating-point values is a bit tricky. Apart from
2878 storing the return value in %st(0), we have to simulate the
2879 state of the FPU at function return point. */
2880
2881 /* Convert the value found in VALBUF to the extended
2882 floating-point format used by the FPU. This is probably
2883 not exactly how it would happen on the target itself, but
2884 it is the best we can do. */
2885 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2886 regcache->raw_write (I386_ST0_REGNUM, buf);
2887
2888 /* Set the top of the floating-point register stack to 7. The
2889 actual value doesn't really matter, but 7 is what a normal
2890 function return would end up with if the program started out
2891 with a freshly initialized FPU. */
2892 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2893 fstat |= (7 << 11);
2894 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2895
2896 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2897 the floating-point register stack to 7, the appropriate value
2898 for the tag word is 0x3fff. */
2899 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2900 }
2901 else
2902 {
2903 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2904 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2905
2906 if (len <= low_size)
2907 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2908 else if (len <= (low_size + high_size))
2909 {
2910 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2911 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2912 valbuf + low_size);
2913 }
2914 else
2915 internal_error (__FILE__, __LINE__,
2916 _("Cannot store return value of %d bytes long."), len);
2917 }
2918 }
2919 \f
2920
2921 /* This is the variable that is set with "set struct-convention", and
2922 its legitimate values. */
2923 static const char default_struct_convention[] = "default";
2924 static const char pcc_struct_convention[] = "pcc";
2925 static const char reg_struct_convention[] = "reg";
2926 static const char *const valid_conventions[] =
2927 {
2928 default_struct_convention,
2929 pcc_struct_convention,
2930 reg_struct_convention,
2931 NULL
2932 };
2933 static const char *struct_convention = default_struct_convention;
2934
2935 /* Return non-zero if TYPE, which is assumed to be a structure,
2936 a union type, or an array type, should be returned in registers
2937 for architecture GDBARCH. */
2938
2939 static int
2940 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2941 {
2942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2943 enum type_code code = type->code ();
2944 int len = TYPE_LENGTH (type);
2945
2946 gdb_assert (code == TYPE_CODE_STRUCT
2947 || code == TYPE_CODE_UNION
2948 || code == TYPE_CODE_ARRAY);
2949
2950 if (struct_convention == pcc_struct_convention
2951 || (struct_convention == default_struct_convention
2952 && tdep->struct_return == pcc_struct_return))
2953 return 0;
2954
2955 /* Structures consisting of a single `float', `double' or 'long
2956 double' member are returned in %st(0). */
2957 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2958 {
2959 type = check_typedef (type->field (0).type ());
2960 if (type->code () == TYPE_CODE_FLT)
2961 return (len == 4 || len == 8 || len == 12);
2962 }
2963
2964 return (len == 1 || len == 2 || len == 4 || len == 8);
2965 }
2966
2967 /* Determine, for architecture GDBARCH, how a return value of TYPE
2968 should be returned. If it is supposed to be returned in registers,
2969 and READBUF is non-zero, read the appropriate value from REGCACHE,
2970 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2971 from WRITEBUF into REGCACHE. */
2972
2973 static enum return_value_convention
2974 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2975 struct type *type, struct regcache *regcache,
2976 gdb_byte *readbuf, const gdb_byte *writebuf)
2977 {
2978 enum type_code code = type->code ();
2979
2980 if (((code == TYPE_CODE_STRUCT
2981 || code == TYPE_CODE_UNION
2982 || code == TYPE_CODE_ARRAY)
2983 && !i386_reg_struct_return_p (gdbarch, type))
2984 /* Complex double and long double uses the struct return convention. */
2985 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2986 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2987 /* 128-bit decimal float uses the struct return convention. */
2988 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2989 {
2990 /* The System V ABI says that:
2991
2992 "A function that returns a structure or union also sets %eax
2993 to the value of the original address of the caller's area
2994 before it returns. Thus when the caller receives control
2995 again, the address of the returned object resides in register
2996 %eax and can be used to access the object."
2997
2998 So the ABI guarantees that we can always find the return
2999 value just after the function has returned. */
3000
3001 /* Note that the ABI doesn't mention functions returning arrays,
3002 which is something possible in certain languages such as Ada.
3003 In this case, the value is returned as if it was wrapped in
3004 a record, so the convention applied to records also applies
3005 to arrays. */
3006
3007 if (readbuf)
3008 {
3009 ULONGEST addr;
3010
3011 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3012 read_memory (addr, readbuf, TYPE_LENGTH (type));
3013 }
3014
3015 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3016 }
3017
3018 /* This special case is for structures consisting of a single
3019 `float', `double' or 'long double' member. These structures are
3020 returned in %st(0). For these structures, we call ourselves
3021 recursively, changing TYPE into the type of the first member of
3022 the structure. Since that should work for all structures that
3023 have only one member, we don't bother to check the member's type
3024 here. */
3025 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3026 {
3027 type = check_typedef (type->field (0).type ());
3028 return i386_return_value (gdbarch, function, type, regcache,
3029 readbuf, writebuf);
3030 }
3031
3032 if (readbuf)
3033 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3034 if (writebuf)
3035 i386_store_return_value (gdbarch, type, regcache, writebuf);
3036
3037 return RETURN_VALUE_REGISTER_CONVENTION;
3038 }
3039 \f
3040
3041 struct type *
3042 i387_ext_type (struct gdbarch *gdbarch)
3043 {
3044 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3045
3046 if (!tdep->i387_ext_type)
3047 {
3048 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3049 gdb_assert (tdep->i387_ext_type != NULL);
3050 }
3051
3052 return tdep->i387_ext_type;
3053 }
3054
3055 /* Construct type for pseudo BND registers. We can't use
3056 tdesc_find_type since a complement of one value has to be used
3057 to describe the upper bound. */
3058
3059 static struct type *
3060 i386_bnd_type (struct gdbarch *gdbarch)
3061 {
3062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3063
3064
3065 if (!tdep->i386_bnd_type)
3066 {
3067 struct type *t;
3068 const struct builtin_type *bt = builtin_type (gdbarch);
3069
3070 /* The type we're building is described bellow: */
3071 #if 0
3072 struct __bound128
3073 {
3074 void *lbound;
3075 void *ubound; /* One complement of raw ubound field. */
3076 };
3077 #endif
3078
3079 t = arch_composite_type (gdbarch,
3080 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3081
3082 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3083 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3084
3085 t->set_name ("builtin_type_bound128");
3086 tdep->i386_bnd_type = t;
3087 }
3088
3089 return tdep->i386_bnd_type;
3090 }
3091
3092 /* Construct vector type for pseudo ZMM registers. We can't use
3093 tdesc_find_type since ZMM isn't described in target description. */
3094
3095 static struct type *
3096 i386_zmm_type (struct gdbarch *gdbarch)
3097 {
3098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3099
3100 if (!tdep->i386_zmm_type)
3101 {
3102 const struct builtin_type *bt = builtin_type (gdbarch);
3103
3104 /* The type we're building is this: */
3105 #if 0
3106 union __gdb_builtin_type_vec512i
3107 {
3108 int128_t v4_int128[4];
3109 int64_t v8_int64[8];
3110 int32_t v16_int32[16];
3111 int16_t v32_int16[32];
3112 int8_t v64_int8[64];
3113 double v8_double[8];
3114 float v16_float[16];
3115 bfloat16_t v32_bfloat16[32];
3116 };
3117 #endif
3118
3119 struct type *t;
3120
3121 t = arch_composite_type (gdbarch,
3122 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3123 append_composite_type_field (t, "v32_bfloat16",
3124 init_vector_type (bt->builtin_bfloat16, 32));
3125 append_composite_type_field (t, "v16_float",
3126 init_vector_type (bt->builtin_float, 16));
3127 append_composite_type_field (t, "v8_double",
3128 init_vector_type (bt->builtin_double, 8));
3129 append_composite_type_field (t, "v64_int8",
3130 init_vector_type (bt->builtin_int8, 64));
3131 append_composite_type_field (t, "v32_int16",
3132 init_vector_type (bt->builtin_int16, 32));
3133 append_composite_type_field (t, "v16_int32",
3134 init_vector_type (bt->builtin_int32, 16));
3135 append_composite_type_field (t, "v8_int64",
3136 init_vector_type (bt->builtin_int64, 8));
3137 append_composite_type_field (t, "v4_int128",
3138 init_vector_type (bt->builtin_int128, 4));
3139
3140 TYPE_VECTOR (t) = 1;
3141 t->set_name ("builtin_type_vec512i");
3142 tdep->i386_zmm_type = t;
3143 }
3144
3145 return tdep->i386_zmm_type;
3146 }
3147
3148 /* Construct vector type for pseudo YMM registers. We can't use
3149 tdesc_find_type since YMM isn't described in target description. */
3150
3151 static struct type *
3152 i386_ymm_type (struct gdbarch *gdbarch)
3153 {
3154 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3155
3156 if (!tdep->i386_ymm_type)
3157 {
3158 const struct builtin_type *bt = builtin_type (gdbarch);
3159
3160 /* The type we're building is this: */
3161 #if 0
3162 union __gdb_builtin_type_vec256i
3163 {
3164 int128_t v2_int128[2];
3165 int64_t v4_int64[4];
3166 int32_t v8_int32[8];
3167 int16_t v16_int16[16];
3168 int8_t v32_int8[32];
3169 double v4_double[4];
3170 float v8_float[8];
3171 bfloat16_t v16_bfloat16[16];
3172 };
3173 #endif
3174
3175 struct type *t;
3176
3177 t = arch_composite_type (gdbarch,
3178 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3179 append_composite_type_field (t, "v16_bfloat16",
3180 init_vector_type (bt->builtin_bfloat16, 16));
3181 append_composite_type_field (t, "v8_float",
3182 init_vector_type (bt->builtin_float, 8));
3183 append_composite_type_field (t, "v4_double",
3184 init_vector_type (bt->builtin_double, 4));
3185 append_composite_type_field (t, "v32_int8",
3186 init_vector_type (bt->builtin_int8, 32));
3187 append_composite_type_field (t, "v16_int16",
3188 init_vector_type (bt->builtin_int16, 16));
3189 append_composite_type_field (t, "v8_int32",
3190 init_vector_type (bt->builtin_int32, 8));
3191 append_composite_type_field (t, "v4_int64",
3192 init_vector_type (bt->builtin_int64, 4));
3193 append_composite_type_field (t, "v2_int128",
3194 init_vector_type (bt->builtin_int128, 2));
3195
3196 TYPE_VECTOR (t) = 1;
3197 t->set_name ("builtin_type_vec256i");
3198 tdep->i386_ymm_type = t;
3199 }
3200
3201 return tdep->i386_ymm_type;
3202 }
3203
3204 /* Construct vector type for MMX registers. */
3205 static struct type *
3206 i386_mmx_type (struct gdbarch *gdbarch)
3207 {
3208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3209
3210 if (!tdep->i386_mmx_type)
3211 {
3212 const struct builtin_type *bt = builtin_type (gdbarch);
3213
3214 /* The type we're building is this: */
3215 #if 0
3216 union __gdb_builtin_type_vec64i
3217 {
3218 int64_t uint64;
3219 int32_t v2_int32[2];
3220 int16_t v4_int16[4];
3221 int8_t v8_int8[8];
3222 };
3223 #endif
3224
3225 struct type *t;
3226
3227 t = arch_composite_type (gdbarch,
3228 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3229
3230 append_composite_type_field (t, "uint64", bt->builtin_int64);
3231 append_composite_type_field (t, "v2_int32",
3232 init_vector_type (bt->builtin_int32, 2));
3233 append_composite_type_field (t, "v4_int16",
3234 init_vector_type (bt->builtin_int16, 4));
3235 append_composite_type_field (t, "v8_int8",
3236 init_vector_type (bt->builtin_int8, 8));
3237
3238 TYPE_VECTOR (t) = 1;
3239 t->set_name ("builtin_type_vec64i");
3240 tdep->i386_mmx_type = t;
3241 }
3242
3243 return tdep->i386_mmx_type;
3244 }
3245
3246 /* Return the GDB type object for the "standard" data type of data in
3247 register REGNUM. */
3248
3249 struct type *
3250 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3251 {
3252 if (i386_bnd_regnum_p (gdbarch, regnum))
3253 return i386_bnd_type (gdbarch);
3254 if (i386_mmx_regnum_p (gdbarch, regnum))
3255 return i386_mmx_type (gdbarch);
3256 else if (i386_ymm_regnum_p (gdbarch, regnum))
3257 return i386_ymm_type (gdbarch);
3258 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3259 return i386_ymm_type (gdbarch);
3260 else if (i386_zmm_regnum_p (gdbarch, regnum))
3261 return i386_zmm_type (gdbarch);
3262 else
3263 {
3264 const struct builtin_type *bt = builtin_type (gdbarch);
3265 if (i386_byte_regnum_p (gdbarch, regnum))
3266 return bt->builtin_int8;
3267 else if (i386_word_regnum_p (gdbarch, regnum))
3268 return bt->builtin_int16;
3269 else if (i386_dword_regnum_p (gdbarch, regnum))
3270 return bt->builtin_int32;
3271 else if (i386_k_regnum_p (gdbarch, regnum))
3272 return bt->builtin_int64;
3273 }
3274
3275 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3276 }
3277
3278 /* Map a cooked register onto a raw register or memory. For the i386,
3279 the MMX registers need to be mapped onto floating point registers. */
3280
3281 static int
3282 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3283 {
3284 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3285 int mmxreg, fpreg;
3286 ULONGEST fstat;
3287 int tos;
3288
3289 mmxreg = regnum - tdep->mm0_regnum;
3290 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3291 tos = (fstat >> 11) & 0x7;
3292 fpreg = (mmxreg + tos) % 8;
3293
3294 return (I387_ST0_REGNUM (tdep) + fpreg);
3295 }
3296
3297 /* A helper function for us by i386_pseudo_register_read_value and
3298 amd64_pseudo_register_read_value. It does all the work but reads
3299 the data into an already-allocated value. */
3300
3301 void
3302 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3303 readable_regcache *regcache,
3304 int regnum,
3305 struct value *result_value)
3306 {
3307 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3308 enum register_status status;
3309 gdb_byte *buf = value_contents_raw (result_value);
3310
3311 if (i386_mmx_regnum_p (gdbarch, regnum))
3312 {
3313 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3314
3315 /* Extract (always little endian). */
3316 status = regcache->raw_read (fpnum, raw_buf);
3317 if (status != REG_VALID)
3318 mark_value_bytes_unavailable (result_value, 0,
3319 TYPE_LENGTH (value_type (result_value)));
3320 else
3321 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3322 }
3323 else
3324 {
3325 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3326 if (i386_bnd_regnum_p (gdbarch, regnum))
3327 {
3328 regnum -= tdep->bnd0_regnum;
3329
3330 /* Extract (always little endian). Read lower 128bits. */
3331 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3332 raw_buf);
3333 if (status != REG_VALID)
3334 mark_value_bytes_unavailable (result_value, 0, 16);
3335 else
3336 {
3337 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3338 LONGEST upper, lower;
3339 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3340
3341 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3342 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3343 upper = ~upper;
3344
3345 memcpy (buf, &lower, size);
3346 memcpy (buf + size, &upper, size);
3347 }
3348 }
3349 else if (i386_k_regnum_p (gdbarch, regnum))
3350 {
3351 regnum -= tdep->k0_regnum;
3352
3353 /* Extract (always little endian). */
3354 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3355 if (status != REG_VALID)
3356 mark_value_bytes_unavailable (result_value, 0, 8);
3357 else
3358 memcpy (buf, raw_buf, 8);
3359 }
3360 else if (i386_zmm_regnum_p (gdbarch, regnum))
3361 {
3362 regnum -= tdep->zmm0_regnum;
3363
3364 if (regnum < num_lower_zmm_regs)
3365 {
3366 /* Extract (always little endian). Read lower 128bits. */
3367 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3368 raw_buf);
3369 if (status != REG_VALID)
3370 mark_value_bytes_unavailable (result_value, 0, 16);
3371 else
3372 memcpy (buf, raw_buf, 16);
3373
3374 /* Extract (always little endian). Read upper 128bits. */
3375 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3376 raw_buf);
3377 if (status != REG_VALID)
3378 mark_value_bytes_unavailable (result_value, 16, 16);
3379 else
3380 memcpy (buf + 16, raw_buf, 16);
3381 }
3382 else
3383 {
3384 /* Extract (always little endian). Read lower 128bits. */
3385 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3386 - num_lower_zmm_regs,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392
3393 /* Extract (always little endian). Read upper 128bits. */
3394 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3395 - num_lower_zmm_regs,
3396 raw_buf);
3397 if (status != REG_VALID)
3398 mark_value_bytes_unavailable (result_value, 16, 16);
3399 else
3400 memcpy (buf + 16, raw_buf, 16);
3401 }
3402
3403 /* Read upper 256bits. */
3404 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3405 raw_buf);
3406 if (status != REG_VALID)
3407 mark_value_bytes_unavailable (result_value, 32, 32);
3408 else
3409 memcpy (buf + 32, raw_buf, 32);
3410 }
3411 else if (i386_ymm_regnum_p (gdbarch, regnum))
3412 {
3413 regnum -= tdep->ymm0_regnum;
3414
3415 /* Extract (always little endian). Read lower 128bits. */
3416 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3417 raw_buf);
3418 if (status != REG_VALID)
3419 mark_value_bytes_unavailable (result_value, 0, 16);
3420 else
3421 memcpy (buf, raw_buf, 16);
3422 /* Read upper 128bits. */
3423 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3424 raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 16, 32);
3427 else
3428 memcpy (buf + 16, raw_buf, 16);
3429 }
3430 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3431 {
3432 regnum -= tdep->ymm16_regnum;
3433 /* Extract (always little endian). Read lower 128bits. */
3434 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3435 raw_buf);
3436 if (status != REG_VALID)
3437 mark_value_bytes_unavailable (result_value, 0, 16);
3438 else
3439 memcpy (buf, raw_buf, 16);
3440 /* Read upper 128bits. */
3441 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3442 raw_buf);
3443 if (status != REG_VALID)
3444 mark_value_bytes_unavailable (result_value, 16, 16);
3445 else
3446 memcpy (buf + 16, raw_buf, 16);
3447 }
3448 else if (i386_word_regnum_p (gdbarch, regnum))
3449 {
3450 int gpnum = regnum - tdep->ax_regnum;
3451
3452 /* Extract (always little endian). */
3453 status = regcache->raw_read (gpnum, raw_buf);
3454 if (status != REG_VALID)
3455 mark_value_bytes_unavailable (result_value, 0,
3456 TYPE_LENGTH (value_type (result_value)));
3457 else
3458 memcpy (buf, raw_buf, 2);
3459 }
3460 else if (i386_byte_regnum_p (gdbarch, regnum))
3461 {
3462 int gpnum = regnum - tdep->al_regnum;
3463
3464 /* Extract (always little endian). We read both lower and
3465 upper registers. */
3466 status = regcache->raw_read (gpnum % 4, raw_buf);
3467 if (status != REG_VALID)
3468 mark_value_bytes_unavailable (result_value, 0,
3469 TYPE_LENGTH (value_type (result_value)));
3470 else if (gpnum >= 4)
3471 memcpy (buf, raw_buf + 1, 1);
3472 else
3473 memcpy (buf, raw_buf, 1);
3474 }
3475 else
3476 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3477 }
3478 }
3479
3480 static struct value *
3481 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3482 readable_regcache *regcache,
3483 int regnum)
3484 {
3485 struct value *result;
3486
3487 result = allocate_value (register_type (gdbarch, regnum));
3488 VALUE_LVAL (result) = lval_register;
3489 VALUE_REGNUM (result) = regnum;
3490
3491 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3492
3493 return result;
3494 }
3495
3496 void
3497 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3498 int regnum, const gdb_byte *buf)
3499 {
3500 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3501
3502 if (i386_mmx_regnum_p (gdbarch, regnum))
3503 {
3504 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3505
3506 /* Read ... */
3507 regcache->raw_read (fpnum, raw_buf);
3508 /* ... Modify ... (always little endian). */
3509 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3510 /* ... Write. */
3511 regcache->raw_write (fpnum, raw_buf);
3512 }
3513 else
3514 {
3515 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3516
3517 if (i386_bnd_regnum_p (gdbarch, regnum))
3518 {
3519 ULONGEST upper, lower;
3520 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3521 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3522
3523 /* New values from input value. */
3524 regnum -= tdep->bnd0_regnum;
3525 lower = extract_unsigned_integer (buf, size, byte_order);
3526 upper = extract_unsigned_integer (buf + size, size, byte_order);
3527
3528 /* Fetching register buffer. */
3529 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3530 raw_buf);
3531
3532 upper = ~upper;
3533
3534 /* Set register bits. */
3535 memcpy (raw_buf, &lower, 8);
3536 memcpy (raw_buf + 8, &upper, 8);
3537
3538 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3539 }
3540 else if (i386_k_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->k0_regnum;
3543
3544 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3545 }
3546 else if (i386_zmm_regnum_p (gdbarch, regnum))
3547 {
3548 regnum -= tdep->zmm0_regnum;
3549
3550 if (regnum < num_lower_zmm_regs)
3551 {
3552 /* Write lower 128bits. */
3553 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3554 /* Write upper 128bits. */
3555 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3556 }
3557 else
3558 {
3559 /* Write lower 128bits. */
3560 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3561 - num_lower_zmm_regs, buf);
3562 /* Write upper 128bits. */
3563 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3564 - num_lower_zmm_regs, buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3568 }
3569 else if (i386_ymm_regnum_p (gdbarch, regnum))
3570 {
3571 regnum -= tdep->ymm0_regnum;
3572
3573 /* ... Write lower 128bits. */
3574 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3575 /* ... Write upper 128bits. */
3576 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3577 }
3578 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3579 {
3580 regnum -= tdep->ymm16_regnum;
3581
3582 /* ... Write lower 128bits. */
3583 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3584 /* ... Write upper 128bits. */
3585 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3586 }
3587 else if (i386_word_regnum_p (gdbarch, regnum))
3588 {
3589 int gpnum = regnum - tdep->ax_regnum;
3590
3591 /* Read ... */
3592 regcache->raw_read (gpnum, raw_buf);
3593 /* ... Modify ... (always little endian). */
3594 memcpy (raw_buf, buf, 2);
3595 /* ... Write. */
3596 regcache->raw_write (gpnum, raw_buf);
3597 }
3598 else if (i386_byte_regnum_p (gdbarch, regnum))
3599 {
3600 int gpnum = regnum - tdep->al_regnum;
3601
3602 /* Read ... We read both lower and upper registers. */
3603 regcache->raw_read (gpnum % 4, raw_buf);
3604 /* ... Modify ... (always little endian). */
3605 if (gpnum >= 4)
3606 memcpy (raw_buf + 1, buf, 1);
3607 else
3608 memcpy (raw_buf, buf, 1);
3609 /* ... Write. */
3610 regcache->raw_write (gpnum % 4, raw_buf);
3611 }
3612 else
3613 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3614 }
3615 }
3616
3617 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3618
3619 int
3620 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3621 struct agent_expr *ax, int regnum)
3622 {
3623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3624
3625 if (i386_mmx_regnum_p (gdbarch, regnum))
3626 {
3627 /* MMX to FPU register mapping depends on current TOS. Let's just
3628 not care and collect everything... */
3629 int i;
3630
3631 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3632 for (i = 0; i < 8; i++)
3633 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3634 return 0;
3635 }
3636 else if (i386_bnd_regnum_p (gdbarch, regnum))
3637 {
3638 regnum -= tdep->bnd0_regnum;
3639 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3640 return 0;
3641 }
3642 else if (i386_k_regnum_p (gdbarch, regnum))
3643 {
3644 regnum -= tdep->k0_regnum;
3645 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3646 return 0;
3647 }
3648 else if (i386_zmm_regnum_p (gdbarch, regnum))
3649 {
3650 regnum -= tdep->zmm0_regnum;
3651 if (regnum < num_lower_zmm_regs)
3652 {
3653 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3654 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3655 }
3656 else
3657 {
3658 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3659 - num_lower_zmm_regs);
3660 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3661 - num_lower_zmm_regs);
3662 }
3663 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3664 return 0;
3665 }
3666 else if (i386_ymm_regnum_p (gdbarch, regnum))
3667 {
3668 regnum -= tdep->ymm0_regnum;
3669 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3670 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3671 return 0;
3672 }
3673 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3674 {
3675 regnum -= tdep->ymm16_regnum;
3676 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3677 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3678 return 0;
3679 }
3680 else if (i386_word_regnum_p (gdbarch, regnum))
3681 {
3682 int gpnum = regnum - tdep->ax_regnum;
3683
3684 ax_reg_mask (ax, gpnum);
3685 return 0;
3686 }
3687 else if (i386_byte_regnum_p (gdbarch, regnum))
3688 {
3689 int gpnum = regnum - tdep->al_regnum;
3690
3691 ax_reg_mask (ax, gpnum % 4);
3692 return 0;
3693 }
3694 else
3695 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3696 return 1;
3697 }
3698 \f
3699
3700 /* Return the register number of the register allocated by GCC after
3701 REGNUM, or -1 if there is no such register. */
3702
3703 static int
3704 i386_next_regnum (int regnum)
3705 {
3706 /* GCC allocates the registers in the order:
3707
3708 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3709
3710 Since storing a variable in %esp doesn't make any sense we return
3711 -1 for %ebp and for %esp itself. */
3712 static int next_regnum[] =
3713 {
3714 I386_EDX_REGNUM, /* Slot for %eax. */
3715 I386_EBX_REGNUM, /* Slot for %ecx. */
3716 I386_ECX_REGNUM, /* Slot for %edx. */
3717 I386_ESI_REGNUM, /* Slot for %ebx. */
3718 -1, -1, /* Slots for %esp and %ebp. */
3719 I386_EDI_REGNUM, /* Slot for %esi. */
3720 I386_EBP_REGNUM /* Slot for %edi. */
3721 };
3722
3723 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3724 return next_regnum[regnum];
3725
3726 return -1;
3727 }
3728
3729 /* Return nonzero if a value of type TYPE stored in register REGNUM
3730 needs any special handling. */
3731
3732 static int
3733 i386_convert_register_p (struct gdbarch *gdbarch,
3734 int regnum, struct type *type)
3735 {
3736 int len = TYPE_LENGTH (type);
3737
3738 /* Values may be spread across multiple registers. Most debugging
3739 formats aren't expressive enough to specify the locations, so
3740 some heuristics is involved. Right now we only handle types that
3741 have a length that is a multiple of the word size, since GCC
3742 doesn't seem to put any other types into registers. */
3743 if (len > 4 && len % 4 == 0)
3744 {
3745 int last_regnum = regnum;
3746
3747 while (len > 4)
3748 {
3749 last_regnum = i386_next_regnum (last_regnum);
3750 len -= 4;
3751 }
3752
3753 if (last_regnum != -1)
3754 return 1;
3755 }
3756
3757 return i387_convert_register_p (gdbarch, regnum, type);
3758 }
3759
3760 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3761 return its contents in TO. */
3762
3763 static int
3764 i386_register_to_value (struct frame_info *frame, int regnum,
3765 struct type *type, gdb_byte *to,
3766 int *optimizedp, int *unavailablep)
3767 {
3768 struct gdbarch *gdbarch = get_frame_arch (frame);
3769 int len = TYPE_LENGTH (type);
3770
3771 if (i386_fp_regnum_p (gdbarch, regnum))
3772 return i387_register_to_value (frame, regnum, type, to,
3773 optimizedp, unavailablep);
3774
3775 /* Read a value spread across multiple registers. */
3776
3777 gdb_assert (len > 4 && len % 4 == 0);
3778
3779 while (len > 0)
3780 {
3781 gdb_assert (regnum != -1);
3782 gdb_assert (register_size (gdbarch, regnum) == 4);
3783
3784 if (!get_frame_register_bytes (frame, regnum, 0,
3785 register_size (gdbarch, regnum),
3786 to, optimizedp, unavailablep))
3787 return 0;
3788
3789 regnum = i386_next_regnum (regnum);
3790 len -= 4;
3791 to += 4;
3792 }
3793
3794 *optimizedp = *unavailablep = 0;
3795 return 1;
3796 }
3797
3798 /* Write the contents FROM of a value of type TYPE into register
3799 REGNUM in frame FRAME. */
3800
3801 static void
3802 i386_value_to_register (struct frame_info *frame, int regnum,
3803 struct type *type, const gdb_byte *from)
3804 {
3805 int len = TYPE_LENGTH (type);
3806
3807 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3808 {
3809 i387_value_to_register (frame, regnum, type, from);
3810 return;
3811 }
3812
3813 /* Write a value spread across multiple registers. */
3814
3815 gdb_assert (len > 4 && len % 4 == 0);
3816
3817 while (len > 0)
3818 {
3819 gdb_assert (regnum != -1);
3820 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3821
3822 put_frame_register (frame, regnum, from);
3823 regnum = i386_next_regnum (regnum);
3824 len -= 4;
3825 from += 4;
3826 }
3827 }
3828 \f
3829 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3830 in the general-purpose register set REGSET to register cache
3831 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3832
3833 void
3834 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3835 int regnum, const void *gregs, size_t len)
3836 {
3837 struct gdbarch *gdbarch = regcache->arch ();
3838 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3839 const gdb_byte *regs = (const gdb_byte *) gregs;
3840 int i;
3841
3842 gdb_assert (len >= tdep->sizeof_gregset);
3843
3844 for (i = 0; i < tdep->gregset_num_regs; i++)
3845 {
3846 if ((regnum == i || regnum == -1)
3847 && tdep->gregset_reg_offset[i] != -1)
3848 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3849 }
3850 }
3851
3852 /* Collect register REGNUM from the register cache REGCACHE and store
3853 it in the buffer specified by GREGS and LEN as described by the
3854 general-purpose register set REGSET. If REGNUM is -1, do this for
3855 all registers in REGSET. */
3856
3857 static void
3858 i386_collect_gregset (const struct regset *regset,
3859 const struct regcache *regcache,
3860 int regnum, void *gregs, size_t len)
3861 {
3862 struct gdbarch *gdbarch = regcache->arch ();
3863 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3864 gdb_byte *regs = (gdb_byte *) gregs;
3865 int i;
3866
3867 gdb_assert (len >= tdep->sizeof_gregset);
3868
3869 for (i = 0; i < tdep->gregset_num_regs; i++)
3870 {
3871 if ((regnum == i || regnum == -1)
3872 && tdep->gregset_reg_offset[i] != -1)
3873 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3874 }
3875 }
3876
3877 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3878 in the floating-point register set REGSET to register cache
3879 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3880
3881 static void
3882 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3883 int regnum, const void *fpregs, size_t len)
3884 {
3885 struct gdbarch *gdbarch = regcache->arch ();
3886 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3887
3888 if (len == I387_SIZEOF_FXSAVE)
3889 {
3890 i387_supply_fxsave (regcache, regnum, fpregs);
3891 return;
3892 }
3893
3894 gdb_assert (len >= tdep->sizeof_fpregset);
3895 i387_supply_fsave (regcache, regnum, fpregs);
3896 }
3897
3898 /* Collect register REGNUM from the register cache REGCACHE and store
3899 it in the buffer specified by FPREGS and LEN as described by the
3900 floating-point register set REGSET. If REGNUM is -1, do this for
3901 all registers in REGSET. */
3902
3903 static void
3904 i386_collect_fpregset (const struct regset *regset,
3905 const struct regcache *regcache,
3906 int regnum, void *fpregs, size_t len)
3907 {
3908 struct gdbarch *gdbarch = regcache->arch ();
3909 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3910
3911 if (len == I387_SIZEOF_FXSAVE)
3912 {
3913 i387_collect_fxsave (regcache, regnum, fpregs);
3914 return;
3915 }
3916
3917 gdb_assert (len >= tdep->sizeof_fpregset);
3918 i387_collect_fsave (regcache, regnum, fpregs);
3919 }
3920
3921 /* Register set definitions. */
3922
3923 const struct regset i386_gregset =
3924 {
3925 NULL, i386_supply_gregset, i386_collect_gregset
3926 };
3927
3928 const struct regset i386_fpregset =
3929 {
3930 NULL, i386_supply_fpregset, i386_collect_fpregset
3931 };
3932
3933 /* Default iterator over core file register note sections. */
3934
3935 void
3936 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3937 iterate_over_regset_sections_cb *cb,
3938 void *cb_data,
3939 const struct regcache *regcache)
3940 {
3941 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3942
3943 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3944 cb_data);
3945 if (tdep->sizeof_fpregset)
3946 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3947 NULL, cb_data);
3948 }
3949 \f
3950
3951 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3952
3953 CORE_ADDR
3954 i386_pe_skip_trampoline_code (struct frame_info *frame,
3955 CORE_ADDR pc, char *name)
3956 {
3957 struct gdbarch *gdbarch = get_frame_arch (frame);
3958 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3959
3960 /* jmp *(dest) */
3961 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3962 {
3963 unsigned long indirect =
3964 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3965 struct minimal_symbol *indsym =
3966 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3967 const char *symname = indsym ? indsym->linkage_name () : 0;
3968
3969 if (symname)
3970 {
3971 if (startswith (symname, "__imp_")
3972 || startswith (symname, "_imp_"))
3973 return name ? 1 :
3974 read_memory_unsigned_integer (indirect, 4, byte_order);
3975 }
3976 }
3977 return 0; /* Not a trampoline. */
3978 }
3979 \f
3980
3981 /* Return whether the THIS_FRAME corresponds to a sigtramp
3982 routine. */
3983
3984 int
3985 i386_sigtramp_p (struct frame_info *this_frame)
3986 {
3987 CORE_ADDR pc = get_frame_pc (this_frame);
3988 const char *name;
3989
3990 find_pc_partial_function (pc, &name, NULL, NULL);
3991 return (name && strcmp ("_sigtramp", name) == 0);
3992 }
3993 \f
3994
3995 /* We have two flavours of disassembly. The machinery on this page
3996 deals with switching between those. */
3997
3998 static int
3999 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4000 {
4001 gdb_assert (disassembly_flavor == att_flavor
4002 || disassembly_flavor == intel_flavor);
4003
4004 info->disassembler_options = disassembly_flavor;
4005
4006 return default_print_insn (pc, info);
4007 }
4008 \f
4009
4010 /* There are a few i386 architecture variants that differ only
4011 slightly from the generic i386 target. For now, we don't give them
4012 their own source file, but include them here. As a consequence,
4013 they'll always be included. */
4014
4015 /* System V Release 4 (SVR4). */
4016
4017 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4018 routine. */
4019
4020 static int
4021 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4022 {
4023 CORE_ADDR pc = get_frame_pc (this_frame);
4024 const char *name;
4025
4026 /* The origin of these symbols is currently unknown. */
4027 find_pc_partial_function (pc, &name, NULL, NULL);
4028 return (name && (strcmp ("_sigreturn", name) == 0
4029 || strcmp ("sigvechandler", name) == 0));
4030 }
4031
4032 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4033 address of the associated sigcontext (ucontext) structure. */
4034
4035 static CORE_ADDR
4036 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4037 {
4038 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4039 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4040 gdb_byte buf[4];
4041 CORE_ADDR sp;
4042
4043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4044 sp = extract_unsigned_integer (buf, 4, byte_order);
4045
4046 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4047 }
4048
4049 \f
4050
4051 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4052 gdbarch.h. */
4053
4054 int
4055 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4056 {
4057 return (*s == '$' /* Literal number. */
4058 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4059 || (*s == '(' && s[1] == '%') /* Register indirection. */
4060 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4061 }
4062
4063 /* Helper function for i386_stap_parse_special_token.
4064
4065 This function parses operands of the form `-8+3+1(%rbp)', which
4066 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4067
4068 Return true if the operand was parsed successfully, false
4069 otherwise. */
4070
4071 static bool
4072 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4073 struct stap_parse_info *p)
4074 {
4075 const char *s = p->arg;
4076
4077 if (isdigit (*s) || *s == '-' || *s == '+')
4078 {
4079 bool got_minus[3];
4080 int i;
4081 long displacements[3];
4082 const char *start;
4083 char *regname;
4084 int len;
4085 struct stoken str;
4086 char *endp;
4087
4088 got_minus[0] = false;
4089 if (*s == '+')
4090 ++s;
4091 else if (*s == '-')
4092 {
4093 ++s;
4094 got_minus[0] = true;
4095 }
4096
4097 if (!isdigit ((unsigned char) *s))
4098 return false;
4099
4100 displacements[0] = strtol (s, &endp, 10);
4101 s = endp;
4102
4103 if (*s != '+' && *s != '-')
4104 {
4105 /* We are not dealing with a triplet. */
4106 return false;
4107 }
4108
4109 got_minus[1] = false;
4110 if (*s == '+')
4111 ++s;
4112 else
4113 {
4114 ++s;
4115 got_minus[1] = true;
4116 }
4117
4118 if (!isdigit ((unsigned char) *s))
4119 return false;
4120
4121 displacements[1] = strtol (s, &endp, 10);
4122 s = endp;
4123
4124 if (*s != '+' && *s != '-')
4125 {
4126 /* We are not dealing with a triplet. */
4127 return false;
4128 }
4129
4130 got_minus[2] = false;
4131 if (*s == '+')
4132 ++s;
4133 else
4134 {
4135 ++s;
4136 got_minus[2] = true;
4137 }
4138
4139 if (!isdigit ((unsigned char) *s))
4140 return false;
4141
4142 displacements[2] = strtol (s, &endp, 10);
4143 s = endp;
4144
4145 if (*s != '(' || s[1] != '%')
4146 return false;
4147
4148 s += 2;
4149 start = s;
4150
4151 while (isalnum (*s))
4152 ++s;
4153
4154 if (*s++ != ')')
4155 return false;
4156
4157 len = s - start - 1;
4158 regname = (char *) alloca (len + 1);
4159
4160 strncpy (regname, start, len);
4161 regname[len] = '\0';
4162
4163 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4164 error (_("Invalid register name `%s' on expression `%s'."),
4165 regname, p->saved_arg);
4166
4167 for (i = 0; i < 3; i++)
4168 {
4169 write_exp_elt_opcode (&p->pstate, OP_LONG);
4170 write_exp_elt_type
4171 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4172 write_exp_elt_longcst (&p->pstate, displacements[i]);
4173 write_exp_elt_opcode (&p->pstate, OP_LONG);
4174 if (got_minus[i])
4175 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4176 }
4177
4178 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4179 str.ptr = regname;
4180 str.length = len;
4181 write_exp_string (&p->pstate, str);
4182 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4183
4184 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4185 write_exp_elt_type (&p->pstate,
4186 builtin_type (gdbarch)->builtin_data_ptr);
4187 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4188
4189 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4190 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4191 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4192
4193 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4194 write_exp_elt_type (&p->pstate,
4195 lookup_pointer_type (p->arg_type));
4196 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4197
4198 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4199
4200 p->arg = s;
4201
4202 return true;
4203 }
4204
4205 return false;
4206 }
4207
4208 /* Helper function for i386_stap_parse_special_token.
4209
4210 This function parses operands of the form `register base +
4211 (register index * size) + offset', as represented in
4212 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4213
4214 Return true if the operand was parsed successfully, false
4215 otherwise. */
4216
4217 static bool
4218 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4219 struct stap_parse_info *p)
4220 {
4221 const char *s = p->arg;
4222
4223 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4224 {
4225 bool offset_minus = false;
4226 long offset = 0;
4227 bool size_minus = false;
4228 long size = 0;
4229 const char *start;
4230 char *base;
4231 int len_base;
4232 char *index;
4233 int len_index;
4234 struct stoken base_token, index_token;
4235
4236 if (*s == '+')
4237 ++s;
4238 else if (*s == '-')
4239 {
4240 ++s;
4241 offset_minus = true;
4242 }
4243
4244 if (offset_minus && !isdigit (*s))
4245 return false;
4246
4247 if (isdigit (*s))
4248 {
4249 char *endp;
4250
4251 offset = strtol (s, &endp, 10);
4252 s = endp;
4253 }
4254
4255 if (*s != '(' || s[1] != '%')
4256 return false;
4257
4258 s += 2;
4259 start = s;
4260
4261 while (isalnum (*s))
4262 ++s;
4263
4264 if (*s != ',' || s[1] != '%')
4265 return false;
4266
4267 len_base = s - start;
4268 base = (char *) alloca (len_base + 1);
4269 strncpy (base, start, len_base);
4270 base[len_base] = '\0';
4271
4272 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4273 error (_("Invalid register name `%s' on expression `%s'."),
4274 base, p->saved_arg);
4275
4276 s += 2;
4277 start = s;
4278
4279 while (isalnum (*s))
4280 ++s;
4281
4282 len_index = s - start;
4283 index = (char *) alloca (len_index + 1);
4284 strncpy (index, start, len_index);
4285 index[len_index] = '\0';
4286
4287 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4288 error (_("Invalid register name `%s' on expression `%s'."),
4289 index, p->saved_arg);
4290
4291 if (*s != ',' && *s != ')')
4292 return false;
4293
4294 if (*s == ',')
4295 {
4296 char *endp;
4297
4298 ++s;
4299 if (*s == '+')
4300 ++s;
4301 else if (*s == '-')
4302 {
4303 ++s;
4304 size_minus = true;
4305 }
4306
4307 size = strtol (s, &endp, 10);
4308 s = endp;
4309
4310 if (*s != ')')
4311 return false;
4312 }
4313
4314 ++s;
4315
4316 if (offset)
4317 {
4318 write_exp_elt_opcode (&p->pstate, OP_LONG);
4319 write_exp_elt_type (&p->pstate,
4320 builtin_type (gdbarch)->builtin_long);
4321 write_exp_elt_longcst (&p->pstate, offset);
4322 write_exp_elt_opcode (&p->pstate, OP_LONG);
4323 if (offset_minus)
4324 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4325 }
4326
4327 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4328 base_token.ptr = base;
4329 base_token.length = len_base;
4330 write_exp_string (&p->pstate, base_token);
4331 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4332
4333 if (offset)
4334 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4335
4336 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4337 index_token.ptr = index;
4338 index_token.length = len_index;
4339 write_exp_string (&p->pstate, index_token);
4340 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
4341
4342 if (size)
4343 {
4344 write_exp_elt_opcode (&p->pstate, OP_LONG);
4345 write_exp_elt_type (&p->pstate,
4346 builtin_type (gdbarch)->builtin_long);
4347 write_exp_elt_longcst (&p->pstate, size);
4348 write_exp_elt_opcode (&p->pstate, OP_LONG);
4349 if (size_minus)
4350 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4351 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
4352 }
4353
4354 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4355
4356 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4357 write_exp_elt_type (&p->pstate,
4358 lookup_pointer_type (p->arg_type));
4359 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4360
4361 write_exp_elt_opcode (&p->pstate, UNOP_IND);
4362
4363 p->arg = s;
4364
4365 return true;
4366 }
4367
4368 return false;
4369 }
4370
4371 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4372 gdbarch.h. */
4373
4374 int
4375 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4376 struct stap_parse_info *p)
4377 {
4378 /* In order to parse special tokens, we use a state-machine that go
4379 through every known token and try to get a match. */
4380 enum
4381 {
4382 TRIPLET,
4383 THREE_ARG_DISPLACEMENT,
4384 DONE
4385 };
4386 int current_state;
4387
4388 current_state = TRIPLET;
4389
4390 /* The special tokens to be parsed here are:
4391
4392 - `register base + (register index * size) + offset', as represented
4393 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4394
4395 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4396 `*(-8 + 3 - 1 + (void *) $eax)'. */
4397
4398 while (current_state != DONE)
4399 {
4400 switch (current_state)
4401 {
4402 case TRIPLET:
4403 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4404 return 1;
4405 break;
4406
4407 case THREE_ARG_DISPLACEMENT:
4408 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4409 return 1;
4410 break;
4411 }
4412
4413 /* Advancing to the next state. */
4414 ++current_state;
4415 }
4416
4417 return 0;
4418 }
4419
4420 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4421 gdbarch.h. */
4422
4423 static std::string
4424 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4425 const std::string &regname, int regnum)
4426 {
4427 static const std::unordered_set<std::string> reg_assoc
4428 = { "ax", "bx", "cx", "dx",
4429 "si", "di", "bp", "sp" };
4430
4431 /* If we are dealing with a register whose size is less than the size
4432 specified by the "[-]N@" prefix, and it is one of the registers that
4433 we know has an extended variant available, then use the extended
4434 version of the register instead. */
4435 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4436 && reg_assoc.find (regname) != reg_assoc.end ())
4437 return "e" + regname;
4438
4439 /* Otherwise, just use the requested register. */
4440 return regname;
4441 }
4442
4443 \f
4444
4445 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4446 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4447
4448 static const char *
4449 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4450 {
4451 return "(x86_64|i.86)";
4452 }
4453
4454 \f
4455
4456 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4457
4458 static bool
4459 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4460 {
4461 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4462 I386_EAX_REGNUM, I386_EIP_REGNUM);
4463 }
4464
4465 /* Generic ELF. */
4466
4467 void
4468 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4469 {
4470 static const char *const stap_integer_prefixes[] = { "$", NULL };
4471 static const char *const stap_register_prefixes[] = { "%", NULL };
4472 static const char *const stap_register_indirection_prefixes[] = { "(",
4473 NULL };
4474 static const char *const stap_register_indirection_suffixes[] = { ")",
4475 NULL };
4476
4477 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4478 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4479
4480 /* Registering SystemTap handlers. */
4481 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4482 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4483 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4484 stap_register_indirection_prefixes);
4485 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4486 stap_register_indirection_suffixes);
4487 set_gdbarch_stap_is_single_operand (gdbarch,
4488 i386_stap_is_single_operand);
4489 set_gdbarch_stap_parse_special_token (gdbarch,
4490 i386_stap_parse_special_token);
4491 set_gdbarch_stap_adjust_register (gdbarch,
4492 i386_stap_adjust_register);
4493
4494 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4495 i386_in_indirect_branch_thunk);
4496 }
4497
4498 /* System V Release 4 (SVR4). */
4499
4500 void
4501 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4502 {
4503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4504
4505 /* System V Release 4 uses ELF. */
4506 i386_elf_init_abi (info, gdbarch);
4507
4508 /* System V Release 4 has shared libraries. */
4509 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4510
4511 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4512 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4513 tdep->sc_pc_offset = 36 + 14 * 4;
4514 tdep->sc_sp_offset = 36 + 17 * 4;
4515
4516 tdep->jb_pc_offset = 20;
4517 }
4518
4519 \f
4520
4521 /* i386 register groups. In addition to the normal groups, add "mmx"
4522 and "sse". */
4523
4524 static struct reggroup *i386_sse_reggroup;
4525 static struct reggroup *i386_mmx_reggroup;
4526
4527 static void
4528 i386_init_reggroups (void)
4529 {
4530 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4531 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4532 }
4533
4534 static void
4535 i386_add_reggroups (struct gdbarch *gdbarch)
4536 {
4537 reggroup_add (gdbarch, i386_sse_reggroup);
4538 reggroup_add (gdbarch, i386_mmx_reggroup);
4539 reggroup_add (gdbarch, general_reggroup);
4540 reggroup_add (gdbarch, float_reggroup);
4541 reggroup_add (gdbarch, all_reggroup);
4542 reggroup_add (gdbarch, save_reggroup);
4543 reggroup_add (gdbarch, restore_reggroup);
4544 reggroup_add (gdbarch, vector_reggroup);
4545 reggroup_add (gdbarch, system_reggroup);
4546 }
4547
4548 int
4549 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4550 struct reggroup *group)
4551 {
4552 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4553 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4554 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4555 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4556 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4557 avx512_p, avx_p, sse_p, pkru_regnum_p;
4558
4559 /* Don't include pseudo registers, except for MMX, in any register
4560 groups. */
4561 if (i386_byte_regnum_p (gdbarch, regnum))
4562 return 0;
4563
4564 if (i386_word_regnum_p (gdbarch, regnum))
4565 return 0;
4566
4567 if (i386_dword_regnum_p (gdbarch, regnum))
4568 return 0;
4569
4570 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4571 if (group == i386_mmx_reggroup)
4572 return mmx_regnum_p;
4573
4574 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4575 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4576 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4577 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4578 if (group == i386_sse_reggroup)
4579 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4580
4581 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4582 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4583 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4584
4585 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4586 == X86_XSTATE_AVX_AVX512_MASK);
4587 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4588 == X86_XSTATE_AVX_MASK) && !avx512_p;
4589 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4590 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4591
4592 if (group == vector_reggroup)
4593 return (mmx_regnum_p
4594 || (zmm_regnum_p && avx512_p)
4595 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4596 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4597 || mxcsr_regnum_p);
4598
4599 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4600 || i386_fpc_regnum_p (gdbarch, regnum));
4601 if (group == float_reggroup)
4602 return fp_regnum_p;
4603
4604 /* For "info reg all", don't include upper YMM registers nor XMM
4605 registers when AVX is supported. */
4606 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4607 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4608 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4609 if (group == all_reggroup
4610 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4611 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4612 || ymmh_regnum_p
4613 || ymmh_avx512_regnum_p
4614 || zmmh_regnum_p))
4615 return 0;
4616
4617 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4618 if (group == all_reggroup
4619 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4620 return bnd_regnum_p;
4621
4622 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4623 if (group == all_reggroup
4624 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4625 return 0;
4626
4627 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4628 if (group == all_reggroup
4629 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4630 return mpx_ctrl_regnum_p;
4631
4632 if (group == general_reggroup)
4633 return (!fp_regnum_p
4634 && !mmx_regnum_p
4635 && !mxcsr_regnum_p
4636 && !xmm_regnum_p
4637 && !xmm_avx512_regnum_p
4638 && !ymm_regnum_p
4639 && !ymmh_regnum_p
4640 && !ymm_avx512_regnum_p
4641 && !ymmh_avx512_regnum_p
4642 && !bndr_regnum_p
4643 && !bnd_regnum_p
4644 && !mpx_ctrl_regnum_p
4645 && !zmm_regnum_p
4646 && !zmmh_regnum_p
4647 && !pkru_regnum_p);
4648
4649 return default_register_reggroup_p (gdbarch, regnum, group);
4650 }
4651 \f
4652
4653 /* Get the ARGIth function argument for the current function. */
4654
4655 static CORE_ADDR
4656 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4657 struct type *type)
4658 {
4659 struct gdbarch *gdbarch = get_frame_arch (frame);
4660 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4661 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4662 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4663 }
4664
4665 #define PREFIX_REPZ 0x01
4666 #define PREFIX_REPNZ 0x02
4667 #define PREFIX_LOCK 0x04
4668 #define PREFIX_DATA 0x08
4669 #define PREFIX_ADDR 0x10
4670
4671 /* operand size */
4672 enum
4673 {
4674 OT_BYTE = 0,
4675 OT_WORD,
4676 OT_LONG,
4677 OT_QUAD,
4678 OT_DQUAD,
4679 };
4680
4681 /* i386 arith/logic operations */
4682 enum
4683 {
4684 OP_ADDL,
4685 OP_ORL,
4686 OP_ADCL,
4687 OP_SBBL,
4688 OP_ANDL,
4689 OP_SUBL,
4690 OP_XORL,
4691 OP_CMPL,
4692 };
4693
4694 struct i386_record_s
4695 {
4696 struct gdbarch *gdbarch;
4697 struct regcache *regcache;
4698 CORE_ADDR orig_addr;
4699 CORE_ADDR addr;
4700 int aflag;
4701 int dflag;
4702 int override;
4703 uint8_t modrm;
4704 uint8_t mod, reg, rm;
4705 int ot;
4706 uint8_t rex_x;
4707 uint8_t rex_b;
4708 int rip_offset;
4709 int popl_esp_hack;
4710 const int *regmap;
4711 };
4712
4713 /* Parse the "modrm" part of the memory address irp->addr points at.
4714 Returns -1 if something goes wrong, 0 otherwise. */
4715
4716 static int
4717 i386_record_modrm (struct i386_record_s *irp)
4718 {
4719 struct gdbarch *gdbarch = irp->gdbarch;
4720
4721 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4722 return -1;
4723
4724 irp->addr++;
4725 irp->mod = (irp->modrm >> 6) & 3;
4726 irp->reg = (irp->modrm >> 3) & 7;
4727 irp->rm = irp->modrm & 7;
4728
4729 return 0;
4730 }
4731
4732 /* Extract the memory address that the current instruction writes to,
4733 and return it in *ADDR. Return -1 if something goes wrong. */
4734
4735 static int
4736 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4737 {
4738 struct gdbarch *gdbarch = irp->gdbarch;
4739 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4740 gdb_byte buf[4];
4741 ULONGEST offset64;
4742
4743 *addr = 0;
4744 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4745 {
4746 /* 32/64 bits */
4747 int havesib = 0;
4748 uint8_t scale = 0;
4749 uint8_t byte;
4750 uint8_t index = 0;
4751 uint8_t base = irp->rm;
4752
4753 if (base == 4)
4754 {
4755 havesib = 1;
4756 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4757 return -1;
4758 irp->addr++;
4759 scale = (byte >> 6) & 3;
4760 index = ((byte >> 3) & 7) | irp->rex_x;
4761 base = (byte & 7);
4762 }
4763 base |= irp->rex_b;
4764
4765 switch (irp->mod)
4766 {
4767 case 0:
4768 if ((base & 7) == 5)
4769 {
4770 base = 0xff;
4771 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4772 return -1;
4773 irp->addr += 4;
4774 *addr = extract_signed_integer (buf, 4, byte_order);
4775 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4776 *addr += irp->addr + irp->rip_offset;
4777 }
4778 break;
4779 case 1:
4780 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4781 return -1;
4782 irp->addr++;
4783 *addr = (int8_t) buf[0];
4784 break;
4785 case 2:
4786 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4787 return -1;
4788 *addr = extract_signed_integer (buf, 4, byte_order);
4789 irp->addr += 4;
4790 break;
4791 }
4792
4793 offset64 = 0;
4794 if (base != 0xff)
4795 {
4796 if (base == 4 && irp->popl_esp_hack)
4797 *addr += irp->popl_esp_hack;
4798 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4799 &offset64);
4800 }
4801 if (irp->aflag == 2)
4802 {
4803 *addr += offset64;
4804 }
4805 else
4806 *addr = (uint32_t) (offset64 + *addr);
4807
4808 if (havesib && (index != 4 || scale != 0))
4809 {
4810 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4811 &offset64);
4812 if (irp->aflag == 2)
4813 *addr += offset64 << scale;
4814 else
4815 *addr = (uint32_t) (*addr + (offset64 << scale));
4816 }
4817
4818 if (!irp->aflag)
4819 {
4820 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4821 address from 32-bit to 64-bit. */
4822 *addr = (uint32_t) *addr;
4823 }
4824 }
4825 else
4826 {
4827 /* 16 bits */
4828 switch (irp->mod)
4829 {
4830 case 0:
4831 if (irp->rm == 6)
4832 {
4833 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4834 return -1;
4835 irp->addr += 2;
4836 *addr = extract_signed_integer (buf, 2, byte_order);
4837 irp->rm = 0;
4838 goto no_rm;
4839 }
4840 break;
4841 case 1:
4842 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4843 return -1;
4844 irp->addr++;
4845 *addr = (int8_t) buf[0];
4846 break;
4847 case 2:
4848 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4849 return -1;
4850 irp->addr += 2;
4851 *addr = extract_signed_integer (buf, 2, byte_order);
4852 break;
4853 }
4854
4855 switch (irp->rm)
4856 {
4857 case 0:
4858 regcache_raw_read_unsigned (irp->regcache,
4859 irp->regmap[X86_RECORD_REBX_REGNUM],
4860 &offset64);
4861 *addr = (uint32_t) (*addr + offset64);
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_RESI_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 case 1:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REBX_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 regcache_raw_read_unsigned (irp->regcache,
4873 irp->regmap[X86_RECORD_REDI_REGNUM],
4874 &offset64);
4875 *addr = (uint32_t) (*addr + offset64);
4876 break;
4877 case 2:
4878 regcache_raw_read_unsigned (irp->regcache,
4879 irp->regmap[X86_RECORD_REBP_REGNUM],
4880 &offset64);
4881 *addr = (uint32_t) (*addr + offset64);
4882 regcache_raw_read_unsigned (irp->regcache,
4883 irp->regmap[X86_RECORD_RESI_REGNUM],
4884 &offset64);
4885 *addr = (uint32_t) (*addr + offset64);
4886 break;
4887 case 3:
4888 regcache_raw_read_unsigned (irp->regcache,
4889 irp->regmap[X86_RECORD_REBP_REGNUM],
4890 &offset64);
4891 *addr = (uint32_t) (*addr + offset64);
4892 regcache_raw_read_unsigned (irp->regcache,
4893 irp->regmap[X86_RECORD_REDI_REGNUM],
4894 &offset64);
4895 *addr = (uint32_t) (*addr + offset64);
4896 break;
4897 case 4:
4898 regcache_raw_read_unsigned (irp->regcache,
4899 irp->regmap[X86_RECORD_RESI_REGNUM],
4900 &offset64);
4901 *addr = (uint32_t) (*addr + offset64);
4902 break;
4903 case 5:
4904 regcache_raw_read_unsigned (irp->regcache,
4905 irp->regmap[X86_RECORD_REDI_REGNUM],
4906 &offset64);
4907 *addr = (uint32_t) (*addr + offset64);
4908 break;
4909 case 6:
4910 regcache_raw_read_unsigned (irp->regcache,
4911 irp->regmap[X86_RECORD_REBP_REGNUM],
4912 &offset64);
4913 *addr = (uint32_t) (*addr + offset64);
4914 break;
4915 case 7:
4916 regcache_raw_read_unsigned (irp->regcache,
4917 irp->regmap[X86_RECORD_REBX_REGNUM],
4918 &offset64);
4919 *addr = (uint32_t) (*addr + offset64);
4920 break;
4921 }
4922 *addr &= 0xffff;
4923 }
4924
4925 no_rm:
4926 return 0;
4927 }
4928
4929 /* Record the address and contents of the memory that will be changed
4930 by the current instruction. Return -1 if something goes wrong, 0
4931 otherwise. */
4932
4933 static int
4934 i386_record_lea_modrm (struct i386_record_s *irp)
4935 {
4936 struct gdbarch *gdbarch = irp->gdbarch;
4937 uint64_t addr;
4938
4939 if (irp->override >= 0)
4940 {
4941 if (record_full_memory_query)
4942 {
4943 if (yquery (_("\
4944 Process record ignores the memory change of instruction at address %s\n\
4945 because it can't get the value of the segment register.\n\
4946 Do you want to stop the program?"),
4947 paddress (gdbarch, irp->orig_addr)))
4948 return -1;
4949 }
4950
4951 return 0;
4952 }
4953
4954 if (i386_record_lea_modrm_addr (irp, &addr))
4955 return -1;
4956
4957 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4958 return -1;
4959
4960 return 0;
4961 }
4962
4963 /* Record the effects of a push operation. Return -1 if something
4964 goes wrong, 0 otherwise. */
4965
4966 static int
4967 i386_record_push (struct i386_record_s *irp, int size)
4968 {
4969 ULONGEST addr;
4970
4971 if (record_full_arch_list_add_reg (irp->regcache,
4972 irp->regmap[X86_RECORD_RESP_REGNUM]))
4973 return -1;
4974 regcache_raw_read_unsigned (irp->regcache,
4975 irp->regmap[X86_RECORD_RESP_REGNUM],
4976 &addr);
4977 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4978 return -1;
4979
4980 return 0;
4981 }
4982
4983
4984 /* Defines contents to record. */
4985 #define I386_SAVE_FPU_REGS 0xfffd
4986 #define I386_SAVE_FPU_ENV 0xfffe
4987 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4988
4989 /* Record the values of the floating point registers which will be
4990 changed by the current instruction. Returns -1 if something is
4991 wrong, 0 otherwise. */
4992
4993 static int i386_record_floats (struct gdbarch *gdbarch,
4994 struct i386_record_s *ir,
4995 uint32_t iregnum)
4996 {
4997 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4998 int i;
4999
5000 /* Oza: Because of floating point insn push/pop of fpu stack is going to
5001 happen. Currently we store st0-st7 registers, but we need not store all
5002 registers all the time, in future we use ftag register and record only
5003 those who are not marked as an empty. */
5004
5005 if (I386_SAVE_FPU_REGS == iregnum)
5006 {
5007 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
5008 {
5009 if (record_full_arch_list_add_reg (ir->regcache, i))
5010 return -1;
5011 }
5012 }
5013 else if (I386_SAVE_FPU_ENV == iregnum)
5014 {
5015 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5016 {
5017 if (record_full_arch_list_add_reg (ir->regcache, i))
5018 return -1;
5019 }
5020 }
5021 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
5022 {
5023 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5024 {
5025 if (record_full_arch_list_add_reg (ir->regcache, i))
5026 return -1;
5027 }
5028 }
5029 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5030 (iregnum <= I387_FOP_REGNUM (tdep)))
5031 {
5032 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
5033 return -1;
5034 }
5035 else
5036 {
5037 /* Parameter error. */
5038 return -1;
5039 }
5040 if(I386_SAVE_FPU_ENV != iregnum)
5041 {
5042 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5043 {
5044 if (record_full_arch_list_add_reg (ir->regcache, i))
5045 return -1;
5046 }
5047 }
5048 return 0;
5049 }
5050
5051 /* Parse the current instruction, and record the values of the
5052 registers and memory that will be changed by the current
5053 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5054
5055 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5056 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5057
5058 int
5059 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5060 CORE_ADDR input_addr)
5061 {
5062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5063 int prefixes = 0;
5064 int regnum = 0;
5065 uint32_t opcode;
5066 uint8_t opcode8;
5067 ULONGEST addr;
5068 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5069 struct i386_record_s ir;
5070 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5071 uint8_t rex_w = -1;
5072 uint8_t rex_r = 0;
5073
5074 memset (&ir, 0, sizeof (struct i386_record_s));
5075 ir.regcache = regcache;
5076 ir.addr = input_addr;
5077 ir.orig_addr = input_addr;
5078 ir.aflag = 1;
5079 ir.dflag = 1;
5080 ir.override = -1;
5081 ir.popl_esp_hack = 0;
5082 ir.regmap = tdep->record_regmap;
5083 ir.gdbarch = gdbarch;
5084
5085 if (record_debug > 1)
5086 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5087 "addr = %s\n",
5088 paddress (gdbarch, ir.addr));
5089
5090 /* prefixes */
5091 while (1)
5092 {
5093 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5094 return -1;
5095 ir.addr++;
5096 switch (opcode8) /* Instruction prefixes */
5097 {
5098 case REPE_PREFIX_OPCODE:
5099 prefixes |= PREFIX_REPZ;
5100 break;
5101 case REPNE_PREFIX_OPCODE:
5102 prefixes |= PREFIX_REPNZ;
5103 break;
5104 case LOCK_PREFIX_OPCODE:
5105 prefixes |= PREFIX_LOCK;
5106 break;
5107 case CS_PREFIX_OPCODE:
5108 ir.override = X86_RECORD_CS_REGNUM;
5109 break;
5110 case SS_PREFIX_OPCODE:
5111 ir.override = X86_RECORD_SS_REGNUM;
5112 break;
5113 case DS_PREFIX_OPCODE:
5114 ir.override = X86_RECORD_DS_REGNUM;
5115 break;
5116 case ES_PREFIX_OPCODE:
5117 ir.override = X86_RECORD_ES_REGNUM;
5118 break;
5119 case FS_PREFIX_OPCODE:
5120 ir.override = X86_RECORD_FS_REGNUM;
5121 break;
5122 case GS_PREFIX_OPCODE:
5123 ir.override = X86_RECORD_GS_REGNUM;
5124 break;
5125 case DATA_PREFIX_OPCODE:
5126 prefixes |= PREFIX_DATA;
5127 break;
5128 case ADDR_PREFIX_OPCODE:
5129 prefixes |= PREFIX_ADDR;
5130 break;
5131 case 0x40: /* i386 inc %eax */
5132 case 0x41: /* i386 inc %ecx */
5133 case 0x42: /* i386 inc %edx */
5134 case 0x43: /* i386 inc %ebx */
5135 case 0x44: /* i386 inc %esp */
5136 case 0x45: /* i386 inc %ebp */
5137 case 0x46: /* i386 inc %esi */
5138 case 0x47: /* i386 inc %edi */
5139 case 0x48: /* i386 dec %eax */
5140 case 0x49: /* i386 dec %ecx */
5141 case 0x4a: /* i386 dec %edx */
5142 case 0x4b: /* i386 dec %ebx */
5143 case 0x4c: /* i386 dec %esp */
5144 case 0x4d: /* i386 dec %ebp */
5145 case 0x4e: /* i386 dec %esi */
5146 case 0x4f: /* i386 dec %edi */
5147 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5148 {
5149 /* REX */
5150 rex_w = (opcode8 >> 3) & 1;
5151 rex_r = (opcode8 & 0x4) << 1;
5152 ir.rex_x = (opcode8 & 0x2) << 2;
5153 ir.rex_b = (opcode8 & 0x1) << 3;
5154 }
5155 else /* 32 bit target */
5156 goto out_prefixes;
5157 break;
5158 default:
5159 goto out_prefixes;
5160 break;
5161 }
5162 }
5163 out_prefixes:
5164 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5165 {
5166 ir.dflag = 2;
5167 }
5168 else
5169 {
5170 if (prefixes & PREFIX_DATA)
5171 ir.dflag ^= 1;
5172 }
5173 if (prefixes & PREFIX_ADDR)
5174 ir.aflag ^= 1;
5175 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5176 ir.aflag = 2;
5177
5178 /* Now check op code. */
5179 opcode = (uint32_t) opcode8;
5180 reswitch:
5181 switch (opcode)
5182 {
5183 case 0x0f:
5184 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5185 return -1;
5186 ir.addr++;
5187 opcode = (uint32_t) opcode8 | 0x0f00;
5188 goto reswitch;
5189 break;
5190
5191 case 0x00: /* arith & logic */
5192 case 0x01:
5193 case 0x02:
5194 case 0x03:
5195 case 0x04:
5196 case 0x05:
5197 case 0x08:
5198 case 0x09:
5199 case 0x0a:
5200 case 0x0b:
5201 case 0x0c:
5202 case 0x0d:
5203 case 0x10:
5204 case 0x11:
5205 case 0x12:
5206 case 0x13:
5207 case 0x14:
5208 case 0x15:
5209 case 0x18:
5210 case 0x19:
5211 case 0x1a:
5212 case 0x1b:
5213 case 0x1c:
5214 case 0x1d:
5215 case 0x20:
5216 case 0x21:
5217 case 0x22:
5218 case 0x23:
5219 case 0x24:
5220 case 0x25:
5221 case 0x28:
5222 case 0x29:
5223 case 0x2a:
5224 case 0x2b:
5225 case 0x2c:
5226 case 0x2d:
5227 case 0x30:
5228 case 0x31:
5229 case 0x32:
5230 case 0x33:
5231 case 0x34:
5232 case 0x35:
5233 case 0x38:
5234 case 0x39:
5235 case 0x3a:
5236 case 0x3b:
5237 case 0x3c:
5238 case 0x3d:
5239 if (((opcode >> 3) & 7) != OP_CMPL)
5240 {
5241 if ((opcode & 1) == 0)
5242 ir.ot = OT_BYTE;
5243 else
5244 ir.ot = ir.dflag + OT_WORD;
5245
5246 switch ((opcode >> 1) & 3)
5247 {
5248 case 0: /* OP Ev, Gv */
5249 if (i386_record_modrm (&ir))
5250 return -1;
5251 if (ir.mod != 3)
5252 {
5253 if (i386_record_lea_modrm (&ir))
5254 return -1;
5255 }
5256 else
5257 {
5258 ir.rm |= ir.rex_b;
5259 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5260 ir.rm &= 0x3;
5261 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5262 }
5263 break;
5264 case 1: /* OP Gv, Ev */
5265 if (i386_record_modrm (&ir))
5266 return -1;
5267 ir.reg |= rex_r;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 ir.reg &= 0x3;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5271 break;
5272 case 2: /* OP A, Iv */
5273 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5274 break;
5275 }
5276 }
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5278 break;
5279
5280 case 0x80: /* GRP1 */
5281 case 0x81:
5282 case 0x82:
5283 case 0x83:
5284 if (i386_record_modrm (&ir))
5285 return -1;
5286
5287 if (ir.reg != OP_CMPL)
5288 {
5289 if ((opcode & 1) == 0)
5290 ir.ot = OT_BYTE;
5291 else
5292 ir.ot = ir.dflag + OT_WORD;
5293
5294 if (ir.mod != 3)
5295 {
5296 if (opcode == 0x83)
5297 ir.rip_offset = 1;
5298 else
5299 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5300 if (i386_record_lea_modrm (&ir))
5301 return -1;
5302 }
5303 else
5304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5305 }
5306 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5307 break;
5308
5309 case 0x40: /* inc */
5310 case 0x41:
5311 case 0x42:
5312 case 0x43:
5313 case 0x44:
5314 case 0x45:
5315 case 0x46:
5316 case 0x47:
5317
5318 case 0x48: /* dec */
5319 case 0x49:
5320 case 0x4a:
5321 case 0x4b:
5322 case 0x4c:
5323 case 0x4d:
5324 case 0x4e:
5325 case 0x4f:
5326
5327 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5328 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5329 break;
5330
5331 case 0xf6: /* GRP3 */
5332 case 0xf7:
5333 if ((opcode & 1) == 0)
5334 ir.ot = OT_BYTE;
5335 else
5336 ir.ot = ir.dflag + OT_WORD;
5337 if (i386_record_modrm (&ir))
5338 return -1;
5339
5340 if (ir.mod != 3 && ir.reg == 0)
5341 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5342
5343 switch (ir.reg)
5344 {
5345 case 0: /* test */
5346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5347 break;
5348 case 2: /* not */
5349 case 3: /* neg */
5350 if (ir.mod != 3)
5351 {
5352 if (i386_record_lea_modrm (&ir))
5353 return -1;
5354 }
5355 else
5356 {
5357 ir.rm |= ir.rex_b;
5358 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5359 ir.rm &= 0x3;
5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5361 }
5362 if (ir.reg == 3) /* neg */
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5364 break;
5365 case 4: /* mul */
5366 case 5: /* imul */
5367 case 6: /* div */
5368 case 7: /* idiv */
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5370 if (ir.ot != OT_BYTE)
5371 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5373 break;
5374 default:
5375 ir.addr -= 2;
5376 opcode = opcode << 8 | ir.modrm;
5377 goto no_support;
5378 break;
5379 }
5380 break;
5381
5382 case 0xfe: /* GRP4 */
5383 case 0xff: /* GRP5 */
5384 if (i386_record_modrm (&ir))
5385 return -1;
5386 if (ir.reg >= 2 && opcode == 0xfe)
5387 {
5388 ir.addr -= 2;
5389 opcode = opcode << 8 | ir.modrm;
5390 goto no_support;
5391 }
5392 switch (ir.reg)
5393 {
5394 case 0: /* inc */
5395 case 1: /* dec */
5396 if ((opcode & 1) == 0)
5397 ir.ot = OT_BYTE;
5398 else
5399 ir.ot = ir.dflag + OT_WORD;
5400 if (ir.mod != 3)
5401 {
5402 if (i386_record_lea_modrm (&ir))
5403 return -1;
5404 }
5405 else
5406 {
5407 ir.rm |= ir.rex_b;
5408 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5409 ir.rm &= 0x3;
5410 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5411 }
5412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5413 break;
5414 case 2: /* call */
5415 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5416 ir.dflag = 2;
5417 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5418 return -1;
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5420 break;
5421 case 3: /* lcall */
5422 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5423 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5424 return -1;
5425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5426 break;
5427 case 4: /* jmp */
5428 case 5: /* ljmp */
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5430 break;
5431 case 6: /* push */
5432 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5433 ir.dflag = 2;
5434 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5435 return -1;
5436 break;
5437 default:
5438 ir.addr -= 2;
5439 opcode = opcode << 8 | ir.modrm;
5440 goto no_support;
5441 break;
5442 }
5443 break;
5444
5445 case 0x84: /* test */
5446 case 0x85:
5447 case 0xa8:
5448 case 0xa9:
5449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5450 break;
5451
5452 case 0x98: /* CWDE/CBW */
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5454 break;
5455
5456 case 0x99: /* CDQ/CWD */
5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5459 break;
5460
5461 case 0x0faf: /* imul */
5462 case 0x69:
5463 case 0x6b:
5464 ir.ot = ir.dflag + OT_WORD;
5465 if (i386_record_modrm (&ir))
5466 return -1;
5467 if (opcode == 0x69)
5468 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5469 else if (opcode == 0x6b)
5470 ir.rip_offset = 1;
5471 ir.reg |= rex_r;
5472 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5473 ir.reg &= 0x3;
5474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5476 break;
5477
5478 case 0x0fc0: /* xadd */
5479 case 0x0fc1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 ir.reg |= rex_r;
5487 if (ir.mod == 3)
5488 {
5489 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5490 ir.reg &= 0x3;
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5492 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5493 ir.rm &= 0x3;
5494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5495 }
5496 else
5497 {
5498 if (i386_record_lea_modrm (&ir))
5499 return -1;
5500 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5501 ir.reg &= 0x3;
5502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5503 }
5504 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5505 break;
5506
5507 case 0x0fb0: /* cmpxchg */
5508 case 0x0fb1:
5509 if ((opcode & 1) == 0)
5510 ir.ot = OT_BYTE;
5511 else
5512 ir.ot = ir.dflag + OT_WORD;
5513 if (i386_record_modrm (&ir))
5514 return -1;
5515 if (ir.mod == 3)
5516 {
5517 ir.reg |= rex_r;
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5519 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5520 ir.reg &= 0x3;
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5522 }
5523 else
5524 {
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5526 if (i386_record_lea_modrm (&ir))
5527 return -1;
5528 }
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5530 break;
5531
5532 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5533 if (i386_record_modrm (&ir))
5534 return -1;
5535 if (ir.mod == 3)
5536 {
5537 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5538 an extended opcode. rdrand has bits 110 (/6) and rdseed
5539 has bits 111 (/7). */
5540 if (ir.reg == 6 || ir.reg == 7)
5541 {
5542 /* The storage register is described by the 3 R/M bits, but the
5543 REX.B prefix may be used to give access to registers
5544 R8~R15. In this case ir.rex_b + R/M will give us the register
5545 in the range R8~R15.
5546
5547 REX.W may also be used to access 64-bit registers, but we
5548 already record entire registers and not just partial bits
5549 of them. */
5550 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5551 /* These instructions also set conditional bits. */
5552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5553 break;
5554 }
5555 else
5556 {
5557 /* We don't handle this particular instruction yet. */
5558 ir.addr -= 2;
5559 opcode = opcode << 8 | ir.modrm;
5560 goto no_support;
5561 }
5562 }
5563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5565 if (i386_record_lea_modrm (&ir))
5566 return -1;
5567 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5568 break;
5569
5570 case 0x50: /* push */
5571 case 0x51:
5572 case 0x52:
5573 case 0x53:
5574 case 0x54:
5575 case 0x55:
5576 case 0x56:
5577 case 0x57:
5578 case 0x68:
5579 case 0x6a:
5580 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5581 ir.dflag = 2;
5582 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5583 return -1;
5584 break;
5585
5586 case 0x06: /* push es */
5587 case 0x0e: /* push cs */
5588 case 0x16: /* push ss */
5589 case 0x1e: /* push ds */
5590 if (ir.regmap[X86_RECORD_R8_REGNUM])
5591 {
5592 ir.addr -= 1;
5593 goto no_support;
5594 }
5595 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5596 return -1;
5597 break;
5598
5599 case 0x0fa0: /* push fs */
5600 case 0x0fa8: /* push gs */
5601 if (ir.regmap[X86_RECORD_R8_REGNUM])
5602 {
5603 ir.addr -= 2;
5604 goto no_support;
5605 }
5606 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5607 return -1;
5608 break;
5609
5610 case 0x60: /* pusha */
5611 if (ir.regmap[X86_RECORD_R8_REGNUM])
5612 {
5613 ir.addr -= 1;
5614 goto no_support;
5615 }
5616 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5617 return -1;
5618 break;
5619
5620 case 0x58: /* pop */
5621 case 0x59:
5622 case 0x5a:
5623 case 0x5b:
5624 case 0x5c:
5625 case 0x5d:
5626 case 0x5e:
5627 case 0x5f:
5628 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5629 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5630 break;
5631
5632 case 0x61: /* popa */
5633 if (ir.regmap[X86_RECORD_R8_REGNUM])
5634 {
5635 ir.addr -= 1;
5636 goto no_support;
5637 }
5638 for (regnum = X86_RECORD_REAX_REGNUM;
5639 regnum <= X86_RECORD_REDI_REGNUM;
5640 regnum++)
5641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5642 break;
5643
5644 case 0x8f: /* pop */
5645 if (ir.regmap[X86_RECORD_R8_REGNUM])
5646 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5647 else
5648 ir.ot = ir.dflag + OT_WORD;
5649 if (i386_record_modrm (&ir))
5650 return -1;
5651 if (ir.mod == 3)
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5653 else
5654 {
5655 ir.popl_esp_hack = 1 << ir.ot;
5656 if (i386_record_lea_modrm (&ir))
5657 return -1;
5658 }
5659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5660 break;
5661
5662 case 0xc8: /* enter */
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5664 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5665 ir.dflag = 2;
5666 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5667 return -1;
5668 break;
5669
5670 case 0xc9: /* leave */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5673 break;
5674
5675 case 0x07: /* pop es */
5676 if (ir.regmap[X86_RECORD_R8_REGNUM])
5677 {
5678 ir.addr -= 1;
5679 goto no_support;
5680 }
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5684 break;
5685
5686 case 0x17: /* pop ss */
5687 if (ir.regmap[X86_RECORD_R8_REGNUM])
5688 {
5689 ir.addr -= 1;
5690 goto no_support;
5691 }
5692 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5693 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5694 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5695 break;
5696
5697 case 0x1f: /* pop ds */
5698 if (ir.regmap[X86_RECORD_R8_REGNUM])
5699 {
5700 ir.addr -= 1;
5701 goto no_support;
5702 }
5703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5704 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5705 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5706 break;
5707
5708 case 0x0fa1: /* pop fs */
5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5710 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5711 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5712 break;
5713
5714 case 0x0fa9: /* pop gs */
5715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5718 break;
5719
5720 case 0x88: /* mov */
5721 case 0x89:
5722 case 0xc6:
5723 case 0xc7:
5724 if ((opcode & 1) == 0)
5725 ir.ot = OT_BYTE;
5726 else
5727 ir.ot = ir.dflag + OT_WORD;
5728
5729 if (i386_record_modrm (&ir))
5730 return -1;
5731
5732 if (ir.mod != 3)
5733 {
5734 if (opcode == 0xc6 || opcode == 0xc7)
5735 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5736 if (i386_record_lea_modrm (&ir))
5737 return -1;
5738 }
5739 else
5740 {
5741 if (opcode == 0xc6 || opcode == 0xc7)
5742 ir.rm |= ir.rex_b;
5743 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5744 ir.rm &= 0x3;
5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5746 }
5747 break;
5748
5749 case 0x8a: /* mov */
5750 case 0x8b:
5751 if ((opcode & 1) == 0)
5752 ir.ot = OT_BYTE;
5753 else
5754 ir.ot = ir.dflag + OT_WORD;
5755 if (i386_record_modrm (&ir))
5756 return -1;
5757 ir.reg |= rex_r;
5758 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5759 ir.reg &= 0x3;
5760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5761 break;
5762
5763 case 0x8c: /* mov seg */
5764 if (i386_record_modrm (&ir))
5765 return -1;
5766 if (ir.reg > 5)
5767 {
5768 ir.addr -= 2;
5769 opcode = opcode << 8 | ir.modrm;
5770 goto no_support;
5771 }
5772
5773 if (ir.mod == 3)
5774 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5775 else
5776 {
5777 ir.ot = OT_WORD;
5778 if (i386_record_lea_modrm (&ir))
5779 return -1;
5780 }
5781 break;
5782
5783 case 0x8e: /* mov seg */
5784 if (i386_record_modrm (&ir))
5785 return -1;
5786 switch (ir.reg)
5787 {
5788 case 0:
5789 regnum = X86_RECORD_ES_REGNUM;
5790 break;
5791 case 2:
5792 regnum = X86_RECORD_SS_REGNUM;
5793 break;
5794 case 3:
5795 regnum = X86_RECORD_DS_REGNUM;
5796 break;
5797 case 4:
5798 regnum = X86_RECORD_FS_REGNUM;
5799 break;
5800 case 5:
5801 regnum = X86_RECORD_GS_REGNUM;
5802 break;
5803 default:
5804 ir.addr -= 2;
5805 opcode = opcode << 8 | ir.modrm;
5806 goto no_support;
5807 break;
5808 }
5809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5810 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5811 break;
5812
5813 case 0x0fb6: /* movzbS */
5814 case 0x0fb7: /* movzwS */
5815 case 0x0fbe: /* movsbS */
5816 case 0x0fbf: /* movswS */
5817 if (i386_record_modrm (&ir))
5818 return -1;
5819 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5820 break;
5821
5822 case 0x8d: /* lea */
5823 if (i386_record_modrm (&ir))
5824 return -1;
5825 if (ir.mod == 3)
5826 {
5827 ir.addr -= 2;
5828 opcode = opcode << 8 | ir.modrm;
5829 goto no_support;
5830 }
5831 ir.ot = ir.dflag;
5832 ir.reg |= rex_r;
5833 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5834 ir.reg &= 0x3;
5835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5836 break;
5837
5838 case 0xa0: /* mov EAX */
5839 case 0xa1:
5840
5841 case 0xd7: /* xlat */
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5843 break;
5844
5845 case 0xa2: /* mov EAX */
5846 case 0xa3:
5847 if (ir.override >= 0)
5848 {
5849 if (record_full_memory_query)
5850 {
5851 if (yquery (_("\
5852 Process record ignores the memory change of instruction at address %s\n\
5853 because it can't get the value of the segment register.\n\
5854 Do you want to stop the program?"),
5855 paddress (gdbarch, ir.orig_addr)))
5856 return -1;
5857 }
5858 }
5859 else
5860 {
5861 if ((opcode & 1) == 0)
5862 ir.ot = OT_BYTE;
5863 else
5864 ir.ot = ir.dflag + OT_WORD;
5865 if (ir.aflag == 2)
5866 {
5867 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5868 return -1;
5869 ir.addr += 8;
5870 addr = extract_unsigned_integer (buf, 8, byte_order);
5871 }
5872 else if (ir.aflag)
5873 {
5874 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5875 return -1;
5876 ir.addr += 4;
5877 addr = extract_unsigned_integer (buf, 4, byte_order);
5878 }
5879 else
5880 {
5881 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5882 return -1;
5883 ir.addr += 2;
5884 addr = extract_unsigned_integer (buf, 2, byte_order);
5885 }
5886 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5887 return -1;
5888 }
5889 break;
5890
5891 case 0xb0: /* mov R, Ib */
5892 case 0xb1:
5893 case 0xb2:
5894 case 0xb3:
5895 case 0xb4:
5896 case 0xb5:
5897 case 0xb6:
5898 case 0xb7:
5899 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5900 ? ((opcode & 0x7) | ir.rex_b)
5901 : ((opcode & 0x7) & 0x3));
5902 break;
5903
5904 case 0xb8: /* mov R, Iv */
5905 case 0xb9:
5906 case 0xba:
5907 case 0xbb:
5908 case 0xbc:
5909 case 0xbd:
5910 case 0xbe:
5911 case 0xbf:
5912 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5913 break;
5914
5915 case 0x91: /* xchg R, EAX */
5916 case 0x92:
5917 case 0x93:
5918 case 0x94:
5919 case 0x95:
5920 case 0x96:
5921 case 0x97:
5922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5924 break;
5925
5926 case 0x86: /* xchg Ev, Gv */
5927 case 0x87:
5928 if ((opcode & 1) == 0)
5929 ir.ot = OT_BYTE;
5930 else
5931 ir.ot = ir.dflag + OT_WORD;
5932 if (i386_record_modrm (&ir))
5933 return -1;
5934 if (ir.mod == 3)
5935 {
5936 ir.rm |= ir.rex_b;
5937 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5938 ir.rm &= 0x3;
5939 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5940 }
5941 else
5942 {
5943 if (i386_record_lea_modrm (&ir))
5944 return -1;
5945 }
5946 ir.reg |= rex_r;
5947 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5948 ir.reg &= 0x3;
5949 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5950 break;
5951
5952 case 0xc4: /* les Gv */
5953 case 0xc5: /* lds Gv */
5954 if (ir.regmap[X86_RECORD_R8_REGNUM])
5955 {
5956 ir.addr -= 1;
5957 goto no_support;
5958 }
5959 /* FALLTHROUGH */
5960 case 0x0fb2: /* lss Gv */
5961 case 0x0fb4: /* lfs Gv */
5962 case 0x0fb5: /* lgs Gv */
5963 if (i386_record_modrm (&ir))
5964 return -1;
5965 if (ir.mod == 3)
5966 {
5967 if (opcode > 0xff)
5968 ir.addr -= 3;
5969 else
5970 ir.addr -= 2;
5971 opcode = opcode << 8 | ir.modrm;
5972 goto no_support;
5973 }
5974 switch (opcode)
5975 {
5976 case 0xc4: /* les Gv */
5977 regnum = X86_RECORD_ES_REGNUM;
5978 break;
5979 case 0xc5: /* lds Gv */
5980 regnum = X86_RECORD_DS_REGNUM;
5981 break;
5982 case 0x0fb2: /* lss Gv */
5983 regnum = X86_RECORD_SS_REGNUM;
5984 break;
5985 case 0x0fb4: /* lfs Gv */
5986 regnum = X86_RECORD_FS_REGNUM;
5987 break;
5988 case 0x0fb5: /* lgs Gv */
5989 regnum = X86_RECORD_GS_REGNUM;
5990 break;
5991 }
5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0xc0: /* shifts */
5998 case 0xc1:
5999 case 0xd0:
6000 case 0xd1:
6001 case 0xd2:
6002 case 0xd3:
6003 if ((opcode & 1) == 0)
6004 ir.ot = OT_BYTE;
6005 else
6006 ir.ot = ir.dflag + OT_WORD;
6007 if (i386_record_modrm (&ir))
6008 return -1;
6009 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
6010 {
6011 if (i386_record_lea_modrm (&ir))
6012 return -1;
6013 }
6014 else
6015 {
6016 ir.rm |= ir.rex_b;
6017 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
6018 ir.rm &= 0x3;
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
6020 }
6021 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6022 break;
6023
6024 case 0x0fa4:
6025 case 0x0fa5:
6026 case 0x0fac:
6027 case 0x0fad:
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if (ir.mod == 3)
6031 {
6032 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
6033 return -1;
6034 }
6035 else
6036 {
6037 if (i386_record_lea_modrm (&ir))
6038 return -1;
6039 }
6040 break;
6041
6042 case 0xd8: /* Floats. */
6043 case 0xd9:
6044 case 0xda:
6045 case 0xdb:
6046 case 0xdc:
6047 case 0xdd:
6048 case 0xde:
6049 case 0xdf:
6050 if (i386_record_modrm (&ir))
6051 return -1;
6052 ir.reg |= ((opcode & 7) << 3);
6053 if (ir.mod != 3)
6054 {
6055 /* Memory. */
6056 uint64_t addr64;
6057
6058 if (i386_record_lea_modrm_addr (&ir, &addr64))
6059 return -1;
6060 switch (ir.reg)
6061 {
6062 case 0x02:
6063 case 0x12:
6064 case 0x22:
6065 case 0x32:
6066 /* For fcom, ficom nothing to do. */
6067 break;
6068 case 0x03:
6069 case 0x13:
6070 case 0x23:
6071 case 0x33:
6072 /* For fcomp, ficomp pop FPU stack, store all. */
6073 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6074 return -1;
6075 break;
6076 case 0x00:
6077 case 0x01:
6078 case 0x04:
6079 case 0x05:
6080 case 0x06:
6081 case 0x07:
6082 case 0x10:
6083 case 0x11:
6084 case 0x14:
6085 case 0x15:
6086 case 0x16:
6087 case 0x17:
6088 case 0x20:
6089 case 0x21:
6090 case 0x24:
6091 case 0x25:
6092 case 0x26:
6093 case 0x27:
6094 case 0x30:
6095 case 0x31:
6096 case 0x34:
6097 case 0x35:
6098 case 0x36:
6099 case 0x37:
6100 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6101 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6102 of code, always affects st(0) register. */
6103 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6104 return -1;
6105 break;
6106 case 0x08:
6107 case 0x0a:
6108 case 0x0b:
6109 case 0x18:
6110 case 0x19:
6111 case 0x1a:
6112 case 0x1b:
6113 case 0x1d:
6114 case 0x28:
6115 case 0x29:
6116 case 0x2a:
6117 case 0x2b:
6118 case 0x38:
6119 case 0x39:
6120 case 0x3a:
6121 case 0x3b:
6122 case 0x3c:
6123 case 0x3d:
6124 switch (ir.reg & 7)
6125 {
6126 case 0:
6127 /* Handling fld, fild. */
6128 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6129 return -1;
6130 break;
6131 case 1:
6132 switch (ir.reg >> 4)
6133 {
6134 case 0:
6135 if (record_full_arch_list_add_mem (addr64, 4))
6136 return -1;
6137 break;
6138 case 2:
6139 if (record_full_arch_list_add_mem (addr64, 8))
6140 return -1;
6141 break;
6142 case 3:
6143 break;
6144 default:
6145 if (record_full_arch_list_add_mem (addr64, 2))
6146 return -1;
6147 break;
6148 }
6149 break;
6150 default:
6151 switch (ir.reg >> 4)
6152 {
6153 case 0:
6154 if (record_full_arch_list_add_mem (addr64, 4))
6155 return -1;
6156 if (3 == (ir.reg & 7))
6157 {
6158 /* For fstp m32fp. */
6159 if (i386_record_floats (gdbarch, &ir,
6160 I386_SAVE_FPU_REGS))
6161 return -1;
6162 }
6163 break;
6164 case 1:
6165 if (record_full_arch_list_add_mem (addr64, 4))
6166 return -1;
6167 if ((3 == (ir.reg & 7))
6168 || (5 == (ir.reg & 7))
6169 || (7 == (ir.reg & 7)))
6170 {
6171 /* For fstp insn. */
6172 if (i386_record_floats (gdbarch, &ir,
6173 I386_SAVE_FPU_REGS))
6174 return -1;
6175 }
6176 break;
6177 case 2:
6178 if (record_full_arch_list_add_mem (addr64, 8))
6179 return -1;
6180 if (3 == (ir.reg & 7))
6181 {
6182 /* For fstp m64fp. */
6183 if (i386_record_floats (gdbarch, &ir,
6184 I386_SAVE_FPU_REGS))
6185 return -1;
6186 }
6187 break;
6188 case 3:
6189 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6190 {
6191 /* For fistp, fbld, fild, fbstp. */
6192 if (i386_record_floats (gdbarch, &ir,
6193 I386_SAVE_FPU_REGS))
6194 return -1;
6195 }
6196 /* Fall through */
6197 default:
6198 if (record_full_arch_list_add_mem (addr64, 2))
6199 return -1;
6200 break;
6201 }
6202 break;
6203 }
6204 break;
6205 case 0x0c:
6206 /* Insn fldenv. */
6207 if (i386_record_floats (gdbarch, &ir,
6208 I386_SAVE_FPU_ENV_REG_STACK))
6209 return -1;
6210 break;
6211 case 0x0d:
6212 /* Insn fldcw. */
6213 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6214 return -1;
6215 break;
6216 case 0x2c:
6217 /* Insn frstor. */
6218 if (i386_record_floats (gdbarch, &ir,
6219 I386_SAVE_FPU_ENV_REG_STACK))
6220 return -1;
6221 break;
6222 case 0x0e:
6223 if (ir.dflag)
6224 {
6225 if (record_full_arch_list_add_mem (addr64, 28))
6226 return -1;
6227 }
6228 else
6229 {
6230 if (record_full_arch_list_add_mem (addr64, 14))
6231 return -1;
6232 }
6233 break;
6234 case 0x0f:
6235 case 0x2f:
6236 if (record_full_arch_list_add_mem (addr64, 2))
6237 return -1;
6238 /* Insn fstp, fbstp. */
6239 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6240 return -1;
6241 break;
6242 case 0x1f:
6243 case 0x3e:
6244 if (record_full_arch_list_add_mem (addr64, 10))
6245 return -1;
6246 break;
6247 case 0x2e:
6248 if (ir.dflag)
6249 {
6250 if (record_full_arch_list_add_mem (addr64, 28))
6251 return -1;
6252 addr64 += 28;
6253 }
6254 else
6255 {
6256 if (record_full_arch_list_add_mem (addr64, 14))
6257 return -1;
6258 addr64 += 14;
6259 }
6260 if (record_full_arch_list_add_mem (addr64, 80))
6261 return -1;
6262 /* Insn fsave. */
6263 if (i386_record_floats (gdbarch, &ir,
6264 I386_SAVE_FPU_ENV_REG_STACK))
6265 return -1;
6266 break;
6267 case 0x3f:
6268 if (record_full_arch_list_add_mem (addr64, 8))
6269 return -1;
6270 /* Insn fistp. */
6271 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6272 return -1;
6273 break;
6274 default:
6275 ir.addr -= 2;
6276 opcode = opcode << 8 | ir.modrm;
6277 goto no_support;
6278 break;
6279 }
6280 }
6281 /* Opcode is an extension of modR/M byte. */
6282 else
6283 {
6284 switch (opcode)
6285 {
6286 case 0xd8:
6287 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6288 return -1;
6289 break;
6290 case 0xd9:
6291 if (0x0c == (ir.modrm >> 4))
6292 {
6293 if ((ir.modrm & 0x0f) <= 7)
6294 {
6295 if (i386_record_floats (gdbarch, &ir,
6296 I386_SAVE_FPU_REGS))
6297 return -1;
6298 }
6299 else
6300 {
6301 if (i386_record_floats (gdbarch, &ir,
6302 I387_ST0_REGNUM (tdep)))
6303 return -1;
6304 /* If only st(0) is changing, then we have already
6305 recorded. */
6306 if ((ir.modrm & 0x0f) - 0x08)
6307 {
6308 if (i386_record_floats (gdbarch, &ir,
6309 I387_ST0_REGNUM (tdep) +
6310 ((ir.modrm & 0x0f) - 0x08)))
6311 return -1;
6312 }
6313 }
6314 }
6315 else
6316 {
6317 switch (ir.modrm)
6318 {
6319 case 0xe0:
6320 case 0xe1:
6321 case 0xf0:
6322 case 0xf5:
6323 case 0xf8:
6324 case 0xfa:
6325 case 0xfc:
6326 case 0xfe:
6327 case 0xff:
6328 if (i386_record_floats (gdbarch, &ir,
6329 I387_ST0_REGNUM (tdep)))
6330 return -1;
6331 break;
6332 case 0xf1:
6333 case 0xf2:
6334 case 0xf3:
6335 case 0xf4:
6336 case 0xf6:
6337 case 0xf7:
6338 case 0xe8:
6339 case 0xe9:
6340 case 0xea:
6341 case 0xeb:
6342 case 0xec:
6343 case 0xed:
6344 case 0xee:
6345 case 0xf9:
6346 case 0xfb:
6347 if (i386_record_floats (gdbarch, &ir,
6348 I386_SAVE_FPU_REGS))
6349 return -1;
6350 break;
6351 case 0xfd:
6352 if (i386_record_floats (gdbarch, &ir,
6353 I387_ST0_REGNUM (tdep)))
6354 return -1;
6355 if (i386_record_floats (gdbarch, &ir,
6356 I387_ST0_REGNUM (tdep) + 1))
6357 return -1;
6358 break;
6359 }
6360 }
6361 break;
6362 case 0xda:
6363 if (0xe9 == ir.modrm)
6364 {
6365 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6366 return -1;
6367 }
6368 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6369 {
6370 if (i386_record_floats (gdbarch, &ir,
6371 I387_ST0_REGNUM (tdep)))
6372 return -1;
6373 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6374 {
6375 if (i386_record_floats (gdbarch, &ir,
6376 I387_ST0_REGNUM (tdep) +
6377 (ir.modrm & 0x0f)))
6378 return -1;
6379 }
6380 else if ((ir.modrm & 0x0f) - 0x08)
6381 {
6382 if (i386_record_floats (gdbarch, &ir,
6383 I387_ST0_REGNUM (tdep) +
6384 ((ir.modrm & 0x0f) - 0x08)))
6385 return -1;
6386 }
6387 }
6388 break;
6389 case 0xdb:
6390 if (0xe3 == ir.modrm)
6391 {
6392 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6393 return -1;
6394 }
6395 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6396 {
6397 if (i386_record_floats (gdbarch, &ir,
6398 I387_ST0_REGNUM (tdep)))
6399 return -1;
6400 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_ST0_REGNUM (tdep) +
6404 (ir.modrm & 0x0f)))
6405 return -1;
6406 }
6407 else if ((ir.modrm & 0x0f) - 0x08)
6408 {
6409 if (i386_record_floats (gdbarch, &ir,
6410 I387_ST0_REGNUM (tdep) +
6411 ((ir.modrm & 0x0f) - 0x08)))
6412 return -1;
6413 }
6414 }
6415 break;
6416 case 0xdc:
6417 if ((0x0c == ir.modrm >> 4)
6418 || (0x0d == ir.modrm >> 4)
6419 || (0x0f == ir.modrm >> 4))
6420 {
6421 if ((ir.modrm & 0x0f) <= 7)
6422 {
6423 if (i386_record_floats (gdbarch, &ir,
6424 I387_ST0_REGNUM (tdep) +
6425 (ir.modrm & 0x0f)))
6426 return -1;
6427 }
6428 else
6429 {
6430 if (i386_record_floats (gdbarch, &ir,
6431 I387_ST0_REGNUM (tdep) +
6432 ((ir.modrm & 0x0f) - 0x08)))
6433 return -1;
6434 }
6435 }
6436 break;
6437 case 0xdd:
6438 if (0x0c == ir.modrm >> 4)
6439 {
6440 if (i386_record_floats (gdbarch, &ir,
6441 I387_FTAG_REGNUM (tdep)))
6442 return -1;
6443 }
6444 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6445 {
6446 if ((ir.modrm & 0x0f) <= 7)
6447 {
6448 if (i386_record_floats (gdbarch, &ir,
6449 I387_ST0_REGNUM (tdep) +
6450 (ir.modrm & 0x0f)))
6451 return -1;
6452 }
6453 else
6454 {
6455 if (i386_record_floats (gdbarch, &ir,
6456 I386_SAVE_FPU_REGS))
6457 return -1;
6458 }
6459 }
6460 break;
6461 case 0xde:
6462 if ((0x0c == ir.modrm >> 4)
6463 || (0x0e == ir.modrm >> 4)
6464 || (0x0f == ir.modrm >> 4)
6465 || (0xd9 == ir.modrm))
6466 {
6467 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6468 return -1;
6469 }
6470 break;
6471 case 0xdf:
6472 if (0xe0 == ir.modrm)
6473 {
6474 if (record_full_arch_list_add_reg (ir.regcache,
6475 I386_EAX_REGNUM))
6476 return -1;
6477 }
6478 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6479 {
6480 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6481 return -1;
6482 }
6483 break;
6484 }
6485 }
6486 break;
6487 /* string ops */
6488 case 0xa4: /* movsS */
6489 case 0xa5:
6490 case 0xaa: /* stosS */
6491 case 0xab:
6492 case 0x6c: /* insS */
6493 case 0x6d:
6494 regcache_raw_read_unsigned (ir.regcache,
6495 ir.regmap[X86_RECORD_RECX_REGNUM],
6496 &addr);
6497 if (addr)
6498 {
6499 ULONGEST es, ds;
6500
6501 if ((opcode & 1) == 0)
6502 ir.ot = OT_BYTE;
6503 else
6504 ir.ot = ir.dflag + OT_WORD;
6505 regcache_raw_read_unsigned (ir.regcache,
6506 ir.regmap[X86_RECORD_REDI_REGNUM],
6507 &addr);
6508
6509 regcache_raw_read_unsigned (ir.regcache,
6510 ir.regmap[X86_RECORD_ES_REGNUM],
6511 &es);
6512 regcache_raw_read_unsigned (ir.regcache,
6513 ir.regmap[X86_RECORD_DS_REGNUM],
6514 &ds);
6515 if (ir.aflag && (es != ds))
6516 {
6517 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6518 if (record_full_memory_query)
6519 {
6520 if (yquery (_("\
6521 Process record ignores the memory change of instruction at address %s\n\
6522 because it can't get the value of the segment register.\n\
6523 Do you want to stop the program?"),
6524 paddress (gdbarch, ir.orig_addr)))
6525 return -1;
6526 }
6527 }
6528 else
6529 {
6530 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6531 return -1;
6532 }
6533
6534 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6536 if (opcode == 0xa4 || opcode == 0xa5)
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6539 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6540 }
6541 break;
6542
6543 case 0xa6: /* cmpsS */
6544 case 0xa7:
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6546 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6547 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6550 break;
6551
6552 case 0xac: /* lodsS */
6553 case 0xad:
6554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6556 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6558 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6559 break;
6560
6561 case 0xae: /* scasS */
6562 case 0xaf:
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6564 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6567 break;
6568
6569 case 0x6e: /* outsS */
6570 case 0x6f:
6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6572 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6575 break;
6576
6577 case 0xe4: /* port I/O */
6578 case 0xe5:
6579 case 0xec:
6580 case 0xed:
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6583 break;
6584
6585 case 0xe6:
6586 case 0xe7:
6587 case 0xee:
6588 case 0xef:
6589 break;
6590
6591 /* control */
6592 case 0xc2: /* ret im */
6593 case 0xc3: /* ret */
6594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6596 break;
6597
6598 case 0xca: /* lret im */
6599 case 0xcb: /* lret */
6600 case 0xcf: /* iret */
6601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6602 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6604 break;
6605
6606 case 0xe8: /* call im */
6607 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6608 ir.dflag = 2;
6609 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6610 return -1;
6611 break;
6612
6613 case 0x9a: /* lcall im */
6614 if (ir.regmap[X86_RECORD_R8_REGNUM])
6615 {
6616 ir.addr -= 1;
6617 goto no_support;
6618 }
6619 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 return -1;
6622 break;
6623
6624 case 0xe9: /* jmp im */
6625 case 0xea: /* ljmp im */
6626 case 0xeb: /* jmp Jb */
6627 case 0x70: /* jcc Jb */
6628 case 0x71:
6629 case 0x72:
6630 case 0x73:
6631 case 0x74:
6632 case 0x75:
6633 case 0x76:
6634 case 0x77:
6635 case 0x78:
6636 case 0x79:
6637 case 0x7a:
6638 case 0x7b:
6639 case 0x7c:
6640 case 0x7d:
6641 case 0x7e:
6642 case 0x7f:
6643 case 0x0f80: /* jcc Jv */
6644 case 0x0f81:
6645 case 0x0f82:
6646 case 0x0f83:
6647 case 0x0f84:
6648 case 0x0f85:
6649 case 0x0f86:
6650 case 0x0f87:
6651 case 0x0f88:
6652 case 0x0f89:
6653 case 0x0f8a:
6654 case 0x0f8b:
6655 case 0x0f8c:
6656 case 0x0f8d:
6657 case 0x0f8e:
6658 case 0x0f8f:
6659 break;
6660
6661 case 0x0f90: /* setcc Gv */
6662 case 0x0f91:
6663 case 0x0f92:
6664 case 0x0f93:
6665 case 0x0f94:
6666 case 0x0f95:
6667 case 0x0f96:
6668 case 0x0f97:
6669 case 0x0f98:
6670 case 0x0f99:
6671 case 0x0f9a:
6672 case 0x0f9b:
6673 case 0x0f9c:
6674 case 0x0f9d:
6675 case 0x0f9e:
6676 case 0x0f9f:
6677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6678 ir.ot = OT_BYTE;
6679 if (i386_record_modrm (&ir))
6680 return -1;
6681 if (ir.mod == 3)
6682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6683 : (ir.rm & 0x3));
6684 else
6685 {
6686 if (i386_record_lea_modrm (&ir))
6687 return -1;
6688 }
6689 break;
6690
6691 case 0x0f40: /* cmov Gv, Ev */
6692 case 0x0f41:
6693 case 0x0f42:
6694 case 0x0f43:
6695 case 0x0f44:
6696 case 0x0f45:
6697 case 0x0f46:
6698 case 0x0f47:
6699 case 0x0f48:
6700 case 0x0f49:
6701 case 0x0f4a:
6702 case 0x0f4b:
6703 case 0x0f4c:
6704 case 0x0f4d:
6705 case 0x0f4e:
6706 case 0x0f4f:
6707 if (i386_record_modrm (&ir))
6708 return -1;
6709 ir.reg |= rex_r;
6710 if (ir.dflag == OT_BYTE)
6711 ir.reg &= 0x3;
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6713 break;
6714
6715 /* flags */
6716 case 0x9c: /* pushf */
6717 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6718 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6719 ir.dflag = 2;
6720 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6721 return -1;
6722 break;
6723
6724 case 0x9d: /* popf */
6725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6726 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6727 break;
6728
6729 case 0x9e: /* sahf */
6730 if (ir.regmap[X86_RECORD_R8_REGNUM])
6731 {
6732 ir.addr -= 1;
6733 goto no_support;
6734 }
6735 /* FALLTHROUGH */
6736 case 0xf5: /* cmc */
6737 case 0xf8: /* clc */
6738 case 0xf9: /* stc */
6739 case 0xfc: /* cld */
6740 case 0xfd: /* std */
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6742 break;
6743
6744 case 0x9f: /* lahf */
6745 if (ir.regmap[X86_RECORD_R8_REGNUM])
6746 {
6747 ir.addr -= 1;
6748 goto no_support;
6749 }
6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6752 break;
6753
6754 /* bit operations */
6755 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.reg < 4)
6760 {
6761 ir.addr -= 2;
6762 opcode = opcode << 8 | ir.modrm;
6763 goto no_support;
6764 }
6765 if (ir.reg != 4)
6766 {
6767 if (ir.mod == 3)
6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6769 else
6770 {
6771 if (i386_record_lea_modrm (&ir))
6772 return -1;
6773 }
6774 }
6775 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6776 break;
6777
6778 case 0x0fa3: /* bt Gv, Ev */
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6780 break;
6781
6782 case 0x0fab: /* bts */
6783 case 0x0fb3: /* btr */
6784 case 0x0fbb: /* btc */
6785 ir.ot = ir.dflag + OT_WORD;
6786 if (i386_record_modrm (&ir))
6787 return -1;
6788 if (ir.mod == 3)
6789 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6790 else
6791 {
6792 uint64_t addr64;
6793 if (i386_record_lea_modrm_addr (&ir, &addr64))
6794 return -1;
6795 regcache_raw_read_unsigned (ir.regcache,
6796 ir.regmap[ir.reg | rex_r],
6797 &addr);
6798 switch (ir.dflag)
6799 {
6800 case 0:
6801 addr64 += ((int16_t) addr >> 4) << 4;
6802 break;
6803 case 1:
6804 addr64 += ((int32_t) addr >> 5) << 5;
6805 break;
6806 case 2:
6807 addr64 += ((int64_t) addr >> 6) << 6;
6808 break;
6809 }
6810 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6811 return -1;
6812 if (i386_record_lea_modrm (&ir))
6813 return -1;
6814 }
6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6816 break;
6817
6818 case 0x0fbc: /* bsf */
6819 case 0x0fbd: /* bsr */
6820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6821 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6822 break;
6823
6824 /* bcd */
6825 case 0x27: /* daa */
6826 case 0x2f: /* das */
6827 case 0x37: /* aaa */
6828 case 0x3f: /* aas */
6829 case 0xd4: /* aam */
6830 case 0xd5: /* aad */
6831 if (ir.regmap[X86_RECORD_R8_REGNUM])
6832 {
6833 ir.addr -= 1;
6834 goto no_support;
6835 }
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6838 break;
6839
6840 /* misc */
6841 case 0x90: /* nop */
6842 if (prefixes & PREFIX_LOCK)
6843 {
6844 ir.addr -= 1;
6845 goto no_support;
6846 }
6847 break;
6848
6849 case 0x9b: /* fwait */
6850 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6851 return -1;
6852 opcode = (uint32_t) opcode8;
6853 ir.addr++;
6854 goto reswitch;
6855 break;
6856
6857 /* XXX */
6858 case 0xcc: /* int3 */
6859 printf_unfiltered (_("Process record does not support instruction "
6860 "int3.\n"));
6861 ir.addr -= 1;
6862 goto no_support;
6863 break;
6864
6865 /* XXX */
6866 case 0xcd: /* int */
6867 {
6868 int ret;
6869 uint8_t interrupt;
6870 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6871 return -1;
6872 ir.addr++;
6873 if (interrupt != 0x80
6874 || tdep->i386_intx80_record == NULL)
6875 {
6876 printf_unfiltered (_("Process record does not support "
6877 "instruction int 0x%02x.\n"),
6878 interrupt);
6879 ir.addr -= 2;
6880 goto no_support;
6881 }
6882 ret = tdep->i386_intx80_record (ir.regcache);
6883 if (ret)
6884 return ret;
6885 }
6886 break;
6887
6888 /* XXX */
6889 case 0xce: /* into */
6890 printf_unfiltered (_("Process record does not support "
6891 "instruction into.\n"));
6892 ir.addr -= 1;
6893 goto no_support;
6894 break;
6895
6896 case 0xfa: /* cli */
6897 case 0xfb: /* sti */
6898 break;
6899
6900 case 0x62: /* bound */
6901 printf_unfiltered (_("Process record does not support "
6902 "instruction bound.\n"));
6903 ir.addr -= 1;
6904 goto no_support;
6905 break;
6906
6907 case 0x0fc8: /* bswap reg */
6908 case 0x0fc9:
6909 case 0x0fca:
6910 case 0x0fcb:
6911 case 0x0fcc:
6912 case 0x0fcd:
6913 case 0x0fce:
6914 case 0x0fcf:
6915 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6916 break;
6917
6918 case 0xd6: /* salc */
6919 if (ir.regmap[X86_RECORD_R8_REGNUM])
6920 {
6921 ir.addr -= 1;
6922 goto no_support;
6923 }
6924 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6925 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6926 break;
6927
6928 case 0xe0: /* loopnz */
6929 case 0xe1: /* loopz */
6930 case 0xe2: /* loop */
6931 case 0xe3: /* jecxz */
6932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6933 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6934 break;
6935
6936 case 0x0f30: /* wrmsr */
6937 printf_unfiltered (_("Process record does not support "
6938 "instruction wrmsr.\n"));
6939 ir.addr -= 2;
6940 goto no_support;
6941 break;
6942
6943 case 0x0f32: /* rdmsr */
6944 printf_unfiltered (_("Process record does not support "
6945 "instruction rdmsr.\n"));
6946 ir.addr -= 2;
6947 goto no_support;
6948 break;
6949
6950 case 0x0f31: /* rdtsc */
6951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6952 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6953 break;
6954
6955 case 0x0f34: /* sysenter */
6956 {
6957 int ret;
6958 if (ir.regmap[X86_RECORD_R8_REGNUM])
6959 {
6960 ir.addr -= 2;
6961 goto no_support;
6962 }
6963 if (tdep->i386_sysenter_record == NULL)
6964 {
6965 printf_unfiltered (_("Process record does not support "
6966 "instruction sysenter.\n"));
6967 ir.addr -= 2;
6968 goto no_support;
6969 }
6970 ret = tdep->i386_sysenter_record (ir.regcache);
6971 if (ret)
6972 return ret;
6973 }
6974 break;
6975
6976 case 0x0f35: /* sysexit */
6977 printf_unfiltered (_("Process record does not support "
6978 "instruction sysexit.\n"));
6979 ir.addr -= 2;
6980 goto no_support;
6981 break;
6982
6983 case 0x0f05: /* syscall */
6984 {
6985 int ret;
6986 if (tdep->i386_syscall_record == NULL)
6987 {
6988 printf_unfiltered (_("Process record does not support "
6989 "instruction syscall.\n"));
6990 ir.addr -= 2;
6991 goto no_support;
6992 }
6993 ret = tdep->i386_syscall_record (ir.regcache);
6994 if (ret)
6995 return ret;
6996 }
6997 break;
6998
6999 case 0x0f07: /* sysret */
7000 printf_unfiltered (_("Process record does not support "
7001 "instruction sysret.\n"));
7002 ir.addr -= 2;
7003 goto no_support;
7004 break;
7005
7006 case 0x0fa2: /* cpuid */
7007 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7009 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7011 break;
7012
7013 case 0xf4: /* hlt */
7014 printf_unfiltered (_("Process record does not support "
7015 "instruction hlt.\n"));
7016 ir.addr -= 1;
7017 goto no_support;
7018 break;
7019
7020 case 0x0f00:
7021 if (i386_record_modrm (&ir))
7022 return -1;
7023 switch (ir.reg)
7024 {
7025 case 0: /* sldt */
7026 case 1: /* str */
7027 if (ir.mod == 3)
7028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7029 else
7030 {
7031 ir.ot = OT_WORD;
7032 if (i386_record_lea_modrm (&ir))
7033 return -1;
7034 }
7035 break;
7036 case 2: /* lldt */
7037 case 3: /* ltr */
7038 break;
7039 case 4: /* verr */
7040 case 5: /* verw */
7041 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7042 break;
7043 default:
7044 ir.addr -= 3;
7045 opcode = opcode << 8 | ir.modrm;
7046 goto no_support;
7047 break;
7048 }
7049 break;
7050
7051 case 0x0f01:
7052 if (i386_record_modrm (&ir))
7053 return -1;
7054 switch (ir.reg)
7055 {
7056 case 0: /* sgdt */
7057 {
7058 uint64_t addr64;
7059
7060 if (ir.mod == 3)
7061 {
7062 ir.addr -= 3;
7063 opcode = opcode << 8 | ir.modrm;
7064 goto no_support;
7065 }
7066 if (ir.override >= 0)
7067 {
7068 if (record_full_memory_query)
7069 {
7070 if (yquery (_("\
7071 Process record ignores the memory change of instruction at address %s\n\
7072 because it can't get the value of the segment register.\n\
7073 Do you want to stop the program?"),
7074 paddress (gdbarch, ir.orig_addr)))
7075 return -1;
7076 }
7077 }
7078 else
7079 {
7080 if (i386_record_lea_modrm_addr (&ir, &addr64))
7081 return -1;
7082 if (record_full_arch_list_add_mem (addr64, 2))
7083 return -1;
7084 addr64 += 2;
7085 if (ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
7087 if (record_full_arch_list_add_mem (addr64, 8))
7088 return -1;
7089 }
7090 else
7091 {
7092 if (record_full_arch_list_add_mem (addr64, 4))
7093 return -1;
7094 }
7095 }
7096 }
7097 break;
7098 case 1:
7099 if (ir.mod == 3)
7100 {
7101 switch (ir.rm)
7102 {
7103 case 0: /* monitor */
7104 break;
7105 case 1: /* mwait */
7106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7107 break;
7108 default:
7109 ir.addr -= 3;
7110 opcode = opcode << 8 | ir.modrm;
7111 goto no_support;
7112 break;
7113 }
7114 }
7115 else
7116 {
7117 /* sidt */
7118 if (ir.override >= 0)
7119 {
7120 if (record_full_memory_query)
7121 {
7122 if (yquery (_("\
7123 Process record ignores the memory change of instruction at address %s\n\
7124 because it can't get the value of the segment register.\n\
7125 Do you want to stop the program?"),
7126 paddress (gdbarch, ir.orig_addr)))
7127 return -1;
7128 }
7129 }
7130 else
7131 {
7132 uint64_t addr64;
7133
7134 if (i386_record_lea_modrm_addr (&ir, &addr64))
7135 return -1;
7136 if (record_full_arch_list_add_mem (addr64, 2))
7137 return -1;
7138 addr64 += 2;
7139 if (ir.regmap[X86_RECORD_R8_REGNUM])
7140 {
7141 if (record_full_arch_list_add_mem (addr64, 8))
7142 return -1;
7143 }
7144 else
7145 {
7146 if (record_full_arch_list_add_mem (addr64, 4))
7147 return -1;
7148 }
7149 }
7150 }
7151 break;
7152 case 2: /* lgdt */
7153 if (ir.mod == 3)
7154 {
7155 /* xgetbv */
7156 if (ir.rm == 0)
7157 {
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7159 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7160 break;
7161 }
7162 /* xsetbv */
7163 else if (ir.rm == 1)
7164 break;
7165 }
7166 /* Fall through. */
7167 case 3: /* lidt */
7168 if (ir.mod == 3)
7169 {
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 }
7174 break;
7175 case 4: /* smsw */
7176 if (ir.mod == 3)
7177 {
7178 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7179 return -1;
7180 }
7181 else
7182 {
7183 ir.ot = OT_WORD;
7184 if (i386_record_lea_modrm (&ir))
7185 return -1;
7186 }
7187 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7188 break;
7189 case 6: /* lmsw */
7190 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7191 break;
7192 case 7: /* invlpg */
7193 if (ir.mod == 3)
7194 {
7195 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7197 else
7198 {
7199 ir.addr -= 3;
7200 opcode = opcode << 8 | ir.modrm;
7201 goto no_support;
7202 }
7203 }
7204 else
7205 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7206 break;
7207 default:
7208 ir.addr -= 3;
7209 opcode = opcode << 8 | ir.modrm;
7210 goto no_support;
7211 break;
7212 }
7213 break;
7214
7215 case 0x0f08: /* invd */
7216 case 0x0f09: /* wbinvd */
7217 break;
7218
7219 case 0x63: /* arpl */
7220 if (i386_record_modrm (&ir))
7221 return -1;
7222 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7223 {
7224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7225 ? (ir.reg | rex_r) : ir.rm);
7226 }
7227 else
7228 {
7229 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7230 if (i386_record_lea_modrm (&ir))
7231 return -1;
7232 }
7233 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7235 break;
7236
7237 case 0x0f02: /* lar */
7238 case 0x0f03: /* lsl */
7239 if (i386_record_modrm (&ir))
7240 return -1;
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7243 break;
7244
7245 case 0x0f18:
7246 if (i386_record_modrm (&ir))
7247 return -1;
7248 if (ir.mod == 3 && ir.reg == 3)
7249 {
7250 ir.addr -= 3;
7251 opcode = opcode << 8 | ir.modrm;
7252 goto no_support;
7253 }
7254 break;
7255
7256 case 0x0f19:
7257 case 0x0f1a:
7258 case 0x0f1b:
7259 case 0x0f1c:
7260 case 0x0f1d:
7261 case 0x0f1e:
7262 case 0x0f1f:
7263 /* nop (multi byte) */
7264 break;
7265
7266 case 0x0f20: /* mov reg, crN */
7267 case 0x0f22: /* mov crN, reg */
7268 if (i386_record_modrm (&ir))
7269 return -1;
7270 if ((ir.modrm & 0xc0) != 0xc0)
7271 {
7272 ir.addr -= 3;
7273 opcode = opcode << 8 | ir.modrm;
7274 goto no_support;
7275 }
7276 switch (ir.reg)
7277 {
7278 case 0:
7279 case 2:
7280 case 3:
7281 case 4:
7282 case 8:
7283 if (opcode & 2)
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 else
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7287 break;
7288 default:
7289 ir.addr -= 3;
7290 opcode = opcode << 8 | ir.modrm;
7291 goto no_support;
7292 break;
7293 }
7294 break;
7295
7296 case 0x0f21: /* mov reg, drN */
7297 case 0x0f23: /* mov drN, reg */
7298 if (i386_record_modrm (&ir))
7299 return -1;
7300 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7301 || ir.reg == 5 || ir.reg >= 8)
7302 {
7303 ir.addr -= 3;
7304 opcode = opcode << 8 | ir.modrm;
7305 goto no_support;
7306 }
7307 if (opcode & 2)
7308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7309 else
7310 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7311 break;
7312
7313 case 0x0f06: /* clts */
7314 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7315 break;
7316
7317 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7318
7319 case 0x0f0d: /* 3DNow! prefetch */
7320 break;
7321
7322 case 0x0f0e: /* 3DNow! femms */
7323 case 0x0f77: /* emms */
7324 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7325 goto no_support;
7326 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7327 break;
7328
7329 case 0x0f0f: /* 3DNow! data */
7330 if (i386_record_modrm (&ir))
7331 return -1;
7332 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7333 return -1;
7334 ir.addr++;
7335 switch (opcode8)
7336 {
7337 case 0x0c: /* 3DNow! pi2fw */
7338 case 0x0d: /* 3DNow! pi2fd */
7339 case 0x1c: /* 3DNow! pf2iw */
7340 case 0x1d: /* 3DNow! pf2id */
7341 case 0x8a: /* 3DNow! pfnacc */
7342 case 0x8e: /* 3DNow! pfpnacc */
7343 case 0x90: /* 3DNow! pfcmpge */
7344 case 0x94: /* 3DNow! pfmin */
7345 case 0x96: /* 3DNow! pfrcp */
7346 case 0x97: /* 3DNow! pfrsqrt */
7347 case 0x9a: /* 3DNow! pfsub */
7348 case 0x9e: /* 3DNow! pfadd */
7349 case 0xa0: /* 3DNow! pfcmpgt */
7350 case 0xa4: /* 3DNow! pfmax */
7351 case 0xa6: /* 3DNow! pfrcpit1 */
7352 case 0xa7: /* 3DNow! pfrsqit1 */
7353 case 0xaa: /* 3DNow! pfsubr */
7354 case 0xae: /* 3DNow! pfacc */
7355 case 0xb0: /* 3DNow! pfcmpeq */
7356 case 0xb4: /* 3DNow! pfmul */
7357 case 0xb6: /* 3DNow! pfrcpit2 */
7358 case 0xb7: /* 3DNow! pmulhrw */
7359 case 0xbb: /* 3DNow! pswapd */
7360 case 0xbf: /* 3DNow! pavgusb */
7361 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7362 goto no_support_3dnow_data;
7363 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7364 break;
7365
7366 default:
7367 no_support_3dnow_data:
7368 opcode = (opcode << 8) | opcode8;
7369 goto no_support;
7370 break;
7371 }
7372 break;
7373
7374 case 0x0faa: /* rsm */
7375 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7376 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7380 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7382 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7384 break;
7385
7386 case 0x0fae:
7387 if (i386_record_modrm (&ir))
7388 return -1;
7389 switch(ir.reg)
7390 {
7391 case 0: /* fxsave */
7392 {
7393 uint64_t tmpu64;
7394
7395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7396 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7397 return -1;
7398 if (record_full_arch_list_add_mem (tmpu64, 512))
7399 return -1;
7400 }
7401 break;
7402
7403 case 1: /* fxrstor */
7404 {
7405 int i;
7406
7407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7408
7409 for (i = I387_MM0_REGNUM (tdep);
7410 i386_mmx_regnum_p (gdbarch, i); i++)
7411 record_full_arch_list_add_reg (ir.regcache, i);
7412
7413 for (i = I387_XMM0_REGNUM (tdep);
7414 i386_xmm_regnum_p (gdbarch, i); i++)
7415 record_full_arch_list_add_reg (ir.regcache, i);
7416
7417 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7418 record_full_arch_list_add_reg (ir.regcache,
7419 I387_MXCSR_REGNUM(tdep));
7420
7421 for (i = I387_ST0_REGNUM (tdep);
7422 i386_fp_regnum_p (gdbarch, i); i++)
7423 record_full_arch_list_add_reg (ir.regcache, i);
7424
7425 for (i = I387_FCTRL_REGNUM (tdep);
7426 i386_fpc_regnum_p (gdbarch, i); i++)
7427 record_full_arch_list_add_reg (ir.regcache, i);
7428 }
7429 break;
7430
7431 case 2: /* ldmxcsr */
7432 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7433 goto no_support;
7434 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7435 break;
7436
7437 case 3: /* stmxcsr */
7438 ir.ot = OT_LONG;
7439 if (i386_record_lea_modrm (&ir))
7440 return -1;
7441 break;
7442
7443 case 5: /* lfence */
7444 case 6: /* mfence */
7445 case 7: /* sfence clflush */
7446 break;
7447
7448 default:
7449 opcode = (opcode << 8) | ir.modrm;
7450 goto no_support;
7451 break;
7452 }
7453 break;
7454
7455 case 0x0fc3: /* movnti */
7456 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7457 if (i386_record_modrm (&ir))
7458 return -1;
7459 if (ir.mod == 3)
7460 goto no_support;
7461 ir.reg |= rex_r;
7462 if (i386_record_lea_modrm (&ir))
7463 return -1;
7464 break;
7465
7466 /* Add prefix to opcode. */
7467 case 0x0f10:
7468 case 0x0f11:
7469 case 0x0f12:
7470 case 0x0f13:
7471 case 0x0f14:
7472 case 0x0f15:
7473 case 0x0f16:
7474 case 0x0f17:
7475 case 0x0f28:
7476 case 0x0f29:
7477 case 0x0f2a:
7478 case 0x0f2b:
7479 case 0x0f2c:
7480 case 0x0f2d:
7481 case 0x0f2e:
7482 case 0x0f2f:
7483 case 0x0f38:
7484 case 0x0f39:
7485 case 0x0f3a:
7486 case 0x0f50:
7487 case 0x0f51:
7488 case 0x0f52:
7489 case 0x0f53:
7490 case 0x0f54:
7491 case 0x0f55:
7492 case 0x0f56:
7493 case 0x0f57:
7494 case 0x0f58:
7495 case 0x0f59:
7496 case 0x0f5a:
7497 case 0x0f5b:
7498 case 0x0f5c:
7499 case 0x0f5d:
7500 case 0x0f5e:
7501 case 0x0f5f:
7502 case 0x0f60:
7503 case 0x0f61:
7504 case 0x0f62:
7505 case 0x0f63:
7506 case 0x0f64:
7507 case 0x0f65:
7508 case 0x0f66:
7509 case 0x0f67:
7510 case 0x0f68:
7511 case 0x0f69:
7512 case 0x0f6a:
7513 case 0x0f6b:
7514 case 0x0f6c:
7515 case 0x0f6d:
7516 case 0x0f6e:
7517 case 0x0f6f:
7518 case 0x0f70:
7519 case 0x0f71:
7520 case 0x0f72:
7521 case 0x0f73:
7522 case 0x0f74:
7523 case 0x0f75:
7524 case 0x0f76:
7525 case 0x0f7c:
7526 case 0x0f7d:
7527 case 0x0f7e:
7528 case 0x0f7f:
7529 case 0x0fb8:
7530 case 0x0fc2:
7531 case 0x0fc4:
7532 case 0x0fc5:
7533 case 0x0fc6:
7534 case 0x0fd0:
7535 case 0x0fd1:
7536 case 0x0fd2:
7537 case 0x0fd3:
7538 case 0x0fd4:
7539 case 0x0fd5:
7540 case 0x0fd6:
7541 case 0x0fd7:
7542 case 0x0fd8:
7543 case 0x0fd9:
7544 case 0x0fda:
7545 case 0x0fdb:
7546 case 0x0fdc:
7547 case 0x0fdd:
7548 case 0x0fde:
7549 case 0x0fdf:
7550 case 0x0fe0:
7551 case 0x0fe1:
7552 case 0x0fe2:
7553 case 0x0fe3:
7554 case 0x0fe4:
7555 case 0x0fe5:
7556 case 0x0fe6:
7557 case 0x0fe7:
7558 case 0x0fe8:
7559 case 0x0fe9:
7560 case 0x0fea:
7561 case 0x0feb:
7562 case 0x0fec:
7563 case 0x0fed:
7564 case 0x0fee:
7565 case 0x0fef:
7566 case 0x0ff0:
7567 case 0x0ff1:
7568 case 0x0ff2:
7569 case 0x0ff3:
7570 case 0x0ff4:
7571 case 0x0ff5:
7572 case 0x0ff6:
7573 case 0x0ff7:
7574 case 0x0ff8:
7575 case 0x0ff9:
7576 case 0x0ffa:
7577 case 0x0ffb:
7578 case 0x0ffc:
7579 case 0x0ffd:
7580 case 0x0ffe:
7581 /* Mask out PREFIX_ADDR. */
7582 switch ((prefixes & ~PREFIX_ADDR))
7583 {
7584 case PREFIX_REPNZ:
7585 opcode |= 0xf20000;
7586 break;
7587 case PREFIX_DATA:
7588 opcode |= 0x660000;
7589 break;
7590 case PREFIX_REPZ:
7591 opcode |= 0xf30000;
7592 break;
7593 }
7594 reswitch_prefix_add:
7595 switch (opcode)
7596 {
7597 case 0x0f38:
7598 case 0x660f38:
7599 case 0xf20f38:
7600 case 0x0f3a:
7601 case 0x660f3a:
7602 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7603 return -1;
7604 ir.addr++;
7605 opcode = (uint32_t) opcode8 | opcode << 8;
7606 goto reswitch_prefix_add;
7607 break;
7608
7609 case 0x0f10: /* movups */
7610 case 0x660f10: /* movupd */
7611 case 0xf30f10: /* movss */
7612 case 0xf20f10: /* movsd */
7613 case 0x0f12: /* movlps */
7614 case 0x660f12: /* movlpd */
7615 case 0xf30f12: /* movsldup */
7616 case 0xf20f12: /* movddup */
7617 case 0x0f14: /* unpcklps */
7618 case 0x660f14: /* unpcklpd */
7619 case 0x0f15: /* unpckhps */
7620 case 0x660f15: /* unpckhpd */
7621 case 0x0f16: /* movhps */
7622 case 0x660f16: /* movhpd */
7623 case 0xf30f16: /* movshdup */
7624 case 0x0f28: /* movaps */
7625 case 0x660f28: /* movapd */
7626 case 0x0f2a: /* cvtpi2ps */
7627 case 0x660f2a: /* cvtpi2pd */
7628 case 0xf30f2a: /* cvtsi2ss */
7629 case 0xf20f2a: /* cvtsi2sd */
7630 case 0x0f2c: /* cvttps2pi */
7631 case 0x660f2c: /* cvttpd2pi */
7632 case 0x0f2d: /* cvtps2pi */
7633 case 0x660f2d: /* cvtpd2pi */
7634 case 0x660f3800: /* pshufb */
7635 case 0x660f3801: /* phaddw */
7636 case 0x660f3802: /* phaddd */
7637 case 0x660f3803: /* phaddsw */
7638 case 0x660f3804: /* pmaddubsw */
7639 case 0x660f3805: /* phsubw */
7640 case 0x660f3806: /* phsubd */
7641 case 0x660f3807: /* phsubsw */
7642 case 0x660f3808: /* psignb */
7643 case 0x660f3809: /* psignw */
7644 case 0x660f380a: /* psignd */
7645 case 0x660f380b: /* pmulhrsw */
7646 case 0x660f3810: /* pblendvb */
7647 case 0x660f3814: /* blendvps */
7648 case 0x660f3815: /* blendvpd */
7649 case 0x660f381c: /* pabsb */
7650 case 0x660f381d: /* pabsw */
7651 case 0x660f381e: /* pabsd */
7652 case 0x660f3820: /* pmovsxbw */
7653 case 0x660f3821: /* pmovsxbd */
7654 case 0x660f3822: /* pmovsxbq */
7655 case 0x660f3823: /* pmovsxwd */
7656 case 0x660f3824: /* pmovsxwq */
7657 case 0x660f3825: /* pmovsxdq */
7658 case 0x660f3828: /* pmuldq */
7659 case 0x660f3829: /* pcmpeqq */
7660 case 0x660f382a: /* movntdqa */
7661 case 0x660f3a08: /* roundps */
7662 case 0x660f3a09: /* roundpd */
7663 case 0x660f3a0a: /* roundss */
7664 case 0x660f3a0b: /* roundsd */
7665 case 0x660f3a0c: /* blendps */
7666 case 0x660f3a0d: /* blendpd */
7667 case 0x660f3a0e: /* pblendw */
7668 case 0x660f3a0f: /* palignr */
7669 case 0x660f3a20: /* pinsrb */
7670 case 0x660f3a21: /* insertps */
7671 case 0x660f3a22: /* pinsrd pinsrq */
7672 case 0x660f3a40: /* dpps */
7673 case 0x660f3a41: /* dppd */
7674 case 0x660f3a42: /* mpsadbw */
7675 case 0x660f3a60: /* pcmpestrm */
7676 case 0x660f3a61: /* pcmpestri */
7677 case 0x660f3a62: /* pcmpistrm */
7678 case 0x660f3a63: /* pcmpistri */
7679 case 0x0f51: /* sqrtps */
7680 case 0x660f51: /* sqrtpd */
7681 case 0xf20f51: /* sqrtsd */
7682 case 0xf30f51: /* sqrtss */
7683 case 0x0f52: /* rsqrtps */
7684 case 0xf30f52: /* rsqrtss */
7685 case 0x0f53: /* rcpps */
7686 case 0xf30f53: /* rcpss */
7687 case 0x0f54: /* andps */
7688 case 0x660f54: /* andpd */
7689 case 0x0f55: /* andnps */
7690 case 0x660f55: /* andnpd */
7691 case 0x0f56: /* orps */
7692 case 0x660f56: /* orpd */
7693 case 0x0f57: /* xorps */
7694 case 0x660f57: /* xorpd */
7695 case 0x0f58: /* addps */
7696 case 0x660f58: /* addpd */
7697 case 0xf20f58: /* addsd */
7698 case 0xf30f58: /* addss */
7699 case 0x0f59: /* mulps */
7700 case 0x660f59: /* mulpd */
7701 case 0xf20f59: /* mulsd */
7702 case 0xf30f59: /* mulss */
7703 case 0x0f5a: /* cvtps2pd */
7704 case 0x660f5a: /* cvtpd2ps */
7705 case 0xf20f5a: /* cvtsd2ss */
7706 case 0xf30f5a: /* cvtss2sd */
7707 case 0x0f5b: /* cvtdq2ps */
7708 case 0x660f5b: /* cvtps2dq */
7709 case 0xf30f5b: /* cvttps2dq */
7710 case 0x0f5c: /* subps */
7711 case 0x660f5c: /* subpd */
7712 case 0xf20f5c: /* subsd */
7713 case 0xf30f5c: /* subss */
7714 case 0x0f5d: /* minps */
7715 case 0x660f5d: /* minpd */
7716 case 0xf20f5d: /* minsd */
7717 case 0xf30f5d: /* minss */
7718 case 0x0f5e: /* divps */
7719 case 0x660f5e: /* divpd */
7720 case 0xf20f5e: /* divsd */
7721 case 0xf30f5e: /* divss */
7722 case 0x0f5f: /* maxps */
7723 case 0x660f5f: /* maxpd */
7724 case 0xf20f5f: /* maxsd */
7725 case 0xf30f5f: /* maxss */
7726 case 0x660f60: /* punpcklbw */
7727 case 0x660f61: /* punpcklwd */
7728 case 0x660f62: /* punpckldq */
7729 case 0x660f63: /* packsswb */
7730 case 0x660f64: /* pcmpgtb */
7731 case 0x660f65: /* pcmpgtw */
7732 case 0x660f66: /* pcmpgtd */
7733 case 0x660f67: /* packuswb */
7734 case 0x660f68: /* punpckhbw */
7735 case 0x660f69: /* punpckhwd */
7736 case 0x660f6a: /* punpckhdq */
7737 case 0x660f6b: /* packssdw */
7738 case 0x660f6c: /* punpcklqdq */
7739 case 0x660f6d: /* punpckhqdq */
7740 case 0x660f6e: /* movd */
7741 case 0x660f6f: /* movdqa */
7742 case 0xf30f6f: /* movdqu */
7743 case 0x660f70: /* pshufd */
7744 case 0xf20f70: /* pshuflw */
7745 case 0xf30f70: /* pshufhw */
7746 case 0x660f74: /* pcmpeqb */
7747 case 0x660f75: /* pcmpeqw */
7748 case 0x660f76: /* pcmpeqd */
7749 case 0x660f7c: /* haddpd */
7750 case 0xf20f7c: /* haddps */
7751 case 0x660f7d: /* hsubpd */
7752 case 0xf20f7d: /* hsubps */
7753 case 0xf30f7e: /* movq */
7754 case 0x0fc2: /* cmpps */
7755 case 0x660fc2: /* cmppd */
7756 case 0xf20fc2: /* cmpsd */
7757 case 0xf30fc2: /* cmpss */
7758 case 0x660fc4: /* pinsrw */
7759 case 0x0fc6: /* shufps */
7760 case 0x660fc6: /* shufpd */
7761 case 0x660fd0: /* addsubpd */
7762 case 0xf20fd0: /* addsubps */
7763 case 0x660fd1: /* psrlw */
7764 case 0x660fd2: /* psrld */
7765 case 0x660fd3: /* psrlq */
7766 case 0x660fd4: /* paddq */
7767 case 0x660fd5: /* pmullw */
7768 case 0xf30fd6: /* movq2dq */
7769 case 0x660fd8: /* psubusb */
7770 case 0x660fd9: /* psubusw */
7771 case 0x660fda: /* pminub */
7772 case 0x660fdb: /* pand */
7773 case 0x660fdc: /* paddusb */
7774 case 0x660fdd: /* paddusw */
7775 case 0x660fde: /* pmaxub */
7776 case 0x660fdf: /* pandn */
7777 case 0x660fe0: /* pavgb */
7778 case 0x660fe1: /* psraw */
7779 case 0x660fe2: /* psrad */
7780 case 0x660fe3: /* pavgw */
7781 case 0x660fe4: /* pmulhuw */
7782 case 0x660fe5: /* pmulhw */
7783 case 0x660fe6: /* cvttpd2dq */
7784 case 0xf20fe6: /* cvtpd2dq */
7785 case 0xf30fe6: /* cvtdq2pd */
7786 case 0x660fe8: /* psubsb */
7787 case 0x660fe9: /* psubsw */
7788 case 0x660fea: /* pminsw */
7789 case 0x660feb: /* por */
7790 case 0x660fec: /* paddsb */
7791 case 0x660fed: /* paddsw */
7792 case 0x660fee: /* pmaxsw */
7793 case 0x660fef: /* pxor */
7794 case 0xf20ff0: /* lddqu */
7795 case 0x660ff1: /* psllw */
7796 case 0x660ff2: /* pslld */
7797 case 0x660ff3: /* psllq */
7798 case 0x660ff4: /* pmuludq */
7799 case 0x660ff5: /* pmaddwd */
7800 case 0x660ff6: /* psadbw */
7801 case 0x660ff8: /* psubb */
7802 case 0x660ff9: /* psubw */
7803 case 0x660ffa: /* psubd */
7804 case 0x660ffb: /* psubq */
7805 case 0x660ffc: /* paddb */
7806 case 0x660ffd: /* paddw */
7807 case 0x660ffe: /* paddd */
7808 if (i386_record_modrm (&ir))
7809 return -1;
7810 ir.reg |= rex_r;
7811 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7812 goto no_support;
7813 record_full_arch_list_add_reg (ir.regcache,
7814 I387_XMM0_REGNUM (tdep) + ir.reg);
7815 if ((opcode & 0xfffffffc) == 0x660f3a60)
7816 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7817 break;
7818
7819 case 0x0f11: /* movups */
7820 case 0x660f11: /* movupd */
7821 case 0xf30f11: /* movss */
7822 case 0xf20f11: /* movsd */
7823 case 0x0f13: /* movlps */
7824 case 0x660f13: /* movlpd */
7825 case 0x0f17: /* movhps */
7826 case 0x660f17: /* movhpd */
7827 case 0x0f29: /* movaps */
7828 case 0x660f29: /* movapd */
7829 case 0x660f3a14: /* pextrb */
7830 case 0x660f3a15: /* pextrw */
7831 case 0x660f3a16: /* pextrd pextrq */
7832 case 0x660f3a17: /* extractps */
7833 case 0x660f7f: /* movdqa */
7834 case 0xf30f7f: /* movdqu */
7835 if (i386_record_modrm (&ir))
7836 return -1;
7837 if (ir.mod == 3)
7838 {
7839 if (opcode == 0x0f13 || opcode == 0x660f13
7840 || opcode == 0x0f17 || opcode == 0x660f17)
7841 goto no_support;
7842 ir.rm |= ir.rex_b;
7843 if (!i386_xmm_regnum_p (gdbarch,
7844 I387_XMM0_REGNUM (tdep) + ir.rm))
7845 goto no_support;
7846 record_full_arch_list_add_reg (ir.regcache,
7847 I387_XMM0_REGNUM (tdep) + ir.rm);
7848 }
7849 else
7850 {
7851 switch (opcode)
7852 {
7853 case 0x660f3a14:
7854 ir.ot = OT_BYTE;
7855 break;
7856 case 0x660f3a15:
7857 ir.ot = OT_WORD;
7858 break;
7859 case 0x660f3a16:
7860 ir.ot = OT_LONG;
7861 break;
7862 case 0x660f3a17:
7863 ir.ot = OT_QUAD;
7864 break;
7865 default:
7866 ir.ot = OT_DQUAD;
7867 break;
7868 }
7869 if (i386_record_lea_modrm (&ir))
7870 return -1;
7871 }
7872 break;
7873
7874 case 0x0f2b: /* movntps */
7875 case 0x660f2b: /* movntpd */
7876 case 0x0fe7: /* movntq */
7877 case 0x660fe7: /* movntdq */
7878 if (ir.mod == 3)
7879 goto no_support;
7880 if (opcode == 0x0fe7)
7881 ir.ot = OT_QUAD;
7882 else
7883 ir.ot = OT_DQUAD;
7884 if (i386_record_lea_modrm (&ir))
7885 return -1;
7886 break;
7887
7888 case 0xf30f2c: /* cvttss2si */
7889 case 0xf20f2c: /* cvttsd2si */
7890 case 0xf30f2d: /* cvtss2si */
7891 case 0xf20f2d: /* cvtsd2si */
7892 case 0xf20f38f0: /* crc32 */
7893 case 0xf20f38f1: /* crc32 */
7894 case 0x0f50: /* movmskps */
7895 case 0x660f50: /* movmskpd */
7896 case 0x0fc5: /* pextrw */
7897 case 0x660fc5: /* pextrw */
7898 case 0x0fd7: /* pmovmskb */
7899 case 0x660fd7: /* pmovmskb */
7900 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7901 break;
7902
7903 case 0x0f3800: /* pshufb */
7904 case 0x0f3801: /* phaddw */
7905 case 0x0f3802: /* phaddd */
7906 case 0x0f3803: /* phaddsw */
7907 case 0x0f3804: /* pmaddubsw */
7908 case 0x0f3805: /* phsubw */
7909 case 0x0f3806: /* phsubd */
7910 case 0x0f3807: /* phsubsw */
7911 case 0x0f3808: /* psignb */
7912 case 0x0f3809: /* psignw */
7913 case 0x0f380a: /* psignd */
7914 case 0x0f380b: /* pmulhrsw */
7915 case 0x0f381c: /* pabsb */
7916 case 0x0f381d: /* pabsw */
7917 case 0x0f381e: /* pabsd */
7918 case 0x0f382b: /* packusdw */
7919 case 0x0f3830: /* pmovzxbw */
7920 case 0x0f3831: /* pmovzxbd */
7921 case 0x0f3832: /* pmovzxbq */
7922 case 0x0f3833: /* pmovzxwd */
7923 case 0x0f3834: /* pmovzxwq */
7924 case 0x0f3835: /* pmovzxdq */
7925 case 0x0f3837: /* pcmpgtq */
7926 case 0x0f3838: /* pminsb */
7927 case 0x0f3839: /* pminsd */
7928 case 0x0f383a: /* pminuw */
7929 case 0x0f383b: /* pminud */
7930 case 0x0f383c: /* pmaxsb */
7931 case 0x0f383d: /* pmaxsd */
7932 case 0x0f383e: /* pmaxuw */
7933 case 0x0f383f: /* pmaxud */
7934 case 0x0f3840: /* pmulld */
7935 case 0x0f3841: /* phminposuw */
7936 case 0x0f3a0f: /* palignr */
7937 case 0x0f60: /* punpcklbw */
7938 case 0x0f61: /* punpcklwd */
7939 case 0x0f62: /* punpckldq */
7940 case 0x0f63: /* packsswb */
7941 case 0x0f64: /* pcmpgtb */
7942 case 0x0f65: /* pcmpgtw */
7943 case 0x0f66: /* pcmpgtd */
7944 case 0x0f67: /* packuswb */
7945 case 0x0f68: /* punpckhbw */
7946 case 0x0f69: /* punpckhwd */
7947 case 0x0f6a: /* punpckhdq */
7948 case 0x0f6b: /* packssdw */
7949 case 0x0f6e: /* movd */
7950 case 0x0f6f: /* movq */
7951 case 0x0f70: /* pshufw */
7952 case 0x0f74: /* pcmpeqb */
7953 case 0x0f75: /* pcmpeqw */
7954 case 0x0f76: /* pcmpeqd */
7955 case 0x0fc4: /* pinsrw */
7956 case 0x0fd1: /* psrlw */
7957 case 0x0fd2: /* psrld */
7958 case 0x0fd3: /* psrlq */
7959 case 0x0fd4: /* paddq */
7960 case 0x0fd5: /* pmullw */
7961 case 0xf20fd6: /* movdq2q */
7962 case 0x0fd8: /* psubusb */
7963 case 0x0fd9: /* psubusw */
7964 case 0x0fda: /* pminub */
7965 case 0x0fdb: /* pand */
7966 case 0x0fdc: /* paddusb */
7967 case 0x0fdd: /* paddusw */
7968 case 0x0fde: /* pmaxub */
7969 case 0x0fdf: /* pandn */
7970 case 0x0fe0: /* pavgb */
7971 case 0x0fe1: /* psraw */
7972 case 0x0fe2: /* psrad */
7973 case 0x0fe3: /* pavgw */
7974 case 0x0fe4: /* pmulhuw */
7975 case 0x0fe5: /* pmulhw */
7976 case 0x0fe8: /* psubsb */
7977 case 0x0fe9: /* psubsw */
7978 case 0x0fea: /* pminsw */
7979 case 0x0feb: /* por */
7980 case 0x0fec: /* paddsb */
7981 case 0x0fed: /* paddsw */
7982 case 0x0fee: /* pmaxsw */
7983 case 0x0fef: /* pxor */
7984 case 0x0ff1: /* psllw */
7985 case 0x0ff2: /* pslld */
7986 case 0x0ff3: /* psllq */
7987 case 0x0ff4: /* pmuludq */
7988 case 0x0ff5: /* pmaddwd */
7989 case 0x0ff6: /* psadbw */
7990 case 0x0ff8: /* psubb */
7991 case 0x0ff9: /* psubw */
7992 case 0x0ffa: /* psubd */
7993 case 0x0ffb: /* psubq */
7994 case 0x0ffc: /* paddb */
7995 case 0x0ffd: /* paddw */
7996 case 0x0ffe: /* paddd */
7997 if (i386_record_modrm (&ir))
7998 return -1;
7999 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
8000 goto no_support;
8001 record_full_arch_list_add_reg (ir.regcache,
8002 I387_MM0_REGNUM (tdep) + ir.reg);
8003 break;
8004
8005 case 0x0f71: /* psllw */
8006 case 0x0f72: /* pslld */
8007 case 0x0f73: /* psllq */
8008 if (i386_record_modrm (&ir))
8009 return -1;
8010 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8011 goto no_support;
8012 record_full_arch_list_add_reg (ir.regcache,
8013 I387_MM0_REGNUM (tdep) + ir.rm);
8014 break;
8015
8016 case 0x660f71: /* psllw */
8017 case 0x660f72: /* pslld */
8018 case 0x660f73: /* psllq */
8019 if (i386_record_modrm (&ir))
8020 return -1;
8021 ir.rm |= ir.rex_b;
8022 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
8023 goto no_support;
8024 record_full_arch_list_add_reg (ir.regcache,
8025 I387_XMM0_REGNUM (tdep) + ir.rm);
8026 break;
8027
8028 case 0x0f7e: /* movd */
8029 case 0x660f7e: /* movd */
8030 if (i386_record_modrm (&ir))
8031 return -1;
8032 if (ir.mod == 3)
8033 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
8034 else
8035 {
8036 if (ir.dflag == 2)
8037 ir.ot = OT_QUAD;
8038 else
8039 ir.ot = OT_LONG;
8040 if (i386_record_lea_modrm (&ir))
8041 return -1;
8042 }
8043 break;
8044
8045 case 0x0f7f: /* movq */
8046 if (i386_record_modrm (&ir))
8047 return -1;
8048 if (ir.mod == 3)
8049 {
8050 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8051 goto no_support;
8052 record_full_arch_list_add_reg (ir.regcache,
8053 I387_MM0_REGNUM (tdep) + ir.rm);
8054 }
8055 else
8056 {
8057 ir.ot = OT_QUAD;
8058 if (i386_record_lea_modrm (&ir))
8059 return -1;
8060 }
8061 break;
8062
8063 case 0xf30fb8: /* popcnt */
8064 if (i386_record_modrm (&ir))
8065 return -1;
8066 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8067 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8068 break;
8069
8070 case 0x660fd6: /* movq */
8071 if (i386_record_modrm (&ir))
8072 return -1;
8073 if (ir.mod == 3)
8074 {
8075 ir.rm |= ir.rex_b;
8076 if (!i386_xmm_regnum_p (gdbarch,
8077 I387_XMM0_REGNUM (tdep) + ir.rm))
8078 goto no_support;
8079 record_full_arch_list_add_reg (ir.regcache,
8080 I387_XMM0_REGNUM (tdep) + ir.rm);
8081 }
8082 else
8083 {
8084 ir.ot = OT_QUAD;
8085 if (i386_record_lea_modrm (&ir))
8086 return -1;
8087 }
8088 break;
8089
8090 case 0x660f3817: /* ptest */
8091 case 0x0f2e: /* ucomiss */
8092 case 0x660f2e: /* ucomisd */
8093 case 0x0f2f: /* comiss */
8094 case 0x660f2f: /* comisd */
8095 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8096 break;
8097
8098 case 0x0ff7: /* maskmovq */
8099 regcache_raw_read_unsigned (ir.regcache,
8100 ir.regmap[X86_RECORD_REDI_REGNUM],
8101 &addr);
8102 if (record_full_arch_list_add_mem (addr, 64))
8103 return -1;
8104 break;
8105
8106 case 0x660ff7: /* maskmovdqu */
8107 regcache_raw_read_unsigned (ir.regcache,
8108 ir.regmap[X86_RECORD_REDI_REGNUM],
8109 &addr);
8110 if (record_full_arch_list_add_mem (addr, 128))
8111 return -1;
8112 break;
8113
8114 default:
8115 goto no_support;
8116 break;
8117 }
8118 break;
8119
8120 default:
8121 goto no_support;
8122 break;
8123 }
8124
8125 /* In the future, maybe still need to deal with need_dasm. */
8126 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8127 if (record_full_arch_list_add_end ())
8128 return -1;
8129
8130 return 0;
8131
8132 no_support:
8133 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8134 "at address %s.\n"),
8135 (unsigned int) (opcode),
8136 paddress (gdbarch, ir.orig_addr));
8137 return -1;
8138 }
8139
8140 static const int i386_record_regmap[] =
8141 {
8142 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8143 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8144 0, 0, 0, 0, 0, 0, 0, 0,
8145 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8146 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8147 };
8148
8149 /* Check that the given address appears suitable for a fast
8150 tracepoint, which on x86-64 means that we need an instruction of at
8151 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8152 jump and not have to worry about program jumps to an address in the
8153 middle of the tracepoint jump. On x86, it may be possible to use
8154 4-byte jumps with a 2-byte offset to a trampoline located in the
8155 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8156 of instruction to replace, and 0 if not, plus an explanatory
8157 string. */
8158
8159 static int
8160 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8161 std::string *msg)
8162 {
8163 int len, jumplen;
8164
8165 /* Ask the target for the minimum instruction length supported. */
8166 jumplen = target_get_min_fast_tracepoint_insn_len ();
8167
8168 if (jumplen < 0)
8169 {
8170 /* If the target does not support the get_min_fast_tracepoint_insn_len
8171 operation, assume that fast tracepoints will always be implemented
8172 using 4-byte relative jumps on both x86 and x86-64. */
8173 jumplen = 5;
8174 }
8175 else if (jumplen == 0)
8176 {
8177 /* If the target does support get_min_fast_tracepoint_insn_len but
8178 returns zero, then the IPA has not loaded yet. In this case,
8179 we optimistically assume that truncated 2-byte relative jumps
8180 will be available on x86, and compensate later if this assumption
8181 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8182 jumps will always be used. */
8183 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8184 }
8185
8186 /* Check for fit. */
8187 len = gdb_insn_length (gdbarch, addr);
8188
8189 if (len < jumplen)
8190 {
8191 /* Return a bit of target-specific detail to add to the caller's
8192 generic failure message. */
8193 if (msg)
8194 *msg = string_printf (_("; instruction is only %d bytes long, "
8195 "need at least %d bytes for the jump"),
8196 len, jumplen);
8197 return 0;
8198 }
8199 else
8200 {
8201 if (msg)
8202 msg->clear ();
8203 return 1;
8204 }
8205 }
8206
8207 /* Return a floating-point format for a floating-point variable of
8208 length LEN in bits. If non-NULL, NAME is the name of its type.
8209 If no suitable type is found, return NULL. */
8210
8211 static const struct floatformat **
8212 i386_floatformat_for_type (struct gdbarch *gdbarch,
8213 const char *name, int len)
8214 {
8215 if (len == 128 && name)
8216 if (strcmp (name, "__float128") == 0
8217 || strcmp (name, "_Float128") == 0
8218 || strcmp (name, "complex _Float128") == 0
8219 || strcmp (name, "complex(kind=16)") == 0
8220 || strcmp (name, "quad complex") == 0
8221 || strcmp (name, "real(kind=16)") == 0
8222 || strcmp (name, "real*16") == 0)
8223 return floatformats_ia64_quad;
8224
8225 return default_floatformat_for_type (gdbarch, name, len);
8226 }
8227
8228 static int
8229 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8230 struct tdesc_arch_data *tdesc_data)
8231 {
8232 const struct target_desc *tdesc = tdep->tdesc;
8233 const struct tdesc_feature *feature_core;
8234
8235 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8236 *feature_avx512, *feature_pkeys, *feature_segments;
8237 int i, num_regs, valid_p;
8238
8239 if (! tdesc_has_registers (tdesc))
8240 return 0;
8241
8242 /* Get core registers. */
8243 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8244 if (feature_core == NULL)
8245 return 0;
8246
8247 /* Get SSE registers. */
8248 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8249
8250 /* Try AVX registers. */
8251 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8252
8253 /* Try MPX registers. */
8254 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8255
8256 /* Try AVX512 registers. */
8257 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8258
8259 /* Try segment base registers. */
8260 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8261
8262 /* Try PKEYS */
8263 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8264
8265 valid_p = 1;
8266
8267 /* The XCR0 bits. */
8268 if (feature_avx512)
8269 {
8270 /* AVX512 register description requires AVX register description. */
8271 if (!feature_avx)
8272 return 0;
8273
8274 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8275
8276 /* It may have been set by OSABI initialization function. */
8277 if (tdep->k0_regnum < 0)
8278 {
8279 tdep->k_register_names = i386_k_names;
8280 tdep->k0_regnum = I386_K0_REGNUM;
8281 }
8282
8283 for (i = 0; i < I387_NUM_K_REGS; i++)
8284 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8285 tdep->k0_regnum + i,
8286 i386_k_names[i]);
8287
8288 if (tdep->num_zmm_regs == 0)
8289 {
8290 tdep->zmmh_register_names = i386_zmmh_names;
8291 tdep->num_zmm_regs = 8;
8292 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8293 }
8294
8295 for (i = 0; i < tdep->num_zmm_regs; i++)
8296 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8297 tdep->zmm0h_regnum + i,
8298 tdep->zmmh_register_names[i]);
8299
8300 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8301 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8302 tdep->xmm16_regnum + i,
8303 tdep->xmm_avx512_register_names[i]);
8304
8305 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8306 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8307 tdep->ymm16h_regnum + i,
8308 tdep->ymm16h_register_names[i]);
8309 }
8310 if (feature_avx)
8311 {
8312 /* AVX register description requires SSE register description. */
8313 if (!feature_sse)
8314 return 0;
8315
8316 if (!feature_avx512)
8317 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8318
8319 /* It may have been set by OSABI initialization function. */
8320 if (tdep->num_ymm_regs == 0)
8321 {
8322 tdep->ymmh_register_names = i386_ymmh_names;
8323 tdep->num_ymm_regs = 8;
8324 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8325 }
8326
8327 for (i = 0; i < tdep->num_ymm_regs; i++)
8328 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8329 tdep->ymm0h_regnum + i,
8330 tdep->ymmh_register_names[i]);
8331 }
8332 else if (feature_sse)
8333 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8334 else
8335 {
8336 tdep->xcr0 = X86_XSTATE_X87_MASK;
8337 tdep->num_xmm_regs = 0;
8338 }
8339
8340 num_regs = tdep->num_core_regs;
8341 for (i = 0; i < num_regs; i++)
8342 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8343 tdep->register_names[i]);
8344
8345 if (feature_sse)
8346 {
8347 /* Need to include %mxcsr, so add one. */
8348 num_regs += tdep->num_xmm_regs + 1;
8349 for (; i < num_regs; i++)
8350 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8351 tdep->register_names[i]);
8352 }
8353
8354 if (feature_mpx)
8355 {
8356 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8357
8358 if (tdep->bnd0r_regnum < 0)
8359 {
8360 tdep->mpx_register_names = i386_mpx_names;
8361 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8362 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8363 }
8364
8365 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8366 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8367 I387_BND0R_REGNUM (tdep) + i,
8368 tdep->mpx_register_names[i]);
8369 }
8370
8371 if (feature_segments)
8372 {
8373 if (tdep->fsbase_regnum < 0)
8374 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8375 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8376 tdep->fsbase_regnum, "fs_base");
8377 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8378 tdep->fsbase_regnum + 1, "gs_base");
8379 }
8380
8381 if (feature_pkeys)
8382 {
8383 tdep->xcr0 |= X86_XSTATE_PKRU;
8384 if (tdep->pkru_regnum < 0)
8385 {
8386 tdep->pkeys_register_names = i386_pkeys_names;
8387 tdep->pkru_regnum = I386_PKRU_REGNUM;
8388 tdep->num_pkeys_regs = 1;
8389 }
8390
8391 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8392 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8393 I387_PKRU_REGNUM (tdep) + i,
8394 tdep->pkeys_register_names[i]);
8395 }
8396
8397 return valid_p;
8398 }
8399
8400 \f
8401
8402 /* Implement the type_align gdbarch function. */
8403
8404 static ULONGEST
8405 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8406 {
8407 type = check_typedef (type);
8408
8409 if (gdbarch_ptr_bit (gdbarch) == 32)
8410 {
8411 if ((type->code () == TYPE_CODE_INT
8412 || type->code () == TYPE_CODE_FLT)
8413 && TYPE_LENGTH (type) > 4)
8414 return 4;
8415
8416 /* Handle x86's funny long double. */
8417 if (type->code () == TYPE_CODE_FLT
8418 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8419 return 4;
8420 }
8421
8422 return 0;
8423 }
8424
8425 \f
8426 /* Note: This is called for both i386 and amd64. */
8427
8428 static struct gdbarch *
8429 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8430 {
8431 struct gdbarch_tdep *tdep;
8432 struct gdbarch *gdbarch;
8433 struct tdesc_arch_data *tdesc_data;
8434 const struct target_desc *tdesc;
8435 int mm0_regnum;
8436 int ymm0_regnum;
8437 int bnd0_regnum;
8438 int num_bnd_cooked;
8439
8440 /* If there is already a candidate, use it. */
8441 arches = gdbarch_list_lookup_by_info (arches, &info);
8442 if (arches != NULL)
8443 return arches->gdbarch;
8444
8445 /* Allocate space for the new architecture. Assume i386 for now. */
8446 tdep = XCNEW (struct gdbarch_tdep);
8447 gdbarch = gdbarch_alloc (&info, tdep);
8448
8449 /* General-purpose registers. */
8450 tdep->gregset_reg_offset = NULL;
8451 tdep->gregset_num_regs = I386_NUM_GREGS;
8452 tdep->sizeof_gregset = 0;
8453
8454 /* Floating-point registers. */
8455 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8456 tdep->fpregset = &i386_fpregset;
8457
8458 /* The default settings include the FPU registers, the MMX registers
8459 and the SSE registers. This can be overridden for a specific ABI
8460 by adjusting the members `st0_regnum', `mm0_regnum' and
8461 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8462 will show up in the output of "info all-registers". */
8463
8464 tdep->st0_regnum = I386_ST0_REGNUM;
8465
8466 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8467 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8468
8469 tdep->jb_pc_offset = -1;
8470 tdep->struct_return = pcc_struct_return;
8471 tdep->sigtramp_start = 0;
8472 tdep->sigtramp_end = 0;
8473 tdep->sigtramp_p = i386_sigtramp_p;
8474 tdep->sigcontext_addr = NULL;
8475 tdep->sc_reg_offset = NULL;
8476 tdep->sc_pc_offset = -1;
8477 tdep->sc_sp_offset = -1;
8478
8479 tdep->xsave_xcr0_offset = -1;
8480
8481 tdep->record_regmap = i386_record_regmap;
8482
8483 set_gdbarch_type_align (gdbarch, i386_type_align);
8484
8485 /* The format used for `long double' on almost all i386 targets is
8486 the i387 extended floating-point format. In fact, of all targets
8487 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8488 on having a `long double' that's not `long' at all. */
8489 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8490
8491 /* Although the i387 extended floating-point has only 80 significant
8492 bits, a `long double' actually takes up 96, probably to enforce
8493 alignment. */
8494 set_gdbarch_long_double_bit (gdbarch, 96);
8495
8496 /* Support of bfloat16 format. */
8497 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8498
8499 /* Support for floating-point data type variants. */
8500 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8501
8502 /* Register numbers of various important registers. */
8503 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8504 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8505 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8506 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8507
8508 /* NOTE: kettenis/20040418: GCC does have two possible register
8509 numbering schemes on the i386: dbx and SVR4. These schemes
8510 differ in how they number %ebp, %esp, %eflags, and the
8511 floating-point registers, and are implemented by the arrays
8512 dbx_register_map[] and svr4_dbx_register_map in
8513 gcc/config/i386.c. GCC also defines a third numbering scheme in
8514 gcc/config/i386.c, which it designates as the "default" register
8515 map used in 64bit mode. This last register numbering scheme is
8516 implemented in dbx64_register_map, and is used for AMD64; see
8517 amd64-tdep.c.
8518
8519 Currently, each GCC i386 target always uses the same register
8520 numbering scheme across all its supported debugging formats
8521 i.e. SDB (COFF), stabs and DWARF 2. This is because
8522 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8523 DBX_REGISTER_NUMBER macro which is defined by each target's
8524 respective config header in a manner independent of the requested
8525 output debugging format.
8526
8527 This does not match the arrangement below, which presumes that
8528 the SDB and stabs numbering schemes differ from the DWARF and
8529 DWARF 2 ones. The reason for this arrangement is that it is
8530 likely to get the numbering scheme for the target's
8531 default/native debug format right. For targets where GCC is the
8532 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8533 targets where the native toolchain uses a different numbering
8534 scheme for a particular debug format (stabs-in-ELF on Solaris)
8535 the defaults below will have to be overridden, like
8536 i386_elf_init_abi() does. */
8537
8538 /* Use the dbx register numbering scheme for stabs and COFF. */
8539 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8540 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8541
8542 /* Use the SVR4 register numbering scheme for DWARF 2. */
8543 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8544
8545 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8546 be in use on any of the supported i386 targets. */
8547
8548 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8549
8550 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8551
8552 /* Call dummy code. */
8553 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8554 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8555 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8556 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8557
8558 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8559 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8560 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8561
8562 set_gdbarch_return_value (gdbarch, i386_return_value);
8563
8564 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8565
8566 /* Stack grows downward. */
8567 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8568
8569 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8570 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8571
8572 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8573 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8574
8575 set_gdbarch_frame_args_skip (gdbarch, 8);
8576
8577 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8578
8579 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8580
8581 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8582
8583 /* Add the i386 register groups. */
8584 i386_add_reggroups (gdbarch);
8585 tdep->register_reggroup_p = i386_register_reggroup_p;
8586
8587 /* Helper for function argument information. */
8588 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8589
8590 /* Hook the function epilogue frame unwinder. This unwinder is
8591 appended to the list first, so that it supercedes the DWARF
8592 unwinder in function epilogues (where the DWARF unwinder
8593 currently fails). */
8594 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8595
8596 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8597 to the list before the prologue-based unwinders, so that DWARF
8598 CFI info will be used if it is available. */
8599 dwarf2_append_unwinders (gdbarch);
8600
8601 frame_base_set_default (gdbarch, &i386_frame_base);
8602
8603 /* Pseudo registers may be changed by amd64_init_abi. */
8604 set_gdbarch_pseudo_register_read_value (gdbarch,
8605 i386_pseudo_register_read_value);
8606 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8607 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8608 i386_ax_pseudo_register_collect);
8609
8610 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8611 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8612
8613 /* Override the normal target description method to make the AVX
8614 upper halves anonymous. */
8615 set_gdbarch_register_name (gdbarch, i386_register_name);
8616
8617 /* Even though the default ABI only includes general-purpose registers,
8618 floating-point registers and the SSE registers, we have to leave a
8619 gap for the upper AVX, MPX and AVX512 registers. */
8620 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8621
8622 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8623
8624 /* Get the x86 target description from INFO. */
8625 tdesc = info.target_desc;
8626 if (! tdesc_has_registers (tdesc))
8627 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8628 tdep->tdesc = tdesc;
8629
8630 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8631 tdep->register_names = i386_register_names;
8632
8633 /* No upper YMM registers. */
8634 tdep->ymmh_register_names = NULL;
8635 tdep->ymm0h_regnum = -1;
8636
8637 /* No upper ZMM registers. */
8638 tdep->zmmh_register_names = NULL;
8639 tdep->zmm0h_regnum = -1;
8640
8641 /* No high XMM registers. */
8642 tdep->xmm_avx512_register_names = NULL;
8643 tdep->xmm16_regnum = -1;
8644
8645 /* No upper YMM16-31 registers. */
8646 tdep->ymm16h_register_names = NULL;
8647 tdep->ymm16h_regnum = -1;
8648
8649 tdep->num_byte_regs = 8;
8650 tdep->num_word_regs = 8;
8651 tdep->num_dword_regs = 0;
8652 tdep->num_mmx_regs = 8;
8653 tdep->num_ymm_regs = 0;
8654
8655 /* No MPX registers. */
8656 tdep->bnd0r_regnum = -1;
8657 tdep->bndcfgu_regnum = -1;
8658
8659 /* No AVX512 registers. */
8660 tdep->k0_regnum = -1;
8661 tdep->num_zmm_regs = 0;
8662 tdep->num_ymm_avx512_regs = 0;
8663 tdep->num_xmm_avx512_regs = 0;
8664
8665 /* No PKEYS registers */
8666 tdep->pkru_regnum = -1;
8667 tdep->num_pkeys_regs = 0;
8668
8669 /* No segment base registers. */
8670 tdep->fsbase_regnum = -1;
8671
8672 tdesc_data = tdesc_data_alloc ();
8673
8674 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8675
8676 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8677
8678 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8679 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8680 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8681
8682 /* Hook in ABI-specific overrides, if they have been registered.
8683 Note: If INFO specifies a 64 bit arch, this is where we turn
8684 a 32-bit i386 into a 64-bit amd64. */
8685 info.tdesc_data = tdesc_data;
8686 gdbarch_init_osabi (info, gdbarch);
8687
8688 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8689 {
8690 tdesc_data_cleanup (tdesc_data);
8691 xfree (tdep);
8692 gdbarch_free (gdbarch);
8693 return NULL;
8694 }
8695
8696 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8697
8698 /* Wire in pseudo registers. Number of pseudo registers may be
8699 changed. */
8700 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8701 + tdep->num_word_regs
8702 + tdep->num_dword_regs
8703 + tdep->num_mmx_regs
8704 + tdep->num_ymm_regs
8705 + num_bnd_cooked
8706 + tdep->num_ymm_avx512_regs
8707 + tdep->num_zmm_regs));
8708
8709 /* Target description may be changed. */
8710 tdesc = tdep->tdesc;
8711
8712 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8713
8714 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8715 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8716
8717 /* Make %al the first pseudo-register. */
8718 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8719 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8720
8721 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8722 if (tdep->num_dword_regs)
8723 {
8724 /* Support dword pseudo-register if it hasn't been disabled. */
8725 tdep->eax_regnum = ymm0_regnum;
8726 ymm0_regnum += tdep->num_dword_regs;
8727 }
8728 else
8729 tdep->eax_regnum = -1;
8730
8731 mm0_regnum = ymm0_regnum;
8732 if (tdep->num_ymm_regs)
8733 {
8734 /* Support YMM pseudo-register if it is available. */
8735 tdep->ymm0_regnum = ymm0_regnum;
8736 mm0_regnum += tdep->num_ymm_regs;
8737 }
8738 else
8739 tdep->ymm0_regnum = -1;
8740
8741 if (tdep->num_ymm_avx512_regs)
8742 {
8743 /* Support YMM16-31 pseudo registers if available. */
8744 tdep->ymm16_regnum = mm0_regnum;
8745 mm0_regnum += tdep->num_ymm_avx512_regs;
8746 }
8747 else
8748 tdep->ymm16_regnum = -1;
8749
8750 if (tdep->num_zmm_regs)
8751 {
8752 /* Support ZMM pseudo-register if it is available. */
8753 tdep->zmm0_regnum = mm0_regnum;
8754 mm0_regnum += tdep->num_zmm_regs;
8755 }
8756 else
8757 tdep->zmm0_regnum = -1;
8758
8759 bnd0_regnum = mm0_regnum;
8760 if (tdep->num_mmx_regs != 0)
8761 {
8762 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8763 tdep->mm0_regnum = mm0_regnum;
8764 bnd0_regnum += tdep->num_mmx_regs;
8765 }
8766 else
8767 tdep->mm0_regnum = -1;
8768
8769 if (tdep->bnd0r_regnum > 0)
8770 tdep->bnd0_regnum = bnd0_regnum;
8771 else
8772 tdep-> bnd0_regnum = -1;
8773
8774 /* Hook in the legacy prologue-based unwinders last (fallback). */
8775 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8776 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8777 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8778
8779 /* If we have a register mapping, enable the generic core file
8780 support, unless it has already been enabled. */
8781 if (tdep->gregset_reg_offset
8782 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8783 set_gdbarch_iterate_over_regset_sections
8784 (gdbarch, i386_iterate_over_regset_sections);
8785
8786 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8787 i386_fast_tracepoint_valid_at);
8788
8789 return gdbarch;
8790 }
8791
8792 \f
8793
8794 /* Return the target description for a specified XSAVE feature mask. */
8795
8796 const struct target_desc *
8797 i386_target_description (uint64_t xcr0, bool segments)
8798 {
8799 static target_desc *i386_tdescs \
8800 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8801 target_desc **tdesc;
8802
8803 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8804 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8805 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8806 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8807 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8808 [segments ? 1 : 0];
8809
8810 if (*tdesc == NULL)
8811 *tdesc = i386_create_target_description (xcr0, false, segments);
8812
8813 return *tdesc;
8814 }
8815
8816 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8817
8818 /* Find the bound directory base address. */
8819
8820 static unsigned long
8821 i386_mpx_bd_base (void)
8822 {
8823 struct regcache *rcache;
8824 struct gdbarch_tdep *tdep;
8825 ULONGEST ret;
8826 enum register_status regstatus;
8827
8828 rcache = get_current_regcache ();
8829 tdep = gdbarch_tdep (rcache->arch ());
8830
8831 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8832
8833 if (regstatus != REG_VALID)
8834 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8835
8836 return ret & MPX_BASE_MASK;
8837 }
8838
8839 int
8840 i386_mpx_enabled (void)
8841 {
8842 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8843 const struct target_desc *tdesc = tdep->tdesc;
8844
8845 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8846 }
8847
8848 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8849 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8850 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8851 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8852
8853 /* Find the bound table entry given the pointer location and the base
8854 address of the table. */
8855
8856 static CORE_ADDR
8857 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8858 {
8859 CORE_ADDR offset1;
8860 CORE_ADDR offset2;
8861 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8862 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8863 CORE_ADDR bd_entry_addr;
8864 CORE_ADDR bt_addr;
8865 CORE_ADDR bd_entry;
8866 struct gdbarch *gdbarch = get_current_arch ();
8867 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8868
8869
8870 if (gdbarch_ptr_bit (gdbarch) == 64)
8871 {
8872 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8873 bd_ptr_r_shift = 20;
8874 bd_ptr_l_shift = 3;
8875 bt_select_r_shift = 3;
8876 bt_select_l_shift = 5;
8877 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8878
8879 if ( sizeof (CORE_ADDR) == 4)
8880 error (_("bound table examination not supported\
8881 for 64-bit process with 32-bit GDB"));
8882 }
8883 else
8884 {
8885 mpx_bd_mask = MPX_BD_MASK_32;
8886 bd_ptr_r_shift = 12;
8887 bd_ptr_l_shift = 2;
8888 bt_select_r_shift = 2;
8889 bt_select_l_shift = 4;
8890 bt_mask = MPX_BT_MASK_32;
8891 }
8892
8893 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8894 bd_entry_addr = bd_base + offset1;
8895 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8896
8897 if ((bd_entry & 0x1) == 0)
8898 error (_("Invalid bounds directory entry at %s."),
8899 paddress (get_current_arch (), bd_entry_addr));
8900
8901 /* Clearing status bit. */
8902 bd_entry--;
8903 bt_addr = bd_entry & ~bt_select_r_shift;
8904 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8905
8906 return bt_addr + offset2;
8907 }
8908
8909 /* Print routine for the mpx bounds. */
8910
8911 static void
8912 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8913 {
8914 struct ui_out *uiout = current_uiout;
8915 LONGEST size;
8916 struct gdbarch *gdbarch = get_current_arch ();
8917 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8918 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8919
8920 if (bounds_in_map == 1)
8921 {
8922 uiout->text ("Null bounds on map:");
8923 uiout->text (" pointer value = ");
8924 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8925 uiout->text (".");
8926 uiout->text ("\n");
8927 }
8928 else
8929 {
8930 uiout->text ("{lbound = ");
8931 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8932 uiout->text (", ubound = ");
8933
8934 /* The upper bound is stored in 1's complement. */
8935 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8936 uiout->text ("}: pointer value = ");
8937 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8938
8939 if (gdbarch_ptr_bit (gdbarch) == 64)
8940 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8941 else
8942 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8943
8944 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8945 -1 represents in this sense full memory access, and there is no need
8946 one to the size. */
8947
8948 size = (size > -1 ? size + 1 : size);
8949 uiout->text (", size = ");
8950 uiout->field_string ("size", plongest (size));
8951
8952 uiout->text (", metadata = ");
8953 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8954 uiout->text ("\n");
8955 }
8956 }
8957
8958 /* Implement the command "show mpx bound". */
8959
8960 static void
8961 i386_mpx_info_bounds (const char *args, int from_tty)
8962 {
8963 CORE_ADDR bd_base = 0;
8964 CORE_ADDR addr;
8965 CORE_ADDR bt_entry_addr = 0;
8966 CORE_ADDR bt_entry[4];
8967 int i;
8968 struct gdbarch *gdbarch = get_current_arch ();
8969 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8970
8971 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8972 || !i386_mpx_enabled ())
8973 {
8974 printf_unfiltered (_("Intel Memory Protection Extensions not "
8975 "supported on this target.\n"));
8976 return;
8977 }
8978
8979 if (args == NULL)
8980 {
8981 printf_unfiltered (_("Address of pointer variable expected.\n"));
8982 return;
8983 }
8984
8985 addr = parse_and_eval_address (args);
8986
8987 bd_base = i386_mpx_bd_base ();
8988 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8989
8990 memset (bt_entry, 0, sizeof (bt_entry));
8991
8992 for (i = 0; i < 4; i++)
8993 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8994 + i * TYPE_LENGTH (data_ptr_type),
8995 data_ptr_type);
8996
8997 i386_mpx_print_bounds (bt_entry);
8998 }
8999
9000 /* Implement the command "set mpx bound". */
9001
9002 static void
9003 i386_mpx_set_bounds (const char *args, int from_tty)
9004 {
9005 CORE_ADDR bd_base = 0;
9006 CORE_ADDR addr, lower, upper;
9007 CORE_ADDR bt_entry_addr = 0;
9008 CORE_ADDR bt_entry[2];
9009 const char *input = args;
9010 int i;
9011 struct gdbarch *gdbarch = get_current_arch ();
9012 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
9013 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
9014
9015 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
9016 || !i386_mpx_enabled ())
9017 error (_("Intel Memory Protection Extensions not supported\
9018 on this target."));
9019
9020 if (args == NULL)
9021 error (_("Pointer value expected."));
9022
9023 addr = value_as_address (parse_to_comma_and_eval (&input));
9024
9025 if (input[0] == ',')
9026 ++input;
9027 if (input[0] == '\0')
9028 error (_("wrong number of arguments: missing lower and upper bound."));
9029 lower = value_as_address (parse_to_comma_and_eval (&input));
9030
9031 if (input[0] == ',')
9032 ++input;
9033 if (input[0] == '\0')
9034 error (_("Wrong number of arguments; Missing upper bound."));
9035 upper = value_as_address (parse_to_comma_and_eval (&input));
9036
9037 bd_base = i386_mpx_bd_base ();
9038 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9039 for (i = 0; i < 2; i++)
9040 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9041 + i * TYPE_LENGTH (data_ptr_type),
9042 data_ptr_type);
9043 bt_entry[0] = (uint64_t) lower;
9044 bt_entry[1] = ~(uint64_t) upper;
9045
9046 for (i = 0; i < 2; i++)
9047 write_memory_unsigned_integer (bt_entry_addr
9048 + i * TYPE_LENGTH (data_ptr_type),
9049 TYPE_LENGTH (data_ptr_type), byte_order,
9050 bt_entry[i]);
9051 }
9052
9053 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9054
9055 void _initialize_i386_tdep ();
9056 void
9057 _initialize_i386_tdep ()
9058 {
9059 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9060
9061 /* Add the variable that controls the disassembly flavor. */
9062 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9063 &disassembly_flavor, _("\
9064 Set the disassembly flavor."), _("\
9065 Show the disassembly flavor."), _("\
9066 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9067 NULL,
9068 NULL, /* FIXME: i18n: */
9069 &setlist, &showlist);
9070
9071 /* Add the variable that controls the convention for returning
9072 structs. */
9073 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9074 &struct_convention, _("\
9075 Set the convention for returning small structs."), _("\
9076 Show the convention for returning small structs."), _("\
9077 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9078 is \"default\"."),
9079 NULL,
9080 NULL, /* FIXME: i18n: */
9081 &setlist, &showlist);
9082
9083 /* Add "mpx" prefix for the set commands. */
9084
9085 add_basic_prefix_cmd ("mpx", class_support, _("\
9086 Set Intel Memory Protection Extensions specific variables."),
9087 &mpx_set_cmdlist, "set mpx ",
9088 0 /* allow-unknown */, &setlist);
9089
9090 /* Add "mpx" prefix for the show commands. */
9091
9092 add_show_prefix_cmd ("mpx", class_support, _("\
9093 Show Intel Memory Protection Extensions specific variables."),
9094 &mpx_show_cmdlist, "show mpx ",
9095 0 /* allow-unknown */, &showlist);
9096
9097 /* Add "bound" command for the show mpx commands list. */
9098
9099 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9100 "Show the memory bounds for a given array/pointer storage\
9101 in the bound table.",
9102 &mpx_show_cmdlist);
9103
9104 /* Add "bound" command for the set mpx commands list. */
9105
9106 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9107 "Set the memory bounds for a given array/pointer storage\
9108 in the bound table.",
9109 &mpx_set_cmdlist);
9110
9111 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9112 i386_svr4_init_abi);
9113
9114 /* Initialize the i386-specific register groups. */
9115 i386_init_reggroups ();
9116
9117 /* Tell remote stub that we support XML target description. */
9118 register_remote_support_xml ("i386");
9119 }