Clean up the mess I made from my last checkin.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symtab.h"
31 #include "gdbcmd.h"
32 #include "command.h"
33 #include "arch-utils.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "value.h"
37 #include "gdb_assert.h"
38
39 #include "i386-tdep.h"
40
41 /* Names of the registers. The first 10 registers match the register
42 numbering scheme used by GCC for stabs and DWARF. */
43 static char *i386_register_names[] =
44 {
45 "eax", "ecx", "edx", "ebx",
46 "esp", "ebp", "esi", "edi",
47 "eip", "eflags", "cs", "ss",
48 "ds", "es", "fs", "gs",
49 "st0", "st1", "st2", "st3",
50 "st4", "st5", "st6", "st7",
51 "fctrl", "fstat", "ftag", "fiseg",
52 "fioff", "foseg", "fooff", "fop",
53 "xmm0", "xmm1", "xmm2", "xmm3",
54 "xmm4", "xmm5", "xmm6", "xmm7",
55 "mxcsr"
56 };
57
58 /* i386_register_offset[i] is the offset into the register file of the
59 start of register number i. We initialize this from
60 i386_register_size. */
61 static int i386_register_offset[I386_SSE_NUM_REGS];
62
63 /* i386_register_size[i] is the number of bytes of storage in GDB's
64 register array occupied by register i. */
65 static int i386_register_size[I386_SSE_NUM_REGS] = {
66 4, 4, 4, 4,
67 4, 4, 4, 4,
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 10, 10, 10, 10,
71 10, 10, 10, 10,
72 4, 4, 4, 4,
73 4, 4, 4, 4,
74 16, 16, 16, 16,
75 16, 16, 16, 16,
76 4
77 };
78
79 /* Return the name of register REG. */
80
81 char *
82 i386_register_name (int reg)
83 {
84 if (reg < 0)
85 return NULL;
86 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
87 return NULL;
88
89 return i386_register_names[reg];
90 }
91
92 /* Return the offset into the register array of the start of register
93 number REG. */
94 int
95 i386_register_byte (int reg)
96 {
97 return i386_register_offset[reg];
98 }
99
100 /* Return the number of bytes of storage in GDB's register array
101 occupied by register REG. */
102
103 int
104 i386_register_raw_size (int reg)
105 {
106 return i386_register_size[reg];
107 }
108
109 /* Convert stabs register number REG to the appropriate register
110 number used by GDB. */
111
112 static int
113 i386_stab_reg_to_regnum (int reg)
114 {
115 /* This implements what GCC calls the "default" register map. */
116 if (reg >= 0 && reg <= 7)
117 {
118 /* General registers. */
119 return reg;
120 }
121 else if (reg >= 12 && reg <= 19)
122 {
123 /* Floating-point registers. */
124 return reg - 12 + FP0_REGNUM;
125 }
126 else if (reg >= 21 && reg <= 28)
127 {
128 /* SSE registers. */
129 return reg - 21 + XMM0_REGNUM;
130 }
131 else if (reg >= 29 && reg <= 36)
132 {
133 /* MMX registers. */
134 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
135 as pseudo-registers? */
136 return reg - 29 + FP0_REGNUM;
137 }
138
139 /* This will hopefully provoke a warning. */
140 return NUM_REGS + NUM_PSEUDO_REGS;
141 }
142
143 /* Convert DWARF register number REG to the appropriate register
144 number used by GDB. */
145
146 static int
147 i386_dwarf_reg_to_regnum (int reg)
148 {
149 /* The DWARF register numbering includes %eip and %eflags, and
150 numbers the floating point registers differently. */
151 if (reg >= 0 && reg <= 9)
152 {
153 /* General registers. */
154 return reg;
155 }
156 else if (reg >= 11 && reg <= 18)
157 {
158 /* Floating-point registers. */
159 return reg - 11 + FP0_REGNUM;
160 }
161 else if (reg >= 21)
162 {
163 /* The SSE and MMX registers have identical numbers as in stabs. */
164 return i386_stab_reg_to_regnum (reg);
165 }
166
167 /* This will hopefully provoke a warning. */
168 return NUM_REGS + NUM_PSEUDO_REGS;
169 }
170 \f
171
172 /* This is the variable that is set with "set disassembly-flavor", and
173 its legitimate values. */
174 static const char att_flavor[] = "att";
175 static const char intel_flavor[] = "intel";
176 static const char *valid_flavors[] =
177 {
178 att_flavor,
179 intel_flavor,
180 NULL
181 };
182 static const char *disassembly_flavor = att_flavor;
183
184 /* Stdio style buffering was used to minimize calls to ptrace, but
185 this buffering did not take into account that the code section
186 being accessed may not be an even number of buffers long (even if
187 the buffer is only sizeof(int) long). In cases where the code
188 section size happened to be a non-integral number of buffers long,
189 attempting to read the last buffer would fail. Simply using
190 target_read_memory and ignoring errors, rather than read_memory, is
191 not the correct solution, since legitimate access errors would then
192 be totally ignored. To properly handle this situation and continue
193 to use buffering would require that this code be able to determine
194 the minimum code section size granularity (not the alignment of the
195 section itself, since the actual failing case that pointed out this
196 problem had a section alignment of 4 but was not a multiple of 4
197 bytes long), on a target by target basis, and then adjust it's
198 buffer size accordingly. This is messy, but potentially feasible.
199 It probably needs the bfd library's help and support. For now, the
200 buffer size is set to 1. (FIXME -fnf) */
201
202 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
203 static CORE_ADDR codestream_next_addr;
204 static CORE_ADDR codestream_addr;
205 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
206 static int codestream_off;
207 static int codestream_cnt;
208
209 #define codestream_tell() (codestream_addr + codestream_off)
210 #define codestream_peek() \
211 (codestream_cnt == 0 ? \
212 codestream_fill(1) : codestream_buf[codestream_off])
213 #define codestream_get() \
214 (codestream_cnt-- == 0 ? \
215 codestream_fill(0) : codestream_buf[codestream_off++])
216
217 static unsigned char
218 codestream_fill (int peek_flag)
219 {
220 codestream_addr = codestream_next_addr;
221 codestream_next_addr += CODESTREAM_BUFSIZ;
222 codestream_off = 0;
223 codestream_cnt = CODESTREAM_BUFSIZ;
224 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
225
226 if (peek_flag)
227 return (codestream_peek ());
228 else
229 return (codestream_get ());
230 }
231
232 static void
233 codestream_seek (CORE_ADDR place)
234 {
235 codestream_next_addr = place / CODESTREAM_BUFSIZ;
236 codestream_next_addr *= CODESTREAM_BUFSIZ;
237 codestream_cnt = 0;
238 codestream_fill (1);
239 while (codestream_tell () != place)
240 codestream_get ();
241 }
242
243 static void
244 codestream_read (unsigned char *buf, int count)
245 {
246 unsigned char *p;
247 int i;
248 p = buf;
249 for (i = 0; i < count; i++)
250 *p++ = codestream_get ();
251 }
252 \f
253
254 /* If the next instruction is a jump, move to its target. */
255
256 static void
257 i386_follow_jump (void)
258 {
259 unsigned char buf[4];
260 long delta;
261
262 int data16;
263 CORE_ADDR pos;
264
265 pos = codestream_tell ();
266
267 data16 = 0;
268 if (codestream_peek () == 0x66)
269 {
270 codestream_get ();
271 data16 = 1;
272 }
273
274 switch (codestream_get ())
275 {
276 case 0xe9:
277 /* Relative jump: if data16 == 0, disp32, else disp16. */
278 if (data16)
279 {
280 codestream_read (buf, 2);
281 delta = extract_signed_integer (buf, 2);
282
283 /* Include the size of the jmp instruction (including the
284 0x66 prefix). */
285 pos += delta + 4;
286 }
287 else
288 {
289 codestream_read (buf, 4);
290 delta = extract_signed_integer (buf, 4);
291
292 pos += delta + 5;
293 }
294 break;
295 case 0xeb:
296 /* Relative jump, disp8 (ignore data16). */
297 codestream_read (buf, 1);
298 /* Sign-extend it. */
299 delta = extract_signed_integer (buf, 1);
300
301 pos += delta + 2;
302 break;
303 }
304 codestream_seek (pos);
305 }
306
307 /* Find & return the amount a local space allocated, and advance the
308 codestream to the first register push (if any).
309
310 If the entry sequence doesn't make sense, return -1, and leave
311 codestream pointer at a random spot. */
312
313 static long
314 i386_get_frame_setup (CORE_ADDR pc)
315 {
316 unsigned char op;
317
318 codestream_seek (pc);
319
320 i386_follow_jump ();
321
322 op = codestream_get ();
323
324 if (op == 0x58) /* popl %eax */
325 {
326 /* This function must start with
327
328 popl %eax 0x58
329 xchgl %eax, (%esp) 0x87 0x04 0x24
330 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
331
332 (the System V compiler puts out the second `xchg'
333 instruction, and the assembler doesn't try to optimize it, so
334 the 'sib' form gets generated). This sequence is used to get
335 the address of the return buffer for a function that returns
336 a structure. */
337 int pos;
338 unsigned char buf[4];
339 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
340 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
341
342 pos = codestream_tell ();
343 codestream_read (buf, 4);
344 if (memcmp (buf, proto1, 3) == 0)
345 pos += 3;
346 else if (memcmp (buf, proto2, 4) == 0)
347 pos += 4;
348
349 codestream_seek (pos);
350 op = codestream_get (); /* Update next opcode. */
351 }
352
353 if (op == 0x68 || op == 0x6a)
354 {
355 /* This function may start with
356
357 pushl constant
358 call _probe
359 addl $4, %esp
360
361 followed by
362
363 pushl %ebp
364
365 etc. */
366 int pos;
367 unsigned char buf[8];
368
369 /* Skip past the `pushl' instruction; it has either a one-byte
370 or a four-byte operand, depending on the opcode. */
371 pos = codestream_tell ();
372 if (op == 0x68)
373 pos += 4;
374 else
375 pos += 1;
376 codestream_seek (pos);
377
378 /* Read the following 8 bytes, which should be "call _probe" (6
379 bytes) followed by "addl $4,%esp" (2 bytes). */
380 codestream_read (buf, sizeof (buf));
381 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
382 pos += sizeof (buf);
383 codestream_seek (pos);
384 op = codestream_get (); /* Update next opcode. */
385 }
386
387 if (op == 0x55) /* pushl %ebp */
388 {
389 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
390 switch (codestream_get ())
391 {
392 case 0x8b:
393 if (codestream_get () != 0xec)
394 return -1;
395 break;
396 case 0x89:
397 if (codestream_get () != 0xe5)
398 return -1;
399 break;
400 default:
401 return -1;
402 }
403 /* Check for stack adjustment
404
405 subl $XXX, %esp
406
407 NOTE: You can't subtract a 16 bit immediate from a 32 bit
408 reg, so we don't have to worry about a data16 prefix. */
409 op = codestream_peek ();
410 if (op == 0x83)
411 {
412 /* `subl' with 8 bit immediate. */
413 codestream_get ();
414 if (codestream_get () != 0xec)
415 /* Some instruction starting with 0x83 other than `subl'. */
416 {
417 codestream_seek (codestream_tell () - 2);
418 return 0;
419 }
420 /* `subl' with signed byte immediate (though it wouldn't
421 make sense to be negative). */
422 return (codestream_get ());
423 }
424 else if (op == 0x81)
425 {
426 char buf[4];
427 /* Maybe it is `subl' with a 32 bit immedediate. */
428 codestream_get ();
429 if (codestream_get () != 0xec)
430 /* Some instruction starting with 0x81 other than `subl'. */
431 {
432 codestream_seek (codestream_tell () - 2);
433 return 0;
434 }
435 /* It is `subl' with a 32 bit immediate. */
436 codestream_read ((unsigned char *) buf, 4);
437 return extract_signed_integer (buf, 4);
438 }
439 else
440 {
441 return 0;
442 }
443 }
444 else if (op == 0xc8)
445 {
446 char buf[2];
447 /* `enter' with 16 bit unsigned immediate. */
448 codestream_read ((unsigned char *) buf, 2);
449 codestream_get (); /* Flush final byte of enter instruction. */
450 return extract_unsigned_integer (buf, 2);
451 }
452 return (-1);
453 }
454
455 /* Return the chain-pointer for FRAME. In the case of the i386, the
456 frame's nominal address is the address of a 4-byte word containing
457 the calling frame's address. */
458
459 static CORE_ADDR
460 i386_frame_chain (struct frame_info *frame)
461 {
462 if (frame->signal_handler_caller)
463 return frame->frame;
464
465 if (! inside_entry_file (frame->pc))
466 return read_memory_unsigned_integer (frame->frame, 4);
467
468 return 0;
469 }
470
471 /* Determine whether the function invocation represented by FRAME does
472 not have a from on the stack associated with it. If it does not,
473 return non-zero, otherwise return zero. */
474
475 int
476 i386_frameless_function_invocation (struct frame_info *frame)
477 {
478 if (frame->signal_handler_caller)
479 return 0;
480
481 return frameless_look_for_prologue (frame);
482 }
483
484 /* Return the saved program counter for FRAME. */
485
486 static CORE_ADDR
487 i386_frame_saved_pc (struct frame_info *frame)
488 {
489 if (frame->signal_handler_caller)
490 {
491 CORE_ADDR (*sigtramp_saved_pc) (struct frame_info *);
492 sigtramp_saved_pc = gdbarch_tdep (current_gdbarch)->sigtramp_saved_pc;
493
494 gdb_assert (sigtramp_saved_pc != NULL);
495 return sigtramp_saved_pc (frame);
496 }
497
498 return read_memory_unsigned_integer (frame->frame + 4, 4);
499 }
500
501 /* Immediately after a function call, return the saved pc. */
502
503 static CORE_ADDR
504 i386_saved_pc_after_call (struct frame_info *frame)
505 {
506 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
507 }
508
509 /* Return number of args passed to a frame.
510 Can return -1, meaning no way to tell. */
511
512 int
513 i386_frame_num_args (struct frame_info *fi)
514 {
515 #if 1
516 return -1;
517 #else
518 /* This loses because not only might the compiler not be popping the
519 args right after the function call, it might be popping args from
520 both this call and a previous one, and we would say there are
521 more args than there really are. */
522
523 int retpc;
524 unsigned char op;
525 struct frame_info *pfi;
526
527 /* On the i386, the instruction following the call could be:
528 popl %ecx - one arg
529 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
530 anything else - zero args. */
531
532 int frameless;
533
534 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
535 if (frameless)
536 /* In the absence of a frame pointer, GDB doesn't get correct
537 values for nameless arguments. Return -1, so it doesn't print
538 any nameless arguments. */
539 return -1;
540
541 pfi = get_prev_frame (fi);
542 if (pfi == 0)
543 {
544 /* NOTE: This can happen if we are looking at the frame for
545 main, because FRAME_CHAIN_VALID won't let us go into start.
546 If we have debugging symbols, that's not really a big deal;
547 it just means it will only show as many arguments to main as
548 are declared. */
549 return -1;
550 }
551 else
552 {
553 retpc = pfi->pc;
554 op = read_memory_integer (retpc, 1);
555 if (op == 0x59) /* pop %ecx */
556 return 1;
557 else if (op == 0x83)
558 {
559 op = read_memory_integer (retpc + 1, 1);
560 if (op == 0xc4)
561 /* addl $<signed imm 8 bits>, %esp */
562 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
563 else
564 return 0;
565 }
566 else if (op == 0x81) /* `add' with 32 bit immediate. */
567 {
568 op = read_memory_integer (retpc + 1, 1);
569 if (op == 0xc4)
570 /* addl $<imm 32>, %esp */
571 return read_memory_integer (retpc + 2, 4) / 4;
572 else
573 return 0;
574 }
575 else
576 {
577 return 0;
578 }
579 }
580 #endif
581 }
582
583 /* Parse the first few instructions the function to see what registers
584 were stored.
585
586 We handle these cases:
587
588 The startup sequence can be at the start of the function, or the
589 function can start with a branch to startup code at the end.
590
591 %ebp can be set up with either the 'enter' instruction, or "pushl
592 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
593 once used in the System V compiler).
594
595 Local space is allocated just below the saved %ebp by either the
596 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
597 bit unsigned argument for space to allocate, and the 'addl'
598 instruction could have either a signed byte, or 32 bit immediate.
599
600 Next, the registers used by this function are pushed. With the
601 System V compiler they will always be in the order: %edi, %esi,
602 %ebx (and sometimes a harmless bug causes it to also save but not
603 restore %eax); however, the code below is willing to see the pushes
604 in any order, and will handle up to 8 of them.
605
606 If the setup sequence is at the end of the function, then the next
607 instruction will be a branch back to the start. */
608
609 void
610 i386_frame_init_saved_regs (struct frame_info *fip)
611 {
612 long locals = -1;
613 unsigned char op;
614 CORE_ADDR dummy_bottom;
615 CORE_ADDR addr;
616 CORE_ADDR pc;
617 int i;
618
619 if (fip->saved_regs)
620 return;
621
622 frame_saved_regs_zalloc (fip);
623
624 /* If the frame is the end of a dummy, compute where the beginning
625 would be. */
626 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
627
628 /* Check if the PC points in the stack, in a dummy frame. */
629 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
630 {
631 /* All registers were saved by push_call_dummy. */
632 addr = fip->frame;
633 for (i = 0; i < NUM_REGS; i++)
634 {
635 addr -= REGISTER_RAW_SIZE (i);
636 fip->saved_regs[i] = addr;
637 }
638 return;
639 }
640
641 pc = get_pc_function_start (fip->pc);
642 if (pc != 0)
643 locals = i386_get_frame_setup (pc);
644
645 if (locals >= 0)
646 {
647 addr = fip->frame - 4 - locals;
648 for (i = 0; i < 8; i++)
649 {
650 op = codestream_get ();
651 if (op < 0x50 || op > 0x57)
652 break;
653 #ifdef I386_REGNO_TO_SYMMETRY
654 /* Dynix uses different internal numbering. Ick. */
655 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
656 #else
657 fip->saved_regs[op - 0x50] = addr;
658 #endif
659 addr -= 4;
660 }
661 }
662
663 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
664 fip->saved_regs[FP_REGNUM] = fip->frame;
665 }
666
667 /* Return PC of first real instruction. */
668
669 int
670 i386_skip_prologue (int pc)
671 {
672 unsigned char op;
673 int i;
674 static unsigned char pic_pat[6] =
675 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
676 0x5b, /* popl %ebx */
677 };
678 CORE_ADDR pos;
679
680 if (i386_get_frame_setup (pc) < 0)
681 return (pc);
682
683 /* Found valid frame setup -- codestream now points to start of push
684 instructions for saving registers. */
685
686 /* Skip over register saves. */
687 for (i = 0; i < 8; i++)
688 {
689 op = codestream_peek ();
690 /* Break if not `pushl' instrunction. */
691 if (op < 0x50 || op > 0x57)
692 break;
693 codestream_get ();
694 }
695
696 /* The native cc on SVR4 in -K PIC mode inserts the following code
697 to get the address of the global offset table (GOT) into register
698 %ebx
699
700 call 0x0
701 popl %ebx
702 movl %ebx,x(%ebp) (optional)
703 addl y,%ebx
704
705 This code is with the rest of the prologue (at the end of the
706 function), so we have to skip it to get to the first real
707 instruction at the start of the function. */
708
709 pos = codestream_tell ();
710 for (i = 0; i < 6; i++)
711 {
712 op = codestream_get ();
713 if (pic_pat[i] != op)
714 break;
715 }
716 if (i == 6)
717 {
718 unsigned char buf[4];
719 long delta = 6;
720
721 op = codestream_get ();
722 if (op == 0x89) /* movl %ebx, x(%ebp) */
723 {
724 op = codestream_get ();
725 if (op == 0x5d) /* One byte offset from %ebp. */
726 {
727 delta += 3;
728 codestream_read (buf, 1);
729 }
730 else if (op == 0x9d) /* Four byte offset from %ebp. */
731 {
732 delta += 6;
733 codestream_read (buf, 4);
734 }
735 else /* Unexpected instruction. */
736 delta = -1;
737 op = codestream_get ();
738 }
739 /* addl y,%ebx */
740 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
741 {
742 pos += delta + 6;
743 }
744 }
745 codestream_seek (pos);
746
747 i386_follow_jump ();
748
749 return (codestream_tell ());
750 }
751
752 void
753 i386_push_dummy_frame (void)
754 {
755 CORE_ADDR sp = read_register (SP_REGNUM);
756 CORE_ADDR fp;
757 int regnum;
758 char regbuf[MAX_REGISTER_RAW_SIZE];
759
760 sp = push_word (sp, read_register (PC_REGNUM));
761 sp = push_word (sp, read_register (FP_REGNUM));
762 fp = sp;
763 for (regnum = 0; regnum < NUM_REGS; regnum++)
764 {
765 read_register_gen (regnum, regbuf);
766 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
767 }
768 write_register (SP_REGNUM, sp);
769 write_register (FP_REGNUM, fp);
770 }
771
772 /* Insert the (relative) function address into the call sequence
773 stored at DYMMY. */
774
775 void
776 i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
777 struct value **args, struct type *type, int gcc_p)
778 {
779 int from, to, delta, loc;
780
781 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
782 from = loc + 5;
783 to = (int)(fun);
784 delta = to - from;
785
786 *((char *)(dummy) + 1) = (delta & 0xff);
787 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
788 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
789 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
790 }
791
792 void
793 i386_pop_frame (void)
794 {
795 struct frame_info *frame = get_current_frame ();
796 CORE_ADDR fp;
797 int regnum;
798 char regbuf[MAX_REGISTER_RAW_SIZE];
799
800 fp = FRAME_FP (frame);
801 i386_frame_init_saved_regs (frame);
802
803 for (regnum = 0; regnum < NUM_REGS; regnum++)
804 {
805 CORE_ADDR addr;
806 addr = frame->saved_regs[regnum];
807 if (addr)
808 {
809 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
810 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
811 REGISTER_RAW_SIZE (regnum));
812 }
813 }
814 write_register (FP_REGNUM, read_memory_integer (fp, 4));
815 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
816 write_register (SP_REGNUM, fp + 8);
817 flush_cached_frames ();
818 }
819 \f
820
821 /* Figure out where the longjmp will land. Slurp the args out of the
822 stack. We expect the first arg to be a pointer to the jmp_buf
823 structure from which we extract the address that we will land at.
824 This address is copied into PC. This routine returns true on
825 success. */
826
827 static int
828 i386_get_longjmp_target (CORE_ADDR *pc)
829 {
830 char buf[4];
831 CORE_ADDR sp, jb_addr;
832 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
833
834 /* If JB_PC_OFFSET is -1, we have no way to find out where the
835 longjmp will land. */
836 if (jb_pc_offset == -1)
837 return 0;
838
839 sp = read_register (SP_REGNUM);
840 if (target_read_memory (sp + 4, buf, 4))
841 return 0;
842
843 jb_addr = extract_address (buf, 4);
844 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
845 return 0;
846
847 *pc = extract_address (buf, 4);
848 return 1;
849 }
850 \f
851
852 CORE_ADDR
853 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
854 int struct_return, CORE_ADDR struct_addr)
855 {
856 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
857
858 if (struct_return)
859 {
860 char buf[4];
861
862 sp -= 4;
863 store_address (buf, 4, struct_addr);
864 write_memory (sp, buf, 4);
865 }
866
867 return sp;
868 }
869
870 void
871 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
872 {
873 /* Do nothing. Everything was already done by i386_push_arguments. */
874 }
875
876 /* These registers are used for returning integers (and on some
877 targets also for returning `struct' and `union' values when their
878 size and alignment match an integer type). */
879 #define LOW_RETURN_REGNUM 0 /* %eax */
880 #define HIGH_RETURN_REGNUM 2 /* %edx */
881
882 /* Extract from an array REGBUF containing the (raw) register state, a
883 function return value of TYPE, and copy that, in virtual format,
884 into VALBUF. */
885
886 void
887 i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
888 {
889 int len = TYPE_LENGTH (type);
890
891 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
892 && TYPE_NFIELDS (type) == 1)
893 {
894 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
895 return;
896 }
897
898 if (TYPE_CODE (type) == TYPE_CODE_FLT)
899 {
900 if (FP0_REGNUM == 0)
901 {
902 warning ("Cannot find floating-point return value.");
903 memset (valbuf, 0, len);
904 return;
905 }
906
907 /* Floating-point return values can be found in %st(0). Convert
908 its contents to the desired type. This is probably not
909 exactly how it would happen on the target itself, but it is
910 the best we can do. */
911 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
912 builtin_type_i387_ext, valbuf, type);
913 }
914 else
915 {
916 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
917 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
918
919 if (len <= low_size)
920 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
921 else if (len <= (low_size + high_size))
922 {
923 memcpy (valbuf,
924 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
925 memcpy (valbuf + low_size,
926 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
927 }
928 else
929 internal_error (__FILE__, __LINE__,
930 "Cannot extract return value of %d bytes long.", len);
931 }
932 }
933
934 /* Write into the appropriate registers a function return value stored
935 in VALBUF of type TYPE, given in virtual format. */
936
937 void
938 i386_store_return_value (struct type *type, char *valbuf)
939 {
940 int len = TYPE_LENGTH (type);
941
942 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
943 && TYPE_NFIELDS (type) == 1)
944 {
945 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
946 return;
947 }
948
949 if (TYPE_CODE (type) == TYPE_CODE_FLT)
950 {
951 unsigned int fstat;
952 char buf[FPU_REG_RAW_SIZE];
953
954 if (FP0_REGNUM == 0)
955 {
956 warning ("Cannot set floating-point return value.");
957 return;
958 }
959
960 /* Returning floating-point values is a bit tricky. Apart from
961 storing the return value in %st(0), we have to simulate the
962 state of the FPU at function return point. */
963
964 /* Convert the value found in VALBUF to the extended
965 floating-point format used by the FPU. This is probably
966 not exactly how it would happen on the target itself, but
967 it is the best we can do. */
968 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
969 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
970 FPU_REG_RAW_SIZE);
971
972 /* Set the top of the floating-point register stack to 7. The
973 actual value doesn't really matter, but 7 is what a normal
974 function return would end up with if the program started out
975 with a freshly initialized FPU. */
976 fstat = read_register (FSTAT_REGNUM);
977 fstat |= (7 << 11);
978 write_register (FSTAT_REGNUM, fstat);
979
980 /* Mark %st(1) through %st(7) as empty. Since we set the top of
981 the floating-point register stack to 7, the appropriate value
982 for the tag word is 0x3fff. */
983 write_register (FTAG_REGNUM, 0x3fff);
984 }
985 else
986 {
987 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
988 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
989
990 if (len <= low_size)
991 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
992 else if (len <= (low_size + high_size))
993 {
994 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
995 valbuf, low_size);
996 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
997 valbuf + low_size, len - low_size);
998 }
999 else
1000 internal_error (__FILE__, __LINE__,
1001 "Cannot store return value of %d bytes long.", len);
1002 }
1003 }
1004
1005 /* Extract from an array REGBUF containing the (raw) register state
1006 the address in which a function should return its structure value,
1007 as a CORE_ADDR. */
1008
1009 CORE_ADDR
1010 i386_extract_struct_value_address (char *regbuf)
1011 {
1012 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1013 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1014 }
1015 \f
1016
1017 /* This is the variable that is set with "set struct-convention", and
1018 its legitimate values. */
1019 static const char default_struct_convention[] = "default";
1020 static const char pcc_struct_convention[] = "pcc";
1021 static const char reg_struct_convention[] = "reg";
1022 static const char *valid_conventions[] =
1023 {
1024 default_struct_convention,
1025 pcc_struct_convention,
1026 reg_struct_convention,
1027 NULL
1028 };
1029 static const char *struct_convention = default_struct_convention;
1030
1031 static int
1032 i386_use_struct_convention (int gcc_p, struct type *type)
1033 {
1034 enum struct_return struct_return;
1035
1036 if (struct_convention == default_struct_convention)
1037 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1038 else if (struct_convention == pcc_struct_convention)
1039 struct_return = pcc_struct_return;
1040 else
1041 struct_return = reg_struct_return;
1042
1043 return generic_use_struct_convention (struct_return == reg_struct_return,
1044 type);
1045 }
1046 \f
1047
1048 /* Return the GDB type object for the "standard" data type of data in
1049 register REGNUM. Perhaps %esi and %edi should go here, but
1050 potentially they could be used for things other than address. */
1051
1052 struct type *
1053 i386_register_virtual_type (int regnum)
1054 {
1055 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1056 return lookup_pointer_type (builtin_type_void);
1057
1058 if (IS_FP_REGNUM (regnum))
1059 return builtin_type_i387_ext;
1060
1061 if (IS_SSE_REGNUM (regnum))
1062 return builtin_type_vec128i;
1063
1064 return builtin_type_int;
1065 }
1066
1067 /* Return true iff register REGNUM's virtual format is different from
1068 its raw format. Note that this definition assumes that the host
1069 supports IEEE 32-bit floats, since it doesn't say that SSE
1070 registers need conversion. Even if we can't find a counterexample,
1071 this is still sloppy. */
1072
1073 int
1074 i386_register_convertible (int regnum)
1075 {
1076 return IS_FP_REGNUM (regnum);
1077 }
1078
1079 /* Convert data from raw format for register REGNUM in buffer FROM to
1080 virtual format with type TYPE in buffer TO. */
1081
1082 void
1083 i386_register_convert_to_virtual (int regnum, struct type *type,
1084 char *from, char *to)
1085 {
1086 gdb_assert (IS_FP_REGNUM (regnum));
1087
1088 /* We only support floating-point values. */
1089 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1090 {
1091 warning ("Cannot convert floating-point register value "
1092 "to non-floating-point type.");
1093 memset (to, 0, TYPE_LENGTH (type));
1094 return;
1095 }
1096
1097 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1098 the extended floating-point format used by the FPU. */
1099 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1100 }
1101
1102 /* Convert data from virtual format with type TYPE in buffer FROM to
1103 raw format for register REGNUM in buffer TO. */
1104
1105 void
1106 i386_register_convert_to_raw (struct type *type, int regnum,
1107 char *from, char *to)
1108 {
1109 gdb_assert (IS_FP_REGNUM (regnum));
1110
1111 /* We only support floating-point values. */
1112 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1113 {
1114 warning ("Cannot convert non-floating-point type "
1115 "to floating-point register value.");
1116 memset (to, 0, TYPE_LENGTH (type));
1117 return;
1118 }
1119
1120 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1121 to the extended floating-point format used by the FPU. */
1122 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1123 }
1124 \f
1125
1126 #ifdef STATIC_TRANSFORM_NAME
1127 /* SunPRO encodes the static variables. This is not related to C++
1128 mangling, it is done for C too. */
1129
1130 char *
1131 sunpro_static_transform_name (char *name)
1132 {
1133 char *p;
1134 if (IS_STATIC_TRANSFORM_NAME (name))
1135 {
1136 /* For file-local statics there will be a period, a bunch of
1137 junk (the contents of which match a string given in the
1138 N_OPT), a period and the name. For function-local statics
1139 there will be a bunch of junk (which seems to change the
1140 second character from 'A' to 'B'), a period, the name of the
1141 function, and the name. So just skip everything before the
1142 last period. */
1143 p = strrchr (name, '.');
1144 if (p != NULL)
1145 name = p + 1;
1146 }
1147 return name;
1148 }
1149 #endif /* STATIC_TRANSFORM_NAME */
1150 \f
1151
1152 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1153
1154 CORE_ADDR
1155 skip_trampoline_code (CORE_ADDR pc, char *name)
1156 {
1157 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1158 {
1159 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1160 struct minimal_symbol *indsym =
1161 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1162 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1163
1164 if (symname)
1165 {
1166 if (strncmp (symname, "__imp_", 6) == 0
1167 || strncmp (symname, "_imp_", 5) == 0)
1168 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1169 }
1170 }
1171 return 0; /* Not a trampoline. */
1172 }
1173 \f
1174
1175 /* Return non-zero if PC and NAME show that we are in a signal
1176 trampoline. */
1177
1178 static int
1179 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1180 {
1181 return (name && strcmp ("_sigtramp", name) == 0);
1182 }
1183 \f
1184
1185 /* We have two flavours of disassembly. The machinery on this page
1186 deals with switching between those. */
1187
1188 static int
1189 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1190 {
1191 if (disassembly_flavor == att_flavor)
1192 return print_insn_i386_att (memaddr, info);
1193 else if (disassembly_flavor == intel_flavor)
1194 return print_insn_i386_intel (memaddr, info);
1195 /* Never reached -- disassembly_flavour is always either att_flavor
1196 or intel_flavor. */
1197 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1198 }
1199 \f
1200
1201 /* There are a few i386 architecture variants that differ only
1202 slightly from the generic i386 target. For now, we don't give them
1203 their own source file, but include them here. As a consequence,
1204 they'll always be included. */
1205
1206 /* System V Release 4 (SVR4). */
1207
1208 static int
1209 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1210 {
1211 return (name && (strcmp ("_sigreturn", name) == 0
1212 || strcmp ("_sigacthandler", name) == 0
1213 || strcmp ("sigvechandler", name) == 0));
1214 }
1215
1216 /* Get saved user PC for sigtramp from the pushed ucontext on the
1217 stack for all three variants of SVR4 sigtramps. */
1218
1219 CORE_ADDR
1220 i386_svr4_sigtramp_saved_pc (struct frame_info *frame)
1221 {
1222 CORE_ADDR saved_pc_offset = 4;
1223 char *name = NULL;
1224
1225 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1226 if (name)
1227 {
1228 if (strcmp (name, "_sigreturn") == 0)
1229 saved_pc_offset = 132 + 14 * 4;
1230 else if (strcmp (name, "_sigacthandler") == 0)
1231 saved_pc_offset = 80 + 14 * 4;
1232 else if (strcmp (name, "sigvechandler") == 0)
1233 saved_pc_offset = 120 + 14 * 4;
1234 }
1235
1236 if (frame->next)
1237 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1238 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1239 }
1240 \f
1241
1242 /* DJGPP. */
1243
1244 static int
1245 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1246 {
1247 /* DJGPP doesn't have any special frames for signal handlers. */
1248 return 0;
1249 }
1250 \f
1251
1252 /* Generic ELF. */
1253
1254 void
1255 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1256 {
1257 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1258 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1259 }
1260
1261 /* System V Release 4 (SVR4). */
1262
1263 void
1264 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1265 {
1266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1267
1268 /* System V Release 4 uses ELF. */
1269 i386_elf_init_abi (info, gdbarch);
1270
1271 /* FIXME: kettenis/20020511: Why do we override this function here? */
1272 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1273
1274 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1275 tdep->sigtramp_saved_pc = i386_svr4_sigtramp_saved_pc;
1276
1277 tdep->jb_pc_offset = 20;
1278 }
1279
1280 /* DJGPP. */
1281
1282 void
1283 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1284 {
1285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1286
1287 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1288
1289 tdep->jb_pc_offset = 36;
1290 }
1291
1292 /* NetWare. */
1293
1294 void
1295 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1296 {
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1298
1299 /* FIXME: kettenis/20020511: Why do we override this function here? */
1300 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1301
1302 tdep->jb_pc_offset = 24;
1303 }
1304 \f
1305
1306 struct gdbarch *
1307 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1308 {
1309 struct gdbarch_tdep *tdep;
1310 struct gdbarch *gdbarch;
1311 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1312
1313 /* Try to determine the OS ABI of the object we're loading. */
1314 if (info.abfd != NULL)
1315 osabi = gdbarch_lookup_osabi (info.abfd);
1316
1317 /* Find a candidate among extant architectures. */
1318 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1319 arches != NULL;
1320 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1321 {
1322 /* Make sure the OS ABI selection matches. */
1323 tdep = gdbarch_tdep (arches->gdbarch);
1324 if (tdep && tdep->osabi == osabi)
1325 return arches->gdbarch;
1326 }
1327
1328 /* Allocate space for the new architecture. */
1329 tdep = XMALLOC (struct gdbarch_tdep);
1330 gdbarch = gdbarch_alloc (&info, tdep);
1331
1332 tdep->osabi = osabi;
1333
1334 /* The i386 default settings don't include the SSE registers.
1335 FIXME: kettenis/20020614: They do include the FPU registers for
1336 now, which probably is not quite right. */
1337 tdep->num_xmm_regs = 0;
1338
1339 tdep->jb_pc_offset = -1;
1340 tdep->struct_return = pcc_struct_return;
1341 tdep->sigtramp_saved_pc = NULL;
1342 tdep->sigtramp_start = 0;
1343 tdep->sigtramp_end = 0;
1344 tdep->sc_pc_offset = -1;
1345
1346 /* The format used for `long double' on almost all i386 targets is
1347 the i387 extended floating-point format. In fact, of all targets
1348 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1349 on having a `long double' that's not `long' at all. */
1350 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1351
1352 /* Although the i386 extended floating-point has only 80 significant
1353 bits, a `long double' actually takes up 96, probably to enforce
1354 alignment. */
1355 set_gdbarch_long_double_bit (gdbarch, 96);
1356
1357 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1358 tm-symmetry.h currently override this. Sigh. */
1359 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1360
1361 set_gdbarch_sp_regnum (gdbarch, 4);
1362 set_gdbarch_fp_regnum (gdbarch, 5);
1363 set_gdbarch_pc_regnum (gdbarch, 8);
1364 set_gdbarch_ps_regnum (gdbarch, 9);
1365 set_gdbarch_fp0_regnum (gdbarch, 16);
1366
1367 /* Use the "default" register numbering scheme for stabs and COFF. */
1368 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1369 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1370
1371 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1372 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1373 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1374
1375 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1376 be in use on any of the supported i386 targets. */
1377
1378 set_gdbarch_register_name (gdbarch, i386_register_name);
1379 set_gdbarch_register_size (gdbarch, 4);
1380 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1381 set_gdbarch_register_byte (gdbarch, i386_register_byte);
1382 set_gdbarch_register_raw_size (gdbarch, i386_register_raw_size);
1383 set_gdbarch_max_register_raw_size (gdbarch, 16);
1384 set_gdbarch_max_register_virtual_size (gdbarch, 16);
1385
1386 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1387
1388 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1389
1390 /* Call dummy code. */
1391 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1392 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1393 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1394 set_gdbarch_call_dummy_p (gdbarch, 1);
1395 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1396
1397 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1398 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1399
1400 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1401
1402 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1403
1404 /* The following redefines make backtracing through sigtramp work.
1405 They manufacture a fake sigtramp frame and obtain the saved pc in
1406 sigtramp from the sigcontext structure which is pushed by the
1407 kernel on the user stack, along with a pointer to it. */
1408
1409 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1410 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1411 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1412 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1413 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1414
1415 /* Hook in ABI-specific overrides, if they have been registered. */
1416 gdbarch_init_osabi (info, gdbarch, osabi);
1417
1418 return gdbarch;
1419 }
1420
1421 static enum gdb_osabi
1422 i386_coff_osabi_sniffer (bfd *abfd)
1423 {
1424 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0)
1425 return GDB_OSABI_GO32;
1426
1427 return GDB_OSABI_UNKNOWN;
1428 }
1429
1430 static enum gdb_osabi
1431 i386_nlm_osabi_sniffer (bfd *abfd)
1432 {
1433 return GDB_OSABI_NETWARE;
1434 }
1435 \f
1436
1437 /* Provide a prototype to silence -Wmissing-prototypes. */
1438 void _initialize_i386_tdep (void);
1439
1440 void
1441 _initialize_i386_tdep (void)
1442 {
1443 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1444
1445 /* Initialize the table saying where each register starts in the
1446 register file. */
1447 {
1448 int i, offset;
1449
1450 offset = 0;
1451 for (i = 0; i < I386_SSE_NUM_REGS; i++)
1452 {
1453 i386_register_offset[i] = offset;
1454 offset += i386_register_size[i];
1455 }
1456 }
1457
1458 tm_print_insn = gdb_print_insn_i386;
1459 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1460
1461 /* Add the variable that controls the disassembly flavor. */
1462 {
1463 struct cmd_list_element *new_cmd;
1464
1465 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1466 valid_flavors,
1467 &disassembly_flavor,
1468 "\
1469 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1470 and the default value is \"att\".",
1471 &setlist);
1472 add_show_from_set (new_cmd, &showlist);
1473 }
1474
1475 /* Add the variable that controls the convention for returning
1476 structs. */
1477 {
1478 struct cmd_list_element *new_cmd;
1479
1480 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1481 valid_conventions,
1482 &struct_convention, "\
1483 Set the convention for returning small structs, valid values \
1484 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1485 &setlist);
1486 add_show_from_set (new_cmd, &showlist);
1487 }
1488
1489 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1490 i386_coff_osabi_sniffer);
1491 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1492 i386_nlm_osabi_sniffer);
1493
1494 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1495 i386_svr4_init_abi);
1496 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1497 i386_go32_init_abi);
1498 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1499 i386_nw_init_abi);
1500 }