gdb
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 #include "exceptions.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 int base_p;
808 LONGEST sp_offset;
809 CORE_ADDR pc;
810
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
813 CORE_ADDR saved_sp;
814 int saved_sp_reg;
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819 };
820
821 /* Allocate and initialize a frame cache. */
822
823 static struct i386_frame_cache *
824 i386_alloc_frame_cache (void)
825 {
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
832 cache->base_p = 0;
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
841 cache->saved_sp = 0;
842 cache->saved_sp_reg = -1;
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849 }
850
851 /* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
853
854 static CORE_ADDR
855 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 gdb_byte op;
859 long delta = 0;
860 int data16 = 0;
861
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
865 if (op == 0x66)
866 {
867 data16 = 1;
868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
869 }
870
871 switch (op)
872 {
873 case 0xe9:
874 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 if (data16)
876 {
877 delta = read_memory_integer (pc + 2, 2, byte_order);
878
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
881 delta += 4;
882 }
883 else
884 {
885 delta = read_memory_integer (pc + 1, 4, byte_order);
886
887 /* Include the size of the jmp instruction. */
888 delta += 5;
889 }
890 break;
891 case 0xeb:
892 /* Relative jump, disp8 (ignore data16). */
893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
894
895 delta += data16 + 2;
896 break;
897 }
898
899 return pc + delta;
900 }
901
902 /* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
907
908 static CORE_ADDR
909 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
911 {
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
926
927 if (current_pc <= pc)
928 return pc;
929
930 if (target_read_memory (pc, &op, 1))
931 return pc;
932
933 if (op != 0x58) /* popl %eax */
934 return pc;
935
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
941
942 if (current_pc == pc)
943 {
944 cache->sp_offset += 4;
945 return current_pc;
946 }
947
948 if (current_pc == pc + 1)
949 {
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958 }
959
960 static CORE_ADDR
961 i386_skip_probe (CORE_ADDR pc)
962 {
963 /* A function may start with
964
965 pushl constant
966 call _probe
967 addl $4, %esp
968
969 followed by
970
971 pushl %ebp
972
973 etc. */
974 gdb_byte buf[8];
975 gdb_byte op;
976
977 if (target_read_memory (pc, &op, 1))
978 return pc;
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
983
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
986 if (op == 0x68)
987 delta = 5;
988 else
989 delta = 2;
990
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
995 pc += delta + sizeof (buf);
996 }
997
998 return pc;
999 }
1000
1001 /* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010 {
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
1045 };
1046
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
1110 return pc;
1111
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
1114
1115 return min (pc + offset + 3, current_pc);
1116 }
1117
1118 /* Maximum instruction length we need to handle. */
1119 #define I386_MAX_MATCHED_INSN_LEN 6
1120
1121 /* Instruction description. */
1122 struct i386_insn
1123 {
1124 size_t len;
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 };
1128
1129 /* Return whether instruction at PC matches PATTERN. */
1130
1131 static int
1132 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1133 {
1134 gdb_byte op;
1135
1136 if (target_read_memory (pc, &op, 1))
1137 return 0;
1138
1139 if ((op & pattern.mask[0]) == pattern.insn[0])
1140 {
1141 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1142 int insn_matched = 1;
1143 size_t i;
1144
1145 gdb_assert (pattern.len > 1);
1146 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1147
1148 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1149 return 0;
1150
1151 for (i = 1; i < pattern.len; i++)
1152 {
1153 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1154 insn_matched = 0;
1155 }
1156 return insn_matched;
1157 }
1158 return 0;
1159 }
1160
1161 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1162 the first instruction description that matches. Otherwise, return
1163 NULL. */
1164
1165 static struct i386_insn *
1166 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1167 {
1168 struct i386_insn *pattern;
1169
1170 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1171 {
1172 if (i386_match_pattern (pc, *pattern))
1173 return pattern;
1174 }
1175
1176 return NULL;
1177 }
1178
1179 /* Return whether PC points inside a sequence of instructions that
1180 matches INSN_PATTERNS. */
1181
1182 static int
1183 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1184 {
1185 CORE_ADDR current_pc;
1186 int ix, i;
1187 gdb_byte op;
1188 struct i386_insn *insn;
1189
1190 insn = i386_match_insn (pc, insn_patterns);
1191 if (insn == NULL)
1192 return 0;
1193
1194 current_pc = pc;
1195 ix = insn - insn_patterns;
1196 for (i = ix - 1; i >= 0; i--)
1197 {
1198 current_pc -= insn_patterns[i].len;
1199
1200 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1201 return 0;
1202 }
1203
1204 current_pc = pc + insn->len;
1205 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1206 {
1207 if (!i386_match_pattern (current_pc, *insn))
1208 return 0;
1209
1210 current_pc += insn->len;
1211 }
1212
1213 return 1;
1214 }
1215
1216 /* Some special instructions that might be migrated by GCC into the
1217 part of the prologue that sets up the new stack frame. Because the
1218 stack frame hasn't been setup yet, no registers have been saved
1219 yet, and only the scratch registers %eax, %ecx and %edx can be
1220 touched. */
1221
1222 struct i386_insn i386_frame_setup_skip_insns[] =
1223 {
1224 /* Check for `movb imm8, r' and `movl imm32, r'.
1225
1226 ??? Should we handle 16-bit operand-sizes here? */
1227
1228 /* `movb imm8, %al' and `movb imm8, %ah' */
1229 /* `movb imm8, %cl' and `movb imm8, %ch' */
1230 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1231 /* `movb imm8, %dl' and `movb imm8, %dh' */
1232 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1233 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1234 { 5, { 0xb8 }, { 0xfe } },
1235 /* `movl imm32, %edx' */
1236 { 5, { 0xba }, { 0xff } },
1237
1238 /* Check for `mov imm32, r32'. Note that there is an alternative
1239 encoding for `mov m32, %eax'.
1240
1241 ??? Should we handle SIB adressing here?
1242 ??? Should we handle 16-bit operand-sizes here? */
1243
1244 /* `movl m32, %eax' */
1245 { 5, { 0xa1 }, { 0xff } },
1246 /* `movl m32, %eax' and `mov; m32, %ecx' */
1247 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1248 /* `movl m32, %edx' */
1249 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1250
1251 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1252 Because of the symmetry, there are actually two ways to encode
1253 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1254 opcode bytes 0x31 and 0x33 for `xorl'. */
1255
1256 /* `subl %eax, %eax' */
1257 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1258 /* `subl %ecx, %ecx' */
1259 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1260 /* `subl %edx, %edx' */
1261 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1262 /* `xorl %eax, %eax' */
1263 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1264 /* `xorl %ecx, %ecx' */
1265 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1266 /* `xorl %edx, %edx' */
1267 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1268 { 0 }
1269 };
1270
1271
1272 /* Check whether PC points to a no-op instruction. */
1273 static CORE_ADDR
1274 i386_skip_noop (CORE_ADDR pc)
1275 {
1276 gdb_byte op;
1277 int check = 1;
1278
1279 if (target_read_memory (pc, &op, 1))
1280 return pc;
1281
1282 while (check)
1283 {
1284 check = 0;
1285 /* Ignore `nop' instruction. */
1286 if (op == 0x90)
1287 {
1288 pc += 1;
1289 if (target_read_memory (pc, &op, 1))
1290 return pc;
1291 check = 1;
1292 }
1293 /* Ignore no-op instruction `mov %edi, %edi'.
1294 Microsoft system dlls often start with
1295 a `mov %edi,%edi' instruction.
1296 The 5 bytes before the function start are
1297 filled with `nop' instructions.
1298 This pattern can be used for hot-patching:
1299 The `mov %edi, %edi' instruction can be replaced by a
1300 near jump to the location of the 5 `nop' instructions
1301 which can be replaced by a 32-bit jump to anywhere
1302 in the 32-bit address space. */
1303
1304 else if (op == 0x8b)
1305 {
1306 if (target_read_memory (pc + 1, &op, 1))
1307 return pc;
1308
1309 if (op == 0xff)
1310 {
1311 pc += 2;
1312 if (target_read_memory (pc, &op, 1))
1313 return pc;
1314
1315 check = 1;
1316 }
1317 }
1318 }
1319 return pc;
1320 }
1321
1322 /* Check whether PC points at a code that sets up a new stack frame.
1323 If so, it updates CACHE and returns the address of the first
1324 instruction after the sequence that sets up the frame or LIMIT,
1325 whichever is smaller. If we don't recognize the code, return PC. */
1326
1327 static CORE_ADDR
1328 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1329 CORE_ADDR pc, CORE_ADDR limit,
1330 struct i386_frame_cache *cache)
1331 {
1332 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1333 struct i386_insn *insn;
1334 gdb_byte op;
1335 int skip = 0;
1336
1337 if (limit <= pc)
1338 return limit;
1339
1340 if (target_read_memory (pc, &op, 1))
1341 return pc;
1342
1343 if (op == 0x55) /* pushl %ebp */
1344 {
1345 /* Take into account that we've executed the `pushl %ebp' that
1346 starts this instruction sequence. */
1347 cache->saved_regs[I386_EBP_REGNUM] = 0;
1348 cache->sp_offset += 4;
1349 pc++;
1350
1351 /* If that's all, return now. */
1352 if (limit <= pc)
1353 return limit;
1354
1355 /* Check for some special instructions that might be migrated by
1356 GCC into the prologue and skip them. At this point in the
1357 prologue, code should only touch the scratch registers %eax,
1358 %ecx and %edx, so while the number of posibilities is sheer,
1359 it is limited.
1360
1361 Make sure we only skip these instructions if we later see the
1362 `movl %esp, %ebp' that actually sets up the frame. */
1363 while (pc + skip < limit)
1364 {
1365 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1366 if (insn == NULL)
1367 break;
1368
1369 skip += insn->len;
1370 }
1371
1372 /* If that's all, return now. */
1373 if (limit <= pc + skip)
1374 return limit;
1375
1376 if (target_read_memory (pc + skip, &op, 1))
1377 return pc + skip;
1378
1379 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1380 switch (op)
1381 {
1382 case 0x8b:
1383 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1384 != 0xec)
1385 return pc;
1386 break;
1387 case 0x89:
1388 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1389 != 0xe5)
1390 return pc;
1391 break;
1392 default:
1393 return pc;
1394 }
1395
1396 /* OK, we actually have a frame. We just don't know how large
1397 it is yet. Set its size to zero. We'll adjust it if
1398 necessary. We also now commit to skipping the special
1399 instructions mentioned before. */
1400 cache->locals = 0;
1401 pc += (skip + 2);
1402
1403 /* If that's all, return now. */
1404 if (limit <= pc)
1405 return limit;
1406
1407 /* Check for stack adjustment
1408
1409 subl $XXX, %esp
1410
1411 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1412 reg, so we don't have to worry about a data16 prefix. */
1413 if (target_read_memory (pc, &op, 1))
1414 return pc;
1415 if (op == 0x83)
1416 {
1417 /* `subl' with 8-bit immediate. */
1418 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1419 /* Some instruction starting with 0x83 other than `subl'. */
1420 return pc;
1421
1422 /* `subl' with signed 8-bit immediate (though it wouldn't
1423 make sense to be negative). */
1424 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1425 return pc + 3;
1426 }
1427 else if (op == 0x81)
1428 {
1429 /* Maybe it is `subl' with a 32-bit immediate. */
1430 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1431 /* Some instruction starting with 0x81 other than `subl'. */
1432 return pc;
1433
1434 /* It is `subl' with a 32-bit immediate. */
1435 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1436 return pc + 6;
1437 }
1438 else
1439 {
1440 /* Some instruction other than `subl'. */
1441 return pc;
1442 }
1443 }
1444 else if (op == 0xc8) /* enter */
1445 {
1446 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1447 return pc + 4;
1448 }
1449
1450 return pc;
1451 }
1452
1453 /* Check whether PC points at code that saves registers on the stack.
1454 If so, it updates CACHE and returns the address of the first
1455 instruction after the register saves or CURRENT_PC, whichever is
1456 smaller. Otherwise, return PC. */
1457
1458 static CORE_ADDR
1459 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1460 struct i386_frame_cache *cache)
1461 {
1462 CORE_ADDR offset = 0;
1463 gdb_byte op;
1464 int i;
1465
1466 if (cache->locals > 0)
1467 offset -= cache->locals;
1468 for (i = 0; i < 8 && pc < current_pc; i++)
1469 {
1470 if (target_read_memory (pc, &op, 1))
1471 return pc;
1472 if (op < 0x50 || op > 0x57)
1473 break;
1474
1475 offset -= 4;
1476 cache->saved_regs[op - 0x50] = offset;
1477 cache->sp_offset += 4;
1478 pc++;
1479 }
1480
1481 return pc;
1482 }
1483
1484 /* Do a full analysis of the prologue at PC and update CACHE
1485 accordingly. Bail out early if CURRENT_PC is reached. Return the
1486 address where the analysis stopped.
1487
1488 We handle these cases:
1489
1490 The startup sequence can be at the start of the function, or the
1491 function can start with a branch to startup code at the end.
1492
1493 %ebp can be set up with either the 'enter' instruction, or "pushl
1494 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1495 once used in the System V compiler).
1496
1497 Local space is allocated just below the saved %ebp by either the
1498 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1499 16-bit unsigned argument for space to allocate, and the 'addl'
1500 instruction could have either a signed byte, or 32-bit immediate.
1501
1502 Next, the registers used by this function are pushed. With the
1503 System V compiler they will always be in the order: %edi, %esi,
1504 %ebx (and sometimes a harmless bug causes it to also save but not
1505 restore %eax); however, the code below is willing to see the pushes
1506 in any order, and will handle up to 8 of them.
1507
1508 If the setup sequence is at the end of the function, then the next
1509 instruction will be a branch back to the start. */
1510
1511 static CORE_ADDR
1512 i386_analyze_prologue (struct gdbarch *gdbarch,
1513 CORE_ADDR pc, CORE_ADDR current_pc,
1514 struct i386_frame_cache *cache)
1515 {
1516 pc = i386_skip_noop (pc);
1517 pc = i386_follow_jump (gdbarch, pc);
1518 pc = i386_analyze_struct_return (pc, current_pc, cache);
1519 pc = i386_skip_probe (pc);
1520 pc = i386_analyze_stack_align (pc, current_pc, cache);
1521 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1522 return i386_analyze_register_saves (pc, current_pc, cache);
1523 }
1524
1525 /* Return PC of first real instruction. */
1526
1527 static CORE_ADDR
1528 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1529 {
1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1531
1532 static gdb_byte pic_pat[6] =
1533 {
1534 0xe8, 0, 0, 0, 0, /* call 0x0 */
1535 0x5b, /* popl %ebx */
1536 };
1537 struct i386_frame_cache cache;
1538 CORE_ADDR pc;
1539 gdb_byte op;
1540 int i;
1541
1542 cache.locals = -1;
1543 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1544 if (cache.locals < 0)
1545 return start_pc;
1546
1547 /* Found valid frame setup. */
1548
1549 /* The native cc on SVR4 in -K PIC mode inserts the following code
1550 to get the address of the global offset table (GOT) into register
1551 %ebx:
1552
1553 call 0x0
1554 popl %ebx
1555 movl %ebx,x(%ebp) (optional)
1556 addl y,%ebx
1557
1558 This code is with the rest of the prologue (at the end of the
1559 function), so we have to skip it to get to the first real
1560 instruction at the start of the function. */
1561
1562 for (i = 0; i < 6; i++)
1563 {
1564 if (target_read_memory (pc + i, &op, 1))
1565 return pc;
1566
1567 if (pic_pat[i] != op)
1568 break;
1569 }
1570 if (i == 6)
1571 {
1572 int delta = 6;
1573
1574 if (target_read_memory (pc + delta, &op, 1))
1575 return pc;
1576
1577 if (op == 0x89) /* movl %ebx, x(%ebp) */
1578 {
1579 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1580
1581 if (op == 0x5d) /* One byte offset from %ebp. */
1582 delta += 3;
1583 else if (op == 0x9d) /* Four byte offset from %ebp. */
1584 delta += 6;
1585 else /* Unexpected instruction. */
1586 delta = 0;
1587
1588 if (target_read_memory (pc + delta, &op, 1))
1589 return pc;
1590 }
1591
1592 /* addl y,%ebx */
1593 if (delta > 0 && op == 0x81
1594 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1595 == 0xc3)
1596 {
1597 pc += delta + 6;
1598 }
1599 }
1600
1601 /* If the function starts with a branch (to startup code at the end)
1602 the last instruction should bring us back to the first
1603 instruction of the real code. */
1604 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1605 pc = i386_follow_jump (gdbarch, pc);
1606
1607 return pc;
1608 }
1609
1610 /* Check that the code pointed to by PC corresponds to a call to
1611 __main, skip it if so. Return PC otherwise. */
1612
1613 CORE_ADDR
1614 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1615 {
1616 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1617 gdb_byte op;
1618
1619 if (target_read_memory (pc, &op, 1))
1620 return pc;
1621 if (op == 0xe8)
1622 {
1623 gdb_byte buf[4];
1624
1625 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1626 {
1627 /* Make sure address is computed correctly as a 32bit
1628 integer even if CORE_ADDR is 64 bit wide. */
1629 struct minimal_symbol *s;
1630 CORE_ADDR call_dest;
1631
1632 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1633 call_dest = call_dest & 0xffffffffU;
1634 s = lookup_minimal_symbol_by_pc (call_dest);
1635 if (s != NULL
1636 && SYMBOL_LINKAGE_NAME (s) != NULL
1637 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1638 pc += 5;
1639 }
1640 }
1641
1642 return pc;
1643 }
1644
1645 /* This function is 64-bit safe. */
1646
1647 static CORE_ADDR
1648 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1649 {
1650 gdb_byte buf[8];
1651
1652 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1653 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1654 }
1655 \f
1656
1657 /* Normal frames. */
1658
1659 static void
1660 i386_frame_cache_1 (struct frame_info *this_frame,
1661 struct i386_frame_cache *cache)
1662 {
1663 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1664 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1665 gdb_byte buf[4];
1666 int i;
1667
1668 cache->pc = get_frame_func (this_frame);
1669
1670 /* In principle, for normal frames, %ebp holds the frame pointer,
1671 which holds the base address for the current stack frame.
1672 However, for functions that don't need it, the frame pointer is
1673 optional. For these "frameless" functions the frame pointer is
1674 actually the frame pointer of the calling frame. Signal
1675 trampolines are just a special case of a "frameless" function.
1676 They (usually) share their frame pointer with the frame that was
1677 in progress when the signal occurred. */
1678
1679 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1680 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1681 if (cache->base == 0)
1682 return;
1683
1684 /* For normal frames, %eip is stored at 4(%ebp). */
1685 cache->saved_regs[I386_EIP_REGNUM] = 4;
1686
1687 if (cache->pc != 0)
1688 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1689 cache);
1690
1691 if (cache->locals < 0)
1692 {
1693 /* We didn't find a valid frame, which means that CACHE->base
1694 currently holds the frame pointer for our calling frame. If
1695 we're at the start of a function, or somewhere half-way its
1696 prologue, the function's frame probably hasn't been fully
1697 setup yet. Try to reconstruct the base address for the stack
1698 frame by looking at the stack pointer. For truly "frameless"
1699 functions this might work too. */
1700
1701 if (cache->saved_sp_reg != -1)
1702 {
1703 /* Saved stack pointer has been saved. */
1704 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1705 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1706
1707 /* We're halfway aligning the stack. */
1708 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1709 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1710
1711 /* This will be added back below. */
1712 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1713 }
1714 else if (cache->pc != 0
1715 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1716 {
1717 /* We're in a known function, but did not find a frame
1718 setup. Assume that the function does not use %ebp.
1719 Alternatively, we may have jumped to an invalid
1720 address; in that case there is definitely no new
1721 frame in %ebp. */
1722 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1723 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1724 + cache->sp_offset;
1725 }
1726 else
1727 /* We're in an unknown function. We could not find the start
1728 of the function to analyze the prologue; our best option is
1729 to assume a typical frame layout with the caller's %ebp
1730 saved. */
1731 cache->saved_regs[I386_EBP_REGNUM] = 0;
1732 }
1733
1734 if (cache->saved_sp_reg != -1)
1735 {
1736 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1737 register may be unavailable). */
1738 if (cache->saved_sp == 0
1739 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1740 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1741 }
1742 /* Now that we have the base address for the stack frame we can
1743 calculate the value of %esp in the calling frame. */
1744 else if (cache->saved_sp == 0)
1745 cache->saved_sp = cache->base + 8;
1746
1747 /* Adjust all the saved registers such that they contain addresses
1748 instead of offsets. */
1749 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1750 if (cache->saved_regs[i] != -1)
1751 cache->saved_regs[i] += cache->base;
1752
1753 cache->base_p = 1;
1754 }
1755
1756 static struct i386_frame_cache *
1757 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1758 {
1759 volatile struct gdb_exception ex;
1760 struct i386_frame_cache *cache;
1761
1762 if (*this_cache)
1763 return *this_cache;
1764
1765 cache = i386_alloc_frame_cache ();
1766 *this_cache = cache;
1767
1768 TRY_CATCH (ex, RETURN_MASK_ERROR)
1769 {
1770 i386_frame_cache_1 (this_frame, cache);
1771 }
1772 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1773 throw_exception (ex);
1774
1775 return cache;
1776 }
1777
1778 static void
1779 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1780 struct frame_id *this_id)
1781 {
1782 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1783
1784 /* This marks the outermost frame. */
1785 if (cache->base == 0)
1786 return;
1787
1788 /* See the end of i386_push_dummy_call. */
1789 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1790 }
1791
1792 static enum unwind_stop_reason
1793 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1794 void **this_cache)
1795 {
1796 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1797
1798 if (!cache->base_p)
1799 return UNWIND_UNAVAILABLE;
1800
1801 /* This marks the outermost frame. */
1802 if (cache->base == 0)
1803 return UNWIND_OUTERMOST;
1804
1805 return UNWIND_NO_REASON;
1806 }
1807
1808 static struct value *
1809 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1810 int regnum)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 gdb_assert (regnum >= 0);
1815
1816 /* The System V ABI says that:
1817
1818 "The flags register contains the system flags, such as the
1819 direction flag and the carry flag. The direction flag must be
1820 set to the forward (that is, zero) direction before entry and
1821 upon exit from a function. Other user flags have no specified
1822 role in the standard calling sequence and are not preserved."
1823
1824 To guarantee the "upon exit" part of that statement we fake a
1825 saved flags register that has its direction flag cleared.
1826
1827 Note that GCC doesn't seem to rely on the fact that the direction
1828 flag is cleared after a function return; it always explicitly
1829 clears the flag before operations where it matters.
1830
1831 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1832 right thing to do. The way we fake the flags register here makes
1833 it impossible to change it. */
1834
1835 if (regnum == I386_EFLAGS_REGNUM)
1836 {
1837 ULONGEST val;
1838
1839 val = get_frame_register_unsigned (this_frame, regnum);
1840 val &= ~(1 << 10);
1841 return frame_unwind_got_constant (this_frame, regnum, val);
1842 }
1843
1844 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1845 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1846
1847 if (regnum == I386_ESP_REGNUM
1848 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1849 {
1850 /* If the SP has been saved, but we don't know where, then this
1851 means that SAVED_SP_REG register was found unavailable back
1852 when we built the cache. */
1853 if (cache->saved_sp == 0)
1854 return frame_unwind_got_register (this_frame, regnum,
1855 cache->saved_sp_reg);
1856 else
1857 return frame_unwind_got_constant (this_frame, regnum,
1858 cache->saved_sp);
1859 }
1860
1861 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1862 return frame_unwind_got_memory (this_frame, regnum,
1863 cache->saved_regs[regnum]);
1864
1865 return frame_unwind_got_register (this_frame, regnum, regnum);
1866 }
1867
1868 static const struct frame_unwind i386_frame_unwind =
1869 {
1870 NORMAL_FRAME,
1871 i386_frame_unwind_stop_reason,
1872 i386_frame_this_id,
1873 i386_frame_prev_register,
1874 NULL,
1875 default_frame_sniffer
1876 };
1877
1878 /* Normal frames, but in a function epilogue. */
1879
1880 /* The epilogue is defined here as the 'ret' instruction, which will
1881 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1882 the function's stack frame. */
1883
1884 static int
1885 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1886 {
1887 gdb_byte insn;
1888 struct symtab *symtab;
1889
1890 symtab = find_pc_symtab (pc);
1891 if (symtab && symtab->epilogue_unwind_valid)
1892 return 0;
1893
1894 if (target_read_memory (pc, &insn, 1))
1895 return 0; /* Can't read memory at pc. */
1896
1897 if (insn != 0xc3) /* 'ret' instruction. */
1898 return 0;
1899
1900 return 1;
1901 }
1902
1903 static int
1904 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1905 struct frame_info *this_frame,
1906 void **this_prologue_cache)
1907 {
1908 if (frame_relative_level (this_frame) == 0)
1909 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1910 get_frame_pc (this_frame));
1911 else
1912 return 0;
1913 }
1914
1915 static struct i386_frame_cache *
1916 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1917 {
1918 volatile struct gdb_exception ex;
1919 struct i386_frame_cache *cache;
1920 CORE_ADDR sp;
1921
1922 if (*this_cache)
1923 return *this_cache;
1924
1925 cache = i386_alloc_frame_cache ();
1926 *this_cache = cache;
1927
1928 TRY_CATCH (ex, RETURN_MASK_ERROR)
1929 {
1930 cache->pc = get_frame_func (this_frame);
1931
1932 /* At this point the stack looks as if we just entered the
1933 function, with the return address at the top of the
1934 stack. */
1935 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1936 cache->base = sp + cache->sp_offset;
1937 cache->saved_sp = cache->base + 8;
1938 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1939
1940 cache->base_p = 1;
1941 }
1942 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1943 throw_exception (ex);
1944
1945 return cache;
1946 }
1947
1948 static enum unwind_stop_reason
1949 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1950 void **this_cache)
1951 {
1952 struct i386_frame_cache *cache =
1953 i386_epilogue_frame_cache (this_frame, this_cache);
1954
1955 if (!cache->base_p)
1956 return UNWIND_UNAVAILABLE;
1957
1958 return UNWIND_NO_REASON;
1959 }
1960
1961 static void
1962 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1963 void **this_cache,
1964 struct frame_id *this_id)
1965 {
1966 struct i386_frame_cache *cache =
1967 i386_epilogue_frame_cache (this_frame, this_cache);
1968
1969 if (!cache->base_p)
1970 return;
1971
1972 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1973 }
1974
1975 static struct value *
1976 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1977 void **this_cache, int regnum)
1978 {
1979 /* Make sure we've initialized the cache. */
1980 i386_epilogue_frame_cache (this_frame, this_cache);
1981
1982 return i386_frame_prev_register (this_frame, this_cache, regnum);
1983 }
1984
1985 static const struct frame_unwind i386_epilogue_frame_unwind =
1986 {
1987 NORMAL_FRAME,
1988 i386_epilogue_frame_unwind_stop_reason,
1989 i386_epilogue_frame_this_id,
1990 i386_epilogue_frame_prev_register,
1991 NULL,
1992 i386_epilogue_frame_sniffer
1993 };
1994 \f
1995
1996 /* Stack-based trampolines. */
1997
1998 /* These trampolines are used on cross x86 targets, when taking the
1999 address of a nested function. When executing these trampolines,
2000 no stack frame is set up, so we are in a similar situation as in
2001 epilogues and i386_epilogue_frame_this_id can be re-used. */
2002
2003 /* Static chain passed in register. */
2004
2005 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2006 {
2007 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2008 { 5, { 0xb8 }, { 0xfe } },
2009
2010 /* `jmp imm32' */
2011 { 5, { 0xe9 }, { 0xff } },
2012
2013 {0}
2014 };
2015
2016 /* Static chain passed on stack (when regparm=3). */
2017
2018 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2019 {
2020 /* `push imm32' */
2021 { 5, { 0x68 }, { 0xff } },
2022
2023 /* `jmp imm32' */
2024 { 5, { 0xe9 }, { 0xff } },
2025
2026 {0}
2027 };
2028
2029 /* Return whether PC points inside a stack trampoline. */
2030
2031 static int
2032 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2033 {
2034 gdb_byte insn;
2035 char *name;
2036
2037 /* A stack trampoline is detected if no name is associated
2038 to the current pc and if it points inside a trampoline
2039 sequence. */
2040
2041 find_pc_partial_function (pc, &name, NULL, NULL);
2042 if (name)
2043 return 0;
2044
2045 if (target_read_memory (pc, &insn, 1))
2046 return 0;
2047
2048 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2049 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2050 return 0;
2051
2052 return 1;
2053 }
2054
2055 static int
2056 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2057 struct frame_info *this_frame,
2058 void **this_cache)
2059 {
2060 if (frame_relative_level (this_frame) == 0)
2061 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2062 get_frame_pc (this_frame));
2063 else
2064 return 0;
2065 }
2066
2067 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2068 {
2069 NORMAL_FRAME,
2070 i386_epilogue_frame_unwind_stop_reason,
2071 i386_epilogue_frame_this_id,
2072 i386_epilogue_frame_prev_register,
2073 NULL,
2074 i386_stack_tramp_frame_sniffer
2075 };
2076 \f
2077
2078 /* Signal trampolines. */
2079
2080 static struct i386_frame_cache *
2081 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2082 {
2083 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2085 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2086 volatile struct gdb_exception ex;
2087 struct i386_frame_cache *cache;
2088 CORE_ADDR addr;
2089 gdb_byte buf[4];
2090
2091 if (*this_cache)
2092 return *this_cache;
2093
2094 cache = i386_alloc_frame_cache ();
2095
2096 TRY_CATCH (ex, RETURN_MASK_ERROR)
2097 {
2098 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2099 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2100
2101 addr = tdep->sigcontext_addr (this_frame);
2102 if (tdep->sc_reg_offset)
2103 {
2104 int i;
2105
2106 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2107
2108 for (i = 0; i < tdep->sc_num_regs; i++)
2109 if (tdep->sc_reg_offset[i] != -1)
2110 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2111 }
2112 else
2113 {
2114 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2115 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2116 }
2117
2118 cache->base_p = 1;
2119 }
2120 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2121 throw_exception (ex);
2122
2123 *this_cache = cache;
2124 return cache;
2125 }
2126
2127 static enum unwind_stop_reason
2128 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2129 void **this_cache)
2130 {
2131 struct i386_frame_cache *cache =
2132 i386_sigtramp_frame_cache (this_frame, this_cache);
2133
2134 if (!cache->base_p)
2135 return UNWIND_UNAVAILABLE;
2136
2137 return UNWIND_NO_REASON;
2138 }
2139
2140 static void
2141 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2142 struct frame_id *this_id)
2143 {
2144 struct i386_frame_cache *cache =
2145 i386_sigtramp_frame_cache (this_frame, this_cache);
2146
2147 if (!cache->base_p)
2148 return;
2149
2150 /* See the end of i386_push_dummy_call. */
2151 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2152 }
2153
2154 static struct value *
2155 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2156 void **this_cache, int regnum)
2157 {
2158 /* Make sure we've initialized the cache. */
2159 i386_sigtramp_frame_cache (this_frame, this_cache);
2160
2161 return i386_frame_prev_register (this_frame, this_cache, regnum);
2162 }
2163
2164 static int
2165 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2166 struct frame_info *this_frame,
2167 void **this_prologue_cache)
2168 {
2169 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2170
2171 /* We shouldn't even bother if we don't have a sigcontext_addr
2172 handler. */
2173 if (tdep->sigcontext_addr == NULL)
2174 return 0;
2175
2176 if (tdep->sigtramp_p != NULL)
2177 {
2178 if (tdep->sigtramp_p (this_frame))
2179 return 1;
2180 }
2181
2182 if (tdep->sigtramp_start != 0)
2183 {
2184 CORE_ADDR pc = get_frame_pc (this_frame);
2185
2186 gdb_assert (tdep->sigtramp_end != 0);
2187 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2188 return 1;
2189 }
2190
2191 return 0;
2192 }
2193
2194 static const struct frame_unwind i386_sigtramp_frame_unwind =
2195 {
2196 SIGTRAMP_FRAME,
2197 i386_sigtramp_frame_unwind_stop_reason,
2198 i386_sigtramp_frame_this_id,
2199 i386_sigtramp_frame_prev_register,
2200 NULL,
2201 i386_sigtramp_frame_sniffer
2202 };
2203 \f
2204
2205 static CORE_ADDR
2206 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2207 {
2208 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2209
2210 return cache->base;
2211 }
2212
2213 static const struct frame_base i386_frame_base =
2214 {
2215 &i386_frame_unwind,
2216 i386_frame_base_address,
2217 i386_frame_base_address,
2218 i386_frame_base_address
2219 };
2220
2221 static struct frame_id
2222 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2223 {
2224 CORE_ADDR fp;
2225
2226 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2227
2228 /* See the end of i386_push_dummy_call. */
2229 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2230 }
2231 \f
2232
2233 /* Figure out where the longjmp will land. Slurp the args out of the
2234 stack. We expect the first arg to be a pointer to the jmp_buf
2235 structure from which we extract the address that we will land at.
2236 This address is copied into PC. This routine returns non-zero on
2237 success. */
2238
2239 static int
2240 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2241 {
2242 gdb_byte buf[4];
2243 CORE_ADDR sp, jb_addr;
2244 struct gdbarch *gdbarch = get_frame_arch (frame);
2245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2246 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2247
2248 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2249 longjmp will land. */
2250 if (jb_pc_offset == -1)
2251 return 0;
2252
2253 get_frame_register (frame, I386_ESP_REGNUM, buf);
2254 sp = extract_unsigned_integer (buf, 4, byte_order);
2255 if (target_read_memory (sp + 4, buf, 4))
2256 return 0;
2257
2258 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2259 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2260 return 0;
2261
2262 *pc = extract_unsigned_integer (buf, 4, byte_order);
2263 return 1;
2264 }
2265 \f
2266
2267 /* Check whether TYPE must be 16-byte-aligned when passed as a
2268 function argument. 16-byte vectors, _Decimal128 and structures or
2269 unions containing such types must be 16-byte-aligned; other
2270 arguments are 4-byte-aligned. */
2271
2272 static int
2273 i386_16_byte_align_p (struct type *type)
2274 {
2275 type = check_typedef (type);
2276 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2277 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2278 && TYPE_LENGTH (type) == 16)
2279 return 1;
2280 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2281 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2282 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2283 || TYPE_CODE (type) == TYPE_CODE_UNION)
2284 {
2285 int i;
2286 for (i = 0; i < TYPE_NFIELDS (type); i++)
2287 {
2288 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2289 return 1;
2290 }
2291 }
2292 return 0;
2293 }
2294
2295 static CORE_ADDR
2296 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2297 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2298 struct value **args, CORE_ADDR sp, int struct_return,
2299 CORE_ADDR struct_addr)
2300 {
2301 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2302 gdb_byte buf[4];
2303 int i;
2304 int write_pass;
2305 int args_space = 0;
2306
2307 /* Determine the total space required for arguments and struct
2308 return address in a first pass (allowing for 16-byte-aligned
2309 arguments), then push arguments in a second pass. */
2310
2311 for (write_pass = 0; write_pass < 2; write_pass++)
2312 {
2313 int args_space_used = 0;
2314 int have_16_byte_aligned_arg = 0;
2315
2316 if (struct_return)
2317 {
2318 if (write_pass)
2319 {
2320 /* Push value address. */
2321 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2322 write_memory (sp, buf, 4);
2323 args_space_used += 4;
2324 }
2325 else
2326 args_space += 4;
2327 }
2328
2329 for (i = 0; i < nargs; i++)
2330 {
2331 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2332
2333 if (write_pass)
2334 {
2335 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2336 args_space_used = align_up (args_space_used, 16);
2337
2338 write_memory (sp + args_space_used,
2339 value_contents_all (args[i]), len);
2340 /* The System V ABI says that:
2341
2342 "An argument's size is increased, if necessary, to make it a
2343 multiple of [32-bit] words. This may require tail padding,
2344 depending on the size of the argument."
2345
2346 This makes sure the stack stays word-aligned. */
2347 args_space_used += align_up (len, 4);
2348 }
2349 else
2350 {
2351 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2352 {
2353 args_space = align_up (args_space, 16);
2354 have_16_byte_aligned_arg = 1;
2355 }
2356 args_space += align_up (len, 4);
2357 }
2358 }
2359
2360 if (!write_pass)
2361 {
2362 if (have_16_byte_aligned_arg)
2363 args_space = align_up (args_space, 16);
2364 sp -= args_space;
2365 }
2366 }
2367
2368 /* Store return address. */
2369 sp -= 4;
2370 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2371 write_memory (sp, buf, 4);
2372
2373 /* Finally, update the stack pointer... */
2374 store_unsigned_integer (buf, 4, byte_order, sp);
2375 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2376
2377 /* ...and fake a frame pointer. */
2378 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2379
2380 /* MarkK wrote: This "+ 8" is all over the place:
2381 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2382 i386_dummy_id). It's there, since all frame unwinders for
2383 a given target have to agree (within a certain margin) on the
2384 definition of the stack address of a frame. Otherwise frame id
2385 comparison might not work correctly. Since DWARF2/GCC uses the
2386 stack address *before* the function call as a frame's CFA. On
2387 the i386, when %ebp is used as a frame pointer, the offset
2388 between the contents %ebp and the CFA as defined by GCC. */
2389 return sp + 8;
2390 }
2391
2392 /* These registers are used for returning integers (and on some
2393 targets also for returning `struct' and `union' values when their
2394 size and alignment match an integer type). */
2395 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2396 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2397
2398 /* Read, for architecture GDBARCH, a function return value of TYPE
2399 from REGCACHE, and copy that into VALBUF. */
2400
2401 static void
2402 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2403 struct regcache *regcache, gdb_byte *valbuf)
2404 {
2405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2406 int len = TYPE_LENGTH (type);
2407 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2408
2409 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2410 {
2411 if (tdep->st0_regnum < 0)
2412 {
2413 warning (_("Cannot find floating-point return value."));
2414 memset (valbuf, 0, len);
2415 return;
2416 }
2417
2418 /* Floating-point return values can be found in %st(0). Convert
2419 its contents to the desired type. This is probably not
2420 exactly how it would happen on the target itself, but it is
2421 the best we can do. */
2422 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2423 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2424 }
2425 else
2426 {
2427 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2428 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2429
2430 if (len <= low_size)
2431 {
2432 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2433 memcpy (valbuf, buf, len);
2434 }
2435 else if (len <= (low_size + high_size))
2436 {
2437 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2438 memcpy (valbuf, buf, low_size);
2439 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2440 memcpy (valbuf + low_size, buf, len - low_size);
2441 }
2442 else
2443 internal_error (__FILE__, __LINE__,
2444 _("Cannot extract return value of %d bytes long."),
2445 len);
2446 }
2447 }
2448
2449 /* Write, for architecture GDBARCH, a function return value of TYPE
2450 from VALBUF into REGCACHE. */
2451
2452 static void
2453 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2454 struct regcache *regcache, const gdb_byte *valbuf)
2455 {
2456 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2457 int len = TYPE_LENGTH (type);
2458
2459 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2460 {
2461 ULONGEST fstat;
2462 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2463
2464 if (tdep->st0_regnum < 0)
2465 {
2466 warning (_("Cannot set floating-point return value."));
2467 return;
2468 }
2469
2470 /* Returning floating-point values is a bit tricky. Apart from
2471 storing the return value in %st(0), we have to simulate the
2472 state of the FPU at function return point. */
2473
2474 /* Convert the value found in VALBUF to the extended
2475 floating-point format used by the FPU. This is probably
2476 not exactly how it would happen on the target itself, but
2477 it is the best we can do. */
2478 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2479 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2480
2481 /* Set the top of the floating-point register stack to 7. The
2482 actual value doesn't really matter, but 7 is what a normal
2483 function return would end up with if the program started out
2484 with a freshly initialized FPU. */
2485 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2486 fstat |= (7 << 11);
2487 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2488
2489 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2490 the floating-point register stack to 7, the appropriate value
2491 for the tag word is 0x3fff. */
2492 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2493 }
2494 else
2495 {
2496 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2497 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2498
2499 if (len <= low_size)
2500 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2501 else if (len <= (low_size + high_size))
2502 {
2503 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2504 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2505 len - low_size, valbuf + low_size);
2506 }
2507 else
2508 internal_error (__FILE__, __LINE__,
2509 _("Cannot store return value of %d bytes long."), len);
2510 }
2511 }
2512 \f
2513
2514 /* This is the variable that is set with "set struct-convention", and
2515 its legitimate values. */
2516 static const char default_struct_convention[] = "default";
2517 static const char pcc_struct_convention[] = "pcc";
2518 static const char reg_struct_convention[] = "reg";
2519 static const char *valid_conventions[] =
2520 {
2521 default_struct_convention,
2522 pcc_struct_convention,
2523 reg_struct_convention,
2524 NULL
2525 };
2526 static const char *struct_convention = default_struct_convention;
2527
2528 /* Return non-zero if TYPE, which is assumed to be a structure,
2529 a union type, or an array type, should be returned in registers
2530 for architecture GDBARCH. */
2531
2532 static int
2533 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2534 {
2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2536 enum type_code code = TYPE_CODE (type);
2537 int len = TYPE_LENGTH (type);
2538
2539 gdb_assert (code == TYPE_CODE_STRUCT
2540 || code == TYPE_CODE_UNION
2541 || code == TYPE_CODE_ARRAY);
2542
2543 if (struct_convention == pcc_struct_convention
2544 || (struct_convention == default_struct_convention
2545 && tdep->struct_return == pcc_struct_return))
2546 return 0;
2547
2548 /* Structures consisting of a single `float', `double' or 'long
2549 double' member are returned in %st(0). */
2550 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2551 {
2552 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2553 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2554 return (len == 4 || len == 8 || len == 12);
2555 }
2556
2557 return (len == 1 || len == 2 || len == 4 || len == 8);
2558 }
2559
2560 /* Determine, for architecture GDBARCH, how a return value of TYPE
2561 should be returned. If it is supposed to be returned in registers,
2562 and READBUF is non-zero, read the appropriate value from REGCACHE,
2563 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2564 from WRITEBUF into REGCACHE. */
2565
2566 static enum return_value_convention
2567 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2568 struct type *type, struct regcache *regcache,
2569 gdb_byte *readbuf, const gdb_byte *writebuf)
2570 {
2571 enum type_code code = TYPE_CODE (type);
2572
2573 if (((code == TYPE_CODE_STRUCT
2574 || code == TYPE_CODE_UNION
2575 || code == TYPE_CODE_ARRAY)
2576 && !i386_reg_struct_return_p (gdbarch, type))
2577 /* 128-bit decimal float uses the struct return convention. */
2578 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2579 {
2580 /* The System V ABI says that:
2581
2582 "A function that returns a structure or union also sets %eax
2583 to the value of the original address of the caller's area
2584 before it returns. Thus when the caller receives control
2585 again, the address of the returned object resides in register
2586 %eax and can be used to access the object."
2587
2588 So the ABI guarantees that we can always find the return
2589 value just after the function has returned. */
2590
2591 /* Note that the ABI doesn't mention functions returning arrays,
2592 which is something possible in certain languages such as Ada.
2593 In this case, the value is returned as if it was wrapped in
2594 a record, so the convention applied to records also applies
2595 to arrays. */
2596
2597 if (readbuf)
2598 {
2599 ULONGEST addr;
2600
2601 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2602 read_memory (addr, readbuf, TYPE_LENGTH (type));
2603 }
2604
2605 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2606 }
2607
2608 /* This special case is for structures consisting of a single
2609 `float', `double' or 'long double' member. These structures are
2610 returned in %st(0). For these structures, we call ourselves
2611 recursively, changing TYPE into the type of the first member of
2612 the structure. Since that should work for all structures that
2613 have only one member, we don't bother to check the member's type
2614 here. */
2615 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2616 {
2617 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2618 return i386_return_value (gdbarch, func_type, type, regcache,
2619 readbuf, writebuf);
2620 }
2621
2622 if (readbuf)
2623 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2624 if (writebuf)
2625 i386_store_return_value (gdbarch, type, regcache, writebuf);
2626
2627 return RETURN_VALUE_REGISTER_CONVENTION;
2628 }
2629 \f
2630
2631 struct type *
2632 i387_ext_type (struct gdbarch *gdbarch)
2633 {
2634 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2635
2636 if (!tdep->i387_ext_type)
2637 {
2638 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2639 gdb_assert (tdep->i387_ext_type != NULL);
2640 }
2641
2642 return tdep->i387_ext_type;
2643 }
2644
2645 /* Construct vector type for pseudo YMM registers. We can't use
2646 tdesc_find_type since YMM isn't described in target description. */
2647
2648 static struct type *
2649 i386_ymm_type (struct gdbarch *gdbarch)
2650 {
2651 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2652
2653 if (!tdep->i386_ymm_type)
2654 {
2655 const struct builtin_type *bt = builtin_type (gdbarch);
2656
2657 /* The type we're building is this: */
2658 #if 0
2659 union __gdb_builtin_type_vec256i
2660 {
2661 int128_t uint128[2];
2662 int64_t v2_int64[4];
2663 int32_t v4_int32[8];
2664 int16_t v8_int16[16];
2665 int8_t v16_int8[32];
2666 double v2_double[4];
2667 float v4_float[8];
2668 };
2669 #endif
2670
2671 struct type *t;
2672
2673 t = arch_composite_type (gdbarch,
2674 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2675 append_composite_type_field (t, "v8_float",
2676 init_vector_type (bt->builtin_float, 8));
2677 append_composite_type_field (t, "v4_double",
2678 init_vector_type (bt->builtin_double, 4));
2679 append_composite_type_field (t, "v32_int8",
2680 init_vector_type (bt->builtin_int8, 32));
2681 append_composite_type_field (t, "v16_int16",
2682 init_vector_type (bt->builtin_int16, 16));
2683 append_composite_type_field (t, "v8_int32",
2684 init_vector_type (bt->builtin_int32, 8));
2685 append_composite_type_field (t, "v4_int64",
2686 init_vector_type (bt->builtin_int64, 4));
2687 append_composite_type_field (t, "v2_int128",
2688 init_vector_type (bt->builtin_int128, 2));
2689
2690 TYPE_VECTOR (t) = 1;
2691 TYPE_NAME (t) = "builtin_type_vec256i";
2692 tdep->i386_ymm_type = t;
2693 }
2694
2695 return tdep->i386_ymm_type;
2696 }
2697
2698 /* Construct vector type for MMX registers. */
2699 static struct type *
2700 i386_mmx_type (struct gdbarch *gdbarch)
2701 {
2702 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2703
2704 if (!tdep->i386_mmx_type)
2705 {
2706 const struct builtin_type *bt = builtin_type (gdbarch);
2707
2708 /* The type we're building is this: */
2709 #if 0
2710 union __gdb_builtin_type_vec64i
2711 {
2712 int64_t uint64;
2713 int32_t v2_int32[2];
2714 int16_t v4_int16[4];
2715 int8_t v8_int8[8];
2716 };
2717 #endif
2718
2719 struct type *t;
2720
2721 t = arch_composite_type (gdbarch,
2722 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2723
2724 append_composite_type_field (t, "uint64", bt->builtin_int64);
2725 append_composite_type_field (t, "v2_int32",
2726 init_vector_type (bt->builtin_int32, 2));
2727 append_composite_type_field (t, "v4_int16",
2728 init_vector_type (bt->builtin_int16, 4));
2729 append_composite_type_field (t, "v8_int8",
2730 init_vector_type (bt->builtin_int8, 8));
2731
2732 TYPE_VECTOR (t) = 1;
2733 TYPE_NAME (t) = "builtin_type_vec64i";
2734 tdep->i386_mmx_type = t;
2735 }
2736
2737 return tdep->i386_mmx_type;
2738 }
2739
2740 /* Return the GDB type object for the "standard" data type of data in
2741 register REGNUM. */
2742
2743 static struct type *
2744 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2745 {
2746 if (i386_mmx_regnum_p (gdbarch, regnum))
2747 return i386_mmx_type (gdbarch);
2748 else if (i386_ymm_regnum_p (gdbarch, regnum))
2749 return i386_ymm_type (gdbarch);
2750 else
2751 {
2752 const struct builtin_type *bt = builtin_type (gdbarch);
2753 if (i386_byte_regnum_p (gdbarch, regnum))
2754 return bt->builtin_int8;
2755 else if (i386_word_regnum_p (gdbarch, regnum))
2756 return bt->builtin_int16;
2757 else if (i386_dword_regnum_p (gdbarch, regnum))
2758 return bt->builtin_int32;
2759 }
2760
2761 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2762 }
2763
2764 /* Map a cooked register onto a raw register or memory. For the i386,
2765 the MMX registers need to be mapped onto floating point registers. */
2766
2767 static int
2768 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2769 {
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2771 int mmxreg, fpreg;
2772 ULONGEST fstat;
2773 int tos;
2774
2775 mmxreg = regnum - tdep->mm0_regnum;
2776 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2777 tos = (fstat >> 11) & 0x7;
2778 fpreg = (mmxreg + tos) % 8;
2779
2780 return (I387_ST0_REGNUM (tdep) + fpreg);
2781 }
2782
2783 /* A helper function for us by i386_pseudo_register_read_value and
2784 amd64_pseudo_register_read_value. It does all the work but reads
2785 the data into an already-allocated value. */
2786
2787 void
2788 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2789 struct regcache *regcache,
2790 int regnum,
2791 struct value *result_value)
2792 {
2793 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2794 enum register_status status;
2795 gdb_byte *buf = value_contents_raw (result_value);
2796
2797 if (i386_mmx_regnum_p (gdbarch, regnum))
2798 {
2799 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2800
2801 /* Extract (always little endian). */
2802 status = regcache_raw_read (regcache, fpnum, raw_buf);
2803 if (status != REG_VALID)
2804 mark_value_bytes_unavailable (result_value, 0,
2805 TYPE_LENGTH (value_type (result_value)));
2806 else
2807 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2808 }
2809 else
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812
2813 if (i386_ymm_regnum_p (gdbarch, regnum))
2814 {
2815 regnum -= tdep->ymm0_regnum;
2816
2817 /* Extract (always little endian). Read lower 128bits. */
2818 status = regcache_raw_read (regcache,
2819 I387_XMM0_REGNUM (tdep) + regnum,
2820 raw_buf);
2821 if (status != REG_VALID)
2822 mark_value_bytes_unavailable (result_value, 0, 16);
2823 else
2824 memcpy (buf, raw_buf, 16);
2825 /* Read upper 128bits. */
2826 status = regcache_raw_read (regcache,
2827 tdep->ymm0h_regnum + regnum,
2828 raw_buf);
2829 if (status != REG_VALID)
2830 mark_value_bytes_unavailable (result_value, 16, 32);
2831 else
2832 memcpy (buf + 16, raw_buf, 16);
2833 }
2834 else if (i386_word_regnum_p (gdbarch, regnum))
2835 {
2836 int gpnum = regnum - tdep->ax_regnum;
2837
2838 /* Extract (always little endian). */
2839 status = regcache_raw_read (regcache, gpnum, raw_buf);
2840 if (status != REG_VALID)
2841 mark_value_bytes_unavailable (result_value, 0,
2842 TYPE_LENGTH (value_type (result_value)));
2843 else
2844 memcpy (buf, raw_buf, 2);
2845 }
2846 else if (i386_byte_regnum_p (gdbarch, regnum))
2847 {
2848 /* Check byte pseudo registers last since this function will
2849 be called from amd64_pseudo_register_read, which handles
2850 byte pseudo registers differently. */
2851 int gpnum = regnum - tdep->al_regnum;
2852
2853 /* Extract (always little endian). We read both lower and
2854 upper registers. */
2855 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2856 if (status != REG_VALID)
2857 mark_value_bytes_unavailable (result_value, 0,
2858 TYPE_LENGTH (value_type (result_value)));
2859 else if (gpnum >= 4)
2860 memcpy (buf, raw_buf + 1, 1);
2861 else
2862 memcpy (buf, raw_buf, 1);
2863 }
2864 else
2865 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2866 }
2867 }
2868
2869 static struct value *
2870 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2871 struct regcache *regcache,
2872 int regnum)
2873 {
2874 struct value *result;
2875
2876 result = allocate_value (register_type (gdbarch, regnum));
2877 VALUE_LVAL (result) = lval_register;
2878 VALUE_REGNUM (result) = regnum;
2879
2880 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2881
2882 return result;
2883 }
2884
2885 void
2886 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2887 int regnum, const gdb_byte *buf)
2888 {
2889 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2890
2891 if (i386_mmx_regnum_p (gdbarch, regnum))
2892 {
2893 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2894
2895 /* Read ... */
2896 regcache_raw_read (regcache, fpnum, raw_buf);
2897 /* ... Modify ... (always little endian). */
2898 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2899 /* ... Write. */
2900 regcache_raw_write (regcache, fpnum, raw_buf);
2901 }
2902 else
2903 {
2904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2905
2906 if (i386_ymm_regnum_p (gdbarch, regnum))
2907 {
2908 regnum -= tdep->ymm0_regnum;
2909
2910 /* ... Write lower 128bits. */
2911 regcache_raw_write (regcache,
2912 I387_XMM0_REGNUM (tdep) + regnum,
2913 buf);
2914 /* ... Write upper 128bits. */
2915 regcache_raw_write (regcache,
2916 tdep->ymm0h_regnum + regnum,
2917 buf + 16);
2918 }
2919 else if (i386_word_regnum_p (gdbarch, regnum))
2920 {
2921 int gpnum = regnum - tdep->ax_regnum;
2922
2923 /* Read ... */
2924 regcache_raw_read (regcache, gpnum, raw_buf);
2925 /* ... Modify ... (always little endian). */
2926 memcpy (raw_buf, buf, 2);
2927 /* ... Write. */
2928 regcache_raw_write (regcache, gpnum, raw_buf);
2929 }
2930 else if (i386_byte_regnum_p (gdbarch, regnum))
2931 {
2932 /* Check byte pseudo registers last since this function will
2933 be called from amd64_pseudo_register_read, which handles
2934 byte pseudo registers differently. */
2935 int gpnum = regnum - tdep->al_regnum;
2936
2937 /* Read ... We read both lower and upper registers. */
2938 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2939 /* ... Modify ... (always little endian). */
2940 if (gpnum >= 4)
2941 memcpy (raw_buf + 1, buf, 1);
2942 else
2943 memcpy (raw_buf, buf, 1);
2944 /* ... Write. */
2945 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2946 }
2947 else
2948 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2949 }
2950 }
2951 \f
2952
2953 /* Return the register number of the register allocated by GCC after
2954 REGNUM, or -1 if there is no such register. */
2955
2956 static int
2957 i386_next_regnum (int regnum)
2958 {
2959 /* GCC allocates the registers in the order:
2960
2961 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2962
2963 Since storing a variable in %esp doesn't make any sense we return
2964 -1 for %ebp and for %esp itself. */
2965 static int next_regnum[] =
2966 {
2967 I386_EDX_REGNUM, /* Slot for %eax. */
2968 I386_EBX_REGNUM, /* Slot for %ecx. */
2969 I386_ECX_REGNUM, /* Slot for %edx. */
2970 I386_ESI_REGNUM, /* Slot for %ebx. */
2971 -1, -1, /* Slots for %esp and %ebp. */
2972 I386_EDI_REGNUM, /* Slot for %esi. */
2973 I386_EBP_REGNUM /* Slot for %edi. */
2974 };
2975
2976 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2977 return next_regnum[regnum];
2978
2979 return -1;
2980 }
2981
2982 /* Return nonzero if a value of type TYPE stored in register REGNUM
2983 needs any special handling. */
2984
2985 static int
2986 i386_convert_register_p (struct gdbarch *gdbarch,
2987 int regnum, struct type *type)
2988 {
2989 int len = TYPE_LENGTH (type);
2990
2991 /* Values may be spread across multiple registers. Most debugging
2992 formats aren't expressive enough to specify the locations, so
2993 some heuristics is involved. Right now we only handle types that
2994 have a length that is a multiple of the word size, since GCC
2995 doesn't seem to put any other types into registers. */
2996 if (len > 4 && len % 4 == 0)
2997 {
2998 int last_regnum = regnum;
2999
3000 while (len > 4)
3001 {
3002 last_regnum = i386_next_regnum (last_regnum);
3003 len -= 4;
3004 }
3005
3006 if (last_regnum != -1)
3007 return 1;
3008 }
3009
3010 return i387_convert_register_p (gdbarch, regnum, type);
3011 }
3012
3013 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3014 return its contents in TO. */
3015
3016 static int
3017 i386_register_to_value (struct frame_info *frame, int regnum,
3018 struct type *type, gdb_byte *to,
3019 int *optimizedp, int *unavailablep)
3020 {
3021 struct gdbarch *gdbarch = get_frame_arch (frame);
3022 int len = TYPE_LENGTH (type);
3023
3024 if (i386_fp_regnum_p (gdbarch, regnum))
3025 return i387_register_to_value (frame, regnum, type, to,
3026 optimizedp, unavailablep);
3027
3028 /* Read a value spread across multiple registers. */
3029
3030 gdb_assert (len > 4 && len % 4 == 0);
3031
3032 while (len > 0)
3033 {
3034 gdb_assert (regnum != -1);
3035 gdb_assert (register_size (gdbarch, regnum) == 4);
3036
3037 if (!get_frame_register_bytes (frame, regnum, 0,
3038 register_size (gdbarch, regnum),
3039 to, optimizedp, unavailablep))
3040 return 0;
3041
3042 regnum = i386_next_regnum (regnum);
3043 len -= 4;
3044 to += 4;
3045 }
3046
3047 *optimizedp = *unavailablep = 0;
3048 return 1;
3049 }
3050
3051 /* Write the contents FROM of a value of type TYPE into register
3052 REGNUM in frame FRAME. */
3053
3054 static void
3055 i386_value_to_register (struct frame_info *frame, int regnum,
3056 struct type *type, const gdb_byte *from)
3057 {
3058 int len = TYPE_LENGTH (type);
3059
3060 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3061 {
3062 i387_value_to_register (frame, regnum, type, from);
3063 return;
3064 }
3065
3066 /* Write a value spread across multiple registers. */
3067
3068 gdb_assert (len > 4 && len % 4 == 0);
3069
3070 while (len > 0)
3071 {
3072 gdb_assert (regnum != -1);
3073 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3074
3075 put_frame_register (frame, regnum, from);
3076 regnum = i386_next_regnum (regnum);
3077 len -= 4;
3078 from += 4;
3079 }
3080 }
3081 \f
3082 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3083 in the general-purpose register set REGSET to register cache
3084 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3085
3086 void
3087 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3088 int regnum, const void *gregs, size_t len)
3089 {
3090 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3091 const gdb_byte *regs = gregs;
3092 int i;
3093
3094 gdb_assert (len == tdep->sizeof_gregset);
3095
3096 for (i = 0; i < tdep->gregset_num_regs; i++)
3097 {
3098 if ((regnum == i || regnum == -1)
3099 && tdep->gregset_reg_offset[i] != -1)
3100 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3101 }
3102 }
3103
3104 /* Collect register REGNUM from the register cache REGCACHE and store
3105 it in the buffer specified by GREGS and LEN as described by the
3106 general-purpose register set REGSET. If REGNUM is -1, do this for
3107 all registers in REGSET. */
3108
3109 void
3110 i386_collect_gregset (const struct regset *regset,
3111 const struct regcache *regcache,
3112 int regnum, void *gregs, size_t len)
3113 {
3114 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3115 gdb_byte *regs = gregs;
3116 int i;
3117
3118 gdb_assert (len == tdep->sizeof_gregset);
3119
3120 for (i = 0; i < tdep->gregset_num_regs; i++)
3121 {
3122 if ((regnum == i || regnum == -1)
3123 && tdep->gregset_reg_offset[i] != -1)
3124 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3125 }
3126 }
3127
3128 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3129 in the floating-point register set REGSET to register cache
3130 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3131
3132 static void
3133 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3134 int regnum, const void *fpregs, size_t len)
3135 {
3136 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3137
3138 if (len == I387_SIZEOF_FXSAVE)
3139 {
3140 i387_supply_fxsave (regcache, regnum, fpregs);
3141 return;
3142 }
3143
3144 gdb_assert (len == tdep->sizeof_fpregset);
3145 i387_supply_fsave (regcache, regnum, fpregs);
3146 }
3147
3148 /* Collect register REGNUM from the register cache REGCACHE and store
3149 it in the buffer specified by FPREGS and LEN as described by the
3150 floating-point register set REGSET. If REGNUM is -1, do this for
3151 all registers in REGSET. */
3152
3153 static void
3154 i386_collect_fpregset (const struct regset *regset,
3155 const struct regcache *regcache,
3156 int regnum, void *fpregs, size_t len)
3157 {
3158 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3159
3160 if (len == I387_SIZEOF_FXSAVE)
3161 {
3162 i387_collect_fxsave (regcache, regnum, fpregs);
3163 return;
3164 }
3165
3166 gdb_assert (len == tdep->sizeof_fpregset);
3167 i387_collect_fsave (regcache, regnum, fpregs);
3168 }
3169
3170 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3171
3172 static void
3173 i386_supply_xstateregset (const struct regset *regset,
3174 struct regcache *regcache, int regnum,
3175 const void *xstateregs, size_t len)
3176 {
3177 i387_supply_xsave (regcache, regnum, xstateregs);
3178 }
3179
3180 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3181
3182 static void
3183 i386_collect_xstateregset (const struct regset *regset,
3184 const struct regcache *regcache,
3185 int regnum, void *xstateregs, size_t len)
3186 {
3187 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3188 }
3189
3190 /* Return the appropriate register set for the core section identified
3191 by SECT_NAME and SECT_SIZE. */
3192
3193 const struct regset *
3194 i386_regset_from_core_section (struct gdbarch *gdbarch,
3195 const char *sect_name, size_t sect_size)
3196 {
3197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3198
3199 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3200 {
3201 if (tdep->gregset == NULL)
3202 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3203 i386_collect_gregset);
3204 return tdep->gregset;
3205 }
3206
3207 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3208 || (strcmp (sect_name, ".reg-xfp") == 0
3209 && sect_size == I387_SIZEOF_FXSAVE))
3210 {
3211 if (tdep->fpregset == NULL)
3212 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3213 i386_collect_fpregset);
3214 return tdep->fpregset;
3215 }
3216
3217 if (strcmp (sect_name, ".reg-xstate") == 0)
3218 {
3219 if (tdep->xstateregset == NULL)
3220 tdep->xstateregset = regset_alloc (gdbarch,
3221 i386_supply_xstateregset,
3222 i386_collect_xstateregset);
3223
3224 return tdep->xstateregset;
3225 }
3226
3227 return NULL;
3228 }
3229 \f
3230
3231 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3232
3233 CORE_ADDR
3234 i386_pe_skip_trampoline_code (struct frame_info *frame,
3235 CORE_ADDR pc, char *name)
3236 {
3237 struct gdbarch *gdbarch = get_frame_arch (frame);
3238 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3239
3240 /* jmp *(dest) */
3241 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3242 {
3243 unsigned long indirect =
3244 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3245 struct minimal_symbol *indsym =
3246 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3247 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3248
3249 if (symname)
3250 {
3251 if (strncmp (symname, "__imp_", 6) == 0
3252 || strncmp (symname, "_imp_", 5) == 0)
3253 return name ? 1 :
3254 read_memory_unsigned_integer (indirect, 4, byte_order);
3255 }
3256 }
3257 return 0; /* Not a trampoline. */
3258 }
3259 \f
3260
3261 /* Return whether the THIS_FRAME corresponds to a sigtramp
3262 routine. */
3263
3264 int
3265 i386_sigtramp_p (struct frame_info *this_frame)
3266 {
3267 CORE_ADDR pc = get_frame_pc (this_frame);
3268 char *name;
3269
3270 find_pc_partial_function (pc, &name, NULL, NULL);
3271 return (name && strcmp ("_sigtramp", name) == 0);
3272 }
3273 \f
3274
3275 /* We have two flavours of disassembly. The machinery on this page
3276 deals with switching between those. */
3277
3278 static int
3279 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3280 {
3281 gdb_assert (disassembly_flavor == att_flavor
3282 || disassembly_flavor == intel_flavor);
3283
3284 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3285 constified, cast to prevent a compiler warning. */
3286 info->disassembler_options = (char *) disassembly_flavor;
3287
3288 return print_insn_i386 (pc, info);
3289 }
3290 \f
3291
3292 /* There are a few i386 architecture variants that differ only
3293 slightly from the generic i386 target. For now, we don't give them
3294 their own source file, but include them here. As a consequence,
3295 they'll always be included. */
3296
3297 /* System V Release 4 (SVR4). */
3298
3299 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3300 routine. */
3301
3302 static int
3303 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3304 {
3305 CORE_ADDR pc = get_frame_pc (this_frame);
3306 char *name;
3307
3308 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3309 currently unknown. */
3310 find_pc_partial_function (pc, &name, NULL, NULL);
3311 return (name && (strcmp ("_sigreturn", name) == 0
3312 || strcmp ("_sigacthandler", name) == 0
3313 || strcmp ("sigvechandler", name) == 0));
3314 }
3315
3316 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3317 address of the associated sigcontext (ucontext) structure. */
3318
3319 static CORE_ADDR
3320 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3321 {
3322 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3324 gdb_byte buf[4];
3325 CORE_ADDR sp;
3326
3327 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3328 sp = extract_unsigned_integer (buf, 4, byte_order);
3329
3330 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3331 }
3332 \f
3333
3334 /* Generic ELF. */
3335
3336 void
3337 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3338 {
3339 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3340 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3341 }
3342
3343 /* System V Release 4 (SVR4). */
3344
3345 void
3346 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3347 {
3348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3349
3350 /* System V Release 4 uses ELF. */
3351 i386_elf_init_abi (info, gdbarch);
3352
3353 /* System V Release 4 has shared libraries. */
3354 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3355
3356 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3357 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3358 tdep->sc_pc_offset = 36 + 14 * 4;
3359 tdep->sc_sp_offset = 36 + 17 * 4;
3360
3361 tdep->jb_pc_offset = 20;
3362 }
3363
3364 /* DJGPP. */
3365
3366 static void
3367 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3368 {
3369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3370
3371 /* DJGPP doesn't have any special frames for signal handlers. */
3372 tdep->sigtramp_p = NULL;
3373
3374 tdep->jb_pc_offset = 36;
3375
3376 /* DJGPP does not support the SSE registers. */
3377 if (! tdesc_has_registers (info.target_desc))
3378 tdep->tdesc = tdesc_i386_mmx;
3379
3380 /* Native compiler is GCC, which uses the SVR4 register numbering
3381 even in COFF and STABS. See the comment in i386_gdbarch_init,
3382 before the calls to set_gdbarch_stab_reg_to_regnum and
3383 set_gdbarch_sdb_reg_to_regnum. */
3384 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3385 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3386
3387 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3388 }
3389 \f
3390
3391 /* i386 register groups. In addition to the normal groups, add "mmx"
3392 and "sse". */
3393
3394 static struct reggroup *i386_sse_reggroup;
3395 static struct reggroup *i386_mmx_reggroup;
3396
3397 static void
3398 i386_init_reggroups (void)
3399 {
3400 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3401 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3402 }
3403
3404 static void
3405 i386_add_reggroups (struct gdbarch *gdbarch)
3406 {
3407 reggroup_add (gdbarch, i386_sse_reggroup);
3408 reggroup_add (gdbarch, i386_mmx_reggroup);
3409 reggroup_add (gdbarch, general_reggroup);
3410 reggroup_add (gdbarch, float_reggroup);
3411 reggroup_add (gdbarch, all_reggroup);
3412 reggroup_add (gdbarch, save_reggroup);
3413 reggroup_add (gdbarch, restore_reggroup);
3414 reggroup_add (gdbarch, vector_reggroup);
3415 reggroup_add (gdbarch, system_reggroup);
3416 }
3417
3418 int
3419 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3420 struct reggroup *group)
3421 {
3422 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3423 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3424 ymm_regnum_p, ymmh_regnum_p;
3425
3426 /* Don't include pseudo registers, except for MMX, in any register
3427 groups. */
3428 if (i386_byte_regnum_p (gdbarch, regnum))
3429 return 0;
3430
3431 if (i386_word_regnum_p (gdbarch, regnum))
3432 return 0;
3433
3434 if (i386_dword_regnum_p (gdbarch, regnum))
3435 return 0;
3436
3437 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3438 if (group == i386_mmx_reggroup)
3439 return mmx_regnum_p;
3440
3441 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3442 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3443 if (group == i386_sse_reggroup)
3444 return xmm_regnum_p || mxcsr_regnum_p;
3445
3446 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3447 if (group == vector_reggroup)
3448 return (mmx_regnum_p
3449 || ymm_regnum_p
3450 || mxcsr_regnum_p
3451 || (xmm_regnum_p
3452 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3453 == I386_XSTATE_SSE_MASK)));
3454
3455 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3456 || i386_fpc_regnum_p (gdbarch, regnum));
3457 if (group == float_reggroup)
3458 return fp_regnum_p;
3459
3460 /* For "info reg all", don't include upper YMM registers nor XMM
3461 registers when AVX is supported. */
3462 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3463 if (group == all_reggroup
3464 && ((xmm_regnum_p
3465 && (tdep->xcr0 & I386_XSTATE_AVX))
3466 || ymmh_regnum_p))
3467 return 0;
3468
3469 if (group == general_reggroup)
3470 return (!fp_regnum_p
3471 && !mmx_regnum_p
3472 && !mxcsr_regnum_p
3473 && !xmm_regnum_p
3474 && !ymm_regnum_p
3475 && !ymmh_regnum_p);
3476
3477 return default_register_reggroup_p (gdbarch, regnum, group);
3478 }
3479 \f
3480
3481 /* Get the ARGIth function argument for the current function. */
3482
3483 static CORE_ADDR
3484 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3485 struct type *type)
3486 {
3487 struct gdbarch *gdbarch = get_frame_arch (frame);
3488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3489 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3490 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3491 }
3492
3493 static void
3494 i386_skip_permanent_breakpoint (struct regcache *regcache)
3495 {
3496 CORE_ADDR current_pc = regcache_read_pc (regcache);
3497
3498 /* On i386, breakpoint is exactly 1 byte long, so we just
3499 adjust the PC in the regcache. */
3500 current_pc += 1;
3501 regcache_write_pc (regcache, current_pc);
3502 }
3503
3504
3505 #define PREFIX_REPZ 0x01
3506 #define PREFIX_REPNZ 0x02
3507 #define PREFIX_LOCK 0x04
3508 #define PREFIX_DATA 0x08
3509 #define PREFIX_ADDR 0x10
3510
3511 /* operand size */
3512 enum
3513 {
3514 OT_BYTE = 0,
3515 OT_WORD,
3516 OT_LONG,
3517 OT_QUAD,
3518 OT_DQUAD,
3519 };
3520
3521 /* i386 arith/logic operations */
3522 enum
3523 {
3524 OP_ADDL,
3525 OP_ORL,
3526 OP_ADCL,
3527 OP_SBBL,
3528 OP_ANDL,
3529 OP_SUBL,
3530 OP_XORL,
3531 OP_CMPL,
3532 };
3533
3534 struct i386_record_s
3535 {
3536 struct gdbarch *gdbarch;
3537 struct regcache *regcache;
3538 CORE_ADDR orig_addr;
3539 CORE_ADDR addr;
3540 int aflag;
3541 int dflag;
3542 int override;
3543 uint8_t modrm;
3544 uint8_t mod, reg, rm;
3545 int ot;
3546 uint8_t rex_x;
3547 uint8_t rex_b;
3548 int rip_offset;
3549 int popl_esp_hack;
3550 const int *regmap;
3551 };
3552
3553 /* Parse "modrm" part in current memory address that irp->addr point to
3554 Return -1 if something wrong. */
3555
3556 static int
3557 i386_record_modrm (struct i386_record_s *irp)
3558 {
3559 struct gdbarch *gdbarch = irp->gdbarch;
3560
3561 if (target_read_memory (irp->addr, &irp->modrm, 1))
3562 {
3563 if (record_debug)
3564 printf_unfiltered (_("Process record: error reading memory at "
3565 "addr %s len = 1.\n"),
3566 paddress (gdbarch, irp->addr));
3567 return -1;
3568 }
3569 irp->addr++;
3570 irp->mod = (irp->modrm >> 6) & 3;
3571 irp->reg = (irp->modrm >> 3) & 7;
3572 irp->rm = irp->modrm & 7;
3573
3574 return 0;
3575 }
3576
3577 /* Get the memory address that current instruction write to and set it to
3578 the argument "addr".
3579 Return -1 if something wrong. */
3580
3581 static int
3582 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3583 {
3584 struct gdbarch *gdbarch = irp->gdbarch;
3585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3586 gdb_byte buf[4];
3587 ULONGEST offset64;
3588
3589 *addr = 0;
3590 if (irp->aflag)
3591 {
3592 /* 32 bits */
3593 int havesib = 0;
3594 uint8_t scale = 0;
3595 uint8_t byte;
3596 uint8_t index = 0;
3597 uint8_t base = irp->rm;
3598
3599 if (base == 4)
3600 {
3601 havesib = 1;
3602 if (target_read_memory (irp->addr, &byte, 1))
3603 {
3604 if (record_debug)
3605 printf_unfiltered (_("Process record: error reading memory "
3606 "at addr %s len = 1.\n"),
3607 paddress (gdbarch, irp->addr));
3608 return -1;
3609 }
3610 irp->addr++;
3611 scale = (byte >> 6) & 3;
3612 index = ((byte >> 3) & 7) | irp->rex_x;
3613 base = (byte & 7);
3614 }
3615 base |= irp->rex_b;
3616
3617 switch (irp->mod)
3618 {
3619 case 0:
3620 if ((base & 7) == 5)
3621 {
3622 base = 0xff;
3623 if (target_read_memory (irp->addr, buf, 4))
3624 {
3625 if (record_debug)
3626 printf_unfiltered (_("Process record: error reading "
3627 "memory at addr %s len = 4.\n"),
3628 paddress (gdbarch, irp->addr));
3629 return -1;
3630 }
3631 irp->addr += 4;
3632 *addr = extract_signed_integer (buf, 4, byte_order);
3633 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3634 *addr += irp->addr + irp->rip_offset;
3635 }
3636 break;
3637 case 1:
3638 if (target_read_memory (irp->addr, buf, 1))
3639 {
3640 if (record_debug)
3641 printf_unfiltered (_("Process record: error reading memory "
3642 "at addr %s len = 1.\n"),
3643 paddress (gdbarch, irp->addr));
3644 return -1;
3645 }
3646 irp->addr++;
3647 *addr = (int8_t) buf[0];
3648 break;
3649 case 2:
3650 if (target_read_memory (irp->addr, buf, 4))
3651 {
3652 if (record_debug)
3653 printf_unfiltered (_("Process record: error reading memory "
3654 "at addr %s len = 4.\n"),
3655 paddress (gdbarch, irp->addr));
3656 return -1;
3657 }
3658 *addr = extract_signed_integer (buf, 4, byte_order);
3659 irp->addr += 4;
3660 break;
3661 }
3662
3663 offset64 = 0;
3664 if (base != 0xff)
3665 {
3666 if (base == 4 && irp->popl_esp_hack)
3667 *addr += irp->popl_esp_hack;
3668 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3669 &offset64);
3670 }
3671 if (irp->aflag == 2)
3672 {
3673 *addr += offset64;
3674 }
3675 else
3676 *addr = (uint32_t) (offset64 + *addr);
3677
3678 if (havesib && (index != 4 || scale != 0))
3679 {
3680 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3681 &offset64);
3682 if (irp->aflag == 2)
3683 *addr += offset64 << scale;
3684 else
3685 *addr = (uint32_t) (*addr + (offset64 << scale));
3686 }
3687 }
3688 else
3689 {
3690 /* 16 bits */
3691 switch (irp->mod)
3692 {
3693 case 0:
3694 if (irp->rm == 6)
3695 {
3696 if (target_read_memory (irp->addr, buf, 2))
3697 {
3698 if (record_debug)
3699 printf_unfiltered (_("Process record: error reading "
3700 "memory at addr %s len = 2.\n"),
3701 paddress (gdbarch, irp->addr));
3702 return -1;
3703 }
3704 irp->addr += 2;
3705 *addr = extract_signed_integer (buf, 2, byte_order);
3706 irp->rm = 0;
3707 goto no_rm;
3708 }
3709 break;
3710 case 1:
3711 if (target_read_memory (irp->addr, buf, 1))
3712 {
3713 if (record_debug)
3714 printf_unfiltered (_("Process record: error reading memory "
3715 "at addr %s len = 1.\n"),
3716 paddress (gdbarch, irp->addr));
3717 return -1;
3718 }
3719 irp->addr++;
3720 *addr = (int8_t) buf[0];
3721 break;
3722 case 2:
3723 if (target_read_memory (irp->addr, buf, 2))
3724 {
3725 if (record_debug)
3726 printf_unfiltered (_("Process record: error reading memory "
3727 "at addr %s len = 2.\n"),
3728 paddress (gdbarch, irp->addr));
3729 return -1;
3730 }
3731 irp->addr += 2;
3732 *addr = extract_signed_integer (buf, 2, byte_order);
3733 break;
3734 }
3735
3736 switch (irp->rm)
3737 {
3738 case 0:
3739 regcache_raw_read_unsigned (irp->regcache,
3740 irp->regmap[X86_RECORD_REBX_REGNUM],
3741 &offset64);
3742 *addr = (uint32_t) (*addr + offset64);
3743 regcache_raw_read_unsigned (irp->regcache,
3744 irp->regmap[X86_RECORD_RESI_REGNUM],
3745 &offset64);
3746 *addr = (uint32_t) (*addr + offset64);
3747 break;
3748 case 1:
3749 regcache_raw_read_unsigned (irp->regcache,
3750 irp->regmap[X86_RECORD_REBX_REGNUM],
3751 &offset64);
3752 *addr = (uint32_t) (*addr + offset64);
3753 regcache_raw_read_unsigned (irp->regcache,
3754 irp->regmap[X86_RECORD_REDI_REGNUM],
3755 &offset64);
3756 *addr = (uint32_t) (*addr + offset64);
3757 break;
3758 case 2:
3759 regcache_raw_read_unsigned (irp->regcache,
3760 irp->regmap[X86_RECORD_REBP_REGNUM],
3761 &offset64);
3762 *addr = (uint32_t) (*addr + offset64);
3763 regcache_raw_read_unsigned (irp->regcache,
3764 irp->regmap[X86_RECORD_RESI_REGNUM],
3765 &offset64);
3766 *addr = (uint32_t) (*addr + offset64);
3767 break;
3768 case 3:
3769 regcache_raw_read_unsigned (irp->regcache,
3770 irp->regmap[X86_RECORD_REBP_REGNUM],
3771 &offset64);
3772 *addr = (uint32_t) (*addr + offset64);
3773 regcache_raw_read_unsigned (irp->regcache,
3774 irp->regmap[X86_RECORD_REDI_REGNUM],
3775 &offset64);
3776 *addr = (uint32_t) (*addr + offset64);
3777 break;
3778 case 4:
3779 regcache_raw_read_unsigned (irp->regcache,
3780 irp->regmap[X86_RECORD_RESI_REGNUM],
3781 &offset64);
3782 *addr = (uint32_t) (*addr + offset64);
3783 break;
3784 case 5:
3785 regcache_raw_read_unsigned (irp->regcache,
3786 irp->regmap[X86_RECORD_REDI_REGNUM],
3787 &offset64);
3788 *addr = (uint32_t) (*addr + offset64);
3789 break;
3790 case 6:
3791 regcache_raw_read_unsigned (irp->regcache,
3792 irp->regmap[X86_RECORD_REBP_REGNUM],
3793 &offset64);
3794 *addr = (uint32_t) (*addr + offset64);
3795 break;
3796 case 7:
3797 regcache_raw_read_unsigned (irp->regcache,
3798 irp->regmap[X86_RECORD_REBX_REGNUM],
3799 &offset64);
3800 *addr = (uint32_t) (*addr + offset64);
3801 break;
3802 }
3803 *addr &= 0xffff;
3804 }
3805
3806 no_rm:
3807 return 0;
3808 }
3809
3810 /* Record the value of the memory that willbe changed in current instruction
3811 to "record_arch_list".
3812 Return -1 if something wrong. */
3813
3814 static int
3815 i386_record_lea_modrm (struct i386_record_s *irp)
3816 {
3817 struct gdbarch *gdbarch = irp->gdbarch;
3818 uint64_t addr;
3819
3820 if (irp->override >= 0)
3821 {
3822 if (record_memory_query)
3823 {
3824 int q;
3825
3826 target_terminal_ours ();
3827 q = yquery (_("\
3828 Process record ignores the memory change of instruction at address %s\n\
3829 because it can't get the value of the segment register.\n\
3830 Do you want to stop the program?"),
3831 paddress (gdbarch, irp->orig_addr));
3832 target_terminal_inferior ();
3833 if (q)
3834 return -1;
3835 }
3836
3837 return 0;
3838 }
3839
3840 if (i386_record_lea_modrm_addr (irp, &addr))
3841 return -1;
3842
3843 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3844 return -1;
3845
3846 return 0;
3847 }
3848
3849 /* Record the push operation to "record_arch_list".
3850 Return -1 if something wrong. */
3851
3852 static int
3853 i386_record_push (struct i386_record_s *irp, int size)
3854 {
3855 ULONGEST addr;
3856
3857 if (record_arch_list_add_reg (irp->regcache,
3858 irp->regmap[X86_RECORD_RESP_REGNUM]))
3859 return -1;
3860 regcache_raw_read_unsigned (irp->regcache,
3861 irp->regmap[X86_RECORD_RESP_REGNUM],
3862 &addr);
3863 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3864 return -1;
3865
3866 return 0;
3867 }
3868
3869
3870 /* Defines contents to record. */
3871 #define I386_SAVE_FPU_REGS 0xfffd
3872 #define I386_SAVE_FPU_ENV 0xfffe
3873 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3874
3875 /* Record the value of floating point registers which will be changed
3876 by the current instruction to "record_arch_list". Return -1 if
3877 something is wrong. */
3878
3879 static int i386_record_floats (struct gdbarch *gdbarch,
3880 struct i386_record_s *ir,
3881 uint32_t iregnum)
3882 {
3883 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3884 int i;
3885
3886 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3887 happen. Currently we store st0-st7 registers, but we need not store all
3888 registers all the time, in future we use ftag register and record only
3889 those who are not marked as an empty. */
3890
3891 if (I386_SAVE_FPU_REGS == iregnum)
3892 {
3893 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3894 {
3895 if (record_arch_list_add_reg (ir->regcache, i))
3896 return -1;
3897 }
3898 }
3899 else if (I386_SAVE_FPU_ENV == iregnum)
3900 {
3901 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3902 {
3903 if (record_arch_list_add_reg (ir->regcache, i))
3904 return -1;
3905 }
3906 }
3907 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3908 {
3909 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3910 {
3911 if (record_arch_list_add_reg (ir->regcache, i))
3912 return -1;
3913 }
3914 }
3915 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3916 (iregnum <= I387_FOP_REGNUM (tdep)))
3917 {
3918 if (record_arch_list_add_reg (ir->regcache,iregnum))
3919 return -1;
3920 }
3921 else
3922 {
3923 /* Parameter error. */
3924 return -1;
3925 }
3926 if(I386_SAVE_FPU_ENV != iregnum)
3927 {
3928 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3929 {
3930 if (record_arch_list_add_reg (ir->regcache, i))
3931 return -1;
3932 }
3933 }
3934 return 0;
3935 }
3936
3937 /* Parse the current instruction and record the values of the registers and
3938 memory that will be changed in current instruction to "record_arch_list".
3939 Return -1 if something wrong. */
3940
3941 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3942 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3943
3944 int
3945 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3946 CORE_ADDR input_addr)
3947 {
3948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3949 int prefixes = 0;
3950 int regnum = 0;
3951 uint32_t opcode;
3952 uint8_t opcode8;
3953 ULONGEST addr;
3954 gdb_byte buf[MAX_REGISTER_SIZE];
3955 struct i386_record_s ir;
3956 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3957 int rex = 0;
3958 uint8_t rex_w = -1;
3959 uint8_t rex_r = 0;
3960
3961 memset (&ir, 0, sizeof (struct i386_record_s));
3962 ir.regcache = regcache;
3963 ir.addr = input_addr;
3964 ir.orig_addr = input_addr;
3965 ir.aflag = 1;
3966 ir.dflag = 1;
3967 ir.override = -1;
3968 ir.popl_esp_hack = 0;
3969 ir.regmap = tdep->record_regmap;
3970 ir.gdbarch = gdbarch;
3971
3972 if (record_debug > 1)
3973 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3974 "addr = %s\n",
3975 paddress (gdbarch, ir.addr));
3976
3977 /* prefixes */
3978 while (1)
3979 {
3980 if (target_read_memory (ir.addr, &opcode8, 1))
3981 {
3982 if (record_debug)
3983 printf_unfiltered (_("Process record: error reading memory at "
3984 "addr %s len = 1.\n"),
3985 paddress (gdbarch, ir.addr));
3986 return -1;
3987 }
3988 ir.addr++;
3989 switch (opcode8) /* Instruction prefixes */
3990 {
3991 case REPE_PREFIX_OPCODE:
3992 prefixes |= PREFIX_REPZ;
3993 break;
3994 case REPNE_PREFIX_OPCODE:
3995 prefixes |= PREFIX_REPNZ;
3996 break;
3997 case LOCK_PREFIX_OPCODE:
3998 prefixes |= PREFIX_LOCK;
3999 break;
4000 case CS_PREFIX_OPCODE:
4001 ir.override = X86_RECORD_CS_REGNUM;
4002 break;
4003 case SS_PREFIX_OPCODE:
4004 ir.override = X86_RECORD_SS_REGNUM;
4005 break;
4006 case DS_PREFIX_OPCODE:
4007 ir.override = X86_RECORD_DS_REGNUM;
4008 break;
4009 case ES_PREFIX_OPCODE:
4010 ir.override = X86_RECORD_ES_REGNUM;
4011 break;
4012 case FS_PREFIX_OPCODE:
4013 ir.override = X86_RECORD_FS_REGNUM;
4014 break;
4015 case GS_PREFIX_OPCODE:
4016 ir.override = X86_RECORD_GS_REGNUM;
4017 break;
4018 case DATA_PREFIX_OPCODE:
4019 prefixes |= PREFIX_DATA;
4020 break;
4021 case ADDR_PREFIX_OPCODE:
4022 prefixes |= PREFIX_ADDR;
4023 break;
4024 case 0x40: /* i386 inc %eax */
4025 case 0x41: /* i386 inc %ecx */
4026 case 0x42: /* i386 inc %edx */
4027 case 0x43: /* i386 inc %ebx */
4028 case 0x44: /* i386 inc %esp */
4029 case 0x45: /* i386 inc %ebp */
4030 case 0x46: /* i386 inc %esi */
4031 case 0x47: /* i386 inc %edi */
4032 case 0x48: /* i386 dec %eax */
4033 case 0x49: /* i386 dec %ecx */
4034 case 0x4a: /* i386 dec %edx */
4035 case 0x4b: /* i386 dec %ebx */
4036 case 0x4c: /* i386 dec %esp */
4037 case 0x4d: /* i386 dec %ebp */
4038 case 0x4e: /* i386 dec %esi */
4039 case 0x4f: /* i386 dec %edi */
4040 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4041 {
4042 /* REX */
4043 rex = 1;
4044 rex_w = (opcode8 >> 3) & 1;
4045 rex_r = (opcode8 & 0x4) << 1;
4046 ir.rex_x = (opcode8 & 0x2) << 2;
4047 ir.rex_b = (opcode8 & 0x1) << 3;
4048 }
4049 else /* 32 bit target */
4050 goto out_prefixes;
4051 break;
4052 default:
4053 goto out_prefixes;
4054 break;
4055 }
4056 }
4057 out_prefixes:
4058 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4059 {
4060 ir.dflag = 2;
4061 }
4062 else
4063 {
4064 if (prefixes & PREFIX_DATA)
4065 ir.dflag ^= 1;
4066 }
4067 if (prefixes & PREFIX_ADDR)
4068 ir.aflag ^= 1;
4069 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4070 ir.aflag = 2;
4071
4072 /* Now check op code. */
4073 opcode = (uint32_t) opcode8;
4074 reswitch:
4075 switch (opcode)
4076 {
4077 case 0x0f:
4078 if (target_read_memory (ir.addr, &opcode8, 1))
4079 {
4080 if (record_debug)
4081 printf_unfiltered (_("Process record: error reading memory at "
4082 "addr %s len = 1.\n"),
4083 paddress (gdbarch, ir.addr));
4084 return -1;
4085 }
4086 ir.addr++;
4087 opcode = (uint32_t) opcode8 | 0x0f00;
4088 goto reswitch;
4089 break;
4090
4091 case 0x00: /* arith & logic */
4092 case 0x01:
4093 case 0x02:
4094 case 0x03:
4095 case 0x04:
4096 case 0x05:
4097 case 0x08:
4098 case 0x09:
4099 case 0x0a:
4100 case 0x0b:
4101 case 0x0c:
4102 case 0x0d:
4103 case 0x10:
4104 case 0x11:
4105 case 0x12:
4106 case 0x13:
4107 case 0x14:
4108 case 0x15:
4109 case 0x18:
4110 case 0x19:
4111 case 0x1a:
4112 case 0x1b:
4113 case 0x1c:
4114 case 0x1d:
4115 case 0x20:
4116 case 0x21:
4117 case 0x22:
4118 case 0x23:
4119 case 0x24:
4120 case 0x25:
4121 case 0x28:
4122 case 0x29:
4123 case 0x2a:
4124 case 0x2b:
4125 case 0x2c:
4126 case 0x2d:
4127 case 0x30:
4128 case 0x31:
4129 case 0x32:
4130 case 0x33:
4131 case 0x34:
4132 case 0x35:
4133 case 0x38:
4134 case 0x39:
4135 case 0x3a:
4136 case 0x3b:
4137 case 0x3c:
4138 case 0x3d:
4139 if (((opcode >> 3) & 7) != OP_CMPL)
4140 {
4141 if ((opcode & 1) == 0)
4142 ir.ot = OT_BYTE;
4143 else
4144 ir.ot = ir.dflag + OT_WORD;
4145
4146 switch ((opcode >> 1) & 3)
4147 {
4148 case 0: /* OP Ev, Gv */
4149 if (i386_record_modrm (&ir))
4150 return -1;
4151 if (ir.mod != 3)
4152 {
4153 if (i386_record_lea_modrm (&ir))
4154 return -1;
4155 }
4156 else
4157 {
4158 ir.rm |= ir.rex_b;
4159 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4160 ir.rm &= 0x3;
4161 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4162 }
4163 break;
4164 case 1: /* OP Gv, Ev */
4165 if (i386_record_modrm (&ir))
4166 return -1;
4167 ir.reg |= rex_r;
4168 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4169 ir.reg &= 0x3;
4170 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4171 break;
4172 case 2: /* OP A, Iv */
4173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4174 break;
4175 }
4176 }
4177 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4178 break;
4179
4180 case 0x80: /* GRP1 */
4181 case 0x81:
4182 case 0x82:
4183 case 0x83:
4184 if (i386_record_modrm (&ir))
4185 return -1;
4186
4187 if (ir.reg != OP_CMPL)
4188 {
4189 if ((opcode & 1) == 0)
4190 ir.ot = OT_BYTE;
4191 else
4192 ir.ot = ir.dflag + OT_WORD;
4193
4194 if (ir.mod != 3)
4195 {
4196 if (opcode == 0x83)
4197 ir.rip_offset = 1;
4198 else
4199 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4200 if (i386_record_lea_modrm (&ir))
4201 return -1;
4202 }
4203 else
4204 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4205 }
4206 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4207 break;
4208
4209 case 0x40: /* inc */
4210 case 0x41:
4211 case 0x42:
4212 case 0x43:
4213 case 0x44:
4214 case 0x45:
4215 case 0x46:
4216 case 0x47:
4217
4218 case 0x48: /* dec */
4219 case 0x49:
4220 case 0x4a:
4221 case 0x4b:
4222 case 0x4c:
4223 case 0x4d:
4224 case 0x4e:
4225 case 0x4f:
4226
4227 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4228 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4229 break;
4230
4231 case 0xf6: /* GRP3 */
4232 case 0xf7:
4233 if ((opcode & 1) == 0)
4234 ir.ot = OT_BYTE;
4235 else
4236 ir.ot = ir.dflag + OT_WORD;
4237 if (i386_record_modrm (&ir))
4238 return -1;
4239
4240 if (ir.mod != 3 && ir.reg == 0)
4241 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4242
4243 switch (ir.reg)
4244 {
4245 case 0: /* test */
4246 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4247 break;
4248 case 2: /* not */
4249 case 3: /* neg */
4250 if (ir.mod != 3)
4251 {
4252 if (i386_record_lea_modrm (&ir))
4253 return -1;
4254 }
4255 else
4256 {
4257 ir.rm |= ir.rex_b;
4258 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4259 ir.rm &= 0x3;
4260 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4261 }
4262 if (ir.reg == 3) /* neg */
4263 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4264 break;
4265 case 4: /* mul */
4266 case 5: /* imul */
4267 case 6: /* div */
4268 case 7: /* idiv */
4269 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4270 if (ir.ot != OT_BYTE)
4271 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4272 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4273 break;
4274 default:
4275 ir.addr -= 2;
4276 opcode = opcode << 8 | ir.modrm;
4277 goto no_support;
4278 break;
4279 }
4280 break;
4281
4282 case 0xfe: /* GRP4 */
4283 case 0xff: /* GRP5 */
4284 if (i386_record_modrm (&ir))
4285 return -1;
4286 if (ir.reg >= 2 && opcode == 0xfe)
4287 {
4288 ir.addr -= 2;
4289 opcode = opcode << 8 | ir.modrm;
4290 goto no_support;
4291 }
4292 switch (ir.reg)
4293 {
4294 case 0: /* inc */
4295 case 1: /* dec */
4296 if ((opcode & 1) == 0)
4297 ir.ot = OT_BYTE;
4298 else
4299 ir.ot = ir.dflag + OT_WORD;
4300 if (ir.mod != 3)
4301 {
4302 if (i386_record_lea_modrm (&ir))
4303 return -1;
4304 }
4305 else
4306 {
4307 ir.rm |= ir.rex_b;
4308 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4309 ir.rm &= 0x3;
4310 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4311 }
4312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4313 break;
4314 case 2: /* call */
4315 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4316 ir.dflag = 2;
4317 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4318 return -1;
4319 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4320 break;
4321 case 3: /* lcall */
4322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4323 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4324 return -1;
4325 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4326 break;
4327 case 4: /* jmp */
4328 case 5: /* ljmp */
4329 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4330 break;
4331 case 6: /* push */
4332 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4333 ir.dflag = 2;
4334 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4335 return -1;
4336 break;
4337 default:
4338 ir.addr -= 2;
4339 opcode = opcode << 8 | ir.modrm;
4340 goto no_support;
4341 break;
4342 }
4343 break;
4344
4345 case 0x84: /* test */
4346 case 0x85:
4347 case 0xa8:
4348 case 0xa9:
4349 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4350 break;
4351
4352 case 0x98: /* CWDE/CBW */
4353 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4354 break;
4355
4356 case 0x99: /* CDQ/CWD */
4357 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4358 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4359 break;
4360
4361 case 0x0faf: /* imul */
4362 case 0x69:
4363 case 0x6b:
4364 ir.ot = ir.dflag + OT_WORD;
4365 if (i386_record_modrm (&ir))
4366 return -1;
4367 if (opcode == 0x69)
4368 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4369 else if (opcode == 0x6b)
4370 ir.rip_offset = 1;
4371 ir.reg |= rex_r;
4372 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4373 ir.reg &= 0x3;
4374 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4375 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4376 break;
4377
4378 case 0x0fc0: /* xadd */
4379 case 0x0fc1:
4380 if ((opcode & 1) == 0)
4381 ir.ot = OT_BYTE;
4382 else
4383 ir.ot = ir.dflag + OT_WORD;
4384 if (i386_record_modrm (&ir))
4385 return -1;
4386 ir.reg |= rex_r;
4387 if (ir.mod == 3)
4388 {
4389 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4390 ir.reg &= 0x3;
4391 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4392 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4393 ir.rm &= 0x3;
4394 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4395 }
4396 else
4397 {
4398 if (i386_record_lea_modrm (&ir))
4399 return -1;
4400 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4401 ir.reg &= 0x3;
4402 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4403 }
4404 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4405 break;
4406
4407 case 0x0fb0: /* cmpxchg */
4408 case 0x0fb1:
4409 if ((opcode & 1) == 0)
4410 ir.ot = OT_BYTE;
4411 else
4412 ir.ot = ir.dflag + OT_WORD;
4413 if (i386_record_modrm (&ir))
4414 return -1;
4415 if (ir.mod == 3)
4416 {
4417 ir.reg |= rex_r;
4418 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4419 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4420 ir.reg &= 0x3;
4421 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4422 }
4423 else
4424 {
4425 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4426 if (i386_record_lea_modrm (&ir))
4427 return -1;
4428 }
4429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4430 break;
4431
4432 case 0x0fc7: /* cmpxchg8b */
4433 if (i386_record_modrm (&ir))
4434 return -1;
4435 if (ir.mod == 3)
4436 {
4437 ir.addr -= 2;
4438 opcode = opcode << 8 | ir.modrm;
4439 goto no_support;
4440 }
4441 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4442 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4443 if (i386_record_lea_modrm (&ir))
4444 return -1;
4445 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4446 break;
4447
4448 case 0x50: /* push */
4449 case 0x51:
4450 case 0x52:
4451 case 0x53:
4452 case 0x54:
4453 case 0x55:
4454 case 0x56:
4455 case 0x57:
4456 case 0x68:
4457 case 0x6a:
4458 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4459 ir.dflag = 2;
4460 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4461 return -1;
4462 break;
4463
4464 case 0x06: /* push es */
4465 case 0x0e: /* push cs */
4466 case 0x16: /* push ss */
4467 case 0x1e: /* push ds */
4468 if (ir.regmap[X86_RECORD_R8_REGNUM])
4469 {
4470 ir.addr -= 1;
4471 goto no_support;
4472 }
4473 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4474 return -1;
4475 break;
4476
4477 case 0x0fa0: /* push fs */
4478 case 0x0fa8: /* push gs */
4479 if (ir.regmap[X86_RECORD_R8_REGNUM])
4480 {
4481 ir.addr -= 2;
4482 goto no_support;
4483 }
4484 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4485 return -1;
4486 break;
4487
4488 case 0x60: /* pusha */
4489 if (ir.regmap[X86_RECORD_R8_REGNUM])
4490 {
4491 ir.addr -= 1;
4492 goto no_support;
4493 }
4494 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4495 return -1;
4496 break;
4497
4498 case 0x58: /* pop */
4499 case 0x59:
4500 case 0x5a:
4501 case 0x5b:
4502 case 0x5c:
4503 case 0x5d:
4504 case 0x5e:
4505 case 0x5f:
4506 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4507 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4508 break;
4509
4510 case 0x61: /* popa */
4511 if (ir.regmap[X86_RECORD_R8_REGNUM])
4512 {
4513 ir.addr -= 1;
4514 goto no_support;
4515 }
4516 for (regnum = X86_RECORD_REAX_REGNUM;
4517 regnum <= X86_RECORD_REDI_REGNUM;
4518 regnum++)
4519 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4520 break;
4521
4522 case 0x8f: /* pop */
4523 if (ir.regmap[X86_RECORD_R8_REGNUM])
4524 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4525 else
4526 ir.ot = ir.dflag + OT_WORD;
4527 if (i386_record_modrm (&ir))
4528 return -1;
4529 if (ir.mod == 3)
4530 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4531 else
4532 {
4533 ir.popl_esp_hack = 1 << ir.ot;
4534 if (i386_record_lea_modrm (&ir))
4535 return -1;
4536 }
4537 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4538 break;
4539
4540 case 0xc8: /* enter */
4541 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4542 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4543 ir.dflag = 2;
4544 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4545 return -1;
4546 break;
4547
4548 case 0xc9: /* leave */
4549 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4550 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4551 break;
4552
4553 case 0x07: /* pop es */
4554 if (ir.regmap[X86_RECORD_R8_REGNUM])
4555 {
4556 ir.addr -= 1;
4557 goto no_support;
4558 }
4559 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4561 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4562 break;
4563
4564 case 0x17: /* pop ss */
4565 if (ir.regmap[X86_RECORD_R8_REGNUM])
4566 {
4567 ir.addr -= 1;
4568 goto no_support;
4569 }
4570 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4571 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4572 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4573 break;
4574
4575 case 0x1f: /* pop ds */
4576 if (ir.regmap[X86_RECORD_R8_REGNUM])
4577 {
4578 ir.addr -= 1;
4579 goto no_support;
4580 }
4581 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4582 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4583 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4584 break;
4585
4586 case 0x0fa1: /* pop fs */
4587 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4588 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4589 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4590 break;
4591
4592 case 0x0fa9: /* pop gs */
4593 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4594 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4595 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4596 break;
4597
4598 case 0x88: /* mov */
4599 case 0x89:
4600 case 0xc6:
4601 case 0xc7:
4602 if ((opcode & 1) == 0)
4603 ir.ot = OT_BYTE;
4604 else
4605 ir.ot = ir.dflag + OT_WORD;
4606
4607 if (i386_record_modrm (&ir))
4608 return -1;
4609
4610 if (ir.mod != 3)
4611 {
4612 if (opcode == 0xc6 || opcode == 0xc7)
4613 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4614 if (i386_record_lea_modrm (&ir))
4615 return -1;
4616 }
4617 else
4618 {
4619 if (opcode == 0xc6 || opcode == 0xc7)
4620 ir.rm |= ir.rex_b;
4621 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4622 ir.rm &= 0x3;
4623 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4624 }
4625 break;
4626
4627 case 0x8a: /* mov */
4628 case 0x8b:
4629 if ((opcode & 1) == 0)
4630 ir.ot = OT_BYTE;
4631 else
4632 ir.ot = ir.dflag + OT_WORD;
4633 if (i386_record_modrm (&ir))
4634 return -1;
4635 ir.reg |= rex_r;
4636 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4637 ir.reg &= 0x3;
4638 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4639 break;
4640
4641 case 0x8c: /* mov seg */
4642 if (i386_record_modrm (&ir))
4643 return -1;
4644 if (ir.reg > 5)
4645 {
4646 ir.addr -= 2;
4647 opcode = opcode << 8 | ir.modrm;
4648 goto no_support;
4649 }
4650
4651 if (ir.mod == 3)
4652 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4653 else
4654 {
4655 ir.ot = OT_WORD;
4656 if (i386_record_lea_modrm (&ir))
4657 return -1;
4658 }
4659 break;
4660
4661 case 0x8e: /* mov seg */
4662 if (i386_record_modrm (&ir))
4663 return -1;
4664 switch (ir.reg)
4665 {
4666 case 0:
4667 regnum = X86_RECORD_ES_REGNUM;
4668 break;
4669 case 2:
4670 regnum = X86_RECORD_SS_REGNUM;
4671 break;
4672 case 3:
4673 regnum = X86_RECORD_DS_REGNUM;
4674 break;
4675 case 4:
4676 regnum = X86_RECORD_FS_REGNUM;
4677 break;
4678 case 5:
4679 regnum = X86_RECORD_GS_REGNUM;
4680 break;
4681 default:
4682 ir.addr -= 2;
4683 opcode = opcode << 8 | ir.modrm;
4684 goto no_support;
4685 break;
4686 }
4687 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4688 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4689 break;
4690
4691 case 0x0fb6: /* movzbS */
4692 case 0x0fb7: /* movzwS */
4693 case 0x0fbe: /* movsbS */
4694 case 0x0fbf: /* movswS */
4695 if (i386_record_modrm (&ir))
4696 return -1;
4697 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4698 break;
4699
4700 case 0x8d: /* lea */
4701 if (i386_record_modrm (&ir))
4702 return -1;
4703 if (ir.mod == 3)
4704 {
4705 ir.addr -= 2;
4706 opcode = opcode << 8 | ir.modrm;
4707 goto no_support;
4708 }
4709 ir.ot = ir.dflag;
4710 ir.reg |= rex_r;
4711 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4712 ir.reg &= 0x3;
4713 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4714 break;
4715
4716 case 0xa0: /* mov EAX */
4717 case 0xa1:
4718
4719 case 0xd7: /* xlat */
4720 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4721 break;
4722
4723 case 0xa2: /* mov EAX */
4724 case 0xa3:
4725 if (ir.override >= 0)
4726 {
4727 if (record_memory_query)
4728 {
4729 int q;
4730
4731 target_terminal_ours ();
4732 q = yquery (_("\
4733 Process record ignores the memory change of instruction at address %s\n\
4734 because it can't get the value of the segment register.\n\
4735 Do you want to stop the program?"),
4736 paddress (gdbarch, ir.orig_addr));
4737 target_terminal_inferior ();
4738 if (q)
4739 return -1;
4740 }
4741 }
4742 else
4743 {
4744 if ((opcode & 1) == 0)
4745 ir.ot = OT_BYTE;
4746 else
4747 ir.ot = ir.dflag + OT_WORD;
4748 if (ir.aflag == 2)
4749 {
4750 if (target_read_memory (ir.addr, buf, 8))
4751 {
4752 if (record_debug)
4753 printf_unfiltered (_("Process record: error reading "
4754 "memory at addr 0x%s len = 8.\n"),
4755 paddress (gdbarch, ir.addr));
4756 return -1;
4757 }
4758 ir.addr += 8;
4759 addr = extract_unsigned_integer (buf, 8, byte_order);
4760 }
4761 else if (ir.aflag)
4762 {
4763 if (target_read_memory (ir.addr, buf, 4))
4764 {
4765 if (record_debug)
4766 printf_unfiltered (_("Process record: error reading "
4767 "memory at addr 0x%s len = 4.\n"),
4768 paddress (gdbarch, ir.addr));
4769 return -1;
4770 }
4771 ir.addr += 4;
4772 addr = extract_unsigned_integer (buf, 4, byte_order);
4773 }
4774 else
4775 {
4776 if (target_read_memory (ir.addr, buf, 2))
4777 {
4778 if (record_debug)
4779 printf_unfiltered (_("Process record: error reading "
4780 "memory at addr 0x%s len = 2.\n"),
4781 paddress (gdbarch, ir.addr));
4782 return -1;
4783 }
4784 ir.addr += 2;
4785 addr = extract_unsigned_integer (buf, 2, byte_order);
4786 }
4787 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4788 return -1;
4789 }
4790 break;
4791
4792 case 0xb0: /* mov R, Ib */
4793 case 0xb1:
4794 case 0xb2:
4795 case 0xb3:
4796 case 0xb4:
4797 case 0xb5:
4798 case 0xb6:
4799 case 0xb7:
4800 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4801 ? ((opcode & 0x7) | ir.rex_b)
4802 : ((opcode & 0x7) & 0x3));
4803 break;
4804
4805 case 0xb8: /* mov R, Iv */
4806 case 0xb9:
4807 case 0xba:
4808 case 0xbb:
4809 case 0xbc:
4810 case 0xbd:
4811 case 0xbe:
4812 case 0xbf:
4813 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4814 break;
4815
4816 case 0x91: /* xchg R, EAX */
4817 case 0x92:
4818 case 0x93:
4819 case 0x94:
4820 case 0x95:
4821 case 0x96:
4822 case 0x97:
4823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4824 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4825 break;
4826
4827 case 0x86: /* xchg Ev, Gv */
4828 case 0x87:
4829 if ((opcode & 1) == 0)
4830 ir.ot = OT_BYTE;
4831 else
4832 ir.ot = ir.dflag + OT_WORD;
4833 if (i386_record_modrm (&ir))
4834 return -1;
4835 if (ir.mod == 3)
4836 {
4837 ir.rm |= ir.rex_b;
4838 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4839 ir.rm &= 0x3;
4840 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4841 }
4842 else
4843 {
4844 if (i386_record_lea_modrm (&ir))
4845 return -1;
4846 }
4847 ir.reg |= rex_r;
4848 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4849 ir.reg &= 0x3;
4850 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4851 break;
4852
4853 case 0xc4: /* les Gv */
4854 case 0xc5: /* lds Gv */
4855 if (ir.regmap[X86_RECORD_R8_REGNUM])
4856 {
4857 ir.addr -= 1;
4858 goto no_support;
4859 }
4860 /* FALLTHROUGH */
4861 case 0x0fb2: /* lss Gv */
4862 case 0x0fb4: /* lfs Gv */
4863 case 0x0fb5: /* lgs Gv */
4864 if (i386_record_modrm (&ir))
4865 return -1;
4866 if (ir.mod == 3)
4867 {
4868 if (opcode > 0xff)
4869 ir.addr -= 3;
4870 else
4871 ir.addr -= 2;
4872 opcode = opcode << 8 | ir.modrm;
4873 goto no_support;
4874 }
4875 switch (opcode)
4876 {
4877 case 0xc4: /* les Gv */
4878 regnum = X86_RECORD_ES_REGNUM;
4879 break;
4880 case 0xc5: /* lds Gv */
4881 regnum = X86_RECORD_DS_REGNUM;
4882 break;
4883 case 0x0fb2: /* lss Gv */
4884 regnum = X86_RECORD_SS_REGNUM;
4885 break;
4886 case 0x0fb4: /* lfs Gv */
4887 regnum = X86_RECORD_FS_REGNUM;
4888 break;
4889 case 0x0fb5: /* lgs Gv */
4890 regnum = X86_RECORD_GS_REGNUM;
4891 break;
4892 }
4893 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4894 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4896 break;
4897
4898 case 0xc0: /* shifts */
4899 case 0xc1:
4900 case 0xd0:
4901 case 0xd1:
4902 case 0xd2:
4903 case 0xd3:
4904 if ((opcode & 1) == 0)
4905 ir.ot = OT_BYTE;
4906 else
4907 ir.ot = ir.dflag + OT_WORD;
4908 if (i386_record_modrm (&ir))
4909 return -1;
4910 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4911 {
4912 if (i386_record_lea_modrm (&ir))
4913 return -1;
4914 }
4915 else
4916 {
4917 ir.rm |= ir.rex_b;
4918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4919 ir.rm &= 0x3;
4920 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4921 }
4922 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4923 break;
4924
4925 case 0x0fa4:
4926 case 0x0fa5:
4927 case 0x0fac:
4928 case 0x0fad:
4929 if (i386_record_modrm (&ir))
4930 return -1;
4931 if (ir.mod == 3)
4932 {
4933 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4934 return -1;
4935 }
4936 else
4937 {
4938 if (i386_record_lea_modrm (&ir))
4939 return -1;
4940 }
4941 break;
4942
4943 case 0xd8: /* Floats. */
4944 case 0xd9:
4945 case 0xda:
4946 case 0xdb:
4947 case 0xdc:
4948 case 0xdd:
4949 case 0xde:
4950 case 0xdf:
4951 if (i386_record_modrm (&ir))
4952 return -1;
4953 ir.reg |= ((opcode & 7) << 3);
4954 if (ir.mod != 3)
4955 {
4956 /* Memory. */
4957 uint64_t addr64;
4958
4959 if (i386_record_lea_modrm_addr (&ir, &addr64))
4960 return -1;
4961 switch (ir.reg)
4962 {
4963 case 0x02:
4964 case 0x12:
4965 case 0x22:
4966 case 0x32:
4967 /* For fcom, ficom nothing to do. */
4968 break;
4969 case 0x03:
4970 case 0x13:
4971 case 0x23:
4972 case 0x33:
4973 /* For fcomp, ficomp pop FPU stack, store all. */
4974 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4975 return -1;
4976 break;
4977 case 0x00:
4978 case 0x01:
4979 case 0x04:
4980 case 0x05:
4981 case 0x06:
4982 case 0x07:
4983 case 0x10:
4984 case 0x11:
4985 case 0x14:
4986 case 0x15:
4987 case 0x16:
4988 case 0x17:
4989 case 0x20:
4990 case 0x21:
4991 case 0x24:
4992 case 0x25:
4993 case 0x26:
4994 case 0x27:
4995 case 0x30:
4996 case 0x31:
4997 case 0x34:
4998 case 0x35:
4999 case 0x36:
5000 case 0x37:
5001 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5002 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5003 of code, always affects st(0) register. */
5004 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5005 return -1;
5006 break;
5007 case 0x08:
5008 case 0x0a:
5009 case 0x0b:
5010 case 0x18:
5011 case 0x19:
5012 case 0x1a:
5013 case 0x1b:
5014 case 0x1d:
5015 case 0x28:
5016 case 0x29:
5017 case 0x2a:
5018 case 0x2b:
5019 case 0x38:
5020 case 0x39:
5021 case 0x3a:
5022 case 0x3b:
5023 case 0x3c:
5024 case 0x3d:
5025 switch (ir.reg & 7)
5026 {
5027 case 0:
5028 /* Handling fld, fild. */
5029 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5030 return -1;
5031 break;
5032 case 1:
5033 switch (ir.reg >> 4)
5034 {
5035 case 0:
5036 if (record_arch_list_add_mem (addr64, 4))
5037 return -1;
5038 break;
5039 case 2:
5040 if (record_arch_list_add_mem (addr64, 8))
5041 return -1;
5042 break;
5043 case 3:
5044 break;
5045 default:
5046 if (record_arch_list_add_mem (addr64, 2))
5047 return -1;
5048 break;
5049 }
5050 break;
5051 default:
5052 switch (ir.reg >> 4)
5053 {
5054 case 0:
5055 if (record_arch_list_add_mem (addr64, 4))
5056 return -1;
5057 if (3 == (ir.reg & 7))
5058 {
5059 /* For fstp m32fp. */
5060 if (i386_record_floats (gdbarch, &ir,
5061 I386_SAVE_FPU_REGS))
5062 return -1;
5063 }
5064 break;
5065 case 1:
5066 if (record_arch_list_add_mem (addr64, 4))
5067 return -1;
5068 if ((3 == (ir.reg & 7))
5069 || (5 == (ir.reg & 7))
5070 || (7 == (ir.reg & 7)))
5071 {
5072 /* For fstp insn. */
5073 if (i386_record_floats (gdbarch, &ir,
5074 I386_SAVE_FPU_REGS))
5075 return -1;
5076 }
5077 break;
5078 case 2:
5079 if (record_arch_list_add_mem (addr64, 8))
5080 return -1;
5081 if (3 == (ir.reg & 7))
5082 {
5083 /* For fstp m64fp. */
5084 if (i386_record_floats (gdbarch, &ir,
5085 I386_SAVE_FPU_REGS))
5086 return -1;
5087 }
5088 break;
5089 case 3:
5090 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5091 {
5092 /* For fistp, fbld, fild, fbstp. */
5093 if (i386_record_floats (gdbarch, &ir,
5094 I386_SAVE_FPU_REGS))
5095 return -1;
5096 }
5097 /* Fall through */
5098 default:
5099 if (record_arch_list_add_mem (addr64, 2))
5100 return -1;
5101 break;
5102 }
5103 break;
5104 }
5105 break;
5106 case 0x0c:
5107 /* Insn fldenv. */
5108 if (i386_record_floats (gdbarch, &ir,
5109 I386_SAVE_FPU_ENV_REG_STACK))
5110 return -1;
5111 break;
5112 case 0x0d:
5113 /* Insn fldcw. */
5114 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5115 return -1;
5116 break;
5117 case 0x2c:
5118 /* Insn frstor. */
5119 if (i386_record_floats (gdbarch, &ir,
5120 I386_SAVE_FPU_ENV_REG_STACK))
5121 return -1;
5122 break;
5123 case 0x0e:
5124 if (ir.dflag)
5125 {
5126 if (record_arch_list_add_mem (addr64, 28))
5127 return -1;
5128 }
5129 else
5130 {
5131 if (record_arch_list_add_mem (addr64, 14))
5132 return -1;
5133 }
5134 break;
5135 case 0x0f:
5136 case 0x2f:
5137 if (record_arch_list_add_mem (addr64, 2))
5138 return -1;
5139 /* Insn fstp, fbstp. */
5140 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5141 return -1;
5142 break;
5143 case 0x1f:
5144 case 0x3e:
5145 if (record_arch_list_add_mem (addr64, 10))
5146 return -1;
5147 break;
5148 case 0x2e:
5149 if (ir.dflag)
5150 {
5151 if (record_arch_list_add_mem (addr64, 28))
5152 return -1;
5153 addr64 += 28;
5154 }
5155 else
5156 {
5157 if (record_arch_list_add_mem (addr64, 14))
5158 return -1;
5159 addr64 += 14;
5160 }
5161 if (record_arch_list_add_mem (addr64, 80))
5162 return -1;
5163 /* Insn fsave. */
5164 if (i386_record_floats (gdbarch, &ir,
5165 I386_SAVE_FPU_ENV_REG_STACK))
5166 return -1;
5167 break;
5168 case 0x3f:
5169 if (record_arch_list_add_mem (addr64, 8))
5170 return -1;
5171 /* Insn fistp. */
5172 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5173 return -1;
5174 break;
5175 default:
5176 ir.addr -= 2;
5177 opcode = opcode << 8 | ir.modrm;
5178 goto no_support;
5179 break;
5180 }
5181 }
5182 /* Opcode is an extension of modR/M byte. */
5183 else
5184 {
5185 switch (opcode)
5186 {
5187 case 0xd8:
5188 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5189 return -1;
5190 break;
5191 case 0xd9:
5192 if (0x0c == (ir.modrm >> 4))
5193 {
5194 if ((ir.modrm & 0x0f) <= 7)
5195 {
5196 if (i386_record_floats (gdbarch, &ir,
5197 I386_SAVE_FPU_REGS))
5198 return -1;
5199 }
5200 else
5201 {
5202 if (i386_record_floats (gdbarch, &ir,
5203 I387_ST0_REGNUM (tdep)))
5204 return -1;
5205 /* If only st(0) is changing, then we have already
5206 recorded. */
5207 if ((ir.modrm & 0x0f) - 0x08)
5208 {
5209 if (i386_record_floats (gdbarch, &ir,
5210 I387_ST0_REGNUM (tdep) +
5211 ((ir.modrm & 0x0f) - 0x08)))
5212 return -1;
5213 }
5214 }
5215 }
5216 else
5217 {
5218 switch (ir.modrm)
5219 {
5220 case 0xe0:
5221 case 0xe1:
5222 case 0xf0:
5223 case 0xf5:
5224 case 0xf8:
5225 case 0xfa:
5226 case 0xfc:
5227 case 0xfe:
5228 case 0xff:
5229 if (i386_record_floats (gdbarch, &ir,
5230 I387_ST0_REGNUM (tdep)))
5231 return -1;
5232 break;
5233 case 0xf1:
5234 case 0xf2:
5235 case 0xf3:
5236 case 0xf4:
5237 case 0xf6:
5238 case 0xf7:
5239 case 0xe8:
5240 case 0xe9:
5241 case 0xea:
5242 case 0xeb:
5243 case 0xec:
5244 case 0xed:
5245 case 0xee:
5246 case 0xf9:
5247 case 0xfb:
5248 if (i386_record_floats (gdbarch, &ir,
5249 I386_SAVE_FPU_REGS))
5250 return -1;
5251 break;
5252 case 0xfd:
5253 if (i386_record_floats (gdbarch, &ir,
5254 I387_ST0_REGNUM (tdep)))
5255 return -1;
5256 if (i386_record_floats (gdbarch, &ir,
5257 I387_ST0_REGNUM (tdep) + 1))
5258 return -1;
5259 break;
5260 }
5261 }
5262 break;
5263 case 0xda:
5264 if (0xe9 == ir.modrm)
5265 {
5266 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5267 return -1;
5268 }
5269 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5270 {
5271 if (i386_record_floats (gdbarch, &ir,
5272 I387_ST0_REGNUM (tdep)))
5273 return -1;
5274 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5275 {
5276 if (i386_record_floats (gdbarch, &ir,
5277 I387_ST0_REGNUM (tdep) +
5278 (ir.modrm & 0x0f)))
5279 return -1;
5280 }
5281 else if ((ir.modrm & 0x0f) - 0x08)
5282 {
5283 if (i386_record_floats (gdbarch, &ir,
5284 I387_ST0_REGNUM (tdep) +
5285 ((ir.modrm & 0x0f) - 0x08)))
5286 return -1;
5287 }
5288 }
5289 break;
5290 case 0xdb:
5291 if (0xe3 == ir.modrm)
5292 {
5293 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5294 return -1;
5295 }
5296 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5297 {
5298 if (i386_record_floats (gdbarch, &ir,
5299 I387_ST0_REGNUM (tdep)))
5300 return -1;
5301 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5302 {
5303 if (i386_record_floats (gdbarch, &ir,
5304 I387_ST0_REGNUM (tdep) +
5305 (ir.modrm & 0x0f)))
5306 return -1;
5307 }
5308 else if ((ir.modrm & 0x0f) - 0x08)
5309 {
5310 if (i386_record_floats (gdbarch, &ir,
5311 I387_ST0_REGNUM (tdep) +
5312 ((ir.modrm & 0x0f) - 0x08)))
5313 return -1;
5314 }
5315 }
5316 break;
5317 case 0xdc:
5318 if ((0x0c == ir.modrm >> 4)
5319 || (0x0d == ir.modrm >> 4)
5320 || (0x0f == ir.modrm >> 4))
5321 {
5322 if ((ir.modrm & 0x0f) <= 7)
5323 {
5324 if (i386_record_floats (gdbarch, &ir,
5325 I387_ST0_REGNUM (tdep) +
5326 (ir.modrm & 0x0f)))
5327 return -1;
5328 }
5329 else
5330 {
5331 if (i386_record_floats (gdbarch, &ir,
5332 I387_ST0_REGNUM (tdep) +
5333 ((ir.modrm & 0x0f) - 0x08)))
5334 return -1;
5335 }
5336 }
5337 break;
5338 case 0xdd:
5339 if (0x0c == ir.modrm >> 4)
5340 {
5341 if (i386_record_floats (gdbarch, &ir,
5342 I387_FTAG_REGNUM (tdep)))
5343 return -1;
5344 }
5345 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5346 {
5347 if ((ir.modrm & 0x0f) <= 7)
5348 {
5349 if (i386_record_floats (gdbarch, &ir,
5350 I387_ST0_REGNUM (tdep) +
5351 (ir.modrm & 0x0f)))
5352 return -1;
5353 }
5354 else
5355 {
5356 if (i386_record_floats (gdbarch, &ir,
5357 I386_SAVE_FPU_REGS))
5358 return -1;
5359 }
5360 }
5361 break;
5362 case 0xde:
5363 if ((0x0c == ir.modrm >> 4)
5364 || (0x0e == ir.modrm >> 4)
5365 || (0x0f == ir.modrm >> 4)
5366 || (0xd9 == ir.modrm))
5367 {
5368 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5369 return -1;
5370 }
5371 break;
5372 case 0xdf:
5373 if (0xe0 == ir.modrm)
5374 {
5375 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5376 return -1;
5377 }
5378 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5379 {
5380 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5381 return -1;
5382 }
5383 break;
5384 }
5385 }
5386 break;
5387 /* string ops */
5388 case 0xa4: /* movsS */
5389 case 0xa5:
5390 case 0xaa: /* stosS */
5391 case 0xab:
5392 case 0x6c: /* insS */
5393 case 0x6d:
5394 regcache_raw_read_unsigned (ir.regcache,
5395 ir.regmap[X86_RECORD_RECX_REGNUM],
5396 &addr);
5397 if (addr)
5398 {
5399 ULONGEST es, ds;
5400
5401 if ((opcode & 1) == 0)
5402 ir.ot = OT_BYTE;
5403 else
5404 ir.ot = ir.dflag + OT_WORD;
5405 regcache_raw_read_unsigned (ir.regcache,
5406 ir.regmap[X86_RECORD_REDI_REGNUM],
5407 &addr);
5408
5409 regcache_raw_read_unsigned (ir.regcache,
5410 ir.regmap[X86_RECORD_ES_REGNUM],
5411 &es);
5412 regcache_raw_read_unsigned (ir.regcache,
5413 ir.regmap[X86_RECORD_DS_REGNUM],
5414 &ds);
5415 if (ir.aflag && (es != ds))
5416 {
5417 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5418 if (record_memory_query)
5419 {
5420 int q;
5421
5422 target_terminal_ours ();
5423 q = yquery (_("\
5424 Process record ignores the memory change of instruction at address %s\n\
5425 because it can't get the value of the segment register.\n\
5426 Do you want to stop the program?"),
5427 paddress (gdbarch, ir.orig_addr));
5428 target_terminal_inferior ();
5429 if (q)
5430 return -1;
5431 }
5432 }
5433 else
5434 {
5435 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5436 return -1;
5437 }
5438
5439 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5440 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5441 if (opcode == 0xa4 || opcode == 0xa5)
5442 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5443 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5444 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5445 }
5446 break;
5447
5448 case 0xa6: /* cmpsS */
5449 case 0xa7:
5450 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5451 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5452 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5453 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5454 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5455 break;
5456
5457 case 0xac: /* lodsS */
5458 case 0xad:
5459 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5460 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5461 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5462 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5463 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5464 break;
5465
5466 case 0xae: /* scasS */
5467 case 0xaf:
5468 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5469 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5470 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5471 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5472 break;
5473
5474 case 0x6e: /* outsS */
5475 case 0x6f:
5476 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5477 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5478 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5479 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5480 break;
5481
5482 case 0xe4: /* port I/O */
5483 case 0xe5:
5484 case 0xec:
5485 case 0xed:
5486 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5487 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5488 break;
5489
5490 case 0xe6:
5491 case 0xe7:
5492 case 0xee:
5493 case 0xef:
5494 break;
5495
5496 /* control */
5497 case 0xc2: /* ret im */
5498 case 0xc3: /* ret */
5499 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5500 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5501 break;
5502
5503 case 0xca: /* lret im */
5504 case 0xcb: /* lret */
5505 case 0xcf: /* iret */
5506 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5507 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5508 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5509 break;
5510
5511 case 0xe8: /* call im */
5512 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5513 ir.dflag = 2;
5514 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5515 return -1;
5516 break;
5517
5518 case 0x9a: /* lcall im */
5519 if (ir.regmap[X86_RECORD_R8_REGNUM])
5520 {
5521 ir.addr -= 1;
5522 goto no_support;
5523 }
5524 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5525 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5526 return -1;
5527 break;
5528
5529 case 0xe9: /* jmp im */
5530 case 0xea: /* ljmp im */
5531 case 0xeb: /* jmp Jb */
5532 case 0x70: /* jcc Jb */
5533 case 0x71:
5534 case 0x72:
5535 case 0x73:
5536 case 0x74:
5537 case 0x75:
5538 case 0x76:
5539 case 0x77:
5540 case 0x78:
5541 case 0x79:
5542 case 0x7a:
5543 case 0x7b:
5544 case 0x7c:
5545 case 0x7d:
5546 case 0x7e:
5547 case 0x7f:
5548 case 0x0f80: /* jcc Jv */
5549 case 0x0f81:
5550 case 0x0f82:
5551 case 0x0f83:
5552 case 0x0f84:
5553 case 0x0f85:
5554 case 0x0f86:
5555 case 0x0f87:
5556 case 0x0f88:
5557 case 0x0f89:
5558 case 0x0f8a:
5559 case 0x0f8b:
5560 case 0x0f8c:
5561 case 0x0f8d:
5562 case 0x0f8e:
5563 case 0x0f8f:
5564 break;
5565
5566 case 0x0f90: /* setcc Gv */
5567 case 0x0f91:
5568 case 0x0f92:
5569 case 0x0f93:
5570 case 0x0f94:
5571 case 0x0f95:
5572 case 0x0f96:
5573 case 0x0f97:
5574 case 0x0f98:
5575 case 0x0f99:
5576 case 0x0f9a:
5577 case 0x0f9b:
5578 case 0x0f9c:
5579 case 0x0f9d:
5580 case 0x0f9e:
5581 case 0x0f9f:
5582 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5583 ir.ot = OT_BYTE;
5584 if (i386_record_modrm (&ir))
5585 return -1;
5586 if (ir.mod == 3)
5587 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5588 : (ir.rm & 0x3));
5589 else
5590 {
5591 if (i386_record_lea_modrm (&ir))
5592 return -1;
5593 }
5594 break;
5595
5596 case 0x0f40: /* cmov Gv, Ev */
5597 case 0x0f41:
5598 case 0x0f42:
5599 case 0x0f43:
5600 case 0x0f44:
5601 case 0x0f45:
5602 case 0x0f46:
5603 case 0x0f47:
5604 case 0x0f48:
5605 case 0x0f49:
5606 case 0x0f4a:
5607 case 0x0f4b:
5608 case 0x0f4c:
5609 case 0x0f4d:
5610 case 0x0f4e:
5611 case 0x0f4f:
5612 if (i386_record_modrm (&ir))
5613 return -1;
5614 ir.reg |= rex_r;
5615 if (ir.dflag == OT_BYTE)
5616 ir.reg &= 0x3;
5617 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5618 break;
5619
5620 /* flags */
5621 case 0x9c: /* pushf */
5622 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5623 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5624 ir.dflag = 2;
5625 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5626 return -1;
5627 break;
5628
5629 case 0x9d: /* popf */
5630 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5631 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5632 break;
5633
5634 case 0x9e: /* sahf */
5635 if (ir.regmap[X86_RECORD_R8_REGNUM])
5636 {
5637 ir.addr -= 1;
5638 goto no_support;
5639 }
5640 /* FALLTHROUGH */
5641 case 0xf5: /* cmc */
5642 case 0xf8: /* clc */
5643 case 0xf9: /* stc */
5644 case 0xfc: /* cld */
5645 case 0xfd: /* std */
5646 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5647 break;
5648
5649 case 0x9f: /* lahf */
5650 if (ir.regmap[X86_RECORD_R8_REGNUM])
5651 {
5652 ir.addr -= 1;
5653 goto no_support;
5654 }
5655 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5656 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5657 break;
5658
5659 /* bit operations */
5660 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5661 ir.ot = ir.dflag + OT_WORD;
5662 if (i386_record_modrm (&ir))
5663 return -1;
5664 if (ir.reg < 4)
5665 {
5666 ir.addr -= 2;
5667 opcode = opcode << 8 | ir.modrm;
5668 goto no_support;
5669 }
5670 if (ir.reg != 4)
5671 {
5672 if (ir.mod == 3)
5673 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5674 else
5675 {
5676 if (i386_record_lea_modrm (&ir))
5677 return -1;
5678 }
5679 }
5680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5681 break;
5682
5683 case 0x0fa3: /* bt Gv, Ev */
5684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x0fab: /* bts */
5688 case 0x0fb3: /* btr */
5689 case 0x0fbb: /* btc */
5690 ir.ot = ir.dflag + OT_WORD;
5691 if (i386_record_modrm (&ir))
5692 return -1;
5693 if (ir.mod == 3)
5694 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5695 else
5696 {
5697 uint64_t addr64;
5698 if (i386_record_lea_modrm_addr (&ir, &addr64))
5699 return -1;
5700 regcache_raw_read_unsigned (ir.regcache,
5701 ir.regmap[ir.reg | rex_r],
5702 &addr);
5703 switch (ir.dflag)
5704 {
5705 case 0:
5706 addr64 += ((int16_t) addr >> 4) << 4;
5707 break;
5708 case 1:
5709 addr64 += ((int32_t) addr >> 5) << 5;
5710 break;
5711 case 2:
5712 addr64 += ((int64_t) addr >> 6) << 6;
5713 break;
5714 }
5715 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5716 return -1;
5717 if (i386_record_lea_modrm (&ir))
5718 return -1;
5719 }
5720 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5721 break;
5722
5723 case 0x0fbc: /* bsf */
5724 case 0x0fbd: /* bsr */
5725 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5726 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5727 break;
5728
5729 /* bcd */
5730 case 0x27: /* daa */
5731 case 0x2f: /* das */
5732 case 0x37: /* aaa */
5733 case 0x3f: /* aas */
5734 case 0xd4: /* aam */
5735 case 0xd5: /* aad */
5736 if (ir.regmap[X86_RECORD_R8_REGNUM])
5737 {
5738 ir.addr -= 1;
5739 goto no_support;
5740 }
5741 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5742 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5743 break;
5744
5745 /* misc */
5746 case 0x90: /* nop */
5747 if (prefixes & PREFIX_LOCK)
5748 {
5749 ir.addr -= 1;
5750 goto no_support;
5751 }
5752 break;
5753
5754 case 0x9b: /* fwait */
5755 if (target_read_memory (ir.addr, &opcode8, 1))
5756 {
5757 if (record_debug)
5758 printf_unfiltered (_("Process record: error reading memory at "
5759 "addr 0x%s len = 1.\n"),
5760 paddress (gdbarch, ir.addr));
5761 return -1;
5762 }
5763 opcode = (uint32_t) opcode8;
5764 ir.addr++;
5765 goto reswitch;
5766 break;
5767
5768 /* XXX */
5769 case 0xcc: /* int3 */
5770 printf_unfiltered (_("Process record does not support instruction "
5771 "int3.\n"));
5772 ir.addr -= 1;
5773 goto no_support;
5774 break;
5775
5776 /* XXX */
5777 case 0xcd: /* int */
5778 {
5779 int ret;
5780 uint8_t interrupt;
5781 if (target_read_memory (ir.addr, &interrupt, 1))
5782 {
5783 if (record_debug)
5784 printf_unfiltered (_("Process record: error reading memory "
5785 "at addr %s len = 1.\n"),
5786 paddress (gdbarch, ir.addr));
5787 return -1;
5788 }
5789 ir.addr++;
5790 if (interrupt != 0x80
5791 || tdep->i386_intx80_record == NULL)
5792 {
5793 printf_unfiltered (_("Process record does not support "
5794 "instruction int 0x%02x.\n"),
5795 interrupt);
5796 ir.addr -= 2;
5797 goto no_support;
5798 }
5799 ret = tdep->i386_intx80_record (ir.regcache);
5800 if (ret)
5801 return ret;
5802 }
5803 break;
5804
5805 /* XXX */
5806 case 0xce: /* into */
5807 printf_unfiltered (_("Process record does not support "
5808 "instruction into.\n"));
5809 ir.addr -= 1;
5810 goto no_support;
5811 break;
5812
5813 case 0xfa: /* cli */
5814 case 0xfb: /* sti */
5815 break;
5816
5817 case 0x62: /* bound */
5818 printf_unfiltered (_("Process record does not support "
5819 "instruction bound.\n"));
5820 ir.addr -= 1;
5821 goto no_support;
5822 break;
5823
5824 case 0x0fc8: /* bswap reg */
5825 case 0x0fc9:
5826 case 0x0fca:
5827 case 0x0fcb:
5828 case 0x0fcc:
5829 case 0x0fcd:
5830 case 0x0fce:
5831 case 0x0fcf:
5832 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5833 break;
5834
5835 case 0xd6: /* salc */
5836 if (ir.regmap[X86_RECORD_R8_REGNUM])
5837 {
5838 ir.addr -= 1;
5839 goto no_support;
5840 }
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5842 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5843 break;
5844
5845 case 0xe0: /* loopnz */
5846 case 0xe1: /* loopz */
5847 case 0xe2: /* loop */
5848 case 0xe3: /* jecxz */
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5850 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5851 break;
5852
5853 case 0x0f30: /* wrmsr */
5854 printf_unfiltered (_("Process record does not support "
5855 "instruction wrmsr.\n"));
5856 ir.addr -= 2;
5857 goto no_support;
5858 break;
5859
5860 case 0x0f32: /* rdmsr */
5861 printf_unfiltered (_("Process record does not support "
5862 "instruction rdmsr.\n"));
5863 ir.addr -= 2;
5864 goto no_support;
5865 break;
5866
5867 case 0x0f31: /* rdtsc */
5868 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5870 break;
5871
5872 case 0x0f34: /* sysenter */
5873 {
5874 int ret;
5875 if (ir.regmap[X86_RECORD_R8_REGNUM])
5876 {
5877 ir.addr -= 2;
5878 goto no_support;
5879 }
5880 if (tdep->i386_sysenter_record == NULL)
5881 {
5882 printf_unfiltered (_("Process record does not support "
5883 "instruction sysenter.\n"));
5884 ir.addr -= 2;
5885 goto no_support;
5886 }
5887 ret = tdep->i386_sysenter_record (ir.regcache);
5888 if (ret)
5889 return ret;
5890 }
5891 break;
5892
5893 case 0x0f35: /* sysexit */
5894 printf_unfiltered (_("Process record does not support "
5895 "instruction sysexit.\n"));
5896 ir.addr -= 2;
5897 goto no_support;
5898 break;
5899
5900 case 0x0f05: /* syscall */
5901 {
5902 int ret;
5903 if (tdep->i386_syscall_record == NULL)
5904 {
5905 printf_unfiltered (_("Process record does not support "
5906 "instruction syscall.\n"));
5907 ir.addr -= 2;
5908 goto no_support;
5909 }
5910 ret = tdep->i386_syscall_record (ir.regcache);
5911 if (ret)
5912 return ret;
5913 }
5914 break;
5915
5916 case 0x0f07: /* sysret */
5917 printf_unfiltered (_("Process record does not support "
5918 "instruction sysret.\n"));
5919 ir.addr -= 2;
5920 goto no_support;
5921 break;
5922
5923 case 0x0fa2: /* cpuid */
5924 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5925 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5926 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5927 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5928 break;
5929
5930 case 0xf4: /* hlt */
5931 printf_unfiltered (_("Process record does not support "
5932 "instruction hlt.\n"));
5933 ir.addr -= 1;
5934 goto no_support;
5935 break;
5936
5937 case 0x0f00:
5938 if (i386_record_modrm (&ir))
5939 return -1;
5940 switch (ir.reg)
5941 {
5942 case 0: /* sldt */
5943 case 1: /* str */
5944 if (ir.mod == 3)
5945 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5946 else
5947 {
5948 ir.ot = OT_WORD;
5949 if (i386_record_lea_modrm (&ir))
5950 return -1;
5951 }
5952 break;
5953 case 2: /* lldt */
5954 case 3: /* ltr */
5955 break;
5956 case 4: /* verr */
5957 case 5: /* verw */
5958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5959 break;
5960 default:
5961 ir.addr -= 3;
5962 opcode = opcode << 8 | ir.modrm;
5963 goto no_support;
5964 break;
5965 }
5966 break;
5967
5968 case 0x0f01:
5969 if (i386_record_modrm (&ir))
5970 return -1;
5971 switch (ir.reg)
5972 {
5973 case 0: /* sgdt */
5974 {
5975 uint64_t addr64;
5976
5977 if (ir.mod == 3)
5978 {
5979 ir.addr -= 3;
5980 opcode = opcode << 8 | ir.modrm;
5981 goto no_support;
5982 }
5983 if (ir.override >= 0)
5984 {
5985 if (record_memory_query)
5986 {
5987 int q;
5988
5989 target_terminal_ours ();
5990 q = yquery (_("\
5991 Process record ignores the memory change of instruction at address %s\n\
5992 because it can't get the value of the segment register.\n\
5993 Do you want to stop the program?"),
5994 paddress (gdbarch, ir.orig_addr));
5995 target_terminal_inferior ();
5996 if (q)
5997 return -1;
5998 }
5999 }
6000 else
6001 {
6002 if (i386_record_lea_modrm_addr (&ir, &addr64))
6003 return -1;
6004 if (record_arch_list_add_mem (addr64, 2))
6005 return -1;
6006 addr64 += 2;
6007 if (ir.regmap[X86_RECORD_R8_REGNUM])
6008 {
6009 if (record_arch_list_add_mem (addr64, 8))
6010 return -1;
6011 }
6012 else
6013 {
6014 if (record_arch_list_add_mem (addr64, 4))
6015 return -1;
6016 }
6017 }
6018 }
6019 break;
6020 case 1:
6021 if (ir.mod == 3)
6022 {
6023 switch (ir.rm)
6024 {
6025 case 0: /* monitor */
6026 break;
6027 case 1: /* mwait */
6028 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6029 break;
6030 default:
6031 ir.addr -= 3;
6032 opcode = opcode << 8 | ir.modrm;
6033 goto no_support;
6034 break;
6035 }
6036 }
6037 else
6038 {
6039 /* sidt */
6040 if (ir.override >= 0)
6041 {
6042 if (record_memory_query)
6043 {
6044 int q;
6045
6046 target_terminal_ours ();
6047 q = yquery (_("\
6048 Process record ignores the memory change of instruction at address %s\n\
6049 because it can't get the value of the segment register.\n\
6050 Do you want to stop the program?"),
6051 paddress (gdbarch, ir.orig_addr));
6052 target_terminal_inferior ();
6053 if (q)
6054 return -1;
6055 }
6056 }
6057 else
6058 {
6059 uint64_t addr64;
6060
6061 if (i386_record_lea_modrm_addr (&ir, &addr64))
6062 return -1;
6063 if (record_arch_list_add_mem (addr64, 2))
6064 return -1;
6065 addr64 += 2;
6066 if (ir.regmap[X86_RECORD_R8_REGNUM])
6067 {
6068 if (record_arch_list_add_mem (addr64, 8))
6069 return -1;
6070 }
6071 else
6072 {
6073 if (record_arch_list_add_mem (addr64, 4))
6074 return -1;
6075 }
6076 }
6077 }
6078 break;
6079 case 2: /* lgdt */
6080 if (ir.mod == 3)
6081 {
6082 /* xgetbv */
6083 if (ir.rm == 0)
6084 {
6085 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6086 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6087 break;
6088 }
6089 /* xsetbv */
6090 else if (ir.rm == 1)
6091 break;
6092 }
6093 case 3: /* lidt */
6094 if (ir.mod == 3)
6095 {
6096 ir.addr -= 3;
6097 opcode = opcode << 8 | ir.modrm;
6098 goto no_support;
6099 }
6100 break;
6101 case 4: /* smsw */
6102 if (ir.mod == 3)
6103 {
6104 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6105 return -1;
6106 }
6107 else
6108 {
6109 ir.ot = OT_WORD;
6110 if (i386_record_lea_modrm (&ir))
6111 return -1;
6112 }
6113 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6114 break;
6115 case 6: /* lmsw */
6116 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6117 break;
6118 case 7: /* invlpg */
6119 if (ir.mod == 3)
6120 {
6121 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6122 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6123 else
6124 {
6125 ir.addr -= 3;
6126 opcode = opcode << 8 | ir.modrm;
6127 goto no_support;
6128 }
6129 }
6130 else
6131 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6132 break;
6133 default:
6134 ir.addr -= 3;
6135 opcode = opcode << 8 | ir.modrm;
6136 goto no_support;
6137 break;
6138 }
6139 break;
6140
6141 case 0x0f08: /* invd */
6142 case 0x0f09: /* wbinvd */
6143 break;
6144
6145 case 0x63: /* arpl */
6146 if (i386_record_modrm (&ir))
6147 return -1;
6148 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6149 {
6150 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6151 ? (ir.reg | rex_r) : ir.rm);
6152 }
6153 else
6154 {
6155 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6156 if (i386_record_lea_modrm (&ir))
6157 return -1;
6158 }
6159 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6161 break;
6162
6163 case 0x0f02: /* lar */
6164 case 0x0f03: /* lsl */
6165 if (i386_record_modrm (&ir))
6166 return -1;
6167 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6168 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6169 break;
6170
6171 case 0x0f18:
6172 if (i386_record_modrm (&ir))
6173 return -1;
6174 if (ir.mod == 3 && ir.reg == 3)
6175 {
6176 ir.addr -= 3;
6177 opcode = opcode << 8 | ir.modrm;
6178 goto no_support;
6179 }
6180 break;
6181
6182 case 0x0f19:
6183 case 0x0f1a:
6184 case 0x0f1b:
6185 case 0x0f1c:
6186 case 0x0f1d:
6187 case 0x0f1e:
6188 case 0x0f1f:
6189 /* nop (multi byte) */
6190 break;
6191
6192 case 0x0f20: /* mov reg, crN */
6193 case 0x0f22: /* mov crN, reg */
6194 if (i386_record_modrm (&ir))
6195 return -1;
6196 if ((ir.modrm & 0xc0) != 0xc0)
6197 {
6198 ir.addr -= 3;
6199 opcode = opcode << 8 | ir.modrm;
6200 goto no_support;
6201 }
6202 switch (ir.reg)
6203 {
6204 case 0:
6205 case 2:
6206 case 3:
6207 case 4:
6208 case 8:
6209 if (opcode & 2)
6210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6211 else
6212 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6213 break;
6214 default:
6215 ir.addr -= 3;
6216 opcode = opcode << 8 | ir.modrm;
6217 goto no_support;
6218 break;
6219 }
6220 break;
6221
6222 case 0x0f21: /* mov reg, drN */
6223 case 0x0f23: /* mov drN, reg */
6224 if (i386_record_modrm (&ir))
6225 return -1;
6226 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6227 || ir.reg == 5 || ir.reg >= 8)
6228 {
6229 ir.addr -= 3;
6230 opcode = opcode << 8 | ir.modrm;
6231 goto no_support;
6232 }
6233 if (opcode & 2)
6234 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6235 else
6236 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6237 break;
6238
6239 case 0x0f06: /* clts */
6240 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6241 break;
6242
6243 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6244
6245 case 0x0f0d: /* 3DNow! prefetch */
6246 break;
6247
6248 case 0x0f0e: /* 3DNow! femms */
6249 case 0x0f77: /* emms */
6250 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6251 goto no_support;
6252 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6253 break;
6254
6255 case 0x0f0f: /* 3DNow! data */
6256 if (i386_record_modrm (&ir))
6257 return -1;
6258 if (target_read_memory (ir.addr, &opcode8, 1))
6259 {
6260 printf_unfiltered (_("Process record: error reading memory at "
6261 "addr %s len = 1.\n"),
6262 paddress (gdbarch, ir.addr));
6263 return -1;
6264 }
6265 ir.addr++;
6266 switch (opcode8)
6267 {
6268 case 0x0c: /* 3DNow! pi2fw */
6269 case 0x0d: /* 3DNow! pi2fd */
6270 case 0x1c: /* 3DNow! pf2iw */
6271 case 0x1d: /* 3DNow! pf2id */
6272 case 0x8a: /* 3DNow! pfnacc */
6273 case 0x8e: /* 3DNow! pfpnacc */
6274 case 0x90: /* 3DNow! pfcmpge */
6275 case 0x94: /* 3DNow! pfmin */
6276 case 0x96: /* 3DNow! pfrcp */
6277 case 0x97: /* 3DNow! pfrsqrt */
6278 case 0x9a: /* 3DNow! pfsub */
6279 case 0x9e: /* 3DNow! pfadd */
6280 case 0xa0: /* 3DNow! pfcmpgt */
6281 case 0xa4: /* 3DNow! pfmax */
6282 case 0xa6: /* 3DNow! pfrcpit1 */
6283 case 0xa7: /* 3DNow! pfrsqit1 */
6284 case 0xaa: /* 3DNow! pfsubr */
6285 case 0xae: /* 3DNow! pfacc */
6286 case 0xb0: /* 3DNow! pfcmpeq */
6287 case 0xb4: /* 3DNow! pfmul */
6288 case 0xb6: /* 3DNow! pfrcpit2 */
6289 case 0xb7: /* 3DNow! pmulhrw */
6290 case 0xbb: /* 3DNow! pswapd */
6291 case 0xbf: /* 3DNow! pavgusb */
6292 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6293 goto no_support_3dnow_data;
6294 record_arch_list_add_reg (ir.regcache, ir.reg);
6295 break;
6296
6297 default:
6298 no_support_3dnow_data:
6299 opcode = (opcode << 8) | opcode8;
6300 goto no_support;
6301 break;
6302 }
6303 break;
6304
6305 case 0x0faa: /* rsm */
6306 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6307 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6308 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6309 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6311 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6315 break;
6316
6317 case 0x0fae:
6318 if (i386_record_modrm (&ir))
6319 return -1;
6320 switch(ir.reg)
6321 {
6322 case 0: /* fxsave */
6323 {
6324 uint64_t tmpu64;
6325
6326 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6327 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6328 return -1;
6329 if (record_arch_list_add_mem (tmpu64, 512))
6330 return -1;
6331 }
6332 break;
6333
6334 case 1: /* fxrstor */
6335 {
6336 int i;
6337
6338 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6339
6340 for (i = I387_MM0_REGNUM (tdep);
6341 i386_mmx_regnum_p (gdbarch, i); i++)
6342 record_arch_list_add_reg (ir.regcache, i);
6343
6344 for (i = I387_XMM0_REGNUM (tdep);
6345 i386_xmm_regnum_p (gdbarch, i); i++)
6346 record_arch_list_add_reg (ir.regcache, i);
6347
6348 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6349 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6350
6351 for (i = I387_ST0_REGNUM (tdep);
6352 i386_fp_regnum_p (gdbarch, i); i++)
6353 record_arch_list_add_reg (ir.regcache, i);
6354
6355 for (i = I387_FCTRL_REGNUM (tdep);
6356 i386_fpc_regnum_p (gdbarch, i); i++)
6357 record_arch_list_add_reg (ir.regcache, i);
6358 }
6359 break;
6360
6361 case 2: /* ldmxcsr */
6362 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6363 goto no_support;
6364 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6365 break;
6366
6367 case 3: /* stmxcsr */
6368 ir.ot = OT_LONG;
6369 if (i386_record_lea_modrm (&ir))
6370 return -1;
6371 break;
6372
6373 case 5: /* lfence */
6374 case 6: /* mfence */
6375 case 7: /* sfence clflush */
6376 break;
6377
6378 default:
6379 opcode = (opcode << 8) | ir.modrm;
6380 goto no_support;
6381 break;
6382 }
6383 break;
6384
6385 case 0x0fc3: /* movnti */
6386 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6387 if (i386_record_modrm (&ir))
6388 return -1;
6389 if (ir.mod == 3)
6390 goto no_support;
6391 ir.reg |= rex_r;
6392 if (i386_record_lea_modrm (&ir))
6393 return -1;
6394 break;
6395
6396 /* Add prefix to opcode. */
6397 case 0x0f10:
6398 case 0x0f11:
6399 case 0x0f12:
6400 case 0x0f13:
6401 case 0x0f14:
6402 case 0x0f15:
6403 case 0x0f16:
6404 case 0x0f17:
6405 case 0x0f28:
6406 case 0x0f29:
6407 case 0x0f2a:
6408 case 0x0f2b:
6409 case 0x0f2c:
6410 case 0x0f2d:
6411 case 0x0f2e:
6412 case 0x0f2f:
6413 case 0x0f38:
6414 case 0x0f39:
6415 case 0x0f3a:
6416 case 0x0f50:
6417 case 0x0f51:
6418 case 0x0f52:
6419 case 0x0f53:
6420 case 0x0f54:
6421 case 0x0f55:
6422 case 0x0f56:
6423 case 0x0f57:
6424 case 0x0f58:
6425 case 0x0f59:
6426 case 0x0f5a:
6427 case 0x0f5b:
6428 case 0x0f5c:
6429 case 0x0f5d:
6430 case 0x0f5e:
6431 case 0x0f5f:
6432 case 0x0f60:
6433 case 0x0f61:
6434 case 0x0f62:
6435 case 0x0f63:
6436 case 0x0f64:
6437 case 0x0f65:
6438 case 0x0f66:
6439 case 0x0f67:
6440 case 0x0f68:
6441 case 0x0f69:
6442 case 0x0f6a:
6443 case 0x0f6b:
6444 case 0x0f6c:
6445 case 0x0f6d:
6446 case 0x0f6e:
6447 case 0x0f6f:
6448 case 0x0f70:
6449 case 0x0f71:
6450 case 0x0f72:
6451 case 0x0f73:
6452 case 0x0f74:
6453 case 0x0f75:
6454 case 0x0f76:
6455 case 0x0f7c:
6456 case 0x0f7d:
6457 case 0x0f7e:
6458 case 0x0f7f:
6459 case 0x0fb8:
6460 case 0x0fc2:
6461 case 0x0fc4:
6462 case 0x0fc5:
6463 case 0x0fc6:
6464 case 0x0fd0:
6465 case 0x0fd1:
6466 case 0x0fd2:
6467 case 0x0fd3:
6468 case 0x0fd4:
6469 case 0x0fd5:
6470 case 0x0fd6:
6471 case 0x0fd7:
6472 case 0x0fd8:
6473 case 0x0fd9:
6474 case 0x0fda:
6475 case 0x0fdb:
6476 case 0x0fdc:
6477 case 0x0fdd:
6478 case 0x0fde:
6479 case 0x0fdf:
6480 case 0x0fe0:
6481 case 0x0fe1:
6482 case 0x0fe2:
6483 case 0x0fe3:
6484 case 0x0fe4:
6485 case 0x0fe5:
6486 case 0x0fe6:
6487 case 0x0fe7:
6488 case 0x0fe8:
6489 case 0x0fe9:
6490 case 0x0fea:
6491 case 0x0feb:
6492 case 0x0fec:
6493 case 0x0fed:
6494 case 0x0fee:
6495 case 0x0fef:
6496 case 0x0ff0:
6497 case 0x0ff1:
6498 case 0x0ff2:
6499 case 0x0ff3:
6500 case 0x0ff4:
6501 case 0x0ff5:
6502 case 0x0ff6:
6503 case 0x0ff7:
6504 case 0x0ff8:
6505 case 0x0ff9:
6506 case 0x0ffa:
6507 case 0x0ffb:
6508 case 0x0ffc:
6509 case 0x0ffd:
6510 case 0x0ffe:
6511 switch (prefixes)
6512 {
6513 case PREFIX_REPNZ:
6514 opcode |= 0xf20000;
6515 break;
6516 case PREFIX_DATA:
6517 opcode |= 0x660000;
6518 break;
6519 case PREFIX_REPZ:
6520 opcode |= 0xf30000;
6521 break;
6522 }
6523 reswitch_prefix_add:
6524 switch (opcode)
6525 {
6526 case 0x0f38:
6527 case 0x660f38:
6528 case 0xf20f38:
6529 case 0x0f3a:
6530 case 0x660f3a:
6531 if (target_read_memory (ir.addr, &opcode8, 1))
6532 {
6533 printf_unfiltered (_("Process record: error reading memory at "
6534 "addr %s len = 1.\n"),
6535 paddress (gdbarch, ir.addr));
6536 return -1;
6537 }
6538 ir.addr++;
6539 opcode = (uint32_t) opcode8 | opcode << 8;
6540 goto reswitch_prefix_add;
6541 break;
6542
6543 case 0x0f10: /* movups */
6544 case 0x660f10: /* movupd */
6545 case 0xf30f10: /* movss */
6546 case 0xf20f10: /* movsd */
6547 case 0x0f12: /* movlps */
6548 case 0x660f12: /* movlpd */
6549 case 0xf30f12: /* movsldup */
6550 case 0xf20f12: /* movddup */
6551 case 0x0f14: /* unpcklps */
6552 case 0x660f14: /* unpcklpd */
6553 case 0x0f15: /* unpckhps */
6554 case 0x660f15: /* unpckhpd */
6555 case 0x0f16: /* movhps */
6556 case 0x660f16: /* movhpd */
6557 case 0xf30f16: /* movshdup */
6558 case 0x0f28: /* movaps */
6559 case 0x660f28: /* movapd */
6560 case 0x0f2a: /* cvtpi2ps */
6561 case 0x660f2a: /* cvtpi2pd */
6562 case 0xf30f2a: /* cvtsi2ss */
6563 case 0xf20f2a: /* cvtsi2sd */
6564 case 0x0f2c: /* cvttps2pi */
6565 case 0x660f2c: /* cvttpd2pi */
6566 case 0x0f2d: /* cvtps2pi */
6567 case 0x660f2d: /* cvtpd2pi */
6568 case 0x660f3800: /* pshufb */
6569 case 0x660f3801: /* phaddw */
6570 case 0x660f3802: /* phaddd */
6571 case 0x660f3803: /* phaddsw */
6572 case 0x660f3804: /* pmaddubsw */
6573 case 0x660f3805: /* phsubw */
6574 case 0x660f3806: /* phsubd */
6575 case 0x660f3807: /* phsubsw */
6576 case 0x660f3808: /* psignb */
6577 case 0x660f3809: /* psignw */
6578 case 0x660f380a: /* psignd */
6579 case 0x660f380b: /* pmulhrsw */
6580 case 0x660f3810: /* pblendvb */
6581 case 0x660f3814: /* blendvps */
6582 case 0x660f3815: /* blendvpd */
6583 case 0x660f381c: /* pabsb */
6584 case 0x660f381d: /* pabsw */
6585 case 0x660f381e: /* pabsd */
6586 case 0x660f3820: /* pmovsxbw */
6587 case 0x660f3821: /* pmovsxbd */
6588 case 0x660f3822: /* pmovsxbq */
6589 case 0x660f3823: /* pmovsxwd */
6590 case 0x660f3824: /* pmovsxwq */
6591 case 0x660f3825: /* pmovsxdq */
6592 case 0x660f3828: /* pmuldq */
6593 case 0x660f3829: /* pcmpeqq */
6594 case 0x660f382a: /* movntdqa */
6595 case 0x660f3a08: /* roundps */
6596 case 0x660f3a09: /* roundpd */
6597 case 0x660f3a0a: /* roundss */
6598 case 0x660f3a0b: /* roundsd */
6599 case 0x660f3a0c: /* blendps */
6600 case 0x660f3a0d: /* blendpd */
6601 case 0x660f3a0e: /* pblendw */
6602 case 0x660f3a0f: /* palignr */
6603 case 0x660f3a20: /* pinsrb */
6604 case 0x660f3a21: /* insertps */
6605 case 0x660f3a22: /* pinsrd pinsrq */
6606 case 0x660f3a40: /* dpps */
6607 case 0x660f3a41: /* dppd */
6608 case 0x660f3a42: /* mpsadbw */
6609 case 0x660f3a60: /* pcmpestrm */
6610 case 0x660f3a61: /* pcmpestri */
6611 case 0x660f3a62: /* pcmpistrm */
6612 case 0x660f3a63: /* pcmpistri */
6613 case 0x0f51: /* sqrtps */
6614 case 0x660f51: /* sqrtpd */
6615 case 0xf20f51: /* sqrtsd */
6616 case 0xf30f51: /* sqrtss */
6617 case 0x0f52: /* rsqrtps */
6618 case 0xf30f52: /* rsqrtss */
6619 case 0x0f53: /* rcpps */
6620 case 0xf30f53: /* rcpss */
6621 case 0x0f54: /* andps */
6622 case 0x660f54: /* andpd */
6623 case 0x0f55: /* andnps */
6624 case 0x660f55: /* andnpd */
6625 case 0x0f56: /* orps */
6626 case 0x660f56: /* orpd */
6627 case 0x0f57: /* xorps */
6628 case 0x660f57: /* xorpd */
6629 case 0x0f58: /* addps */
6630 case 0x660f58: /* addpd */
6631 case 0xf20f58: /* addsd */
6632 case 0xf30f58: /* addss */
6633 case 0x0f59: /* mulps */
6634 case 0x660f59: /* mulpd */
6635 case 0xf20f59: /* mulsd */
6636 case 0xf30f59: /* mulss */
6637 case 0x0f5a: /* cvtps2pd */
6638 case 0x660f5a: /* cvtpd2ps */
6639 case 0xf20f5a: /* cvtsd2ss */
6640 case 0xf30f5a: /* cvtss2sd */
6641 case 0x0f5b: /* cvtdq2ps */
6642 case 0x660f5b: /* cvtps2dq */
6643 case 0xf30f5b: /* cvttps2dq */
6644 case 0x0f5c: /* subps */
6645 case 0x660f5c: /* subpd */
6646 case 0xf20f5c: /* subsd */
6647 case 0xf30f5c: /* subss */
6648 case 0x0f5d: /* minps */
6649 case 0x660f5d: /* minpd */
6650 case 0xf20f5d: /* minsd */
6651 case 0xf30f5d: /* minss */
6652 case 0x0f5e: /* divps */
6653 case 0x660f5e: /* divpd */
6654 case 0xf20f5e: /* divsd */
6655 case 0xf30f5e: /* divss */
6656 case 0x0f5f: /* maxps */
6657 case 0x660f5f: /* maxpd */
6658 case 0xf20f5f: /* maxsd */
6659 case 0xf30f5f: /* maxss */
6660 case 0x660f60: /* punpcklbw */
6661 case 0x660f61: /* punpcklwd */
6662 case 0x660f62: /* punpckldq */
6663 case 0x660f63: /* packsswb */
6664 case 0x660f64: /* pcmpgtb */
6665 case 0x660f65: /* pcmpgtw */
6666 case 0x660f66: /* pcmpgtd */
6667 case 0x660f67: /* packuswb */
6668 case 0x660f68: /* punpckhbw */
6669 case 0x660f69: /* punpckhwd */
6670 case 0x660f6a: /* punpckhdq */
6671 case 0x660f6b: /* packssdw */
6672 case 0x660f6c: /* punpcklqdq */
6673 case 0x660f6d: /* punpckhqdq */
6674 case 0x660f6e: /* movd */
6675 case 0x660f6f: /* movdqa */
6676 case 0xf30f6f: /* movdqu */
6677 case 0x660f70: /* pshufd */
6678 case 0xf20f70: /* pshuflw */
6679 case 0xf30f70: /* pshufhw */
6680 case 0x660f74: /* pcmpeqb */
6681 case 0x660f75: /* pcmpeqw */
6682 case 0x660f76: /* pcmpeqd */
6683 case 0x660f7c: /* haddpd */
6684 case 0xf20f7c: /* haddps */
6685 case 0x660f7d: /* hsubpd */
6686 case 0xf20f7d: /* hsubps */
6687 case 0xf30f7e: /* movq */
6688 case 0x0fc2: /* cmpps */
6689 case 0x660fc2: /* cmppd */
6690 case 0xf20fc2: /* cmpsd */
6691 case 0xf30fc2: /* cmpss */
6692 case 0x660fc4: /* pinsrw */
6693 case 0x0fc6: /* shufps */
6694 case 0x660fc6: /* shufpd */
6695 case 0x660fd0: /* addsubpd */
6696 case 0xf20fd0: /* addsubps */
6697 case 0x660fd1: /* psrlw */
6698 case 0x660fd2: /* psrld */
6699 case 0x660fd3: /* psrlq */
6700 case 0x660fd4: /* paddq */
6701 case 0x660fd5: /* pmullw */
6702 case 0xf30fd6: /* movq2dq */
6703 case 0x660fd8: /* psubusb */
6704 case 0x660fd9: /* psubusw */
6705 case 0x660fda: /* pminub */
6706 case 0x660fdb: /* pand */
6707 case 0x660fdc: /* paddusb */
6708 case 0x660fdd: /* paddusw */
6709 case 0x660fde: /* pmaxub */
6710 case 0x660fdf: /* pandn */
6711 case 0x660fe0: /* pavgb */
6712 case 0x660fe1: /* psraw */
6713 case 0x660fe2: /* psrad */
6714 case 0x660fe3: /* pavgw */
6715 case 0x660fe4: /* pmulhuw */
6716 case 0x660fe5: /* pmulhw */
6717 case 0x660fe6: /* cvttpd2dq */
6718 case 0xf20fe6: /* cvtpd2dq */
6719 case 0xf30fe6: /* cvtdq2pd */
6720 case 0x660fe8: /* psubsb */
6721 case 0x660fe9: /* psubsw */
6722 case 0x660fea: /* pminsw */
6723 case 0x660feb: /* por */
6724 case 0x660fec: /* paddsb */
6725 case 0x660fed: /* paddsw */
6726 case 0x660fee: /* pmaxsw */
6727 case 0x660fef: /* pxor */
6728 case 0xf20ff0: /* lddqu */
6729 case 0x660ff1: /* psllw */
6730 case 0x660ff2: /* pslld */
6731 case 0x660ff3: /* psllq */
6732 case 0x660ff4: /* pmuludq */
6733 case 0x660ff5: /* pmaddwd */
6734 case 0x660ff6: /* psadbw */
6735 case 0x660ff8: /* psubb */
6736 case 0x660ff9: /* psubw */
6737 case 0x660ffa: /* psubd */
6738 case 0x660ffb: /* psubq */
6739 case 0x660ffc: /* paddb */
6740 case 0x660ffd: /* paddw */
6741 case 0x660ffe: /* paddd */
6742 if (i386_record_modrm (&ir))
6743 return -1;
6744 ir.reg |= rex_r;
6745 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6746 goto no_support;
6747 record_arch_list_add_reg (ir.regcache,
6748 I387_XMM0_REGNUM (tdep) + ir.reg);
6749 if ((opcode & 0xfffffffc) == 0x660f3a60)
6750 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6751 break;
6752
6753 case 0x0f11: /* movups */
6754 case 0x660f11: /* movupd */
6755 case 0xf30f11: /* movss */
6756 case 0xf20f11: /* movsd */
6757 case 0x0f13: /* movlps */
6758 case 0x660f13: /* movlpd */
6759 case 0x0f17: /* movhps */
6760 case 0x660f17: /* movhpd */
6761 case 0x0f29: /* movaps */
6762 case 0x660f29: /* movapd */
6763 case 0x660f3a14: /* pextrb */
6764 case 0x660f3a15: /* pextrw */
6765 case 0x660f3a16: /* pextrd pextrq */
6766 case 0x660f3a17: /* extractps */
6767 case 0x660f7f: /* movdqa */
6768 case 0xf30f7f: /* movdqu */
6769 if (i386_record_modrm (&ir))
6770 return -1;
6771 if (ir.mod == 3)
6772 {
6773 if (opcode == 0x0f13 || opcode == 0x660f13
6774 || opcode == 0x0f17 || opcode == 0x660f17)
6775 goto no_support;
6776 ir.rm |= ir.rex_b;
6777 if (!i386_xmm_regnum_p (gdbarch,
6778 I387_XMM0_REGNUM (tdep) + ir.rm))
6779 goto no_support;
6780 record_arch_list_add_reg (ir.regcache,
6781 I387_XMM0_REGNUM (tdep) + ir.rm);
6782 }
6783 else
6784 {
6785 switch (opcode)
6786 {
6787 case 0x660f3a14:
6788 ir.ot = OT_BYTE;
6789 break;
6790 case 0x660f3a15:
6791 ir.ot = OT_WORD;
6792 break;
6793 case 0x660f3a16:
6794 ir.ot = OT_LONG;
6795 break;
6796 case 0x660f3a17:
6797 ir.ot = OT_QUAD;
6798 break;
6799 default:
6800 ir.ot = OT_DQUAD;
6801 break;
6802 }
6803 if (i386_record_lea_modrm (&ir))
6804 return -1;
6805 }
6806 break;
6807
6808 case 0x0f2b: /* movntps */
6809 case 0x660f2b: /* movntpd */
6810 case 0x0fe7: /* movntq */
6811 case 0x660fe7: /* movntdq */
6812 if (ir.mod == 3)
6813 goto no_support;
6814 if (opcode == 0x0fe7)
6815 ir.ot = OT_QUAD;
6816 else
6817 ir.ot = OT_DQUAD;
6818 if (i386_record_lea_modrm (&ir))
6819 return -1;
6820 break;
6821
6822 case 0xf30f2c: /* cvttss2si */
6823 case 0xf20f2c: /* cvttsd2si */
6824 case 0xf30f2d: /* cvtss2si */
6825 case 0xf20f2d: /* cvtsd2si */
6826 case 0xf20f38f0: /* crc32 */
6827 case 0xf20f38f1: /* crc32 */
6828 case 0x0f50: /* movmskps */
6829 case 0x660f50: /* movmskpd */
6830 case 0x0fc5: /* pextrw */
6831 case 0x660fc5: /* pextrw */
6832 case 0x0fd7: /* pmovmskb */
6833 case 0x660fd7: /* pmovmskb */
6834 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6835 break;
6836
6837 case 0x0f3800: /* pshufb */
6838 case 0x0f3801: /* phaddw */
6839 case 0x0f3802: /* phaddd */
6840 case 0x0f3803: /* phaddsw */
6841 case 0x0f3804: /* pmaddubsw */
6842 case 0x0f3805: /* phsubw */
6843 case 0x0f3806: /* phsubd */
6844 case 0x0f3807: /* phsubsw */
6845 case 0x0f3808: /* psignb */
6846 case 0x0f3809: /* psignw */
6847 case 0x0f380a: /* psignd */
6848 case 0x0f380b: /* pmulhrsw */
6849 case 0x0f381c: /* pabsb */
6850 case 0x0f381d: /* pabsw */
6851 case 0x0f381e: /* pabsd */
6852 case 0x0f382b: /* packusdw */
6853 case 0x0f3830: /* pmovzxbw */
6854 case 0x0f3831: /* pmovzxbd */
6855 case 0x0f3832: /* pmovzxbq */
6856 case 0x0f3833: /* pmovzxwd */
6857 case 0x0f3834: /* pmovzxwq */
6858 case 0x0f3835: /* pmovzxdq */
6859 case 0x0f3837: /* pcmpgtq */
6860 case 0x0f3838: /* pminsb */
6861 case 0x0f3839: /* pminsd */
6862 case 0x0f383a: /* pminuw */
6863 case 0x0f383b: /* pminud */
6864 case 0x0f383c: /* pmaxsb */
6865 case 0x0f383d: /* pmaxsd */
6866 case 0x0f383e: /* pmaxuw */
6867 case 0x0f383f: /* pmaxud */
6868 case 0x0f3840: /* pmulld */
6869 case 0x0f3841: /* phminposuw */
6870 case 0x0f3a0f: /* palignr */
6871 case 0x0f60: /* punpcklbw */
6872 case 0x0f61: /* punpcklwd */
6873 case 0x0f62: /* punpckldq */
6874 case 0x0f63: /* packsswb */
6875 case 0x0f64: /* pcmpgtb */
6876 case 0x0f65: /* pcmpgtw */
6877 case 0x0f66: /* pcmpgtd */
6878 case 0x0f67: /* packuswb */
6879 case 0x0f68: /* punpckhbw */
6880 case 0x0f69: /* punpckhwd */
6881 case 0x0f6a: /* punpckhdq */
6882 case 0x0f6b: /* packssdw */
6883 case 0x0f6e: /* movd */
6884 case 0x0f6f: /* movq */
6885 case 0x0f70: /* pshufw */
6886 case 0x0f74: /* pcmpeqb */
6887 case 0x0f75: /* pcmpeqw */
6888 case 0x0f76: /* pcmpeqd */
6889 case 0x0fc4: /* pinsrw */
6890 case 0x0fd1: /* psrlw */
6891 case 0x0fd2: /* psrld */
6892 case 0x0fd3: /* psrlq */
6893 case 0x0fd4: /* paddq */
6894 case 0x0fd5: /* pmullw */
6895 case 0xf20fd6: /* movdq2q */
6896 case 0x0fd8: /* psubusb */
6897 case 0x0fd9: /* psubusw */
6898 case 0x0fda: /* pminub */
6899 case 0x0fdb: /* pand */
6900 case 0x0fdc: /* paddusb */
6901 case 0x0fdd: /* paddusw */
6902 case 0x0fde: /* pmaxub */
6903 case 0x0fdf: /* pandn */
6904 case 0x0fe0: /* pavgb */
6905 case 0x0fe1: /* psraw */
6906 case 0x0fe2: /* psrad */
6907 case 0x0fe3: /* pavgw */
6908 case 0x0fe4: /* pmulhuw */
6909 case 0x0fe5: /* pmulhw */
6910 case 0x0fe8: /* psubsb */
6911 case 0x0fe9: /* psubsw */
6912 case 0x0fea: /* pminsw */
6913 case 0x0feb: /* por */
6914 case 0x0fec: /* paddsb */
6915 case 0x0fed: /* paddsw */
6916 case 0x0fee: /* pmaxsw */
6917 case 0x0fef: /* pxor */
6918 case 0x0ff1: /* psllw */
6919 case 0x0ff2: /* pslld */
6920 case 0x0ff3: /* psllq */
6921 case 0x0ff4: /* pmuludq */
6922 case 0x0ff5: /* pmaddwd */
6923 case 0x0ff6: /* psadbw */
6924 case 0x0ff8: /* psubb */
6925 case 0x0ff9: /* psubw */
6926 case 0x0ffa: /* psubd */
6927 case 0x0ffb: /* psubq */
6928 case 0x0ffc: /* paddb */
6929 case 0x0ffd: /* paddw */
6930 case 0x0ffe: /* paddd */
6931 if (i386_record_modrm (&ir))
6932 return -1;
6933 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6934 goto no_support;
6935 record_arch_list_add_reg (ir.regcache,
6936 I387_MM0_REGNUM (tdep) + ir.reg);
6937 break;
6938
6939 case 0x0f71: /* psllw */
6940 case 0x0f72: /* pslld */
6941 case 0x0f73: /* psllq */
6942 if (i386_record_modrm (&ir))
6943 return -1;
6944 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6945 goto no_support;
6946 record_arch_list_add_reg (ir.regcache,
6947 I387_MM0_REGNUM (tdep) + ir.rm);
6948 break;
6949
6950 case 0x660f71: /* psllw */
6951 case 0x660f72: /* pslld */
6952 case 0x660f73: /* psllq */
6953 if (i386_record_modrm (&ir))
6954 return -1;
6955 ir.rm |= ir.rex_b;
6956 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6957 goto no_support;
6958 record_arch_list_add_reg (ir.regcache,
6959 I387_XMM0_REGNUM (tdep) + ir.rm);
6960 break;
6961
6962 case 0x0f7e: /* movd */
6963 case 0x660f7e: /* movd */
6964 if (i386_record_modrm (&ir))
6965 return -1;
6966 if (ir.mod == 3)
6967 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6968 else
6969 {
6970 if (ir.dflag == 2)
6971 ir.ot = OT_QUAD;
6972 else
6973 ir.ot = OT_LONG;
6974 if (i386_record_lea_modrm (&ir))
6975 return -1;
6976 }
6977 break;
6978
6979 case 0x0f7f: /* movq */
6980 if (i386_record_modrm (&ir))
6981 return -1;
6982 if (ir.mod == 3)
6983 {
6984 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6985 goto no_support;
6986 record_arch_list_add_reg (ir.regcache,
6987 I387_MM0_REGNUM (tdep) + ir.rm);
6988 }
6989 else
6990 {
6991 ir.ot = OT_QUAD;
6992 if (i386_record_lea_modrm (&ir))
6993 return -1;
6994 }
6995 break;
6996
6997 case 0xf30fb8: /* popcnt */
6998 if (i386_record_modrm (&ir))
6999 return -1;
7000 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7002 break;
7003
7004 case 0x660fd6: /* movq */
7005 if (i386_record_modrm (&ir))
7006 return -1;
7007 if (ir.mod == 3)
7008 {
7009 ir.rm |= ir.rex_b;
7010 if (!i386_xmm_regnum_p (gdbarch,
7011 I387_XMM0_REGNUM (tdep) + ir.rm))
7012 goto no_support;
7013 record_arch_list_add_reg (ir.regcache,
7014 I387_XMM0_REGNUM (tdep) + ir.rm);
7015 }
7016 else
7017 {
7018 ir.ot = OT_QUAD;
7019 if (i386_record_lea_modrm (&ir))
7020 return -1;
7021 }
7022 break;
7023
7024 case 0x660f3817: /* ptest */
7025 case 0x0f2e: /* ucomiss */
7026 case 0x660f2e: /* ucomisd */
7027 case 0x0f2f: /* comiss */
7028 case 0x660f2f: /* comisd */
7029 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7030 break;
7031
7032 case 0x0ff7: /* maskmovq */
7033 regcache_raw_read_unsigned (ir.regcache,
7034 ir.regmap[X86_RECORD_REDI_REGNUM],
7035 &addr);
7036 if (record_arch_list_add_mem (addr, 64))
7037 return -1;
7038 break;
7039
7040 case 0x660ff7: /* maskmovdqu */
7041 regcache_raw_read_unsigned (ir.regcache,
7042 ir.regmap[X86_RECORD_REDI_REGNUM],
7043 &addr);
7044 if (record_arch_list_add_mem (addr, 128))
7045 return -1;
7046 break;
7047
7048 default:
7049 goto no_support;
7050 break;
7051 }
7052 break;
7053
7054 default:
7055 goto no_support;
7056 break;
7057 }
7058
7059 /* In the future, maybe still need to deal with need_dasm. */
7060 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7061 if (record_arch_list_add_end ())
7062 return -1;
7063
7064 return 0;
7065
7066 no_support:
7067 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7068 "at address %s.\n"),
7069 (unsigned int) (opcode),
7070 paddress (gdbarch, ir.orig_addr));
7071 return -1;
7072 }
7073
7074 static const int i386_record_regmap[] =
7075 {
7076 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7077 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7078 0, 0, 0, 0, 0, 0, 0, 0,
7079 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7080 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7081 };
7082
7083 /* Check that the given address appears suitable for a fast
7084 tracepoint, which on x86 means that we need an instruction of at
7085 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7086 jump and not have to worry about program jumps to an address in the
7087 middle of the tracepoint jump. Returns 1 if OK, and writes a size
7088 of instruction to replace, and 0 if not, plus an explanatory
7089 string. */
7090
7091 static int
7092 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7093 CORE_ADDR addr, int *isize, char **msg)
7094 {
7095 int len, jumplen;
7096 static struct ui_file *gdb_null = NULL;
7097
7098 /* This is based on the target agent using a 4-byte relative jump.
7099 Alternate future possibilities include 8-byte offset for x86-84,
7100 or 3-byte jumps if the program has trampoline space close by. */
7101 jumplen = 5;
7102
7103 /* Dummy file descriptor for the disassembler. */
7104 if (!gdb_null)
7105 gdb_null = ui_file_new ();
7106
7107 /* Check for fit. */
7108 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7109 if (len < jumplen)
7110 {
7111 /* Return a bit of target-specific detail to add to the caller's
7112 generic failure message. */
7113 if (msg)
7114 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7115 "need at least %d bytes for the jump"),
7116 len, jumplen);
7117 return 0;
7118 }
7119
7120 if (isize)
7121 *isize = len;
7122 if (msg)
7123 *msg = NULL;
7124 return 1;
7125 }
7126
7127 static int
7128 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7129 struct tdesc_arch_data *tdesc_data)
7130 {
7131 const struct target_desc *tdesc = tdep->tdesc;
7132 const struct tdesc_feature *feature_core;
7133 const struct tdesc_feature *feature_sse, *feature_avx;
7134 int i, num_regs, valid_p;
7135
7136 if (! tdesc_has_registers (tdesc))
7137 return 0;
7138
7139 /* Get core registers. */
7140 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7141 if (feature_core == NULL)
7142 return 0;
7143
7144 /* Get SSE registers. */
7145 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7146
7147 /* Try AVX registers. */
7148 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7149
7150 valid_p = 1;
7151
7152 /* The XCR0 bits. */
7153 if (feature_avx)
7154 {
7155 /* AVX register description requires SSE register description. */
7156 if (!feature_sse)
7157 return 0;
7158
7159 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7160
7161 /* It may have been set by OSABI initialization function. */
7162 if (tdep->num_ymm_regs == 0)
7163 {
7164 tdep->ymmh_register_names = i386_ymmh_names;
7165 tdep->num_ymm_regs = 8;
7166 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7167 }
7168
7169 for (i = 0; i < tdep->num_ymm_regs; i++)
7170 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7171 tdep->ymm0h_regnum + i,
7172 tdep->ymmh_register_names[i]);
7173 }
7174 else if (feature_sse)
7175 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7176 else
7177 {
7178 tdep->xcr0 = I386_XSTATE_X87_MASK;
7179 tdep->num_xmm_regs = 0;
7180 }
7181
7182 num_regs = tdep->num_core_regs;
7183 for (i = 0; i < num_regs; i++)
7184 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7185 tdep->register_names[i]);
7186
7187 if (feature_sse)
7188 {
7189 /* Need to include %mxcsr, so add one. */
7190 num_regs += tdep->num_xmm_regs + 1;
7191 for (; i < num_regs; i++)
7192 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7193 tdep->register_names[i]);
7194 }
7195
7196 return valid_p;
7197 }
7198
7199 \f
7200 static struct gdbarch *
7201 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7202 {
7203 struct gdbarch_tdep *tdep;
7204 struct gdbarch *gdbarch;
7205 struct tdesc_arch_data *tdesc_data;
7206 const struct target_desc *tdesc;
7207 int mm0_regnum;
7208 int ymm0_regnum;
7209
7210 /* If there is already a candidate, use it. */
7211 arches = gdbarch_list_lookup_by_info (arches, &info);
7212 if (arches != NULL)
7213 return arches->gdbarch;
7214
7215 /* Allocate space for the new architecture. */
7216 tdep = XCALLOC (1, struct gdbarch_tdep);
7217 gdbarch = gdbarch_alloc (&info, tdep);
7218
7219 /* General-purpose registers. */
7220 tdep->gregset = NULL;
7221 tdep->gregset_reg_offset = NULL;
7222 tdep->gregset_num_regs = I386_NUM_GREGS;
7223 tdep->sizeof_gregset = 0;
7224
7225 /* Floating-point registers. */
7226 tdep->fpregset = NULL;
7227 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7228
7229 tdep->xstateregset = NULL;
7230
7231 /* The default settings include the FPU registers, the MMX registers
7232 and the SSE registers. This can be overridden for a specific ABI
7233 by adjusting the members `st0_regnum', `mm0_regnum' and
7234 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7235 will show up in the output of "info all-registers". */
7236
7237 tdep->st0_regnum = I386_ST0_REGNUM;
7238
7239 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7240 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7241
7242 tdep->jb_pc_offset = -1;
7243 tdep->struct_return = pcc_struct_return;
7244 tdep->sigtramp_start = 0;
7245 tdep->sigtramp_end = 0;
7246 tdep->sigtramp_p = i386_sigtramp_p;
7247 tdep->sigcontext_addr = NULL;
7248 tdep->sc_reg_offset = NULL;
7249 tdep->sc_pc_offset = -1;
7250 tdep->sc_sp_offset = -1;
7251
7252 tdep->xsave_xcr0_offset = -1;
7253
7254 tdep->record_regmap = i386_record_regmap;
7255
7256 /* The format used for `long double' on almost all i386 targets is
7257 the i387 extended floating-point format. In fact, of all targets
7258 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7259 on having a `long double' that's not `long' at all. */
7260 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7261
7262 /* Although the i387 extended floating-point has only 80 significant
7263 bits, a `long double' actually takes up 96, probably to enforce
7264 alignment. */
7265 set_gdbarch_long_double_bit (gdbarch, 96);
7266
7267 /* Register numbers of various important registers. */
7268 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7269 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7270 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7271 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7272
7273 /* NOTE: kettenis/20040418: GCC does have two possible register
7274 numbering schemes on the i386: dbx and SVR4. These schemes
7275 differ in how they number %ebp, %esp, %eflags, and the
7276 floating-point registers, and are implemented by the arrays
7277 dbx_register_map[] and svr4_dbx_register_map in
7278 gcc/config/i386.c. GCC also defines a third numbering scheme in
7279 gcc/config/i386.c, which it designates as the "default" register
7280 map used in 64bit mode. This last register numbering scheme is
7281 implemented in dbx64_register_map, and is used for AMD64; see
7282 amd64-tdep.c.
7283
7284 Currently, each GCC i386 target always uses the same register
7285 numbering scheme across all its supported debugging formats
7286 i.e. SDB (COFF), stabs and DWARF 2. This is because
7287 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7288 DBX_REGISTER_NUMBER macro which is defined by each target's
7289 respective config header in a manner independent of the requested
7290 output debugging format.
7291
7292 This does not match the arrangement below, which presumes that
7293 the SDB and stabs numbering schemes differ from the DWARF and
7294 DWARF 2 ones. The reason for this arrangement is that it is
7295 likely to get the numbering scheme for the target's
7296 default/native debug format right. For targets where GCC is the
7297 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7298 targets where the native toolchain uses a different numbering
7299 scheme for a particular debug format (stabs-in-ELF on Solaris)
7300 the defaults below will have to be overridden, like
7301 i386_elf_init_abi() does. */
7302
7303 /* Use the dbx register numbering scheme for stabs and COFF. */
7304 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7305 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7306
7307 /* Use the SVR4 register numbering scheme for DWARF 2. */
7308 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7309
7310 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7311 be in use on any of the supported i386 targets. */
7312
7313 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7314
7315 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7316
7317 /* Call dummy code. */
7318 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7319
7320 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7321 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7322 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7323
7324 set_gdbarch_return_value (gdbarch, i386_return_value);
7325
7326 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7327
7328 /* Stack grows downward. */
7329 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7330
7331 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7332 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7333 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7334
7335 set_gdbarch_frame_args_skip (gdbarch, 8);
7336
7337 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7338
7339 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7340
7341 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7342
7343 /* Add the i386 register groups. */
7344 i386_add_reggroups (gdbarch);
7345 tdep->register_reggroup_p = i386_register_reggroup_p;
7346
7347 /* Helper for function argument information. */
7348 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7349
7350 /* Hook the function epilogue frame unwinder. This unwinder is
7351 appended to the list first, so that it supercedes the DWARF
7352 unwinder in function epilogues (where the DWARF unwinder
7353 currently fails). */
7354 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7355
7356 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7357 to the list before the prologue-based unwinders, so that DWARF
7358 CFI info will be used if it is available. */
7359 dwarf2_append_unwinders (gdbarch);
7360
7361 frame_base_set_default (gdbarch, &i386_frame_base);
7362
7363 /* Pseudo registers may be changed by amd64_init_abi. */
7364 set_gdbarch_pseudo_register_read_value (gdbarch,
7365 i386_pseudo_register_read_value);
7366 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7367
7368 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7369 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7370
7371 /* Override the normal target description method to make the AVX
7372 upper halves anonymous. */
7373 set_gdbarch_register_name (gdbarch, i386_register_name);
7374
7375 /* Even though the default ABI only includes general-purpose registers,
7376 floating-point registers and the SSE registers, we have to leave a
7377 gap for the upper AVX registers. */
7378 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7379
7380 /* Get the x86 target description from INFO. */
7381 tdesc = info.target_desc;
7382 if (! tdesc_has_registers (tdesc))
7383 tdesc = tdesc_i386;
7384 tdep->tdesc = tdesc;
7385
7386 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7387 tdep->register_names = i386_register_names;
7388
7389 /* No upper YMM registers. */
7390 tdep->ymmh_register_names = NULL;
7391 tdep->ymm0h_regnum = -1;
7392
7393 tdep->num_byte_regs = 8;
7394 tdep->num_word_regs = 8;
7395 tdep->num_dword_regs = 0;
7396 tdep->num_mmx_regs = 8;
7397 tdep->num_ymm_regs = 0;
7398
7399 tdesc_data = tdesc_data_alloc ();
7400
7401 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7402
7403 /* Hook in ABI-specific overrides, if they have been registered. */
7404 info.tdep_info = (void *) tdesc_data;
7405 gdbarch_init_osabi (info, gdbarch);
7406
7407 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7408 {
7409 tdesc_data_cleanup (tdesc_data);
7410 xfree (tdep);
7411 gdbarch_free (gdbarch);
7412 return NULL;
7413 }
7414
7415 /* Wire in pseudo registers. Number of pseudo registers may be
7416 changed. */
7417 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7418 + tdep->num_word_regs
7419 + tdep->num_dword_regs
7420 + tdep->num_mmx_regs
7421 + tdep->num_ymm_regs));
7422
7423 /* Target description may be changed. */
7424 tdesc = tdep->tdesc;
7425
7426 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7427
7428 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7429 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7430
7431 /* Make %al the first pseudo-register. */
7432 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7433 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7434
7435 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7436 if (tdep->num_dword_regs)
7437 {
7438 /* Support dword pseudo-register if it hasn't been disabled. */
7439 tdep->eax_regnum = ymm0_regnum;
7440 ymm0_regnum += tdep->num_dword_regs;
7441 }
7442 else
7443 tdep->eax_regnum = -1;
7444
7445 mm0_regnum = ymm0_regnum;
7446 if (tdep->num_ymm_regs)
7447 {
7448 /* Support YMM pseudo-register if it is available. */
7449 tdep->ymm0_regnum = ymm0_regnum;
7450 mm0_regnum += tdep->num_ymm_regs;
7451 }
7452 else
7453 tdep->ymm0_regnum = -1;
7454
7455 if (tdep->num_mmx_regs != 0)
7456 {
7457 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7458 tdep->mm0_regnum = mm0_regnum;
7459 }
7460 else
7461 tdep->mm0_regnum = -1;
7462
7463 /* Hook in the legacy prologue-based unwinders last (fallback). */
7464 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7465 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7466 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7467
7468 /* If we have a register mapping, enable the generic core file
7469 support, unless it has already been enabled. */
7470 if (tdep->gregset_reg_offset
7471 && !gdbarch_regset_from_core_section_p (gdbarch))
7472 set_gdbarch_regset_from_core_section (gdbarch,
7473 i386_regset_from_core_section);
7474
7475 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7476 i386_skip_permanent_breakpoint);
7477
7478 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7479 i386_fast_tracepoint_valid_at);
7480
7481 return gdbarch;
7482 }
7483
7484 static enum gdb_osabi
7485 i386_coff_osabi_sniffer (bfd *abfd)
7486 {
7487 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7488 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7489 return GDB_OSABI_GO32;
7490
7491 return GDB_OSABI_UNKNOWN;
7492 }
7493 \f
7494
7495 /* Provide a prototype to silence -Wmissing-prototypes. */
7496 void _initialize_i386_tdep (void);
7497
7498 void
7499 _initialize_i386_tdep (void)
7500 {
7501 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7502
7503 /* Add the variable that controls the disassembly flavor. */
7504 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7505 &disassembly_flavor, _("\
7506 Set the disassembly flavor."), _("\
7507 Show the disassembly flavor."), _("\
7508 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7509 NULL,
7510 NULL, /* FIXME: i18n: */
7511 &setlist, &showlist);
7512
7513 /* Add the variable that controls the convention for returning
7514 structs. */
7515 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7516 &struct_convention, _("\
7517 Set the convention for returning small structs."), _("\
7518 Show the convention for returning small structs."), _("\
7519 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7520 is \"default\"."),
7521 NULL,
7522 NULL, /* FIXME: i18n: */
7523 &setlist, &showlist);
7524
7525 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7526 i386_coff_osabi_sniffer);
7527
7528 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7529 i386_svr4_init_abi);
7530 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7531 i386_go32_init_abi);
7532
7533 /* Initialize the i386-specific register groups. */
7534 i386_init_reggroups ();
7535
7536 /* Initialize the standard target descriptions. */
7537 initialize_tdesc_i386 ();
7538 initialize_tdesc_i386_mmx ();
7539 initialize_tdesc_i386_avx ();
7540
7541 /* Tell remote stub that we support XML target description. */
7542 register_remote_support_xml ("i386");
7543 }