gdb: change functions returning value contents to use gdb::array_view
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2/frame.h"
26 #include "frame.h"
27 #include "frame-base.h"
28 #include "frame-unwind.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "target-float.h"
43 #include "value.h"
44 #include "dis-asm.h"
45 #include "disasm.h"
46 #include "remote.h"
47 #include "i386-tdep.h"
48 #include "i387-tdep.h"
49 #include "gdbsupport/x86-xstate.h"
50 #include "x86-tdep.h"
51 #include "expop.h"
52
53 #include "record.h"
54 #include "record-full.h"
55 #include "target-descriptions.h"
56 #include "arch/i386.h"
57
58 #include "ax.h"
59 #include "ax-gdb.h"
60
61 #include "stap-probe.h"
62 #include "user-regs.h"
63 #include "cli/cli-utils.h"
64 #include "expression.h"
65 #include "parser-defs.h"
66 #include <ctype.h>
67 #include <algorithm>
68 #include <unordered_set>
69 #include "producer.h"
70
71 /* Register names. */
72
73 static const char * const i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char * const i386_zmm_names[] =
89 {
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92 };
93
94 static const char * const i386_zmmh_names[] =
95 {
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98 };
99
100 static const char * const i386_k_names[] =
101 {
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104 };
105
106 static const char * const i386_ymm_names[] =
107 {
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110 };
111
112 static const char * const i386_ymmh_names[] =
113 {
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116 };
117
118 static const char * const i386_mpx_names[] =
119 {
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121 };
122
123 static const char * const i386_pkeys_names[] =
124 {
125 "pkru"
126 };
127
128 /* Register names for MPX pseudo-registers. */
129
130 static const char * const i386_bnd_names[] =
131 {
132 "bnd0", "bnd1", "bnd2", "bnd3"
133 };
134
135 /* Register names for MMX pseudo-registers. */
136
137 static const char * const i386_mmx_names[] =
138 {
139 "mm0", "mm1", "mm2", "mm3",
140 "mm4", "mm5", "mm6", "mm7"
141 };
142
143 /* Register names for byte pseudo-registers. */
144
145 static const char * const i386_byte_names[] =
146 {
147 "al", "cl", "dl", "bl",
148 "ah", "ch", "dh", "bh"
149 };
150
151 /* Register names for word pseudo-registers. */
152
153 static const char * const i386_word_names[] =
154 {
155 "ax", "cx", "dx", "bx",
156 "", "bp", "si", "di"
157 };
158
159 /* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
160 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
161 we have 16 upper ZMM regs that have to be handled differently. */
162
163 const int num_lower_zmm_regs = 16;
164
165 /* MMX register? */
166
167 static int
168 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
169 {
170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
171 int mm0_regnum = tdep->mm0_regnum;
172
173 if (mm0_regnum < 0)
174 return 0;
175
176 regnum -= mm0_regnum;
177 return regnum >= 0 && regnum < tdep->num_mmx_regs;
178 }
179
180 /* Byte register? */
181
182 int
183 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
184 {
185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
186
187 regnum -= tdep->al_regnum;
188 return regnum >= 0 && regnum < tdep->num_byte_regs;
189 }
190
191 /* Word register? */
192
193 int
194 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
195 {
196 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
197
198 regnum -= tdep->ax_regnum;
199 return regnum >= 0 && regnum < tdep->num_word_regs;
200 }
201
202 /* Dword register? */
203
204 int
205 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
206 {
207 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
208 int eax_regnum = tdep->eax_regnum;
209
210 if (eax_regnum < 0)
211 return 0;
212
213 regnum -= eax_regnum;
214 return regnum >= 0 && regnum < tdep->num_dword_regs;
215 }
216
217 /* AVX512 register? */
218
219 int
220 i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223 int zmm0h_regnum = tdep->zmm0h_regnum;
224
225 if (zmm0h_regnum < 0)
226 return 0;
227
228 regnum -= zmm0h_regnum;
229 return regnum >= 0 && regnum < tdep->num_zmm_regs;
230 }
231
232 int
233 i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236 int zmm0_regnum = tdep->zmm0_regnum;
237
238 if (zmm0_regnum < 0)
239 return 0;
240
241 regnum -= zmm0_regnum;
242 return regnum >= 0 && regnum < tdep->num_zmm_regs;
243 }
244
245 int
246 i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
247 {
248 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
249 int k0_regnum = tdep->k0_regnum;
250
251 if (k0_regnum < 0)
252 return 0;
253
254 regnum -= k0_regnum;
255 return regnum >= 0 && regnum < I387_NUM_K_REGS;
256 }
257
258 static int
259 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
260 {
261 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
262 int ymm0h_regnum = tdep->ymm0h_regnum;
263
264 if (ymm0h_regnum < 0)
265 return 0;
266
267 regnum -= ymm0h_regnum;
268 return regnum >= 0 && regnum < tdep->num_ymm_regs;
269 }
270
271 /* AVX register? */
272
273 int
274 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277 int ymm0_regnum = tdep->ymm0_regnum;
278
279 if (ymm0_regnum < 0)
280 return 0;
281
282 regnum -= ymm0_regnum;
283 return regnum >= 0 && regnum < tdep->num_ymm_regs;
284 }
285
286 static int
287 i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
288 {
289 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
290 int ymm16h_regnum = tdep->ymm16h_regnum;
291
292 if (ymm16h_regnum < 0)
293 return 0;
294
295 regnum -= ymm16h_regnum;
296 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
297 }
298
299 int
300 i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
301 {
302 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
303 int ymm16_regnum = tdep->ymm16_regnum;
304
305 if (ymm16_regnum < 0)
306 return 0;
307
308 regnum -= ymm16_regnum;
309 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
310 }
311
312 /* BND register? */
313
314 int
315 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
316 {
317 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
318 int bnd0_regnum = tdep->bnd0_regnum;
319
320 if (bnd0_regnum < 0)
321 return 0;
322
323 regnum -= bnd0_regnum;
324 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
325 }
326
327 /* SSE register? */
328
329 int
330 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
334
335 if (num_xmm_regs == 0)
336 return 0;
337
338 regnum -= I387_XMM0_REGNUM (tdep);
339 return regnum >= 0 && regnum < num_xmm_regs;
340 }
341
342 /* XMM_512 register? */
343
344 int
345 i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
346 {
347 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
348 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
349
350 if (num_xmm_avx512_regs == 0)
351 return 0;
352
353 regnum -= I387_XMM16_REGNUM (tdep);
354 return regnum >= 0 && regnum < num_xmm_avx512_regs;
355 }
356
357 static int
358 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
359 {
360 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
361
362 if (I387_NUM_XMM_REGS (tdep) == 0)
363 return 0;
364
365 return (regnum == I387_MXCSR_REGNUM (tdep));
366 }
367
368 /* FP register? */
369
370 int
371 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
372 {
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374
375 if (I387_ST0_REGNUM (tdep) < 0)
376 return 0;
377
378 return (I387_ST0_REGNUM (tdep) <= regnum
379 && regnum < I387_FCTRL_REGNUM (tdep));
380 }
381
382 int
383 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
384 {
385 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
386
387 if (I387_ST0_REGNUM (tdep) < 0)
388 return 0;
389
390 return (I387_FCTRL_REGNUM (tdep) <= regnum
391 && regnum < I387_XMM0_REGNUM (tdep));
392 }
393
394 /* BNDr (raw) register? */
395
396 static int
397 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 if (I387_BND0R_REGNUM (tdep) < 0)
402 return 0;
403
404 regnum -= tdep->bnd0r_regnum;
405 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
406 }
407
408 /* BND control register? */
409
410 static int
411 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
412 {
413 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
414
415 if (I387_BNDCFGU_REGNUM (tdep) < 0)
416 return 0;
417
418 regnum -= I387_BNDCFGU_REGNUM (tdep);
419 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
420 }
421
422 /* PKRU register? */
423
424 bool
425 i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
426 {
427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
428 int pkru_regnum = tdep->pkru_regnum;
429
430 if (pkru_regnum < 0)
431 return false;
432
433 regnum -= pkru_regnum;
434 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
435 }
436
437 /* Return the name of register REGNUM, or the empty string if it is
438 an anonymous register. */
439
440 static const char *
441 i386_register_name (struct gdbarch *gdbarch, int regnum)
442 {
443 /* Hide the upper YMM registers. */
444 if (i386_ymmh_regnum_p (gdbarch, regnum))
445 return "";
446
447 /* Hide the upper YMM16-31 registers. */
448 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
449 return "";
450
451 /* Hide the upper ZMM registers. */
452 if (i386_zmmh_regnum_p (gdbarch, regnum))
453 return "";
454
455 return tdesc_register_name (gdbarch, regnum);
456 }
457
458 /* Return the name of register REGNUM. */
459
460 const char *
461 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
462 {
463 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
464 if (i386_bnd_regnum_p (gdbarch, regnum))
465 return i386_bnd_names[regnum - tdep->bnd0_regnum];
466 if (i386_mmx_regnum_p (gdbarch, regnum))
467 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
468 else if (i386_ymm_regnum_p (gdbarch, regnum))
469 return i386_ymm_names[regnum - tdep->ymm0_regnum];
470 else if (i386_zmm_regnum_p (gdbarch, regnum))
471 return i386_zmm_names[regnum - tdep->zmm0_regnum];
472 else if (i386_byte_regnum_p (gdbarch, regnum))
473 return i386_byte_names[regnum - tdep->al_regnum];
474 else if (i386_word_regnum_p (gdbarch, regnum))
475 return i386_word_names[regnum - tdep->ax_regnum];
476
477 internal_error (__FILE__, __LINE__, _("invalid regnum"));
478 }
479
480 /* Convert a dbx register number REG to the appropriate register
481 number used by GDB. */
482
483 static int
484 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
485 {
486 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
487
488 /* This implements what GCC calls the "default" register map
489 (dbx_register_map[]). */
490
491 if (reg >= 0 && reg <= 7)
492 {
493 /* General-purpose registers. The debug info calls %ebp
494 register 4, and %esp register 5. */
495 if (reg == 4)
496 return 5;
497 else if (reg == 5)
498 return 4;
499 else return reg;
500 }
501 else if (reg >= 12 && reg <= 19)
502 {
503 /* Floating-point registers. */
504 return reg - 12 + I387_ST0_REGNUM (tdep);
505 }
506 else if (reg >= 21 && reg <= 28)
507 {
508 /* SSE registers. */
509 int ymm0_regnum = tdep->ymm0_regnum;
510
511 if (ymm0_regnum >= 0
512 && i386_xmm_regnum_p (gdbarch, reg))
513 return reg - 21 + ymm0_regnum;
514 else
515 return reg - 21 + I387_XMM0_REGNUM (tdep);
516 }
517 else if (reg >= 29 && reg <= 36)
518 {
519 /* MMX registers. */
520 return reg - 29 + I387_MM0_REGNUM (tdep);
521 }
522
523 /* This will hopefully provoke a warning. */
524 return gdbarch_num_cooked_regs (gdbarch);
525 }
526
527 /* Convert SVR4 DWARF register number REG to the appropriate register number
528 used by GDB. */
529
530 static int
531 i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
532 {
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
535 /* This implements the GCC register map that tries to be compatible
536 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
537
538 /* The SVR4 register numbering includes %eip and %eflags, and
539 numbers the floating point registers differently. */
540 if (reg >= 0 && reg <= 9)
541 {
542 /* General-purpose registers. */
543 return reg;
544 }
545 else if (reg >= 11 && reg <= 18)
546 {
547 /* Floating-point registers. */
548 return reg - 11 + I387_ST0_REGNUM (tdep);
549 }
550 else if (reg >= 21 && reg <= 36)
551 {
552 /* The SSE and MMX registers have the same numbers as with dbx. */
553 return i386_dbx_reg_to_regnum (gdbarch, reg);
554 }
555
556 switch (reg)
557 {
558 case 37: return I387_FCTRL_REGNUM (tdep);
559 case 38: return I387_FSTAT_REGNUM (tdep);
560 case 39: return I387_MXCSR_REGNUM (tdep);
561 case 40: return I386_ES_REGNUM;
562 case 41: return I386_CS_REGNUM;
563 case 42: return I386_SS_REGNUM;
564 case 43: return I386_DS_REGNUM;
565 case 44: return I386_FS_REGNUM;
566 case 45: return I386_GS_REGNUM;
567 }
568
569 return -1;
570 }
571
572 /* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
573 num_regs + num_pseudo_regs for other debug formats. */
574
575 int
576 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
577 {
578 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
579
580 if (regnum == -1)
581 return gdbarch_num_cooked_regs (gdbarch);
582 return regnum;
583 }
584
585 \f
586
587 /* This is the variable that is set with "set disassembly-flavor", and
588 its legitimate values. */
589 static const char att_flavor[] = "att";
590 static const char intel_flavor[] = "intel";
591 static const char *const valid_flavors[] =
592 {
593 att_flavor,
594 intel_flavor,
595 NULL
596 };
597 static const char *disassembly_flavor = att_flavor;
598 \f
599
600 /* Use the program counter to determine the contents and size of a
601 breakpoint instruction. Return a pointer to a string of bytes that
602 encode a breakpoint instruction, store the length of the string in
603 *LEN and optionally adjust *PC to point to the correct memory
604 location for inserting the breakpoint.
605
606 On the i386 we have a single breakpoint that fits in a single byte
607 and can be inserted anywhere.
608
609 This function is 64-bit safe. */
610
611 constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
612
613 typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
614
615 \f
616 /* Displaced instruction handling. */
617
618 /* Skip the legacy instruction prefixes in INSN.
619 Not all prefixes are valid for any particular insn
620 but we needn't care, the insn will fault if it's invalid.
621 The result is a pointer to the first opcode byte,
622 or NULL if we run off the end of the buffer. */
623
624 static gdb_byte *
625 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
626 {
627 gdb_byte *end = insn + max_len;
628
629 while (insn < end)
630 {
631 switch (*insn)
632 {
633 case DATA_PREFIX_OPCODE:
634 case ADDR_PREFIX_OPCODE:
635 case CS_PREFIX_OPCODE:
636 case DS_PREFIX_OPCODE:
637 case ES_PREFIX_OPCODE:
638 case FS_PREFIX_OPCODE:
639 case GS_PREFIX_OPCODE:
640 case SS_PREFIX_OPCODE:
641 case LOCK_PREFIX_OPCODE:
642 case REPE_PREFIX_OPCODE:
643 case REPNE_PREFIX_OPCODE:
644 ++insn;
645 continue;
646 default:
647 return insn;
648 }
649 }
650
651 return NULL;
652 }
653
654 static int
655 i386_absolute_jmp_p (const gdb_byte *insn)
656 {
657 /* jmp far (absolute address in operand). */
658 if (insn[0] == 0xea)
659 return 1;
660
661 if (insn[0] == 0xff)
662 {
663 /* jump near, absolute indirect (/4). */
664 if ((insn[1] & 0x38) == 0x20)
665 return 1;
666
667 /* jump far, absolute indirect (/5). */
668 if ((insn[1] & 0x38) == 0x28)
669 return 1;
670 }
671
672 return 0;
673 }
674
675 /* Return non-zero if INSN is a jump, zero otherwise. */
676
677 static int
678 i386_jmp_p (const gdb_byte *insn)
679 {
680 /* jump short, relative. */
681 if (insn[0] == 0xeb)
682 return 1;
683
684 /* jump near, relative. */
685 if (insn[0] == 0xe9)
686 return 1;
687
688 return i386_absolute_jmp_p (insn);
689 }
690
691 static int
692 i386_absolute_call_p (const gdb_byte *insn)
693 {
694 /* call far, absolute. */
695 if (insn[0] == 0x9a)
696 return 1;
697
698 if (insn[0] == 0xff)
699 {
700 /* Call near, absolute indirect (/2). */
701 if ((insn[1] & 0x38) == 0x10)
702 return 1;
703
704 /* Call far, absolute indirect (/3). */
705 if ((insn[1] & 0x38) == 0x18)
706 return 1;
707 }
708
709 return 0;
710 }
711
712 static int
713 i386_ret_p (const gdb_byte *insn)
714 {
715 switch (insn[0])
716 {
717 case 0xc2: /* ret near, pop N bytes. */
718 case 0xc3: /* ret near */
719 case 0xca: /* ret far, pop N bytes. */
720 case 0xcb: /* ret far */
721 case 0xcf: /* iret */
722 return 1;
723
724 default:
725 return 0;
726 }
727 }
728
729 static int
730 i386_call_p (const gdb_byte *insn)
731 {
732 if (i386_absolute_call_p (insn))
733 return 1;
734
735 /* call near, relative. */
736 if (insn[0] == 0xe8)
737 return 1;
738
739 return 0;
740 }
741
742 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
743 length in bytes. Otherwise, return zero. */
744
745 static int
746 i386_syscall_p (const gdb_byte *insn, int *lengthp)
747 {
748 /* Is it 'int $0x80'? */
749 if ((insn[0] == 0xcd && insn[1] == 0x80)
750 /* Or is it 'sysenter'? */
751 || (insn[0] == 0x0f && insn[1] == 0x34)
752 /* Or is it 'syscall'? */
753 || (insn[0] == 0x0f && insn[1] == 0x05))
754 {
755 *lengthp = 2;
756 return 1;
757 }
758
759 return 0;
760 }
761
762 /* The gdbarch insn_is_call method. */
763
764 static int
765 i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
766 {
767 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
768
769 read_code (addr, buf, I386_MAX_INSN_LEN);
770 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
771
772 return i386_call_p (insn);
773 }
774
775 /* The gdbarch insn_is_ret method. */
776
777 static int
778 i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
779 {
780 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
781
782 read_code (addr, buf, I386_MAX_INSN_LEN);
783 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
784
785 return i386_ret_p (insn);
786 }
787
788 /* The gdbarch insn_is_jump method. */
789
790 static int
791 i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
792 {
793 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
794
795 read_code (addr, buf, I386_MAX_INSN_LEN);
796 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
797
798 return i386_jmp_p (insn);
799 }
800
801 /* Some kernels may run one past a syscall insn, so we have to cope. */
802
803 displaced_step_copy_insn_closure_up
804 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
805 CORE_ADDR from, CORE_ADDR to,
806 struct regcache *regs)
807 {
808 size_t len = gdbarch_max_insn_length (gdbarch);
809 std::unique_ptr<i386_displaced_step_copy_insn_closure> closure
810 (new i386_displaced_step_copy_insn_closure (len));
811 gdb_byte *buf = closure->buf.data ();
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 displaced_debug_printf ("%s->%s: %s",
830 paddress (gdbarch, from), paddress (gdbarch, to),
831 displaced_step_dump_bytes (buf, len).c_str ());
832
833 /* This is a work around for a problem with g++ 4.8. */
834 return displaced_step_copy_insn_closure_up (closure.release ());
835 }
836
837 /* Fix up the state of registers and memory after having single-stepped
838 a displaced instruction. */
839
840 void
841 i386_displaced_step_fixup (struct gdbarch *gdbarch,
842 struct displaced_step_copy_insn_closure *closure_,
843 CORE_ADDR from, CORE_ADDR to,
844 struct regcache *regs)
845 {
846 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
847
848 /* The offset we applied to the instruction's address.
849 This could well be negative (when viewed as a signed 32-bit
850 value), but ULONGEST won't reflect that, so take care when
851 applying it. */
852 ULONGEST insn_offset = to - from;
853
854 i386_displaced_step_copy_insn_closure *closure
855 = (i386_displaced_step_copy_insn_closure *) closure_;
856 gdb_byte *insn = closure->buf.data ();
857 /* The start of the insn, needed in case we see some prefixes. */
858 gdb_byte *insn_start = insn;
859
860 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
861 paddress (gdbarch, from), paddress (gdbarch, to),
862 insn[0], insn[1]);
863
864 /* The list of issues to contend with here is taken from
865 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
866 Yay for Free Software! */
867
868 /* Relocate the %eip, if necessary. */
869
870 /* The instruction recognizers we use assume any leading prefixes
871 have been skipped. */
872 {
873 /* This is the size of the buffer in closure. */
874 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
875 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
876 /* If there are too many prefixes, just ignore the insn.
877 It will fault when run. */
878 if (opcode != NULL)
879 insn = opcode;
880 }
881
882 /* Except in the case of absolute or indirect jump or call
883 instructions, or a return instruction, the new eip is relative to
884 the displaced instruction; make it relative. Well, signal
885 handler returns don't need relocation either, but we use the
886 value of %eip to recognize those; see below. */
887 if (! i386_absolute_jmp_p (insn)
888 && ! i386_absolute_call_p (insn)
889 && ! i386_ret_p (insn))
890 {
891 ULONGEST orig_eip;
892 int insn_len;
893
894 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
895
896 /* A signal trampoline system call changes the %eip, resuming
897 execution of the main program after the signal handler has
898 returned. That makes them like 'return' instructions; we
899 shouldn't relocate %eip.
900
901 But most system calls don't, and we do need to relocate %eip.
902
903 Our heuristic for distinguishing these cases: if stepping
904 over the system call instruction left control directly after
905 the instruction, the we relocate --- control almost certainly
906 doesn't belong in the displaced copy. Otherwise, we assume
907 the instruction has put control where it belongs, and leave
908 it unrelocated. Goodness help us if there are PC-relative
909 system calls. */
910 if (i386_syscall_p (insn, &insn_len)
911 && orig_eip != to + (insn - insn_start) + insn_len
912 /* GDB can get control back after the insn after the syscall.
913 Presumably this is a kernel bug.
914 i386_displaced_step_copy_insn ensures its a nop,
915 we add one to the length for it. */
916 && orig_eip != to + (insn - insn_start) + insn_len + 1)
917 displaced_debug_printf ("syscall changed %%eip; not relocating");
918 else
919 {
920 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
921
922 /* If we just stepped over a breakpoint insn, we don't backup
923 the pc on purpose; this is to match behaviour without
924 stepping. */
925
926 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
927
928 displaced_debug_printf ("relocated %%eip from %s to %s",
929 paddress (gdbarch, orig_eip),
930 paddress (gdbarch, eip));
931 }
932 }
933
934 /* If the instruction was PUSHFL, then the TF bit will be set in the
935 pushed value, and should be cleared. We'll leave this for later,
936 since GDB already messes up the TF flag when stepping over a
937 pushfl. */
938
939 /* If the instruction was a call, the return address now atop the
940 stack is the address following the copied instruction. We need
941 to make it the address following the original instruction. */
942 if (i386_call_p (insn))
943 {
944 ULONGEST esp;
945 ULONGEST retaddr;
946 const ULONGEST retaddr_len = 4;
947
948 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
949 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
950 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
951 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
952
953 displaced_debug_printf ("relocated return addr at %s to %s",
954 paddress (gdbarch, esp),
955 paddress (gdbarch, retaddr));
956 }
957 }
958
959 static void
960 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
961 {
962 target_write_memory (*to, buf, len);
963 *to += len;
964 }
965
966 static void
967 i386_relocate_instruction (struct gdbarch *gdbarch,
968 CORE_ADDR *to, CORE_ADDR oldloc)
969 {
970 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
971 gdb_byte buf[I386_MAX_INSN_LEN];
972 int offset = 0, rel32, newrel;
973 int insn_length;
974 gdb_byte *insn = buf;
975
976 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
977
978 insn_length = gdb_buffered_insn_length (gdbarch, insn,
979 I386_MAX_INSN_LEN, oldloc);
980
981 /* Get past the prefixes. */
982 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
983
984 /* Adjust calls with 32-bit relative addresses as push/jump, with
985 the address pushed being the location where the original call in
986 the user program would return to. */
987 if (insn[0] == 0xe8)
988 {
989 gdb_byte push_buf[16];
990 unsigned int ret_addr;
991
992 /* Where "ret" in the original code will return to. */
993 ret_addr = oldloc + insn_length;
994 push_buf[0] = 0x68; /* pushq $... */
995 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
996 /* Push the push. */
997 append_insns (to, 5, push_buf);
998
999 /* Convert the relative call to a relative jump. */
1000 insn[0] = 0xe9;
1001
1002 /* Adjust the destination offset. */
1003 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1004 newrel = (oldloc - *to) + rel32;
1005 store_signed_integer (insn + 1, 4, byte_order, newrel);
1006
1007 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1008 hex_string (rel32), paddress (gdbarch, oldloc),
1009 hex_string (newrel), paddress (gdbarch, *to));
1010
1011 /* Write the adjusted jump into its displaced location. */
1012 append_insns (to, 5, insn);
1013 return;
1014 }
1015
1016 /* Adjust jumps with 32-bit relative addresses. Calls are already
1017 handled above. */
1018 if (insn[0] == 0xe9)
1019 offset = 1;
1020 /* Adjust conditional jumps. */
1021 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1022 offset = 2;
1023
1024 if (offset)
1025 {
1026 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1027 newrel = (oldloc - *to) + rel32;
1028 store_signed_integer (insn + offset, 4, byte_order, newrel);
1029 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1030 hex_string (rel32), paddress (gdbarch, oldloc),
1031 hex_string (newrel), paddress (gdbarch, *to));
1032 }
1033
1034 /* Write the adjusted instructions into their displaced
1035 location. */
1036 append_insns (to, insn_length, buf);
1037 }
1038
1039 \f
1040 #ifdef I386_REGNO_TO_SYMMETRY
1041 #error "The Sequent Symmetry is no longer supported."
1042 #endif
1043
1044 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1045 and %esp "belong" to the calling function. Therefore these
1046 registers should be saved if they're going to be modified. */
1047
1048 /* The maximum number of saved registers. This should include all
1049 registers mentioned above, and %eip. */
1050 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
1051
1052 struct i386_frame_cache
1053 {
1054 /* Base address. */
1055 CORE_ADDR base;
1056 int base_p;
1057 LONGEST sp_offset;
1058 CORE_ADDR pc;
1059
1060 /* Saved registers. */
1061 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
1062 CORE_ADDR saved_sp;
1063 int saved_sp_reg;
1064 int pc_in_eax;
1065
1066 /* Stack space reserved for local variables. */
1067 long locals;
1068 };
1069
1070 /* Allocate and initialize a frame cache. */
1071
1072 static struct i386_frame_cache *
1073 i386_alloc_frame_cache (void)
1074 {
1075 struct i386_frame_cache *cache;
1076 int i;
1077
1078 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1079
1080 /* Base address. */
1081 cache->base_p = 0;
1082 cache->base = 0;
1083 cache->sp_offset = -4;
1084 cache->pc = 0;
1085
1086 /* Saved registers. We initialize these to -1 since zero is a valid
1087 offset (that's where %ebp is supposed to be stored). */
1088 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1089 cache->saved_regs[i] = -1;
1090 cache->saved_sp = 0;
1091 cache->saved_sp_reg = -1;
1092 cache->pc_in_eax = 0;
1093
1094 /* Frameless until proven otherwise. */
1095 cache->locals = -1;
1096
1097 return cache;
1098 }
1099
1100 /* If the instruction at PC is a jump, return the address of its
1101 target. Otherwise, return PC. */
1102
1103 static CORE_ADDR
1104 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
1105 {
1106 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1107 gdb_byte op;
1108 long delta = 0;
1109 int data16 = 0;
1110
1111 if (target_read_code (pc, &op, 1))
1112 return pc;
1113
1114 if (op == 0x66)
1115 {
1116 data16 = 1;
1117
1118 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
1119 }
1120
1121 switch (op)
1122 {
1123 case 0xe9:
1124 /* Relative jump: if data16 == 0, disp32, else disp16. */
1125 if (data16)
1126 {
1127 delta = read_memory_integer (pc + 2, 2, byte_order);
1128
1129 /* Include the size of the jmp instruction (including the
1130 0x66 prefix). */
1131 delta += 4;
1132 }
1133 else
1134 {
1135 delta = read_memory_integer (pc + 1, 4, byte_order);
1136
1137 /* Include the size of the jmp instruction. */
1138 delta += 5;
1139 }
1140 break;
1141 case 0xeb:
1142 /* Relative jump, disp8 (ignore data16). */
1143 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
1144
1145 delta += data16 + 2;
1146 break;
1147 }
1148
1149 return pc + delta;
1150 }
1151
1152 /* Check whether PC points at a prologue for a function returning a
1153 structure or union. If so, it updates CACHE and returns the
1154 address of the first instruction after the code sequence that
1155 removes the "hidden" argument from the stack or CURRENT_PC,
1156 whichever is smaller. Otherwise, return PC. */
1157
1158 static CORE_ADDR
1159 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1160 struct i386_frame_cache *cache)
1161 {
1162 /* Functions that return a structure or union start with:
1163
1164 popl %eax 0x58
1165 xchgl %eax, (%esp) 0x87 0x04 0x24
1166 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1167
1168 (the System V compiler puts out the second `xchg' instruction,
1169 and the assembler doesn't try to optimize it, so the 'sib' form
1170 gets generated). This sequence is used to get the address of the
1171 return buffer for a function that returns a structure. */
1172 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1173 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1174 gdb_byte buf[4];
1175 gdb_byte op;
1176
1177 if (current_pc <= pc)
1178 return pc;
1179
1180 if (target_read_code (pc, &op, 1))
1181 return pc;
1182
1183 if (op != 0x58) /* popl %eax */
1184 return pc;
1185
1186 if (target_read_code (pc + 1, buf, 4))
1187 return pc;
1188
1189 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1190 return pc;
1191
1192 if (current_pc == pc)
1193 {
1194 cache->sp_offset += 4;
1195 return current_pc;
1196 }
1197
1198 if (current_pc == pc + 1)
1199 {
1200 cache->pc_in_eax = 1;
1201 return current_pc;
1202 }
1203
1204 if (buf[1] == proto1[1])
1205 return pc + 4;
1206 else
1207 return pc + 5;
1208 }
1209
1210 static CORE_ADDR
1211 i386_skip_probe (CORE_ADDR pc)
1212 {
1213 /* A function may start with
1214
1215 pushl constant
1216 call _probe
1217 addl $4, %esp
1218
1219 followed by
1220
1221 pushl %ebp
1222
1223 etc. */
1224 gdb_byte buf[8];
1225 gdb_byte op;
1226
1227 if (target_read_code (pc, &op, 1))
1228 return pc;
1229
1230 if (op == 0x68 || op == 0x6a)
1231 {
1232 int delta;
1233
1234 /* Skip past the `pushl' instruction; it has either a one-byte or a
1235 four-byte operand, depending on the opcode. */
1236 if (op == 0x68)
1237 delta = 5;
1238 else
1239 delta = 2;
1240
1241 /* Read the following 8 bytes, which should be `call _probe' (6
1242 bytes) followed by `addl $4,%esp' (2 bytes). */
1243 read_memory (pc + delta, buf, sizeof (buf));
1244 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1245 pc += delta + sizeof (buf);
1246 }
1247
1248 return pc;
1249 }
1250
1251 /* GCC 4.1 and later, can put code in the prologue to realign the
1252 stack pointer. Check whether PC points to such code, and update
1253 CACHE accordingly. Return the first instruction after the code
1254 sequence or CURRENT_PC, whichever is smaller. If we don't
1255 recognize the code, return PC. */
1256
1257 static CORE_ADDR
1258 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1259 struct i386_frame_cache *cache)
1260 {
1261 /* There are 2 code sequences to re-align stack before the frame
1262 gets set up:
1263
1264 1. Use a caller-saved saved register:
1265
1266 leal 4(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 2. Use a callee-saved saved register:
1271
1272 pushl %reg
1273 leal 8(%esp), %reg
1274 andl $-XXX, %esp
1275 pushl -4(%reg)
1276
1277 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1278
1279 0x83 0xe4 0xf0 andl $-16, %esp
1280 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1281 */
1282
1283 gdb_byte buf[14];
1284 int reg;
1285 int offset, offset_and;
1286 static int regnums[8] = {
1287 I386_EAX_REGNUM, /* %eax */
1288 I386_ECX_REGNUM, /* %ecx */
1289 I386_EDX_REGNUM, /* %edx */
1290 I386_EBX_REGNUM, /* %ebx */
1291 I386_ESP_REGNUM, /* %esp */
1292 I386_EBP_REGNUM, /* %ebp */
1293 I386_ESI_REGNUM, /* %esi */
1294 I386_EDI_REGNUM /* %edi */
1295 };
1296
1297 if (target_read_code (pc, buf, sizeof buf))
1298 return pc;
1299
1300 /* Check caller-saved saved register. The first instruction has
1301 to be "leal 4(%esp), %reg". */
1302 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1303 {
1304 /* MOD must be binary 10 and R/M must be binary 100. */
1305 if ((buf[1] & 0xc7) != 0x44)
1306 return pc;
1307
1308 /* REG has register number. */
1309 reg = (buf[1] >> 3) & 7;
1310 offset = 4;
1311 }
1312 else
1313 {
1314 /* Check callee-saved saved register. The first instruction
1315 has to be "pushl %reg". */
1316 if ((buf[0] & 0xf8) != 0x50)
1317 return pc;
1318
1319 /* Get register. */
1320 reg = buf[0] & 0x7;
1321
1322 /* The next instruction has to be "leal 8(%esp), %reg". */
1323 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1324 return pc;
1325
1326 /* MOD must be binary 10 and R/M must be binary 100. */
1327 if ((buf[2] & 0xc7) != 0x44)
1328 return pc;
1329
1330 /* REG has register number. Registers in pushl and leal have to
1331 be the same. */
1332 if (reg != ((buf[2] >> 3) & 7))
1333 return pc;
1334
1335 offset = 5;
1336 }
1337
1338 /* Rigister can't be %esp nor %ebp. */
1339 if (reg == 4 || reg == 5)
1340 return pc;
1341
1342 /* The next instruction has to be "andl $-XXX, %esp". */
1343 if (buf[offset + 1] != 0xe4
1344 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1345 return pc;
1346
1347 offset_and = offset;
1348 offset += buf[offset] == 0x81 ? 6 : 3;
1349
1350 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1351 0xfc. REG must be binary 110 and MOD must be binary 01. */
1352 if (buf[offset] != 0xff
1353 || buf[offset + 2] != 0xfc
1354 || (buf[offset + 1] & 0xf8) != 0x70)
1355 return pc;
1356
1357 /* R/M has register. Registers in leal and pushl have to be the
1358 same. */
1359 if (reg != (buf[offset + 1] & 7))
1360 return pc;
1361
1362 if (current_pc > pc + offset_and)
1363 cache->saved_sp_reg = regnums[reg];
1364
1365 return std::min (pc + offset + 3, current_pc);
1366 }
1367
1368 /* Maximum instruction length we need to handle. */
1369 #define I386_MAX_MATCHED_INSN_LEN 6
1370
1371 /* Instruction description. */
1372 struct i386_insn
1373 {
1374 size_t len;
1375 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1376 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1377 };
1378
1379 /* Return whether instruction at PC matches PATTERN. */
1380
1381 static int
1382 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1383 {
1384 gdb_byte op;
1385
1386 if (target_read_code (pc, &op, 1))
1387 return 0;
1388
1389 if ((op & pattern.mask[0]) == pattern.insn[0])
1390 {
1391 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1392 int insn_matched = 1;
1393 size_t i;
1394
1395 gdb_assert (pattern.len > 1);
1396 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1397
1398 if (target_read_code (pc + 1, buf, pattern.len - 1))
1399 return 0;
1400
1401 for (i = 1; i < pattern.len; i++)
1402 {
1403 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1404 insn_matched = 0;
1405 }
1406 return insn_matched;
1407 }
1408 return 0;
1409 }
1410
1411 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1412 the first instruction description that matches. Otherwise, return
1413 NULL. */
1414
1415 static struct i386_insn *
1416 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1417 {
1418 struct i386_insn *pattern;
1419
1420 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1421 {
1422 if (i386_match_pattern (pc, *pattern))
1423 return pattern;
1424 }
1425
1426 return NULL;
1427 }
1428
1429 /* Return whether PC points inside a sequence of instructions that
1430 matches INSN_PATTERNS. */
1431
1432 static int
1433 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1434 {
1435 CORE_ADDR current_pc;
1436 int ix, i;
1437 struct i386_insn *insn;
1438
1439 insn = i386_match_insn (pc, insn_patterns);
1440 if (insn == NULL)
1441 return 0;
1442
1443 current_pc = pc;
1444 ix = insn - insn_patterns;
1445 for (i = ix - 1; i >= 0; i--)
1446 {
1447 current_pc -= insn_patterns[i].len;
1448
1449 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1450 return 0;
1451 }
1452
1453 current_pc = pc + insn->len;
1454 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1455 {
1456 if (!i386_match_pattern (current_pc, *insn))
1457 return 0;
1458
1459 current_pc += insn->len;
1460 }
1461
1462 return 1;
1463 }
1464
1465 /* Some special instructions that might be migrated by GCC into the
1466 part of the prologue that sets up the new stack frame. Because the
1467 stack frame hasn't been setup yet, no registers have been saved
1468 yet, and only the scratch registers %eax, %ecx and %edx can be
1469 touched. */
1470
1471 static i386_insn i386_frame_setup_skip_insns[] =
1472 {
1473 /* Check for `movb imm8, r' and `movl imm32, r'.
1474
1475 ??? Should we handle 16-bit operand-sizes here? */
1476
1477 /* `movb imm8, %al' and `movb imm8, %ah' */
1478 /* `movb imm8, %cl' and `movb imm8, %ch' */
1479 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1480 /* `movb imm8, %dl' and `movb imm8, %dh' */
1481 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1482 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1483 { 5, { 0xb8 }, { 0xfe } },
1484 /* `movl imm32, %edx' */
1485 { 5, { 0xba }, { 0xff } },
1486
1487 /* Check for `mov imm32, r32'. Note that there is an alternative
1488 encoding for `mov m32, %eax'.
1489
1490 ??? Should we handle SIB addressing here?
1491 ??? Should we handle 16-bit operand-sizes here? */
1492
1493 /* `movl m32, %eax' */
1494 { 5, { 0xa1 }, { 0xff } },
1495 /* `movl m32, %eax' and `mov; m32, %ecx' */
1496 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1497 /* `movl m32, %edx' */
1498 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1499
1500 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1501 Because of the symmetry, there are actually two ways to encode
1502 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1503 opcode bytes 0x31 and 0x33 for `xorl'. */
1504
1505 /* `subl %eax, %eax' */
1506 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1507 /* `subl %ecx, %ecx' */
1508 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1509 /* `subl %edx, %edx' */
1510 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1511 /* `xorl %eax, %eax' */
1512 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1513 /* `xorl %ecx, %ecx' */
1514 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1515 /* `xorl %edx, %edx' */
1516 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1517 { 0 }
1518 };
1519
1520 /* Check whether PC points to an endbr32 instruction. */
1521 static CORE_ADDR
1522 i386_skip_endbr (CORE_ADDR pc)
1523 {
1524 static const gdb_byte endbr32[] = { 0xf3, 0x0f, 0x1e, 0xfb };
1525
1526 gdb_byte buf[sizeof (endbr32)];
1527
1528 /* Stop there if we can't read the code */
1529 if (target_read_code (pc, buf, sizeof (endbr32)))
1530 return pc;
1531
1532 /* If the instruction isn't an endbr32, stop */
1533 if (memcmp (buf, endbr32, sizeof (endbr32)) != 0)
1534 return pc;
1535
1536 return pc + sizeof (endbr32);
1537 }
1538
1539 /* Check whether PC points to a no-op instruction. */
1540 static CORE_ADDR
1541 i386_skip_noop (CORE_ADDR pc)
1542 {
1543 gdb_byte op;
1544 int check = 1;
1545
1546 if (target_read_code (pc, &op, 1))
1547 return pc;
1548
1549 while (check)
1550 {
1551 check = 0;
1552 /* Ignore `nop' instruction. */
1553 if (op == 0x90)
1554 {
1555 pc += 1;
1556 if (target_read_code (pc, &op, 1))
1557 return pc;
1558 check = 1;
1559 }
1560 /* Ignore no-op instruction `mov %edi, %edi'.
1561 Microsoft system dlls often start with
1562 a `mov %edi,%edi' instruction.
1563 The 5 bytes before the function start are
1564 filled with `nop' instructions.
1565 This pattern can be used for hot-patching:
1566 The `mov %edi, %edi' instruction can be replaced by a
1567 near jump to the location of the 5 `nop' instructions
1568 which can be replaced by a 32-bit jump to anywhere
1569 in the 32-bit address space. */
1570
1571 else if (op == 0x8b)
1572 {
1573 if (target_read_code (pc + 1, &op, 1))
1574 return pc;
1575
1576 if (op == 0xff)
1577 {
1578 pc += 2;
1579 if (target_read_code (pc, &op, 1))
1580 return pc;
1581
1582 check = 1;
1583 }
1584 }
1585 }
1586 return pc;
1587 }
1588
1589 /* Check whether PC points at a code that sets up a new stack frame.
1590 If so, it updates CACHE and returns the address of the first
1591 instruction after the sequence that sets up the frame or LIMIT,
1592 whichever is smaller. If we don't recognize the code, return PC. */
1593
1594 static CORE_ADDR
1595 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1596 CORE_ADDR pc, CORE_ADDR limit,
1597 struct i386_frame_cache *cache)
1598 {
1599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1600 struct i386_insn *insn;
1601 gdb_byte op;
1602 int skip = 0;
1603
1604 if (limit <= pc)
1605 return limit;
1606
1607 if (target_read_code (pc, &op, 1))
1608 return pc;
1609
1610 if (op == 0x55) /* pushl %ebp */
1611 {
1612 /* Take into account that we've executed the `pushl %ebp' that
1613 starts this instruction sequence. */
1614 cache->saved_regs[I386_EBP_REGNUM] = 0;
1615 cache->sp_offset += 4;
1616 pc++;
1617
1618 /* If that's all, return now. */
1619 if (limit <= pc)
1620 return limit;
1621
1622 /* Check for some special instructions that might be migrated by
1623 GCC into the prologue and skip them. At this point in the
1624 prologue, code should only touch the scratch registers %eax,
1625 %ecx and %edx, so while the number of possibilities is sheer,
1626 it is limited.
1627
1628 Make sure we only skip these instructions if we later see the
1629 `movl %esp, %ebp' that actually sets up the frame. */
1630 while (pc + skip < limit)
1631 {
1632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1633 if (insn == NULL)
1634 break;
1635
1636 skip += insn->len;
1637 }
1638
1639 /* If that's all, return now. */
1640 if (limit <= pc + skip)
1641 return limit;
1642
1643 if (target_read_code (pc + skip, &op, 1))
1644 return pc + skip;
1645
1646 /* The i386 prologue looks like
1647
1648 push %ebp
1649 mov %esp,%ebp
1650 sub $0x10,%esp
1651
1652 and a different prologue can be generated for atom.
1653
1654 push %ebp
1655 lea (%esp),%ebp
1656 lea -0x10(%esp),%esp
1657
1658 We handle both of them here. */
1659
1660 switch (op)
1661 {
1662 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1663 case 0x8b:
1664 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1665 != 0xec)
1666 return pc;
1667 pc += (skip + 2);
1668 break;
1669 case 0x89:
1670 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1671 != 0xe5)
1672 return pc;
1673 pc += (skip + 2);
1674 break;
1675 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1676 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1677 != 0x242c)
1678 return pc;
1679 pc += (skip + 3);
1680 break;
1681 default:
1682 return pc;
1683 }
1684
1685 /* OK, we actually have a frame. We just don't know how large
1686 it is yet. Set its size to zero. We'll adjust it if
1687 necessary. We also now commit to skipping the special
1688 instructions mentioned before. */
1689 cache->locals = 0;
1690
1691 /* If that's all, return now. */
1692 if (limit <= pc)
1693 return limit;
1694
1695 /* Check for stack adjustment
1696
1697 subl $XXX, %esp
1698 or
1699 lea -XXX(%esp),%esp
1700
1701 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1702 reg, so we don't have to worry about a data16 prefix. */
1703 if (target_read_code (pc, &op, 1))
1704 return pc;
1705 if (op == 0x83)
1706 {
1707 /* `subl' with 8-bit immediate. */
1708 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1709 /* Some instruction starting with 0x83 other than `subl'. */
1710 return pc;
1711
1712 /* `subl' with signed 8-bit immediate (though it wouldn't
1713 make sense to be negative). */
1714 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1715 return pc + 3;
1716 }
1717 else if (op == 0x81)
1718 {
1719 /* Maybe it is `subl' with a 32-bit immediate. */
1720 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1721 /* Some instruction starting with 0x81 other than `subl'. */
1722 return pc;
1723
1724 /* It is `subl' with a 32-bit immediate. */
1725 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1726 return pc + 6;
1727 }
1728 else if (op == 0x8d)
1729 {
1730 /* The ModR/M byte is 0x64. */
1731 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1732 return pc;
1733 /* 'lea' with 8-bit displacement. */
1734 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1735 return pc + 4;
1736 }
1737 else
1738 {
1739 /* Some instruction other than `subl' nor 'lea'. */
1740 return pc;
1741 }
1742 }
1743 else if (op == 0xc8) /* enter */
1744 {
1745 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1746 return pc + 4;
1747 }
1748
1749 return pc;
1750 }
1751
1752 /* Check whether PC points at code that saves registers on the stack.
1753 If so, it updates CACHE and returns the address of the first
1754 instruction after the register saves or CURRENT_PC, whichever is
1755 smaller. Otherwise, return PC. */
1756
1757 static CORE_ADDR
1758 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1759 struct i386_frame_cache *cache)
1760 {
1761 CORE_ADDR offset = 0;
1762 gdb_byte op;
1763 int i;
1764
1765 if (cache->locals > 0)
1766 offset -= cache->locals;
1767 for (i = 0; i < 8 && pc < current_pc; i++)
1768 {
1769 if (target_read_code (pc, &op, 1))
1770 return pc;
1771 if (op < 0x50 || op > 0x57)
1772 break;
1773
1774 offset -= 4;
1775 cache->saved_regs[op - 0x50] = offset;
1776 cache->sp_offset += 4;
1777 pc++;
1778 }
1779
1780 return pc;
1781 }
1782
1783 /* Do a full analysis of the prologue at PC and update CACHE
1784 accordingly. Bail out early if CURRENT_PC is reached. Return the
1785 address where the analysis stopped.
1786
1787 We handle these cases:
1788
1789 The startup sequence can be at the start of the function, or the
1790 function can start with a branch to startup code at the end.
1791
1792 %ebp can be set up with either the 'enter' instruction, or "pushl
1793 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1794 once used in the System V compiler).
1795
1796 Local space is allocated just below the saved %ebp by either the
1797 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1798 16-bit unsigned argument for space to allocate, and the 'addl'
1799 instruction could have either a signed byte, or 32-bit immediate.
1800
1801 Next, the registers used by this function are pushed. With the
1802 System V compiler they will always be in the order: %edi, %esi,
1803 %ebx (and sometimes a harmless bug causes it to also save but not
1804 restore %eax); however, the code below is willing to see the pushes
1805 in any order, and will handle up to 8 of them.
1806
1807 If the setup sequence is at the end of the function, then the next
1808 instruction will be a branch back to the start. */
1809
1810 static CORE_ADDR
1811 i386_analyze_prologue (struct gdbarch *gdbarch,
1812 CORE_ADDR pc, CORE_ADDR current_pc,
1813 struct i386_frame_cache *cache)
1814 {
1815 pc = i386_skip_endbr (pc);
1816 pc = i386_skip_noop (pc);
1817 pc = i386_follow_jump (gdbarch, pc);
1818 pc = i386_analyze_struct_return (pc, current_pc, cache);
1819 pc = i386_skip_probe (pc);
1820 pc = i386_analyze_stack_align (pc, current_pc, cache);
1821 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1822 return i386_analyze_register_saves (pc, current_pc, cache);
1823 }
1824
1825 /* Return PC of first real instruction. */
1826
1827 static CORE_ADDR
1828 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1829 {
1830 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1831
1832 static gdb_byte pic_pat[6] =
1833 {
1834 0xe8, 0, 0, 0, 0, /* call 0x0 */
1835 0x5b, /* popl %ebx */
1836 };
1837 struct i386_frame_cache cache;
1838 CORE_ADDR pc;
1839 gdb_byte op;
1840 int i;
1841 CORE_ADDR func_addr;
1842
1843 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1844 {
1845 CORE_ADDR post_prologue_pc
1846 = skip_prologue_using_sal (gdbarch, func_addr);
1847 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
1848
1849 /* LLVM backend (Clang/Flang) always emits a line note before the
1850 prologue and another one after. We trust clang and newer Intel
1851 compilers to emit usable line notes. */
1852 if (post_prologue_pc
1853 && (cust != NULL
1854 && COMPUNIT_PRODUCER (cust) != NULL
1855 && (producer_is_llvm (COMPUNIT_PRODUCER (cust))
1856 || producer_is_icc_ge_19 (COMPUNIT_PRODUCER (cust)))))
1857 return std::max (start_pc, post_prologue_pc);
1858 }
1859
1860 cache.locals = -1;
1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1862 if (cache.locals < 0)
1863 return start_pc;
1864
1865 /* Found valid frame setup. */
1866
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
1869 %ebx:
1870
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
1879
1880 for (i = 0; i < 6; i++)
1881 {
1882 if (target_read_code (pc + i, &op, 1))
1883 return pc;
1884
1885 if (pic_pat[i] != op)
1886 break;
1887 }
1888 if (i == 6)
1889 {
1890 int delta = 6;
1891
1892 if (target_read_code (pc + delta, &op, 1))
1893 return pc;
1894
1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
1896 {
1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1898
1899 if (op == 0x5d) /* One byte offset from %ebp. */
1900 delta += 3;
1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
1902 delta += 6;
1903 else /* Unexpected instruction. */
1904 delta = 0;
1905
1906 if (target_read_code (pc + delta, &op, 1))
1907 return pc;
1908 }
1909
1910 /* addl y,%ebx */
1911 if (delta > 0 && op == 0x81
1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1913 == 0xc3)
1914 {
1915 pc += delta + 6;
1916 }
1917 }
1918
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
1924
1925 return pc;
1926 }
1927
1928 /* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931 CORE_ADDR
1932 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933 {
1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1935 gdb_byte op;
1936
1937 if (target_read_code (pc, &op, 1))
1938 return pc;
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
1947 struct bound_minimal_symbol s;
1948 CORE_ADDR call_dest;
1949
1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
1953 if (s.minsym != NULL
1954 && s.minsym->linkage_name () != NULL
1955 && strcmp (s.minsym->linkage_name (), "__main") == 0)
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961 }
1962
1963 /* This function is 64-bit safe. */
1964
1965 static CORE_ADDR
1966 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1967 {
1968 gdb_byte buf[8];
1969
1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1972 }
1973 \f
1974
1975 /* Normal frames. */
1976
1977 static void
1978 i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
1980 {
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1983 gdb_byte buf[4];
1984 int i;
1985
1986 cache->pc = get_frame_func (this_frame);
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1999 if (cache->base == 0)
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
2007
2008 if (cache->pc != 0)
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
2022 if (cache->saved_sp_reg != -1)
2023 {
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
2035 else if (cache->pc != 0
2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
2037 {
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
2046 }
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
2053 }
2054
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
2066 else if (cache->saved_sp == 0)
2067 cache->saved_sp = cache->base + 8;
2068
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
2074
2075 cache->base_p = 1;
2076 }
2077
2078 static struct i386_frame_cache *
2079 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080 {
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
2084 return (struct i386_frame_cache *) *this_cache;
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
2089 try
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
2093 catch (const gdb_exception_error &ex)
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw;
2097 }
2098
2099 return cache;
2100 }
2101
2102 static void
2103 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
2104 struct frame_id *this_id)
2105 {
2106 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2107
2108 if (!cache->base_p)
2109 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2110 else if (cache->base == 0)
2111 {
2112 /* This marks the outermost frame. */
2113 }
2114 else
2115 {
2116 /* See the end of i386_push_dummy_call. */
2117 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2118 }
2119 }
2120
2121 static enum unwind_stop_reason
2122 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2123 void **this_cache)
2124 {
2125 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2126
2127 if (!cache->base_p)
2128 return UNWIND_UNAVAILABLE;
2129
2130 /* This marks the outermost frame. */
2131 if (cache->base == 0)
2132 return UNWIND_OUTERMOST;
2133
2134 return UNWIND_NO_REASON;
2135 }
2136
2137 static struct value *
2138 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2139 int regnum)
2140 {
2141 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2142
2143 gdb_assert (regnum >= 0);
2144
2145 /* The System V ABI says that:
2146
2147 "The flags register contains the system flags, such as the
2148 direction flag and the carry flag. The direction flag must be
2149 set to the forward (that is, zero) direction before entry and
2150 upon exit from a function. Other user flags have no specified
2151 role in the standard calling sequence and are not preserved."
2152
2153 To guarantee the "upon exit" part of that statement we fake a
2154 saved flags register that has its direction flag cleared.
2155
2156 Note that GCC doesn't seem to rely on the fact that the direction
2157 flag is cleared after a function return; it always explicitly
2158 clears the flag before operations where it matters.
2159
2160 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2161 right thing to do. The way we fake the flags register here makes
2162 it impossible to change it. */
2163
2164 if (regnum == I386_EFLAGS_REGNUM)
2165 {
2166 ULONGEST val;
2167
2168 val = get_frame_register_unsigned (this_frame, regnum);
2169 val &= ~(1 << 10);
2170 return frame_unwind_got_constant (this_frame, regnum, val);
2171 }
2172
2173 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
2174 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
2175
2176 if (regnum == I386_ESP_REGNUM
2177 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
2178 {
2179 /* If the SP has been saved, but we don't know where, then this
2180 means that SAVED_SP_REG register was found unavailable back
2181 when we built the cache. */
2182 if (cache->saved_sp == 0)
2183 return frame_unwind_got_register (this_frame, regnum,
2184 cache->saved_sp_reg);
2185 else
2186 return frame_unwind_got_constant (this_frame, regnum,
2187 cache->saved_sp);
2188 }
2189
2190 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2191 return frame_unwind_got_memory (this_frame, regnum,
2192 cache->saved_regs[regnum]);
2193
2194 return frame_unwind_got_register (this_frame, regnum, regnum);
2195 }
2196
2197 static const struct frame_unwind i386_frame_unwind =
2198 {
2199 "i386 prologue",
2200 NORMAL_FRAME,
2201 i386_frame_unwind_stop_reason,
2202 i386_frame_this_id,
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
2206 };
2207
2208 /* Normal frames, but in a function epilogue. */
2209
2210 /* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216 static int
2217 i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2218 {
2219 gdb_byte insn;
2220 struct compunit_symtab *cust;
2221
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2224 return 0;
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233 }
2234
2235 static int
2236 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239 {
2240 if (frame_relative_level (this_frame) == 0)
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
2243 else
2244 return 0;
2245 }
2246
2247 static struct i386_frame_cache *
2248 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249 {
2250 struct i386_frame_cache *cache;
2251 CORE_ADDR sp;
2252
2253 if (*this_cache)
2254 return (struct i386_frame_cache *) *this_cache;
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
2259 try
2260 {
2261 cache->pc = get_frame_func (this_frame);
2262
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
2268 cache->saved_sp = cache->base + 8;
2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2270
2271 cache->base_p = 1;
2272 }
2273 catch (const gdb_exception_error &ex)
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw;
2277 }
2278
2279 return cache;
2280 }
2281
2282 static enum unwind_stop_reason
2283 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2284 void **this_cache)
2285 {
2286 struct i386_frame_cache *cache =
2287 i386_epilogue_frame_cache (this_frame, this_cache);
2288
2289 if (!cache->base_p)
2290 return UNWIND_UNAVAILABLE;
2291
2292 return UNWIND_NO_REASON;
2293 }
2294
2295 static void
2296 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2297 void **this_cache,
2298 struct frame_id *this_id)
2299 {
2300 struct i386_frame_cache *cache =
2301 i386_epilogue_frame_cache (this_frame, this_cache);
2302
2303 if (!cache->base_p)
2304 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2305 else
2306 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2307 }
2308
2309 static struct value *
2310 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2311 void **this_cache, int regnum)
2312 {
2313 /* Make sure we've initialized the cache. */
2314 i386_epilogue_frame_cache (this_frame, this_cache);
2315
2316 return i386_frame_prev_register (this_frame, this_cache, regnum);
2317 }
2318
2319 static const struct frame_unwind i386_epilogue_frame_unwind =
2320 {
2321 "i386 epilogue",
2322 NORMAL_FRAME,
2323 i386_epilogue_frame_unwind_stop_reason,
2324 i386_epilogue_frame_this_id,
2325 i386_epilogue_frame_prev_register,
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328 };
2329 \f
2330
2331 /* Stack-based trampolines. */
2332
2333 /* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338 /* Static chain passed in register. */
2339
2340 static i386_insn i386_tramp_chain_in_reg_insns[] =
2341 {
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349 };
2350
2351 /* Static chain passed on stack (when regparm=3). */
2352
2353 static i386_insn i386_tramp_chain_on_stack_insns[] =
2354 {
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362 };
2363
2364 /* Return whether PC points inside a stack trampoline. */
2365
2366 static int
2367 i386_in_stack_tramp_p (CORE_ADDR pc)
2368 {
2369 gdb_byte insn;
2370 const char *name;
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388 }
2389
2390 static int
2391 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2392 struct frame_info *this_frame,
2393 void **this_cache)
2394 {
2395 if (frame_relative_level (this_frame) == 0)
2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2397 else
2398 return 0;
2399 }
2400
2401 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402 {
2403 "i386 stack tramp",
2404 NORMAL_FRAME,
2405 i386_epilogue_frame_unwind_stop_reason,
2406 i386_epilogue_frame_this_id,
2407 i386_epilogue_frame_prev_register,
2408 NULL,
2409 i386_stack_tramp_frame_sniffer
2410 };
2411 \f
2412 /* Generate a bytecode expression to get the value of the saved PC. */
2413
2414 static void
2415 i386_gen_return_address (struct gdbarch *gdbarch,
2416 struct agent_expr *ax, struct axs_value *value,
2417 CORE_ADDR scope)
2418 {
2419 /* The following sequence assumes the traditional use of the base
2420 register. */
2421 ax_reg (ax, I386_EBP_REGNUM);
2422 ax_const_l (ax, 4);
2423 ax_simple (ax, aop_add);
2424 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2425 value->kind = axs_lvalue_memory;
2426 }
2427 \f
2428
2429 /* Signal trampolines. */
2430
2431 static struct i386_frame_cache *
2432 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2433 {
2434 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2435 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2436 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2437 struct i386_frame_cache *cache;
2438 CORE_ADDR addr;
2439 gdb_byte buf[4];
2440
2441 if (*this_cache)
2442 return (struct i386_frame_cache *) *this_cache;
2443
2444 cache = i386_alloc_frame_cache ();
2445
2446 try
2447 {
2448 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2449 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2450
2451 addr = tdep->sigcontext_addr (this_frame);
2452 if (tdep->sc_reg_offset)
2453 {
2454 int i;
2455
2456 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2457
2458 for (i = 0; i < tdep->sc_num_regs; i++)
2459 if (tdep->sc_reg_offset[i] != -1)
2460 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2461 }
2462 else
2463 {
2464 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2465 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2466 }
2467
2468 cache->base_p = 1;
2469 }
2470 catch (const gdb_exception_error &ex)
2471 {
2472 if (ex.error != NOT_AVAILABLE_ERROR)
2473 throw;
2474 }
2475
2476 *this_cache = cache;
2477 return cache;
2478 }
2479
2480 static enum unwind_stop_reason
2481 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483 {
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491 }
2492
2493 static void
2494 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2495 struct frame_id *this_id)
2496 {
2497 struct i386_frame_cache *cache =
2498 i386_sigtramp_frame_cache (this_frame, this_cache);
2499
2500 if (!cache->base_p)
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
2507 }
2508
2509 static struct value *
2510 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
2512 {
2513 /* Make sure we've initialized the cache. */
2514 i386_sigtramp_frame_cache (this_frame, this_cache);
2515
2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
2517 }
2518
2519 static int
2520 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
2523 {
2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2525
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
2529 return 0;
2530
2531 if (tdep->sigtramp_p != NULL)
2532 {
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
2539 CORE_ADDR pc = get_frame_pc (this_frame);
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2543 return 1;
2544 }
2545
2546 return 0;
2547 }
2548
2549 static const struct frame_unwind i386_sigtramp_frame_unwind =
2550 {
2551 "i386 sigtramp",
2552 SIGTRAMP_FRAME,
2553 i386_sigtramp_frame_unwind_stop_reason,
2554 i386_sigtramp_frame_this_id,
2555 i386_sigtramp_frame_prev_register,
2556 NULL,
2557 i386_sigtramp_frame_sniffer
2558 };
2559 \f
2560
2561 static CORE_ADDR
2562 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2563 {
2564 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2565
2566 return cache->base;
2567 }
2568
2569 static const struct frame_base i386_frame_base =
2570 {
2571 &i386_frame_unwind,
2572 i386_frame_base_address,
2573 i386_frame_base_address,
2574 i386_frame_base_address
2575 };
2576
2577 static struct frame_id
2578 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2579 {
2580 CORE_ADDR fp;
2581
2582 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2583
2584 /* See the end of i386_push_dummy_call. */
2585 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2586 }
2587
2588 /* _Decimal128 function return values need 16-byte alignment on the
2589 stack. */
2590
2591 static CORE_ADDR
2592 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2593 {
2594 return sp & -(CORE_ADDR)16;
2595 }
2596 \f
2597
2598 /* Figure out where the longjmp will land. Slurp the args out of the
2599 stack. We expect the first arg to be a pointer to the jmp_buf
2600 structure from which we extract the address that we will land at.
2601 This address is copied into PC. This routine returns non-zero on
2602 success. */
2603
2604 static int
2605 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2606 {
2607 gdb_byte buf[4];
2608 CORE_ADDR sp, jb_addr;
2609 struct gdbarch *gdbarch = get_frame_arch (frame);
2610 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2611 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2612
2613 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2614 longjmp will land. */
2615 if (jb_pc_offset == -1)
2616 return 0;
2617
2618 get_frame_register (frame, I386_ESP_REGNUM, buf);
2619 sp = extract_unsigned_integer (buf, 4, byte_order);
2620 if (target_read_memory (sp + 4, buf, 4))
2621 return 0;
2622
2623 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2624 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2625 return 0;
2626
2627 *pc = extract_unsigned_integer (buf, 4, byte_order);
2628 return 1;
2629 }
2630 \f
2631
2632 /* Check whether TYPE must be 16-byte-aligned when passed as a
2633 function argument. 16-byte vectors, _Decimal128 and structures or
2634 unions containing such types must be 16-byte-aligned; other
2635 arguments are 4-byte-aligned. */
2636
2637 static int
2638 i386_16_byte_align_p (struct type *type)
2639 {
2640 type = check_typedef (type);
2641 if ((type->code () == TYPE_CODE_DECFLOAT
2642 || (type->code () == TYPE_CODE_ARRAY && type->is_vector ()))
2643 && TYPE_LENGTH (type) == 16)
2644 return 1;
2645 if (type->code () == TYPE_CODE_ARRAY)
2646 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2647 if (type->code () == TYPE_CODE_STRUCT
2648 || type->code () == TYPE_CODE_UNION)
2649 {
2650 int i;
2651 for (i = 0; i < type->num_fields (); i++)
2652 {
2653 if (field_is_static (&type->field (i)))
2654 continue;
2655 if (i386_16_byte_align_p (type->field (i).type ()))
2656 return 1;
2657 }
2658 }
2659 return 0;
2660 }
2661
2662 /* Implementation for set_gdbarch_push_dummy_code. */
2663
2664 static CORE_ADDR
2665 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2666 struct value **args, int nargs, struct type *value_type,
2667 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2668 struct regcache *regcache)
2669 {
2670 /* Use 0xcc breakpoint - 1 byte. */
2671 *bp_addr = sp - 1;
2672 *real_pc = funaddr;
2673
2674 /* Keep the stack aligned. */
2675 return sp - 16;
2676 }
2677
2678 /* The "push_dummy_call" gdbarch method, optionally with the thiscall
2679 calling convention. */
2680
2681 CORE_ADDR
2682 i386_thiscall_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2683 struct regcache *regcache, CORE_ADDR bp_addr,
2684 int nargs, struct value **args, CORE_ADDR sp,
2685 function_call_return_method return_method,
2686 CORE_ADDR struct_addr, bool thiscall)
2687 {
2688 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2689 gdb_byte buf[4];
2690 int i;
2691 int write_pass;
2692 int args_space = 0;
2693
2694 /* BND registers can be in arbitrary values at the moment of the
2695 inferior call. This can cause boundary violations that are not
2696 due to a real bug or even desired by the user. The best to be done
2697 is set the BND registers to allow access to the whole memory, INIT
2698 state, before pushing the inferior call. */
2699 i387_reset_bnd_regs (gdbarch, regcache);
2700
2701 /* Determine the total space required for arguments and struct
2702 return address in a first pass (allowing for 16-byte-aligned
2703 arguments), then push arguments in a second pass. */
2704
2705 for (write_pass = 0; write_pass < 2; write_pass++)
2706 {
2707 int args_space_used = 0;
2708
2709 if (return_method == return_method_struct)
2710 {
2711 if (write_pass)
2712 {
2713 /* Push value address. */
2714 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2715 write_memory (sp, buf, 4);
2716 args_space_used += 4;
2717 }
2718 else
2719 args_space += 4;
2720 }
2721
2722 for (i = thiscall ? 1 : 0; i < nargs; i++)
2723 {
2724 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2725
2726 if (write_pass)
2727 {
2728 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2729 args_space_used = align_up (args_space_used, 16);
2730
2731 write_memory (sp + args_space_used,
2732 value_contents_all (args[i]).data (), len);
2733 /* The System V ABI says that:
2734
2735 "An argument's size is increased, if necessary, to make it a
2736 multiple of [32-bit] words. This may require tail padding,
2737 depending on the size of the argument."
2738
2739 This makes sure the stack stays word-aligned. */
2740 args_space_used += align_up (len, 4);
2741 }
2742 else
2743 {
2744 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2745 args_space = align_up (args_space, 16);
2746 args_space += align_up (len, 4);
2747 }
2748 }
2749
2750 if (!write_pass)
2751 {
2752 sp -= args_space;
2753
2754 /* The original System V ABI only requires word alignment,
2755 but modern incarnations need 16-byte alignment in order
2756 to support SSE. Since wasting a few bytes here isn't
2757 harmful we unconditionally enforce 16-byte alignment. */
2758 sp &= ~0xf;
2759 }
2760 }
2761
2762 /* Store return address. */
2763 sp -= 4;
2764 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2765 write_memory (sp, buf, 4);
2766
2767 /* Finally, update the stack pointer... */
2768 store_unsigned_integer (buf, 4, byte_order, sp);
2769 regcache->cooked_write (I386_ESP_REGNUM, buf);
2770
2771 /* ...and fake a frame pointer. */
2772 regcache->cooked_write (I386_EBP_REGNUM, buf);
2773
2774 /* The 'this' pointer needs to be in ECX. */
2775 if (thiscall)
2776 regcache->cooked_write (I386_ECX_REGNUM,
2777 value_contents_all (args[0]).data ());
2778
2779 /* MarkK wrote: This "+ 8" is all over the place:
2780 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2781 i386_dummy_id). It's there, since all frame unwinders for
2782 a given target have to agree (within a certain margin) on the
2783 definition of the stack address of a frame. Otherwise frame id
2784 comparison might not work correctly. Since DWARF2/GCC uses the
2785 stack address *before* the function call as a frame's CFA. On
2786 the i386, when %ebp is used as a frame pointer, the offset
2787 between the contents %ebp and the CFA as defined by GCC. */
2788 return sp + 8;
2789 }
2790
2791 /* Implement the "push_dummy_call" gdbarch method. */
2792
2793 static CORE_ADDR
2794 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2795 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2796 struct value **args, CORE_ADDR sp,
2797 function_call_return_method return_method,
2798 CORE_ADDR struct_addr)
2799 {
2800 return i386_thiscall_push_dummy_call (gdbarch, function, regcache, bp_addr,
2801 nargs, args, sp, return_method,
2802 struct_addr, false);
2803 }
2804
2805 /* These registers are used for returning integers (and on some
2806 targets also for returning `struct' and `union' values when their
2807 size and alignment match an integer type). */
2808 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2809 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2810
2811 /* Read, for architecture GDBARCH, a function return value of TYPE
2812 from REGCACHE, and copy that into VALBUF. */
2813
2814 static void
2815 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2816 struct regcache *regcache, gdb_byte *valbuf)
2817 {
2818 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2819 int len = TYPE_LENGTH (type);
2820 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2821
2822 /* _Float16 and _Float16 _Complex values are returned via xmm0. */
2823 if (((type->code () == TYPE_CODE_FLT) && len == 2)
2824 || ((type->code () == TYPE_CODE_COMPLEX) && len == 4))
2825 {
2826 regcache->raw_read (I387_XMM0_REGNUM (tdep), valbuf);
2827 return;
2828 }
2829 else if (type->code () == TYPE_CODE_FLT)
2830 {
2831 if (tdep->st0_regnum < 0)
2832 {
2833 warning (_("Cannot find floating-point return value."));
2834 memset (valbuf, 0, len);
2835 return;
2836 }
2837
2838 /* Floating-point return values can be found in %st(0). Convert
2839 its contents to the desired type. This is probably not
2840 exactly how it would happen on the target itself, but it is
2841 the best we can do. */
2842 regcache->raw_read (I386_ST0_REGNUM, buf);
2843 target_float_convert (buf, i387_ext_type (gdbarch), valbuf, type);
2844 }
2845 else
2846 {
2847 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2848 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2849
2850 if (len <= low_size)
2851 {
2852 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2853 memcpy (valbuf, buf, len);
2854 }
2855 else if (len <= (low_size + high_size))
2856 {
2857 regcache->raw_read (LOW_RETURN_REGNUM, buf);
2858 memcpy (valbuf, buf, low_size);
2859 regcache->raw_read (HIGH_RETURN_REGNUM, buf);
2860 memcpy (valbuf + low_size, buf, len - low_size);
2861 }
2862 else
2863 internal_error (__FILE__, __LINE__,
2864 _("Cannot extract return value of %d bytes long."),
2865 len);
2866 }
2867 }
2868
2869 /* Write, for architecture GDBARCH, a function return value of TYPE
2870 from VALBUF into REGCACHE. */
2871
2872 static void
2873 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2874 struct regcache *regcache, const gdb_byte *valbuf)
2875 {
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 int len = TYPE_LENGTH (type);
2878
2879 if (type->code () == TYPE_CODE_FLT)
2880 {
2881 ULONGEST fstat;
2882 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2883
2884 if (tdep->st0_regnum < 0)
2885 {
2886 warning (_("Cannot set floating-point return value."));
2887 return;
2888 }
2889
2890 /* Returning floating-point values is a bit tricky. Apart from
2891 storing the return value in %st(0), we have to simulate the
2892 state of the FPU at function return point. */
2893
2894 /* Convert the value found in VALBUF to the extended
2895 floating-point format used by the FPU. This is probably
2896 not exactly how it would happen on the target itself, but
2897 it is the best we can do. */
2898 target_float_convert (valbuf, type, buf, i387_ext_type (gdbarch));
2899 regcache->raw_write (I386_ST0_REGNUM, buf);
2900
2901 /* Set the top of the floating-point register stack to 7. The
2902 actual value doesn't really matter, but 7 is what a normal
2903 function return would end up with if the program started out
2904 with a freshly initialized FPU. */
2905 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2906 fstat |= (7 << 11);
2907 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2908
2909 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2910 the floating-point register stack to 7, the appropriate value
2911 for the tag word is 0x3fff. */
2912 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2913 }
2914 else
2915 {
2916 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2917 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2918
2919 if (len <= low_size)
2920 regcache->raw_write_part (LOW_RETURN_REGNUM, 0, len, valbuf);
2921 else if (len <= (low_size + high_size))
2922 {
2923 regcache->raw_write (LOW_RETURN_REGNUM, valbuf);
2924 regcache->raw_write_part (HIGH_RETURN_REGNUM, 0, len - low_size,
2925 valbuf + low_size);
2926 }
2927 else
2928 internal_error (__FILE__, __LINE__,
2929 _("Cannot store return value of %d bytes long."), len);
2930 }
2931 }
2932 \f
2933
2934 /* This is the variable that is set with "set struct-convention", and
2935 its legitimate values. */
2936 static const char default_struct_convention[] = "default";
2937 static const char pcc_struct_convention[] = "pcc";
2938 static const char reg_struct_convention[] = "reg";
2939 static const char *const valid_conventions[] =
2940 {
2941 default_struct_convention,
2942 pcc_struct_convention,
2943 reg_struct_convention,
2944 NULL
2945 };
2946 static const char *struct_convention = default_struct_convention;
2947
2948 /* Return non-zero if TYPE, which is assumed to be a structure,
2949 a union type, or an array type, should be returned in registers
2950 for architecture GDBARCH. */
2951
2952 static int
2953 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2954 {
2955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2956 enum type_code code = type->code ();
2957 int len = TYPE_LENGTH (type);
2958
2959 gdb_assert (code == TYPE_CODE_STRUCT
2960 || code == TYPE_CODE_UNION
2961 || code == TYPE_CODE_ARRAY);
2962
2963 if (struct_convention == pcc_struct_convention
2964 || (struct_convention == default_struct_convention
2965 && tdep->struct_return == pcc_struct_return))
2966 return 0;
2967
2968 /* Structures consisting of a single `float', `double' or 'long
2969 double' member are returned in %st(0). */
2970 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
2971 {
2972 type = check_typedef (type->field (0).type ());
2973 if (type->code () == TYPE_CODE_FLT)
2974 return (len == 4 || len == 8 || len == 12);
2975 }
2976
2977 return (len == 1 || len == 2 || len == 4 || len == 8);
2978 }
2979
2980 /* Determine, for architecture GDBARCH, how a return value of TYPE
2981 should be returned. If it is supposed to be returned in registers,
2982 and READBUF is non-zero, read the appropriate value from REGCACHE,
2983 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2984 from WRITEBUF into REGCACHE. */
2985
2986 static enum return_value_convention
2987 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2988 struct type *type, struct regcache *regcache,
2989 gdb_byte *readbuf, const gdb_byte *writebuf)
2990 {
2991 enum type_code code = type->code ();
2992
2993 if (((code == TYPE_CODE_STRUCT
2994 || code == TYPE_CODE_UNION
2995 || code == TYPE_CODE_ARRAY)
2996 && !i386_reg_struct_return_p (gdbarch, type))
2997 /* Complex double and long double uses the struct return convention. */
2998 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2999 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
3000 /* 128-bit decimal float uses the struct return convention. */
3001 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
3002 {
3003 /* The System V ABI says that:
3004
3005 "A function that returns a structure or union also sets %eax
3006 to the value of the original address of the caller's area
3007 before it returns. Thus when the caller receives control
3008 again, the address of the returned object resides in register
3009 %eax and can be used to access the object."
3010
3011 So the ABI guarantees that we can always find the return
3012 value just after the function has returned. */
3013
3014 /* Note that the ABI doesn't mention functions returning arrays,
3015 which is something possible in certain languages such as Ada.
3016 In this case, the value is returned as if it was wrapped in
3017 a record, so the convention applied to records also applies
3018 to arrays. */
3019
3020 if (readbuf)
3021 {
3022 ULONGEST addr;
3023
3024 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
3025 read_memory (addr, readbuf, TYPE_LENGTH (type));
3026 }
3027
3028 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
3029 }
3030
3031 /* This special case is for structures consisting of a single
3032 `float', `double' or 'long double' member. These structures are
3033 returned in %st(0). For these structures, we call ourselves
3034 recursively, changing TYPE into the type of the first member of
3035 the structure. Since that should work for all structures that
3036 have only one member, we don't bother to check the member's type
3037 here. */
3038 if (code == TYPE_CODE_STRUCT && type->num_fields () == 1)
3039 {
3040 type = check_typedef (type->field (0).type ());
3041 return i386_return_value (gdbarch, function, type, regcache,
3042 readbuf, writebuf);
3043 }
3044
3045 if (readbuf)
3046 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3047 if (writebuf)
3048 i386_store_return_value (gdbarch, type, regcache, writebuf);
3049
3050 return RETURN_VALUE_REGISTER_CONVENTION;
3051 }
3052 \f
3053
3054 struct type *
3055 i387_ext_type (struct gdbarch *gdbarch)
3056 {
3057 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3058
3059 if (!tdep->i387_ext_type)
3060 {
3061 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3062 gdb_assert (tdep->i387_ext_type != NULL);
3063 }
3064
3065 return tdep->i387_ext_type;
3066 }
3067
3068 /* Construct type for pseudo BND registers. We can't use
3069 tdesc_find_type since a complement of one value has to be used
3070 to describe the upper bound. */
3071
3072 static struct type *
3073 i386_bnd_type (struct gdbarch *gdbarch)
3074 {
3075 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3076
3077
3078 if (!tdep->i386_bnd_type)
3079 {
3080 struct type *t;
3081 const struct builtin_type *bt = builtin_type (gdbarch);
3082
3083 /* The type we're building is described bellow: */
3084 #if 0
3085 struct __bound128
3086 {
3087 void *lbound;
3088 void *ubound; /* One complement of raw ubound field. */
3089 };
3090 #endif
3091
3092 t = arch_composite_type (gdbarch,
3093 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3094
3095 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3096 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3097
3098 t->set_name ("builtin_type_bound128");
3099 tdep->i386_bnd_type = t;
3100 }
3101
3102 return tdep->i386_bnd_type;
3103 }
3104
3105 /* Construct vector type for pseudo ZMM registers. We can't use
3106 tdesc_find_type since ZMM isn't described in target description. */
3107
3108 static struct type *
3109 i386_zmm_type (struct gdbarch *gdbarch)
3110 {
3111 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3112
3113 if (!tdep->i386_zmm_type)
3114 {
3115 const struct builtin_type *bt = builtin_type (gdbarch);
3116
3117 /* The type we're building is this: */
3118 #if 0
3119 union __gdb_builtin_type_vec512i
3120 {
3121 int128_t v4_int128[4];
3122 int64_t v8_int64[8];
3123 int32_t v16_int32[16];
3124 int16_t v32_int16[32];
3125 int8_t v64_int8[64];
3126 double v8_double[8];
3127 float v16_float[16];
3128 float16_t v32_half[32];
3129 bfloat16_t v32_bfloat16[32];
3130 };
3131 #endif
3132
3133 struct type *t;
3134
3135 t = arch_composite_type (gdbarch,
3136 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3137 append_composite_type_field (t, "v32_bfloat16",
3138 init_vector_type (bt->builtin_bfloat16, 32));
3139 append_composite_type_field (t, "v32_half",
3140 init_vector_type (bt->builtin_half, 32));
3141 append_composite_type_field (t, "v16_float",
3142 init_vector_type (bt->builtin_float, 16));
3143 append_composite_type_field (t, "v8_double",
3144 init_vector_type (bt->builtin_double, 8));
3145 append_composite_type_field (t, "v64_int8",
3146 init_vector_type (bt->builtin_int8, 64));
3147 append_composite_type_field (t, "v32_int16",
3148 init_vector_type (bt->builtin_int16, 32));
3149 append_composite_type_field (t, "v16_int32",
3150 init_vector_type (bt->builtin_int32, 16));
3151 append_composite_type_field (t, "v8_int64",
3152 init_vector_type (bt->builtin_int64, 8));
3153 append_composite_type_field (t, "v4_int128",
3154 init_vector_type (bt->builtin_int128, 4));
3155
3156 t->set_is_vector (true);
3157 t->set_name ("builtin_type_vec512i");
3158 tdep->i386_zmm_type = t;
3159 }
3160
3161 return tdep->i386_zmm_type;
3162 }
3163
3164 /* Construct vector type for pseudo YMM registers. We can't use
3165 tdesc_find_type since YMM isn't described in target description. */
3166
3167 static struct type *
3168 i386_ymm_type (struct gdbarch *gdbarch)
3169 {
3170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3171
3172 if (!tdep->i386_ymm_type)
3173 {
3174 const struct builtin_type *bt = builtin_type (gdbarch);
3175
3176 /* The type we're building is this: */
3177 #if 0
3178 union __gdb_builtin_type_vec256i
3179 {
3180 int128_t v2_int128[2];
3181 int64_t v4_int64[4];
3182 int32_t v8_int32[8];
3183 int16_t v16_int16[16];
3184 int8_t v32_int8[32];
3185 double v4_double[4];
3186 float v8_float[8];
3187 float16_t v16_half[16];
3188 bfloat16_t v16_bfloat16[16];
3189 };
3190 #endif
3191
3192 struct type *t;
3193
3194 t = arch_composite_type (gdbarch,
3195 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3196 append_composite_type_field (t, "v16_bfloat16",
3197 init_vector_type (bt->builtin_bfloat16, 16));
3198 append_composite_type_field (t, "v16_half",
3199 init_vector_type (bt->builtin_half, 16));
3200 append_composite_type_field (t, "v8_float",
3201 init_vector_type (bt->builtin_float, 8));
3202 append_composite_type_field (t, "v4_double",
3203 init_vector_type (bt->builtin_double, 4));
3204 append_composite_type_field (t, "v32_int8",
3205 init_vector_type (bt->builtin_int8, 32));
3206 append_composite_type_field (t, "v16_int16",
3207 init_vector_type (bt->builtin_int16, 16));
3208 append_composite_type_field (t, "v8_int32",
3209 init_vector_type (bt->builtin_int32, 8));
3210 append_composite_type_field (t, "v4_int64",
3211 init_vector_type (bt->builtin_int64, 4));
3212 append_composite_type_field (t, "v2_int128",
3213 init_vector_type (bt->builtin_int128, 2));
3214
3215 t->set_is_vector (true);
3216 t->set_name ("builtin_type_vec256i");
3217 tdep->i386_ymm_type = t;
3218 }
3219
3220 return tdep->i386_ymm_type;
3221 }
3222
3223 /* Construct vector type for MMX registers. */
3224 static struct type *
3225 i386_mmx_type (struct gdbarch *gdbarch)
3226 {
3227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3228
3229 if (!tdep->i386_mmx_type)
3230 {
3231 const struct builtin_type *bt = builtin_type (gdbarch);
3232
3233 /* The type we're building is this: */
3234 #if 0
3235 union __gdb_builtin_type_vec64i
3236 {
3237 int64_t uint64;
3238 int32_t v2_int32[2];
3239 int16_t v4_int16[4];
3240 int8_t v8_int8[8];
3241 };
3242 #endif
3243
3244 struct type *t;
3245
3246 t = arch_composite_type (gdbarch,
3247 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
3248
3249 append_composite_type_field (t, "uint64", bt->builtin_int64);
3250 append_composite_type_field (t, "v2_int32",
3251 init_vector_type (bt->builtin_int32, 2));
3252 append_composite_type_field (t, "v4_int16",
3253 init_vector_type (bt->builtin_int16, 4));
3254 append_composite_type_field (t, "v8_int8",
3255 init_vector_type (bt->builtin_int8, 8));
3256
3257 t->set_is_vector (true);
3258 t->set_name ("builtin_type_vec64i");
3259 tdep->i386_mmx_type = t;
3260 }
3261
3262 return tdep->i386_mmx_type;
3263 }
3264
3265 /* Return the GDB type object for the "standard" data type of data in
3266 register REGNUM. */
3267
3268 struct type *
3269 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3270 {
3271 if (i386_bnd_regnum_p (gdbarch, regnum))
3272 return i386_bnd_type (gdbarch);
3273 if (i386_mmx_regnum_p (gdbarch, regnum))
3274 return i386_mmx_type (gdbarch);
3275 else if (i386_ymm_regnum_p (gdbarch, regnum))
3276 return i386_ymm_type (gdbarch);
3277 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3278 return i386_ymm_type (gdbarch);
3279 else if (i386_zmm_regnum_p (gdbarch, regnum))
3280 return i386_zmm_type (gdbarch);
3281 else
3282 {
3283 const struct builtin_type *bt = builtin_type (gdbarch);
3284 if (i386_byte_regnum_p (gdbarch, regnum))
3285 return bt->builtin_int8;
3286 else if (i386_word_regnum_p (gdbarch, regnum))
3287 return bt->builtin_int16;
3288 else if (i386_dword_regnum_p (gdbarch, regnum))
3289 return bt->builtin_int32;
3290 else if (i386_k_regnum_p (gdbarch, regnum))
3291 return bt->builtin_int64;
3292 }
3293
3294 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3295 }
3296
3297 /* Map a cooked register onto a raw register or memory. For the i386,
3298 the MMX registers need to be mapped onto floating point registers. */
3299
3300 static int
3301 i386_mmx_regnum_to_fp_regnum (readable_regcache *regcache, int regnum)
3302 {
3303 struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ());
3304 int mmxreg, fpreg;
3305 ULONGEST fstat;
3306 int tos;
3307
3308 mmxreg = regnum - tdep->mm0_regnum;
3309 regcache->raw_read (I387_FSTAT_REGNUM (tdep), &fstat);
3310 tos = (fstat >> 11) & 0x7;
3311 fpreg = (mmxreg + tos) % 8;
3312
3313 return (I387_ST0_REGNUM (tdep) + fpreg);
3314 }
3315
3316 /* A helper function for us by i386_pseudo_register_read_value and
3317 amd64_pseudo_register_read_value. It does all the work but reads
3318 the data into an already-allocated value. */
3319
3320 void
3321 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3322 readable_regcache *regcache,
3323 int regnum,
3324 struct value *result_value)
3325 {
3326 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3327 enum register_status status;
3328 gdb_byte *buf = value_contents_raw (result_value).data ();
3329
3330 if (i386_mmx_regnum_p (gdbarch, regnum))
3331 {
3332 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3333
3334 /* Extract (always little endian). */
3335 status = regcache->raw_read (fpnum, raw_buf);
3336 if (status != REG_VALID)
3337 mark_value_bytes_unavailable (result_value, 0,
3338 TYPE_LENGTH (value_type (result_value)));
3339 else
3340 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3341 }
3342 else
3343 {
3344 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3345 if (i386_bnd_regnum_p (gdbarch, regnum))
3346 {
3347 regnum -= tdep->bnd0_regnum;
3348
3349 /* Extract (always little endian). Read lower 128bits. */
3350 status = regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3351 raw_buf);
3352 if (status != REG_VALID)
3353 mark_value_bytes_unavailable (result_value, 0, 16);
3354 else
3355 {
3356 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3357 LONGEST upper, lower;
3358 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3359
3360 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3361 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3362 upper = ~upper;
3363
3364 memcpy (buf, &lower, size);
3365 memcpy (buf + size, &upper, size);
3366 }
3367 }
3368 else if (i386_k_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->k0_regnum;
3371
3372 /* Extract (always little endian). */
3373 status = regcache->raw_read (tdep->k0_regnum + regnum, raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 0, 8);
3376 else
3377 memcpy (buf, raw_buf, 8);
3378 }
3379 else if (i386_zmm_regnum_p (gdbarch, regnum))
3380 {
3381 regnum -= tdep->zmm0_regnum;
3382
3383 if (regnum < num_lower_zmm_regs)
3384 {
3385 /* Extract (always little endian). Read lower 128bits. */
3386 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 0, 16);
3390 else
3391 memcpy (buf, raw_buf, 16);
3392
3393 /* Extract (always little endian). Read upper 128bits. */
3394 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3395 raw_buf);
3396 if (status != REG_VALID)
3397 mark_value_bytes_unavailable (result_value, 16, 16);
3398 else
3399 memcpy (buf + 16, raw_buf, 16);
3400 }
3401 else
3402 {
3403 /* Extract (always little endian). Read lower 128bits. */
3404 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum
3405 - num_lower_zmm_regs,
3406 raw_buf);
3407 if (status != REG_VALID)
3408 mark_value_bytes_unavailable (result_value, 0, 16);
3409 else
3410 memcpy (buf, raw_buf, 16);
3411
3412 /* Extract (always little endian). Read upper 128bits. */
3413 status = regcache->raw_read (I387_YMM16H_REGNUM (tdep) + regnum
3414 - num_lower_zmm_regs,
3415 raw_buf);
3416 if (status != REG_VALID)
3417 mark_value_bytes_unavailable (result_value, 16, 16);
3418 else
3419 memcpy (buf + 16, raw_buf, 16);
3420 }
3421
3422 /* Read upper 256bits. */
3423 status = regcache->raw_read (tdep->zmm0h_regnum + regnum,
3424 raw_buf);
3425 if (status != REG_VALID)
3426 mark_value_bytes_unavailable (result_value, 32, 32);
3427 else
3428 memcpy (buf + 32, raw_buf, 32);
3429 }
3430 else if (i386_ymm_regnum_p (gdbarch, regnum))
3431 {
3432 regnum -= tdep->ymm0_regnum;
3433
3434 /* Extract (always little endian). Read lower 128bits. */
3435 status = regcache->raw_read (I387_XMM0_REGNUM (tdep) + regnum,
3436 raw_buf);
3437 if (status != REG_VALID)
3438 mark_value_bytes_unavailable (result_value, 0, 16);
3439 else
3440 memcpy (buf, raw_buf, 16);
3441 /* Read upper 128bits. */
3442 status = regcache->raw_read (tdep->ymm0h_regnum + regnum,
3443 raw_buf);
3444 if (status != REG_VALID)
3445 mark_value_bytes_unavailable (result_value, 16, 32);
3446 else
3447 memcpy (buf + 16, raw_buf, 16);
3448 }
3449 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3450 {
3451 regnum -= tdep->ymm16_regnum;
3452 /* Extract (always little endian). Read lower 128bits. */
3453 status = regcache->raw_read (I387_XMM16_REGNUM (tdep) + regnum,
3454 raw_buf);
3455 if (status != REG_VALID)
3456 mark_value_bytes_unavailable (result_value, 0, 16);
3457 else
3458 memcpy (buf, raw_buf, 16);
3459 /* Read upper 128bits. */
3460 status = regcache->raw_read (tdep->ymm16h_regnum + regnum,
3461 raw_buf);
3462 if (status != REG_VALID)
3463 mark_value_bytes_unavailable (result_value, 16, 16);
3464 else
3465 memcpy (buf + 16, raw_buf, 16);
3466 }
3467 else if (i386_word_regnum_p (gdbarch, regnum))
3468 {
3469 int gpnum = regnum - tdep->ax_regnum;
3470
3471 /* Extract (always little endian). */
3472 status = regcache->raw_read (gpnum, raw_buf);
3473 if (status != REG_VALID)
3474 mark_value_bytes_unavailable (result_value, 0,
3475 TYPE_LENGTH (value_type (result_value)));
3476 else
3477 memcpy (buf, raw_buf, 2);
3478 }
3479 else if (i386_byte_regnum_p (gdbarch, regnum))
3480 {
3481 int gpnum = regnum - tdep->al_regnum;
3482
3483 /* Extract (always little endian). We read both lower and
3484 upper registers. */
3485 status = regcache->raw_read (gpnum % 4, raw_buf);
3486 if (status != REG_VALID)
3487 mark_value_bytes_unavailable (result_value, 0,
3488 TYPE_LENGTH (value_type (result_value)));
3489 else if (gpnum >= 4)
3490 memcpy (buf, raw_buf + 1, 1);
3491 else
3492 memcpy (buf, raw_buf, 1);
3493 }
3494 else
3495 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3496 }
3497 }
3498
3499 static struct value *
3500 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3501 readable_regcache *regcache,
3502 int regnum)
3503 {
3504 struct value *result;
3505
3506 result = allocate_value (register_type (gdbarch, regnum));
3507 VALUE_LVAL (result) = lval_register;
3508 VALUE_REGNUM (result) = regnum;
3509
3510 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3511
3512 return result;
3513 }
3514
3515 void
3516 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3517 int regnum, const gdb_byte *buf)
3518 {
3519 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
3520
3521 if (i386_mmx_regnum_p (gdbarch, regnum))
3522 {
3523 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3524
3525 /* Read ... */
3526 regcache->raw_read (fpnum, raw_buf);
3527 /* ... Modify ... (always little endian). */
3528 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3529 /* ... Write. */
3530 regcache->raw_write (fpnum, raw_buf);
3531 }
3532 else
3533 {
3534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3535
3536 if (i386_bnd_regnum_p (gdbarch, regnum))
3537 {
3538 ULONGEST upper, lower;
3539 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3540 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3541
3542 /* New values from input value. */
3543 regnum -= tdep->bnd0_regnum;
3544 lower = extract_unsigned_integer (buf, size, byte_order);
3545 upper = extract_unsigned_integer (buf + size, size, byte_order);
3546
3547 /* Fetching register buffer. */
3548 regcache->raw_read (I387_BND0R_REGNUM (tdep) + regnum,
3549 raw_buf);
3550
3551 upper = ~upper;
3552
3553 /* Set register bits. */
3554 memcpy (raw_buf, &lower, 8);
3555 memcpy (raw_buf + 8, &upper, 8);
3556
3557 regcache->raw_write (I387_BND0R_REGNUM (tdep) + regnum, raw_buf);
3558 }
3559 else if (i386_k_regnum_p (gdbarch, regnum))
3560 {
3561 regnum -= tdep->k0_regnum;
3562
3563 regcache->raw_write (tdep->k0_regnum + regnum, buf);
3564 }
3565 else if (i386_zmm_regnum_p (gdbarch, regnum))
3566 {
3567 regnum -= tdep->zmm0_regnum;
3568
3569 if (regnum < num_lower_zmm_regs)
3570 {
3571 /* Write lower 128bits. */
3572 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3573 /* Write upper 128bits. */
3574 regcache->raw_write (I387_YMM0_REGNUM (tdep) + regnum, buf + 16);
3575 }
3576 else
3577 {
3578 /* Write lower 128bits. */
3579 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum
3580 - num_lower_zmm_regs, buf);
3581 /* Write upper 128bits. */
3582 regcache->raw_write (I387_YMM16H_REGNUM (tdep) + regnum
3583 - num_lower_zmm_regs, buf + 16);
3584 }
3585 /* Write upper 256bits. */
3586 regcache->raw_write (tdep->zmm0h_regnum + regnum, buf + 32);
3587 }
3588 else if (i386_ymm_regnum_p (gdbarch, regnum))
3589 {
3590 regnum -= tdep->ymm0_regnum;
3591
3592 /* ... Write lower 128bits. */
3593 regcache->raw_write (I387_XMM0_REGNUM (tdep) + regnum, buf);
3594 /* ... Write upper 128bits. */
3595 regcache->raw_write (tdep->ymm0h_regnum + regnum, buf + 16);
3596 }
3597 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3598 {
3599 regnum -= tdep->ymm16_regnum;
3600
3601 /* ... Write lower 128bits. */
3602 regcache->raw_write (I387_XMM16_REGNUM (tdep) + regnum, buf);
3603 /* ... Write upper 128bits. */
3604 regcache->raw_write (tdep->ymm16h_regnum + regnum, buf + 16);
3605 }
3606 else if (i386_word_regnum_p (gdbarch, regnum))
3607 {
3608 int gpnum = regnum - tdep->ax_regnum;
3609
3610 /* Read ... */
3611 regcache->raw_read (gpnum, raw_buf);
3612 /* ... Modify ... (always little endian). */
3613 memcpy (raw_buf, buf, 2);
3614 /* ... Write. */
3615 regcache->raw_write (gpnum, raw_buf);
3616 }
3617 else if (i386_byte_regnum_p (gdbarch, regnum))
3618 {
3619 int gpnum = regnum - tdep->al_regnum;
3620
3621 /* Read ... We read both lower and upper registers. */
3622 regcache->raw_read (gpnum % 4, raw_buf);
3623 /* ... Modify ... (always little endian). */
3624 if (gpnum >= 4)
3625 memcpy (raw_buf + 1, buf, 1);
3626 else
3627 memcpy (raw_buf, buf, 1);
3628 /* ... Write. */
3629 regcache->raw_write (gpnum % 4, raw_buf);
3630 }
3631 else
3632 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3633 }
3634 }
3635
3636 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3637
3638 int
3639 i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3640 struct agent_expr *ax, int regnum)
3641 {
3642 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3643
3644 if (i386_mmx_regnum_p (gdbarch, regnum))
3645 {
3646 /* MMX to FPU register mapping depends on current TOS. Let's just
3647 not care and collect everything... */
3648 int i;
3649
3650 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3651 for (i = 0; i < 8; i++)
3652 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3653 return 0;
3654 }
3655 else if (i386_bnd_regnum_p (gdbarch, regnum))
3656 {
3657 regnum -= tdep->bnd0_regnum;
3658 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3659 return 0;
3660 }
3661 else if (i386_k_regnum_p (gdbarch, regnum))
3662 {
3663 regnum -= tdep->k0_regnum;
3664 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3665 return 0;
3666 }
3667 else if (i386_zmm_regnum_p (gdbarch, regnum))
3668 {
3669 regnum -= tdep->zmm0_regnum;
3670 if (regnum < num_lower_zmm_regs)
3671 {
3672 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3673 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3674 }
3675 else
3676 {
3677 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3678 - num_lower_zmm_regs);
3679 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3680 - num_lower_zmm_regs);
3681 }
3682 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3683 return 0;
3684 }
3685 else if (i386_ymm_regnum_p (gdbarch, regnum))
3686 {
3687 regnum -= tdep->ymm0_regnum;
3688 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3689 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3690 return 0;
3691 }
3692 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3693 {
3694 regnum -= tdep->ymm16_regnum;
3695 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3696 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3697 return 0;
3698 }
3699 else if (i386_word_regnum_p (gdbarch, regnum))
3700 {
3701 int gpnum = regnum - tdep->ax_regnum;
3702
3703 ax_reg_mask (ax, gpnum);
3704 return 0;
3705 }
3706 else if (i386_byte_regnum_p (gdbarch, regnum))
3707 {
3708 int gpnum = regnum - tdep->al_regnum;
3709
3710 ax_reg_mask (ax, gpnum % 4);
3711 return 0;
3712 }
3713 else
3714 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3715 return 1;
3716 }
3717 \f
3718
3719 /* Return the register number of the register allocated by GCC after
3720 REGNUM, or -1 if there is no such register. */
3721
3722 static int
3723 i386_next_regnum (int regnum)
3724 {
3725 /* GCC allocates the registers in the order:
3726
3727 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3728
3729 Since storing a variable in %esp doesn't make any sense we return
3730 -1 for %ebp and for %esp itself. */
3731 static int next_regnum[] =
3732 {
3733 I386_EDX_REGNUM, /* Slot for %eax. */
3734 I386_EBX_REGNUM, /* Slot for %ecx. */
3735 I386_ECX_REGNUM, /* Slot for %edx. */
3736 I386_ESI_REGNUM, /* Slot for %ebx. */
3737 -1, -1, /* Slots for %esp and %ebp. */
3738 I386_EDI_REGNUM, /* Slot for %esi. */
3739 I386_EBP_REGNUM /* Slot for %edi. */
3740 };
3741
3742 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3743 return next_regnum[regnum];
3744
3745 return -1;
3746 }
3747
3748 /* Return nonzero if a value of type TYPE stored in register REGNUM
3749 needs any special handling. */
3750
3751 static int
3752 i386_convert_register_p (struct gdbarch *gdbarch,
3753 int regnum, struct type *type)
3754 {
3755 int len = TYPE_LENGTH (type);
3756
3757 /* Values may be spread across multiple registers. Most debugging
3758 formats aren't expressive enough to specify the locations, so
3759 some heuristics is involved. Right now we only handle types that
3760 have a length that is a multiple of the word size, since GCC
3761 doesn't seem to put any other types into registers. */
3762 if (len > 4 && len % 4 == 0)
3763 {
3764 int last_regnum = regnum;
3765
3766 while (len > 4)
3767 {
3768 last_regnum = i386_next_regnum (last_regnum);
3769 len -= 4;
3770 }
3771
3772 if (last_regnum != -1)
3773 return 1;
3774 }
3775
3776 return i387_convert_register_p (gdbarch, regnum, type);
3777 }
3778
3779 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3780 return its contents in TO. */
3781
3782 static int
3783 i386_register_to_value (struct frame_info *frame, int regnum,
3784 struct type *type, gdb_byte *to,
3785 int *optimizedp, int *unavailablep)
3786 {
3787 struct gdbarch *gdbarch = get_frame_arch (frame);
3788 int len = TYPE_LENGTH (type);
3789
3790 if (i386_fp_regnum_p (gdbarch, regnum))
3791 return i387_register_to_value (frame, regnum, type, to,
3792 optimizedp, unavailablep);
3793
3794 /* Read a value spread across multiple registers. */
3795
3796 gdb_assert (len > 4 && len % 4 == 0);
3797
3798 while (len > 0)
3799 {
3800 gdb_assert (regnum != -1);
3801 gdb_assert (register_size (gdbarch, regnum) == 4);
3802
3803 if (!get_frame_register_bytes (frame, regnum, 0,
3804 gdb::make_array_view (to,
3805 register_size (gdbarch,
3806 regnum)),
3807 optimizedp, unavailablep))
3808 return 0;
3809
3810 regnum = i386_next_regnum (regnum);
3811 len -= 4;
3812 to += 4;
3813 }
3814
3815 *optimizedp = *unavailablep = 0;
3816 return 1;
3817 }
3818
3819 /* Write the contents FROM of a value of type TYPE into register
3820 REGNUM in frame FRAME. */
3821
3822 static void
3823 i386_value_to_register (struct frame_info *frame, int regnum,
3824 struct type *type, const gdb_byte *from)
3825 {
3826 int len = TYPE_LENGTH (type);
3827
3828 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3829 {
3830 i387_value_to_register (frame, regnum, type, from);
3831 return;
3832 }
3833
3834 /* Write a value spread across multiple registers. */
3835
3836 gdb_assert (len > 4 && len % 4 == 0);
3837
3838 while (len > 0)
3839 {
3840 gdb_assert (regnum != -1);
3841 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3842
3843 put_frame_register (frame, regnum, from);
3844 regnum = i386_next_regnum (regnum);
3845 len -= 4;
3846 from += 4;
3847 }
3848 }
3849 \f
3850 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3851 in the general-purpose register set REGSET to register cache
3852 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3853
3854 void
3855 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3856 int regnum, const void *gregs, size_t len)
3857 {
3858 struct gdbarch *gdbarch = regcache->arch ();
3859 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3860 const gdb_byte *regs = (const gdb_byte *) gregs;
3861 int i;
3862
3863 gdb_assert (len >= tdep->sizeof_gregset);
3864
3865 for (i = 0; i < tdep->gregset_num_regs; i++)
3866 {
3867 if ((regnum == i || regnum == -1)
3868 && tdep->gregset_reg_offset[i] != -1)
3869 regcache->raw_supply (i, regs + tdep->gregset_reg_offset[i]);
3870 }
3871 }
3872
3873 /* Collect register REGNUM from the register cache REGCACHE and store
3874 it in the buffer specified by GREGS and LEN as described by the
3875 general-purpose register set REGSET. If REGNUM is -1, do this for
3876 all registers in REGSET. */
3877
3878 static void
3879 i386_collect_gregset (const struct regset *regset,
3880 const struct regcache *regcache,
3881 int regnum, void *gregs, size_t len)
3882 {
3883 struct gdbarch *gdbarch = regcache->arch ();
3884 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3885 gdb_byte *regs = (gdb_byte *) gregs;
3886 int i;
3887
3888 gdb_assert (len >= tdep->sizeof_gregset);
3889
3890 for (i = 0; i < tdep->gregset_num_regs; i++)
3891 {
3892 if ((regnum == i || regnum == -1)
3893 && tdep->gregset_reg_offset[i] != -1)
3894 regcache->raw_collect (i, regs + tdep->gregset_reg_offset[i]);
3895 }
3896 }
3897
3898 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3899 in the floating-point register set REGSET to register cache
3900 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3901
3902 static void
3903 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3904 int regnum, const void *fpregs, size_t len)
3905 {
3906 struct gdbarch *gdbarch = regcache->arch ();
3907 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3908
3909 if (len == I387_SIZEOF_FXSAVE)
3910 {
3911 i387_supply_fxsave (regcache, regnum, fpregs);
3912 return;
3913 }
3914
3915 gdb_assert (len >= tdep->sizeof_fpregset);
3916 i387_supply_fsave (regcache, regnum, fpregs);
3917 }
3918
3919 /* Collect register REGNUM from the register cache REGCACHE and store
3920 it in the buffer specified by FPREGS and LEN as described by the
3921 floating-point register set REGSET. If REGNUM is -1, do this for
3922 all registers in REGSET. */
3923
3924 static void
3925 i386_collect_fpregset (const struct regset *regset,
3926 const struct regcache *regcache,
3927 int regnum, void *fpregs, size_t len)
3928 {
3929 struct gdbarch *gdbarch = regcache->arch ();
3930 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3931
3932 if (len == I387_SIZEOF_FXSAVE)
3933 {
3934 i387_collect_fxsave (regcache, regnum, fpregs);
3935 return;
3936 }
3937
3938 gdb_assert (len >= tdep->sizeof_fpregset);
3939 i387_collect_fsave (regcache, regnum, fpregs);
3940 }
3941
3942 /* Register set definitions. */
3943
3944 const struct regset i386_gregset =
3945 {
3946 NULL, i386_supply_gregset, i386_collect_gregset
3947 };
3948
3949 const struct regset i386_fpregset =
3950 {
3951 NULL, i386_supply_fpregset, i386_collect_fpregset
3952 };
3953
3954 /* Default iterator over core file register note sections. */
3955
3956 void
3957 i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3958 iterate_over_regset_sections_cb *cb,
3959 void *cb_data,
3960 const struct regcache *regcache)
3961 {
3962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3963
3964 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset, &i386_gregset, NULL,
3965 cb_data);
3966 if (tdep->sizeof_fpregset)
3967 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset, tdep->fpregset,
3968 NULL, cb_data);
3969 }
3970 \f
3971
3972 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3973
3974 CORE_ADDR
3975 i386_pe_skip_trampoline_code (struct frame_info *frame,
3976 CORE_ADDR pc, char *name)
3977 {
3978 struct gdbarch *gdbarch = get_frame_arch (frame);
3979 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3980
3981 /* jmp *(dest) */
3982 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3983 {
3984 unsigned long indirect =
3985 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3986 struct minimal_symbol *indsym =
3987 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3988 const char *symname = indsym ? indsym->linkage_name () : 0;
3989
3990 if (symname)
3991 {
3992 if (startswith (symname, "__imp_")
3993 || startswith (symname, "_imp_"))
3994 return name ? 1 :
3995 read_memory_unsigned_integer (indirect, 4, byte_order);
3996 }
3997 }
3998 return 0; /* Not a trampoline. */
3999 }
4000 \f
4001
4002 /* Return whether the THIS_FRAME corresponds to a sigtramp
4003 routine. */
4004
4005 int
4006 i386_sigtramp_p (struct frame_info *this_frame)
4007 {
4008 CORE_ADDR pc = get_frame_pc (this_frame);
4009 const char *name;
4010
4011 find_pc_partial_function (pc, &name, NULL, NULL);
4012 return (name && strcmp ("_sigtramp", name) == 0);
4013 }
4014 \f
4015
4016 /* We have two flavours of disassembly. The machinery on this page
4017 deals with switching between those. */
4018
4019 static int
4020 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
4021 {
4022 gdb_assert (disassembly_flavor == att_flavor
4023 || disassembly_flavor == intel_flavor);
4024
4025 info->disassembler_options = disassembly_flavor;
4026
4027 return default_print_insn (pc, info);
4028 }
4029 \f
4030
4031 /* There are a few i386 architecture variants that differ only
4032 slightly from the generic i386 target. For now, we don't give them
4033 their own source file, but include them here. As a consequence,
4034 they'll always be included. */
4035
4036 /* System V Release 4 (SVR4). */
4037
4038 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4039 routine. */
4040
4041 static int
4042 i386_svr4_sigtramp_p (struct frame_info *this_frame)
4043 {
4044 CORE_ADDR pc = get_frame_pc (this_frame);
4045 const char *name;
4046
4047 /* The origin of these symbols is currently unknown. */
4048 find_pc_partial_function (pc, &name, NULL, NULL);
4049 return (name && (strcmp ("_sigreturn", name) == 0
4050 || strcmp ("sigvechandler", name) == 0));
4051 }
4052
4053 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4054 address of the associated sigcontext (ucontext) structure. */
4055
4056 static CORE_ADDR
4057 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
4058 {
4059 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4061 gdb_byte buf[4];
4062 CORE_ADDR sp;
4063
4064 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
4065 sp = extract_unsigned_integer (buf, 4, byte_order);
4066
4067 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
4068 }
4069
4070 \f
4071
4072 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
4073 gdbarch.h. */
4074
4075 int
4076 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4077 {
4078 return (*s == '$' /* Literal number. */
4079 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4080 || (*s == '(' && s[1] == '%') /* Register indirection. */
4081 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4082 }
4083
4084 /* Helper function for i386_stap_parse_special_token.
4085
4086 This function parses operands of the form `-8+3+1(%rbp)', which
4087 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4088
4089 Return true if the operand was parsed successfully, false
4090 otherwise. */
4091
4092 static expr::operation_up
4093 i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4094 struct stap_parse_info *p)
4095 {
4096 const char *s = p->arg;
4097
4098 if (isdigit (*s) || *s == '-' || *s == '+')
4099 {
4100 bool got_minus[3];
4101 int i;
4102 long displacements[3];
4103 const char *start;
4104 int len;
4105 char *endp;
4106
4107 got_minus[0] = false;
4108 if (*s == '+')
4109 ++s;
4110 else if (*s == '-')
4111 {
4112 ++s;
4113 got_minus[0] = true;
4114 }
4115
4116 if (!isdigit ((unsigned char) *s))
4117 return {};
4118
4119 displacements[0] = strtol (s, &endp, 10);
4120 s = endp;
4121
4122 if (*s != '+' && *s != '-')
4123 {
4124 /* We are not dealing with a triplet. */
4125 return {};
4126 }
4127
4128 got_minus[1] = false;
4129 if (*s == '+')
4130 ++s;
4131 else
4132 {
4133 ++s;
4134 got_minus[1] = true;
4135 }
4136
4137 if (!isdigit ((unsigned char) *s))
4138 return {};
4139
4140 displacements[1] = strtol (s, &endp, 10);
4141 s = endp;
4142
4143 if (*s != '+' && *s != '-')
4144 {
4145 /* We are not dealing with a triplet. */
4146 return {};
4147 }
4148
4149 got_minus[2] = false;
4150 if (*s == '+')
4151 ++s;
4152 else
4153 {
4154 ++s;
4155 got_minus[2] = true;
4156 }
4157
4158 if (!isdigit ((unsigned char) *s))
4159 return {};
4160
4161 displacements[2] = strtol (s, &endp, 10);
4162 s = endp;
4163
4164 if (*s != '(' || s[1] != '%')
4165 return {};
4166
4167 s += 2;
4168 start = s;
4169
4170 while (isalnum (*s))
4171 ++s;
4172
4173 if (*s++ != ')')
4174 return {};
4175
4176 len = s - start - 1;
4177 std::string regname (start, len);
4178
4179 if (user_reg_map_name_to_regnum (gdbarch, regname.c_str (), len) == -1)
4180 error (_("Invalid register name `%s' on expression `%s'."),
4181 regname.c_str (), p->saved_arg);
4182
4183 LONGEST value = 0;
4184 for (i = 0; i < 3; i++)
4185 {
4186 LONGEST this_val = displacements[i];
4187 if (got_minus[i])
4188 this_val = -this_val;
4189 value += this_val;
4190 }
4191
4192 p->arg = s;
4193
4194 using namespace expr;
4195
4196 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4197 operation_up offset
4198 = make_operation<long_const_operation> (long_type, value);
4199
4200 operation_up reg
4201 = make_operation<register_operation> (std::move (regname));
4202 struct type *void_ptr = builtin_type (gdbarch)->builtin_data_ptr;
4203 reg = make_operation<unop_cast_operation> (std::move (reg), void_ptr);
4204
4205 operation_up sum
4206 = make_operation<add_operation> (std::move (reg), std::move (offset));
4207 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4208 sum = make_operation<unop_cast_operation> (std::move (sum),
4209 arg_ptr_type);
4210 return make_operation<unop_ind_operation> (std::move (sum));
4211 }
4212
4213 return {};
4214 }
4215
4216 /* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return true if the operand was parsed successfully, false
4223 otherwise. */
4224
4225 static expr::operation_up
4226 i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228 {
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 bool offset_minus = false;
4234 long offset = 0;
4235 bool size_minus = false;
4236 long size = 0;
4237 const char *start;
4238 int len_base;
4239 int len_index;
4240
4241 if (*s == '+')
4242 ++s;
4243 else if (*s == '-')
4244 {
4245 ++s;
4246 offset_minus = true;
4247 }
4248
4249 if (offset_minus && !isdigit (*s))
4250 return {};
4251
4252 if (isdigit (*s))
4253 {
4254 char *endp;
4255
4256 offset = strtol (s, &endp, 10);
4257 s = endp;
4258 }
4259
4260 if (*s != '(' || s[1] != '%')
4261 return {};
4262
4263 s += 2;
4264 start = s;
4265
4266 while (isalnum (*s))
4267 ++s;
4268
4269 if (*s != ',' || s[1] != '%')
4270 return {};
4271
4272 len_base = s - start;
4273 std::string base (start, len_base);
4274
4275 if (user_reg_map_name_to_regnum (gdbarch, base.c_str (), len_base) == -1)
4276 error (_("Invalid register name `%s' on expression `%s'."),
4277 base.c_str (), p->saved_arg);
4278
4279 s += 2;
4280 start = s;
4281
4282 while (isalnum (*s))
4283 ++s;
4284
4285 len_index = s - start;
4286 std::string index (start, len_index);
4287
4288 if (user_reg_map_name_to_regnum (gdbarch, index.c_str (),
4289 len_index) == -1)
4290 error (_("Invalid register name `%s' on expression `%s'."),
4291 index.c_str (), p->saved_arg);
4292
4293 if (*s != ',' && *s != ')')
4294 return {};
4295
4296 if (*s == ',')
4297 {
4298 char *endp;
4299
4300 ++s;
4301 if (*s == '+')
4302 ++s;
4303 else if (*s == '-')
4304 {
4305 ++s;
4306 size_minus = true;
4307 }
4308
4309 size = strtol (s, &endp, 10);
4310 s = endp;
4311
4312 if (*s != ')')
4313 return {};
4314 }
4315
4316 ++s;
4317 p->arg = s;
4318
4319 using namespace expr;
4320
4321 struct type *long_type = builtin_type (gdbarch)->builtin_long;
4322 operation_up reg = make_operation<register_operation> (std::move (base));
4323
4324 if (offset != 0)
4325 {
4326 if (offset_minus)
4327 offset = -offset;
4328 operation_up value
4329 = make_operation<long_const_operation> (long_type, offset);
4330 reg = make_operation<add_operation> (std::move (reg),
4331 std::move (value));
4332 }
4333
4334 operation_up ind_reg
4335 = make_operation<register_operation> (std::move (index));
4336
4337 if (size != 0)
4338 {
4339 if (size_minus)
4340 size = -size;
4341 operation_up value
4342 = make_operation<long_const_operation> (long_type, size);
4343 ind_reg = make_operation<mul_operation> (std::move (ind_reg),
4344 std::move (value));
4345 }
4346
4347 operation_up sum
4348 = make_operation<add_operation> (std::move (reg),
4349 std::move (ind_reg));
4350
4351 struct type *arg_ptr_type = lookup_pointer_type (p->arg_type);
4352 sum = make_operation<unop_cast_operation> (std::move (sum),
4353 arg_ptr_type);
4354 return make_operation<unop_ind_operation> (std::move (sum));
4355 }
4356
4357 return {};
4358 }
4359
4360 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
4361 gdbarch.h. */
4362
4363 expr::operation_up
4364 i386_stap_parse_special_token (struct gdbarch *gdbarch,
4365 struct stap_parse_info *p)
4366 {
4367 /* The special tokens to be parsed here are:
4368
4369 - `register base + (register index * size) + offset', as represented
4370 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4371
4372 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4373 `*(-8 + 3 - 1 + (void *) $eax)'. */
4374
4375 expr::operation_up result
4376 = i386_stap_parse_special_token_triplet (gdbarch, p);
4377
4378 if (result == nullptr)
4379 result = i386_stap_parse_special_token_three_arg_disp (gdbarch, p);
4380
4381 return result;
4382 }
4383
4384 /* Implementation of 'gdbarch_stap_adjust_register', as defined in
4385 gdbarch.h. */
4386
4387 static std::string
4388 i386_stap_adjust_register (struct gdbarch *gdbarch, struct stap_parse_info *p,
4389 const std::string &regname, int regnum)
4390 {
4391 static const std::unordered_set<std::string> reg_assoc
4392 = { "ax", "bx", "cx", "dx",
4393 "si", "di", "bp", "sp" };
4394
4395 /* If we are dealing with a register whose size is less than the size
4396 specified by the "[-]N@" prefix, and it is one of the registers that
4397 we know has an extended variant available, then use the extended
4398 version of the register instead. */
4399 if (register_size (gdbarch, regnum) < TYPE_LENGTH (p->arg_type)
4400 && reg_assoc.find (regname) != reg_assoc.end ())
4401 return "e" + regname;
4402
4403 /* Otherwise, just use the requested register. */
4404 return regname;
4405 }
4406
4407 \f
4408
4409 /* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4410 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4411
4412 static const char *
4413 i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4414 {
4415 return "(x86_64|i.86)";
4416 }
4417
4418 \f
4419
4420 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
4421
4422 static bool
4423 i386_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
4424 {
4425 return x86_in_indirect_branch_thunk (pc, i386_register_names,
4426 I386_EAX_REGNUM, I386_EIP_REGNUM);
4427 }
4428
4429 /* Generic ELF. */
4430
4431 void
4432 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4433 {
4434 static const char *const stap_integer_prefixes[] = { "$", NULL };
4435 static const char *const stap_register_prefixes[] = { "%", NULL };
4436 static const char *const stap_register_indirection_prefixes[] = { "(",
4437 NULL };
4438 static const char *const stap_register_indirection_suffixes[] = { ")",
4439 NULL };
4440
4441 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4442 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4443
4444 /* Registering SystemTap handlers. */
4445 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4446 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4447 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4448 stap_register_indirection_prefixes);
4449 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4450 stap_register_indirection_suffixes);
4451 set_gdbarch_stap_is_single_operand (gdbarch,
4452 i386_stap_is_single_operand);
4453 set_gdbarch_stap_parse_special_token (gdbarch,
4454 i386_stap_parse_special_token);
4455 set_gdbarch_stap_adjust_register (gdbarch,
4456 i386_stap_adjust_register);
4457
4458 set_gdbarch_in_indirect_branch_thunk (gdbarch,
4459 i386_in_indirect_branch_thunk);
4460 }
4461
4462 /* System V Release 4 (SVR4). */
4463
4464 void
4465 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4466 {
4467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4468
4469 /* System V Release 4 uses ELF. */
4470 i386_elf_init_abi (info, gdbarch);
4471
4472 /* System V Release 4 has shared libraries. */
4473 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4474
4475 tdep->sigtramp_p = i386_svr4_sigtramp_p;
4476 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
4477 tdep->sc_pc_offset = 36 + 14 * 4;
4478 tdep->sc_sp_offset = 36 + 17 * 4;
4479
4480 tdep->jb_pc_offset = 20;
4481 }
4482
4483 \f
4484
4485 /* i386 register groups. In addition to the normal groups, add "mmx"
4486 and "sse". */
4487
4488 static struct reggroup *i386_sse_reggroup;
4489 static struct reggroup *i386_mmx_reggroup;
4490
4491 static void
4492 i386_init_reggroups (void)
4493 {
4494 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4495 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4496 }
4497
4498 static void
4499 i386_add_reggroups (struct gdbarch *gdbarch)
4500 {
4501 reggroup_add (gdbarch, i386_sse_reggroup);
4502 reggroup_add (gdbarch, i386_mmx_reggroup);
4503 reggroup_add (gdbarch, general_reggroup);
4504 reggroup_add (gdbarch, float_reggroup);
4505 reggroup_add (gdbarch, all_reggroup);
4506 reggroup_add (gdbarch, save_reggroup);
4507 reggroup_add (gdbarch, restore_reggroup);
4508 reggroup_add (gdbarch, vector_reggroup);
4509 reggroup_add (gdbarch, system_reggroup);
4510 }
4511
4512 int
4513 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4514 struct reggroup *group)
4515 {
4516 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4517 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4518 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4519 bndr_regnum_p, bnd_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4520 mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4521 avx512_p, avx_p, sse_p, pkru_regnum_p;
4522
4523 /* Don't include pseudo registers, except for MMX, in any register
4524 groups. */
4525 if (i386_byte_regnum_p (gdbarch, regnum))
4526 return 0;
4527
4528 if (i386_word_regnum_p (gdbarch, regnum))
4529 return 0;
4530
4531 if (i386_dword_regnum_p (gdbarch, regnum))
4532 return 0;
4533
4534 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4535 if (group == i386_mmx_reggroup)
4536 return mmx_regnum_p;
4537
4538 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
4539 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4540 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
4541 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4542 if (group == i386_sse_reggroup)
4543 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
4544
4545 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4546 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4547 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4548
4549 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4550 == X86_XSTATE_AVX_AVX512_MASK);
4551 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4552 == X86_XSTATE_AVX_MASK) && !avx512_p;
4553 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4554 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4555
4556 if (group == vector_reggroup)
4557 return (mmx_regnum_p
4558 || (zmm_regnum_p && avx512_p)
4559 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4560 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4561 || mxcsr_regnum_p);
4562
4563 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4564 || i386_fpc_regnum_p (gdbarch, regnum));
4565 if (group == float_reggroup)
4566 return fp_regnum_p;
4567
4568 /* For "info reg all", don't include upper YMM registers nor XMM
4569 registers when AVX is supported. */
4570 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4571 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4572 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
4573 if (group == all_reggroup
4574 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4575 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4576 || ymmh_regnum_p
4577 || ymmh_avx512_regnum_p
4578 || zmmh_regnum_p))
4579 return 0;
4580
4581 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4582 if (group == all_reggroup
4583 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4584 return bnd_regnum_p;
4585
4586 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4587 if (group == all_reggroup
4588 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4589 return 0;
4590
4591 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4592 if (group == all_reggroup
4593 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
4594 return mpx_ctrl_regnum_p;
4595
4596 if (group == general_reggroup)
4597 return (!fp_regnum_p
4598 && !mmx_regnum_p
4599 && !mxcsr_regnum_p
4600 && !xmm_regnum_p
4601 && !xmm_avx512_regnum_p
4602 && !ymm_regnum_p
4603 && !ymmh_regnum_p
4604 && !ymm_avx512_regnum_p
4605 && !ymmh_avx512_regnum_p
4606 && !bndr_regnum_p
4607 && !bnd_regnum_p
4608 && !mpx_ctrl_regnum_p
4609 && !zmm_regnum_p
4610 && !zmmh_regnum_p
4611 && !pkru_regnum_p);
4612
4613 return default_register_reggroup_p (gdbarch, regnum, group);
4614 }
4615 \f
4616
4617 /* Get the ARGIth function argument for the current function. */
4618
4619 static CORE_ADDR
4620 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4621 struct type *type)
4622 {
4623 struct gdbarch *gdbarch = get_frame_arch (frame);
4624 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4625 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4626 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4627 }
4628
4629 #define PREFIX_REPZ 0x01
4630 #define PREFIX_REPNZ 0x02
4631 #define PREFIX_LOCK 0x04
4632 #define PREFIX_DATA 0x08
4633 #define PREFIX_ADDR 0x10
4634
4635 /* operand size */
4636 enum
4637 {
4638 OT_BYTE = 0,
4639 OT_WORD,
4640 OT_LONG,
4641 OT_QUAD,
4642 OT_DQUAD,
4643 };
4644
4645 /* i386 arith/logic operations */
4646 enum
4647 {
4648 OP_ADDL,
4649 OP_ORL,
4650 OP_ADCL,
4651 OP_SBBL,
4652 OP_ANDL,
4653 OP_SUBL,
4654 OP_XORL,
4655 OP_CMPL,
4656 };
4657
4658 struct i386_record_s
4659 {
4660 struct gdbarch *gdbarch;
4661 struct regcache *regcache;
4662 CORE_ADDR orig_addr;
4663 CORE_ADDR addr;
4664 int aflag;
4665 int dflag;
4666 int override;
4667 uint8_t modrm;
4668 uint8_t mod, reg, rm;
4669 int ot;
4670 uint8_t rex_x;
4671 uint8_t rex_b;
4672 int rip_offset;
4673 int popl_esp_hack;
4674 const int *regmap;
4675 };
4676
4677 /* Parse the "modrm" part of the memory address irp->addr points at.
4678 Returns -1 if something goes wrong, 0 otherwise. */
4679
4680 static int
4681 i386_record_modrm (struct i386_record_s *irp)
4682 {
4683 struct gdbarch *gdbarch = irp->gdbarch;
4684
4685 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4686 return -1;
4687
4688 irp->addr++;
4689 irp->mod = (irp->modrm >> 6) & 3;
4690 irp->reg = (irp->modrm >> 3) & 7;
4691 irp->rm = irp->modrm & 7;
4692
4693 return 0;
4694 }
4695
4696 /* Extract the memory address that the current instruction writes to,
4697 and return it in *ADDR. Return -1 if something goes wrong. */
4698
4699 static int
4700 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4701 {
4702 struct gdbarch *gdbarch = irp->gdbarch;
4703 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4704 gdb_byte buf[4];
4705 ULONGEST offset64;
4706
4707 *addr = 0;
4708 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
4709 {
4710 /* 32/64 bits */
4711 int havesib = 0;
4712 uint8_t scale = 0;
4713 uint8_t byte;
4714 uint8_t index = 0;
4715 uint8_t base = irp->rm;
4716
4717 if (base == 4)
4718 {
4719 havesib = 1;
4720 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4721 return -1;
4722 irp->addr++;
4723 scale = (byte >> 6) & 3;
4724 index = ((byte >> 3) & 7) | irp->rex_x;
4725 base = (byte & 7);
4726 }
4727 base |= irp->rex_b;
4728
4729 switch (irp->mod)
4730 {
4731 case 0:
4732 if ((base & 7) == 5)
4733 {
4734 base = 0xff;
4735 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4736 return -1;
4737 irp->addr += 4;
4738 *addr = extract_signed_integer (buf, 4, byte_order);
4739 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4740 *addr += irp->addr + irp->rip_offset;
4741 }
4742 break;
4743 case 1:
4744 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4745 return -1;
4746 irp->addr++;
4747 *addr = (int8_t) buf[0];
4748 break;
4749 case 2:
4750 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4751 return -1;
4752 *addr = extract_signed_integer (buf, 4, byte_order);
4753 irp->addr += 4;
4754 break;
4755 }
4756
4757 offset64 = 0;
4758 if (base != 0xff)
4759 {
4760 if (base == 4 && irp->popl_esp_hack)
4761 *addr += irp->popl_esp_hack;
4762 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4763 &offset64);
4764 }
4765 if (irp->aflag == 2)
4766 {
4767 *addr += offset64;
4768 }
4769 else
4770 *addr = (uint32_t) (offset64 + *addr);
4771
4772 if (havesib && (index != 4 || scale != 0))
4773 {
4774 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4775 &offset64);
4776 if (irp->aflag == 2)
4777 *addr += offset64 << scale;
4778 else
4779 *addr = (uint32_t) (*addr + (offset64 << scale));
4780 }
4781
4782 if (!irp->aflag)
4783 {
4784 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4785 address from 32-bit to 64-bit. */
4786 *addr = (uint32_t) *addr;
4787 }
4788 }
4789 else
4790 {
4791 /* 16 bits */
4792 switch (irp->mod)
4793 {
4794 case 0:
4795 if (irp->rm == 6)
4796 {
4797 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4798 return -1;
4799 irp->addr += 2;
4800 *addr = extract_signed_integer (buf, 2, byte_order);
4801 irp->rm = 0;
4802 goto no_rm;
4803 }
4804 break;
4805 case 1:
4806 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4807 return -1;
4808 irp->addr++;
4809 *addr = (int8_t) buf[0];
4810 break;
4811 case 2:
4812 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4813 return -1;
4814 irp->addr += 2;
4815 *addr = extract_signed_integer (buf, 2, byte_order);
4816 break;
4817 }
4818
4819 switch (irp->rm)
4820 {
4821 case 0:
4822 regcache_raw_read_unsigned (irp->regcache,
4823 irp->regmap[X86_RECORD_REBX_REGNUM],
4824 &offset64);
4825 *addr = (uint32_t) (*addr + offset64);
4826 regcache_raw_read_unsigned (irp->regcache,
4827 irp->regmap[X86_RECORD_RESI_REGNUM],
4828 &offset64);
4829 *addr = (uint32_t) (*addr + offset64);
4830 break;
4831 case 1:
4832 regcache_raw_read_unsigned (irp->regcache,
4833 irp->regmap[X86_RECORD_REBX_REGNUM],
4834 &offset64);
4835 *addr = (uint32_t) (*addr + offset64);
4836 regcache_raw_read_unsigned (irp->regcache,
4837 irp->regmap[X86_RECORD_REDI_REGNUM],
4838 &offset64);
4839 *addr = (uint32_t) (*addr + offset64);
4840 break;
4841 case 2:
4842 regcache_raw_read_unsigned (irp->regcache,
4843 irp->regmap[X86_RECORD_REBP_REGNUM],
4844 &offset64);
4845 *addr = (uint32_t) (*addr + offset64);
4846 regcache_raw_read_unsigned (irp->regcache,
4847 irp->regmap[X86_RECORD_RESI_REGNUM],
4848 &offset64);
4849 *addr = (uint32_t) (*addr + offset64);
4850 break;
4851 case 3:
4852 regcache_raw_read_unsigned (irp->regcache,
4853 irp->regmap[X86_RECORD_REBP_REGNUM],
4854 &offset64);
4855 *addr = (uint32_t) (*addr + offset64);
4856 regcache_raw_read_unsigned (irp->regcache,
4857 irp->regmap[X86_RECORD_REDI_REGNUM],
4858 &offset64);
4859 *addr = (uint32_t) (*addr + offset64);
4860 break;
4861 case 4:
4862 regcache_raw_read_unsigned (irp->regcache,
4863 irp->regmap[X86_RECORD_RESI_REGNUM],
4864 &offset64);
4865 *addr = (uint32_t) (*addr + offset64);
4866 break;
4867 case 5:
4868 regcache_raw_read_unsigned (irp->regcache,
4869 irp->regmap[X86_RECORD_REDI_REGNUM],
4870 &offset64);
4871 *addr = (uint32_t) (*addr + offset64);
4872 break;
4873 case 6:
4874 regcache_raw_read_unsigned (irp->regcache,
4875 irp->regmap[X86_RECORD_REBP_REGNUM],
4876 &offset64);
4877 *addr = (uint32_t) (*addr + offset64);
4878 break;
4879 case 7:
4880 regcache_raw_read_unsigned (irp->regcache,
4881 irp->regmap[X86_RECORD_REBX_REGNUM],
4882 &offset64);
4883 *addr = (uint32_t) (*addr + offset64);
4884 break;
4885 }
4886 *addr &= 0xffff;
4887 }
4888
4889 no_rm:
4890 return 0;
4891 }
4892
4893 /* Record the address and contents of the memory that will be changed
4894 by the current instruction. Return -1 if something goes wrong, 0
4895 otherwise. */
4896
4897 static int
4898 i386_record_lea_modrm (struct i386_record_s *irp)
4899 {
4900 struct gdbarch *gdbarch = irp->gdbarch;
4901 uint64_t addr;
4902
4903 if (irp->override >= 0)
4904 {
4905 if (record_full_memory_query)
4906 {
4907 if (yquery (_("\
4908 Process record ignores the memory change of instruction at address %s\n\
4909 because it can't get the value of the segment register.\n\
4910 Do you want to stop the program?"),
4911 paddress (gdbarch, irp->orig_addr)))
4912 return -1;
4913 }
4914
4915 return 0;
4916 }
4917
4918 if (i386_record_lea_modrm_addr (irp, &addr))
4919 return -1;
4920
4921 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4922 return -1;
4923
4924 return 0;
4925 }
4926
4927 /* Record the effects of a push operation. Return -1 if something
4928 goes wrong, 0 otherwise. */
4929
4930 static int
4931 i386_record_push (struct i386_record_s *irp, int size)
4932 {
4933 ULONGEST addr;
4934
4935 if (record_full_arch_list_add_reg (irp->regcache,
4936 irp->regmap[X86_RECORD_RESP_REGNUM]))
4937 return -1;
4938 regcache_raw_read_unsigned (irp->regcache,
4939 irp->regmap[X86_RECORD_RESP_REGNUM],
4940 &addr);
4941 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4942 return -1;
4943
4944 return 0;
4945 }
4946
4947
4948 /* Defines contents to record. */
4949 #define I386_SAVE_FPU_REGS 0xfffd
4950 #define I386_SAVE_FPU_ENV 0xfffe
4951 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4952
4953 /* Record the values of the floating point registers which will be
4954 changed by the current instruction. Returns -1 if something is
4955 wrong, 0 otherwise. */
4956
4957 static int i386_record_floats (struct gdbarch *gdbarch,
4958 struct i386_record_s *ir,
4959 uint32_t iregnum)
4960 {
4961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4962 int i;
4963
4964 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4965 happen. Currently we store st0-st7 registers, but we need not store all
4966 registers all the time, in future we use ftag register and record only
4967 those who are not marked as an empty. */
4968
4969 if (I386_SAVE_FPU_REGS == iregnum)
4970 {
4971 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4972 {
4973 if (record_full_arch_list_add_reg (ir->regcache, i))
4974 return -1;
4975 }
4976 }
4977 else if (I386_SAVE_FPU_ENV == iregnum)
4978 {
4979 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4980 {
4981 if (record_full_arch_list_add_reg (ir->regcache, i))
4982 return -1;
4983 }
4984 }
4985 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4986 {
4987 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4988 if (record_full_arch_list_add_reg (ir->regcache, i))
4989 return -1;
4990 }
4991 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4992 (iregnum <= I387_FOP_REGNUM (tdep)))
4993 {
4994 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4995 return -1;
4996 }
4997 else
4998 {
4999 /* Parameter error. */
5000 return -1;
5001 }
5002 if(I386_SAVE_FPU_ENV != iregnum)
5003 {
5004 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5005 {
5006 if (record_full_arch_list_add_reg (ir->regcache, i))
5007 return -1;
5008 }
5009 }
5010 return 0;
5011 }
5012
5013 /* Parse the current instruction, and record the values of the
5014 registers and memory that will be changed by the current
5015 instruction. Returns -1 if something goes wrong, 0 otherwise. */
5016
5017 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5018 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
5019
5020 int
5021 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5022 CORE_ADDR input_addr)
5023 {
5024 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5025 int prefixes = 0;
5026 int regnum = 0;
5027 uint32_t opcode;
5028 uint8_t opcode8;
5029 ULONGEST addr;
5030 gdb_byte buf[I386_MAX_REGISTER_SIZE];
5031 struct i386_record_s ir;
5032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5033 uint8_t rex_w = -1;
5034 uint8_t rex_r = 0;
5035
5036 memset (&ir, 0, sizeof (struct i386_record_s));
5037 ir.regcache = regcache;
5038 ir.addr = input_addr;
5039 ir.orig_addr = input_addr;
5040 ir.aflag = 1;
5041 ir.dflag = 1;
5042 ir.override = -1;
5043 ir.popl_esp_hack = 0;
5044 ir.regmap = tdep->record_regmap;
5045 ir.gdbarch = gdbarch;
5046
5047 if (record_debug > 1)
5048 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5049 "addr = %s\n",
5050 paddress (gdbarch, ir.addr));
5051
5052 /* prefixes */
5053 while (1)
5054 {
5055 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5056 return -1;
5057 ir.addr++;
5058 switch (opcode8) /* Instruction prefixes */
5059 {
5060 case REPE_PREFIX_OPCODE:
5061 prefixes |= PREFIX_REPZ;
5062 break;
5063 case REPNE_PREFIX_OPCODE:
5064 prefixes |= PREFIX_REPNZ;
5065 break;
5066 case LOCK_PREFIX_OPCODE:
5067 prefixes |= PREFIX_LOCK;
5068 break;
5069 case CS_PREFIX_OPCODE:
5070 ir.override = X86_RECORD_CS_REGNUM;
5071 break;
5072 case SS_PREFIX_OPCODE:
5073 ir.override = X86_RECORD_SS_REGNUM;
5074 break;
5075 case DS_PREFIX_OPCODE:
5076 ir.override = X86_RECORD_DS_REGNUM;
5077 break;
5078 case ES_PREFIX_OPCODE:
5079 ir.override = X86_RECORD_ES_REGNUM;
5080 break;
5081 case FS_PREFIX_OPCODE:
5082 ir.override = X86_RECORD_FS_REGNUM;
5083 break;
5084 case GS_PREFIX_OPCODE:
5085 ir.override = X86_RECORD_GS_REGNUM;
5086 break;
5087 case DATA_PREFIX_OPCODE:
5088 prefixes |= PREFIX_DATA;
5089 break;
5090 case ADDR_PREFIX_OPCODE:
5091 prefixes |= PREFIX_ADDR;
5092 break;
5093 case 0x40: /* i386 inc %eax */
5094 case 0x41: /* i386 inc %ecx */
5095 case 0x42: /* i386 inc %edx */
5096 case 0x43: /* i386 inc %ebx */
5097 case 0x44: /* i386 inc %esp */
5098 case 0x45: /* i386 inc %ebp */
5099 case 0x46: /* i386 inc %esi */
5100 case 0x47: /* i386 inc %edi */
5101 case 0x48: /* i386 dec %eax */
5102 case 0x49: /* i386 dec %ecx */
5103 case 0x4a: /* i386 dec %edx */
5104 case 0x4b: /* i386 dec %ebx */
5105 case 0x4c: /* i386 dec %esp */
5106 case 0x4d: /* i386 dec %ebp */
5107 case 0x4e: /* i386 dec %esi */
5108 case 0x4f: /* i386 dec %edi */
5109 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
5110 {
5111 /* REX */
5112 rex_w = (opcode8 >> 3) & 1;
5113 rex_r = (opcode8 & 0x4) << 1;
5114 ir.rex_x = (opcode8 & 0x2) << 2;
5115 ir.rex_b = (opcode8 & 0x1) << 3;
5116 }
5117 else /* 32 bit target */
5118 goto out_prefixes;
5119 break;
5120 default:
5121 goto out_prefixes;
5122 break;
5123 }
5124 }
5125 out_prefixes:
5126 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5127 {
5128 ir.dflag = 2;
5129 }
5130 else
5131 {
5132 if (prefixes & PREFIX_DATA)
5133 ir.dflag ^= 1;
5134 }
5135 if (prefixes & PREFIX_ADDR)
5136 ir.aflag ^= 1;
5137 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5138 ir.aflag = 2;
5139
5140 /* Now check op code. */
5141 opcode = (uint32_t) opcode8;
5142 reswitch:
5143 switch (opcode)
5144 {
5145 case 0x0f:
5146 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5147 return -1;
5148 ir.addr++;
5149 opcode = (uint32_t) opcode8 | 0x0f00;
5150 goto reswitch;
5151 break;
5152
5153 case 0x00: /* arith & logic */
5154 case 0x01:
5155 case 0x02:
5156 case 0x03:
5157 case 0x04:
5158 case 0x05:
5159 case 0x08:
5160 case 0x09:
5161 case 0x0a:
5162 case 0x0b:
5163 case 0x0c:
5164 case 0x0d:
5165 case 0x10:
5166 case 0x11:
5167 case 0x12:
5168 case 0x13:
5169 case 0x14:
5170 case 0x15:
5171 case 0x18:
5172 case 0x19:
5173 case 0x1a:
5174 case 0x1b:
5175 case 0x1c:
5176 case 0x1d:
5177 case 0x20:
5178 case 0x21:
5179 case 0x22:
5180 case 0x23:
5181 case 0x24:
5182 case 0x25:
5183 case 0x28:
5184 case 0x29:
5185 case 0x2a:
5186 case 0x2b:
5187 case 0x2c:
5188 case 0x2d:
5189 case 0x30:
5190 case 0x31:
5191 case 0x32:
5192 case 0x33:
5193 case 0x34:
5194 case 0x35:
5195 case 0x38:
5196 case 0x39:
5197 case 0x3a:
5198 case 0x3b:
5199 case 0x3c:
5200 case 0x3d:
5201 if (((opcode >> 3) & 7) != OP_CMPL)
5202 {
5203 if ((opcode & 1) == 0)
5204 ir.ot = OT_BYTE;
5205 else
5206 ir.ot = ir.dflag + OT_WORD;
5207
5208 switch ((opcode >> 1) & 3)
5209 {
5210 case 0: /* OP Ev, Gv */
5211 if (i386_record_modrm (&ir))
5212 return -1;
5213 if (ir.mod != 3)
5214 {
5215 if (i386_record_lea_modrm (&ir))
5216 return -1;
5217 }
5218 else
5219 {
5220 ir.rm |= ir.rex_b;
5221 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5222 ir.rm &= 0x3;
5223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5224 }
5225 break;
5226 case 1: /* OP Gv, Ev */
5227 if (i386_record_modrm (&ir))
5228 return -1;
5229 ir.reg |= rex_r;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5231 ir.reg &= 0x3;
5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5233 break;
5234 case 2: /* OP A, Iv */
5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5236 break;
5237 }
5238 }
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5240 break;
5241
5242 case 0x80: /* GRP1 */
5243 case 0x81:
5244 case 0x82:
5245 case 0x83:
5246 if (i386_record_modrm (&ir))
5247 return -1;
5248
5249 if (ir.reg != OP_CMPL)
5250 {
5251 if ((opcode & 1) == 0)
5252 ir.ot = OT_BYTE;
5253 else
5254 ir.ot = ir.dflag + OT_WORD;
5255
5256 if (ir.mod != 3)
5257 {
5258 if (opcode == 0x83)
5259 ir.rip_offset = 1;
5260 else
5261 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5262 if (i386_record_lea_modrm (&ir))
5263 return -1;
5264 }
5265 else
5266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5267 }
5268 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5269 break;
5270
5271 case 0x40: /* inc */
5272 case 0x41:
5273 case 0x42:
5274 case 0x43:
5275 case 0x44:
5276 case 0x45:
5277 case 0x46:
5278 case 0x47:
5279
5280 case 0x48: /* dec */
5281 case 0x49:
5282 case 0x4a:
5283 case 0x4b:
5284 case 0x4c:
5285 case 0x4d:
5286 case 0x4e:
5287 case 0x4f:
5288
5289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5291 break;
5292
5293 case 0xf6: /* GRP3 */
5294 case 0xf7:
5295 if ((opcode & 1) == 0)
5296 ir.ot = OT_BYTE;
5297 else
5298 ir.ot = ir.dflag + OT_WORD;
5299 if (i386_record_modrm (&ir))
5300 return -1;
5301
5302 if (ir.mod != 3 && ir.reg == 0)
5303 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5304
5305 switch (ir.reg)
5306 {
5307 case 0: /* test */
5308 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5309 break;
5310 case 2: /* not */
5311 case 3: /* neg */
5312 if (ir.mod != 3)
5313 {
5314 if (i386_record_lea_modrm (&ir))
5315 return -1;
5316 }
5317 else
5318 {
5319 ir.rm |= ir.rex_b;
5320 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5321 ir.rm &= 0x3;
5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5323 }
5324 if (ir.reg == 3) /* neg */
5325 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5326 break;
5327 case 4: /* mul */
5328 case 5: /* imul */
5329 case 6: /* div */
5330 case 7: /* idiv */
5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5332 if (ir.ot != OT_BYTE)
5333 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336 default:
5337 ir.addr -= 2;
5338 opcode = opcode << 8 | ir.modrm;
5339 goto no_support;
5340 break;
5341 }
5342 break;
5343
5344 case 0xfe: /* GRP4 */
5345 case 0xff: /* GRP5 */
5346 if (i386_record_modrm (&ir))
5347 return -1;
5348 if (ir.reg >= 2 && opcode == 0xfe)
5349 {
5350 ir.addr -= 2;
5351 opcode = opcode << 8 | ir.modrm;
5352 goto no_support;
5353 }
5354 switch (ir.reg)
5355 {
5356 case 0: /* inc */
5357 case 1: /* dec */
5358 if ((opcode & 1) == 0)
5359 ir.ot = OT_BYTE;
5360 else
5361 ir.ot = ir.dflag + OT_WORD;
5362 if (ir.mod != 3)
5363 {
5364 if (i386_record_lea_modrm (&ir))
5365 return -1;
5366 }
5367 else
5368 {
5369 ir.rm |= ir.rex_b;
5370 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5371 ir.rm &= 0x3;
5372 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5373 }
5374 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5375 break;
5376 case 2: /* call */
5377 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5378 ir.dflag = 2;
5379 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5380 return -1;
5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5382 break;
5383 case 3: /* lcall */
5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5385 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5386 return -1;
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5388 break;
5389 case 4: /* jmp */
5390 case 5: /* ljmp */
5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5392 break;
5393 case 6: /* push */
5394 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5395 ir.dflag = 2;
5396 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5397 return -1;
5398 break;
5399 default:
5400 ir.addr -= 2;
5401 opcode = opcode << 8 | ir.modrm;
5402 goto no_support;
5403 break;
5404 }
5405 break;
5406
5407 case 0x84: /* test */
5408 case 0x85:
5409 case 0xa8:
5410 case 0xa9:
5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5412 break;
5413
5414 case 0x98: /* CWDE/CBW */
5415 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5416 break;
5417
5418 case 0x99: /* CDQ/CWD */
5419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5421 break;
5422
5423 case 0x0faf: /* imul */
5424 case 0x69:
5425 case 0x6b:
5426 ir.ot = ir.dflag + OT_WORD;
5427 if (i386_record_modrm (&ir))
5428 return -1;
5429 if (opcode == 0x69)
5430 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5431 else if (opcode == 0x6b)
5432 ir.rip_offset = 1;
5433 ir.reg |= rex_r;
5434 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5435 ir.reg &= 0x3;
5436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5438 break;
5439
5440 case 0x0fc0: /* xadd */
5441 case 0x0fc1:
5442 if ((opcode & 1) == 0)
5443 ir.ot = OT_BYTE;
5444 else
5445 ir.ot = ir.dflag + OT_WORD;
5446 if (i386_record_modrm (&ir))
5447 return -1;
5448 ir.reg |= rex_r;
5449 if (ir.mod == 3)
5450 {
5451 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5452 ir.reg &= 0x3;
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5454 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5455 ir.rm &= 0x3;
5456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5457 }
5458 else
5459 {
5460 if (i386_record_lea_modrm (&ir))
5461 return -1;
5462 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5463 ir.reg &= 0x3;
5464 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5465 }
5466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5467 break;
5468
5469 case 0x0fb0: /* cmpxchg */
5470 case 0x0fb1:
5471 if ((opcode & 1) == 0)
5472 ir.ot = OT_BYTE;
5473 else
5474 ir.ot = ir.dflag + OT_WORD;
5475 if (i386_record_modrm (&ir))
5476 return -1;
5477 if (ir.mod == 3)
5478 {
5479 ir.reg |= rex_r;
5480 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5481 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5482 ir.reg &= 0x3;
5483 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5484 }
5485 else
5486 {
5487 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5488 if (i386_record_lea_modrm (&ir))
5489 return -1;
5490 }
5491 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5492 break;
5493
5494 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
5495 if (i386_record_modrm (&ir))
5496 return -1;
5497 if (ir.mod == 3)
5498 {
5499 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5500 an extended opcode. rdrand has bits 110 (/6) and rdseed
5501 has bits 111 (/7). */
5502 if (ir.reg == 6 || ir.reg == 7)
5503 {
5504 /* The storage register is described by the 3 R/M bits, but the
5505 REX.B prefix may be used to give access to registers
5506 R8~R15. In this case ir.rex_b + R/M will give us the register
5507 in the range R8~R15.
5508
5509 REX.W may also be used to access 64-bit registers, but we
5510 already record entire registers and not just partial bits
5511 of them. */
5512 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5513 /* These instructions also set conditional bits. */
5514 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5515 break;
5516 }
5517 else
5518 {
5519 /* We don't handle this particular instruction yet. */
5520 ir.addr -= 2;
5521 opcode = opcode << 8 | ir.modrm;
5522 goto no_support;
5523 }
5524 }
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5527 if (i386_record_lea_modrm (&ir))
5528 return -1;
5529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5530 break;
5531
5532 case 0x50: /* push */
5533 case 0x51:
5534 case 0x52:
5535 case 0x53:
5536 case 0x54:
5537 case 0x55:
5538 case 0x56:
5539 case 0x57:
5540 case 0x68:
5541 case 0x6a:
5542 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5543 ir.dflag = 2;
5544 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5545 return -1;
5546 break;
5547
5548 case 0x06: /* push es */
5549 case 0x0e: /* push cs */
5550 case 0x16: /* push ss */
5551 case 0x1e: /* push ds */
5552 if (ir.regmap[X86_RECORD_R8_REGNUM])
5553 {
5554 ir.addr -= 1;
5555 goto no_support;
5556 }
5557 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5558 return -1;
5559 break;
5560
5561 case 0x0fa0: /* push fs */
5562 case 0x0fa8: /* push gs */
5563 if (ir.regmap[X86_RECORD_R8_REGNUM])
5564 {
5565 ir.addr -= 2;
5566 goto no_support;
5567 }
5568 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5569 return -1;
5570 break;
5571
5572 case 0x60: /* pusha */
5573 if (ir.regmap[X86_RECORD_R8_REGNUM])
5574 {
5575 ir.addr -= 1;
5576 goto no_support;
5577 }
5578 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5579 return -1;
5580 break;
5581
5582 case 0x58: /* pop */
5583 case 0x59:
5584 case 0x5a:
5585 case 0x5b:
5586 case 0x5c:
5587 case 0x5d:
5588 case 0x5e:
5589 case 0x5f:
5590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5591 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5592 break;
5593
5594 case 0x61: /* popa */
5595 if (ir.regmap[X86_RECORD_R8_REGNUM])
5596 {
5597 ir.addr -= 1;
5598 goto no_support;
5599 }
5600 for (regnum = X86_RECORD_REAX_REGNUM;
5601 regnum <= X86_RECORD_REDI_REGNUM;
5602 regnum++)
5603 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5604 break;
5605
5606 case 0x8f: /* pop */
5607 if (ir.regmap[X86_RECORD_R8_REGNUM])
5608 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5609 else
5610 ir.ot = ir.dflag + OT_WORD;
5611 if (i386_record_modrm (&ir))
5612 return -1;
5613 if (ir.mod == 3)
5614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5615 else
5616 {
5617 ir.popl_esp_hack = 1 << ir.ot;
5618 if (i386_record_lea_modrm (&ir))
5619 return -1;
5620 }
5621 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5622 break;
5623
5624 case 0xc8: /* enter */
5625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5626 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5627 ir.dflag = 2;
5628 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5629 return -1;
5630 break;
5631
5632 case 0xc9: /* leave */
5633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5635 break;
5636
5637 case 0x07: /* pop es */
5638 if (ir.regmap[X86_RECORD_R8_REGNUM])
5639 {
5640 ir.addr -= 1;
5641 goto no_support;
5642 }
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5645 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5646 break;
5647
5648 case 0x17: /* pop ss */
5649 if (ir.regmap[X86_RECORD_R8_REGNUM])
5650 {
5651 ir.addr -= 1;
5652 goto no_support;
5653 }
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5655 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5656 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5657 break;
5658
5659 case 0x1f: /* pop ds */
5660 if (ir.regmap[X86_RECORD_R8_REGNUM])
5661 {
5662 ir.addr -= 1;
5663 goto no_support;
5664 }
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5666 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5667 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5668 break;
5669
5670 case 0x0fa1: /* pop fs */
5671 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5672 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5673 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5674 break;
5675
5676 case 0x0fa9: /* pop gs */
5677 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5680 break;
5681
5682 case 0x88: /* mov */
5683 case 0x89:
5684 case 0xc6:
5685 case 0xc7:
5686 if ((opcode & 1) == 0)
5687 ir.ot = OT_BYTE;
5688 else
5689 ir.ot = ir.dflag + OT_WORD;
5690
5691 if (i386_record_modrm (&ir))
5692 return -1;
5693
5694 if (ir.mod != 3)
5695 {
5696 if (opcode == 0xc6 || opcode == 0xc7)
5697 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5698 if (i386_record_lea_modrm (&ir))
5699 return -1;
5700 }
5701 else
5702 {
5703 if (opcode == 0xc6 || opcode == 0xc7)
5704 ir.rm |= ir.rex_b;
5705 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5706 ir.rm &= 0x3;
5707 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5708 }
5709 break;
5710
5711 case 0x8a: /* mov */
5712 case 0x8b:
5713 if ((opcode & 1) == 0)
5714 ir.ot = OT_BYTE;
5715 else
5716 ir.ot = ir.dflag + OT_WORD;
5717 if (i386_record_modrm (&ir))
5718 return -1;
5719 ir.reg |= rex_r;
5720 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5721 ir.reg &= 0x3;
5722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5723 break;
5724
5725 case 0x8c: /* mov seg */
5726 if (i386_record_modrm (&ir))
5727 return -1;
5728 if (ir.reg > 5)
5729 {
5730 ir.addr -= 2;
5731 opcode = opcode << 8 | ir.modrm;
5732 goto no_support;
5733 }
5734
5735 if (ir.mod == 3)
5736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5737 else
5738 {
5739 ir.ot = OT_WORD;
5740 if (i386_record_lea_modrm (&ir))
5741 return -1;
5742 }
5743 break;
5744
5745 case 0x8e: /* mov seg */
5746 if (i386_record_modrm (&ir))
5747 return -1;
5748 switch (ir.reg)
5749 {
5750 case 0:
5751 regnum = X86_RECORD_ES_REGNUM;
5752 break;
5753 case 2:
5754 regnum = X86_RECORD_SS_REGNUM;
5755 break;
5756 case 3:
5757 regnum = X86_RECORD_DS_REGNUM;
5758 break;
5759 case 4:
5760 regnum = X86_RECORD_FS_REGNUM;
5761 break;
5762 case 5:
5763 regnum = X86_RECORD_GS_REGNUM;
5764 break;
5765 default:
5766 ir.addr -= 2;
5767 opcode = opcode << 8 | ir.modrm;
5768 goto no_support;
5769 break;
5770 }
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5773 break;
5774
5775 case 0x0fb6: /* movzbS */
5776 case 0x0fb7: /* movzwS */
5777 case 0x0fbe: /* movsbS */
5778 case 0x0fbf: /* movswS */
5779 if (i386_record_modrm (&ir))
5780 return -1;
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5782 break;
5783
5784 case 0x8d: /* lea */
5785 if (i386_record_modrm (&ir))
5786 return -1;
5787 if (ir.mod == 3)
5788 {
5789 ir.addr -= 2;
5790 opcode = opcode << 8 | ir.modrm;
5791 goto no_support;
5792 }
5793 ir.ot = ir.dflag;
5794 ir.reg |= rex_r;
5795 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5796 ir.reg &= 0x3;
5797 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5798 break;
5799
5800 case 0xa0: /* mov EAX */
5801 case 0xa1:
5802
5803 case 0xd7: /* xlat */
5804 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5805 break;
5806
5807 case 0xa2: /* mov EAX */
5808 case 0xa3:
5809 if (ir.override >= 0)
5810 {
5811 if (record_full_memory_query)
5812 {
5813 if (yquery (_("\
5814 Process record ignores the memory change of instruction at address %s\n\
5815 because it can't get the value of the segment register.\n\
5816 Do you want to stop the program?"),
5817 paddress (gdbarch, ir.orig_addr)))
5818 return -1;
5819 }
5820 }
5821 else
5822 {
5823 if ((opcode & 1) == 0)
5824 ir.ot = OT_BYTE;
5825 else
5826 ir.ot = ir.dflag + OT_WORD;
5827 if (ir.aflag == 2)
5828 {
5829 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5830 return -1;
5831 ir.addr += 8;
5832 addr = extract_unsigned_integer (buf, 8, byte_order);
5833 }
5834 else if (ir.aflag)
5835 {
5836 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5837 return -1;
5838 ir.addr += 4;
5839 addr = extract_unsigned_integer (buf, 4, byte_order);
5840 }
5841 else
5842 {
5843 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5844 return -1;
5845 ir.addr += 2;
5846 addr = extract_unsigned_integer (buf, 2, byte_order);
5847 }
5848 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5849 return -1;
5850 }
5851 break;
5852
5853 case 0xb0: /* mov R, Ib */
5854 case 0xb1:
5855 case 0xb2:
5856 case 0xb3:
5857 case 0xb4:
5858 case 0xb5:
5859 case 0xb6:
5860 case 0xb7:
5861 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5862 ? ((opcode & 0x7) | ir.rex_b)
5863 : ((opcode & 0x7) & 0x3));
5864 break;
5865
5866 case 0xb8: /* mov R, Iv */
5867 case 0xb9:
5868 case 0xba:
5869 case 0xbb:
5870 case 0xbc:
5871 case 0xbd:
5872 case 0xbe:
5873 case 0xbf:
5874 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5875 break;
5876
5877 case 0x91: /* xchg R, EAX */
5878 case 0x92:
5879 case 0x93:
5880 case 0x94:
5881 case 0x95:
5882 case 0x96:
5883 case 0x97:
5884 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5885 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5886 break;
5887
5888 case 0x86: /* xchg Ev, Gv */
5889 case 0x87:
5890 if ((opcode & 1) == 0)
5891 ir.ot = OT_BYTE;
5892 else
5893 ir.ot = ir.dflag + OT_WORD;
5894 if (i386_record_modrm (&ir))
5895 return -1;
5896 if (ir.mod == 3)
5897 {
5898 ir.rm |= ir.rex_b;
5899 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5900 ir.rm &= 0x3;
5901 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5902 }
5903 else
5904 {
5905 if (i386_record_lea_modrm (&ir))
5906 return -1;
5907 }
5908 ir.reg |= rex_r;
5909 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5910 ir.reg &= 0x3;
5911 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5912 break;
5913
5914 case 0xc4: /* les Gv */
5915 case 0xc5: /* lds Gv */
5916 if (ir.regmap[X86_RECORD_R8_REGNUM])
5917 {
5918 ir.addr -= 1;
5919 goto no_support;
5920 }
5921 /* FALLTHROUGH */
5922 case 0x0fb2: /* lss Gv */
5923 case 0x0fb4: /* lfs Gv */
5924 case 0x0fb5: /* lgs Gv */
5925 if (i386_record_modrm (&ir))
5926 return -1;
5927 if (ir.mod == 3)
5928 {
5929 if (opcode > 0xff)
5930 ir.addr -= 3;
5931 else
5932 ir.addr -= 2;
5933 opcode = opcode << 8 | ir.modrm;
5934 goto no_support;
5935 }
5936 switch (opcode)
5937 {
5938 case 0xc4: /* les Gv */
5939 regnum = X86_RECORD_ES_REGNUM;
5940 break;
5941 case 0xc5: /* lds Gv */
5942 regnum = X86_RECORD_DS_REGNUM;
5943 break;
5944 case 0x0fb2: /* lss Gv */
5945 regnum = X86_RECORD_SS_REGNUM;
5946 break;
5947 case 0x0fb4: /* lfs Gv */
5948 regnum = X86_RECORD_FS_REGNUM;
5949 break;
5950 case 0x0fb5: /* lgs Gv */
5951 regnum = X86_RECORD_GS_REGNUM;
5952 break;
5953 }
5954 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5955 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5956 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5957 break;
5958
5959 case 0xc0: /* shifts */
5960 case 0xc1:
5961 case 0xd0:
5962 case 0xd1:
5963 case 0xd2:
5964 case 0xd3:
5965 if ((opcode & 1) == 0)
5966 ir.ot = OT_BYTE;
5967 else
5968 ir.ot = ir.dflag + OT_WORD;
5969 if (i386_record_modrm (&ir))
5970 return -1;
5971 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5972 {
5973 if (i386_record_lea_modrm (&ir))
5974 return -1;
5975 }
5976 else
5977 {
5978 ir.rm |= ir.rex_b;
5979 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5980 ir.rm &= 0x3;
5981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5982 }
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5984 break;
5985
5986 case 0x0fa4:
5987 case 0x0fa5:
5988 case 0x0fac:
5989 case 0x0fad:
5990 if (i386_record_modrm (&ir))
5991 return -1;
5992 if (ir.mod == 3)
5993 {
5994 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5995 return -1;
5996 }
5997 else
5998 {
5999 if (i386_record_lea_modrm (&ir))
6000 return -1;
6001 }
6002 break;
6003
6004 case 0xd8: /* Floats. */
6005 case 0xd9:
6006 case 0xda:
6007 case 0xdb:
6008 case 0xdc:
6009 case 0xdd:
6010 case 0xde:
6011 case 0xdf:
6012 if (i386_record_modrm (&ir))
6013 return -1;
6014 ir.reg |= ((opcode & 7) << 3);
6015 if (ir.mod != 3)
6016 {
6017 /* Memory. */
6018 uint64_t addr64;
6019
6020 if (i386_record_lea_modrm_addr (&ir, &addr64))
6021 return -1;
6022 switch (ir.reg)
6023 {
6024 case 0x02:
6025 case 0x12:
6026 case 0x22:
6027 case 0x32:
6028 /* For fcom, ficom nothing to do. */
6029 break;
6030 case 0x03:
6031 case 0x13:
6032 case 0x23:
6033 case 0x33:
6034 /* For fcomp, ficomp pop FPU stack, store all. */
6035 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6036 return -1;
6037 break;
6038 case 0x00:
6039 case 0x01:
6040 case 0x04:
6041 case 0x05:
6042 case 0x06:
6043 case 0x07:
6044 case 0x10:
6045 case 0x11:
6046 case 0x14:
6047 case 0x15:
6048 case 0x16:
6049 case 0x17:
6050 case 0x20:
6051 case 0x21:
6052 case 0x24:
6053 case 0x25:
6054 case 0x26:
6055 case 0x27:
6056 case 0x30:
6057 case 0x31:
6058 case 0x34:
6059 case 0x35:
6060 case 0x36:
6061 case 0x37:
6062 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6063 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6064 of code, always affects st(0) register. */
6065 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6066 return -1;
6067 break;
6068 case 0x08:
6069 case 0x0a:
6070 case 0x0b:
6071 case 0x18:
6072 case 0x19:
6073 case 0x1a:
6074 case 0x1b:
6075 case 0x1d:
6076 case 0x28:
6077 case 0x29:
6078 case 0x2a:
6079 case 0x2b:
6080 case 0x38:
6081 case 0x39:
6082 case 0x3a:
6083 case 0x3b:
6084 case 0x3c:
6085 case 0x3d:
6086 switch (ir.reg & 7)
6087 {
6088 case 0:
6089 /* Handling fld, fild. */
6090 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6091 return -1;
6092 break;
6093 case 1:
6094 switch (ir.reg >> 4)
6095 {
6096 case 0:
6097 if (record_full_arch_list_add_mem (addr64, 4))
6098 return -1;
6099 break;
6100 case 2:
6101 if (record_full_arch_list_add_mem (addr64, 8))
6102 return -1;
6103 break;
6104 case 3:
6105 break;
6106 default:
6107 if (record_full_arch_list_add_mem (addr64, 2))
6108 return -1;
6109 break;
6110 }
6111 break;
6112 default:
6113 switch (ir.reg >> 4)
6114 {
6115 case 0:
6116 if (record_full_arch_list_add_mem (addr64, 4))
6117 return -1;
6118 if (3 == (ir.reg & 7))
6119 {
6120 /* For fstp m32fp. */
6121 if (i386_record_floats (gdbarch, &ir,
6122 I386_SAVE_FPU_REGS))
6123 return -1;
6124 }
6125 break;
6126 case 1:
6127 if (record_full_arch_list_add_mem (addr64, 4))
6128 return -1;
6129 if ((3 == (ir.reg & 7))
6130 || (5 == (ir.reg & 7))
6131 || (7 == (ir.reg & 7)))
6132 {
6133 /* For fstp insn. */
6134 if (i386_record_floats (gdbarch, &ir,
6135 I386_SAVE_FPU_REGS))
6136 return -1;
6137 }
6138 break;
6139 case 2:
6140 if (record_full_arch_list_add_mem (addr64, 8))
6141 return -1;
6142 if (3 == (ir.reg & 7))
6143 {
6144 /* For fstp m64fp. */
6145 if (i386_record_floats (gdbarch, &ir,
6146 I386_SAVE_FPU_REGS))
6147 return -1;
6148 }
6149 break;
6150 case 3:
6151 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6152 {
6153 /* For fistp, fbld, fild, fbstp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
6158 /* Fall through */
6159 default:
6160 if (record_full_arch_list_add_mem (addr64, 2))
6161 return -1;
6162 break;
6163 }
6164 break;
6165 }
6166 break;
6167 case 0x0c:
6168 /* Insn fldenv. */
6169 if (i386_record_floats (gdbarch, &ir,
6170 I386_SAVE_FPU_ENV_REG_STACK))
6171 return -1;
6172 break;
6173 case 0x0d:
6174 /* Insn fldcw. */
6175 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6176 return -1;
6177 break;
6178 case 0x2c:
6179 /* Insn frstor. */
6180 if (i386_record_floats (gdbarch, &ir,
6181 I386_SAVE_FPU_ENV_REG_STACK))
6182 return -1;
6183 break;
6184 case 0x0e:
6185 if (ir.dflag)
6186 {
6187 if (record_full_arch_list_add_mem (addr64, 28))
6188 return -1;
6189 }
6190 else
6191 {
6192 if (record_full_arch_list_add_mem (addr64, 14))
6193 return -1;
6194 }
6195 break;
6196 case 0x0f:
6197 case 0x2f:
6198 if (record_full_arch_list_add_mem (addr64, 2))
6199 return -1;
6200 /* Insn fstp, fbstp. */
6201 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6202 return -1;
6203 break;
6204 case 0x1f:
6205 case 0x3e:
6206 if (record_full_arch_list_add_mem (addr64, 10))
6207 return -1;
6208 break;
6209 case 0x2e:
6210 if (ir.dflag)
6211 {
6212 if (record_full_arch_list_add_mem (addr64, 28))
6213 return -1;
6214 addr64 += 28;
6215 }
6216 else
6217 {
6218 if (record_full_arch_list_add_mem (addr64, 14))
6219 return -1;
6220 addr64 += 14;
6221 }
6222 if (record_full_arch_list_add_mem (addr64, 80))
6223 return -1;
6224 /* Insn fsave. */
6225 if (i386_record_floats (gdbarch, &ir,
6226 I386_SAVE_FPU_ENV_REG_STACK))
6227 return -1;
6228 break;
6229 case 0x3f:
6230 if (record_full_arch_list_add_mem (addr64, 8))
6231 return -1;
6232 /* Insn fistp. */
6233 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6234 return -1;
6235 break;
6236 default:
6237 ir.addr -= 2;
6238 opcode = opcode << 8 | ir.modrm;
6239 goto no_support;
6240 break;
6241 }
6242 }
6243 /* Opcode is an extension of modR/M byte. */
6244 else
6245 {
6246 switch (opcode)
6247 {
6248 case 0xd8:
6249 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6250 return -1;
6251 break;
6252 case 0xd9:
6253 if (0x0c == (ir.modrm >> 4))
6254 {
6255 if ((ir.modrm & 0x0f) <= 7)
6256 {
6257 if (i386_record_floats (gdbarch, &ir,
6258 I386_SAVE_FPU_REGS))
6259 return -1;
6260 }
6261 else
6262 {
6263 if (i386_record_floats (gdbarch, &ir,
6264 I387_ST0_REGNUM (tdep)))
6265 return -1;
6266 /* If only st(0) is changing, then we have already
6267 recorded. */
6268 if ((ir.modrm & 0x0f) - 0x08)
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep) +
6272 ((ir.modrm & 0x0f) - 0x08)))
6273 return -1;
6274 }
6275 }
6276 }
6277 else
6278 {
6279 switch (ir.modrm)
6280 {
6281 case 0xe0:
6282 case 0xe1:
6283 case 0xf0:
6284 case 0xf5:
6285 case 0xf8:
6286 case 0xfa:
6287 case 0xfc:
6288 case 0xfe:
6289 case 0xff:
6290 if (i386_record_floats (gdbarch, &ir,
6291 I387_ST0_REGNUM (tdep)))
6292 return -1;
6293 break;
6294 case 0xf1:
6295 case 0xf2:
6296 case 0xf3:
6297 case 0xf4:
6298 case 0xf6:
6299 case 0xf7:
6300 case 0xe8:
6301 case 0xe9:
6302 case 0xea:
6303 case 0xeb:
6304 case 0xec:
6305 case 0xed:
6306 case 0xee:
6307 case 0xf9:
6308 case 0xfb:
6309 if (i386_record_floats (gdbarch, &ir,
6310 I386_SAVE_FPU_REGS))
6311 return -1;
6312 break;
6313 case 0xfd:
6314 if (i386_record_floats (gdbarch, &ir,
6315 I387_ST0_REGNUM (tdep)))
6316 return -1;
6317 if (i386_record_floats (gdbarch, &ir,
6318 I387_ST0_REGNUM (tdep) + 1))
6319 return -1;
6320 break;
6321 }
6322 }
6323 break;
6324 case 0xda:
6325 if (0xe9 == ir.modrm)
6326 {
6327 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6328 return -1;
6329 }
6330 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6331 {
6332 if (i386_record_floats (gdbarch, &ir,
6333 I387_ST0_REGNUM (tdep)))
6334 return -1;
6335 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6336 {
6337 if (i386_record_floats (gdbarch, &ir,
6338 I387_ST0_REGNUM (tdep) +
6339 (ir.modrm & 0x0f)))
6340 return -1;
6341 }
6342 else if ((ir.modrm & 0x0f) - 0x08)
6343 {
6344 if (i386_record_floats (gdbarch, &ir,
6345 I387_ST0_REGNUM (tdep) +
6346 ((ir.modrm & 0x0f) - 0x08)))
6347 return -1;
6348 }
6349 }
6350 break;
6351 case 0xdb:
6352 if (0xe3 == ir.modrm)
6353 {
6354 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6355 return -1;
6356 }
6357 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6358 {
6359 if (i386_record_floats (gdbarch, &ir,
6360 I387_ST0_REGNUM (tdep)))
6361 return -1;
6362 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6363 {
6364 if (i386_record_floats (gdbarch, &ir,
6365 I387_ST0_REGNUM (tdep) +
6366 (ir.modrm & 0x0f)))
6367 return -1;
6368 }
6369 else if ((ir.modrm & 0x0f) - 0x08)
6370 {
6371 if (i386_record_floats (gdbarch, &ir,
6372 I387_ST0_REGNUM (tdep) +
6373 ((ir.modrm & 0x0f) - 0x08)))
6374 return -1;
6375 }
6376 }
6377 break;
6378 case 0xdc:
6379 if ((0x0c == ir.modrm >> 4)
6380 || (0x0d == ir.modrm >> 4)
6381 || (0x0f == ir.modrm >> 4))
6382 {
6383 if ((ir.modrm & 0x0f) <= 7)
6384 {
6385 if (i386_record_floats (gdbarch, &ir,
6386 I387_ST0_REGNUM (tdep) +
6387 (ir.modrm & 0x0f)))
6388 return -1;
6389 }
6390 else
6391 {
6392 if (i386_record_floats (gdbarch, &ir,
6393 I387_ST0_REGNUM (tdep) +
6394 ((ir.modrm & 0x0f) - 0x08)))
6395 return -1;
6396 }
6397 }
6398 break;
6399 case 0xdd:
6400 if (0x0c == ir.modrm >> 4)
6401 {
6402 if (i386_record_floats (gdbarch, &ir,
6403 I387_FTAG_REGNUM (tdep)))
6404 return -1;
6405 }
6406 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6407 {
6408 if ((ir.modrm & 0x0f) <= 7)
6409 {
6410 if (i386_record_floats (gdbarch, &ir,
6411 I387_ST0_REGNUM (tdep) +
6412 (ir.modrm & 0x0f)))
6413 return -1;
6414 }
6415 else
6416 {
6417 if (i386_record_floats (gdbarch, &ir,
6418 I386_SAVE_FPU_REGS))
6419 return -1;
6420 }
6421 }
6422 break;
6423 case 0xde:
6424 if ((0x0c == ir.modrm >> 4)
6425 || (0x0e == ir.modrm >> 4)
6426 || (0x0f == ir.modrm >> 4)
6427 || (0xd9 == ir.modrm))
6428 {
6429 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6430 return -1;
6431 }
6432 break;
6433 case 0xdf:
6434 if (0xe0 == ir.modrm)
6435 {
6436 if (record_full_arch_list_add_reg (ir.regcache,
6437 I386_EAX_REGNUM))
6438 return -1;
6439 }
6440 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6441 {
6442 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6443 return -1;
6444 }
6445 break;
6446 }
6447 }
6448 break;
6449 /* string ops */
6450 case 0xa4: /* movsS */
6451 case 0xa5:
6452 case 0xaa: /* stosS */
6453 case 0xab:
6454 case 0x6c: /* insS */
6455 case 0x6d:
6456 regcache_raw_read_unsigned (ir.regcache,
6457 ir.regmap[X86_RECORD_RECX_REGNUM],
6458 &addr);
6459 if (addr)
6460 {
6461 ULONGEST es, ds;
6462
6463 if ((opcode & 1) == 0)
6464 ir.ot = OT_BYTE;
6465 else
6466 ir.ot = ir.dflag + OT_WORD;
6467 regcache_raw_read_unsigned (ir.regcache,
6468 ir.regmap[X86_RECORD_REDI_REGNUM],
6469 &addr);
6470
6471 regcache_raw_read_unsigned (ir.regcache,
6472 ir.regmap[X86_RECORD_ES_REGNUM],
6473 &es);
6474 regcache_raw_read_unsigned (ir.regcache,
6475 ir.regmap[X86_RECORD_DS_REGNUM],
6476 &ds);
6477 if (ir.aflag && (es != ds))
6478 {
6479 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
6480 if (record_full_memory_query)
6481 {
6482 if (yquery (_("\
6483 Process record ignores the memory change of instruction at address %s\n\
6484 because it can't get the value of the segment register.\n\
6485 Do you want to stop the program?"),
6486 paddress (gdbarch, ir.orig_addr)))
6487 return -1;
6488 }
6489 }
6490 else
6491 {
6492 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
6493 return -1;
6494 }
6495
6496 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6497 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6498 if (opcode == 0xa4 || opcode == 0xa5)
6499 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 }
6503 break;
6504
6505 case 0xa6: /* cmpsS */
6506 case 0xa7:
6507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6511 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6512 break;
6513
6514 case 0xac: /* lodsS */
6515 case 0xad:
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6521 break;
6522
6523 case 0xae: /* scasS */
6524 case 0xaf:
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6526 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6529 break;
6530
6531 case 0x6e: /* outsS */
6532 case 0x6f:
6533 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6534 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6537 break;
6538
6539 case 0xe4: /* port I/O */
6540 case 0xe5:
6541 case 0xec:
6542 case 0xed:
6543 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6545 break;
6546
6547 case 0xe6:
6548 case 0xe7:
6549 case 0xee:
6550 case 0xef:
6551 break;
6552
6553 /* control */
6554 case 0xc2: /* ret im */
6555 case 0xc3: /* ret */
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6557 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6558 break;
6559
6560 case 0xca: /* lret im */
6561 case 0xcb: /* lret */
6562 case 0xcf: /* iret */
6563 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6564 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6566 break;
6567
6568 case 0xe8: /* call im */
6569 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6570 ir.dflag = 2;
6571 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6572 return -1;
6573 break;
6574
6575 case 0x9a: /* lcall im */
6576 if (ir.regmap[X86_RECORD_R8_REGNUM])
6577 {
6578 ir.addr -= 1;
6579 goto no_support;
6580 }
6581 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6582 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6583 return -1;
6584 break;
6585
6586 case 0xe9: /* jmp im */
6587 case 0xea: /* ljmp im */
6588 case 0xeb: /* jmp Jb */
6589 case 0x70: /* jcc Jb */
6590 case 0x71:
6591 case 0x72:
6592 case 0x73:
6593 case 0x74:
6594 case 0x75:
6595 case 0x76:
6596 case 0x77:
6597 case 0x78:
6598 case 0x79:
6599 case 0x7a:
6600 case 0x7b:
6601 case 0x7c:
6602 case 0x7d:
6603 case 0x7e:
6604 case 0x7f:
6605 case 0x0f80: /* jcc Jv */
6606 case 0x0f81:
6607 case 0x0f82:
6608 case 0x0f83:
6609 case 0x0f84:
6610 case 0x0f85:
6611 case 0x0f86:
6612 case 0x0f87:
6613 case 0x0f88:
6614 case 0x0f89:
6615 case 0x0f8a:
6616 case 0x0f8b:
6617 case 0x0f8c:
6618 case 0x0f8d:
6619 case 0x0f8e:
6620 case 0x0f8f:
6621 break;
6622
6623 case 0x0f90: /* setcc Gv */
6624 case 0x0f91:
6625 case 0x0f92:
6626 case 0x0f93:
6627 case 0x0f94:
6628 case 0x0f95:
6629 case 0x0f96:
6630 case 0x0f97:
6631 case 0x0f98:
6632 case 0x0f99:
6633 case 0x0f9a:
6634 case 0x0f9b:
6635 case 0x0f9c:
6636 case 0x0f9d:
6637 case 0x0f9e:
6638 case 0x0f9f:
6639 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6640 ir.ot = OT_BYTE;
6641 if (i386_record_modrm (&ir))
6642 return -1;
6643 if (ir.mod == 3)
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6645 : (ir.rm & 0x3));
6646 else
6647 {
6648 if (i386_record_lea_modrm (&ir))
6649 return -1;
6650 }
6651 break;
6652
6653 case 0x0f40: /* cmov Gv, Ev */
6654 case 0x0f41:
6655 case 0x0f42:
6656 case 0x0f43:
6657 case 0x0f44:
6658 case 0x0f45:
6659 case 0x0f46:
6660 case 0x0f47:
6661 case 0x0f48:
6662 case 0x0f49:
6663 case 0x0f4a:
6664 case 0x0f4b:
6665 case 0x0f4c:
6666 case 0x0f4d:
6667 case 0x0f4e:
6668 case 0x0f4f:
6669 if (i386_record_modrm (&ir))
6670 return -1;
6671 ir.reg |= rex_r;
6672 if (ir.dflag == OT_BYTE)
6673 ir.reg &= 0x3;
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6675 break;
6676
6677 /* flags */
6678 case 0x9c: /* pushf */
6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6680 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6681 ir.dflag = 2;
6682 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6683 return -1;
6684 break;
6685
6686 case 0x9d: /* popf */
6687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 break;
6690
6691 case 0x9e: /* sahf */
6692 if (ir.regmap[X86_RECORD_R8_REGNUM])
6693 {
6694 ir.addr -= 1;
6695 goto no_support;
6696 }
6697 /* FALLTHROUGH */
6698 case 0xf5: /* cmc */
6699 case 0xf8: /* clc */
6700 case 0xf9: /* stc */
6701 case 0xfc: /* cld */
6702 case 0xfd: /* std */
6703 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6704 break;
6705
6706 case 0x9f: /* lahf */
6707 if (ir.regmap[X86_RECORD_R8_REGNUM])
6708 {
6709 ir.addr -= 1;
6710 goto no_support;
6711 }
6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6713 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6714 break;
6715
6716 /* bit operations */
6717 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6718 ir.ot = ir.dflag + OT_WORD;
6719 if (i386_record_modrm (&ir))
6720 return -1;
6721 if (ir.reg < 4)
6722 {
6723 ir.addr -= 2;
6724 opcode = opcode << 8 | ir.modrm;
6725 goto no_support;
6726 }
6727 if (ir.reg != 4)
6728 {
6729 if (ir.mod == 3)
6730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6731 else
6732 {
6733 if (i386_record_lea_modrm (&ir))
6734 return -1;
6735 }
6736 }
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6738 break;
6739
6740 case 0x0fa3: /* bt Gv, Ev */
6741 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6742 break;
6743
6744 case 0x0fab: /* bts */
6745 case 0x0fb3: /* btr */
6746 case 0x0fbb: /* btc */
6747 ir.ot = ir.dflag + OT_WORD;
6748 if (i386_record_modrm (&ir))
6749 return -1;
6750 if (ir.mod == 3)
6751 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6752 else
6753 {
6754 uint64_t addr64;
6755 if (i386_record_lea_modrm_addr (&ir, &addr64))
6756 return -1;
6757 regcache_raw_read_unsigned (ir.regcache,
6758 ir.regmap[ir.reg | rex_r],
6759 &addr);
6760 switch (ir.dflag)
6761 {
6762 case 0:
6763 addr64 += ((int16_t) addr >> 4) << 4;
6764 break;
6765 case 1:
6766 addr64 += ((int32_t) addr >> 5) << 5;
6767 break;
6768 case 2:
6769 addr64 += ((int64_t) addr >> 6) << 6;
6770 break;
6771 }
6772 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6773 return -1;
6774 if (i386_record_lea_modrm (&ir))
6775 return -1;
6776 }
6777 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6778 break;
6779
6780 case 0x0fbc: /* bsf */
6781 case 0x0fbd: /* bsr */
6782 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6783 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6784 break;
6785
6786 /* bcd */
6787 case 0x27: /* daa */
6788 case 0x2f: /* das */
6789 case 0x37: /* aaa */
6790 case 0x3f: /* aas */
6791 case 0xd4: /* aam */
6792 case 0xd5: /* aad */
6793 if (ir.regmap[X86_RECORD_R8_REGNUM])
6794 {
6795 ir.addr -= 1;
6796 goto no_support;
6797 }
6798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6799 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6800 break;
6801
6802 /* misc */
6803 case 0x90: /* nop */
6804 if (prefixes & PREFIX_LOCK)
6805 {
6806 ir.addr -= 1;
6807 goto no_support;
6808 }
6809 break;
6810
6811 case 0x9b: /* fwait */
6812 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6813 return -1;
6814 opcode = (uint32_t) opcode8;
6815 ir.addr++;
6816 goto reswitch;
6817 break;
6818
6819 /* XXX */
6820 case 0xcc: /* int3 */
6821 printf_unfiltered (_("Process record does not support instruction "
6822 "int3.\n"));
6823 ir.addr -= 1;
6824 goto no_support;
6825 break;
6826
6827 /* XXX */
6828 case 0xcd: /* int */
6829 {
6830 int ret;
6831 uint8_t interrupt;
6832 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6833 return -1;
6834 ir.addr++;
6835 if (interrupt != 0x80
6836 || tdep->i386_intx80_record == NULL)
6837 {
6838 printf_unfiltered (_("Process record does not support "
6839 "instruction int 0x%02x.\n"),
6840 interrupt);
6841 ir.addr -= 2;
6842 goto no_support;
6843 }
6844 ret = tdep->i386_intx80_record (ir.regcache);
6845 if (ret)
6846 return ret;
6847 }
6848 break;
6849
6850 /* XXX */
6851 case 0xce: /* into */
6852 printf_unfiltered (_("Process record does not support "
6853 "instruction into.\n"));
6854 ir.addr -= 1;
6855 goto no_support;
6856 break;
6857
6858 case 0xfa: /* cli */
6859 case 0xfb: /* sti */
6860 break;
6861
6862 case 0x62: /* bound */
6863 printf_unfiltered (_("Process record does not support "
6864 "instruction bound.\n"));
6865 ir.addr -= 1;
6866 goto no_support;
6867 break;
6868
6869 case 0x0fc8: /* bswap reg */
6870 case 0x0fc9:
6871 case 0x0fca:
6872 case 0x0fcb:
6873 case 0x0fcc:
6874 case 0x0fcd:
6875 case 0x0fce:
6876 case 0x0fcf:
6877 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6878 break;
6879
6880 case 0xd6: /* salc */
6881 if (ir.regmap[X86_RECORD_R8_REGNUM])
6882 {
6883 ir.addr -= 1;
6884 goto no_support;
6885 }
6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6888 break;
6889
6890 case 0xe0: /* loopnz */
6891 case 0xe1: /* loopz */
6892 case 0xe2: /* loop */
6893 case 0xe3: /* jecxz */
6894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6896 break;
6897
6898 case 0x0f30: /* wrmsr */
6899 printf_unfiltered (_("Process record does not support "
6900 "instruction wrmsr.\n"));
6901 ir.addr -= 2;
6902 goto no_support;
6903 break;
6904
6905 case 0x0f32: /* rdmsr */
6906 printf_unfiltered (_("Process record does not support "
6907 "instruction rdmsr.\n"));
6908 ir.addr -= 2;
6909 goto no_support;
6910 break;
6911
6912 case 0x0f31: /* rdtsc */
6913 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6915 break;
6916
6917 case 0x0f34: /* sysenter */
6918 {
6919 int ret;
6920 if (ir.regmap[X86_RECORD_R8_REGNUM])
6921 {
6922 ir.addr -= 2;
6923 goto no_support;
6924 }
6925 if (tdep->i386_sysenter_record == NULL)
6926 {
6927 printf_unfiltered (_("Process record does not support "
6928 "instruction sysenter.\n"));
6929 ir.addr -= 2;
6930 goto no_support;
6931 }
6932 ret = tdep->i386_sysenter_record (ir.regcache);
6933 if (ret)
6934 return ret;
6935 }
6936 break;
6937
6938 case 0x0f35: /* sysexit */
6939 printf_unfiltered (_("Process record does not support "
6940 "instruction sysexit.\n"));
6941 ir.addr -= 2;
6942 goto no_support;
6943 break;
6944
6945 case 0x0f05: /* syscall */
6946 {
6947 int ret;
6948 if (tdep->i386_syscall_record == NULL)
6949 {
6950 printf_unfiltered (_("Process record does not support "
6951 "instruction syscall.\n"));
6952 ir.addr -= 2;
6953 goto no_support;
6954 }
6955 ret = tdep->i386_syscall_record (ir.regcache);
6956 if (ret)
6957 return ret;
6958 }
6959 break;
6960
6961 case 0x0f07: /* sysret */
6962 printf_unfiltered (_("Process record does not support "
6963 "instruction sysret.\n"));
6964 ir.addr -= 2;
6965 goto no_support;
6966 break;
6967
6968 case 0x0fa2: /* cpuid */
6969 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6970 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6971 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6972 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6973 break;
6974
6975 case 0xf4: /* hlt */
6976 printf_unfiltered (_("Process record does not support "
6977 "instruction hlt.\n"));
6978 ir.addr -= 1;
6979 goto no_support;
6980 break;
6981
6982 case 0x0f00:
6983 if (i386_record_modrm (&ir))
6984 return -1;
6985 switch (ir.reg)
6986 {
6987 case 0: /* sldt */
6988 case 1: /* str */
6989 if (ir.mod == 3)
6990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6991 else
6992 {
6993 ir.ot = OT_WORD;
6994 if (i386_record_lea_modrm (&ir))
6995 return -1;
6996 }
6997 break;
6998 case 2: /* lldt */
6999 case 3: /* ltr */
7000 break;
7001 case 4: /* verr */
7002 case 5: /* verw */
7003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7004 break;
7005 default:
7006 ir.addr -= 3;
7007 opcode = opcode << 8 | ir.modrm;
7008 goto no_support;
7009 break;
7010 }
7011 break;
7012
7013 case 0x0f01:
7014 if (i386_record_modrm (&ir))
7015 return -1;
7016 switch (ir.reg)
7017 {
7018 case 0: /* sgdt */
7019 {
7020 uint64_t addr64;
7021
7022 if (ir.mod == 3)
7023 {
7024 ir.addr -= 3;
7025 opcode = opcode << 8 | ir.modrm;
7026 goto no_support;
7027 }
7028 if (ir.override >= 0)
7029 {
7030 if (record_full_memory_query)
7031 {
7032 if (yquery (_("\
7033 Process record ignores the memory change of instruction at address %s\n\
7034 because it can't get the value of the segment register.\n\
7035 Do you want to stop the program?"),
7036 paddress (gdbarch, ir.orig_addr)))
7037 return -1;
7038 }
7039 }
7040 else
7041 {
7042 if (i386_record_lea_modrm_addr (&ir, &addr64))
7043 return -1;
7044 if (record_full_arch_list_add_mem (addr64, 2))
7045 return -1;
7046 addr64 += 2;
7047 if (ir.regmap[X86_RECORD_R8_REGNUM])
7048 {
7049 if (record_full_arch_list_add_mem (addr64, 8))
7050 return -1;
7051 }
7052 else
7053 {
7054 if (record_full_arch_list_add_mem (addr64, 4))
7055 return -1;
7056 }
7057 }
7058 }
7059 break;
7060 case 1:
7061 if (ir.mod == 3)
7062 {
7063 switch (ir.rm)
7064 {
7065 case 0: /* monitor */
7066 break;
7067 case 1: /* mwait */
7068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7069 break;
7070 default:
7071 ir.addr -= 3;
7072 opcode = opcode << 8 | ir.modrm;
7073 goto no_support;
7074 break;
7075 }
7076 }
7077 else
7078 {
7079 /* sidt */
7080 if (ir.override >= 0)
7081 {
7082 if (record_full_memory_query)
7083 {
7084 if (yquery (_("\
7085 Process record ignores the memory change of instruction at address %s\n\
7086 because it can't get the value of the segment register.\n\
7087 Do you want to stop the program?"),
7088 paddress (gdbarch, ir.orig_addr)))
7089 return -1;
7090 }
7091 }
7092 else
7093 {
7094 uint64_t addr64;
7095
7096 if (i386_record_lea_modrm_addr (&ir, &addr64))
7097 return -1;
7098 if (record_full_arch_list_add_mem (addr64, 2))
7099 return -1;
7100 addr64 += 2;
7101 if (ir.regmap[X86_RECORD_R8_REGNUM])
7102 {
7103 if (record_full_arch_list_add_mem (addr64, 8))
7104 return -1;
7105 }
7106 else
7107 {
7108 if (record_full_arch_list_add_mem (addr64, 4))
7109 return -1;
7110 }
7111 }
7112 }
7113 break;
7114 case 2: /* lgdt */
7115 if (ir.mod == 3)
7116 {
7117 /* xgetbv */
7118 if (ir.rm == 0)
7119 {
7120 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7121 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7122 break;
7123 }
7124 /* xsetbv */
7125 else if (ir.rm == 1)
7126 break;
7127 }
7128 /* Fall through. */
7129 case 3: /* lidt */
7130 if (ir.mod == 3)
7131 {
7132 ir.addr -= 3;
7133 opcode = opcode << 8 | ir.modrm;
7134 goto no_support;
7135 }
7136 break;
7137 case 4: /* smsw */
7138 if (ir.mod == 3)
7139 {
7140 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7141 return -1;
7142 }
7143 else
7144 {
7145 ir.ot = OT_WORD;
7146 if (i386_record_lea_modrm (&ir))
7147 return -1;
7148 }
7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7150 break;
7151 case 6: /* lmsw */
7152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7153 break;
7154 case 7: /* invlpg */
7155 if (ir.mod == 3)
7156 {
7157 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
7158 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
7159 else
7160 {
7161 ir.addr -= 3;
7162 opcode = opcode << 8 | ir.modrm;
7163 goto no_support;
7164 }
7165 }
7166 else
7167 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7168 break;
7169 default:
7170 ir.addr -= 3;
7171 opcode = opcode << 8 | ir.modrm;
7172 goto no_support;
7173 break;
7174 }
7175 break;
7176
7177 case 0x0f08: /* invd */
7178 case 0x0f09: /* wbinvd */
7179 break;
7180
7181 case 0x63: /* arpl */
7182 if (i386_record_modrm (&ir))
7183 return -1;
7184 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7185 {
7186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7187 ? (ir.reg | rex_r) : ir.rm);
7188 }
7189 else
7190 {
7191 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7192 if (i386_record_lea_modrm (&ir))
7193 return -1;
7194 }
7195 if (!ir.regmap[X86_RECORD_R8_REGNUM])
7196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7197 break;
7198
7199 case 0x0f02: /* lar */
7200 case 0x0f03: /* lsl */
7201 if (i386_record_modrm (&ir))
7202 return -1;
7203 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7205 break;
7206
7207 case 0x0f18:
7208 if (i386_record_modrm (&ir))
7209 return -1;
7210 if (ir.mod == 3 && ir.reg == 3)
7211 {
7212 ir.addr -= 3;
7213 opcode = opcode << 8 | ir.modrm;
7214 goto no_support;
7215 }
7216 break;
7217
7218 case 0x0f19:
7219 case 0x0f1a:
7220 case 0x0f1b:
7221 case 0x0f1c:
7222 case 0x0f1d:
7223 case 0x0f1e:
7224 case 0x0f1f:
7225 /* nop (multi byte) */
7226 break;
7227
7228 case 0x0f20: /* mov reg, crN */
7229 case 0x0f22: /* mov crN, reg */
7230 if (i386_record_modrm (&ir))
7231 return -1;
7232 if ((ir.modrm & 0xc0) != 0xc0)
7233 {
7234 ir.addr -= 3;
7235 opcode = opcode << 8 | ir.modrm;
7236 goto no_support;
7237 }
7238 switch (ir.reg)
7239 {
7240 case 0:
7241 case 2:
7242 case 3:
7243 case 4:
7244 case 8:
7245 if (opcode & 2)
7246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7247 else
7248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7249 break;
7250 default:
7251 ir.addr -= 3;
7252 opcode = opcode << 8 | ir.modrm;
7253 goto no_support;
7254 break;
7255 }
7256 break;
7257
7258 case 0x0f21: /* mov reg, drN */
7259 case 0x0f23: /* mov drN, reg */
7260 if (i386_record_modrm (&ir))
7261 return -1;
7262 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7263 || ir.reg == 5 || ir.reg >= 8)
7264 {
7265 ir.addr -= 3;
7266 opcode = opcode << 8 | ir.modrm;
7267 goto no_support;
7268 }
7269 if (opcode & 2)
7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7271 else
7272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7273 break;
7274
7275 case 0x0f06: /* clts */
7276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7277 break;
7278
7279 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7280
7281 case 0x0f0d: /* 3DNow! prefetch */
7282 break;
7283
7284 case 0x0f0e: /* 3DNow! femms */
7285 case 0x0f77: /* emms */
7286 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7287 goto no_support;
7288 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
7289 break;
7290
7291 case 0x0f0f: /* 3DNow! data */
7292 if (i386_record_modrm (&ir))
7293 return -1;
7294 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7295 return -1;
7296 ir.addr++;
7297 switch (opcode8)
7298 {
7299 case 0x0c: /* 3DNow! pi2fw */
7300 case 0x0d: /* 3DNow! pi2fd */
7301 case 0x1c: /* 3DNow! pf2iw */
7302 case 0x1d: /* 3DNow! pf2id */
7303 case 0x8a: /* 3DNow! pfnacc */
7304 case 0x8e: /* 3DNow! pfpnacc */
7305 case 0x90: /* 3DNow! pfcmpge */
7306 case 0x94: /* 3DNow! pfmin */
7307 case 0x96: /* 3DNow! pfrcp */
7308 case 0x97: /* 3DNow! pfrsqrt */
7309 case 0x9a: /* 3DNow! pfsub */
7310 case 0x9e: /* 3DNow! pfadd */
7311 case 0xa0: /* 3DNow! pfcmpgt */
7312 case 0xa4: /* 3DNow! pfmax */
7313 case 0xa6: /* 3DNow! pfrcpit1 */
7314 case 0xa7: /* 3DNow! pfrsqit1 */
7315 case 0xaa: /* 3DNow! pfsubr */
7316 case 0xae: /* 3DNow! pfacc */
7317 case 0xb0: /* 3DNow! pfcmpeq */
7318 case 0xb4: /* 3DNow! pfmul */
7319 case 0xb6: /* 3DNow! pfrcpit2 */
7320 case 0xb7: /* 3DNow! pmulhrw */
7321 case 0xbb: /* 3DNow! pswapd */
7322 case 0xbf: /* 3DNow! pavgusb */
7323 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7324 goto no_support_3dnow_data;
7325 record_full_arch_list_add_reg (ir.regcache, ir.reg);
7326 break;
7327
7328 default:
7329 no_support_3dnow_data:
7330 opcode = (opcode << 8) | opcode8;
7331 goto no_support;
7332 break;
7333 }
7334 break;
7335
7336 case 0x0faa: /* rsm */
7337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7338 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7339 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7344 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7346 break;
7347
7348 case 0x0fae:
7349 if (i386_record_modrm (&ir))
7350 return -1;
7351 switch(ir.reg)
7352 {
7353 case 0: /* fxsave */
7354 {
7355 uint64_t tmpu64;
7356
7357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7358 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7359 return -1;
7360 if (record_full_arch_list_add_mem (tmpu64, 512))
7361 return -1;
7362 }
7363 break;
7364
7365 case 1: /* fxrstor */
7366 {
7367 int i;
7368
7369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7370
7371 for (i = I387_MM0_REGNUM (tdep);
7372 i386_mmx_regnum_p (gdbarch, i); i++)
7373 record_full_arch_list_add_reg (ir.regcache, i);
7374
7375 for (i = I387_XMM0_REGNUM (tdep);
7376 i386_xmm_regnum_p (gdbarch, i); i++)
7377 record_full_arch_list_add_reg (ir.regcache, i);
7378
7379 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7380 record_full_arch_list_add_reg (ir.regcache,
7381 I387_MXCSR_REGNUM(tdep));
7382
7383 for (i = I387_ST0_REGNUM (tdep);
7384 i386_fp_regnum_p (gdbarch, i); i++)
7385 record_full_arch_list_add_reg (ir.regcache, i);
7386
7387 for (i = I387_FCTRL_REGNUM (tdep);
7388 i386_fpc_regnum_p (gdbarch, i); i++)
7389 record_full_arch_list_add_reg (ir.regcache, i);
7390 }
7391 break;
7392
7393 case 2: /* ldmxcsr */
7394 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7395 goto no_support;
7396 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
7397 break;
7398
7399 case 3: /* stmxcsr */
7400 ir.ot = OT_LONG;
7401 if (i386_record_lea_modrm (&ir))
7402 return -1;
7403 break;
7404
7405 case 5: /* lfence */
7406 case 6: /* mfence */
7407 case 7: /* sfence clflush */
7408 break;
7409
7410 default:
7411 opcode = (opcode << 8) | ir.modrm;
7412 goto no_support;
7413 break;
7414 }
7415 break;
7416
7417 case 0x0fc3: /* movnti */
7418 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7419 if (i386_record_modrm (&ir))
7420 return -1;
7421 if (ir.mod == 3)
7422 goto no_support;
7423 ir.reg |= rex_r;
7424 if (i386_record_lea_modrm (&ir))
7425 return -1;
7426 break;
7427
7428 /* Add prefix to opcode. */
7429 case 0x0f10:
7430 case 0x0f11:
7431 case 0x0f12:
7432 case 0x0f13:
7433 case 0x0f14:
7434 case 0x0f15:
7435 case 0x0f16:
7436 case 0x0f17:
7437 case 0x0f28:
7438 case 0x0f29:
7439 case 0x0f2a:
7440 case 0x0f2b:
7441 case 0x0f2c:
7442 case 0x0f2d:
7443 case 0x0f2e:
7444 case 0x0f2f:
7445 case 0x0f38:
7446 case 0x0f39:
7447 case 0x0f3a:
7448 case 0x0f50:
7449 case 0x0f51:
7450 case 0x0f52:
7451 case 0x0f53:
7452 case 0x0f54:
7453 case 0x0f55:
7454 case 0x0f56:
7455 case 0x0f57:
7456 case 0x0f58:
7457 case 0x0f59:
7458 case 0x0f5a:
7459 case 0x0f5b:
7460 case 0x0f5c:
7461 case 0x0f5d:
7462 case 0x0f5e:
7463 case 0x0f5f:
7464 case 0x0f60:
7465 case 0x0f61:
7466 case 0x0f62:
7467 case 0x0f63:
7468 case 0x0f64:
7469 case 0x0f65:
7470 case 0x0f66:
7471 case 0x0f67:
7472 case 0x0f68:
7473 case 0x0f69:
7474 case 0x0f6a:
7475 case 0x0f6b:
7476 case 0x0f6c:
7477 case 0x0f6d:
7478 case 0x0f6e:
7479 case 0x0f6f:
7480 case 0x0f70:
7481 case 0x0f71:
7482 case 0x0f72:
7483 case 0x0f73:
7484 case 0x0f74:
7485 case 0x0f75:
7486 case 0x0f76:
7487 case 0x0f7c:
7488 case 0x0f7d:
7489 case 0x0f7e:
7490 case 0x0f7f:
7491 case 0x0fb8:
7492 case 0x0fc2:
7493 case 0x0fc4:
7494 case 0x0fc5:
7495 case 0x0fc6:
7496 case 0x0fd0:
7497 case 0x0fd1:
7498 case 0x0fd2:
7499 case 0x0fd3:
7500 case 0x0fd4:
7501 case 0x0fd5:
7502 case 0x0fd6:
7503 case 0x0fd7:
7504 case 0x0fd8:
7505 case 0x0fd9:
7506 case 0x0fda:
7507 case 0x0fdb:
7508 case 0x0fdc:
7509 case 0x0fdd:
7510 case 0x0fde:
7511 case 0x0fdf:
7512 case 0x0fe0:
7513 case 0x0fe1:
7514 case 0x0fe2:
7515 case 0x0fe3:
7516 case 0x0fe4:
7517 case 0x0fe5:
7518 case 0x0fe6:
7519 case 0x0fe7:
7520 case 0x0fe8:
7521 case 0x0fe9:
7522 case 0x0fea:
7523 case 0x0feb:
7524 case 0x0fec:
7525 case 0x0fed:
7526 case 0x0fee:
7527 case 0x0fef:
7528 case 0x0ff0:
7529 case 0x0ff1:
7530 case 0x0ff2:
7531 case 0x0ff3:
7532 case 0x0ff4:
7533 case 0x0ff5:
7534 case 0x0ff6:
7535 case 0x0ff7:
7536 case 0x0ff8:
7537 case 0x0ff9:
7538 case 0x0ffa:
7539 case 0x0ffb:
7540 case 0x0ffc:
7541 case 0x0ffd:
7542 case 0x0ffe:
7543 /* Mask out PREFIX_ADDR. */
7544 switch ((prefixes & ~PREFIX_ADDR))
7545 {
7546 case PREFIX_REPNZ:
7547 opcode |= 0xf20000;
7548 break;
7549 case PREFIX_DATA:
7550 opcode |= 0x660000;
7551 break;
7552 case PREFIX_REPZ:
7553 opcode |= 0xf30000;
7554 break;
7555 }
7556 reswitch_prefix_add:
7557 switch (opcode)
7558 {
7559 case 0x0f38:
7560 case 0x660f38:
7561 case 0xf20f38:
7562 case 0x0f3a:
7563 case 0x660f3a:
7564 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7565 return -1;
7566 ir.addr++;
7567 opcode = (uint32_t) opcode8 | opcode << 8;
7568 goto reswitch_prefix_add;
7569 break;
7570
7571 case 0x0f10: /* movups */
7572 case 0x660f10: /* movupd */
7573 case 0xf30f10: /* movss */
7574 case 0xf20f10: /* movsd */
7575 case 0x0f12: /* movlps */
7576 case 0x660f12: /* movlpd */
7577 case 0xf30f12: /* movsldup */
7578 case 0xf20f12: /* movddup */
7579 case 0x0f14: /* unpcklps */
7580 case 0x660f14: /* unpcklpd */
7581 case 0x0f15: /* unpckhps */
7582 case 0x660f15: /* unpckhpd */
7583 case 0x0f16: /* movhps */
7584 case 0x660f16: /* movhpd */
7585 case 0xf30f16: /* movshdup */
7586 case 0x0f28: /* movaps */
7587 case 0x660f28: /* movapd */
7588 case 0x0f2a: /* cvtpi2ps */
7589 case 0x660f2a: /* cvtpi2pd */
7590 case 0xf30f2a: /* cvtsi2ss */
7591 case 0xf20f2a: /* cvtsi2sd */
7592 case 0x0f2c: /* cvttps2pi */
7593 case 0x660f2c: /* cvttpd2pi */
7594 case 0x0f2d: /* cvtps2pi */
7595 case 0x660f2d: /* cvtpd2pi */
7596 case 0x660f3800: /* pshufb */
7597 case 0x660f3801: /* phaddw */
7598 case 0x660f3802: /* phaddd */
7599 case 0x660f3803: /* phaddsw */
7600 case 0x660f3804: /* pmaddubsw */
7601 case 0x660f3805: /* phsubw */
7602 case 0x660f3806: /* phsubd */
7603 case 0x660f3807: /* phsubsw */
7604 case 0x660f3808: /* psignb */
7605 case 0x660f3809: /* psignw */
7606 case 0x660f380a: /* psignd */
7607 case 0x660f380b: /* pmulhrsw */
7608 case 0x660f3810: /* pblendvb */
7609 case 0x660f3814: /* blendvps */
7610 case 0x660f3815: /* blendvpd */
7611 case 0x660f381c: /* pabsb */
7612 case 0x660f381d: /* pabsw */
7613 case 0x660f381e: /* pabsd */
7614 case 0x660f3820: /* pmovsxbw */
7615 case 0x660f3821: /* pmovsxbd */
7616 case 0x660f3822: /* pmovsxbq */
7617 case 0x660f3823: /* pmovsxwd */
7618 case 0x660f3824: /* pmovsxwq */
7619 case 0x660f3825: /* pmovsxdq */
7620 case 0x660f3828: /* pmuldq */
7621 case 0x660f3829: /* pcmpeqq */
7622 case 0x660f382a: /* movntdqa */
7623 case 0x660f3a08: /* roundps */
7624 case 0x660f3a09: /* roundpd */
7625 case 0x660f3a0a: /* roundss */
7626 case 0x660f3a0b: /* roundsd */
7627 case 0x660f3a0c: /* blendps */
7628 case 0x660f3a0d: /* blendpd */
7629 case 0x660f3a0e: /* pblendw */
7630 case 0x660f3a0f: /* palignr */
7631 case 0x660f3a20: /* pinsrb */
7632 case 0x660f3a21: /* insertps */
7633 case 0x660f3a22: /* pinsrd pinsrq */
7634 case 0x660f3a40: /* dpps */
7635 case 0x660f3a41: /* dppd */
7636 case 0x660f3a42: /* mpsadbw */
7637 case 0x660f3a60: /* pcmpestrm */
7638 case 0x660f3a61: /* pcmpestri */
7639 case 0x660f3a62: /* pcmpistrm */
7640 case 0x660f3a63: /* pcmpistri */
7641 case 0x0f51: /* sqrtps */
7642 case 0x660f51: /* sqrtpd */
7643 case 0xf20f51: /* sqrtsd */
7644 case 0xf30f51: /* sqrtss */
7645 case 0x0f52: /* rsqrtps */
7646 case 0xf30f52: /* rsqrtss */
7647 case 0x0f53: /* rcpps */
7648 case 0xf30f53: /* rcpss */
7649 case 0x0f54: /* andps */
7650 case 0x660f54: /* andpd */
7651 case 0x0f55: /* andnps */
7652 case 0x660f55: /* andnpd */
7653 case 0x0f56: /* orps */
7654 case 0x660f56: /* orpd */
7655 case 0x0f57: /* xorps */
7656 case 0x660f57: /* xorpd */
7657 case 0x0f58: /* addps */
7658 case 0x660f58: /* addpd */
7659 case 0xf20f58: /* addsd */
7660 case 0xf30f58: /* addss */
7661 case 0x0f59: /* mulps */
7662 case 0x660f59: /* mulpd */
7663 case 0xf20f59: /* mulsd */
7664 case 0xf30f59: /* mulss */
7665 case 0x0f5a: /* cvtps2pd */
7666 case 0x660f5a: /* cvtpd2ps */
7667 case 0xf20f5a: /* cvtsd2ss */
7668 case 0xf30f5a: /* cvtss2sd */
7669 case 0x0f5b: /* cvtdq2ps */
7670 case 0x660f5b: /* cvtps2dq */
7671 case 0xf30f5b: /* cvttps2dq */
7672 case 0x0f5c: /* subps */
7673 case 0x660f5c: /* subpd */
7674 case 0xf20f5c: /* subsd */
7675 case 0xf30f5c: /* subss */
7676 case 0x0f5d: /* minps */
7677 case 0x660f5d: /* minpd */
7678 case 0xf20f5d: /* minsd */
7679 case 0xf30f5d: /* minss */
7680 case 0x0f5e: /* divps */
7681 case 0x660f5e: /* divpd */
7682 case 0xf20f5e: /* divsd */
7683 case 0xf30f5e: /* divss */
7684 case 0x0f5f: /* maxps */
7685 case 0x660f5f: /* maxpd */
7686 case 0xf20f5f: /* maxsd */
7687 case 0xf30f5f: /* maxss */
7688 case 0x660f60: /* punpcklbw */
7689 case 0x660f61: /* punpcklwd */
7690 case 0x660f62: /* punpckldq */
7691 case 0x660f63: /* packsswb */
7692 case 0x660f64: /* pcmpgtb */
7693 case 0x660f65: /* pcmpgtw */
7694 case 0x660f66: /* pcmpgtd */
7695 case 0x660f67: /* packuswb */
7696 case 0x660f68: /* punpckhbw */
7697 case 0x660f69: /* punpckhwd */
7698 case 0x660f6a: /* punpckhdq */
7699 case 0x660f6b: /* packssdw */
7700 case 0x660f6c: /* punpcklqdq */
7701 case 0x660f6d: /* punpckhqdq */
7702 case 0x660f6e: /* movd */
7703 case 0x660f6f: /* movdqa */
7704 case 0xf30f6f: /* movdqu */
7705 case 0x660f70: /* pshufd */
7706 case 0xf20f70: /* pshuflw */
7707 case 0xf30f70: /* pshufhw */
7708 case 0x660f74: /* pcmpeqb */
7709 case 0x660f75: /* pcmpeqw */
7710 case 0x660f76: /* pcmpeqd */
7711 case 0x660f7c: /* haddpd */
7712 case 0xf20f7c: /* haddps */
7713 case 0x660f7d: /* hsubpd */
7714 case 0xf20f7d: /* hsubps */
7715 case 0xf30f7e: /* movq */
7716 case 0x0fc2: /* cmpps */
7717 case 0x660fc2: /* cmppd */
7718 case 0xf20fc2: /* cmpsd */
7719 case 0xf30fc2: /* cmpss */
7720 case 0x660fc4: /* pinsrw */
7721 case 0x0fc6: /* shufps */
7722 case 0x660fc6: /* shufpd */
7723 case 0x660fd0: /* addsubpd */
7724 case 0xf20fd0: /* addsubps */
7725 case 0x660fd1: /* psrlw */
7726 case 0x660fd2: /* psrld */
7727 case 0x660fd3: /* psrlq */
7728 case 0x660fd4: /* paddq */
7729 case 0x660fd5: /* pmullw */
7730 case 0xf30fd6: /* movq2dq */
7731 case 0x660fd8: /* psubusb */
7732 case 0x660fd9: /* psubusw */
7733 case 0x660fda: /* pminub */
7734 case 0x660fdb: /* pand */
7735 case 0x660fdc: /* paddusb */
7736 case 0x660fdd: /* paddusw */
7737 case 0x660fde: /* pmaxub */
7738 case 0x660fdf: /* pandn */
7739 case 0x660fe0: /* pavgb */
7740 case 0x660fe1: /* psraw */
7741 case 0x660fe2: /* psrad */
7742 case 0x660fe3: /* pavgw */
7743 case 0x660fe4: /* pmulhuw */
7744 case 0x660fe5: /* pmulhw */
7745 case 0x660fe6: /* cvttpd2dq */
7746 case 0xf20fe6: /* cvtpd2dq */
7747 case 0xf30fe6: /* cvtdq2pd */
7748 case 0x660fe8: /* psubsb */
7749 case 0x660fe9: /* psubsw */
7750 case 0x660fea: /* pminsw */
7751 case 0x660feb: /* por */
7752 case 0x660fec: /* paddsb */
7753 case 0x660fed: /* paddsw */
7754 case 0x660fee: /* pmaxsw */
7755 case 0x660fef: /* pxor */
7756 case 0xf20ff0: /* lddqu */
7757 case 0x660ff1: /* psllw */
7758 case 0x660ff2: /* pslld */
7759 case 0x660ff3: /* psllq */
7760 case 0x660ff4: /* pmuludq */
7761 case 0x660ff5: /* pmaddwd */
7762 case 0x660ff6: /* psadbw */
7763 case 0x660ff8: /* psubb */
7764 case 0x660ff9: /* psubw */
7765 case 0x660ffa: /* psubd */
7766 case 0x660ffb: /* psubq */
7767 case 0x660ffc: /* paddb */
7768 case 0x660ffd: /* paddw */
7769 case 0x660ffe: /* paddd */
7770 if (i386_record_modrm (&ir))
7771 return -1;
7772 ir.reg |= rex_r;
7773 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7774 goto no_support;
7775 record_full_arch_list_add_reg (ir.regcache,
7776 I387_XMM0_REGNUM (tdep) + ir.reg);
7777 if ((opcode & 0xfffffffc) == 0x660f3a60)
7778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7779 break;
7780
7781 case 0x0f11: /* movups */
7782 case 0x660f11: /* movupd */
7783 case 0xf30f11: /* movss */
7784 case 0xf20f11: /* movsd */
7785 case 0x0f13: /* movlps */
7786 case 0x660f13: /* movlpd */
7787 case 0x0f17: /* movhps */
7788 case 0x660f17: /* movhpd */
7789 case 0x0f29: /* movaps */
7790 case 0x660f29: /* movapd */
7791 case 0x660f3a14: /* pextrb */
7792 case 0x660f3a15: /* pextrw */
7793 case 0x660f3a16: /* pextrd pextrq */
7794 case 0x660f3a17: /* extractps */
7795 case 0x660f7f: /* movdqa */
7796 case 0xf30f7f: /* movdqu */
7797 if (i386_record_modrm (&ir))
7798 return -1;
7799 if (ir.mod == 3)
7800 {
7801 if (opcode == 0x0f13 || opcode == 0x660f13
7802 || opcode == 0x0f17 || opcode == 0x660f17)
7803 goto no_support;
7804 ir.rm |= ir.rex_b;
7805 if (!i386_xmm_regnum_p (gdbarch,
7806 I387_XMM0_REGNUM (tdep) + ir.rm))
7807 goto no_support;
7808 record_full_arch_list_add_reg (ir.regcache,
7809 I387_XMM0_REGNUM (tdep) + ir.rm);
7810 }
7811 else
7812 {
7813 switch (opcode)
7814 {
7815 case 0x660f3a14:
7816 ir.ot = OT_BYTE;
7817 break;
7818 case 0x660f3a15:
7819 ir.ot = OT_WORD;
7820 break;
7821 case 0x660f3a16:
7822 ir.ot = OT_LONG;
7823 break;
7824 case 0x660f3a17:
7825 ir.ot = OT_QUAD;
7826 break;
7827 default:
7828 ir.ot = OT_DQUAD;
7829 break;
7830 }
7831 if (i386_record_lea_modrm (&ir))
7832 return -1;
7833 }
7834 break;
7835
7836 case 0x0f2b: /* movntps */
7837 case 0x660f2b: /* movntpd */
7838 case 0x0fe7: /* movntq */
7839 case 0x660fe7: /* movntdq */
7840 if (ir.mod == 3)
7841 goto no_support;
7842 if (opcode == 0x0fe7)
7843 ir.ot = OT_QUAD;
7844 else
7845 ir.ot = OT_DQUAD;
7846 if (i386_record_lea_modrm (&ir))
7847 return -1;
7848 break;
7849
7850 case 0xf30f2c: /* cvttss2si */
7851 case 0xf20f2c: /* cvttsd2si */
7852 case 0xf30f2d: /* cvtss2si */
7853 case 0xf20f2d: /* cvtsd2si */
7854 case 0xf20f38f0: /* crc32 */
7855 case 0xf20f38f1: /* crc32 */
7856 case 0x0f50: /* movmskps */
7857 case 0x660f50: /* movmskpd */
7858 case 0x0fc5: /* pextrw */
7859 case 0x660fc5: /* pextrw */
7860 case 0x0fd7: /* pmovmskb */
7861 case 0x660fd7: /* pmovmskb */
7862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7863 break;
7864
7865 case 0x0f3800: /* pshufb */
7866 case 0x0f3801: /* phaddw */
7867 case 0x0f3802: /* phaddd */
7868 case 0x0f3803: /* phaddsw */
7869 case 0x0f3804: /* pmaddubsw */
7870 case 0x0f3805: /* phsubw */
7871 case 0x0f3806: /* phsubd */
7872 case 0x0f3807: /* phsubsw */
7873 case 0x0f3808: /* psignb */
7874 case 0x0f3809: /* psignw */
7875 case 0x0f380a: /* psignd */
7876 case 0x0f380b: /* pmulhrsw */
7877 case 0x0f381c: /* pabsb */
7878 case 0x0f381d: /* pabsw */
7879 case 0x0f381e: /* pabsd */
7880 case 0x0f382b: /* packusdw */
7881 case 0x0f3830: /* pmovzxbw */
7882 case 0x0f3831: /* pmovzxbd */
7883 case 0x0f3832: /* pmovzxbq */
7884 case 0x0f3833: /* pmovzxwd */
7885 case 0x0f3834: /* pmovzxwq */
7886 case 0x0f3835: /* pmovzxdq */
7887 case 0x0f3837: /* pcmpgtq */
7888 case 0x0f3838: /* pminsb */
7889 case 0x0f3839: /* pminsd */
7890 case 0x0f383a: /* pminuw */
7891 case 0x0f383b: /* pminud */
7892 case 0x0f383c: /* pmaxsb */
7893 case 0x0f383d: /* pmaxsd */
7894 case 0x0f383e: /* pmaxuw */
7895 case 0x0f383f: /* pmaxud */
7896 case 0x0f3840: /* pmulld */
7897 case 0x0f3841: /* phminposuw */
7898 case 0x0f3a0f: /* palignr */
7899 case 0x0f60: /* punpcklbw */
7900 case 0x0f61: /* punpcklwd */
7901 case 0x0f62: /* punpckldq */
7902 case 0x0f63: /* packsswb */
7903 case 0x0f64: /* pcmpgtb */
7904 case 0x0f65: /* pcmpgtw */
7905 case 0x0f66: /* pcmpgtd */
7906 case 0x0f67: /* packuswb */
7907 case 0x0f68: /* punpckhbw */
7908 case 0x0f69: /* punpckhwd */
7909 case 0x0f6a: /* punpckhdq */
7910 case 0x0f6b: /* packssdw */
7911 case 0x0f6e: /* movd */
7912 case 0x0f6f: /* movq */
7913 case 0x0f70: /* pshufw */
7914 case 0x0f74: /* pcmpeqb */
7915 case 0x0f75: /* pcmpeqw */
7916 case 0x0f76: /* pcmpeqd */
7917 case 0x0fc4: /* pinsrw */
7918 case 0x0fd1: /* psrlw */
7919 case 0x0fd2: /* psrld */
7920 case 0x0fd3: /* psrlq */
7921 case 0x0fd4: /* paddq */
7922 case 0x0fd5: /* pmullw */
7923 case 0xf20fd6: /* movdq2q */
7924 case 0x0fd8: /* psubusb */
7925 case 0x0fd9: /* psubusw */
7926 case 0x0fda: /* pminub */
7927 case 0x0fdb: /* pand */
7928 case 0x0fdc: /* paddusb */
7929 case 0x0fdd: /* paddusw */
7930 case 0x0fde: /* pmaxub */
7931 case 0x0fdf: /* pandn */
7932 case 0x0fe0: /* pavgb */
7933 case 0x0fe1: /* psraw */
7934 case 0x0fe2: /* psrad */
7935 case 0x0fe3: /* pavgw */
7936 case 0x0fe4: /* pmulhuw */
7937 case 0x0fe5: /* pmulhw */
7938 case 0x0fe8: /* psubsb */
7939 case 0x0fe9: /* psubsw */
7940 case 0x0fea: /* pminsw */
7941 case 0x0feb: /* por */
7942 case 0x0fec: /* paddsb */
7943 case 0x0fed: /* paddsw */
7944 case 0x0fee: /* pmaxsw */
7945 case 0x0fef: /* pxor */
7946 case 0x0ff1: /* psllw */
7947 case 0x0ff2: /* pslld */
7948 case 0x0ff3: /* psllq */
7949 case 0x0ff4: /* pmuludq */
7950 case 0x0ff5: /* pmaddwd */
7951 case 0x0ff6: /* psadbw */
7952 case 0x0ff8: /* psubb */
7953 case 0x0ff9: /* psubw */
7954 case 0x0ffa: /* psubd */
7955 case 0x0ffb: /* psubq */
7956 case 0x0ffc: /* paddb */
7957 case 0x0ffd: /* paddw */
7958 case 0x0ffe: /* paddd */
7959 if (i386_record_modrm (&ir))
7960 return -1;
7961 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7962 goto no_support;
7963 record_full_arch_list_add_reg (ir.regcache,
7964 I387_MM0_REGNUM (tdep) + ir.reg);
7965 break;
7966
7967 case 0x0f71: /* psllw */
7968 case 0x0f72: /* pslld */
7969 case 0x0f73: /* psllq */
7970 if (i386_record_modrm (&ir))
7971 return -1;
7972 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7973 goto no_support;
7974 record_full_arch_list_add_reg (ir.regcache,
7975 I387_MM0_REGNUM (tdep) + ir.rm);
7976 break;
7977
7978 case 0x660f71: /* psllw */
7979 case 0x660f72: /* pslld */
7980 case 0x660f73: /* psllq */
7981 if (i386_record_modrm (&ir))
7982 return -1;
7983 ir.rm |= ir.rex_b;
7984 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7985 goto no_support;
7986 record_full_arch_list_add_reg (ir.regcache,
7987 I387_XMM0_REGNUM (tdep) + ir.rm);
7988 break;
7989
7990 case 0x0f7e: /* movd */
7991 case 0x660f7e: /* movd */
7992 if (i386_record_modrm (&ir))
7993 return -1;
7994 if (ir.mod == 3)
7995 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7996 else
7997 {
7998 if (ir.dflag == 2)
7999 ir.ot = OT_QUAD;
8000 else
8001 ir.ot = OT_LONG;
8002 if (i386_record_lea_modrm (&ir))
8003 return -1;
8004 }
8005 break;
8006
8007 case 0x0f7f: /* movq */
8008 if (i386_record_modrm (&ir))
8009 return -1;
8010 if (ir.mod == 3)
8011 {
8012 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8013 goto no_support;
8014 record_full_arch_list_add_reg (ir.regcache,
8015 I387_MM0_REGNUM (tdep) + ir.rm);
8016 }
8017 else
8018 {
8019 ir.ot = OT_QUAD;
8020 if (i386_record_lea_modrm (&ir))
8021 return -1;
8022 }
8023 break;
8024
8025 case 0xf30fb8: /* popcnt */
8026 if (i386_record_modrm (&ir))
8027 return -1;
8028 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8029 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8030 break;
8031
8032 case 0x660fd6: /* movq */
8033 if (i386_record_modrm (&ir))
8034 return -1;
8035 if (ir.mod == 3)
8036 {
8037 ir.rm |= ir.rex_b;
8038 if (!i386_xmm_regnum_p (gdbarch,
8039 I387_XMM0_REGNUM (tdep) + ir.rm))
8040 goto no_support;
8041 record_full_arch_list_add_reg (ir.regcache,
8042 I387_XMM0_REGNUM (tdep) + ir.rm);
8043 }
8044 else
8045 {
8046 ir.ot = OT_QUAD;
8047 if (i386_record_lea_modrm (&ir))
8048 return -1;
8049 }
8050 break;
8051
8052 case 0x660f3817: /* ptest */
8053 case 0x0f2e: /* ucomiss */
8054 case 0x660f2e: /* ucomisd */
8055 case 0x0f2f: /* comiss */
8056 case 0x660f2f: /* comisd */
8057 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
8058 break;
8059
8060 case 0x0ff7: /* maskmovq */
8061 regcache_raw_read_unsigned (ir.regcache,
8062 ir.regmap[X86_RECORD_REDI_REGNUM],
8063 &addr);
8064 if (record_full_arch_list_add_mem (addr, 64))
8065 return -1;
8066 break;
8067
8068 case 0x660ff7: /* maskmovdqu */
8069 regcache_raw_read_unsigned (ir.regcache,
8070 ir.regmap[X86_RECORD_REDI_REGNUM],
8071 &addr);
8072 if (record_full_arch_list_add_mem (addr, 128))
8073 return -1;
8074 break;
8075
8076 default:
8077 goto no_support;
8078 break;
8079 }
8080 break;
8081
8082 default:
8083 goto no_support;
8084 break;
8085 }
8086
8087 /* In the future, maybe still need to deal with need_dasm. */
8088 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8089 if (record_full_arch_list_add_end ())
8090 return -1;
8091
8092 return 0;
8093
8094 no_support:
8095 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8096 "at address %s.\n"),
8097 (unsigned int) (opcode),
8098 paddress (gdbarch, ir.orig_addr));
8099 return -1;
8100 }
8101
8102 static const int i386_record_regmap[] =
8103 {
8104 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8105 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8106 0, 0, 0, 0, 0, 0, 0, 0,
8107 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8108 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8109 };
8110
8111 /* Check that the given address appears suitable for a fast
8112 tracepoint, which on x86-64 means that we need an instruction of at
8113 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8114 jump and not have to worry about program jumps to an address in the
8115 middle of the tracepoint jump. On x86, it may be possible to use
8116 4-byte jumps with a 2-byte offset to a trampoline located in the
8117 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
8118 of instruction to replace, and 0 if not, plus an explanatory
8119 string. */
8120
8121 static int
8122 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8123 std::string *msg)
8124 {
8125 int len, jumplen;
8126
8127 /* Ask the target for the minimum instruction length supported. */
8128 jumplen = target_get_min_fast_tracepoint_insn_len ();
8129
8130 if (jumplen < 0)
8131 {
8132 /* If the target does not support the get_min_fast_tracepoint_insn_len
8133 operation, assume that fast tracepoints will always be implemented
8134 using 4-byte relative jumps on both x86 and x86-64. */
8135 jumplen = 5;
8136 }
8137 else if (jumplen == 0)
8138 {
8139 /* If the target does support get_min_fast_tracepoint_insn_len but
8140 returns zero, then the IPA has not loaded yet. In this case,
8141 we optimistically assume that truncated 2-byte relative jumps
8142 will be available on x86, and compensate later if this assumption
8143 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8144 jumps will always be used. */
8145 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8146 }
8147
8148 /* Check for fit. */
8149 len = gdb_insn_length (gdbarch, addr);
8150
8151 if (len < jumplen)
8152 {
8153 /* Return a bit of target-specific detail to add to the caller's
8154 generic failure message. */
8155 if (msg)
8156 *msg = string_printf (_("; instruction is only %d bytes long, "
8157 "need at least %d bytes for the jump"),
8158 len, jumplen);
8159 return 0;
8160 }
8161 else
8162 {
8163 if (msg)
8164 msg->clear ();
8165 return 1;
8166 }
8167 }
8168
8169 /* Return a floating-point format for a floating-point variable of
8170 length LEN in bits. If non-NULL, NAME is the name of its type.
8171 If no suitable type is found, return NULL. */
8172
8173 static const struct floatformat **
8174 i386_floatformat_for_type (struct gdbarch *gdbarch,
8175 const char *name, int len)
8176 {
8177 if (len == 128 && name)
8178 if (strcmp (name, "__float128") == 0
8179 || strcmp (name, "_Float128") == 0
8180 || strcmp (name, "complex _Float128") == 0
8181 || strcmp (name, "complex(kind=16)") == 0
8182 || strcmp (name, "complex*32") == 0
8183 || strcmp (name, "COMPLEX*32") == 0
8184 || strcmp (name, "quad complex") == 0
8185 || strcmp (name, "real(kind=16)") == 0
8186 || strcmp (name, "real*16") == 0
8187 || strcmp (name, "REAL*16") == 0)
8188 return floatformats_ia64_quad;
8189
8190 return default_floatformat_for_type (gdbarch, name, len);
8191 }
8192
8193 static int
8194 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8195 struct tdesc_arch_data *tdesc_data)
8196 {
8197 const struct target_desc *tdesc = tdep->tdesc;
8198 const struct tdesc_feature *feature_core;
8199
8200 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8201 *feature_avx512, *feature_pkeys, *feature_segments;
8202 int i, num_regs, valid_p;
8203
8204 if (! tdesc_has_registers (tdesc))
8205 return 0;
8206
8207 /* Get core registers. */
8208 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
8209 if (feature_core == NULL)
8210 return 0;
8211
8212 /* Get SSE registers. */
8213 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
8214
8215 /* Try AVX registers. */
8216 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8217
8218 /* Try MPX registers. */
8219 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8220
8221 /* Try AVX512 registers. */
8222 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8223
8224 /* Try segment base registers. */
8225 feature_segments = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments");
8226
8227 /* Try PKEYS */
8228 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8229
8230 valid_p = 1;
8231
8232 /* The XCR0 bits. */
8233 if (feature_avx512)
8234 {
8235 /* AVX512 register description requires AVX register description. */
8236 if (!feature_avx)
8237 return 0;
8238
8239 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
8240
8241 /* It may have been set by OSABI initialization function. */
8242 if (tdep->k0_regnum < 0)
8243 {
8244 tdep->k_register_names = i386_k_names;
8245 tdep->k0_regnum = I386_K0_REGNUM;
8246 }
8247
8248 for (i = 0; i < I387_NUM_K_REGS; i++)
8249 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8250 tdep->k0_regnum + i,
8251 i386_k_names[i]);
8252
8253 if (tdep->num_zmm_regs == 0)
8254 {
8255 tdep->zmmh_register_names = i386_zmmh_names;
8256 tdep->num_zmm_regs = 8;
8257 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8258 }
8259
8260 for (i = 0; i < tdep->num_zmm_regs; i++)
8261 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8262 tdep->zmm0h_regnum + i,
8263 tdep->zmmh_register_names[i]);
8264
8265 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8266 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8267 tdep->xmm16_regnum + i,
8268 tdep->xmm_avx512_register_names[i]);
8269
8270 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8271 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8272 tdep->ymm16h_regnum + i,
8273 tdep->ymm16h_register_names[i]);
8274 }
8275 if (feature_avx)
8276 {
8277 /* AVX register description requires SSE register description. */
8278 if (!feature_sse)
8279 return 0;
8280
8281 if (!feature_avx512)
8282 tdep->xcr0 = X86_XSTATE_AVX_MASK;
8283
8284 /* It may have been set by OSABI initialization function. */
8285 if (tdep->num_ymm_regs == 0)
8286 {
8287 tdep->ymmh_register_names = i386_ymmh_names;
8288 tdep->num_ymm_regs = 8;
8289 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8290 }
8291
8292 for (i = 0; i < tdep->num_ymm_regs; i++)
8293 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8294 tdep->ymm0h_regnum + i,
8295 tdep->ymmh_register_names[i]);
8296 }
8297 else if (feature_sse)
8298 tdep->xcr0 = X86_XSTATE_SSE_MASK;
8299 else
8300 {
8301 tdep->xcr0 = X86_XSTATE_X87_MASK;
8302 tdep->num_xmm_regs = 0;
8303 }
8304
8305 num_regs = tdep->num_core_regs;
8306 for (i = 0; i < num_regs; i++)
8307 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8308 tdep->register_names[i]);
8309
8310 if (feature_sse)
8311 {
8312 /* Need to include %mxcsr, so add one. */
8313 num_regs += tdep->num_xmm_regs + 1;
8314 for (; i < num_regs; i++)
8315 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8316 tdep->register_names[i]);
8317 }
8318
8319 if (feature_mpx)
8320 {
8321 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
8322
8323 if (tdep->bnd0r_regnum < 0)
8324 {
8325 tdep->mpx_register_names = i386_mpx_names;
8326 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8327 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8328 }
8329
8330 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8331 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8332 I387_BND0R_REGNUM (tdep) + i,
8333 tdep->mpx_register_names[i]);
8334 }
8335
8336 if (feature_segments)
8337 {
8338 if (tdep->fsbase_regnum < 0)
8339 tdep->fsbase_regnum = I386_FSBASE_REGNUM;
8340 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8341 tdep->fsbase_regnum, "fs_base");
8342 valid_p &= tdesc_numbered_register (feature_segments, tdesc_data,
8343 tdep->fsbase_regnum + 1, "gs_base");
8344 }
8345
8346 if (feature_pkeys)
8347 {
8348 tdep->xcr0 |= X86_XSTATE_PKRU;
8349 if (tdep->pkru_regnum < 0)
8350 {
8351 tdep->pkeys_register_names = i386_pkeys_names;
8352 tdep->pkru_regnum = I386_PKRU_REGNUM;
8353 tdep->num_pkeys_regs = 1;
8354 }
8355
8356 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8357 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8358 I387_PKRU_REGNUM (tdep) + i,
8359 tdep->pkeys_register_names[i]);
8360 }
8361
8362 return valid_p;
8363 }
8364
8365 \f
8366
8367 /* Implement the type_align gdbarch function. */
8368
8369 static ULONGEST
8370 i386_type_align (struct gdbarch *gdbarch, struct type *type)
8371 {
8372 type = check_typedef (type);
8373
8374 if (gdbarch_ptr_bit (gdbarch) == 32)
8375 {
8376 if ((type->code () == TYPE_CODE_INT
8377 || type->code () == TYPE_CODE_FLT)
8378 && TYPE_LENGTH (type) > 4)
8379 return 4;
8380
8381 /* Handle x86's funny long double. */
8382 if (type->code () == TYPE_CODE_FLT
8383 && gdbarch_long_double_bit (gdbarch) == TYPE_LENGTH (type) * 8)
8384 return 4;
8385 }
8386
8387 return 0;
8388 }
8389
8390 \f
8391 /* Note: This is called for both i386 and amd64. */
8392
8393 static struct gdbarch *
8394 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8395 {
8396 struct gdbarch_tdep *tdep;
8397 struct gdbarch *gdbarch;
8398 const struct target_desc *tdesc;
8399 int mm0_regnum;
8400 int ymm0_regnum;
8401 int bnd0_regnum;
8402 int num_bnd_cooked;
8403
8404 /* If there is already a candidate, use it. */
8405 arches = gdbarch_list_lookup_by_info (arches, &info);
8406 if (arches != NULL)
8407 return arches->gdbarch;
8408
8409 /* Allocate space for the new architecture. Assume i386 for now. */
8410 tdep = XCNEW (struct gdbarch_tdep);
8411 gdbarch = gdbarch_alloc (&info, tdep);
8412
8413 /* General-purpose registers. */
8414 tdep->gregset_reg_offset = NULL;
8415 tdep->gregset_num_regs = I386_NUM_GREGS;
8416 tdep->sizeof_gregset = 0;
8417
8418 /* Floating-point registers. */
8419 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8420 tdep->fpregset = &i386_fpregset;
8421
8422 /* The default settings include the FPU registers, the MMX registers
8423 and the SSE registers. This can be overridden for a specific ABI
8424 by adjusting the members `st0_regnum', `mm0_regnum' and
8425 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
8426 will show up in the output of "info all-registers". */
8427
8428 tdep->st0_regnum = I386_ST0_REGNUM;
8429
8430 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8431 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8432
8433 tdep->jb_pc_offset = -1;
8434 tdep->struct_return = pcc_struct_return;
8435 tdep->sigtramp_start = 0;
8436 tdep->sigtramp_end = 0;
8437 tdep->sigtramp_p = i386_sigtramp_p;
8438 tdep->sigcontext_addr = NULL;
8439 tdep->sc_reg_offset = NULL;
8440 tdep->sc_pc_offset = -1;
8441 tdep->sc_sp_offset = -1;
8442
8443 tdep->xsave_xcr0_offset = -1;
8444
8445 tdep->record_regmap = i386_record_regmap;
8446
8447 set_gdbarch_type_align (gdbarch, i386_type_align);
8448
8449 /* The format used for `long double' on almost all i386 targets is
8450 the i387 extended floating-point format. In fact, of all targets
8451 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8452 on having a `long double' that's not `long' at all. */
8453 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8454
8455 /* Although the i387 extended floating-point has only 80 significant
8456 bits, a `long double' actually takes up 96, probably to enforce
8457 alignment. */
8458 set_gdbarch_long_double_bit (gdbarch, 96);
8459
8460 /* Support of bfloat16 format. */
8461 set_gdbarch_bfloat16_format (gdbarch, floatformats_bfloat16);
8462
8463 /* Support for floating-point data type variants. */
8464 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8465
8466 /* Register numbers of various important registers. */
8467 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8468 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8469 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8470 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8471
8472 /* NOTE: kettenis/20040418: GCC does have two possible register
8473 numbering schemes on the i386: dbx and SVR4. These schemes
8474 differ in how they number %ebp, %esp, %eflags, and the
8475 floating-point registers, and are implemented by the arrays
8476 dbx_register_map[] and svr4_dbx_register_map in
8477 gcc/config/i386.c. GCC also defines a third numbering scheme in
8478 gcc/config/i386.c, which it designates as the "default" register
8479 map used in 64bit mode. This last register numbering scheme is
8480 implemented in dbx64_register_map, and is used for AMD64; see
8481 amd64-tdep.c.
8482
8483 Currently, each GCC i386 target always uses the same register
8484 numbering scheme across all its supported debugging formats
8485 i.e. SDB (COFF), stabs and DWARF 2. This is because
8486 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8487 DBX_REGISTER_NUMBER macro which is defined by each target's
8488 respective config header in a manner independent of the requested
8489 output debugging format.
8490
8491 This does not match the arrangement below, which presumes that
8492 the SDB and stabs numbering schemes differ from the DWARF and
8493 DWARF 2 ones. The reason for this arrangement is that it is
8494 likely to get the numbering scheme for the target's
8495 default/native debug format right. For targets where GCC is the
8496 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8497 targets where the native toolchain uses a different numbering
8498 scheme for a particular debug format (stabs-in-ELF on Solaris)
8499 the defaults below will have to be overridden, like
8500 i386_elf_init_abi() does. */
8501
8502 /* Use the dbx register numbering scheme for stabs and COFF. */
8503 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8504 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8505
8506 /* Use the SVR4 register numbering scheme for DWARF 2. */
8507 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
8508
8509 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8510 be in use on any of the supported i386 targets. */
8511
8512 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8513
8514 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8515
8516 /* Call dummy code. */
8517 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8518 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
8519 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
8520 set_gdbarch_frame_align (gdbarch, i386_frame_align);
8521
8522 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8523 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8524 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8525
8526 set_gdbarch_return_value (gdbarch, i386_return_value);
8527
8528 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8529
8530 /* Stack grows downward. */
8531 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8532
8533 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8534 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8535
8536 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8537 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8538
8539 set_gdbarch_frame_args_skip (gdbarch, 8);
8540
8541 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8542
8543 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8544
8545 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8546
8547 /* Add the i386 register groups. */
8548 i386_add_reggroups (gdbarch);
8549 tdep->register_reggroup_p = i386_register_reggroup_p;
8550
8551 /* Helper for function argument information. */
8552 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8553
8554 /* Hook the function epilogue frame unwinder. This unwinder is
8555 appended to the list first, so that it supercedes the DWARF
8556 unwinder in function epilogues (where the DWARF unwinder
8557 currently fails). */
8558 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8559
8560 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
8561 to the list before the prologue-based unwinders, so that DWARF
8562 CFI info will be used if it is available. */
8563 dwarf2_append_unwinders (gdbarch);
8564
8565 frame_base_set_default (gdbarch, &i386_frame_base);
8566
8567 /* Pseudo registers may be changed by amd64_init_abi. */
8568 set_gdbarch_pseudo_register_read_value (gdbarch,
8569 i386_pseudo_register_read_value);
8570 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8571 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8572 i386_ax_pseudo_register_collect);
8573
8574 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8575 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8576
8577 /* Override the normal target description method to make the AVX
8578 upper halves anonymous. */
8579 set_gdbarch_register_name (gdbarch, i386_register_name);
8580
8581 /* Even though the default ABI only includes general-purpose registers,
8582 floating-point registers and the SSE registers, we have to leave a
8583 gap for the upper AVX, MPX and AVX512 registers. */
8584 set_gdbarch_num_regs (gdbarch, I386_NUM_REGS);
8585
8586 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8587
8588 /* Get the x86 target description from INFO. */
8589 tdesc = info.target_desc;
8590 if (! tdesc_has_registers (tdesc))
8591 tdesc = i386_target_description (X86_XSTATE_SSE_MASK, false);
8592 tdep->tdesc = tdesc;
8593
8594 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8595 tdep->register_names = i386_register_names;
8596
8597 /* No upper YMM registers. */
8598 tdep->ymmh_register_names = NULL;
8599 tdep->ymm0h_regnum = -1;
8600
8601 /* No upper ZMM registers. */
8602 tdep->zmmh_register_names = NULL;
8603 tdep->zmm0h_regnum = -1;
8604
8605 /* No high XMM registers. */
8606 tdep->xmm_avx512_register_names = NULL;
8607 tdep->xmm16_regnum = -1;
8608
8609 /* No upper YMM16-31 registers. */
8610 tdep->ymm16h_register_names = NULL;
8611 tdep->ymm16h_regnum = -1;
8612
8613 tdep->num_byte_regs = 8;
8614 tdep->num_word_regs = 8;
8615 tdep->num_dword_regs = 0;
8616 tdep->num_mmx_regs = 8;
8617 tdep->num_ymm_regs = 0;
8618
8619 /* No MPX registers. */
8620 tdep->bnd0r_regnum = -1;
8621 tdep->bndcfgu_regnum = -1;
8622
8623 /* No AVX512 registers. */
8624 tdep->k0_regnum = -1;
8625 tdep->num_zmm_regs = 0;
8626 tdep->num_ymm_avx512_regs = 0;
8627 tdep->num_xmm_avx512_regs = 0;
8628
8629 /* No PKEYS registers */
8630 tdep->pkru_regnum = -1;
8631 tdep->num_pkeys_regs = 0;
8632
8633 /* No segment base registers. */
8634 tdep->fsbase_regnum = -1;
8635
8636 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
8637
8638 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8639
8640 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8641
8642 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8643 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8644 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8645
8646 /* Hook in ABI-specific overrides, if they have been registered.
8647 Note: If INFO specifies a 64 bit arch, this is where we turn
8648 a 32-bit i386 into a 64-bit amd64. */
8649 info.tdesc_data = tdesc_data.get ();
8650 gdbarch_init_osabi (info, gdbarch);
8651
8652 if (!i386_validate_tdesc_p (tdep, tdesc_data.get ()))
8653 {
8654 xfree (tdep);
8655 gdbarch_free (gdbarch);
8656 return NULL;
8657 }
8658
8659 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8660
8661 /* Wire in pseudo registers. Number of pseudo registers may be
8662 changed. */
8663 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8664 + tdep->num_word_regs
8665 + tdep->num_dword_regs
8666 + tdep->num_mmx_regs
8667 + tdep->num_ymm_regs
8668 + num_bnd_cooked
8669 + tdep->num_ymm_avx512_regs
8670 + tdep->num_zmm_regs));
8671
8672 /* Target description may be changed. */
8673 tdesc = tdep->tdesc;
8674
8675 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
8676
8677 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8678 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8679
8680 /* Make %al the first pseudo-register. */
8681 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8682 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8683
8684 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8685 if (tdep->num_dword_regs)
8686 {
8687 /* Support dword pseudo-register if it hasn't been disabled. */
8688 tdep->eax_regnum = ymm0_regnum;
8689 ymm0_regnum += tdep->num_dword_regs;
8690 }
8691 else
8692 tdep->eax_regnum = -1;
8693
8694 mm0_regnum = ymm0_regnum;
8695 if (tdep->num_ymm_regs)
8696 {
8697 /* Support YMM pseudo-register if it is available. */
8698 tdep->ymm0_regnum = ymm0_regnum;
8699 mm0_regnum += tdep->num_ymm_regs;
8700 }
8701 else
8702 tdep->ymm0_regnum = -1;
8703
8704 if (tdep->num_ymm_avx512_regs)
8705 {
8706 /* Support YMM16-31 pseudo registers if available. */
8707 tdep->ymm16_regnum = mm0_regnum;
8708 mm0_regnum += tdep->num_ymm_avx512_regs;
8709 }
8710 else
8711 tdep->ymm16_regnum = -1;
8712
8713 if (tdep->num_zmm_regs)
8714 {
8715 /* Support ZMM pseudo-register if it is available. */
8716 tdep->zmm0_regnum = mm0_regnum;
8717 mm0_regnum += tdep->num_zmm_regs;
8718 }
8719 else
8720 tdep->zmm0_regnum = -1;
8721
8722 bnd0_regnum = mm0_regnum;
8723 if (tdep->num_mmx_regs != 0)
8724 {
8725 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8726 tdep->mm0_regnum = mm0_regnum;
8727 bnd0_regnum += tdep->num_mmx_regs;
8728 }
8729 else
8730 tdep->mm0_regnum = -1;
8731
8732 if (tdep->bnd0r_regnum > 0)
8733 tdep->bnd0_regnum = bnd0_regnum;
8734 else
8735 tdep-> bnd0_regnum = -1;
8736
8737 /* Hook in the legacy prologue-based unwinders last (fallback). */
8738 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8739 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8740 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8741
8742 /* If we have a register mapping, enable the generic core file
8743 support, unless it has already been enabled. */
8744 if (tdep->gregset_reg_offset
8745 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
8746 set_gdbarch_iterate_over_regset_sections
8747 (gdbarch, i386_iterate_over_regset_sections);
8748
8749 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8750 i386_fast_tracepoint_valid_at);
8751
8752 return gdbarch;
8753 }
8754
8755 \f
8756
8757 /* Return the target description for a specified XSAVE feature mask. */
8758
8759 const struct target_desc *
8760 i386_target_description (uint64_t xcr0, bool segments)
8761 {
8762 static target_desc *i386_tdescs \
8763 [2/*SSE*/][2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
8764 target_desc **tdesc;
8765
8766 tdesc = &i386_tdescs[(xcr0 & X86_XSTATE_SSE) ? 1 : 0]
8767 [(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
8768 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
8769 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
8770 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
8771 [segments ? 1 : 0];
8772
8773 if (*tdesc == NULL)
8774 *tdesc = i386_create_target_description (xcr0, false, segments);
8775
8776 return *tdesc;
8777 }
8778
8779 #define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8780
8781 /* Find the bound directory base address. */
8782
8783 static unsigned long
8784 i386_mpx_bd_base (void)
8785 {
8786 struct regcache *rcache;
8787 struct gdbarch_tdep *tdep;
8788 ULONGEST ret;
8789 enum register_status regstatus;
8790
8791 rcache = get_current_regcache ();
8792 tdep = gdbarch_tdep (rcache->arch ());
8793
8794 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8795
8796 if (regstatus != REG_VALID)
8797 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8798
8799 return ret & MPX_BASE_MASK;
8800 }
8801
8802 int
8803 i386_mpx_enabled (void)
8804 {
8805 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8806 const struct target_desc *tdesc = tdep->tdesc;
8807
8808 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8809 }
8810
8811 #define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8812 #define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8813 #define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8814 #define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8815
8816 /* Find the bound table entry given the pointer location and the base
8817 address of the table. */
8818
8819 static CORE_ADDR
8820 i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8821 {
8822 CORE_ADDR offset1;
8823 CORE_ADDR offset2;
8824 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8825 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8826 CORE_ADDR bd_entry_addr;
8827 CORE_ADDR bt_addr;
8828 CORE_ADDR bd_entry;
8829 struct gdbarch *gdbarch = get_current_arch ();
8830 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8831
8832
8833 if (gdbarch_ptr_bit (gdbarch) == 64)
8834 {
8835 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
8836 bd_ptr_r_shift = 20;
8837 bd_ptr_l_shift = 3;
8838 bt_select_r_shift = 3;
8839 bt_select_l_shift = 5;
8840 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8841
8842 if ( sizeof (CORE_ADDR) == 4)
8843 error (_("bound table examination not supported\
8844 for 64-bit process with 32-bit GDB"));
8845 }
8846 else
8847 {
8848 mpx_bd_mask = MPX_BD_MASK_32;
8849 bd_ptr_r_shift = 12;
8850 bd_ptr_l_shift = 2;
8851 bt_select_r_shift = 2;
8852 bt_select_l_shift = 4;
8853 bt_mask = MPX_BT_MASK_32;
8854 }
8855
8856 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8857 bd_entry_addr = bd_base + offset1;
8858 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8859
8860 if ((bd_entry & 0x1) == 0)
8861 error (_("Invalid bounds directory entry at %s."),
8862 paddress (get_current_arch (), bd_entry_addr));
8863
8864 /* Clearing status bit. */
8865 bd_entry--;
8866 bt_addr = bd_entry & ~bt_select_r_shift;
8867 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8868
8869 return bt_addr + offset2;
8870 }
8871
8872 /* Print routine for the mpx bounds. */
8873
8874 static void
8875 i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8876 {
8877 struct ui_out *uiout = current_uiout;
8878 LONGEST size;
8879 struct gdbarch *gdbarch = get_current_arch ();
8880 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8881 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8882
8883 if (bounds_in_map == 1)
8884 {
8885 uiout->text ("Null bounds on map:");
8886 uiout->text (" pointer value = ");
8887 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8888 uiout->text (".");
8889 uiout->text ("\n");
8890 }
8891 else
8892 {
8893 uiout->text ("{lbound = ");
8894 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8895 uiout->text (", ubound = ");
8896
8897 /* The upper bound is stored in 1's complement. */
8898 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8899 uiout->text ("}: pointer value = ");
8900 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8901
8902 if (gdbarch_ptr_bit (gdbarch) == 64)
8903 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8904 else
8905 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8906
8907 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8908 -1 represents in this sense full memory access, and there is no need
8909 one to the size. */
8910
8911 size = (size > -1 ? size + 1 : size);
8912 uiout->text (", size = ");
8913 uiout->field_string ("size", plongest (size));
8914
8915 uiout->text (", metadata = ");
8916 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8917 uiout->text ("\n");
8918 }
8919 }
8920
8921 /* Implement the command "show mpx bound". */
8922
8923 static void
8924 i386_mpx_info_bounds (const char *args, int from_tty)
8925 {
8926 CORE_ADDR bd_base = 0;
8927 CORE_ADDR addr;
8928 CORE_ADDR bt_entry_addr = 0;
8929 CORE_ADDR bt_entry[4];
8930 int i;
8931 struct gdbarch *gdbarch = get_current_arch ();
8932 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8933
8934 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8935 || !i386_mpx_enabled ())
8936 {
8937 printf_unfiltered (_("Intel Memory Protection Extensions not "
8938 "supported on this target.\n"));
8939 return;
8940 }
8941
8942 if (args == NULL)
8943 {
8944 printf_unfiltered (_("Address of pointer variable expected.\n"));
8945 return;
8946 }
8947
8948 addr = parse_and_eval_address (args);
8949
8950 bd_base = i386_mpx_bd_base ();
8951 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8952
8953 memset (bt_entry, 0, sizeof (bt_entry));
8954
8955 for (i = 0; i < 4; i++)
8956 bt_entry[i] = read_memory_typed_address (bt_entry_addr
8957 + i * TYPE_LENGTH (data_ptr_type),
8958 data_ptr_type);
8959
8960 i386_mpx_print_bounds (bt_entry);
8961 }
8962
8963 /* Implement the command "set mpx bound". */
8964
8965 static void
8966 i386_mpx_set_bounds (const char *args, int from_tty)
8967 {
8968 CORE_ADDR bd_base = 0;
8969 CORE_ADDR addr, lower, upper;
8970 CORE_ADDR bt_entry_addr = 0;
8971 CORE_ADDR bt_entry[2];
8972 const char *input = args;
8973 int i;
8974 struct gdbarch *gdbarch = get_current_arch ();
8975 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8976 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8977
8978 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8979 || !i386_mpx_enabled ())
8980 error (_("Intel Memory Protection Extensions not supported\
8981 on this target."));
8982
8983 if (args == NULL)
8984 error (_("Pointer value expected."));
8985
8986 addr = value_as_address (parse_to_comma_and_eval (&input));
8987
8988 if (input[0] == ',')
8989 ++input;
8990 if (input[0] == '\0')
8991 error (_("wrong number of arguments: missing lower and upper bound."));
8992 lower = value_as_address (parse_to_comma_and_eval (&input));
8993
8994 if (input[0] == ',')
8995 ++input;
8996 if (input[0] == '\0')
8997 error (_("Wrong number of arguments; Missing upper bound."));
8998 upper = value_as_address (parse_to_comma_and_eval (&input));
8999
9000 bd_base = i386_mpx_bd_base ();
9001 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
9002 for (i = 0; i < 2; i++)
9003 bt_entry[i] = read_memory_typed_address (bt_entry_addr
9004 + i * TYPE_LENGTH (data_ptr_type),
9005 data_ptr_type);
9006 bt_entry[0] = (uint64_t) lower;
9007 bt_entry[1] = ~(uint64_t) upper;
9008
9009 for (i = 0; i < 2; i++)
9010 write_memory_unsigned_integer (bt_entry_addr
9011 + i * TYPE_LENGTH (data_ptr_type),
9012 TYPE_LENGTH (data_ptr_type), byte_order,
9013 bt_entry[i]);
9014 }
9015
9016 static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
9017
9018 void _initialize_i386_tdep ();
9019 void
9020 _initialize_i386_tdep ()
9021 {
9022 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9023
9024 /* Add the variable that controls the disassembly flavor. */
9025 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9026 &disassembly_flavor, _("\
9027 Set the disassembly flavor."), _("\
9028 Show the disassembly flavor."), _("\
9029 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9030 NULL,
9031 NULL, /* FIXME: i18n: */
9032 &setlist, &showlist);
9033
9034 /* Add the variable that controls the convention for returning
9035 structs. */
9036 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9037 &struct_convention, _("\
9038 Set the convention for returning small structs."), _("\
9039 Show the convention for returning small structs."), _("\
9040 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9041 is \"default\"."),
9042 NULL,
9043 NULL, /* FIXME: i18n: */
9044 &setlist, &showlist);
9045
9046 /* Add "mpx" prefix for the set commands. */
9047
9048 add_basic_prefix_cmd ("mpx", class_support, _("\
9049 Set Intel Memory Protection Extensions specific variables."),
9050 &mpx_set_cmdlist,
9051 0 /* allow-unknown */, &setlist);
9052
9053 /* Add "mpx" prefix for the show commands. */
9054
9055 add_show_prefix_cmd ("mpx", class_support, _("\
9056 Show Intel Memory Protection Extensions specific variables."),
9057 &mpx_show_cmdlist,
9058 0 /* allow-unknown */, &showlist);
9059
9060 /* Add "bound" command for the show mpx commands list. */
9061
9062 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9063 "Show the memory bounds for a given array/pointer storage\
9064 in the bound table.",
9065 &mpx_show_cmdlist);
9066
9067 /* Add "bound" command for the set mpx commands list. */
9068
9069 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9070 "Set the memory bounds for a given array/pointer storage\
9071 in the bound table.",
9072 &mpx_set_cmdlist);
9073
9074 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
9075 i386_svr4_init_abi);
9076
9077 /* Initialize the i386-specific register groups. */
9078 i386_init_reggroups ();
9079
9080 /* Tell remote stub that we support XML target description. */
9081 register_remote_support_xml ("i386");
9082 }