2012-04-27 Sergio Durigan Junior <sergiodj@redhat.com>
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include "gdb_string.h"
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include <stdint.h>
56
57 #include "features/i386/i386.c"
58 #include "features/i386/i386-avx.c"
59 #include "features/i386/i386-mmx.c"
60
61 #include "ax.h"
62 #include "ax-gdb.h"
63
64 #include "stap-probe.h"
65 #include "user-regs.h"
66 #include "cli/cli-utils.h"
67 #include "expression.h"
68 #include "parser-defs.h"
69 #include <ctype.h>
70
71 /* Register names. */
72
73 static const char *i386_register_names[] =
74 {
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86 };
87
88 static const char *i386_ymm_names[] =
89 {
90 "ymm0", "ymm1", "ymm2", "ymm3",
91 "ymm4", "ymm5", "ymm6", "ymm7",
92 };
93
94 static const char *i386_ymmh_names[] =
95 {
96 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
97 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
98 };
99
100 /* Register names for MMX pseudo-registers. */
101
102 static const char *i386_mmx_names[] =
103 {
104 "mm0", "mm1", "mm2", "mm3",
105 "mm4", "mm5", "mm6", "mm7"
106 };
107
108 /* Register names for byte pseudo-registers. */
109
110 static const char *i386_byte_names[] =
111 {
112 "al", "cl", "dl", "bl",
113 "ah", "ch", "dh", "bh"
114 };
115
116 /* Register names for word pseudo-registers. */
117
118 static const char *i386_word_names[] =
119 {
120 "ax", "cx", "dx", "bx",
121 "", "bp", "si", "di"
122 };
123
124 /* MMX register? */
125
126 static int
127 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
128 {
129 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
130 int mm0_regnum = tdep->mm0_regnum;
131
132 if (mm0_regnum < 0)
133 return 0;
134
135 regnum -= mm0_regnum;
136 return regnum >= 0 && regnum < tdep->num_mmx_regs;
137 }
138
139 /* Byte register? */
140
141 int
142 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
143 {
144 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
145
146 regnum -= tdep->al_regnum;
147 return regnum >= 0 && regnum < tdep->num_byte_regs;
148 }
149
150 /* Word register? */
151
152 int
153 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
154 {
155 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156
157 regnum -= tdep->ax_regnum;
158 return regnum >= 0 && regnum < tdep->num_word_regs;
159 }
160
161 /* Dword register? */
162
163 int
164 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
165 {
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int eax_regnum = tdep->eax_regnum;
168
169 if (eax_regnum < 0)
170 return 0;
171
172 regnum -= eax_regnum;
173 return regnum >= 0 && regnum < tdep->num_dword_regs;
174 }
175
176 static int
177 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
178 {
179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
180 int ymm0h_regnum = tdep->ymm0h_regnum;
181
182 if (ymm0h_regnum < 0)
183 return 0;
184
185 regnum -= ymm0h_regnum;
186 return regnum >= 0 && regnum < tdep->num_ymm_regs;
187 }
188
189 /* AVX register? */
190
191 int
192 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
193 {
194 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
195 int ymm0_regnum = tdep->ymm0_regnum;
196
197 if (ymm0_regnum < 0)
198 return 0;
199
200 regnum -= ymm0_regnum;
201 return regnum >= 0 && regnum < tdep->num_ymm_regs;
202 }
203
204 /* SSE register? */
205
206 int
207 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
208 {
209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
210 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
211
212 if (num_xmm_regs == 0)
213 return 0;
214
215 regnum -= I387_XMM0_REGNUM (tdep);
216 return regnum >= 0 && regnum < num_xmm_regs;
217 }
218
219 static int
220 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
221 {
222 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
223
224 if (I387_NUM_XMM_REGS (tdep) == 0)
225 return 0;
226
227 return (regnum == I387_MXCSR_REGNUM (tdep));
228 }
229
230 /* FP register? */
231
232 int
233 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
234 {
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 if (I387_ST0_REGNUM (tdep) < 0)
238 return 0;
239
240 return (I387_ST0_REGNUM (tdep) <= regnum
241 && regnum < I387_FCTRL_REGNUM (tdep));
242 }
243
244 int
245 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
246 {
247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
248
249 if (I387_ST0_REGNUM (tdep) < 0)
250 return 0;
251
252 return (I387_FCTRL_REGNUM (tdep) <= regnum
253 && regnum < I387_XMM0_REGNUM (tdep));
254 }
255
256 /* Return the name of register REGNUM, or the empty string if it is
257 an anonymous register. */
258
259 static const char *
260 i386_register_name (struct gdbarch *gdbarch, int regnum)
261 {
262 /* Hide the upper YMM registers. */
263 if (i386_ymmh_regnum_p (gdbarch, regnum))
264 return "";
265
266 return tdesc_register_name (gdbarch, regnum);
267 }
268
269 /* Return the name of register REGNUM. */
270
271 const char *
272 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
273 {
274 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
275 if (i386_mmx_regnum_p (gdbarch, regnum))
276 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
277 else if (i386_ymm_regnum_p (gdbarch, regnum))
278 return i386_ymm_names[regnum - tdep->ymm0_regnum];
279 else if (i386_byte_regnum_p (gdbarch, regnum))
280 return i386_byte_names[regnum - tdep->al_regnum];
281 else if (i386_word_regnum_p (gdbarch, regnum))
282 return i386_word_names[regnum - tdep->ax_regnum];
283
284 internal_error (__FILE__, __LINE__, _("invalid regnum"));
285 }
286
287 /* Convert a dbx register number REG to the appropriate register
288 number used by GDB. */
289
290 static int
291 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
292 {
293 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
294
295 /* This implements what GCC calls the "default" register map
296 (dbx_register_map[]). */
297
298 if (reg >= 0 && reg <= 7)
299 {
300 /* General-purpose registers. The debug info calls %ebp
301 register 4, and %esp register 5. */
302 if (reg == 4)
303 return 5;
304 else if (reg == 5)
305 return 4;
306 else return reg;
307 }
308 else if (reg >= 12 && reg <= 19)
309 {
310 /* Floating-point registers. */
311 return reg - 12 + I387_ST0_REGNUM (tdep);
312 }
313 else if (reg >= 21 && reg <= 28)
314 {
315 /* SSE registers. */
316 int ymm0_regnum = tdep->ymm0_regnum;
317
318 if (ymm0_regnum >= 0
319 && i386_xmm_regnum_p (gdbarch, reg))
320 return reg - 21 + ymm0_regnum;
321 else
322 return reg - 21 + I387_XMM0_REGNUM (tdep);
323 }
324 else if (reg >= 29 && reg <= 36)
325 {
326 /* MMX registers. */
327 return reg - 29 + I387_MM0_REGNUM (tdep);
328 }
329
330 /* This will hopefully provoke a warning. */
331 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
332 }
333
334 /* Convert SVR4 register number REG to the appropriate register number
335 used by GDB. */
336
337 static int
338 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
339 {
340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
341
342 /* This implements the GCC register map that tries to be compatible
343 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
344
345 /* The SVR4 register numbering includes %eip and %eflags, and
346 numbers the floating point registers differently. */
347 if (reg >= 0 && reg <= 9)
348 {
349 /* General-purpose registers. */
350 return reg;
351 }
352 else if (reg >= 11 && reg <= 18)
353 {
354 /* Floating-point registers. */
355 return reg - 11 + I387_ST0_REGNUM (tdep);
356 }
357 else if (reg >= 21 && reg <= 36)
358 {
359 /* The SSE and MMX registers have the same numbers as with dbx. */
360 return i386_dbx_reg_to_regnum (gdbarch, reg);
361 }
362
363 switch (reg)
364 {
365 case 37: return I387_FCTRL_REGNUM (tdep);
366 case 38: return I387_FSTAT_REGNUM (tdep);
367 case 39: return I387_MXCSR_REGNUM (tdep);
368 case 40: return I386_ES_REGNUM;
369 case 41: return I386_CS_REGNUM;
370 case 42: return I386_SS_REGNUM;
371 case 43: return I386_DS_REGNUM;
372 case 44: return I386_FS_REGNUM;
373 case 45: return I386_GS_REGNUM;
374 }
375
376 /* This will hopefully provoke a warning. */
377 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
378 }
379
380 \f
381
382 /* This is the variable that is set with "set disassembly-flavor", and
383 its legitimate values. */
384 static const char att_flavor[] = "att";
385 static const char intel_flavor[] = "intel";
386 static const char *const valid_flavors[] =
387 {
388 att_flavor,
389 intel_flavor,
390 NULL
391 };
392 static const char *disassembly_flavor = att_flavor;
393 \f
394
395 /* Use the program counter to determine the contents and size of a
396 breakpoint instruction. Return a pointer to a string of bytes that
397 encode a breakpoint instruction, store the length of the string in
398 *LEN and optionally adjust *PC to point to the correct memory
399 location for inserting the breakpoint.
400
401 On the i386 we have a single breakpoint that fits in a single byte
402 and can be inserted anywhere.
403
404 This function is 64-bit safe. */
405
406 static const gdb_byte *
407 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
408 {
409 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
410
411 *len = sizeof (break_insn);
412 return break_insn;
413 }
414 \f
415 /* Displaced instruction handling. */
416
417 /* Skip the legacy instruction prefixes in INSN.
418 Not all prefixes are valid for any particular insn
419 but we needn't care, the insn will fault if it's invalid.
420 The result is a pointer to the first opcode byte,
421 or NULL if we run off the end of the buffer. */
422
423 static gdb_byte *
424 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
425 {
426 gdb_byte *end = insn + max_len;
427
428 while (insn < end)
429 {
430 switch (*insn)
431 {
432 case DATA_PREFIX_OPCODE:
433 case ADDR_PREFIX_OPCODE:
434 case CS_PREFIX_OPCODE:
435 case DS_PREFIX_OPCODE:
436 case ES_PREFIX_OPCODE:
437 case FS_PREFIX_OPCODE:
438 case GS_PREFIX_OPCODE:
439 case SS_PREFIX_OPCODE:
440 case LOCK_PREFIX_OPCODE:
441 case REPE_PREFIX_OPCODE:
442 case REPNE_PREFIX_OPCODE:
443 ++insn;
444 continue;
445 default:
446 return insn;
447 }
448 }
449
450 return NULL;
451 }
452
453 static int
454 i386_absolute_jmp_p (const gdb_byte *insn)
455 {
456 /* jmp far (absolute address in operand). */
457 if (insn[0] == 0xea)
458 return 1;
459
460 if (insn[0] == 0xff)
461 {
462 /* jump near, absolute indirect (/4). */
463 if ((insn[1] & 0x38) == 0x20)
464 return 1;
465
466 /* jump far, absolute indirect (/5). */
467 if ((insn[1] & 0x38) == 0x28)
468 return 1;
469 }
470
471 return 0;
472 }
473
474 static int
475 i386_absolute_call_p (const gdb_byte *insn)
476 {
477 /* call far, absolute. */
478 if (insn[0] == 0x9a)
479 return 1;
480
481 if (insn[0] == 0xff)
482 {
483 /* Call near, absolute indirect (/2). */
484 if ((insn[1] & 0x38) == 0x10)
485 return 1;
486
487 /* Call far, absolute indirect (/3). */
488 if ((insn[1] & 0x38) == 0x18)
489 return 1;
490 }
491
492 return 0;
493 }
494
495 static int
496 i386_ret_p (const gdb_byte *insn)
497 {
498 switch (insn[0])
499 {
500 case 0xc2: /* ret near, pop N bytes. */
501 case 0xc3: /* ret near */
502 case 0xca: /* ret far, pop N bytes. */
503 case 0xcb: /* ret far */
504 case 0xcf: /* iret */
505 return 1;
506
507 default:
508 return 0;
509 }
510 }
511
512 static int
513 i386_call_p (const gdb_byte *insn)
514 {
515 if (i386_absolute_call_p (insn))
516 return 1;
517
518 /* call near, relative. */
519 if (insn[0] == 0xe8)
520 return 1;
521
522 return 0;
523 }
524
525 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
526 length in bytes. Otherwise, return zero. */
527
528 static int
529 i386_syscall_p (const gdb_byte *insn, int *lengthp)
530 {
531 /* Is it 'int $0x80'? */
532 if ((insn[0] == 0xcd && insn[1] == 0x80)
533 /* Or is it 'sysenter'? */
534 || (insn[0] == 0x0f && insn[1] == 0x34)
535 /* Or is it 'syscall'? */
536 || (insn[0] == 0x0f && insn[1] == 0x05))
537 {
538 *lengthp = 2;
539 return 1;
540 }
541
542 return 0;
543 }
544
545 /* Some kernels may run one past a syscall insn, so we have to cope.
546 Otherwise this is just simple_displaced_step_copy_insn. */
547
548 struct displaced_step_closure *
549 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
550 CORE_ADDR from, CORE_ADDR to,
551 struct regcache *regs)
552 {
553 size_t len = gdbarch_max_insn_length (gdbarch);
554 gdb_byte *buf = xmalloc (len);
555
556 read_memory (from, buf, len);
557
558 /* GDB may get control back after the insn after the syscall.
559 Presumably this is a kernel bug.
560 If this is a syscall, make sure there's a nop afterwards. */
561 {
562 int syscall_length;
563 gdb_byte *insn;
564
565 insn = i386_skip_prefixes (buf, len);
566 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
567 insn[syscall_length] = NOP_OPCODE;
568 }
569
570 write_memory (to, buf, len);
571
572 if (debug_displaced)
573 {
574 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
575 paddress (gdbarch, from), paddress (gdbarch, to));
576 displaced_step_dump_bytes (gdb_stdlog, buf, len);
577 }
578
579 return (struct displaced_step_closure *) buf;
580 }
581
582 /* Fix up the state of registers and memory after having single-stepped
583 a displaced instruction. */
584
585 void
586 i386_displaced_step_fixup (struct gdbarch *gdbarch,
587 struct displaced_step_closure *closure,
588 CORE_ADDR from, CORE_ADDR to,
589 struct regcache *regs)
590 {
591 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
592
593 /* The offset we applied to the instruction's address.
594 This could well be negative (when viewed as a signed 32-bit
595 value), but ULONGEST won't reflect that, so take care when
596 applying it. */
597 ULONGEST insn_offset = to - from;
598
599 /* Since we use simple_displaced_step_copy_insn, our closure is a
600 copy of the instruction. */
601 gdb_byte *insn = (gdb_byte *) closure;
602 /* The start of the insn, needed in case we see some prefixes. */
603 gdb_byte *insn_start = insn;
604
605 if (debug_displaced)
606 fprintf_unfiltered (gdb_stdlog,
607 "displaced: fixup (%s, %s), "
608 "insn = 0x%02x 0x%02x ...\n",
609 paddress (gdbarch, from), paddress (gdbarch, to),
610 insn[0], insn[1]);
611
612 /* The list of issues to contend with here is taken from
613 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
614 Yay for Free Software! */
615
616 /* Relocate the %eip, if necessary. */
617
618 /* The instruction recognizers we use assume any leading prefixes
619 have been skipped. */
620 {
621 /* This is the size of the buffer in closure. */
622 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
623 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
624 /* If there are too many prefixes, just ignore the insn.
625 It will fault when run. */
626 if (opcode != NULL)
627 insn = opcode;
628 }
629
630 /* Except in the case of absolute or indirect jump or call
631 instructions, or a return instruction, the new eip is relative to
632 the displaced instruction; make it relative. Well, signal
633 handler returns don't need relocation either, but we use the
634 value of %eip to recognize those; see below. */
635 if (! i386_absolute_jmp_p (insn)
636 && ! i386_absolute_call_p (insn)
637 && ! i386_ret_p (insn))
638 {
639 ULONGEST orig_eip;
640 int insn_len;
641
642 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
643
644 /* A signal trampoline system call changes the %eip, resuming
645 execution of the main program after the signal handler has
646 returned. That makes them like 'return' instructions; we
647 shouldn't relocate %eip.
648
649 But most system calls don't, and we do need to relocate %eip.
650
651 Our heuristic for distinguishing these cases: if stepping
652 over the system call instruction left control directly after
653 the instruction, the we relocate --- control almost certainly
654 doesn't belong in the displaced copy. Otherwise, we assume
655 the instruction has put control where it belongs, and leave
656 it unrelocated. Goodness help us if there are PC-relative
657 system calls. */
658 if (i386_syscall_p (insn, &insn_len)
659 && orig_eip != to + (insn - insn_start) + insn_len
660 /* GDB can get control back after the insn after the syscall.
661 Presumably this is a kernel bug.
662 i386_displaced_step_copy_insn ensures its a nop,
663 we add one to the length for it. */
664 && orig_eip != to + (insn - insn_start) + insn_len + 1)
665 {
666 if (debug_displaced)
667 fprintf_unfiltered (gdb_stdlog,
668 "displaced: syscall changed %%eip; "
669 "not relocating\n");
670 }
671 else
672 {
673 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
674
675 /* If we just stepped over a breakpoint insn, we don't backup
676 the pc on purpose; this is to match behaviour without
677 stepping. */
678
679 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
680
681 if (debug_displaced)
682 fprintf_unfiltered (gdb_stdlog,
683 "displaced: "
684 "relocated %%eip from %s to %s\n",
685 paddress (gdbarch, orig_eip),
686 paddress (gdbarch, eip));
687 }
688 }
689
690 /* If the instruction was PUSHFL, then the TF bit will be set in the
691 pushed value, and should be cleared. We'll leave this for later,
692 since GDB already messes up the TF flag when stepping over a
693 pushfl. */
694
695 /* If the instruction was a call, the return address now atop the
696 stack is the address following the copied instruction. We need
697 to make it the address following the original instruction. */
698 if (i386_call_p (insn))
699 {
700 ULONGEST esp;
701 ULONGEST retaddr;
702 const ULONGEST retaddr_len = 4;
703
704 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
705 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
706 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
707 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
708
709 if (debug_displaced)
710 fprintf_unfiltered (gdb_stdlog,
711 "displaced: relocated return addr at %s to %s\n",
712 paddress (gdbarch, esp),
713 paddress (gdbarch, retaddr));
714 }
715 }
716
717 static void
718 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
719 {
720 target_write_memory (*to, buf, len);
721 *to += len;
722 }
723
724 static void
725 i386_relocate_instruction (struct gdbarch *gdbarch,
726 CORE_ADDR *to, CORE_ADDR oldloc)
727 {
728 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
729 gdb_byte buf[I386_MAX_INSN_LEN];
730 int offset = 0, rel32, newrel;
731 int insn_length;
732 gdb_byte *insn = buf;
733
734 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
735
736 insn_length = gdb_buffered_insn_length (gdbarch, insn,
737 I386_MAX_INSN_LEN, oldloc);
738
739 /* Get past the prefixes. */
740 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
741
742 /* Adjust calls with 32-bit relative addresses as push/jump, with
743 the address pushed being the location where the original call in
744 the user program would return to. */
745 if (insn[0] == 0xe8)
746 {
747 gdb_byte push_buf[16];
748 unsigned int ret_addr;
749
750 /* Where "ret" in the original code will return to. */
751 ret_addr = oldloc + insn_length;
752 push_buf[0] = 0x68; /* pushq $... */
753 memcpy (&push_buf[1], &ret_addr, 4);
754 /* Push the push. */
755 append_insns (to, 5, push_buf);
756
757 /* Convert the relative call to a relative jump. */
758 insn[0] = 0xe9;
759
760 /* Adjust the destination offset. */
761 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
762 newrel = (oldloc - *to) + rel32;
763 store_signed_integer (insn + 1, 4, byte_order, newrel);
764
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog,
767 "Adjusted insn rel32=%s at %s to"
768 " rel32=%s at %s\n",
769 hex_string (rel32), paddress (gdbarch, oldloc),
770 hex_string (newrel), paddress (gdbarch, *to));
771
772 /* Write the adjusted jump into its displaced location. */
773 append_insns (to, 5, insn);
774 return;
775 }
776
777 /* Adjust jumps with 32-bit relative addresses. Calls are already
778 handled above. */
779 if (insn[0] == 0xe9)
780 offset = 1;
781 /* Adjust conditional jumps. */
782 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
783 offset = 2;
784
785 if (offset)
786 {
787 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
788 newrel = (oldloc - *to) + rel32;
789 store_signed_integer (insn + offset, 4, byte_order, newrel);
790 if (debug_displaced)
791 fprintf_unfiltered (gdb_stdlog,
792 "Adjusted insn rel32=%s at %s to"
793 " rel32=%s at %s\n",
794 hex_string (rel32), paddress (gdbarch, oldloc),
795 hex_string (newrel), paddress (gdbarch, *to));
796 }
797
798 /* Write the adjusted instructions into their displaced
799 location. */
800 append_insns (to, insn_length, buf);
801 }
802
803 \f
804 #ifdef I386_REGNO_TO_SYMMETRY
805 #error "The Sequent Symmetry is no longer supported."
806 #endif
807
808 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
809 and %esp "belong" to the calling function. Therefore these
810 registers should be saved if they're going to be modified. */
811
812 /* The maximum number of saved registers. This should include all
813 registers mentioned above, and %eip. */
814 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
815
816 struct i386_frame_cache
817 {
818 /* Base address. */
819 CORE_ADDR base;
820 int base_p;
821 LONGEST sp_offset;
822 CORE_ADDR pc;
823
824 /* Saved registers. */
825 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
826 CORE_ADDR saved_sp;
827 int saved_sp_reg;
828 int pc_in_eax;
829
830 /* Stack space reserved for local variables. */
831 long locals;
832 };
833
834 /* Allocate and initialize a frame cache. */
835
836 static struct i386_frame_cache *
837 i386_alloc_frame_cache (void)
838 {
839 struct i386_frame_cache *cache;
840 int i;
841
842 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
843
844 /* Base address. */
845 cache->base_p = 0;
846 cache->base = 0;
847 cache->sp_offset = -4;
848 cache->pc = 0;
849
850 /* Saved registers. We initialize these to -1 since zero is a valid
851 offset (that's where %ebp is supposed to be stored). */
852 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
853 cache->saved_regs[i] = -1;
854 cache->saved_sp = 0;
855 cache->saved_sp_reg = -1;
856 cache->pc_in_eax = 0;
857
858 /* Frameless until proven otherwise. */
859 cache->locals = -1;
860
861 return cache;
862 }
863
864 /* If the instruction at PC is a jump, return the address of its
865 target. Otherwise, return PC. */
866
867 static CORE_ADDR
868 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
869 {
870 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
871 gdb_byte op;
872 long delta = 0;
873 int data16 = 0;
874
875 if (target_read_memory (pc, &op, 1))
876 return pc;
877
878 if (op == 0x66)
879 {
880 data16 = 1;
881 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
882 }
883
884 switch (op)
885 {
886 case 0xe9:
887 /* Relative jump: if data16 == 0, disp32, else disp16. */
888 if (data16)
889 {
890 delta = read_memory_integer (pc + 2, 2, byte_order);
891
892 /* Include the size of the jmp instruction (including the
893 0x66 prefix). */
894 delta += 4;
895 }
896 else
897 {
898 delta = read_memory_integer (pc + 1, 4, byte_order);
899
900 /* Include the size of the jmp instruction. */
901 delta += 5;
902 }
903 break;
904 case 0xeb:
905 /* Relative jump, disp8 (ignore data16). */
906 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
907
908 delta += data16 + 2;
909 break;
910 }
911
912 return pc + delta;
913 }
914
915 /* Check whether PC points at a prologue for a function returning a
916 structure or union. If so, it updates CACHE and returns the
917 address of the first instruction after the code sequence that
918 removes the "hidden" argument from the stack or CURRENT_PC,
919 whichever is smaller. Otherwise, return PC. */
920
921 static CORE_ADDR
922 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
923 struct i386_frame_cache *cache)
924 {
925 /* Functions that return a structure or union start with:
926
927 popl %eax 0x58
928 xchgl %eax, (%esp) 0x87 0x04 0x24
929 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
930
931 (the System V compiler puts out the second `xchg' instruction,
932 and the assembler doesn't try to optimize it, so the 'sib' form
933 gets generated). This sequence is used to get the address of the
934 return buffer for a function that returns a structure. */
935 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
936 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
937 gdb_byte buf[4];
938 gdb_byte op;
939
940 if (current_pc <= pc)
941 return pc;
942
943 if (target_read_memory (pc, &op, 1))
944 return pc;
945
946 if (op != 0x58) /* popl %eax */
947 return pc;
948
949 if (target_read_memory (pc + 1, buf, 4))
950 return pc;
951
952 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
953 return pc;
954
955 if (current_pc == pc)
956 {
957 cache->sp_offset += 4;
958 return current_pc;
959 }
960
961 if (current_pc == pc + 1)
962 {
963 cache->pc_in_eax = 1;
964 return current_pc;
965 }
966
967 if (buf[1] == proto1[1])
968 return pc + 4;
969 else
970 return pc + 5;
971 }
972
973 static CORE_ADDR
974 i386_skip_probe (CORE_ADDR pc)
975 {
976 /* A function may start with
977
978 pushl constant
979 call _probe
980 addl $4, %esp
981
982 followed by
983
984 pushl %ebp
985
986 etc. */
987 gdb_byte buf[8];
988 gdb_byte op;
989
990 if (target_read_memory (pc, &op, 1))
991 return pc;
992
993 if (op == 0x68 || op == 0x6a)
994 {
995 int delta;
996
997 /* Skip past the `pushl' instruction; it has either a one-byte or a
998 four-byte operand, depending on the opcode. */
999 if (op == 0x68)
1000 delta = 5;
1001 else
1002 delta = 2;
1003
1004 /* Read the following 8 bytes, which should be `call _probe' (6
1005 bytes) followed by `addl $4,%esp' (2 bytes). */
1006 read_memory (pc + delta, buf, sizeof (buf));
1007 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1008 pc += delta + sizeof (buf);
1009 }
1010
1011 return pc;
1012 }
1013
1014 /* GCC 4.1 and later, can put code in the prologue to realign the
1015 stack pointer. Check whether PC points to such code, and update
1016 CACHE accordingly. Return the first instruction after the code
1017 sequence or CURRENT_PC, whichever is smaller. If we don't
1018 recognize the code, return PC. */
1019
1020 static CORE_ADDR
1021 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
1023 {
1024 /* There are 2 code sequences to re-align stack before the frame
1025 gets set up:
1026
1027 1. Use a caller-saved saved register:
1028
1029 leal 4(%esp), %reg
1030 andl $-XXX, %esp
1031 pushl -4(%reg)
1032
1033 2. Use a callee-saved saved register:
1034
1035 pushl %reg
1036 leal 8(%esp), %reg
1037 andl $-XXX, %esp
1038 pushl -4(%reg)
1039
1040 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1041
1042 0x83 0xe4 0xf0 andl $-16, %esp
1043 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1044 */
1045
1046 gdb_byte buf[14];
1047 int reg;
1048 int offset, offset_and;
1049 static int regnums[8] = {
1050 I386_EAX_REGNUM, /* %eax */
1051 I386_ECX_REGNUM, /* %ecx */
1052 I386_EDX_REGNUM, /* %edx */
1053 I386_EBX_REGNUM, /* %ebx */
1054 I386_ESP_REGNUM, /* %esp */
1055 I386_EBP_REGNUM, /* %ebp */
1056 I386_ESI_REGNUM, /* %esi */
1057 I386_EDI_REGNUM /* %edi */
1058 };
1059
1060 if (target_read_memory (pc, buf, sizeof buf))
1061 return pc;
1062
1063 /* Check caller-saved saved register. The first instruction has
1064 to be "leal 4(%esp), %reg". */
1065 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1066 {
1067 /* MOD must be binary 10 and R/M must be binary 100. */
1068 if ((buf[1] & 0xc7) != 0x44)
1069 return pc;
1070
1071 /* REG has register number. */
1072 reg = (buf[1] >> 3) & 7;
1073 offset = 4;
1074 }
1075 else
1076 {
1077 /* Check callee-saved saved register. The first instruction
1078 has to be "pushl %reg". */
1079 if ((buf[0] & 0xf8) != 0x50)
1080 return pc;
1081
1082 /* Get register. */
1083 reg = buf[0] & 0x7;
1084
1085 /* The next instruction has to be "leal 8(%esp), %reg". */
1086 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1087 return pc;
1088
1089 /* MOD must be binary 10 and R/M must be binary 100. */
1090 if ((buf[2] & 0xc7) != 0x44)
1091 return pc;
1092
1093 /* REG has register number. Registers in pushl and leal have to
1094 be the same. */
1095 if (reg != ((buf[2] >> 3) & 7))
1096 return pc;
1097
1098 offset = 5;
1099 }
1100
1101 /* Rigister can't be %esp nor %ebp. */
1102 if (reg == 4 || reg == 5)
1103 return pc;
1104
1105 /* The next instruction has to be "andl $-XXX, %esp". */
1106 if (buf[offset + 1] != 0xe4
1107 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1108 return pc;
1109
1110 offset_and = offset;
1111 offset += buf[offset] == 0x81 ? 6 : 3;
1112
1113 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1114 0xfc. REG must be binary 110 and MOD must be binary 01. */
1115 if (buf[offset] != 0xff
1116 || buf[offset + 2] != 0xfc
1117 || (buf[offset + 1] & 0xf8) != 0x70)
1118 return pc;
1119
1120 /* R/M has register. Registers in leal and pushl have to be the
1121 same. */
1122 if (reg != (buf[offset + 1] & 7))
1123 return pc;
1124
1125 if (current_pc > pc + offset_and)
1126 cache->saved_sp_reg = regnums[reg];
1127
1128 return min (pc + offset + 3, current_pc);
1129 }
1130
1131 /* Maximum instruction length we need to handle. */
1132 #define I386_MAX_MATCHED_INSN_LEN 6
1133
1134 /* Instruction description. */
1135 struct i386_insn
1136 {
1137 size_t len;
1138 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1139 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1140 };
1141
1142 /* Return whether instruction at PC matches PATTERN. */
1143
1144 static int
1145 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1146 {
1147 gdb_byte op;
1148
1149 if (target_read_memory (pc, &op, 1))
1150 return 0;
1151
1152 if ((op & pattern.mask[0]) == pattern.insn[0])
1153 {
1154 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1155 int insn_matched = 1;
1156 size_t i;
1157
1158 gdb_assert (pattern.len > 1);
1159 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1160
1161 if (target_read_memory (pc + 1, buf, pattern.len - 1))
1162 return 0;
1163
1164 for (i = 1; i < pattern.len; i++)
1165 {
1166 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1167 insn_matched = 0;
1168 }
1169 return insn_matched;
1170 }
1171 return 0;
1172 }
1173
1174 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1175 the first instruction description that matches. Otherwise, return
1176 NULL. */
1177
1178 static struct i386_insn *
1179 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1180 {
1181 struct i386_insn *pattern;
1182
1183 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1184 {
1185 if (i386_match_pattern (pc, *pattern))
1186 return pattern;
1187 }
1188
1189 return NULL;
1190 }
1191
1192 /* Return whether PC points inside a sequence of instructions that
1193 matches INSN_PATTERNS. */
1194
1195 static int
1196 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1197 {
1198 CORE_ADDR current_pc;
1199 int ix, i;
1200 gdb_byte op;
1201 struct i386_insn *insn;
1202
1203 insn = i386_match_insn (pc, insn_patterns);
1204 if (insn == NULL)
1205 return 0;
1206
1207 current_pc = pc;
1208 ix = insn - insn_patterns;
1209 for (i = ix - 1; i >= 0; i--)
1210 {
1211 current_pc -= insn_patterns[i].len;
1212
1213 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1214 return 0;
1215 }
1216
1217 current_pc = pc + insn->len;
1218 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1219 {
1220 if (!i386_match_pattern (current_pc, *insn))
1221 return 0;
1222
1223 current_pc += insn->len;
1224 }
1225
1226 return 1;
1227 }
1228
1229 /* Some special instructions that might be migrated by GCC into the
1230 part of the prologue that sets up the new stack frame. Because the
1231 stack frame hasn't been setup yet, no registers have been saved
1232 yet, and only the scratch registers %eax, %ecx and %edx can be
1233 touched. */
1234
1235 struct i386_insn i386_frame_setup_skip_insns[] =
1236 {
1237 /* Check for `movb imm8, r' and `movl imm32, r'.
1238
1239 ??? Should we handle 16-bit operand-sizes here? */
1240
1241 /* `movb imm8, %al' and `movb imm8, %ah' */
1242 /* `movb imm8, %cl' and `movb imm8, %ch' */
1243 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1244 /* `movb imm8, %dl' and `movb imm8, %dh' */
1245 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1246 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1247 { 5, { 0xb8 }, { 0xfe } },
1248 /* `movl imm32, %edx' */
1249 { 5, { 0xba }, { 0xff } },
1250
1251 /* Check for `mov imm32, r32'. Note that there is an alternative
1252 encoding for `mov m32, %eax'.
1253
1254 ??? Should we handle SIB adressing here?
1255 ??? Should we handle 16-bit operand-sizes here? */
1256
1257 /* `movl m32, %eax' */
1258 { 5, { 0xa1 }, { 0xff } },
1259 /* `movl m32, %eax' and `mov; m32, %ecx' */
1260 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1261 /* `movl m32, %edx' */
1262 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1263
1264 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1265 Because of the symmetry, there are actually two ways to encode
1266 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1267 opcode bytes 0x31 and 0x33 for `xorl'. */
1268
1269 /* `subl %eax, %eax' */
1270 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1271 /* `subl %ecx, %ecx' */
1272 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1273 /* `subl %edx, %edx' */
1274 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1275 /* `xorl %eax, %eax' */
1276 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1277 /* `xorl %ecx, %ecx' */
1278 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1279 /* `xorl %edx, %edx' */
1280 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1281 { 0 }
1282 };
1283
1284
1285 /* Check whether PC points to a no-op instruction. */
1286 static CORE_ADDR
1287 i386_skip_noop (CORE_ADDR pc)
1288 {
1289 gdb_byte op;
1290 int check = 1;
1291
1292 if (target_read_memory (pc, &op, 1))
1293 return pc;
1294
1295 while (check)
1296 {
1297 check = 0;
1298 /* Ignore `nop' instruction. */
1299 if (op == 0x90)
1300 {
1301 pc += 1;
1302 if (target_read_memory (pc, &op, 1))
1303 return pc;
1304 check = 1;
1305 }
1306 /* Ignore no-op instruction `mov %edi, %edi'.
1307 Microsoft system dlls often start with
1308 a `mov %edi,%edi' instruction.
1309 The 5 bytes before the function start are
1310 filled with `nop' instructions.
1311 This pattern can be used for hot-patching:
1312 The `mov %edi, %edi' instruction can be replaced by a
1313 near jump to the location of the 5 `nop' instructions
1314 which can be replaced by a 32-bit jump to anywhere
1315 in the 32-bit address space. */
1316
1317 else if (op == 0x8b)
1318 {
1319 if (target_read_memory (pc + 1, &op, 1))
1320 return pc;
1321
1322 if (op == 0xff)
1323 {
1324 pc += 2;
1325 if (target_read_memory (pc, &op, 1))
1326 return pc;
1327
1328 check = 1;
1329 }
1330 }
1331 }
1332 return pc;
1333 }
1334
1335 /* Check whether PC points at a code that sets up a new stack frame.
1336 If so, it updates CACHE and returns the address of the first
1337 instruction after the sequence that sets up the frame or LIMIT,
1338 whichever is smaller. If we don't recognize the code, return PC. */
1339
1340 static CORE_ADDR
1341 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1342 CORE_ADDR pc, CORE_ADDR limit,
1343 struct i386_frame_cache *cache)
1344 {
1345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1346 struct i386_insn *insn;
1347 gdb_byte op;
1348 int skip = 0;
1349
1350 if (limit <= pc)
1351 return limit;
1352
1353 if (target_read_memory (pc, &op, 1))
1354 return pc;
1355
1356 if (op == 0x55) /* pushl %ebp */
1357 {
1358 /* Take into account that we've executed the `pushl %ebp' that
1359 starts this instruction sequence. */
1360 cache->saved_regs[I386_EBP_REGNUM] = 0;
1361 cache->sp_offset += 4;
1362 pc++;
1363
1364 /* If that's all, return now. */
1365 if (limit <= pc)
1366 return limit;
1367
1368 /* Check for some special instructions that might be migrated by
1369 GCC into the prologue and skip them. At this point in the
1370 prologue, code should only touch the scratch registers %eax,
1371 %ecx and %edx, so while the number of posibilities is sheer,
1372 it is limited.
1373
1374 Make sure we only skip these instructions if we later see the
1375 `movl %esp, %ebp' that actually sets up the frame. */
1376 while (pc + skip < limit)
1377 {
1378 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1379 if (insn == NULL)
1380 break;
1381
1382 skip += insn->len;
1383 }
1384
1385 /* If that's all, return now. */
1386 if (limit <= pc + skip)
1387 return limit;
1388
1389 if (target_read_memory (pc + skip, &op, 1))
1390 return pc + skip;
1391
1392 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1393 switch (op)
1394 {
1395 case 0x8b:
1396 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1397 != 0xec)
1398 return pc;
1399 break;
1400 case 0x89:
1401 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1402 != 0xe5)
1403 return pc;
1404 break;
1405 default:
1406 return pc;
1407 }
1408
1409 /* OK, we actually have a frame. We just don't know how large
1410 it is yet. Set its size to zero. We'll adjust it if
1411 necessary. We also now commit to skipping the special
1412 instructions mentioned before. */
1413 cache->locals = 0;
1414 pc += (skip + 2);
1415
1416 /* If that's all, return now. */
1417 if (limit <= pc)
1418 return limit;
1419
1420 /* Check for stack adjustment
1421
1422 subl $XXX, %esp
1423
1424 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1425 reg, so we don't have to worry about a data16 prefix. */
1426 if (target_read_memory (pc, &op, 1))
1427 return pc;
1428 if (op == 0x83)
1429 {
1430 /* `subl' with 8-bit immediate. */
1431 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1432 /* Some instruction starting with 0x83 other than `subl'. */
1433 return pc;
1434
1435 /* `subl' with signed 8-bit immediate (though it wouldn't
1436 make sense to be negative). */
1437 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1438 return pc + 3;
1439 }
1440 else if (op == 0x81)
1441 {
1442 /* Maybe it is `subl' with a 32-bit immediate. */
1443 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1444 /* Some instruction starting with 0x81 other than `subl'. */
1445 return pc;
1446
1447 /* It is `subl' with a 32-bit immediate. */
1448 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1449 return pc + 6;
1450 }
1451 else
1452 {
1453 /* Some instruction other than `subl'. */
1454 return pc;
1455 }
1456 }
1457 else if (op == 0xc8) /* enter */
1458 {
1459 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1460 return pc + 4;
1461 }
1462
1463 return pc;
1464 }
1465
1466 /* Check whether PC points at code that saves registers on the stack.
1467 If so, it updates CACHE and returns the address of the first
1468 instruction after the register saves or CURRENT_PC, whichever is
1469 smaller. Otherwise, return PC. */
1470
1471 static CORE_ADDR
1472 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1473 struct i386_frame_cache *cache)
1474 {
1475 CORE_ADDR offset = 0;
1476 gdb_byte op;
1477 int i;
1478
1479 if (cache->locals > 0)
1480 offset -= cache->locals;
1481 for (i = 0; i < 8 && pc < current_pc; i++)
1482 {
1483 if (target_read_memory (pc, &op, 1))
1484 return pc;
1485 if (op < 0x50 || op > 0x57)
1486 break;
1487
1488 offset -= 4;
1489 cache->saved_regs[op - 0x50] = offset;
1490 cache->sp_offset += 4;
1491 pc++;
1492 }
1493
1494 return pc;
1495 }
1496
1497 /* Do a full analysis of the prologue at PC and update CACHE
1498 accordingly. Bail out early if CURRENT_PC is reached. Return the
1499 address where the analysis stopped.
1500
1501 We handle these cases:
1502
1503 The startup sequence can be at the start of the function, or the
1504 function can start with a branch to startup code at the end.
1505
1506 %ebp can be set up with either the 'enter' instruction, or "pushl
1507 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1508 once used in the System V compiler).
1509
1510 Local space is allocated just below the saved %ebp by either the
1511 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1512 16-bit unsigned argument for space to allocate, and the 'addl'
1513 instruction could have either a signed byte, or 32-bit immediate.
1514
1515 Next, the registers used by this function are pushed. With the
1516 System V compiler they will always be in the order: %edi, %esi,
1517 %ebx (and sometimes a harmless bug causes it to also save but not
1518 restore %eax); however, the code below is willing to see the pushes
1519 in any order, and will handle up to 8 of them.
1520
1521 If the setup sequence is at the end of the function, then the next
1522 instruction will be a branch back to the start. */
1523
1524 static CORE_ADDR
1525 i386_analyze_prologue (struct gdbarch *gdbarch,
1526 CORE_ADDR pc, CORE_ADDR current_pc,
1527 struct i386_frame_cache *cache)
1528 {
1529 pc = i386_skip_noop (pc);
1530 pc = i386_follow_jump (gdbarch, pc);
1531 pc = i386_analyze_struct_return (pc, current_pc, cache);
1532 pc = i386_skip_probe (pc);
1533 pc = i386_analyze_stack_align (pc, current_pc, cache);
1534 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1535 return i386_analyze_register_saves (pc, current_pc, cache);
1536 }
1537
1538 /* Return PC of first real instruction. */
1539
1540 static CORE_ADDR
1541 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1542 {
1543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1544
1545 static gdb_byte pic_pat[6] =
1546 {
1547 0xe8, 0, 0, 0, 0, /* call 0x0 */
1548 0x5b, /* popl %ebx */
1549 };
1550 struct i386_frame_cache cache;
1551 CORE_ADDR pc;
1552 gdb_byte op;
1553 int i;
1554
1555 cache.locals = -1;
1556 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1557 if (cache.locals < 0)
1558 return start_pc;
1559
1560 /* Found valid frame setup. */
1561
1562 /* The native cc on SVR4 in -K PIC mode inserts the following code
1563 to get the address of the global offset table (GOT) into register
1564 %ebx:
1565
1566 call 0x0
1567 popl %ebx
1568 movl %ebx,x(%ebp) (optional)
1569 addl y,%ebx
1570
1571 This code is with the rest of the prologue (at the end of the
1572 function), so we have to skip it to get to the first real
1573 instruction at the start of the function. */
1574
1575 for (i = 0; i < 6; i++)
1576 {
1577 if (target_read_memory (pc + i, &op, 1))
1578 return pc;
1579
1580 if (pic_pat[i] != op)
1581 break;
1582 }
1583 if (i == 6)
1584 {
1585 int delta = 6;
1586
1587 if (target_read_memory (pc + delta, &op, 1))
1588 return pc;
1589
1590 if (op == 0x89) /* movl %ebx, x(%ebp) */
1591 {
1592 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1593
1594 if (op == 0x5d) /* One byte offset from %ebp. */
1595 delta += 3;
1596 else if (op == 0x9d) /* Four byte offset from %ebp. */
1597 delta += 6;
1598 else /* Unexpected instruction. */
1599 delta = 0;
1600
1601 if (target_read_memory (pc + delta, &op, 1))
1602 return pc;
1603 }
1604
1605 /* addl y,%ebx */
1606 if (delta > 0 && op == 0x81
1607 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1608 == 0xc3)
1609 {
1610 pc += delta + 6;
1611 }
1612 }
1613
1614 /* If the function starts with a branch (to startup code at the end)
1615 the last instruction should bring us back to the first
1616 instruction of the real code. */
1617 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1618 pc = i386_follow_jump (gdbarch, pc);
1619
1620 return pc;
1621 }
1622
1623 /* Check that the code pointed to by PC corresponds to a call to
1624 __main, skip it if so. Return PC otherwise. */
1625
1626 CORE_ADDR
1627 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1628 {
1629 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1630 gdb_byte op;
1631
1632 if (target_read_memory (pc, &op, 1))
1633 return pc;
1634 if (op == 0xe8)
1635 {
1636 gdb_byte buf[4];
1637
1638 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1639 {
1640 /* Make sure address is computed correctly as a 32bit
1641 integer even if CORE_ADDR is 64 bit wide. */
1642 struct minimal_symbol *s;
1643 CORE_ADDR call_dest;
1644
1645 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1646 call_dest = call_dest & 0xffffffffU;
1647 s = lookup_minimal_symbol_by_pc (call_dest);
1648 if (s != NULL
1649 && SYMBOL_LINKAGE_NAME (s) != NULL
1650 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1651 pc += 5;
1652 }
1653 }
1654
1655 return pc;
1656 }
1657
1658 /* This function is 64-bit safe. */
1659
1660 static CORE_ADDR
1661 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1662 {
1663 gdb_byte buf[8];
1664
1665 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1666 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1667 }
1668 \f
1669
1670 /* Normal frames. */
1671
1672 static void
1673 i386_frame_cache_1 (struct frame_info *this_frame,
1674 struct i386_frame_cache *cache)
1675 {
1676 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1677 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1678 gdb_byte buf[4];
1679 int i;
1680
1681 cache->pc = get_frame_func (this_frame);
1682
1683 /* In principle, for normal frames, %ebp holds the frame pointer,
1684 which holds the base address for the current stack frame.
1685 However, for functions that don't need it, the frame pointer is
1686 optional. For these "frameless" functions the frame pointer is
1687 actually the frame pointer of the calling frame. Signal
1688 trampolines are just a special case of a "frameless" function.
1689 They (usually) share their frame pointer with the frame that was
1690 in progress when the signal occurred. */
1691
1692 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1693 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1694 if (cache->base == 0)
1695 {
1696 cache->base_p = 1;
1697 return;
1698 }
1699
1700 /* For normal frames, %eip is stored at 4(%ebp). */
1701 cache->saved_regs[I386_EIP_REGNUM] = 4;
1702
1703 if (cache->pc != 0)
1704 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1705 cache);
1706
1707 if (cache->locals < 0)
1708 {
1709 /* We didn't find a valid frame, which means that CACHE->base
1710 currently holds the frame pointer for our calling frame. If
1711 we're at the start of a function, or somewhere half-way its
1712 prologue, the function's frame probably hasn't been fully
1713 setup yet. Try to reconstruct the base address for the stack
1714 frame by looking at the stack pointer. For truly "frameless"
1715 functions this might work too. */
1716
1717 if (cache->saved_sp_reg != -1)
1718 {
1719 /* Saved stack pointer has been saved. */
1720 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1721 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1722
1723 /* We're halfway aligning the stack. */
1724 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1725 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1726
1727 /* This will be added back below. */
1728 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1729 }
1730 else if (cache->pc != 0
1731 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1732 {
1733 /* We're in a known function, but did not find a frame
1734 setup. Assume that the function does not use %ebp.
1735 Alternatively, we may have jumped to an invalid
1736 address; in that case there is definitely no new
1737 frame in %ebp. */
1738 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1739 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1740 + cache->sp_offset;
1741 }
1742 else
1743 /* We're in an unknown function. We could not find the start
1744 of the function to analyze the prologue; our best option is
1745 to assume a typical frame layout with the caller's %ebp
1746 saved. */
1747 cache->saved_regs[I386_EBP_REGNUM] = 0;
1748 }
1749
1750 if (cache->saved_sp_reg != -1)
1751 {
1752 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1753 register may be unavailable). */
1754 if (cache->saved_sp == 0
1755 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1756 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1757 }
1758 /* Now that we have the base address for the stack frame we can
1759 calculate the value of %esp in the calling frame. */
1760 else if (cache->saved_sp == 0)
1761 cache->saved_sp = cache->base + 8;
1762
1763 /* Adjust all the saved registers such that they contain addresses
1764 instead of offsets. */
1765 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1766 if (cache->saved_regs[i] != -1)
1767 cache->saved_regs[i] += cache->base;
1768
1769 cache->base_p = 1;
1770 }
1771
1772 static struct i386_frame_cache *
1773 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1774 {
1775 volatile struct gdb_exception ex;
1776 struct i386_frame_cache *cache;
1777
1778 if (*this_cache)
1779 return *this_cache;
1780
1781 cache = i386_alloc_frame_cache ();
1782 *this_cache = cache;
1783
1784 TRY_CATCH (ex, RETURN_MASK_ERROR)
1785 {
1786 i386_frame_cache_1 (this_frame, cache);
1787 }
1788 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1789 throw_exception (ex);
1790
1791 return cache;
1792 }
1793
1794 static void
1795 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1796 struct frame_id *this_id)
1797 {
1798 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1799
1800 /* This marks the outermost frame. */
1801 if (cache->base == 0)
1802 return;
1803
1804 /* See the end of i386_push_dummy_call. */
1805 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1806 }
1807
1808 static enum unwind_stop_reason
1809 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1810 void **this_cache)
1811 {
1812 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1813
1814 if (!cache->base_p)
1815 return UNWIND_UNAVAILABLE;
1816
1817 /* This marks the outermost frame. */
1818 if (cache->base == 0)
1819 return UNWIND_OUTERMOST;
1820
1821 return UNWIND_NO_REASON;
1822 }
1823
1824 static struct value *
1825 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1826 int regnum)
1827 {
1828 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1829
1830 gdb_assert (regnum >= 0);
1831
1832 /* The System V ABI says that:
1833
1834 "The flags register contains the system flags, such as the
1835 direction flag and the carry flag. The direction flag must be
1836 set to the forward (that is, zero) direction before entry and
1837 upon exit from a function. Other user flags have no specified
1838 role in the standard calling sequence and are not preserved."
1839
1840 To guarantee the "upon exit" part of that statement we fake a
1841 saved flags register that has its direction flag cleared.
1842
1843 Note that GCC doesn't seem to rely on the fact that the direction
1844 flag is cleared after a function return; it always explicitly
1845 clears the flag before operations where it matters.
1846
1847 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1848 right thing to do. The way we fake the flags register here makes
1849 it impossible to change it. */
1850
1851 if (regnum == I386_EFLAGS_REGNUM)
1852 {
1853 ULONGEST val;
1854
1855 val = get_frame_register_unsigned (this_frame, regnum);
1856 val &= ~(1 << 10);
1857 return frame_unwind_got_constant (this_frame, regnum, val);
1858 }
1859
1860 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1861 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1862
1863 if (regnum == I386_ESP_REGNUM
1864 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1865 {
1866 /* If the SP has been saved, but we don't know where, then this
1867 means that SAVED_SP_REG register was found unavailable back
1868 when we built the cache. */
1869 if (cache->saved_sp == 0)
1870 return frame_unwind_got_register (this_frame, regnum,
1871 cache->saved_sp_reg);
1872 else
1873 return frame_unwind_got_constant (this_frame, regnum,
1874 cache->saved_sp);
1875 }
1876
1877 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1878 return frame_unwind_got_memory (this_frame, regnum,
1879 cache->saved_regs[regnum]);
1880
1881 return frame_unwind_got_register (this_frame, regnum, regnum);
1882 }
1883
1884 static const struct frame_unwind i386_frame_unwind =
1885 {
1886 NORMAL_FRAME,
1887 i386_frame_unwind_stop_reason,
1888 i386_frame_this_id,
1889 i386_frame_prev_register,
1890 NULL,
1891 default_frame_sniffer
1892 };
1893
1894 /* Normal frames, but in a function epilogue. */
1895
1896 /* The epilogue is defined here as the 'ret' instruction, which will
1897 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1898 the function's stack frame. */
1899
1900 static int
1901 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1902 {
1903 gdb_byte insn;
1904 struct symtab *symtab;
1905
1906 symtab = find_pc_symtab (pc);
1907 if (symtab && symtab->epilogue_unwind_valid)
1908 return 0;
1909
1910 if (target_read_memory (pc, &insn, 1))
1911 return 0; /* Can't read memory at pc. */
1912
1913 if (insn != 0xc3) /* 'ret' instruction. */
1914 return 0;
1915
1916 return 1;
1917 }
1918
1919 static int
1920 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1921 struct frame_info *this_frame,
1922 void **this_prologue_cache)
1923 {
1924 if (frame_relative_level (this_frame) == 0)
1925 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1926 get_frame_pc (this_frame));
1927 else
1928 return 0;
1929 }
1930
1931 static struct i386_frame_cache *
1932 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1933 {
1934 volatile struct gdb_exception ex;
1935 struct i386_frame_cache *cache;
1936 CORE_ADDR sp;
1937
1938 if (*this_cache)
1939 return *this_cache;
1940
1941 cache = i386_alloc_frame_cache ();
1942 *this_cache = cache;
1943
1944 TRY_CATCH (ex, RETURN_MASK_ERROR)
1945 {
1946 cache->pc = get_frame_func (this_frame);
1947
1948 /* At this point the stack looks as if we just entered the
1949 function, with the return address at the top of the
1950 stack. */
1951 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
1952 cache->base = sp + cache->sp_offset;
1953 cache->saved_sp = cache->base + 8;
1954 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1955
1956 cache->base_p = 1;
1957 }
1958 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1959 throw_exception (ex);
1960
1961 return cache;
1962 }
1963
1964 static enum unwind_stop_reason
1965 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1966 void **this_cache)
1967 {
1968 struct i386_frame_cache *cache =
1969 i386_epilogue_frame_cache (this_frame, this_cache);
1970
1971 if (!cache->base_p)
1972 return UNWIND_UNAVAILABLE;
1973
1974 return UNWIND_NO_REASON;
1975 }
1976
1977 static void
1978 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1979 void **this_cache,
1980 struct frame_id *this_id)
1981 {
1982 struct i386_frame_cache *cache =
1983 i386_epilogue_frame_cache (this_frame, this_cache);
1984
1985 if (!cache->base_p)
1986 return;
1987
1988 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1989 }
1990
1991 static struct value *
1992 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
1993 void **this_cache, int regnum)
1994 {
1995 /* Make sure we've initialized the cache. */
1996 i386_epilogue_frame_cache (this_frame, this_cache);
1997
1998 return i386_frame_prev_register (this_frame, this_cache, regnum);
1999 }
2000
2001 static const struct frame_unwind i386_epilogue_frame_unwind =
2002 {
2003 NORMAL_FRAME,
2004 i386_epilogue_frame_unwind_stop_reason,
2005 i386_epilogue_frame_this_id,
2006 i386_epilogue_frame_prev_register,
2007 NULL,
2008 i386_epilogue_frame_sniffer
2009 };
2010 \f
2011
2012 /* Stack-based trampolines. */
2013
2014 /* These trampolines are used on cross x86 targets, when taking the
2015 address of a nested function. When executing these trampolines,
2016 no stack frame is set up, so we are in a similar situation as in
2017 epilogues and i386_epilogue_frame_this_id can be re-used. */
2018
2019 /* Static chain passed in register. */
2020
2021 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2022 {
2023 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2024 { 5, { 0xb8 }, { 0xfe } },
2025
2026 /* `jmp imm32' */
2027 { 5, { 0xe9 }, { 0xff } },
2028
2029 {0}
2030 };
2031
2032 /* Static chain passed on stack (when regparm=3). */
2033
2034 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2035 {
2036 /* `push imm32' */
2037 { 5, { 0x68 }, { 0xff } },
2038
2039 /* `jmp imm32' */
2040 { 5, { 0xe9 }, { 0xff } },
2041
2042 {0}
2043 };
2044
2045 /* Return whether PC points inside a stack trampoline. */
2046
2047 static int
2048 i386_in_stack_tramp_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2049 {
2050 gdb_byte insn;
2051 const char *name;
2052
2053 /* A stack trampoline is detected if no name is associated
2054 to the current pc and if it points inside a trampoline
2055 sequence. */
2056
2057 find_pc_partial_function (pc, &name, NULL, NULL);
2058 if (name)
2059 return 0;
2060
2061 if (target_read_memory (pc, &insn, 1))
2062 return 0;
2063
2064 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2065 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2066 return 0;
2067
2068 return 1;
2069 }
2070
2071 static int
2072 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2073 struct frame_info *this_frame,
2074 void **this_cache)
2075 {
2076 if (frame_relative_level (this_frame) == 0)
2077 return i386_in_stack_tramp_p (get_frame_arch (this_frame),
2078 get_frame_pc (this_frame));
2079 else
2080 return 0;
2081 }
2082
2083 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2084 {
2085 NORMAL_FRAME,
2086 i386_epilogue_frame_unwind_stop_reason,
2087 i386_epilogue_frame_this_id,
2088 i386_epilogue_frame_prev_register,
2089 NULL,
2090 i386_stack_tramp_frame_sniffer
2091 };
2092 \f
2093 /* Generate a bytecode expression to get the value of the saved PC. */
2094
2095 static void
2096 i386_gen_return_address (struct gdbarch *gdbarch,
2097 struct agent_expr *ax, struct axs_value *value,
2098 CORE_ADDR scope)
2099 {
2100 /* The following sequence assumes the traditional use of the base
2101 register. */
2102 ax_reg (ax, I386_EBP_REGNUM);
2103 ax_const_l (ax, 4);
2104 ax_simple (ax, aop_add);
2105 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2106 value->kind = axs_lvalue_memory;
2107 }
2108 \f
2109
2110 /* Signal trampolines. */
2111
2112 static struct i386_frame_cache *
2113 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2114 {
2115 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2117 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2118 volatile struct gdb_exception ex;
2119 struct i386_frame_cache *cache;
2120 CORE_ADDR addr;
2121 gdb_byte buf[4];
2122
2123 if (*this_cache)
2124 return *this_cache;
2125
2126 cache = i386_alloc_frame_cache ();
2127
2128 TRY_CATCH (ex, RETURN_MASK_ERROR)
2129 {
2130 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2131 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2132
2133 addr = tdep->sigcontext_addr (this_frame);
2134 if (tdep->sc_reg_offset)
2135 {
2136 int i;
2137
2138 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2139
2140 for (i = 0; i < tdep->sc_num_regs; i++)
2141 if (tdep->sc_reg_offset[i] != -1)
2142 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2143 }
2144 else
2145 {
2146 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2147 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2148 }
2149
2150 cache->base_p = 1;
2151 }
2152 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2153 throw_exception (ex);
2154
2155 *this_cache = cache;
2156 return cache;
2157 }
2158
2159 static enum unwind_stop_reason
2160 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2161 void **this_cache)
2162 {
2163 struct i386_frame_cache *cache =
2164 i386_sigtramp_frame_cache (this_frame, this_cache);
2165
2166 if (!cache->base_p)
2167 return UNWIND_UNAVAILABLE;
2168
2169 return UNWIND_NO_REASON;
2170 }
2171
2172 static void
2173 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2174 struct frame_id *this_id)
2175 {
2176 struct i386_frame_cache *cache =
2177 i386_sigtramp_frame_cache (this_frame, this_cache);
2178
2179 if (!cache->base_p)
2180 return;
2181
2182 /* See the end of i386_push_dummy_call. */
2183 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2184 }
2185
2186 static struct value *
2187 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2188 void **this_cache, int regnum)
2189 {
2190 /* Make sure we've initialized the cache. */
2191 i386_sigtramp_frame_cache (this_frame, this_cache);
2192
2193 return i386_frame_prev_register (this_frame, this_cache, regnum);
2194 }
2195
2196 static int
2197 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2198 struct frame_info *this_frame,
2199 void **this_prologue_cache)
2200 {
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2202
2203 /* We shouldn't even bother if we don't have a sigcontext_addr
2204 handler. */
2205 if (tdep->sigcontext_addr == NULL)
2206 return 0;
2207
2208 if (tdep->sigtramp_p != NULL)
2209 {
2210 if (tdep->sigtramp_p (this_frame))
2211 return 1;
2212 }
2213
2214 if (tdep->sigtramp_start != 0)
2215 {
2216 CORE_ADDR pc = get_frame_pc (this_frame);
2217
2218 gdb_assert (tdep->sigtramp_end != 0);
2219 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 static const struct frame_unwind i386_sigtramp_frame_unwind =
2227 {
2228 SIGTRAMP_FRAME,
2229 i386_sigtramp_frame_unwind_stop_reason,
2230 i386_sigtramp_frame_this_id,
2231 i386_sigtramp_frame_prev_register,
2232 NULL,
2233 i386_sigtramp_frame_sniffer
2234 };
2235 \f
2236
2237 static CORE_ADDR
2238 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2239 {
2240 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2241
2242 return cache->base;
2243 }
2244
2245 static const struct frame_base i386_frame_base =
2246 {
2247 &i386_frame_unwind,
2248 i386_frame_base_address,
2249 i386_frame_base_address,
2250 i386_frame_base_address
2251 };
2252
2253 static struct frame_id
2254 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2255 {
2256 CORE_ADDR fp;
2257
2258 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2259
2260 /* See the end of i386_push_dummy_call. */
2261 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2262 }
2263
2264 /* _Decimal128 function return values need 16-byte alignment on the
2265 stack. */
2266
2267 static CORE_ADDR
2268 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2269 {
2270 return sp & -(CORE_ADDR)16;
2271 }
2272 \f
2273
2274 /* Figure out where the longjmp will land. Slurp the args out of the
2275 stack. We expect the first arg to be a pointer to the jmp_buf
2276 structure from which we extract the address that we will land at.
2277 This address is copied into PC. This routine returns non-zero on
2278 success. */
2279
2280 static int
2281 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2282 {
2283 gdb_byte buf[4];
2284 CORE_ADDR sp, jb_addr;
2285 struct gdbarch *gdbarch = get_frame_arch (frame);
2286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2287 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2288
2289 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2290 longjmp will land. */
2291 if (jb_pc_offset == -1)
2292 return 0;
2293
2294 get_frame_register (frame, I386_ESP_REGNUM, buf);
2295 sp = extract_unsigned_integer (buf, 4, byte_order);
2296 if (target_read_memory (sp + 4, buf, 4))
2297 return 0;
2298
2299 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2300 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2301 return 0;
2302
2303 *pc = extract_unsigned_integer (buf, 4, byte_order);
2304 return 1;
2305 }
2306 \f
2307
2308 /* Check whether TYPE must be 16-byte-aligned when passed as a
2309 function argument. 16-byte vectors, _Decimal128 and structures or
2310 unions containing such types must be 16-byte-aligned; other
2311 arguments are 4-byte-aligned. */
2312
2313 static int
2314 i386_16_byte_align_p (struct type *type)
2315 {
2316 type = check_typedef (type);
2317 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2318 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2319 && TYPE_LENGTH (type) == 16)
2320 return 1;
2321 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2322 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2323 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2324 || TYPE_CODE (type) == TYPE_CODE_UNION)
2325 {
2326 int i;
2327 for (i = 0; i < TYPE_NFIELDS (type); i++)
2328 {
2329 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2330 return 1;
2331 }
2332 }
2333 return 0;
2334 }
2335
2336 static CORE_ADDR
2337 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2338 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2339 struct value **args, CORE_ADDR sp, int struct_return,
2340 CORE_ADDR struct_addr)
2341 {
2342 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2343 gdb_byte buf[4];
2344 int i;
2345 int write_pass;
2346 int args_space = 0;
2347
2348 /* Determine the total space required for arguments and struct
2349 return address in a first pass (allowing for 16-byte-aligned
2350 arguments), then push arguments in a second pass. */
2351
2352 for (write_pass = 0; write_pass < 2; write_pass++)
2353 {
2354 int args_space_used = 0;
2355 int have_16_byte_aligned_arg = 0;
2356
2357 if (struct_return)
2358 {
2359 if (write_pass)
2360 {
2361 /* Push value address. */
2362 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2363 write_memory (sp, buf, 4);
2364 args_space_used += 4;
2365 }
2366 else
2367 args_space += 4;
2368 }
2369
2370 for (i = 0; i < nargs; i++)
2371 {
2372 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2373
2374 if (write_pass)
2375 {
2376 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2377 args_space_used = align_up (args_space_used, 16);
2378
2379 write_memory (sp + args_space_used,
2380 value_contents_all (args[i]), len);
2381 /* The System V ABI says that:
2382
2383 "An argument's size is increased, if necessary, to make it a
2384 multiple of [32-bit] words. This may require tail padding,
2385 depending on the size of the argument."
2386
2387 This makes sure the stack stays word-aligned. */
2388 args_space_used += align_up (len, 4);
2389 }
2390 else
2391 {
2392 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2393 {
2394 args_space = align_up (args_space, 16);
2395 have_16_byte_aligned_arg = 1;
2396 }
2397 args_space += align_up (len, 4);
2398 }
2399 }
2400
2401 if (!write_pass)
2402 {
2403 if (have_16_byte_aligned_arg)
2404 args_space = align_up (args_space, 16);
2405 sp -= args_space;
2406 }
2407 }
2408
2409 /* Store return address. */
2410 sp -= 4;
2411 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2412 write_memory (sp, buf, 4);
2413
2414 /* Finally, update the stack pointer... */
2415 store_unsigned_integer (buf, 4, byte_order, sp);
2416 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2417
2418 /* ...and fake a frame pointer. */
2419 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2420
2421 /* MarkK wrote: This "+ 8" is all over the place:
2422 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2423 i386_dummy_id). It's there, since all frame unwinders for
2424 a given target have to agree (within a certain margin) on the
2425 definition of the stack address of a frame. Otherwise frame id
2426 comparison might not work correctly. Since DWARF2/GCC uses the
2427 stack address *before* the function call as a frame's CFA. On
2428 the i386, when %ebp is used as a frame pointer, the offset
2429 between the contents %ebp and the CFA as defined by GCC. */
2430 return sp + 8;
2431 }
2432
2433 /* These registers are used for returning integers (and on some
2434 targets also for returning `struct' and `union' values when their
2435 size and alignment match an integer type). */
2436 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2437 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2438
2439 /* Read, for architecture GDBARCH, a function return value of TYPE
2440 from REGCACHE, and copy that into VALBUF. */
2441
2442 static void
2443 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2444 struct regcache *regcache, gdb_byte *valbuf)
2445 {
2446 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2447 int len = TYPE_LENGTH (type);
2448 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2449
2450 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2451 {
2452 if (tdep->st0_regnum < 0)
2453 {
2454 warning (_("Cannot find floating-point return value."));
2455 memset (valbuf, 0, len);
2456 return;
2457 }
2458
2459 /* Floating-point return values can be found in %st(0). Convert
2460 its contents to the desired type. This is probably not
2461 exactly how it would happen on the target itself, but it is
2462 the best we can do. */
2463 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2464 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2465 }
2466 else
2467 {
2468 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2469 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2470
2471 if (len <= low_size)
2472 {
2473 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2474 memcpy (valbuf, buf, len);
2475 }
2476 else if (len <= (low_size + high_size))
2477 {
2478 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2479 memcpy (valbuf, buf, low_size);
2480 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2481 memcpy (valbuf + low_size, buf, len - low_size);
2482 }
2483 else
2484 internal_error (__FILE__, __LINE__,
2485 _("Cannot extract return value of %d bytes long."),
2486 len);
2487 }
2488 }
2489
2490 /* Write, for architecture GDBARCH, a function return value of TYPE
2491 from VALBUF into REGCACHE. */
2492
2493 static void
2494 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2495 struct regcache *regcache, const gdb_byte *valbuf)
2496 {
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2498 int len = TYPE_LENGTH (type);
2499
2500 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2501 {
2502 ULONGEST fstat;
2503 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2504
2505 if (tdep->st0_regnum < 0)
2506 {
2507 warning (_("Cannot set floating-point return value."));
2508 return;
2509 }
2510
2511 /* Returning floating-point values is a bit tricky. Apart from
2512 storing the return value in %st(0), we have to simulate the
2513 state of the FPU at function return point. */
2514
2515 /* Convert the value found in VALBUF to the extended
2516 floating-point format used by the FPU. This is probably
2517 not exactly how it would happen on the target itself, but
2518 it is the best we can do. */
2519 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2520 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2521
2522 /* Set the top of the floating-point register stack to 7. The
2523 actual value doesn't really matter, but 7 is what a normal
2524 function return would end up with if the program started out
2525 with a freshly initialized FPU. */
2526 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2527 fstat |= (7 << 11);
2528 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2529
2530 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2531 the floating-point register stack to 7, the appropriate value
2532 for the tag word is 0x3fff. */
2533 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2534 }
2535 else
2536 {
2537 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2538 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2539
2540 if (len <= low_size)
2541 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2542 else if (len <= (low_size + high_size))
2543 {
2544 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2545 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2546 len - low_size, valbuf + low_size);
2547 }
2548 else
2549 internal_error (__FILE__, __LINE__,
2550 _("Cannot store return value of %d bytes long."), len);
2551 }
2552 }
2553 \f
2554
2555 /* This is the variable that is set with "set struct-convention", and
2556 its legitimate values. */
2557 static const char default_struct_convention[] = "default";
2558 static const char pcc_struct_convention[] = "pcc";
2559 static const char reg_struct_convention[] = "reg";
2560 static const char *const valid_conventions[] =
2561 {
2562 default_struct_convention,
2563 pcc_struct_convention,
2564 reg_struct_convention,
2565 NULL
2566 };
2567 static const char *struct_convention = default_struct_convention;
2568
2569 /* Return non-zero if TYPE, which is assumed to be a structure,
2570 a union type, or an array type, should be returned in registers
2571 for architecture GDBARCH. */
2572
2573 static int
2574 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 enum type_code code = TYPE_CODE (type);
2578 int len = TYPE_LENGTH (type);
2579
2580 gdb_assert (code == TYPE_CODE_STRUCT
2581 || code == TYPE_CODE_UNION
2582 || code == TYPE_CODE_ARRAY);
2583
2584 if (struct_convention == pcc_struct_convention
2585 || (struct_convention == default_struct_convention
2586 && tdep->struct_return == pcc_struct_return))
2587 return 0;
2588
2589 /* Structures consisting of a single `float', `double' or 'long
2590 double' member are returned in %st(0). */
2591 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2592 {
2593 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2594 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2595 return (len == 4 || len == 8 || len == 12);
2596 }
2597
2598 return (len == 1 || len == 2 || len == 4 || len == 8);
2599 }
2600
2601 /* Determine, for architecture GDBARCH, how a return value of TYPE
2602 should be returned. If it is supposed to be returned in registers,
2603 and READBUF is non-zero, read the appropriate value from REGCACHE,
2604 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2605 from WRITEBUF into REGCACHE. */
2606
2607 static enum return_value_convention
2608 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2609 struct type *type, struct regcache *regcache,
2610 gdb_byte *readbuf, const gdb_byte *writebuf)
2611 {
2612 enum type_code code = TYPE_CODE (type);
2613
2614 if (((code == TYPE_CODE_STRUCT
2615 || code == TYPE_CODE_UNION
2616 || code == TYPE_CODE_ARRAY)
2617 && !i386_reg_struct_return_p (gdbarch, type))
2618 /* 128-bit decimal float uses the struct return convention. */
2619 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2620 {
2621 /* The System V ABI says that:
2622
2623 "A function that returns a structure or union also sets %eax
2624 to the value of the original address of the caller's area
2625 before it returns. Thus when the caller receives control
2626 again, the address of the returned object resides in register
2627 %eax and can be used to access the object."
2628
2629 So the ABI guarantees that we can always find the return
2630 value just after the function has returned. */
2631
2632 /* Note that the ABI doesn't mention functions returning arrays,
2633 which is something possible in certain languages such as Ada.
2634 In this case, the value is returned as if it was wrapped in
2635 a record, so the convention applied to records also applies
2636 to arrays. */
2637
2638 if (readbuf)
2639 {
2640 ULONGEST addr;
2641
2642 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2643 read_memory (addr, readbuf, TYPE_LENGTH (type));
2644 }
2645
2646 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2647 }
2648
2649 /* This special case is for structures consisting of a single
2650 `float', `double' or 'long double' member. These structures are
2651 returned in %st(0). For these structures, we call ourselves
2652 recursively, changing TYPE into the type of the first member of
2653 the structure. Since that should work for all structures that
2654 have only one member, we don't bother to check the member's type
2655 here. */
2656 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2657 {
2658 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2659 return i386_return_value (gdbarch, func_type, type, regcache,
2660 readbuf, writebuf);
2661 }
2662
2663 if (readbuf)
2664 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2665 if (writebuf)
2666 i386_store_return_value (gdbarch, type, regcache, writebuf);
2667
2668 return RETURN_VALUE_REGISTER_CONVENTION;
2669 }
2670 \f
2671
2672 struct type *
2673 i387_ext_type (struct gdbarch *gdbarch)
2674 {
2675 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2676
2677 if (!tdep->i387_ext_type)
2678 {
2679 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2680 gdb_assert (tdep->i387_ext_type != NULL);
2681 }
2682
2683 return tdep->i387_ext_type;
2684 }
2685
2686 /* Construct vector type for pseudo YMM registers. We can't use
2687 tdesc_find_type since YMM isn't described in target description. */
2688
2689 static struct type *
2690 i386_ymm_type (struct gdbarch *gdbarch)
2691 {
2692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2693
2694 if (!tdep->i386_ymm_type)
2695 {
2696 const struct builtin_type *bt = builtin_type (gdbarch);
2697
2698 /* The type we're building is this: */
2699 #if 0
2700 union __gdb_builtin_type_vec256i
2701 {
2702 int128_t uint128[2];
2703 int64_t v2_int64[4];
2704 int32_t v4_int32[8];
2705 int16_t v8_int16[16];
2706 int8_t v16_int8[32];
2707 double v2_double[4];
2708 float v4_float[8];
2709 };
2710 #endif
2711
2712 struct type *t;
2713
2714 t = arch_composite_type (gdbarch,
2715 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2716 append_composite_type_field (t, "v8_float",
2717 init_vector_type (bt->builtin_float, 8));
2718 append_composite_type_field (t, "v4_double",
2719 init_vector_type (bt->builtin_double, 4));
2720 append_composite_type_field (t, "v32_int8",
2721 init_vector_type (bt->builtin_int8, 32));
2722 append_composite_type_field (t, "v16_int16",
2723 init_vector_type (bt->builtin_int16, 16));
2724 append_composite_type_field (t, "v8_int32",
2725 init_vector_type (bt->builtin_int32, 8));
2726 append_composite_type_field (t, "v4_int64",
2727 init_vector_type (bt->builtin_int64, 4));
2728 append_composite_type_field (t, "v2_int128",
2729 init_vector_type (bt->builtin_int128, 2));
2730
2731 TYPE_VECTOR (t) = 1;
2732 TYPE_NAME (t) = "builtin_type_vec256i";
2733 tdep->i386_ymm_type = t;
2734 }
2735
2736 return tdep->i386_ymm_type;
2737 }
2738
2739 /* Construct vector type for MMX registers. */
2740 static struct type *
2741 i386_mmx_type (struct gdbarch *gdbarch)
2742 {
2743 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2744
2745 if (!tdep->i386_mmx_type)
2746 {
2747 const struct builtin_type *bt = builtin_type (gdbarch);
2748
2749 /* The type we're building is this: */
2750 #if 0
2751 union __gdb_builtin_type_vec64i
2752 {
2753 int64_t uint64;
2754 int32_t v2_int32[2];
2755 int16_t v4_int16[4];
2756 int8_t v8_int8[8];
2757 };
2758 #endif
2759
2760 struct type *t;
2761
2762 t = arch_composite_type (gdbarch,
2763 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2764
2765 append_composite_type_field (t, "uint64", bt->builtin_int64);
2766 append_composite_type_field (t, "v2_int32",
2767 init_vector_type (bt->builtin_int32, 2));
2768 append_composite_type_field (t, "v4_int16",
2769 init_vector_type (bt->builtin_int16, 4));
2770 append_composite_type_field (t, "v8_int8",
2771 init_vector_type (bt->builtin_int8, 8));
2772
2773 TYPE_VECTOR (t) = 1;
2774 TYPE_NAME (t) = "builtin_type_vec64i";
2775 tdep->i386_mmx_type = t;
2776 }
2777
2778 return tdep->i386_mmx_type;
2779 }
2780
2781 /* Return the GDB type object for the "standard" data type of data in
2782 register REGNUM. */
2783
2784 static struct type *
2785 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2786 {
2787 if (i386_mmx_regnum_p (gdbarch, regnum))
2788 return i386_mmx_type (gdbarch);
2789 else if (i386_ymm_regnum_p (gdbarch, regnum))
2790 return i386_ymm_type (gdbarch);
2791 else
2792 {
2793 const struct builtin_type *bt = builtin_type (gdbarch);
2794 if (i386_byte_regnum_p (gdbarch, regnum))
2795 return bt->builtin_int8;
2796 else if (i386_word_regnum_p (gdbarch, regnum))
2797 return bt->builtin_int16;
2798 else if (i386_dword_regnum_p (gdbarch, regnum))
2799 return bt->builtin_int32;
2800 }
2801
2802 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2803 }
2804
2805 /* Map a cooked register onto a raw register or memory. For the i386,
2806 the MMX registers need to be mapped onto floating point registers. */
2807
2808 static int
2809 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2810 {
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2812 int mmxreg, fpreg;
2813 ULONGEST fstat;
2814 int tos;
2815
2816 mmxreg = regnum - tdep->mm0_regnum;
2817 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2818 tos = (fstat >> 11) & 0x7;
2819 fpreg = (mmxreg + tos) % 8;
2820
2821 return (I387_ST0_REGNUM (tdep) + fpreg);
2822 }
2823
2824 /* A helper function for us by i386_pseudo_register_read_value and
2825 amd64_pseudo_register_read_value. It does all the work but reads
2826 the data into an already-allocated value. */
2827
2828 void
2829 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
2830 struct regcache *regcache,
2831 int regnum,
2832 struct value *result_value)
2833 {
2834 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2835 enum register_status status;
2836 gdb_byte *buf = value_contents_raw (result_value);
2837
2838 if (i386_mmx_regnum_p (gdbarch, regnum))
2839 {
2840 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2841
2842 /* Extract (always little endian). */
2843 status = regcache_raw_read (regcache, fpnum, raw_buf);
2844 if (status != REG_VALID)
2845 mark_value_bytes_unavailable (result_value, 0,
2846 TYPE_LENGTH (value_type (result_value)));
2847 else
2848 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2849 }
2850 else
2851 {
2852 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2853
2854 if (i386_ymm_regnum_p (gdbarch, regnum))
2855 {
2856 regnum -= tdep->ymm0_regnum;
2857
2858 /* Extract (always little endian). Read lower 128bits. */
2859 status = regcache_raw_read (regcache,
2860 I387_XMM0_REGNUM (tdep) + regnum,
2861 raw_buf);
2862 if (status != REG_VALID)
2863 mark_value_bytes_unavailable (result_value, 0, 16);
2864 else
2865 memcpy (buf, raw_buf, 16);
2866 /* Read upper 128bits. */
2867 status = regcache_raw_read (regcache,
2868 tdep->ymm0h_regnum + regnum,
2869 raw_buf);
2870 if (status != REG_VALID)
2871 mark_value_bytes_unavailable (result_value, 16, 32);
2872 else
2873 memcpy (buf + 16, raw_buf, 16);
2874 }
2875 else if (i386_word_regnum_p (gdbarch, regnum))
2876 {
2877 int gpnum = regnum - tdep->ax_regnum;
2878
2879 /* Extract (always little endian). */
2880 status = regcache_raw_read (regcache, gpnum, raw_buf);
2881 if (status != REG_VALID)
2882 mark_value_bytes_unavailable (result_value, 0,
2883 TYPE_LENGTH (value_type (result_value)));
2884 else
2885 memcpy (buf, raw_buf, 2);
2886 }
2887 else if (i386_byte_regnum_p (gdbarch, regnum))
2888 {
2889 /* Check byte pseudo registers last since this function will
2890 be called from amd64_pseudo_register_read, which handles
2891 byte pseudo registers differently. */
2892 int gpnum = regnum - tdep->al_regnum;
2893
2894 /* Extract (always little endian). We read both lower and
2895 upper registers. */
2896 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2897 if (status != REG_VALID)
2898 mark_value_bytes_unavailable (result_value, 0,
2899 TYPE_LENGTH (value_type (result_value)));
2900 else if (gpnum >= 4)
2901 memcpy (buf, raw_buf + 1, 1);
2902 else
2903 memcpy (buf, raw_buf, 1);
2904 }
2905 else
2906 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2907 }
2908 }
2909
2910 static struct value *
2911 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
2912 struct regcache *regcache,
2913 int regnum)
2914 {
2915 struct value *result;
2916
2917 result = allocate_value (register_type (gdbarch, regnum));
2918 VALUE_LVAL (result) = lval_register;
2919 VALUE_REGNUM (result) = regnum;
2920
2921 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
2922
2923 return result;
2924 }
2925
2926 void
2927 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2928 int regnum, const gdb_byte *buf)
2929 {
2930 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2931
2932 if (i386_mmx_regnum_p (gdbarch, regnum))
2933 {
2934 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2935
2936 /* Read ... */
2937 regcache_raw_read (regcache, fpnum, raw_buf);
2938 /* ... Modify ... (always little endian). */
2939 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2940 /* ... Write. */
2941 regcache_raw_write (regcache, fpnum, raw_buf);
2942 }
2943 else
2944 {
2945 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2946
2947 if (i386_ymm_regnum_p (gdbarch, regnum))
2948 {
2949 regnum -= tdep->ymm0_regnum;
2950
2951 /* ... Write lower 128bits. */
2952 regcache_raw_write (regcache,
2953 I387_XMM0_REGNUM (tdep) + regnum,
2954 buf);
2955 /* ... Write upper 128bits. */
2956 regcache_raw_write (regcache,
2957 tdep->ymm0h_regnum + regnum,
2958 buf + 16);
2959 }
2960 else if (i386_word_regnum_p (gdbarch, regnum))
2961 {
2962 int gpnum = regnum - tdep->ax_regnum;
2963
2964 /* Read ... */
2965 regcache_raw_read (regcache, gpnum, raw_buf);
2966 /* ... Modify ... (always little endian). */
2967 memcpy (raw_buf, buf, 2);
2968 /* ... Write. */
2969 regcache_raw_write (regcache, gpnum, raw_buf);
2970 }
2971 else if (i386_byte_regnum_p (gdbarch, regnum))
2972 {
2973 /* Check byte pseudo registers last since this function will
2974 be called from amd64_pseudo_register_read, which handles
2975 byte pseudo registers differently. */
2976 int gpnum = regnum - tdep->al_regnum;
2977
2978 /* Read ... We read both lower and upper registers. */
2979 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2980 /* ... Modify ... (always little endian). */
2981 if (gpnum >= 4)
2982 memcpy (raw_buf + 1, buf, 1);
2983 else
2984 memcpy (raw_buf, buf, 1);
2985 /* ... Write. */
2986 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2987 }
2988 else
2989 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2990 }
2991 }
2992 \f
2993
2994 /* Return the register number of the register allocated by GCC after
2995 REGNUM, or -1 if there is no such register. */
2996
2997 static int
2998 i386_next_regnum (int regnum)
2999 {
3000 /* GCC allocates the registers in the order:
3001
3002 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3003
3004 Since storing a variable in %esp doesn't make any sense we return
3005 -1 for %ebp and for %esp itself. */
3006 static int next_regnum[] =
3007 {
3008 I386_EDX_REGNUM, /* Slot for %eax. */
3009 I386_EBX_REGNUM, /* Slot for %ecx. */
3010 I386_ECX_REGNUM, /* Slot for %edx. */
3011 I386_ESI_REGNUM, /* Slot for %ebx. */
3012 -1, -1, /* Slots for %esp and %ebp. */
3013 I386_EDI_REGNUM, /* Slot for %esi. */
3014 I386_EBP_REGNUM /* Slot for %edi. */
3015 };
3016
3017 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3018 return next_regnum[regnum];
3019
3020 return -1;
3021 }
3022
3023 /* Return nonzero if a value of type TYPE stored in register REGNUM
3024 needs any special handling. */
3025
3026 static int
3027 i386_convert_register_p (struct gdbarch *gdbarch,
3028 int regnum, struct type *type)
3029 {
3030 int len = TYPE_LENGTH (type);
3031
3032 /* Values may be spread across multiple registers. Most debugging
3033 formats aren't expressive enough to specify the locations, so
3034 some heuristics is involved. Right now we only handle types that
3035 have a length that is a multiple of the word size, since GCC
3036 doesn't seem to put any other types into registers. */
3037 if (len > 4 && len % 4 == 0)
3038 {
3039 int last_regnum = regnum;
3040
3041 while (len > 4)
3042 {
3043 last_regnum = i386_next_regnum (last_regnum);
3044 len -= 4;
3045 }
3046
3047 if (last_regnum != -1)
3048 return 1;
3049 }
3050
3051 return i387_convert_register_p (gdbarch, regnum, type);
3052 }
3053
3054 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3055 return its contents in TO. */
3056
3057 static int
3058 i386_register_to_value (struct frame_info *frame, int regnum,
3059 struct type *type, gdb_byte *to,
3060 int *optimizedp, int *unavailablep)
3061 {
3062 struct gdbarch *gdbarch = get_frame_arch (frame);
3063 int len = TYPE_LENGTH (type);
3064
3065 if (i386_fp_regnum_p (gdbarch, regnum))
3066 return i387_register_to_value (frame, regnum, type, to,
3067 optimizedp, unavailablep);
3068
3069 /* Read a value spread across multiple registers. */
3070
3071 gdb_assert (len > 4 && len % 4 == 0);
3072
3073 while (len > 0)
3074 {
3075 gdb_assert (regnum != -1);
3076 gdb_assert (register_size (gdbarch, regnum) == 4);
3077
3078 if (!get_frame_register_bytes (frame, regnum, 0,
3079 register_size (gdbarch, regnum),
3080 to, optimizedp, unavailablep))
3081 return 0;
3082
3083 regnum = i386_next_regnum (regnum);
3084 len -= 4;
3085 to += 4;
3086 }
3087
3088 *optimizedp = *unavailablep = 0;
3089 return 1;
3090 }
3091
3092 /* Write the contents FROM of a value of type TYPE into register
3093 REGNUM in frame FRAME. */
3094
3095 static void
3096 i386_value_to_register (struct frame_info *frame, int regnum,
3097 struct type *type, const gdb_byte *from)
3098 {
3099 int len = TYPE_LENGTH (type);
3100
3101 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3102 {
3103 i387_value_to_register (frame, regnum, type, from);
3104 return;
3105 }
3106
3107 /* Write a value spread across multiple registers. */
3108
3109 gdb_assert (len > 4 && len % 4 == 0);
3110
3111 while (len > 0)
3112 {
3113 gdb_assert (regnum != -1);
3114 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3115
3116 put_frame_register (frame, regnum, from);
3117 regnum = i386_next_regnum (regnum);
3118 len -= 4;
3119 from += 4;
3120 }
3121 }
3122 \f
3123 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3124 in the general-purpose register set REGSET to register cache
3125 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3126
3127 void
3128 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3129 int regnum, const void *gregs, size_t len)
3130 {
3131 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3132 const gdb_byte *regs = gregs;
3133 int i;
3134
3135 gdb_assert (len == tdep->sizeof_gregset);
3136
3137 for (i = 0; i < tdep->gregset_num_regs; i++)
3138 {
3139 if ((regnum == i || regnum == -1)
3140 && tdep->gregset_reg_offset[i] != -1)
3141 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3142 }
3143 }
3144
3145 /* Collect register REGNUM from the register cache REGCACHE and store
3146 it in the buffer specified by GREGS and LEN as described by the
3147 general-purpose register set REGSET. If REGNUM is -1, do this for
3148 all registers in REGSET. */
3149
3150 void
3151 i386_collect_gregset (const struct regset *regset,
3152 const struct regcache *regcache,
3153 int regnum, void *gregs, size_t len)
3154 {
3155 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3156 gdb_byte *regs = gregs;
3157 int i;
3158
3159 gdb_assert (len == tdep->sizeof_gregset);
3160
3161 for (i = 0; i < tdep->gregset_num_regs; i++)
3162 {
3163 if ((regnum == i || regnum == -1)
3164 && tdep->gregset_reg_offset[i] != -1)
3165 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3166 }
3167 }
3168
3169 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3170 in the floating-point register set REGSET to register cache
3171 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3172
3173 static void
3174 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3175 int regnum, const void *fpregs, size_t len)
3176 {
3177 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3178
3179 if (len == I387_SIZEOF_FXSAVE)
3180 {
3181 i387_supply_fxsave (regcache, regnum, fpregs);
3182 return;
3183 }
3184
3185 gdb_assert (len == tdep->sizeof_fpregset);
3186 i387_supply_fsave (regcache, regnum, fpregs);
3187 }
3188
3189 /* Collect register REGNUM from the register cache REGCACHE and store
3190 it in the buffer specified by FPREGS and LEN as described by the
3191 floating-point register set REGSET. If REGNUM is -1, do this for
3192 all registers in REGSET. */
3193
3194 static void
3195 i386_collect_fpregset (const struct regset *regset,
3196 const struct regcache *regcache,
3197 int regnum, void *fpregs, size_t len)
3198 {
3199 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3200
3201 if (len == I387_SIZEOF_FXSAVE)
3202 {
3203 i387_collect_fxsave (regcache, regnum, fpregs);
3204 return;
3205 }
3206
3207 gdb_assert (len == tdep->sizeof_fpregset);
3208 i387_collect_fsave (regcache, regnum, fpregs);
3209 }
3210
3211 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3212
3213 static void
3214 i386_supply_xstateregset (const struct regset *regset,
3215 struct regcache *regcache, int regnum,
3216 const void *xstateregs, size_t len)
3217 {
3218 i387_supply_xsave (regcache, regnum, xstateregs);
3219 }
3220
3221 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3222
3223 static void
3224 i386_collect_xstateregset (const struct regset *regset,
3225 const struct regcache *regcache,
3226 int regnum, void *xstateregs, size_t len)
3227 {
3228 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3229 }
3230
3231 /* Return the appropriate register set for the core section identified
3232 by SECT_NAME and SECT_SIZE. */
3233
3234 const struct regset *
3235 i386_regset_from_core_section (struct gdbarch *gdbarch,
3236 const char *sect_name, size_t sect_size)
3237 {
3238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3239
3240 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3241 {
3242 if (tdep->gregset == NULL)
3243 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3244 i386_collect_gregset);
3245 return tdep->gregset;
3246 }
3247
3248 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3249 || (strcmp (sect_name, ".reg-xfp") == 0
3250 && sect_size == I387_SIZEOF_FXSAVE))
3251 {
3252 if (tdep->fpregset == NULL)
3253 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3254 i386_collect_fpregset);
3255 return tdep->fpregset;
3256 }
3257
3258 if (strcmp (sect_name, ".reg-xstate") == 0)
3259 {
3260 if (tdep->xstateregset == NULL)
3261 tdep->xstateregset = regset_alloc (gdbarch,
3262 i386_supply_xstateregset,
3263 i386_collect_xstateregset);
3264
3265 return tdep->xstateregset;
3266 }
3267
3268 return NULL;
3269 }
3270 \f
3271
3272 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3273
3274 CORE_ADDR
3275 i386_pe_skip_trampoline_code (struct frame_info *frame,
3276 CORE_ADDR pc, char *name)
3277 {
3278 struct gdbarch *gdbarch = get_frame_arch (frame);
3279 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3280
3281 /* jmp *(dest) */
3282 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3283 {
3284 unsigned long indirect =
3285 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3286 struct minimal_symbol *indsym =
3287 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3288 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3289
3290 if (symname)
3291 {
3292 if (strncmp (symname, "__imp_", 6) == 0
3293 || strncmp (symname, "_imp_", 5) == 0)
3294 return name ? 1 :
3295 read_memory_unsigned_integer (indirect, 4, byte_order);
3296 }
3297 }
3298 return 0; /* Not a trampoline. */
3299 }
3300 \f
3301
3302 /* Return whether the THIS_FRAME corresponds to a sigtramp
3303 routine. */
3304
3305 int
3306 i386_sigtramp_p (struct frame_info *this_frame)
3307 {
3308 CORE_ADDR pc = get_frame_pc (this_frame);
3309 const char *name;
3310
3311 find_pc_partial_function (pc, &name, NULL, NULL);
3312 return (name && strcmp ("_sigtramp", name) == 0);
3313 }
3314 \f
3315
3316 /* We have two flavours of disassembly. The machinery on this page
3317 deals with switching between those. */
3318
3319 static int
3320 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3321 {
3322 gdb_assert (disassembly_flavor == att_flavor
3323 || disassembly_flavor == intel_flavor);
3324
3325 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3326 constified, cast to prevent a compiler warning. */
3327 info->disassembler_options = (char *) disassembly_flavor;
3328
3329 return print_insn_i386 (pc, info);
3330 }
3331 \f
3332
3333 /* There are a few i386 architecture variants that differ only
3334 slightly from the generic i386 target. For now, we don't give them
3335 their own source file, but include them here. As a consequence,
3336 they'll always be included. */
3337
3338 /* System V Release 4 (SVR4). */
3339
3340 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3341 routine. */
3342
3343 static int
3344 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3345 {
3346 CORE_ADDR pc = get_frame_pc (this_frame);
3347 const char *name;
3348
3349 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3350 currently unknown. */
3351 find_pc_partial_function (pc, &name, NULL, NULL);
3352 return (name && (strcmp ("_sigreturn", name) == 0
3353 || strcmp ("_sigacthandler", name) == 0
3354 || strcmp ("sigvechandler", name) == 0));
3355 }
3356
3357 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3358 address of the associated sigcontext (ucontext) structure. */
3359
3360 static CORE_ADDR
3361 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3362 {
3363 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3364 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3365 gdb_byte buf[4];
3366 CORE_ADDR sp;
3367
3368 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3369 sp = extract_unsigned_integer (buf, 4, byte_order);
3370
3371 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3372 }
3373
3374 \f
3375
3376 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3377 gdbarch.h. */
3378
3379 int
3380 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3381 {
3382 return (*s == '$' /* Literal number. */
3383 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3384 || (*s == '(' && s[1] == '%') /* Register indirection. */
3385 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3386 }
3387
3388 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3389 gdbarch.h. */
3390
3391 int
3392 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3393 struct stap_parse_info *p)
3394 {
3395 const char *s = p->arg;
3396
3397 /* In order to parse special tokens, we use a state-machine that go
3398 through every known token and try to get a match. */
3399 enum
3400 {
3401 TRIPLET,
3402 THREE_ARG_DISPLACEMENT,
3403 DONE
3404 } current_state;
3405
3406 current_state = TRIPLET;
3407
3408 /* The special tokens to be parsed here are:
3409
3410 - `register base + (register index * size) + offset', as represented
3411 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3412
3413 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3414 `*(-8 + 3 - 1 + (void *) $eax)'. */
3415
3416 while (current_state != DONE)
3417 {
3418 const char *s = p->arg;
3419
3420 switch (current_state)
3421 {
3422 case TRIPLET:
3423 {
3424 if (isdigit (*s) || *s == '-' || *s == '+')
3425 {
3426 int got_minus[3];
3427 int i;
3428 long displacements[3];
3429 const char *start;
3430 char *regname;
3431 int len;
3432 struct stoken str;
3433
3434 got_minus[0] = 0;
3435 if (*s == '+')
3436 ++s;
3437 else if (*s == '-')
3438 {
3439 ++s;
3440 got_minus[0] = 1;
3441 }
3442
3443 displacements[0] = strtol (s, (char **) &s, 10);
3444
3445 if (*s != '+' && *s != '-')
3446 {
3447 /* We are not dealing with a triplet. */
3448 break;
3449 }
3450
3451 got_minus[1] = 0;
3452 if (*s == '+')
3453 ++s;
3454 else
3455 {
3456 ++s;
3457 got_minus[1] = 1;
3458 }
3459
3460 displacements[1] = strtol (s, (char **) &s, 10);
3461
3462 if (*s != '+' && *s != '-')
3463 {
3464 /* We are not dealing with a triplet. */
3465 break;
3466 }
3467
3468 got_minus[2] = 0;
3469 if (*s == '+')
3470 ++s;
3471 else
3472 {
3473 ++s;
3474 got_minus[2] = 1;
3475 }
3476
3477 displacements[2] = strtol (s, (char **) &s, 10);
3478
3479 if (*s != '(' || s[1] != '%')
3480 break;
3481
3482 s += 2;
3483 start = s;
3484
3485 while (isalnum (*s))
3486 ++s;
3487
3488 if (*s++ != ')')
3489 break;
3490
3491 len = s - start;
3492 regname = alloca (len + 1);
3493
3494 strncpy (regname, start, len);
3495 regname[len] = '\0';
3496
3497 if (user_reg_map_name_to_regnum (gdbarch,
3498 regname, len) == -1)
3499 error (_("Invalid register name `%s' "
3500 "on expression `%s'."),
3501 regname, p->saved_arg);
3502
3503 for (i = 0; i < 3; i++)
3504 {
3505 write_exp_elt_opcode (OP_LONG);
3506 write_exp_elt_type
3507 (builtin_type (gdbarch)->builtin_long);
3508 write_exp_elt_longcst (displacements[i]);
3509 write_exp_elt_opcode (OP_LONG);
3510 if (got_minus[i])
3511 write_exp_elt_opcode (UNOP_NEG);
3512 }
3513
3514 write_exp_elt_opcode (OP_REGISTER);
3515 str.ptr = regname;
3516 str.length = len;
3517 write_exp_string (str);
3518 write_exp_elt_opcode (OP_REGISTER);
3519
3520 write_exp_elt_opcode (UNOP_CAST);
3521 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3522 write_exp_elt_opcode (UNOP_CAST);
3523
3524 write_exp_elt_opcode (BINOP_ADD);
3525 write_exp_elt_opcode (BINOP_ADD);
3526 write_exp_elt_opcode (BINOP_ADD);
3527
3528 write_exp_elt_opcode (UNOP_CAST);
3529 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3530 write_exp_elt_opcode (UNOP_CAST);
3531
3532 write_exp_elt_opcode (UNOP_IND);
3533
3534 p->arg = s;
3535
3536 return 1;
3537 }
3538 break;
3539 }
3540 case THREE_ARG_DISPLACEMENT:
3541 {
3542 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3543 {
3544 int offset_minus = 0;
3545 long offset = 0;
3546 int size_minus = 0;
3547 long size = 0;
3548 const char *start;
3549 char *base;
3550 int len_base;
3551 char *index;
3552 int len_index;
3553 struct stoken base_token, index_token;
3554
3555 if (*s == '+')
3556 ++s;
3557 else if (*s == '-')
3558 {
3559 ++s;
3560 offset_minus = 1;
3561 }
3562
3563 if (offset_minus && !isdigit (*s))
3564 break;
3565
3566 if (isdigit (*s))
3567 offset = strtol (s, (char **) &s, 10);
3568
3569 if (*s != '(' || s[1] != '%')
3570 break;
3571
3572 s += 2;
3573 start = s;
3574
3575 while (isalnum (*s))
3576 ++s;
3577
3578 if (*s != ',' || s[1] != '%')
3579 break;
3580
3581 len_base = s - start;
3582 base = alloca (len_base + 1);
3583 strncpy (base, start, len_base);
3584 base[len_base] = '\0';
3585
3586 if (user_reg_map_name_to_regnum (gdbarch,
3587 base, len_base) == -1)
3588 error (_("Invalid register name `%s' "
3589 "on expression `%s'."),
3590 base, p->saved_arg);
3591
3592 s += 2;
3593 start = s;
3594
3595 while (isalnum (*s))
3596 ++s;
3597
3598 len_index = s - start;
3599 index = alloca (len_index + 1);
3600 strncpy (index, start, len_index);
3601 index[len_index] = '\0';
3602
3603 if (user_reg_map_name_to_regnum (gdbarch,
3604 index, len_index) == -1)
3605 error (_("Invalid register name `%s' "
3606 "on expression `%s'."),
3607 index, p->saved_arg);
3608
3609 if (*s != ',' && *s != ')')
3610 break;
3611
3612 if (*s == ',')
3613 {
3614 ++s;
3615 if (*s == '+')
3616 ++s;
3617 else if (*s == '-')
3618 {
3619 ++s;
3620 size_minus = 1;
3621 }
3622
3623 size = strtol (s, (char **) &s, 10);
3624
3625 if (*s != ')')
3626 break;
3627 }
3628
3629 ++s;
3630
3631 if (offset)
3632 {
3633 write_exp_elt_opcode (OP_LONG);
3634 write_exp_elt_type
3635 (builtin_type (gdbarch)->builtin_long);
3636 write_exp_elt_longcst (offset);
3637 write_exp_elt_opcode (OP_LONG);
3638 if (offset_minus)
3639 write_exp_elt_opcode (UNOP_NEG);
3640 }
3641
3642 write_exp_elt_opcode (OP_REGISTER);
3643 base_token.ptr = base;
3644 base_token.length = len_base;
3645 write_exp_string (base_token);
3646 write_exp_elt_opcode (OP_REGISTER);
3647
3648 if (offset)
3649 write_exp_elt_opcode (BINOP_ADD);
3650
3651 write_exp_elt_opcode (OP_REGISTER);
3652 index_token.ptr = index;
3653 index_token.length = len_index;
3654 write_exp_string (index_token);
3655 write_exp_elt_opcode (OP_REGISTER);
3656
3657 if (size)
3658 {
3659 write_exp_elt_opcode (OP_LONG);
3660 write_exp_elt_type
3661 (builtin_type (gdbarch)->builtin_long);
3662 write_exp_elt_longcst (size);
3663 write_exp_elt_opcode (OP_LONG);
3664 if (size_minus)
3665 write_exp_elt_opcode (UNOP_NEG);
3666 write_exp_elt_opcode (BINOP_MUL);
3667 }
3668
3669 write_exp_elt_opcode (BINOP_ADD);
3670
3671 write_exp_elt_opcode (UNOP_CAST);
3672 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3673 write_exp_elt_opcode (UNOP_CAST);
3674
3675 write_exp_elt_opcode (UNOP_IND);
3676
3677 p->arg = s;
3678
3679 return 1;
3680 }
3681 break;
3682 }
3683 }
3684
3685 /* Advancing to the next state. */
3686 ++current_state;
3687 }
3688
3689 return 0;
3690 }
3691
3692 \f
3693
3694 /* Generic ELF. */
3695
3696 void
3697 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3698 {
3699 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3700 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3701
3702 /* Registering SystemTap handlers. */
3703 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3704 set_gdbarch_stap_register_prefix (gdbarch, "%");
3705 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3706 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3707 set_gdbarch_stap_is_single_operand (gdbarch,
3708 i386_stap_is_single_operand);
3709 set_gdbarch_stap_parse_special_token (gdbarch,
3710 i386_stap_parse_special_token);
3711 }
3712
3713 /* System V Release 4 (SVR4). */
3714
3715 void
3716 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3717 {
3718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3719
3720 /* System V Release 4 uses ELF. */
3721 i386_elf_init_abi (info, gdbarch);
3722
3723 /* System V Release 4 has shared libraries. */
3724 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3725
3726 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3727 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3728 tdep->sc_pc_offset = 36 + 14 * 4;
3729 tdep->sc_sp_offset = 36 + 17 * 4;
3730
3731 tdep->jb_pc_offset = 20;
3732 }
3733
3734 /* DJGPP. */
3735
3736 static void
3737 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3738 {
3739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3740
3741 /* DJGPP doesn't have any special frames for signal handlers. */
3742 tdep->sigtramp_p = NULL;
3743
3744 tdep->jb_pc_offset = 36;
3745
3746 /* DJGPP does not support the SSE registers. */
3747 if (! tdesc_has_registers (info.target_desc))
3748 tdep->tdesc = tdesc_i386_mmx;
3749
3750 /* Native compiler is GCC, which uses the SVR4 register numbering
3751 even in COFF and STABS. See the comment in i386_gdbarch_init,
3752 before the calls to set_gdbarch_stab_reg_to_regnum and
3753 set_gdbarch_sdb_reg_to_regnum. */
3754 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3755 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3756
3757 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3758 }
3759 \f
3760
3761 /* i386 register groups. In addition to the normal groups, add "mmx"
3762 and "sse". */
3763
3764 static struct reggroup *i386_sse_reggroup;
3765 static struct reggroup *i386_mmx_reggroup;
3766
3767 static void
3768 i386_init_reggroups (void)
3769 {
3770 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3771 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3772 }
3773
3774 static void
3775 i386_add_reggroups (struct gdbarch *gdbarch)
3776 {
3777 reggroup_add (gdbarch, i386_sse_reggroup);
3778 reggroup_add (gdbarch, i386_mmx_reggroup);
3779 reggroup_add (gdbarch, general_reggroup);
3780 reggroup_add (gdbarch, float_reggroup);
3781 reggroup_add (gdbarch, all_reggroup);
3782 reggroup_add (gdbarch, save_reggroup);
3783 reggroup_add (gdbarch, restore_reggroup);
3784 reggroup_add (gdbarch, vector_reggroup);
3785 reggroup_add (gdbarch, system_reggroup);
3786 }
3787
3788 int
3789 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3790 struct reggroup *group)
3791 {
3792 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3793 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3794 ymm_regnum_p, ymmh_regnum_p;
3795
3796 /* Don't include pseudo registers, except for MMX, in any register
3797 groups. */
3798 if (i386_byte_regnum_p (gdbarch, regnum))
3799 return 0;
3800
3801 if (i386_word_regnum_p (gdbarch, regnum))
3802 return 0;
3803
3804 if (i386_dword_regnum_p (gdbarch, regnum))
3805 return 0;
3806
3807 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3808 if (group == i386_mmx_reggroup)
3809 return mmx_regnum_p;
3810
3811 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3812 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3813 if (group == i386_sse_reggroup)
3814 return xmm_regnum_p || mxcsr_regnum_p;
3815
3816 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3817 if (group == vector_reggroup)
3818 return (mmx_regnum_p
3819 || ymm_regnum_p
3820 || mxcsr_regnum_p
3821 || (xmm_regnum_p
3822 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3823 == I386_XSTATE_SSE_MASK)));
3824
3825 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3826 || i386_fpc_regnum_p (gdbarch, regnum));
3827 if (group == float_reggroup)
3828 return fp_regnum_p;
3829
3830 /* For "info reg all", don't include upper YMM registers nor XMM
3831 registers when AVX is supported. */
3832 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3833 if (group == all_reggroup
3834 && ((xmm_regnum_p
3835 && (tdep->xcr0 & I386_XSTATE_AVX))
3836 || ymmh_regnum_p))
3837 return 0;
3838
3839 if (group == general_reggroup)
3840 return (!fp_regnum_p
3841 && !mmx_regnum_p
3842 && !mxcsr_regnum_p
3843 && !xmm_regnum_p
3844 && !ymm_regnum_p
3845 && !ymmh_regnum_p);
3846
3847 return default_register_reggroup_p (gdbarch, regnum, group);
3848 }
3849 \f
3850
3851 /* Get the ARGIth function argument for the current function. */
3852
3853 static CORE_ADDR
3854 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3855 struct type *type)
3856 {
3857 struct gdbarch *gdbarch = get_frame_arch (frame);
3858 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3859 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3860 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3861 }
3862
3863 static void
3864 i386_skip_permanent_breakpoint (struct regcache *regcache)
3865 {
3866 CORE_ADDR current_pc = regcache_read_pc (regcache);
3867
3868 /* On i386, breakpoint is exactly 1 byte long, so we just
3869 adjust the PC in the regcache. */
3870 current_pc += 1;
3871 regcache_write_pc (regcache, current_pc);
3872 }
3873
3874
3875 #define PREFIX_REPZ 0x01
3876 #define PREFIX_REPNZ 0x02
3877 #define PREFIX_LOCK 0x04
3878 #define PREFIX_DATA 0x08
3879 #define PREFIX_ADDR 0x10
3880
3881 /* operand size */
3882 enum
3883 {
3884 OT_BYTE = 0,
3885 OT_WORD,
3886 OT_LONG,
3887 OT_QUAD,
3888 OT_DQUAD,
3889 };
3890
3891 /* i386 arith/logic operations */
3892 enum
3893 {
3894 OP_ADDL,
3895 OP_ORL,
3896 OP_ADCL,
3897 OP_SBBL,
3898 OP_ANDL,
3899 OP_SUBL,
3900 OP_XORL,
3901 OP_CMPL,
3902 };
3903
3904 struct i386_record_s
3905 {
3906 struct gdbarch *gdbarch;
3907 struct regcache *regcache;
3908 CORE_ADDR orig_addr;
3909 CORE_ADDR addr;
3910 int aflag;
3911 int dflag;
3912 int override;
3913 uint8_t modrm;
3914 uint8_t mod, reg, rm;
3915 int ot;
3916 uint8_t rex_x;
3917 uint8_t rex_b;
3918 int rip_offset;
3919 int popl_esp_hack;
3920 const int *regmap;
3921 };
3922
3923 /* Parse "modrm" part in current memory address that irp->addr point to
3924 Return -1 if something wrong. */
3925
3926 static int
3927 i386_record_modrm (struct i386_record_s *irp)
3928 {
3929 struct gdbarch *gdbarch = irp->gdbarch;
3930
3931 if (target_read_memory (irp->addr, &irp->modrm, 1))
3932 {
3933 if (record_debug)
3934 printf_unfiltered (_("Process record: error reading memory at "
3935 "addr %s len = 1.\n"),
3936 paddress (gdbarch, irp->addr));
3937 return -1;
3938 }
3939 irp->addr++;
3940 irp->mod = (irp->modrm >> 6) & 3;
3941 irp->reg = (irp->modrm >> 3) & 7;
3942 irp->rm = irp->modrm & 7;
3943
3944 return 0;
3945 }
3946
3947 /* Get the memory address that current instruction write to and set it to
3948 the argument "addr".
3949 Return -1 if something wrong. */
3950
3951 static int
3952 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3953 {
3954 struct gdbarch *gdbarch = irp->gdbarch;
3955 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3956 gdb_byte buf[4];
3957 ULONGEST offset64;
3958
3959 *addr = 0;
3960 if (irp->aflag)
3961 {
3962 /* 32 bits */
3963 int havesib = 0;
3964 uint8_t scale = 0;
3965 uint8_t byte;
3966 uint8_t index = 0;
3967 uint8_t base = irp->rm;
3968
3969 if (base == 4)
3970 {
3971 havesib = 1;
3972 if (target_read_memory (irp->addr, &byte, 1))
3973 {
3974 if (record_debug)
3975 printf_unfiltered (_("Process record: error reading memory "
3976 "at addr %s len = 1.\n"),
3977 paddress (gdbarch, irp->addr));
3978 return -1;
3979 }
3980 irp->addr++;
3981 scale = (byte >> 6) & 3;
3982 index = ((byte >> 3) & 7) | irp->rex_x;
3983 base = (byte & 7);
3984 }
3985 base |= irp->rex_b;
3986
3987 switch (irp->mod)
3988 {
3989 case 0:
3990 if ((base & 7) == 5)
3991 {
3992 base = 0xff;
3993 if (target_read_memory (irp->addr, buf, 4))
3994 {
3995 if (record_debug)
3996 printf_unfiltered (_("Process record: error reading "
3997 "memory at addr %s len = 4.\n"),
3998 paddress (gdbarch, irp->addr));
3999 return -1;
4000 }
4001 irp->addr += 4;
4002 *addr = extract_signed_integer (buf, 4, byte_order);
4003 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4004 *addr += irp->addr + irp->rip_offset;
4005 }
4006 break;
4007 case 1:
4008 if (target_read_memory (irp->addr, buf, 1))
4009 {
4010 if (record_debug)
4011 printf_unfiltered (_("Process record: error reading memory "
4012 "at addr %s len = 1.\n"),
4013 paddress (gdbarch, irp->addr));
4014 return -1;
4015 }
4016 irp->addr++;
4017 *addr = (int8_t) buf[0];
4018 break;
4019 case 2:
4020 if (target_read_memory (irp->addr, buf, 4))
4021 {
4022 if (record_debug)
4023 printf_unfiltered (_("Process record: error reading memory "
4024 "at addr %s len = 4.\n"),
4025 paddress (gdbarch, irp->addr));
4026 return -1;
4027 }
4028 *addr = extract_signed_integer (buf, 4, byte_order);
4029 irp->addr += 4;
4030 break;
4031 }
4032
4033 offset64 = 0;
4034 if (base != 0xff)
4035 {
4036 if (base == 4 && irp->popl_esp_hack)
4037 *addr += irp->popl_esp_hack;
4038 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4039 &offset64);
4040 }
4041 if (irp->aflag == 2)
4042 {
4043 *addr += offset64;
4044 }
4045 else
4046 *addr = (uint32_t) (offset64 + *addr);
4047
4048 if (havesib && (index != 4 || scale != 0))
4049 {
4050 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4051 &offset64);
4052 if (irp->aflag == 2)
4053 *addr += offset64 << scale;
4054 else
4055 *addr = (uint32_t) (*addr + (offset64 << scale));
4056 }
4057 }
4058 else
4059 {
4060 /* 16 bits */
4061 switch (irp->mod)
4062 {
4063 case 0:
4064 if (irp->rm == 6)
4065 {
4066 if (target_read_memory (irp->addr, buf, 2))
4067 {
4068 if (record_debug)
4069 printf_unfiltered (_("Process record: error reading "
4070 "memory at addr %s len = 2.\n"),
4071 paddress (gdbarch, irp->addr));
4072 return -1;
4073 }
4074 irp->addr += 2;
4075 *addr = extract_signed_integer (buf, 2, byte_order);
4076 irp->rm = 0;
4077 goto no_rm;
4078 }
4079 break;
4080 case 1:
4081 if (target_read_memory (irp->addr, buf, 1))
4082 {
4083 if (record_debug)
4084 printf_unfiltered (_("Process record: error reading memory "
4085 "at addr %s len = 1.\n"),
4086 paddress (gdbarch, irp->addr));
4087 return -1;
4088 }
4089 irp->addr++;
4090 *addr = (int8_t) buf[0];
4091 break;
4092 case 2:
4093 if (target_read_memory (irp->addr, buf, 2))
4094 {
4095 if (record_debug)
4096 printf_unfiltered (_("Process record: error reading memory "
4097 "at addr %s len = 2.\n"),
4098 paddress (gdbarch, irp->addr));
4099 return -1;
4100 }
4101 irp->addr += 2;
4102 *addr = extract_signed_integer (buf, 2, byte_order);
4103 break;
4104 }
4105
4106 switch (irp->rm)
4107 {
4108 case 0:
4109 regcache_raw_read_unsigned (irp->regcache,
4110 irp->regmap[X86_RECORD_REBX_REGNUM],
4111 &offset64);
4112 *addr = (uint32_t) (*addr + offset64);
4113 regcache_raw_read_unsigned (irp->regcache,
4114 irp->regmap[X86_RECORD_RESI_REGNUM],
4115 &offset64);
4116 *addr = (uint32_t) (*addr + offset64);
4117 break;
4118 case 1:
4119 regcache_raw_read_unsigned (irp->regcache,
4120 irp->regmap[X86_RECORD_REBX_REGNUM],
4121 &offset64);
4122 *addr = (uint32_t) (*addr + offset64);
4123 regcache_raw_read_unsigned (irp->regcache,
4124 irp->regmap[X86_RECORD_REDI_REGNUM],
4125 &offset64);
4126 *addr = (uint32_t) (*addr + offset64);
4127 break;
4128 case 2:
4129 regcache_raw_read_unsigned (irp->regcache,
4130 irp->regmap[X86_RECORD_REBP_REGNUM],
4131 &offset64);
4132 *addr = (uint32_t) (*addr + offset64);
4133 regcache_raw_read_unsigned (irp->regcache,
4134 irp->regmap[X86_RECORD_RESI_REGNUM],
4135 &offset64);
4136 *addr = (uint32_t) (*addr + offset64);
4137 break;
4138 case 3:
4139 regcache_raw_read_unsigned (irp->regcache,
4140 irp->regmap[X86_RECORD_REBP_REGNUM],
4141 &offset64);
4142 *addr = (uint32_t) (*addr + offset64);
4143 regcache_raw_read_unsigned (irp->regcache,
4144 irp->regmap[X86_RECORD_REDI_REGNUM],
4145 &offset64);
4146 *addr = (uint32_t) (*addr + offset64);
4147 break;
4148 case 4:
4149 regcache_raw_read_unsigned (irp->regcache,
4150 irp->regmap[X86_RECORD_RESI_REGNUM],
4151 &offset64);
4152 *addr = (uint32_t) (*addr + offset64);
4153 break;
4154 case 5:
4155 regcache_raw_read_unsigned (irp->regcache,
4156 irp->regmap[X86_RECORD_REDI_REGNUM],
4157 &offset64);
4158 *addr = (uint32_t) (*addr + offset64);
4159 break;
4160 case 6:
4161 regcache_raw_read_unsigned (irp->regcache,
4162 irp->regmap[X86_RECORD_REBP_REGNUM],
4163 &offset64);
4164 *addr = (uint32_t) (*addr + offset64);
4165 break;
4166 case 7:
4167 regcache_raw_read_unsigned (irp->regcache,
4168 irp->regmap[X86_RECORD_REBX_REGNUM],
4169 &offset64);
4170 *addr = (uint32_t) (*addr + offset64);
4171 break;
4172 }
4173 *addr &= 0xffff;
4174 }
4175
4176 no_rm:
4177 return 0;
4178 }
4179
4180 /* Record the value of the memory that willbe changed in current instruction
4181 to "record_arch_list".
4182 Return -1 if something wrong. */
4183
4184 static int
4185 i386_record_lea_modrm (struct i386_record_s *irp)
4186 {
4187 struct gdbarch *gdbarch = irp->gdbarch;
4188 uint64_t addr;
4189
4190 if (irp->override >= 0)
4191 {
4192 if (record_memory_query)
4193 {
4194 int q;
4195
4196 target_terminal_ours ();
4197 q = yquery (_("\
4198 Process record ignores the memory change of instruction at address %s\n\
4199 because it can't get the value of the segment register.\n\
4200 Do you want to stop the program?"),
4201 paddress (gdbarch, irp->orig_addr));
4202 target_terminal_inferior ();
4203 if (q)
4204 return -1;
4205 }
4206
4207 return 0;
4208 }
4209
4210 if (i386_record_lea_modrm_addr (irp, &addr))
4211 return -1;
4212
4213 if (record_arch_list_add_mem (addr, 1 << irp->ot))
4214 return -1;
4215
4216 return 0;
4217 }
4218
4219 /* Record the push operation to "record_arch_list".
4220 Return -1 if something wrong. */
4221
4222 static int
4223 i386_record_push (struct i386_record_s *irp, int size)
4224 {
4225 ULONGEST addr;
4226
4227 if (record_arch_list_add_reg (irp->regcache,
4228 irp->regmap[X86_RECORD_RESP_REGNUM]))
4229 return -1;
4230 regcache_raw_read_unsigned (irp->regcache,
4231 irp->regmap[X86_RECORD_RESP_REGNUM],
4232 &addr);
4233 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4234 return -1;
4235
4236 return 0;
4237 }
4238
4239
4240 /* Defines contents to record. */
4241 #define I386_SAVE_FPU_REGS 0xfffd
4242 #define I386_SAVE_FPU_ENV 0xfffe
4243 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4244
4245 /* Record the value of floating point registers which will be changed
4246 by the current instruction to "record_arch_list". Return -1 if
4247 something is wrong. */
4248
4249 static int i386_record_floats (struct gdbarch *gdbarch,
4250 struct i386_record_s *ir,
4251 uint32_t iregnum)
4252 {
4253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4254 int i;
4255
4256 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4257 happen. Currently we store st0-st7 registers, but we need not store all
4258 registers all the time, in future we use ftag register and record only
4259 those who are not marked as an empty. */
4260
4261 if (I386_SAVE_FPU_REGS == iregnum)
4262 {
4263 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4264 {
4265 if (record_arch_list_add_reg (ir->regcache, i))
4266 return -1;
4267 }
4268 }
4269 else if (I386_SAVE_FPU_ENV == iregnum)
4270 {
4271 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4272 {
4273 if (record_arch_list_add_reg (ir->regcache, i))
4274 return -1;
4275 }
4276 }
4277 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4278 {
4279 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4280 {
4281 if (record_arch_list_add_reg (ir->regcache, i))
4282 return -1;
4283 }
4284 }
4285 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4286 (iregnum <= I387_FOP_REGNUM (tdep)))
4287 {
4288 if (record_arch_list_add_reg (ir->regcache,iregnum))
4289 return -1;
4290 }
4291 else
4292 {
4293 /* Parameter error. */
4294 return -1;
4295 }
4296 if(I386_SAVE_FPU_ENV != iregnum)
4297 {
4298 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4299 {
4300 if (record_arch_list_add_reg (ir->regcache, i))
4301 return -1;
4302 }
4303 }
4304 return 0;
4305 }
4306
4307 /* Parse the current instruction and record the values of the registers and
4308 memory that will be changed in current instruction to "record_arch_list".
4309 Return -1 if something wrong. */
4310
4311 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
4312 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4313
4314 int
4315 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4316 CORE_ADDR input_addr)
4317 {
4318 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4319 int prefixes = 0;
4320 int regnum = 0;
4321 uint32_t opcode;
4322 uint8_t opcode8;
4323 ULONGEST addr;
4324 gdb_byte buf[MAX_REGISTER_SIZE];
4325 struct i386_record_s ir;
4326 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4327 int rex = 0;
4328 uint8_t rex_w = -1;
4329 uint8_t rex_r = 0;
4330
4331 memset (&ir, 0, sizeof (struct i386_record_s));
4332 ir.regcache = regcache;
4333 ir.addr = input_addr;
4334 ir.orig_addr = input_addr;
4335 ir.aflag = 1;
4336 ir.dflag = 1;
4337 ir.override = -1;
4338 ir.popl_esp_hack = 0;
4339 ir.regmap = tdep->record_regmap;
4340 ir.gdbarch = gdbarch;
4341
4342 if (record_debug > 1)
4343 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4344 "addr = %s\n",
4345 paddress (gdbarch, ir.addr));
4346
4347 /* prefixes */
4348 while (1)
4349 {
4350 if (target_read_memory (ir.addr, &opcode8, 1))
4351 {
4352 if (record_debug)
4353 printf_unfiltered (_("Process record: error reading memory at "
4354 "addr %s len = 1.\n"),
4355 paddress (gdbarch, ir.addr));
4356 return -1;
4357 }
4358 ir.addr++;
4359 switch (opcode8) /* Instruction prefixes */
4360 {
4361 case REPE_PREFIX_OPCODE:
4362 prefixes |= PREFIX_REPZ;
4363 break;
4364 case REPNE_PREFIX_OPCODE:
4365 prefixes |= PREFIX_REPNZ;
4366 break;
4367 case LOCK_PREFIX_OPCODE:
4368 prefixes |= PREFIX_LOCK;
4369 break;
4370 case CS_PREFIX_OPCODE:
4371 ir.override = X86_RECORD_CS_REGNUM;
4372 break;
4373 case SS_PREFIX_OPCODE:
4374 ir.override = X86_RECORD_SS_REGNUM;
4375 break;
4376 case DS_PREFIX_OPCODE:
4377 ir.override = X86_RECORD_DS_REGNUM;
4378 break;
4379 case ES_PREFIX_OPCODE:
4380 ir.override = X86_RECORD_ES_REGNUM;
4381 break;
4382 case FS_PREFIX_OPCODE:
4383 ir.override = X86_RECORD_FS_REGNUM;
4384 break;
4385 case GS_PREFIX_OPCODE:
4386 ir.override = X86_RECORD_GS_REGNUM;
4387 break;
4388 case DATA_PREFIX_OPCODE:
4389 prefixes |= PREFIX_DATA;
4390 break;
4391 case ADDR_PREFIX_OPCODE:
4392 prefixes |= PREFIX_ADDR;
4393 break;
4394 case 0x40: /* i386 inc %eax */
4395 case 0x41: /* i386 inc %ecx */
4396 case 0x42: /* i386 inc %edx */
4397 case 0x43: /* i386 inc %ebx */
4398 case 0x44: /* i386 inc %esp */
4399 case 0x45: /* i386 inc %ebp */
4400 case 0x46: /* i386 inc %esi */
4401 case 0x47: /* i386 inc %edi */
4402 case 0x48: /* i386 dec %eax */
4403 case 0x49: /* i386 dec %ecx */
4404 case 0x4a: /* i386 dec %edx */
4405 case 0x4b: /* i386 dec %ebx */
4406 case 0x4c: /* i386 dec %esp */
4407 case 0x4d: /* i386 dec %ebp */
4408 case 0x4e: /* i386 dec %esi */
4409 case 0x4f: /* i386 dec %edi */
4410 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4411 {
4412 /* REX */
4413 rex = 1;
4414 rex_w = (opcode8 >> 3) & 1;
4415 rex_r = (opcode8 & 0x4) << 1;
4416 ir.rex_x = (opcode8 & 0x2) << 2;
4417 ir.rex_b = (opcode8 & 0x1) << 3;
4418 }
4419 else /* 32 bit target */
4420 goto out_prefixes;
4421 break;
4422 default:
4423 goto out_prefixes;
4424 break;
4425 }
4426 }
4427 out_prefixes:
4428 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4429 {
4430 ir.dflag = 2;
4431 }
4432 else
4433 {
4434 if (prefixes & PREFIX_DATA)
4435 ir.dflag ^= 1;
4436 }
4437 if (prefixes & PREFIX_ADDR)
4438 ir.aflag ^= 1;
4439 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4440 ir.aflag = 2;
4441
4442 /* Now check op code. */
4443 opcode = (uint32_t) opcode8;
4444 reswitch:
4445 switch (opcode)
4446 {
4447 case 0x0f:
4448 if (target_read_memory (ir.addr, &opcode8, 1))
4449 {
4450 if (record_debug)
4451 printf_unfiltered (_("Process record: error reading memory at "
4452 "addr %s len = 1.\n"),
4453 paddress (gdbarch, ir.addr));
4454 return -1;
4455 }
4456 ir.addr++;
4457 opcode = (uint32_t) opcode8 | 0x0f00;
4458 goto reswitch;
4459 break;
4460
4461 case 0x00: /* arith & logic */
4462 case 0x01:
4463 case 0x02:
4464 case 0x03:
4465 case 0x04:
4466 case 0x05:
4467 case 0x08:
4468 case 0x09:
4469 case 0x0a:
4470 case 0x0b:
4471 case 0x0c:
4472 case 0x0d:
4473 case 0x10:
4474 case 0x11:
4475 case 0x12:
4476 case 0x13:
4477 case 0x14:
4478 case 0x15:
4479 case 0x18:
4480 case 0x19:
4481 case 0x1a:
4482 case 0x1b:
4483 case 0x1c:
4484 case 0x1d:
4485 case 0x20:
4486 case 0x21:
4487 case 0x22:
4488 case 0x23:
4489 case 0x24:
4490 case 0x25:
4491 case 0x28:
4492 case 0x29:
4493 case 0x2a:
4494 case 0x2b:
4495 case 0x2c:
4496 case 0x2d:
4497 case 0x30:
4498 case 0x31:
4499 case 0x32:
4500 case 0x33:
4501 case 0x34:
4502 case 0x35:
4503 case 0x38:
4504 case 0x39:
4505 case 0x3a:
4506 case 0x3b:
4507 case 0x3c:
4508 case 0x3d:
4509 if (((opcode >> 3) & 7) != OP_CMPL)
4510 {
4511 if ((opcode & 1) == 0)
4512 ir.ot = OT_BYTE;
4513 else
4514 ir.ot = ir.dflag + OT_WORD;
4515
4516 switch ((opcode >> 1) & 3)
4517 {
4518 case 0: /* OP Ev, Gv */
4519 if (i386_record_modrm (&ir))
4520 return -1;
4521 if (ir.mod != 3)
4522 {
4523 if (i386_record_lea_modrm (&ir))
4524 return -1;
4525 }
4526 else
4527 {
4528 ir.rm |= ir.rex_b;
4529 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4530 ir.rm &= 0x3;
4531 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4532 }
4533 break;
4534 case 1: /* OP Gv, Ev */
4535 if (i386_record_modrm (&ir))
4536 return -1;
4537 ir.reg |= rex_r;
4538 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4539 ir.reg &= 0x3;
4540 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4541 break;
4542 case 2: /* OP A, Iv */
4543 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4544 break;
4545 }
4546 }
4547 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4548 break;
4549
4550 case 0x80: /* GRP1 */
4551 case 0x81:
4552 case 0x82:
4553 case 0x83:
4554 if (i386_record_modrm (&ir))
4555 return -1;
4556
4557 if (ir.reg != OP_CMPL)
4558 {
4559 if ((opcode & 1) == 0)
4560 ir.ot = OT_BYTE;
4561 else
4562 ir.ot = ir.dflag + OT_WORD;
4563
4564 if (ir.mod != 3)
4565 {
4566 if (opcode == 0x83)
4567 ir.rip_offset = 1;
4568 else
4569 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4570 if (i386_record_lea_modrm (&ir))
4571 return -1;
4572 }
4573 else
4574 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4575 }
4576 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4577 break;
4578
4579 case 0x40: /* inc */
4580 case 0x41:
4581 case 0x42:
4582 case 0x43:
4583 case 0x44:
4584 case 0x45:
4585 case 0x46:
4586 case 0x47:
4587
4588 case 0x48: /* dec */
4589 case 0x49:
4590 case 0x4a:
4591 case 0x4b:
4592 case 0x4c:
4593 case 0x4d:
4594 case 0x4e:
4595 case 0x4f:
4596
4597 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4598 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4599 break;
4600
4601 case 0xf6: /* GRP3 */
4602 case 0xf7:
4603 if ((opcode & 1) == 0)
4604 ir.ot = OT_BYTE;
4605 else
4606 ir.ot = ir.dflag + OT_WORD;
4607 if (i386_record_modrm (&ir))
4608 return -1;
4609
4610 if (ir.mod != 3 && ir.reg == 0)
4611 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4612
4613 switch (ir.reg)
4614 {
4615 case 0: /* test */
4616 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4617 break;
4618 case 2: /* not */
4619 case 3: /* neg */
4620 if (ir.mod != 3)
4621 {
4622 if (i386_record_lea_modrm (&ir))
4623 return -1;
4624 }
4625 else
4626 {
4627 ir.rm |= ir.rex_b;
4628 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4629 ir.rm &= 0x3;
4630 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4631 }
4632 if (ir.reg == 3) /* neg */
4633 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4634 break;
4635 case 4: /* mul */
4636 case 5: /* imul */
4637 case 6: /* div */
4638 case 7: /* idiv */
4639 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4640 if (ir.ot != OT_BYTE)
4641 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4642 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4643 break;
4644 default:
4645 ir.addr -= 2;
4646 opcode = opcode << 8 | ir.modrm;
4647 goto no_support;
4648 break;
4649 }
4650 break;
4651
4652 case 0xfe: /* GRP4 */
4653 case 0xff: /* GRP5 */
4654 if (i386_record_modrm (&ir))
4655 return -1;
4656 if (ir.reg >= 2 && opcode == 0xfe)
4657 {
4658 ir.addr -= 2;
4659 opcode = opcode << 8 | ir.modrm;
4660 goto no_support;
4661 }
4662 switch (ir.reg)
4663 {
4664 case 0: /* inc */
4665 case 1: /* dec */
4666 if ((opcode & 1) == 0)
4667 ir.ot = OT_BYTE;
4668 else
4669 ir.ot = ir.dflag + OT_WORD;
4670 if (ir.mod != 3)
4671 {
4672 if (i386_record_lea_modrm (&ir))
4673 return -1;
4674 }
4675 else
4676 {
4677 ir.rm |= ir.rex_b;
4678 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4679 ir.rm &= 0x3;
4680 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4681 }
4682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4683 break;
4684 case 2: /* call */
4685 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4686 ir.dflag = 2;
4687 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4688 return -1;
4689 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4690 break;
4691 case 3: /* lcall */
4692 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4693 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4694 return -1;
4695 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4696 break;
4697 case 4: /* jmp */
4698 case 5: /* ljmp */
4699 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4700 break;
4701 case 6: /* push */
4702 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4703 ir.dflag = 2;
4704 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4705 return -1;
4706 break;
4707 default:
4708 ir.addr -= 2;
4709 opcode = opcode << 8 | ir.modrm;
4710 goto no_support;
4711 break;
4712 }
4713 break;
4714
4715 case 0x84: /* test */
4716 case 0x85:
4717 case 0xa8:
4718 case 0xa9:
4719 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4720 break;
4721
4722 case 0x98: /* CWDE/CBW */
4723 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4724 break;
4725
4726 case 0x99: /* CDQ/CWD */
4727 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4728 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4729 break;
4730
4731 case 0x0faf: /* imul */
4732 case 0x69:
4733 case 0x6b:
4734 ir.ot = ir.dflag + OT_WORD;
4735 if (i386_record_modrm (&ir))
4736 return -1;
4737 if (opcode == 0x69)
4738 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4739 else if (opcode == 0x6b)
4740 ir.rip_offset = 1;
4741 ir.reg |= rex_r;
4742 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4743 ir.reg &= 0x3;
4744 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4745 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4746 break;
4747
4748 case 0x0fc0: /* xadd */
4749 case 0x0fc1:
4750 if ((opcode & 1) == 0)
4751 ir.ot = OT_BYTE;
4752 else
4753 ir.ot = ir.dflag + OT_WORD;
4754 if (i386_record_modrm (&ir))
4755 return -1;
4756 ir.reg |= rex_r;
4757 if (ir.mod == 3)
4758 {
4759 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4760 ir.reg &= 0x3;
4761 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4762 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4763 ir.rm &= 0x3;
4764 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4765 }
4766 else
4767 {
4768 if (i386_record_lea_modrm (&ir))
4769 return -1;
4770 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4771 ir.reg &= 0x3;
4772 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4773 }
4774 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4775 break;
4776
4777 case 0x0fb0: /* cmpxchg */
4778 case 0x0fb1:
4779 if ((opcode & 1) == 0)
4780 ir.ot = OT_BYTE;
4781 else
4782 ir.ot = ir.dflag + OT_WORD;
4783 if (i386_record_modrm (&ir))
4784 return -1;
4785 if (ir.mod == 3)
4786 {
4787 ir.reg |= rex_r;
4788 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4789 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4790 ir.reg &= 0x3;
4791 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4792 }
4793 else
4794 {
4795 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4796 if (i386_record_lea_modrm (&ir))
4797 return -1;
4798 }
4799 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4800 break;
4801
4802 case 0x0fc7: /* cmpxchg8b */
4803 if (i386_record_modrm (&ir))
4804 return -1;
4805 if (ir.mod == 3)
4806 {
4807 ir.addr -= 2;
4808 opcode = opcode << 8 | ir.modrm;
4809 goto no_support;
4810 }
4811 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4813 if (i386_record_lea_modrm (&ir))
4814 return -1;
4815 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4816 break;
4817
4818 case 0x50: /* push */
4819 case 0x51:
4820 case 0x52:
4821 case 0x53:
4822 case 0x54:
4823 case 0x55:
4824 case 0x56:
4825 case 0x57:
4826 case 0x68:
4827 case 0x6a:
4828 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4829 ir.dflag = 2;
4830 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4831 return -1;
4832 break;
4833
4834 case 0x06: /* push es */
4835 case 0x0e: /* push cs */
4836 case 0x16: /* push ss */
4837 case 0x1e: /* push ds */
4838 if (ir.regmap[X86_RECORD_R8_REGNUM])
4839 {
4840 ir.addr -= 1;
4841 goto no_support;
4842 }
4843 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4844 return -1;
4845 break;
4846
4847 case 0x0fa0: /* push fs */
4848 case 0x0fa8: /* push gs */
4849 if (ir.regmap[X86_RECORD_R8_REGNUM])
4850 {
4851 ir.addr -= 2;
4852 goto no_support;
4853 }
4854 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4855 return -1;
4856 break;
4857
4858 case 0x60: /* pusha */
4859 if (ir.regmap[X86_RECORD_R8_REGNUM])
4860 {
4861 ir.addr -= 1;
4862 goto no_support;
4863 }
4864 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4865 return -1;
4866 break;
4867
4868 case 0x58: /* pop */
4869 case 0x59:
4870 case 0x5a:
4871 case 0x5b:
4872 case 0x5c:
4873 case 0x5d:
4874 case 0x5e:
4875 case 0x5f:
4876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4877 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4878 break;
4879
4880 case 0x61: /* popa */
4881 if (ir.regmap[X86_RECORD_R8_REGNUM])
4882 {
4883 ir.addr -= 1;
4884 goto no_support;
4885 }
4886 for (regnum = X86_RECORD_REAX_REGNUM;
4887 regnum <= X86_RECORD_REDI_REGNUM;
4888 regnum++)
4889 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4890 break;
4891
4892 case 0x8f: /* pop */
4893 if (ir.regmap[X86_RECORD_R8_REGNUM])
4894 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4895 else
4896 ir.ot = ir.dflag + OT_WORD;
4897 if (i386_record_modrm (&ir))
4898 return -1;
4899 if (ir.mod == 3)
4900 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4901 else
4902 {
4903 ir.popl_esp_hack = 1 << ir.ot;
4904 if (i386_record_lea_modrm (&ir))
4905 return -1;
4906 }
4907 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4908 break;
4909
4910 case 0xc8: /* enter */
4911 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4912 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4913 ir.dflag = 2;
4914 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4915 return -1;
4916 break;
4917
4918 case 0xc9: /* leave */
4919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4921 break;
4922
4923 case 0x07: /* pop es */
4924 if (ir.regmap[X86_RECORD_R8_REGNUM])
4925 {
4926 ir.addr -= 1;
4927 goto no_support;
4928 }
4929 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4930 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4931 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4932 break;
4933
4934 case 0x17: /* pop ss */
4935 if (ir.regmap[X86_RECORD_R8_REGNUM])
4936 {
4937 ir.addr -= 1;
4938 goto no_support;
4939 }
4940 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4941 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4942 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4943 break;
4944
4945 case 0x1f: /* pop ds */
4946 if (ir.regmap[X86_RECORD_R8_REGNUM])
4947 {
4948 ir.addr -= 1;
4949 goto no_support;
4950 }
4951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4953 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4954 break;
4955
4956 case 0x0fa1: /* pop fs */
4957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4958 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4959 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4960 break;
4961
4962 case 0x0fa9: /* pop gs */
4963 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4964 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4966 break;
4967
4968 case 0x88: /* mov */
4969 case 0x89:
4970 case 0xc6:
4971 case 0xc7:
4972 if ((opcode & 1) == 0)
4973 ir.ot = OT_BYTE;
4974 else
4975 ir.ot = ir.dflag + OT_WORD;
4976
4977 if (i386_record_modrm (&ir))
4978 return -1;
4979
4980 if (ir.mod != 3)
4981 {
4982 if (opcode == 0xc6 || opcode == 0xc7)
4983 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4984 if (i386_record_lea_modrm (&ir))
4985 return -1;
4986 }
4987 else
4988 {
4989 if (opcode == 0xc6 || opcode == 0xc7)
4990 ir.rm |= ir.rex_b;
4991 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4992 ir.rm &= 0x3;
4993 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4994 }
4995 break;
4996
4997 case 0x8a: /* mov */
4998 case 0x8b:
4999 if ((opcode & 1) == 0)
5000 ir.ot = OT_BYTE;
5001 else
5002 ir.ot = ir.dflag + OT_WORD;
5003 if (i386_record_modrm (&ir))
5004 return -1;
5005 ir.reg |= rex_r;
5006 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5007 ir.reg &= 0x3;
5008 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5009 break;
5010
5011 case 0x8c: /* mov seg */
5012 if (i386_record_modrm (&ir))
5013 return -1;
5014 if (ir.reg > 5)
5015 {
5016 ir.addr -= 2;
5017 opcode = opcode << 8 | ir.modrm;
5018 goto no_support;
5019 }
5020
5021 if (ir.mod == 3)
5022 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5023 else
5024 {
5025 ir.ot = OT_WORD;
5026 if (i386_record_lea_modrm (&ir))
5027 return -1;
5028 }
5029 break;
5030
5031 case 0x8e: /* mov seg */
5032 if (i386_record_modrm (&ir))
5033 return -1;
5034 switch (ir.reg)
5035 {
5036 case 0:
5037 regnum = X86_RECORD_ES_REGNUM;
5038 break;
5039 case 2:
5040 regnum = X86_RECORD_SS_REGNUM;
5041 break;
5042 case 3:
5043 regnum = X86_RECORD_DS_REGNUM;
5044 break;
5045 case 4:
5046 regnum = X86_RECORD_FS_REGNUM;
5047 break;
5048 case 5:
5049 regnum = X86_RECORD_GS_REGNUM;
5050 break;
5051 default:
5052 ir.addr -= 2;
5053 opcode = opcode << 8 | ir.modrm;
5054 goto no_support;
5055 break;
5056 }
5057 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5058 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5059 break;
5060
5061 case 0x0fb6: /* movzbS */
5062 case 0x0fb7: /* movzwS */
5063 case 0x0fbe: /* movsbS */
5064 case 0x0fbf: /* movswS */
5065 if (i386_record_modrm (&ir))
5066 return -1;
5067 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5068 break;
5069
5070 case 0x8d: /* lea */
5071 if (i386_record_modrm (&ir))
5072 return -1;
5073 if (ir.mod == 3)
5074 {
5075 ir.addr -= 2;
5076 opcode = opcode << 8 | ir.modrm;
5077 goto no_support;
5078 }
5079 ir.ot = ir.dflag;
5080 ir.reg |= rex_r;
5081 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5082 ir.reg &= 0x3;
5083 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5084 break;
5085
5086 case 0xa0: /* mov EAX */
5087 case 0xa1:
5088
5089 case 0xd7: /* xlat */
5090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5091 break;
5092
5093 case 0xa2: /* mov EAX */
5094 case 0xa3:
5095 if (ir.override >= 0)
5096 {
5097 if (record_memory_query)
5098 {
5099 int q;
5100
5101 target_terminal_ours ();
5102 q = yquery (_("\
5103 Process record ignores the memory change of instruction at address %s\n\
5104 because it can't get the value of the segment register.\n\
5105 Do you want to stop the program?"),
5106 paddress (gdbarch, ir.orig_addr));
5107 target_terminal_inferior ();
5108 if (q)
5109 return -1;
5110 }
5111 }
5112 else
5113 {
5114 if ((opcode & 1) == 0)
5115 ir.ot = OT_BYTE;
5116 else
5117 ir.ot = ir.dflag + OT_WORD;
5118 if (ir.aflag == 2)
5119 {
5120 if (target_read_memory (ir.addr, buf, 8))
5121 {
5122 if (record_debug)
5123 printf_unfiltered (_("Process record: error reading "
5124 "memory at addr 0x%s len = 8.\n"),
5125 paddress (gdbarch, ir.addr));
5126 return -1;
5127 }
5128 ir.addr += 8;
5129 addr = extract_unsigned_integer (buf, 8, byte_order);
5130 }
5131 else if (ir.aflag)
5132 {
5133 if (target_read_memory (ir.addr, buf, 4))
5134 {
5135 if (record_debug)
5136 printf_unfiltered (_("Process record: error reading "
5137 "memory at addr 0x%s len = 4.\n"),
5138 paddress (gdbarch, ir.addr));
5139 return -1;
5140 }
5141 ir.addr += 4;
5142 addr = extract_unsigned_integer (buf, 4, byte_order);
5143 }
5144 else
5145 {
5146 if (target_read_memory (ir.addr, buf, 2))
5147 {
5148 if (record_debug)
5149 printf_unfiltered (_("Process record: error reading "
5150 "memory at addr 0x%s len = 2.\n"),
5151 paddress (gdbarch, ir.addr));
5152 return -1;
5153 }
5154 ir.addr += 2;
5155 addr = extract_unsigned_integer (buf, 2, byte_order);
5156 }
5157 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5158 return -1;
5159 }
5160 break;
5161
5162 case 0xb0: /* mov R, Ib */
5163 case 0xb1:
5164 case 0xb2:
5165 case 0xb3:
5166 case 0xb4:
5167 case 0xb5:
5168 case 0xb6:
5169 case 0xb7:
5170 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5171 ? ((opcode & 0x7) | ir.rex_b)
5172 : ((opcode & 0x7) & 0x3));
5173 break;
5174
5175 case 0xb8: /* mov R, Iv */
5176 case 0xb9:
5177 case 0xba:
5178 case 0xbb:
5179 case 0xbc:
5180 case 0xbd:
5181 case 0xbe:
5182 case 0xbf:
5183 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5184 break;
5185
5186 case 0x91: /* xchg R, EAX */
5187 case 0x92:
5188 case 0x93:
5189 case 0x94:
5190 case 0x95:
5191 case 0x96:
5192 case 0x97:
5193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5194 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
5195 break;
5196
5197 case 0x86: /* xchg Ev, Gv */
5198 case 0x87:
5199 if ((opcode & 1) == 0)
5200 ir.ot = OT_BYTE;
5201 else
5202 ir.ot = ir.dflag + OT_WORD;
5203 if (i386_record_modrm (&ir))
5204 return -1;
5205 if (ir.mod == 3)
5206 {
5207 ir.rm |= ir.rex_b;
5208 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5209 ir.rm &= 0x3;
5210 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5211 }
5212 else
5213 {
5214 if (i386_record_lea_modrm (&ir))
5215 return -1;
5216 }
5217 ir.reg |= rex_r;
5218 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5219 ir.reg &= 0x3;
5220 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5221 break;
5222
5223 case 0xc4: /* les Gv */
5224 case 0xc5: /* lds Gv */
5225 if (ir.regmap[X86_RECORD_R8_REGNUM])
5226 {
5227 ir.addr -= 1;
5228 goto no_support;
5229 }
5230 /* FALLTHROUGH */
5231 case 0x0fb2: /* lss Gv */
5232 case 0x0fb4: /* lfs Gv */
5233 case 0x0fb5: /* lgs Gv */
5234 if (i386_record_modrm (&ir))
5235 return -1;
5236 if (ir.mod == 3)
5237 {
5238 if (opcode > 0xff)
5239 ir.addr -= 3;
5240 else
5241 ir.addr -= 2;
5242 opcode = opcode << 8 | ir.modrm;
5243 goto no_support;
5244 }
5245 switch (opcode)
5246 {
5247 case 0xc4: /* les Gv */
5248 regnum = X86_RECORD_ES_REGNUM;
5249 break;
5250 case 0xc5: /* lds Gv */
5251 regnum = X86_RECORD_DS_REGNUM;
5252 break;
5253 case 0x0fb2: /* lss Gv */
5254 regnum = X86_RECORD_SS_REGNUM;
5255 break;
5256 case 0x0fb4: /* lfs Gv */
5257 regnum = X86_RECORD_FS_REGNUM;
5258 break;
5259 case 0x0fb5: /* lgs Gv */
5260 regnum = X86_RECORD_GS_REGNUM;
5261 break;
5262 }
5263 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
5264 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5265 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5266 break;
5267
5268 case 0xc0: /* shifts */
5269 case 0xc1:
5270 case 0xd0:
5271 case 0xd1:
5272 case 0xd2:
5273 case 0xd3:
5274 if ((opcode & 1) == 0)
5275 ir.ot = OT_BYTE;
5276 else
5277 ir.ot = ir.dflag + OT_WORD;
5278 if (i386_record_modrm (&ir))
5279 return -1;
5280 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5281 {
5282 if (i386_record_lea_modrm (&ir))
5283 return -1;
5284 }
5285 else
5286 {
5287 ir.rm |= ir.rex_b;
5288 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5289 ir.rm &= 0x3;
5290 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
5291 }
5292 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5293 break;
5294
5295 case 0x0fa4:
5296 case 0x0fa5:
5297 case 0x0fac:
5298 case 0x0fad:
5299 if (i386_record_modrm (&ir))
5300 return -1;
5301 if (ir.mod == 3)
5302 {
5303 if (record_arch_list_add_reg (ir.regcache, ir.rm))
5304 return -1;
5305 }
5306 else
5307 {
5308 if (i386_record_lea_modrm (&ir))
5309 return -1;
5310 }
5311 break;
5312
5313 case 0xd8: /* Floats. */
5314 case 0xd9:
5315 case 0xda:
5316 case 0xdb:
5317 case 0xdc:
5318 case 0xdd:
5319 case 0xde:
5320 case 0xdf:
5321 if (i386_record_modrm (&ir))
5322 return -1;
5323 ir.reg |= ((opcode & 7) << 3);
5324 if (ir.mod != 3)
5325 {
5326 /* Memory. */
5327 uint64_t addr64;
5328
5329 if (i386_record_lea_modrm_addr (&ir, &addr64))
5330 return -1;
5331 switch (ir.reg)
5332 {
5333 case 0x02:
5334 case 0x12:
5335 case 0x22:
5336 case 0x32:
5337 /* For fcom, ficom nothing to do. */
5338 break;
5339 case 0x03:
5340 case 0x13:
5341 case 0x23:
5342 case 0x33:
5343 /* For fcomp, ficomp pop FPU stack, store all. */
5344 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5345 return -1;
5346 break;
5347 case 0x00:
5348 case 0x01:
5349 case 0x04:
5350 case 0x05:
5351 case 0x06:
5352 case 0x07:
5353 case 0x10:
5354 case 0x11:
5355 case 0x14:
5356 case 0x15:
5357 case 0x16:
5358 case 0x17:
5359 case 0x20:
5360 case 0x21:
5361 case 0x24:
5362 case 0x25:
5363 case 0x26:
5364 case 0x27:
5365 case 0x30:
5366 case 0x31:
5367 case 0x34:
5368 case 0x35:
5369 case 0x36:
5370 case 0x37:
5371 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5372 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5373 of code, always affects st(0) register. */
5374 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5375 return -1;
5376 break;
5377 case 0x08:
5378 case 0x0a:
5379 case 0x0b:
5380 case 0x18:
5381 case 0x19:
5382 case 0x1a:
5383 case 0x1b:
5384 case 0x1d:
5385 case 0x28:
5386 case 0x29:
5387 case 0x2a:
5388 case 0x2b:
5389 case 0x38:
5390 case 0x39:
5391 case 0x3a:
5392 case 0x3b:
5393 case 0x3c:
5394 case 0x3d:
5395 switch (ir.reg & 7)
5396 {
5397 case 0:
5398 /* Handling fld, fild. */
5399 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5400 return -1;
5401 break;
5402 case 1:
5403 switch (ir.reg >> 4)
5404 {
5405 case 0:
5406 if (record_arch_list_add_mem (addr64, 4))
5407 return -1;
5408 break;
5409 case 2:
5410 if (record_arch_list_add_mem (addr64, 8))
5411 return -1;
5412 break;
5413 case 3:
5414 break;
5415 default:
5416 if (record_arch_list_add_mem (addr64, 2))
5417 return -1;
5418 break;
5419 }
5420 break;
5421 default:
5422 switch (ir.reg >> 4)
5423 {
5424 case 0:
5425 if (record_arch_list_add_mem (addr64, 4))
5426 return -1;
5427 if (3 == (ir.reg & 7))
5428 {
5429 /* For fstp m32fp. */
5430 if (i386_record_floats (gdbarch, &ir,
5431 I386_SAVE_FPU_REGS))
5432 return -1;
5433 }
5434 break;
5435 case 1:
5436 if (record_arch_list_add_mem (addr64, 4))
5437 return -1;
5438 if ((3 == (ir.reg & 7))
5439 || (5 == (ir.reg & 7))
5440 || (7 == (ir.reg & 7)))
5441 {
5442 /* For fstp insn. */
5443 if (i386_record_floats (gdbarch, &ir,
5444 I386_SAVE_FPU_REGS))
5445 return -1;
5446 }
5447 break;
5448 case 2:
5449 if (record_arch_list_add_mem (addr64, 8))
5450 return -1;
5451 if (3 == (ir.reg & 7))
5452 {
5453 /* For fstp m64fp. */
5454 if (i386_record_floats (gdbarch, &ir,
5455 I386_SAVE_FPU_REGS))
5456 return -1;
5457 }
5458 break;
5459 case 3:
5460 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5461 {
5462 /* For fistp, fbld, fild, fbstp. */
5463 if (i386_record_floats (gdbarch, &ir,
5464 I386_SAVE_FPU_REGS))
5465 return -1;
5466 }
5467 /* Fall through */
5468 default:
5469 if (record_arch_list_add_mem (addr64, 2))
5470 return -1;
5471 break;
5472 }
5473 break;
5474 }
5475 break;
5476 case 0x0c:
5477 /* Insn fldenv. */
5478 if (i386_record_floats (gdbarch, &ir,
5479 I386_SAVE_FPU_ENV_REG_STACK))
5480 return -1;
5481 break;
5482 case 0x0d:
5483 /* Insn fldcw. */
5484 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5485 return -1;
5486 break;
5487 case 0x2c:
5488 /* Insn frstor. */
5489 if (i386_record_floats (gdbarch, &ir,
5490 I386_SAVE_FPU_ENV_REG_STACK))
5491 return -1;
5492 break;
5493 case 0x0e:
5494 if (ir.dflag)
5495 {
5496 if (record_arch_list_add_mem (addr64, 28))
5497 return -1;
5498 }
5499 else
5500 {
5501 if (record_arch_list_add_mem (addr64, 14))
5502 return -1;
5503 }
5504 break;
5505 case 0x0f:
5506 case 0x2f:
5507 if (record_arch_list_add_mem (addr64, 2))
5508 return -1;
5509 /* Insn fstp, fbstp. */
5510 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5511 return -1;
5512 break;
5513 case 0x1f:
5514 case 0x3e:
5515 if (record_arch_list_add_mem (addr64, 10))
5516 return -1;
5517 break;
5518 case 0x2e:
5519 if (ir.dflag)
5520 {
5521 if (record_arch_list_add_mem (addr64, 28))
5522 return -1;
5523 addr64 += 28;
5524 }
5525 else
5526 {
5527 if (record_arch_list_add_mem (addr64, 14))
5528 return -1;
5529 addr64 += 14;
5530 }
5531 if (record_arch_list_add_mem (addr64, 80))
5532 return -1;
5533 /* Insn fsave. */
5534 if (i386_record_floats (gdbarch, &ir,
5535 I386_SAVE_FPU_ENV_REG_STACK))
5536 return -1;
5537 break;
5538 case 0x3f:
5539 if (record_arch_list_add_mem (addr64, 8))
5540 return -1;
5541 /* Insn fistp. */
5542 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5543 return -1;
5544 break;
5545 default:
5546 ir.addr -= 2;
5547 opcode = opcode << 8 | ir.modrm;
5548 goto no_support;
5549 break;
5550 }
5551 }
5552 /* Opcode is an extension of modR/M byte. */
5553 else
5554 {
5555 switch (opcode)
5556 {
5557 case 0xd8:
5558 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5559 return -1;
5560 break;
5561 case 0xd9:
5562 if (0x0c == (ir.modrm >> 4))
5563 {
5564 if ((ir.modrm & 0x0f) <= 7)
5565 {
5566 if (i386_record_floats (gdbarch, &ir,
5567 I386_SAVE_FPU_REGS))
5568 return -1;
5569 }
5570 else
5571 {
5572 if (i386_record_floats (gdbarch, &ir,
5573 I387_ST0_REGNUM (tdep)))
5574 return -1;
5575 /* If only st(0) is changing, then we have already
5576 recorded. */
5577 if ((ir.modrm & 0x0f) - 0x08)
5578 {
5579 if (i386_record_floats (gdbarch, &ir,
5580 I387_ST0_REGNUM (tdep) +
5581 ((ir.modrm & 0x0f) - 0x08)))
5582 return -1;
5583 }
5584 }
5585 }
5586 else
5587 {
5588 switch (ir.modrm)
5589 {
5590 case 0xe0:
5591 case 0xe1:
5592 case 0xf0:
5593 case 0xf5:
5594 case 0xf8:
5595 case 0xfa:
5596 case 0xfc:
5597 case 0xfe:
5598 case 0xff:
5599 if (i386_record_floats (gdbarch, &ir,
5600 I387_ST0_REGNUM (tdep)))
5601 return -1;
5602 break;
5603 case 0xf1:
5604 case 0xf2:
5605 case 0xf3:
5606 case 0xf4:
5607 case 0xf6:
5608 case 0xf7:
5609 case 0xe8:
5610 case 0xe9:
5611 case 0xea:
5612 case 0xeb:
5613 case 0xec:
5614 case 0xed:
5615 case 0xee:
5616 case 0xf9:
5617 case 0xfb:
5618 if (i386_record_floats (gdbarch, &ir,
5619 I386_SAVE_FPU_REGS))
5620 return -1;
5621 break;
5622 case 0xfd:
5623 if (i386_record_floats (gdbarch, &ir,
5624 I387_ST0_REGNUM (tdep)))
5625 return -1;
5626 if (i386_record_floats (gdbarch, &ir,
5627 I387_ST0_REGNUM (tdep) + 1))
5628 return -1;
5629 break;
5630 }
5631 }
5632 break;
5633 case 0xda:
5634 if (0xe9 == ir.modrm)
5635 {
5636 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5637 return -1;
5638 }
5639 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5640 {
5641 if (i386_record_floats (gdbarch, &ir,
5642 I387_ST0_REGNUM (tdep)))
5643 return -1;
5644 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5645 {
5646 if (i386_record_floats (gdbarch, &ir,
5647 I387_ST0_REGNUM (tdep) +
5648 (ir.modrm & 0x0f)))
5649 return -1;
5650 }
5651 else if ((ir.modrm & 0x0f) - 0x08)
5652 {
5653 if (i386_record_floats (gdbarch, &ir,
5654 I387_ST0_REGNUM (tdep) +
5655 ((ir.modrm & 0x0f) - 0x08)))
5656 return -1;
5657 }
5658 }
5659 break;
5660 case 0xdb:
5661 if (0xe3 == ir.modrm)
5662 {
5663 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5664 return -1;
5665 }
5666 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5667 {
5668 if (i386_record_floats (gdbarch, &ir,
5669 I387_ST0_REGNUM (tdep)))
5670 return -1;
5671 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5672 {
5673 if (i386_record_floats (gdbarch, &ir,
5674 I387_ST0_REGNUM (tdep) +
5675 (ir.modrm & 0x0f)))
5676 return -1;
5677 }
5678 else if ((ir.modrm & 0x0f) - 0x08)
5679 {
5680 if (i386_record_floats (gdbarch, &ir,
5681 I387_ST0_REGNUM (tdep) +
5682 ((ir.modrm & 0x0f) - 0x08)))
5683 return -1;
5684 }
5685 }
5686 break;
5687 case 0xdc:
5688 if ((0x0c == ir.modrm >> 4)
5689 || (0x0d == ir.modrm >> 4)
5690 || (0x0f == ir.modrm >> 4))
5691 {
5692 if ((ir.modrm & 0x0f) <= 7)
5693 {
5694 if (i386_record_floats (gdbarch, &ir,
5695 I387_ST0_REGNUM (tdep) +
5696 (ir.modrm & 0x0f)))
5697 return -1;
5698 }
5699 else
5700 {
5701 if (i386_record_floats (gdbarch, &ir,
5702 I387_ST0_REGNUM (tdep) +
5703 ((ir.modrm & 0x0f) - 0x08)))
5704 return -1;
5705 }
5706 }
5707 break;
5708 case 0xdd:
5709 if (0x0c == ir.modrm >> 4)
5710 {
5711 if (i386_record_floats (gdbarch, &ir,
5712 I387_FTAG_REGNUM (tdep)))
5713 return -1;
5714 }
5715 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5716 {
5717 if ((ir.modrm & 0x0f) <= 7)
5718 {
5719 if (i386_record_floats (gdbarch, &ir,
5720 I387_ST0_REGNUM (tdep) +
5721 (ir.modrm & 0x0f)))
5722 return -1;
5723 }
5724 else
5725 {
5726 if (i386_record_floats (gdbarch, &ir,
5727 I386_SAVE_FPU_REGS))
5728 return -1;
5729 }
5730 }
5731 break;
5732 case 0xde:
5733 if ((0x0c == ir.modrm >> 4)
5734 || (0x0e == ir.modrm >> 4)
5735 || (0x0f == ir.modrm >> 4)
5736 || (0xd9 == ir.modrm))
5737 {
5738 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5739 return -1;
5740 }
5741 break;
5742 case 0xdf:
5743 if (0xe0 == ir.modrm)
5744 {
5745 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5746 return -1;
5747 }
5748 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5749 {
5750 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5751 return -1;
5752 }
5753 break;
5754 }
5755 }
5756 break;
5757 /* string ops */
5758 case 0xa4: /* movsS */
5759 case 0xa5:
5760 case 0xaa: /* stosS */
5761 case 0xab:
5762 case 0x6c: /* insS */
5763 case 0x6d:
5764 regcache_raw_read_unsigned (ir.regcache,
5765 ir.regmap[X86_RECORD_RECX_REGNUM],
5766 &addr);
5767 if (addr)
5768 {
5769 ULONGEST es, ds;
5770
5771 if ((opcode & 1) == 0)
5772 ir.ot = OT_BYTE;
5773 else
5774 ir.ot = ir.dflag + OT_WORD;
5775 regcache_raw_read_unsigned (ir.regcache,
5776 ir.regmap[X86_RECORD_REDI_REGNUM],
5777 &addr);
5778
5779 regcache_raw_read_unsigned (ir.regcache,
5780 ir.regmap[X86_RECORD_ES_REGNUM],
5781 &es);
5782 regcache_raw_read_unsigned (ir.regcache,
5783 ir.regmap[X86_RECORD_DS_REGNUM],
5784 &ds);
5785 if (ir.aflag && (es != ds))
5786 {
5787 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5788 if (record_memory_query)
5789 {
5790 int q;
5791
5792 target_terminal_ours ();
5793 q = yquery (_("\
5794 Process record ignores the memory change of instruction at address %s\n\
5795 because it can't get the value of the segment register.\n\
5796 Do you want to stop the program?"),
5797 paddress (gdbarch, ir.orig_addr));
5798 target_terminal_inferior ();
5799 if (q)
5800 return -1;
5801 }
5802 }
5803 else
5804 {
5805 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5806 return -1;
5807 }
5808
5809 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5810 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5811 if (opcode == 0xa4 || opcode == 0xa5)
5812 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5813 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5814 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5815 }
5816 break;
5817
5818 case 0xa6: /* cmpsS */
5819 case 0xa7:
5820 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5821 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5822 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5823 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5824 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5825 break;
5826
5827 case 0xac: /* lodsS */
5828 case 0xad:
5829 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5830 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5831 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5832 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5833 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5834 break;
5835
5836 case 0xae: /* scasS */
5837 case 0xaf:
5838 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5839 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5840 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5841 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5842 break;
5843
5844 case 0x6e: /* outsS */
5845 case 0x6f:
5846 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5847 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5848 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5849 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5850 break;
5851
5852 case 0xe4: /* port I/O */
5853 case 0xe5:
5854 case 0xec:
5855 case 0xed:
5856 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5857 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5858 break;
5859
5860 case 0xe6:
5861 case 0xe7:
5862 case 0xee:
5863 case 0xef:
5864 break;
5865
5866 /* control */
5867 case 0xc2: /* ret im */
5868 case 0xc3: /* ret */
5869 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5870 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5871 break;
5872
5873 case 0xca: /* lret im */
5874 case 0xcb: /* lret */
5875 case 0xcf: /* iret */
5876 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5877 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5878 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5879 break;
5880
5881 case 0xe8: /* call im */
5882 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5883 ir.dflag = 2;
5884 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5885 return -1;
5886 break;
5887
5888 case 0x9a: /* lcall im */
5889 if (ir.regmap[X86_RECORD_R8_REGNUM])
5890 {
5891 ir.addr -= 1;
5892 goto no_support;
5893 }
5894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5895 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5896 return -1;
5897 break;
5898
5899 case 0xe9: /* jmp im */
5900 case 0xea: /* ljmp im */
5901 case 0xeb: /* jmp Jb */
5902 case 0x70: /* jcc Jb */
5903 case 0x71:
5904 case 0x72:
5905 case 0x73:
5906 case 0x74:
5907 case 0x75:
5908 case 0x76:
5909 case 0x77:
5910 case 0x78:
5911 case 0x79:
5912 case 0x7a:
5913 case 0x7b:
5914 case 0x7c:
5915 case 0x7d:
5916 case 0x7e:
5917 case 0x7f:
5918 case 0x0f80: /* jcc Jv */
5919 case 0x0f81:
5920 case 0x0f82:
5921 case 0x0f83:
5922 case 0x0f84:
5923 case 0x0f85:
5924 case 0x0f86:
5925 case 0x0f87:
5926 case 0x0f88:
5927 case 0x0f89:
5928 case 0x0f8a:
5929 case 0x0f8b:
5930 case 0x0f8c:
5931 case 0x0f8d:
5932 case 0x0f8e:
5933 case 0x0f8f:
5934 break;
5935
5936 case 0x0f90: /* setcc Gv */
5937 case 0x0f91:
5938 case 0x0f92:
5939 case 0x0f93:
5940 case 0x0f94:
5941 case 0x0f95:
5942 case 0x0f96:
5943 case 0x0f97:
5944 case 0x0f98:
5945 case 0x0f99:
5946 case 0x0f9a:
5947 case 0x0f9b:
5948 case 0x0f9c:
5949 case 0x0f9d:
5950 case 0x0f9e:
5951 case 0x0f9f:
5952 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5953 ir.ot = OT_BYTE;
5954 if (i386_record_modrm (&ir))
5955 return -1;
5956 if (ir.mod == 3)
5957 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5958 : (ir.rm & 0x3));
5959 else
5960 {
5961 if (i386_record_lea_modrm (&ir))
5962 return -1;
5963 }
5964 break;
5965
5966 case 0x0f40: /* cmov Gv, Ev */
5967 case 0x0f41:
5968 case 0x0f42:
5969 case 0x0f43:
5970 case 0x0f44:
5971 case 0x0f45:
5972 case 0x0f46:
5973 case 0x0f47:
5974 case 0x0f48:
5975 case 0x0f49:
5976 case 0x0f4a:
5977 case 0x0f4b:
5978 case 0x0f4c:
5979 case 0x0f4d:
5980 case 0x0f4e:
5981 case 0x0f4f:
5982 if (i386_record_modrm (&ir))
5983 return -1;
5984 ir.reg |= rex_r;
5985 if (ir.dflag == OT_BYTE)
5986 ir.reg &= 0x3;
5987 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5988 break;
5989
5990 /* flags */
5991 case 0x9c: /* pushf */
5992 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5993 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5994 ir.dflag = 2;
5995 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5996 return -1;
5997 break;
5998
5999 case 0x9d: /* popf */
6000 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6001 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6002 break;
6003
6004 case 0x9e: /* sahf */
6005 if (ir.regmap[X86_RECORD_R8_REGNUM])
6006 {
6007 ir.addr -= 1;
6008 goto no_support;
6009 }
6010 /* FALLTHROUGH */
6011 case 0xf5: /* cmc */
6012 case 0xf8: /* clc */
6013 case 0xf9: /* stc */
6014 case 0xfc: /* cld */
6015 case 0xfd: /* std */
6016 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6017 break;
6018
6019 case 0x9f: /* lahf */
6020 if (ir.regmap[X86_RECORD_R8_REGNUM])
6021 {
6022 ir.addr -= 1;
6023 goto no_support;
6024 }
6025 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6026 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6027 break;
6028
6029 /* bit operations */
6030 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6031 ir.ot = ir.dflag + OT_WORD;
6032 if (i386_record_modrm (&ir))
6033 return -1;
6034 if (ir.reg < 4)
6035 {
6036 ir.addr -= 2;
6037 opcode = opcode << 8 | ir.modrm;
6038 goto no_support;
6039 }
6040 if (ir.reg != 4)
6041 {
6042 if (ir.mod == 3)
6043 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6044 else
6045 {
6046 if (i386_record_lea_modrm (&ir))
6047 return -1;
6048 }
6049 }
6050 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6051 break;
6052
6053 case 0x0fa3: /* bt Gv, Ev */
6054 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6055 break;
6056
6057 case 0x0fab: /* bts */
6058 case 0x0fb3: /* btr */
6059 case 0x0fbb: /* btc */
6060 ir.ot = ir.dflag + OT_WORD;
6061 if (i386_record_modrm (&ir))
6062 return -1;
6063 if (ir.mod == 3)
6064 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6065 else
6066 {
6067 uint64_t addr64;
6068 if (i386_record_lea_modrm_addr (&ir, &addr64))
6069 return -1;
6070 regcache_raw_read_unsigned (ir.regcache,
6071 ir.regmap[ir.reg | rex_r],
6072 &addr);
6073 switch (ir.dflag)
6074 {
6075 case 0:
6076 addr64 += ((int16_t) addr >> 4) << 4;
6077 break;
6078 case 1:
6079 addr64 += ((int32_t) addr >> 5) << 5;
6080 break;
6081 case 2:
6082 addr64 += ((int64_t) addr >> 6) << 6;
6083 break;
6084 }
6085 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
6086 return -1;
6087 if (i386_record_lea_modrm (&ir))
6088 return -1;
6089 }
6090 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6091 break;
6092
6093 case 0x0fbc: /* bsf */
6094 case 0x0fbd: /* bsr */
6095 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6096 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6097 break;
6098
6099 /* bcd */
6100 case 0x27: /* daa */
6101 case 0x2f: /* das */
6102 case 0x37: /* aaa */
6103 case 0x3f: /* aas */
6104 case 0xd4: /* aam */
6105 case 0xd5: /* aad */
6106 if (ir.regmap[X86_RECORD_R8_REGNUM])
6107 {
6108 ir.addr -= 1;
6109 goto no_support;
6110 }
6111 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6112 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6113 break;
6114
6115 /* misc */
6116 case 0x90: /* nop */
6117 if (prefixes & PREFIX_LOCK)
6118 {
6119 ir.addr -= 1;
6120 goto no_support;
6121 }
6122 break;
6123
6124 case 0x9b: /* fwait */
6125 if (target_read_memory (ir.addr, &opcode8, 1))
6126 {
6127 if (record_debug)
6128 printf_unfiltered (_("Process record: error reading memory at "
6129 "addr 0x%s len = 1.\n"),
6130 paddress (gdbarch, ir.addr));
6131 return -1;
6132 }
6133 opcode = (uint32_t) opcode8;
6134 ir.addr++;
6135 goto reswitch;
6136 break;
6137
6138 /* XXX */
6139 case 0xcc: /* int3 */
6140 printf_unfiltered (_("Process record does not support instruction "
6141 "int3.\n"));
6142 ir.addr -= 1;
6143 goto no_support;
6144 break;
6145
6146 /* XXX */
6147 case 0xcd: /* int */
6148 {
6149 int ret;
6150 uint8_t interrupt;
6151 if (target_read_memory (ir.addr, &interrupt, 1))
6152 {
6153 if (record_debug)
6154 printf_unfiltered (_("Process record: error reading memory "
6155 "at addr %s len = 1.\n"),
6156 paddress (gdbarch, ir.addr));
6157 return -1;
6158 }
6159 ir.addr++;
6160 if (interrupt != 0x80
6161 || tdep->i386_intx80_record == NULL)
6162 {
6163 printf_unfiltered (_("Process record does not support "
6164 "instruction int 0x%02x.\n"),
6165 interrupt);
6166 ir.addr -= 2;
6167 goto no_support;
6168 }
6169 ret = tdep->i386_intx80_record (ir.regcache);
6170 if (ret)
6171 return ret;
6172 }
6173 break;
6174
6175 /* XXX */
6176 case 0xce: /* into */
6177 printf_unfiltered (_("Process record does not support "
6178 "instruction into.\n"));
6179 ir.addr -= 1;
6180 goto no_support;
6181 break;
6182
6183 case 0xfa: /* cli */
6184 case 0xfb: /* sti */
6185 break;
6186
6187 case 0x62: /* bound */
6188 printf_unfiltered (_("Process record does not support "
6189 "instruction bound.\n"));
6190 ir.addr -= 1;
6191 goto no_support;
6192 break;
6193
6194 case 0x0fc8: /* bswap reg */
6195 case 0x0fc9:
6196 case 0x0fca:
6197 case 0x0fcb:
6198 case 0x0fcc:
6199 case 0x0fcd:
6200 case 0x0fce:
6201 case 0x0fcf:
6202 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6203 break;
6204
6205 case 0xd6: /* salc */
6206 if (ir.regmap[X86_RECORD_R8_REGNUM])
6207 {
6208 ir.addr -= 1;
6209 goto no_support;
6210 }
6211 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6212 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6213 break;
6214
6215 case 0xe0: /* loopnz */
6216 case 0xe1: /* loopz */
6217 case 0xe2: /* loop */
6218 case 0xe3: /* jecxz */
6219 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6220 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6221 break;
6222
6223 case 0x0f30: /* wrmsr */
6224 printf_unfiltered (_("Process record does not support "
6225 "instruction wrmsr.\n"));
6226 ir.addr -= 2;
6227 goto no_support;
6228 break;
6229
6230 case 0x0f32: /* rdmsr */
6231 printf_unfiltered (_("Process record does not support "
6232 "instruction rdmsr.\n"));
6233 ir.addr -= 2;
6234 goto no_support;
6235 break;
6236
6237 case 0x0f31: /* rdtsc */
6238 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6240 break;
6241
6242 case 0x0f34: /* sysenter */
6243 {
6244 int ret;
6245 if (ir.regmap[X86_RECORD_R8_REGNUM])
6246 {
6247 ir.addr -= 2;
6248 goto no_support;
6249 }
6250 if (tdep->i386_sysenter_record == NULL)
6251 {
6252 printf_unfiltered (_("Process record does not support "
6253 "instruction sysenter.\n"));
6254 ir.addr -= 2;
6255 goto no_support;
6256 }
6257 ret = tdep->i386_sysenter_record (ir.regcache);
6258 if (ret)
6259 return ret;
6260 }
6261 break;
6262
6263 case 0x0f35: /* sysexit */
6264 printf_unfiltered (_("Process record does not support "
6265 "instruction sysexit.\n"));
6266 ir.addr -= 2;
6267 goto no_support;
6268 break;
6269
6270 case 0x0f05: /* syscall */
6271 {
6272 int ret;
6273 if (tdep->i386_syscall_record == NULL)
6274 {
6275 printf_unfiltered (_("Process record does not support "
6276 "instruction syscall.\n"));
6277 ir.addr -= 2;
6278 goto no_support;
6279 }
6280 ret = tdep->i386_syscall_record (ir.regcache);
6281 if (ret)
6282 return ret;
6283 }
6284 break;
6285
6286 case 0x0f07: /* sysret */
6287 printf_unfiltered (_("Process record does not support "
6288 "instruction sysret.\n"));
6289 ir.addr -= 2;
6290 goto no_support;
6291 break;
6292
6293 case 0x0fa2: /* cpuid */
6294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6295 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6296 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6298 break;
6299
6300 case 0xf4: /* hlt */
6301 printf_unfiltered (_("Process record does not support "
6302 "instruction hlt.\n"));
6303 ir.addr -= 1;
6304 goto no_support;
6305 break;
6306
6307 case 0x0f00:
6308 if (i386_record_modrm (&ir))
6309 return -1;
6310 switch (ir.reg)
6311 {
6312 case 0: /* sldt */
6313 case 1: /* str */
6314 if (ir.mod == 3)
6315 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6316 else
6317 {
6318 ir.ot = OT_WORD;
6319 if (i386_record_lea_modrm (&ir))
6320 return -1;
6321 }
6322 break;
6323 case 2: /* lldt */
6324 case 3: /* ltr */
6325 break;
6326 case 4: /* verr */
6327 case 5: /* verw */
6328 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6329 break;
6330 default:
6331 ir.addr -= 3;
6332 opcode = opcode << 8 | ir.modrm;
6333 goto no_support;
6334 break;
6335 }
6336 break;
6337
6338 case 0x0f01:
6339 if (i386_record_modrm (&ir))
6340 return -1;
6341 switch (ir.reg)
6342 {
6343 case 0: /* sgdt */
6344 {
6345 uint64_t addr64;
6346
6347 if (ir.mod == 3)
6348 {
6349 ir.addr -= 3;
6350 opcode = opcode << 8 | ir.modrm;
6351 goto no_support;
6352 }
6353 if (ir.override >= 0)
6354 {
6355 if (record_memory_query)
6356 {
6357 int q;
6358
6359 target_terminal_ours ();
6360 q = yquery (_("\
6361 Process record ignores the memory change of instruction at address %s\n\
6362 because it can't get the value of the segment register.\n\
6363 Do you want to stop the program?"),
6364 paddress (gdbarch, ir.orig_addr));
6365 target_terminal_inferior ();
6366 if (q)
6367 return -1;
6368 }
6369 }
6370 else
6371 {
6372 if (i386_record_lea_modrm_addr (&ir, &addr64))
6373 return -1;
6374 if (record_arch_list_add_mem (addr64, 2))
6375 return -1;
6376 addr64 += 2;
6377 if (ir.regmap[X86_RECORD_R8_REGNUM])
6378 {
6379 if (record_arch_list_add_mem (addr64, 8))
6380 return -1;
6381 }
6382 else
6383 {
6384 if (record_arch_list_add_mem (addr64, 4))
6385 return -1;
6386 }
6387 }
6388 }
6389 break;
6390 case 1:
6391 if (ir.mod == 3)
6392 {
6393 switch (ir.rm)
6394 {
6395 case 0: /* monitor */
6396 break;
6397 case 1: /* mwait */
6398 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6399 break;
6400 default:
6401 ir.addr -= 3;
6402 opcode = opcode << 8 | ir.modrm;
6403 goto no_support;
6404 break;
6405 }
6406 }
6407 else
6408 {
6409 /* sidt */
6410 if (ir.override >= 0)
6411 {
6412 if (record_memory_query)
6413 {
6414 int q;
6415
6416 target_terminal_ours ();
6417 q = yquery (_("\
6418 Process record ignores the memory change of instruction at address %s\n\
6419 because it can't get the value of the segment register.\n\
6420 Do you want to stop the program?"),
6421 paddress (gdbarch, ir.orig_addr));
6422 target_terminal_inferior ();
6423 if (q)
6424 return -1;
6425 }
6426 }
6427 else
6428 {
6429 uint64_t addr64;
6430
6431 if (i386_record_lea_modrm_addr (&ir, &addr64))
6432 return -1;
6433 if (record_arch_list_add_mem (addr64, 2))
6434 return -1;
6435 addr64 += 2;
6436 if (ir.regmap[X86_RECORD_R8_REGNUM])
6437 {
6438 if (record_arch_list_add_mem (addr64, 8))
6439 return -1;
6440 }
6441 else
6442 {
6443 if (record_arch_list_add_mem (addr64, 4))
6444 return -1;
6445 }
6446 }
6447 }
6448 break;
6449 case 2: /* lgdt */
6450 if (ir.mod == 3)
6451 {
6452 /* xgetbv */
6453 if (ir.rm == 0)
6454 {
6455 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6457 break;
6458 }
6459 /* xsetbv */
6460 else if (ir.rm == 1)
6461 break;
6462 }
6463 case 3: /* lidt */
6464 if (ir.mod == 3)
6465 {
6466 ir.addr -= 3;
6467 opcode = opcode << 8 | ir.modrm;
6468 goto no_support;
6469 }
6470 break;
6471 case 4: /* smsw */
6472 if (ir.mod == 3)
6473 {
6474 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6475 return -1;
6476 }
6477 else
6478 {
6479 ir.ot = OT_WORD;
6480 if (i386_record_lea_modrm (&ir))
6481 return -1;
6482 }
6483 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6484 break;
6485 case 6: /* lmsw */
6486 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6487 break;
6488 case 7: /* invlpg */
6489 if (ir.mod == 3)
6490 {
6491 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6492 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6493 else
6494 {
6495 ir.addr -= 3;
6496 opcode = opcode << 8 | ir.modrm;
6497 goto no_support;
6498 }
6499 }
6500 else
6501 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6502 break;
6503 default:
6504 ir.addr -= 3;
6505 opcode = opcode << 8 | ir.modrm;
6506 goto no_support;
6507 break;
6508 }
6509 break;
6510
6511 case 0x0f08: /* invd */
6512 case 0x0f09: /* wbinvd */
6513 break;
6514
6515 case 0x63: /* arpl */
6516 if (i386_record_modrm (&ir))
6517 return -1;
6518 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6519 {
6520 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6521 ? (ir.reg | rex_r) : ir.rm);
6522 }
6523 else
6524 {
6525 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6526 if (i386_record_lea_modrm (&ir))
6527 return -1;
6528 }
6529 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6530 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6531 break;
6532
6533 case 0x0f02: /* lar */
6534 case 0x0f03: /* lsl */
6535 if (i386_record_modrm (&ir))
6536 return -1;
6537 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6538 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6539 break;
6540
6541 case 0x0f18:
6542 if (i386_record_modrm (&ir))
6543 return -1;
6544 if (ir.mod == 3 && ir.reg == 3)
6545 {
6546 ir.addr -= 3;
6547 opcode = opcode << 8 | ir.modrm;
6548 goto no_support;
6549 }
6550 break;
6551
6552 case 0x0f19:
6553 case 0x0f1a:
6554 case 0x0f1b:
6555 case 0x0f1c:
6556 case 0x0f1d:
6557 case 0x0f1e:
6558 case 0x0f1f:
6559 /* nop (multi byte) */
6560 break;
6561
6562 case 0x0f20: /* mov reg, crN */
6563 case 0x0f22: /* mov crN, reg */
6564 if (i386_record_modrm (&ir))
6565 return -1;
6566 if ((ir.modrm & 0xc0) != 0xc0)
6567 {
6568 ir.addr -= 3;
6569 opcode = opcode << 8 | ir.modrm;
6570 goto no_support;
6571 }
6572 switch (ir.reg)
6573 {
6574 case 0:
6575 case 2:
6576 case 3:
6577 case 4:
6578 case 8:
6579 if (opcode & 2)
6580 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6581 else
6582 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6583 break;
6584 default:
6585 ir.addr -= 3;
6586 opcode = opcode << 8 | ir.modrm;
6587 goto no_support;
6588 break;
6589 }
6590 break;
6591
6592 case 0x0f21: /* mov reg, drN */
6593 case 0x0f23: /* mov drN, reg */
6594 if (i386_record_modrm (&ir))
6595 return -1;
6596 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6597 || ir.reg == 5 || ir.reg >= 8)
6598 {
6599 ir.addr -= 3;
6600 opcode = opcode << 8 | ir.modrm;
6601 goto no_support;
6602 }
6603 if (opcode & 2)
6604 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 else
6606 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6607 break;
6608
6609 case 0x0f06: /* clts */
6610 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6611 break;
6612
6613 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6614
6615 case 0x0f0d: /* 3DNow! prefetch */
6616 break;
6617
6618 case 0x0f0e: /* 3DNow! femms */
6619 case 0x0f77: /* emms */
6620 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6621 goto no_support;
6622 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6623 break;
6624
6625 case 0x0f0f: /* 3DNow! data */
6626 if (i386_record_modrm (&ir))
6627 return -1;
6628 if (target_read_memory (ir.addr, &opcode8, 1))
6629 {
6630 printf_unfiltered (_("Process record: error reading memory at "
6631 "addr %s len = 1.\n"),
6632 paddress (gdbarch, ir.addr));
6633 return -1;
6634 }
6635 ir.addr++;
6636 switch (opcode8)
6637 {
6638 case 0x0c: /* 3DNow! pi2fw */
6639 case 0x0d: /* 3DNow! pi2fd */
6640 case 0x1c: /* 3DNow! pf2iw */
6641 case 0x1d: /* 3DNow! pf2id */
6642 case 0x8a: /* 3DNow! pfnacc */
6643 case 0x8e: /* 3DNow! pfpnacc */
6644 case 0x90: /* 3DNow! pfcmpge */
6645 case 0x94: /* 3DNow! pfmin */
6646 case 0x96: /* 3DNow! pfrcp */
6647 case 0x97: /* 3DNow! pfrsqrt */
6648 case 0x9a: /* 3DNow! pfsub */
6649 case 0x9e: /* 3DNow! pfadd */
6650 case 0xa0: /* 3DNow! pfcmpgt */
6651 case 0xa4: /* 3DNow! pfmax */
6652 case 0xa6: /* 3DNow! pfrcpit1 */
6653 case 0xa7: /* 3DNow! pfrsqit1 */
6654 case 0xaa: /* 3DNow! pfsubr */
6655 case 0xae: /* 3DNow! pfacc */
6656 case 0xb0: /* 3DNow! pfcmpeq */
6657 case 0xb4: /* 3DNow! pfmul */
6658 case 0xb6: /* 3DNow! pfrcpit2 */
6659 case 0xb7: /* 3DNow! pmulhrw */
6660 case 0xbb: /* 3DNow! pswapd */
6661 case 0xbf: /* 3DNow! pavgusb */
6662 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6663 goto no_support_3dnow_data;
6664 record_arch_list_add_reg (ir.regcache, ir.reg);
6665 break;
6666
6667 default:
6668 no_support_3dnow_data:
6669 opcode = (opcode << 8) | opcode8;
6670 goto no_support;
6671 break;
6672 }
6673 break;
6674
6675 case 0x0faa: /* rsm */
6676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6678 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6679 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6680 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6681 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6682 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6685 break;
6686
6687 case 0x0fae:
6688 if (i386_record_modrm (&ir))
6689 return -1;
6690 switch(ir.reg)
6691 {
6692 case 0: /* fxsave */
6693 {
6694 uint64_t tmpu64;
6695
6696 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6698 return -1;
6699 if (record_arch_list_add_mem (tmpu64, 512))
6700 return -1;
6701 }
6702 break;
6703
6704 case 1: /* fxrstor */
6705 {
6706 int i;
6707
6708 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6709
6710 for (i = I387_MM0_REGNUM (tdep);
6711 i386_mmx_regnum_p (gdbarch, i); i++)
6712 record_arch_list_add_reg (ir.regcache, i);
6713
6714 for (i = I387_XMM0_REGNUM (tdep);
6715 i386_xmm_regnum_p (gdbarch, i); i++)
6716 record_arch_list_add_reg (ir.regcache, i);
6717
6718 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6719 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6720
6721 for (i = I387_ST0_REGNUM (tdep);
6722 i386_fp_regnum_p (gdbarch, i); i++)
6723 record_arch_list_add_reg (ir.regcache, i);
6724
6725 for (i = I387_FCTRL_REGNUM (tdep);
6726 i386_fpc_regnum_p (gdbarch, i); i++)
6727 record_arch_list_add_reg (ir.regcache, i);
6728 }
6729 break;
6730
6731 case 2: /* ldmxcsr */
6732 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6733 goto no_support;
6734 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6735 break;
6736
6737 case 3: /* stmxcsr */
6738 ir.ot = OT_LONG;
6739 if (i386_record_lea_modrm (&ir))
6740 return -1;
6741 break;
6742
6743 case 5: /* lfence */
6744 case 6: /* mfence */
6745 case 7: /* sfence clflush */
6746 break;
6747
6748 default:
6749 opcode = (opcode << 8) | ir.modrm;
6750 goto no_support;
6751 break;
6752 }
6753 break;
6754
6755 case 0x0fc3: /* movnti */
6756 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
6760 goto no_support;
6761 ir.reg |= rex_r;
6762 if (i386_record_lea_modrm (&ir))
6763 return -1;
6764 break;
6765
6766 /* Add prefix to opcode. */
6767 case 0x0f10:
6768 case 0x0f11:
6769 case 0x0f12:
6770 case 0x0f13:
6771 case 0x0f14:
6772 case 0x0f15:
6773 case 0x0f16:
6774 case 0x0f17:
6775 case 0x0f28:
6776 case 0x0f29:
6777 case 0x0f2a:
6778 case 0x0f2b:
6779 case 0x0f2c:
6780 case 0x0f2d:
6781 case 0x0f2e:
6782 case 0x0f2f:
6783 case 0x0f38:
6784 case 0x0f39:
6785 case 0x0f3a:
6786 case 0x0f50:
6787 case 0x0f51:
6788 case 0x0f52:
6789 case 0x0f53:
6790 case 0x0f54:
6791 case 0x0f55:
6792 case 0x0f56:
6793 case 0x0f57:
6794 case 0x0f58:
6795 case 0x0f59:
6796 case 0x0f5a:
6797 case 0x0f5b:
6798 case 0x0f5c:
6799 case 0x0f5d:
6800 case 0x0f5e:
6801 case 0x0f5f:
6802 case 0x0f60:
6803 case 0x0f61:
6804 case 0x0f62:
6805 case 0x0f63:
6806 case 0x0f64:
6807 case 0x0f65:
6808 case 0x0f66:
6809 case 0x0f67:
6810 case 0x0f68:
6811 case 0x0f69:
6812 case 0x0f6a:
6813 case 0x0f6b:
6814 case 0x0f6c:
6815 case 0x0f6d:
6816 case 0x0f6e:
6817 case 0x0f6f:
6818 case 0x0f70:
6819 case 0x0f71:
6820 case 0x0f72:
6821 case 0x0f73:
6822 case 0x0f74:
6823 case 0x0f75:
6824 case 0x0f76:
6825 case 0x0f7c:
6826 case 0x0f7d:
6827 case 0x0f7e:
6828 case 0x0f7f:
6829 case 0x0fb8:
6830 case 0x0fc2:
6831 case 0x0fc4:
6832 case 0x0fc5:
6833 case 0x0fc6:
6834 case 0x0fd0:
6835 case 0x0fd1:
6836 case 0x0fd2:
6837 case 0x0fd3:
6838 case 0x0fd4:
6839 case 0x0fd5:
6840 case 0x0fd6:
6841 case 0x0fd7:
6842 case 0x0fd8:
6843 case 0x0fd9:
6844 case 0x0fda:
6845 case 0x0fdb:
6846 case 0x0fdc:
6847 case 0x0fdd:
6848 case 0x0fde:
6849 case 0x0fdf:
6850 case 0x0fe0:
6851 case 0x0fe1:
6852 case 0x0fe2:
6853 case 0x0fe3:
6854 case 0x0fe4:
6855 case 0x0fe5:
6856 case 0x0fe6:
6857 case 0x0fe7:
6858 case 0x0fe8:
6859 case 0x0fe9:
6860 case 0x0fea:
6861 case 0x0feb:
6862 case 0x0fec:
6863 case 0x0fed:
6864 case 0x0fee:
6865 case 0x0fef:
6866 case 0x0ff0:
6867 case 0x0ff1:
6868 case 0x0ff2:
6869 case 0x0ff3:
6870 case 0x0ff4:
6871 case 0x0ff5:
6872 case 0x0ff6:
6873 case 0x0ff7:
6874 case 0x0ff8:
6875 case 0x0ff9:
6876 case 0x0ffa:
6877 case 0x0ffb:
6878 case 0x0ffc:
6879 case 0x0ffd:
6880 case 0x0ffe:
6881 switch (prefixes)
6882 {
6883 case PREFIX_REPNZ:
6884 opcode |= 0xf20000;
6885 break;
6886 case PREFIX_DATA:
6887 opcode |= 0x660000;
6888 break;
6889 case PREFIX_REPZ:
6890 opcode |= 0xf30000;
6891 break;
6892 }
6893 reswitch_prefix_add:
6894 switch (opcode)
6895 {
6896 case 0x0f38:
6897 case 0x660f38:
6898 case 0xf20f38:
6899 case 0x0f3a:
6900 case 0x660f3a:
6901 if (target_read_memory (ir.addr, &opcode8, 1))
6902 {
6903 printf_unfiltered (_("Process record: error reading memory at "
6904 "addr %s len = 1.\n"),
6905 paddress (gdbarch, ir.addr));
6906 return -1;
6907 }
6908 ir.addr++;
6909 opcode = (uint32_t) opcode8 | opcode << 8;
6910 goto reswitch_prefix_add;
6911 break;
6912
6913 case 0x0f10: /* movups */
6914 case 0x660f10: /* movupd */
6915 case 0xf30f10: /* movss */
6916 case 0xf20f10: /* movsd */
6917 case 0x0f12: /* movlps */
6918 case 0x660f12: /* movlpd */
6919 case 0xf30f12: /* movsldup */
6920 case 0xf20f12: /* movddup */
6921 case 0x0f14: /* unpcklps */
6922 case 0x660f14: /* unpcklpd */
6923 case 0x0f15: /* unpckhps */
6924 case 0x660f15: /* unpckhpd */
6925 case 0x0f16: /* movhps */
6926 case 0x660f16: /* movhpd */
6927 case 0xf30f16: /* movshdup */
6928 case 0x0f28: /* movaps */
6929 case 0x660f28: /* movapd */
6930 case 0x0f2a: /* cvtpi2ps */
6931 case 0x660f2a: /* cvtpi2pd */
6932 case 0xf30f2a: /* cvtsi2ss */
6933 case 0xf20f2a: /* cvtsi2sd */
6934 case 0x0f2c: /* cvttps2pi */
6935 case 0x660f2c: /* cvttpd2pi */
6936 case 0x0f2d: /* cvtps2pi */
6937 case 0x660f2d: /* cvtpd2pi */
6938 case 0x660f3800: /* pshufb */
6939 case 0x660f3801: /* phaddw */
6940 case 0x660f3802: /* phaddd */
6941 case 0x660f3803: /* phaddsw */
6942 case 0x660f3804: /* pmaddubsw */
6943 case 0x660f3805: /* phsubw */
6944 case 0x660f3806: /* phsubd */
6945 case 0x660f3807: /* phsubsw */
6946 case 0x660f3808: /* psignb */
6947 case 0x660f3809: /* psignw */
6948 case 0x660f380a: /* psignd */
6949 case 0x660f380b: /* pmulhrsw */
6950 case 0x660f3810: /* pblendvb */
6951 case 0x660f3814: /* blendvps */
6952 case 0x660f3815: /* blendvpd */
6953 case 0x660f381c: /* pabsb */
6954 case 0x660f381d: /* pabsw */
6955 case 0x660f381e: /* pabsd */
6956 case 0x660f3820: /* pmovsxbw */
6957 case 0x660f3821: /* pmovsxbd */
6958 case 0x660f3822: /* pmovsxbq */
6959 case 0x660f3823: /* pmovsxwd */
6960 case 0x660f3824: /* pmovsxwq */
6961 case 0x660f3825: /* pmovsxdq */
6962 case 0x660f3828: /* pmuldq */
6963 case 0x660f3829: /* pcmpeqq */
6964 case 0x660f382a: /* movntdqa */
6965 case 0x660f3a08: /* roundps */
6966 case 0x660f3a09: /* roundpd */
6967 case 0x660f3a0a: /* roundss */
6968 case 0x660f3a0b: /* roundsd */
6969 case 0x660f3a0c: /* blendps */
6970 case 0x660f3a0d: /* blendpd */
6971 case 0x660f3a0e: /* pblendw */
6972 case 0x660f3a0f: /* palignr */
6973 case 0x660f3a20: /* pinsrb */
6974 case 0x660f3a21: /* insertps */
6975 case 0x660f3a22: /* pinsrd pinsrq */
6976 case 0x660f3a40: /* dpps */
6977 case 0x660f3a41: /* dppd */
6978 case 0x660f3a42: /* mpsadbw */
6979 case 0x660f3a60: /* pcmpestrm */
6980 case 0x660f3a61: /* pcmpestri */
6981 case 0x660f3a62: /* pcmpistrm */
6982 case 0x660f3a63: /* pcmpistri */
6983 case 0x0f51: /* sqrtps */
6984 case 0x660f51: /* sqrtpd */
6985 case 0xf20f51: /* sqrtsd */
6986 case 0xf30f51: /* sqrtss */
6987 case 0x0f52: /* rsqrtps */
6988 case 0xf30f52: /* rsqrtss */
6989 case 0x0f53: /* rcpps */
6990 case 0xf30f53: /* rcpss */
6991 case 0x0f54: /* andps */
6992 case 0x660f54: /* andpd */
6993 case 0x0f55: /* andnps */
6994 case 0x660f55: /* andnpd */
6995 case 0x0f56: /* orps */
6996 case 0x660f56: /* orpd */
6997 case 0x0f57: /* xorps */
6998 case 0x660f57: /* xorpd */
6999 case 0x0f58: /* addps */
7000 case 0x660f58: /* addpd */
7001 case 0xf20f58: /* addsd */
7002 case 0xf30f58: /* addss */
7003 case 0x0f59: /* mulps */
7004 case 0x660f59: /* mulpd */
7005 case 0xf20f59: /* mulsd */
7006 case 0xf30f59: /* mulss */
7007 case 0x0f5a: /* cvtps2pd */
7008 case 0x660f5a: /* cvtpd2ps */
7009 case 0xf20f5a: /* cvtsd2ss */
7010 case 0xf30f5a: /* cvtss2sd */
7011 case 0x0f5b: /* cvtdq2ps */
7012 case 0x660f5b: /* cvtps2dq */
7013 case 0xf30f5b: /* cvttps2dq */
7014 case 0x0f5c: /* subps */
7015 case 0x660f5c: /* subpd */
7016 case 0xf20f5c: /* subsd */
7017 case 0xf30f5c: /* subss */
7018 case 0x0f5d: /* minps */
7019 case 0x660f5d: /* minpd */
7020 case 0xf20f5d: /* minsd */
7021 case 0xf30f5d: /* minss */
7022 case 0x0f5e: /* divps */
7023 case 0x660f5e: /* divpd */
7024 case 0xf20f5e: /* divsd */
7025 case 0xf30f5e: /* divss */
7026 case 0x0f5f: /* maxps */
7027 case 0x660f5f: /* maxpd */
7028 case 0xf20f5f: /* maxsd */
7029 case 0xf30f5f: /* maxss */
7030 case 0x660f60: /* punpcklbw */
7031 case 0x660f61: /* punpcklwd */
7032 case 0x660f62: /* punpckldq */
7033 case 0x660f63: /* packsswb */
7034 case 0x660f64: /* pcmpgtb */
7035 case 0x660f65: /* pcmpgtw */
7036 case 0x660f66: /* pcmpgtd */
7037 case 0x660f67: /* packuswb */
7038 case 0x660f68: /* punpckhbw */
7039 case 0x660f69: /* punpckhwd */
7040 case 0x660f6a: /* punpckhdq */
7041 case 0x660f6b: /* packssdw */
7042 case 0x660f6c: /* punpcklqdq */
7043 case 0x660f6d: /* punpckhqdq */
7044 case 0x660f6e: /* movd */
7045 case 0x660f6f: /* movdqa */
7046 case 0xf30f6f: /* movdqu */
7047 case 0x660f70: /* pshufd */
7048 case 0xf20f70: /* pshuflw */
7049 case 0xf30f70: /* pshufhw */
7050 case 0x660f74: /* pcmpeqb */
7051 case 0x660f75: /* pcmpeqw */
7052 case 0x660f76: /* pcmpeqd */
7053 case 0x660f7c: /* haddpd */
7054 case 0xf20f7c: /* haddps */
7055 case 0x660f7d: /* hsubpd */
7056 case 0xf20f7d: /* hsubps */
7057 case 0xf30f7e: /* movq */
7058 case 0x0fc2: /* cmpps */
7059 case 0x660fc2: /* cmppd */
7060 case 0xf20fc2: /* cmpsd */
7061 case 0xf30fc2: /* cmpss */
7062 case 0x660fc4: /* pinsrw */
7063 case 0x0fc6: /* shufps */
7064 case 0x660fc6: /* shufpd */
7065 case 0x660fd0: /* addsubpd */
7066 case 0xf20fd0: /* addsubps */
7067 case 0x660fd1: /* psrlw */
7068 case 0x660fd2: /* psrld */
7069 case 0x660fd3: /* psrlq */
7070 case 0x660fd4: /* paddq */
7071 case 0x660fd5: /* pmullw */
7072 case 0xf30fd6: /* movq2dq */
7073 case 0x660fd8: /* psubusb */
7074 case 0x660fd9: /* psubusw */
7075 case 0x660fda: /* pminub */
7076 case 0x660fdb: /* pand */
7077 case 0x660fdc: /* paddusb */
7078 case 0x660fdd: /* paddusw */
7079 case 0x660fde: /* pmaxub */
7080 case 0x660fdf: /* pandn */
7081 case 0x660fe0: /* pavgb */
7082 case 0x660fe1: /* psraw */
7083 case 0x660fe2: /* psrad */
7084 case 0x660fe3: /* pavgw */
7085 case 0x660fe4: /* pmulhuw */
7086 case 0x660fe5: /* pmulhw */
7087 case 0x660fe6: /* cvttpd2dq */
7088 case 0xf20fe6: /* cvtpd2dq */
7089 case 0xf30fe6: /* cvtdq2pd */
7090 case 0x660fe8: /* psubsb */
7091 case 0x660fe9: /* psubsw */
7092 case 0x660fea: /* pminsw */
7093 case 0x660feb: /* por */
7094 case 0x660fec: /* paddsb */
7095 case 0x660fed: /* paddsw */
7096 case 0x660fee: /* pmaxsw */
7097 case 0x660fef: /* pxor */
7098 case 0xf20ff0: /* lddqu */
7099 case 0x660ff1: /* psllw */
7100 case 0x660ff2: /* pslld */
7101 case 0x660ff3: /* psllq */
7102 case 0x660ff4: /* pmuludq */
7103 case 0x660ff5: /* pmaddwd */
7104 case 0x660ff6: /* psadbw */
7105 case 0x660ff8: /* psubb */
7106 case 0x660ff9: /* psubw */
7107 case 0x660ffa: /* psubd */
7108 case 0x660ffb: /* psubq */
7109 case 0x660ffc: /* paddb */
7110 case 0x660ffd: /* paddw */
7111 case 0x660ffe: /* paddd */
7112 if (i386_record_modrm (&ir))
7113 return -1;
7114 ir.reg |= rex_r;
7115 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7116 goto no_support;
7117 record_arch_list_add_reg (ir.regcache,
7118 I387_XMM0_REGNUM (tdep) + ir.reg);
7119 if ((opcode & 0xfffffffc) == 0x660f3a60)
7120 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7121 break;
7122
7123 case 0x0f11: /* movups */
7124 case 0x660f11: /* movupd */
7125 case 0xf30f11: /* movss */
7126 case 0xf20f11: /* movsd */
7127 case 0x0f13: /* movlps */
7128 case 0x660f13: /* movlpd */
7129 case 0x0f17: /* movhps */
7130 case 0x660f17: /* movhpd */
7131 case 0x0f29: /* movaps */
7132 case 0x660f29: /* movapd */
7133 case 0x660f3a14: /* pextrb */
7134 case 0x660f3a15: /* pextrw */
7135 case 0x660f3a16: /* pextrd pextrq */
7136 case 0x660f3a17: /* extractps */
7137 case 0x660f7f: /* movdqa */
7138 case 0xf30f7f: /* movdqu */
7139 if (i386_record_modrm (&ir))
7140 return -1;
7141 if (ir.mod == 3)
7142 {
7143 if (opcode == 0x0f13 || opcode == 0x660f13
7144 || opcode == 0x0f17 || opcode == 0x660f17)
7145 goto no_support;
7146 ir.rm |= ir.rex_b;
7147 if (!i386_xmm_regnum_p (gdbarch,
7148 I387_XMM0_REGNUM (tdep) + ir.rm))
7149 goto no_support;
7150 record_arch_list_add_reg (ir.regcache,
7151 I387_XMM0_REGNUM (tdep) + ir.rm);
7152 }
7153 else
7154 {
7155 switch (opcode)
7156 {
7157 case 0x660f3a14:
7158 ir.ot = OT_BYTE;
7159 break;
7160 case 0x660f3a15:
7161 ir.ot = OT_WORD;
7162 break;
7163 case 0x660f3a16:
7164 ir.ot = OT_LONG;
7165 break;
7166 case 0x660f3a17:
7167 ir.ot = OT_QUAD;
7168 break;
7169 default:
7170 ir.ot = OT_DQUAD;
7171 break;
7172 }
7173 if (i386_record_lea_modrm (&ir))
7174 return -1;
7175 }
7176 break;
7177
7178 case 0x0f2b: /* movntps */
7179 case 0x660f2b: /* movntpd */
7180 case 0x0fe7: /* movntq */
7181 case 0x660fe7: /* movntdq */
7182 if (ir.mod == 3)
7183 goto no_support;
7184 if (opcode == 0x0fe7)
7185 ir.ot = OT_QUAD;
7186 else
7187 ir.ot = OT_DQUAD;
7188 if (i386_record_lea_modrm (&ir))
7189 return -1;
7190 break;
7191
7192 case 0xf30f2c: /* cvttss2si */
7193 case 0xf20f2c: /* cvttsd2si */
7194 case 0xf30f2d: /* cvtss2si */
7195 case 0xf20f2d: /* cvtsd2si */
7196 case 0xf20f38f0: /* crc32 */
7197 case 0xf20f38f1: /* crc32 */
7198 case 0x0f50: /* movmskps */
7199 case 0x660f50: /* movmskpd */
7200 case 0x0fc5: /* pextrw */
7201 case 0x660fc5: /* pextrw */
7202 case 0x0fd7: /* pmovmskb */
7203 case 0x660fd7: /* pmovmskb */
7204 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7205 break;
7206
7207 case 0x0f3800: /* pshufb */
7208 case 0x0f3801: /* phaddw */
7209 case 0x0f3802: /* phaddd */
7210 case 0x0f3803: /* phaddsw */
7211 case 0x0f3804: /* pmaddubsw */
7212 case 0x0f3805: /* phsubw */
7213 case 0x0f3806: /* phsubd */
7214 case 0x0f3807: /* phsubsw */
7215 case 0x0f3808: /* psignb */
7216 case 0x0f3809: /* psignw */
7217 case 0x0f380a: /* psignd */
7218 case 0x0f380b: /* pmulhrsw */
7219 case 0x0f381c: /* pabsb */
7220 case 0x0f381d: /* pabsw */
7221 case 0x0f381e: /* pabsd */
7222 case 0x0f382b: /* packusdw */
7223 case 0x0f3830: /* pmovzxbw */
7224 case 0x0f3831: /* pmovzxbd */
7225 case 0x0f3832: /* pmovzxbq */
7226 case 0x0f3833: /* pmovzxwd */
7227 case 0x0f3834: /* pmovzxwq */
7228 case 0x0f3835: /* pmovzxdq */
7229 case 0x0f3837: /* pcmpgtq */
7230 case 0x0f3838: /* pminsb */
7231 case 0x0f3839: /* pminsd */
7232 case 0x0f383a: /* pminuw */
7233 case 0x0f383b: /* pminud */
7234 case 0x0f383c: /* pmaxsb */
7235 case 0x0f383d: /* pmaxsd */
7236 case 0x0f383e: /* pmaxuw */
7237 case 0x0f383f: /* pmaxud */
7238 case 0x0f3840: /* pmulld */
7239 case 0x0f3841: /* phminposuw */
7240 case 0x0f3a0f: /* palignr */
7241 case 0x0f60: /* punpcklbw */
7242 case 0x0f61: /* punpcklwd */
7243 case 0x0f62: /* punpckldq */
7244 case 0x0f63: /* packsswb */
7245 case 0x0f64: /* pcmpgtb */
7246 case 0x0f65: /* pcmpgtw */
7247 case 0x0f66: /* pcmpgtd */
7248 case 0x0f67: /* packuswb */
7249 case 0x0f68: /* punpckhbw */
7250 case 0x0f69: /* punpckhwd */
7251 case 0x0f6a: /* punpckhdq */
7252 case 0x0f6b: /* packssdw */
7253 case 0x0f6e: /* movd */
7254 case 0x0f6f: /* movq */
7255 case 0x0f70: /* pshufw */
7256 case 0x0f74: /* pcmpeqb */
7257 case 0x0f75: /* pcmpeqw */
7258 case 0x0f76: /* pcmpeqd */
7259 case 0x0fc4: /* pinsrw */
7260 case 0x0fd1: /* psrlw */
7261 case 0x0fd2: /* psrld */
7262 case 0x0fd3: /* psrlq */
7263 case 0x0fd4: /* paddq */
7264 case 0x0fd5: /* pmullw */
7265 case 0xf20fd6: /* movdq2q */
7266 case 0x0fd8: /* psubusb */
7267 case 0x0fd9: /* psubusw */
7268 case 0x0fda: /* pminub */
7269 case 0x0fdb: /* pand */
7270 case 0x0fdc: /* paddusb */
7271 case 0x0fdd: /* paddusw */
7272 case 0x0fde: /* pmaxub */
7273 case 0x0fdf: /* pandn */
7274 case 0x0fe0: /* pavgb */
7275 case 0x0fe1: /* psraw */
7276 case 0x0fe2: /* psrad */
7277 case 0x0fe3: /* pavgw */
7278 case 0x0fe4: /* pmulhuw */
7279 case 0x0fe5: /* pmulhw */
7280 case 0x0fe8: /* psubsb */
7281 case 0x0fe9: /* psubsw */
7282 case 0x0fea: /* pminsw */
7283 case 0x0feb: /* por */
7284 case 0x0fec: /* paddsb */
7285 case 0x0fed: /* paddsw */
7286 case 0x0fee: /* pmaxsw */
7287 case 0x0fef: /* pxor */
7288 case 0x0ff1: /* psllw */
7289 case 0x0ff2: /* pslld */
7290 case 0x0ff3: /* psllq */
7291 case 0x0ff4: /* pmuludq */
7292 case 0x0ff5: /* pmaddwd */
7293 case 0x0ff6: /* psadbw */
7294 case 0x0ff8: /* psubb */
7295 case 0x0ff9: /* psubw */
7296 case 0x0ffa: /* psubd */
7297 case 0x0ffb: /* psubq */
7298 case 0x0ffc: /* paddb */
7299 case 0x0ffd: /* paddw */
7300 case 0x0ffe: /* paddd */
7301 if (i386_record_modrm (&ir))
7302 return -1;
7303 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7304 goto no_support;
7305 record_arch_list_add_reg (ir.regcache,
7306 I387_MM0_REGNUM (tdep) + ir.reg);
7307 break;
7308
7309 case 0x0f71: /* psllw */
7310 case 0x0f72: /* pslld */
7311 case 0x0f73: /* psllq */
7312 if (i386_record_modrm (&ir))
7313 return -1;
7314 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7315 goto no_support;
7316 record_arch_list_add_reg (ir.regcache,
7317 I387_MM0_REGNUM (tdep) + ir.rm);
7318 break;
7319
7320 case 0x660f71: /* psllw */
7321 case 0x660f72: /* pslld */
7322 case 0x660f73: /* psllq */
7323 if (i386_record_modrm (&ir))
7324 return -1;
7325 ir.rm |= ir.rex_b;
7326 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7327 goto no_support;
7328 record_arch_list_add_reg (ir.regcache,
7329 I387_XMM0_REGNUM (tdep) + ir.rm);
7330 break;
7331
7332 case 0x0f7e: /* movd */
7333 case 0x660f7e: /* movd */
7334 if (i386_record_modrm (&ir))
7335 return -1;
7336 if (ir.mod == 3)
7337 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7338 else
7339 {
7340 if (ir.dflag == 2)
7341 ir.ot = OT_QUAD;
7342 else
7343 ir.ot = OT_LONG;
7344 if (i386_record_lea_modrm (&ir))
7345 return -1;
7346 }
7347 break;
7348
7349 case 0x0f7f: /* movq */
7350 if (i386_record_modrm (&ir))
7351 return -1;
7352 if (ir.mod == 3)
7353 {
7354 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7355 goto no_support;
7356 record_arch_list_add_reg (ir.regcache,
7357 I387_MM0_REGNUM (tdep) + ir.rm);
7358 }
7359 else
7360 {
7361 ir.ot = OT_QUAD;
7362 if (i386_record_lea_modrm (&ir))
7363 return -1;
7364 }
7365 break;
7366
7367 case 0xf30fb8: /* popcnt */
7368 if (i386_record_modrm (&ir))
7369 return -1;
7370 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7372 break;
7373
7374 case 0x660fd6: /* movq */
7375 if (i386_record_modrm (&ir))
7376 return -1;
7377 if (ir.mod == 3)
7378 {
7379 ir.rm |= ir.rex_b;
7380 if (!i386_xmm_regnum_p (gdbarch,
7381 I387_XMM0_REGNUM (tdep) + ir.rm))
7382 goto no_support;
7383 record_arch_list_add_reg (ir.regcache,
7384 I387_XMM0_REGNUM (tdep) + ir.rm);
7385 }
7386 else
7387 {
7388 ir.ot = OT_QUAD;
7389 if (i386_record_lea_modrm (&ir))
7390 return -1;
7391 }
7392 break;
7393
7394 case 0x660f3817: /* ptest */
7395 case 0x0f2e: /* ucomiss */
7396 case 0x660f2e: /* ucomisd */
7397 case 0x0f2f: /* comiss */
7398 case 0x660f2f: /* comisd */
7399 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7400 break;
7401
7402 case 0x0ff7: /* maskmovq */
7403 regcache_raw_read_unsigned (ir.regcache,
7404 ir.regmap[X86_RECORD_REDI_REGNUM],
7405 &addr);
7406 if (record_arch_list_add_mem (addr, 64))
7407 return -1;
7408 break;
7409
7410 case 0x660ff7: /* maskmovdqu */
7411 regcache_raw_read_unsigned (ir.regcache,
7412 ir.regmap[X86_RECORD_REDI_REGNUM],
7413 &addr);
7414 if (record_arch_list_add_mem (addr, 128))
7415 return -1;
7416 break;
7417
7418 default:
7419 goto no_support;
7420 break;
7421 }
7422 break;
7423
7424 default:
7425 goto no_support;
7426 break;
7427 }
7428
7429 /* In the future, maybe still need to deal with need_dasm. */
7430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7431 if (record_arch_list_add_end ())
7432 return -1;
7433
7434 return 0;
7435
7436 no_support:
7437 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7438 "at address %s.\n"),
7439 (unsigned int) (opcode),
7440 paddress (gdbarch, ir.orig_addr));
7441 return -1;
7442 }
7443
7444 static const int i386_record_regmap[] =
7445 {
7446 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7447 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7448 0, 0, 0, 0, 0, 0, 0, 0,
7449 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7450 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7451 };
7452
7453 /* Check that the given address appears suitable for a fast
7454 tracepoint, which on x86-64 means that we need an instruction of at
7455 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7456 jump and not have to worry about program jumps to an address in the
7457 middle of the tracepoint jump. On x86, it may be possible to use
7458 4-byte jumps with a 2-byte offset to a trampoline located in the
7459 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7460 of instruction to replace, and 0 if not, plus an explanatory
7461 string. */
7462
7463 static int
7464 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7465 CORE_ADDR addr, int *isize, char **msg)
7466 {
7467 int len, jumplen;
7468 static struct ui_file *gdb_null = NULL;
7469
7470 /* Ask the target for the minimum instruction length supported. */
7471 jumplen = target_get_min_fast_tracepoint_insn_len ();
7472
7473 if (jumplen < 0)
7474 {
7475 /* If the target does not support the get_min_fast_tracepoint_insn_len
7476 operation, assume that fast tracepoints will always be implemented
7477 using 4-byte relative jumps on both x86 and x86-64. */
7478 jumplen = 5;
7479 }
7480 else if (jumplen == 0)
7481 {
7482 /* If the target does support get_min_fast_tracepoint_insn_len but
7483 returns zero, then the IPA has not loaded yet. In this case,
7484 we optimistically assume that truncated 2-byte relative jumps
7485 will be available on x86, and compensate later if this assumption
7486 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7487 jumps will always be used. */
7488 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7489 }
7490
7491 /* Dummy file descriptor for the disassembler. */
7492 if (!gdb_null)
7493 gdb_null = ui_file_new ();
7494
7495 /* Check for fit. */
7496 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7497 if (isize)
7498 *isize = len;
7499
7500 if (len < jumplen)
7501 {
7502 /* Return a bit of target-specific detail to add to the caller's
7503 generic failure message. */
7504 if (msg)
7505 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7506 "need at least %d bytes for the jump"),
7507 len, jumplen);
7508 return 0;
7509 }
7510 else
7511 {
7512 if (msg)
7513 *msg = NULL;
7514 return 1;
7515 }
7516 }
7517
7518 static int
7519 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7520 struct tdesc_arch_data *tdesc_data)
7521 {
7522 const struct target_desc *tdesc = tdep->tdesc;
7523 const struct tdesc_feature *feature_core;
7524 const struct tdesc_feature *feature_sse, *feature_avx;
7525 int i, num_regs, valid_p;
7526
7527 if (! tdesc_has_registers (tdesc))
7528 return 0;
7529
7530 /* Get core registers. */
7531 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7532 if (feature_core == NULL)
7533 return 0;
7534
7535 /* Get SSE registers. */
7536 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7537
7538 /* Try AVX registers. */
7539 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7540
7541 valid_p = 1;
7542
7543 /* The XCR0 bits. */
7544 if (feature_avx)
7545 {
7546 /* AVX register description requires SSE register description. */
7547 if (!feature_sse)
7548 return 0;
7549
7550 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7551
7552 /* It may have been set by OSABI initialization function. */
7553 if (tdep->num_ymm_regs == 0)
7554 {
7555 tdep->ymmh_register_names = i386_ymmh_names;
7556 tdep->num_ymm_regs = 8;
7557 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7558 }
7559
7560 for (i = 0; i < tdep->num_ymm_regs; i++)
7561 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7562 tdep->ymm0h_regnum + i,
7563 tdep->ymmh_register_names[i]);
7564 }
7565 else if (feature_sse)
7566 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7567 else
7568 {
7569 tdep->xcr0 = I386_XSTATE_X87_MASK;
7570 tdep->num_xmm_regs = 0;
7571 }
7572
7573 num_regs = tdep->num_core_regs;
7574 for (i = 0; i < num_regs; i++)
7575 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7576 tdep->register_names[i]);
7577
7578 if (feature_sse)
7579 {
7580 /* Need to include %mxcsr, so add one. */
7581 num_regs += tdep->num_xmm_regs + 1;
7582 for (; i < num_regs; i++)
7583 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7584 tdep->register_names[i]);
7585 }
7586
7587 return valid_p;
7588 }
7589
7590 \f
7591 static struct gdbarch *
7592 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7593 {
7594 struct gdbarch_tdep *tdep;
7595 struct gdbarch *gdbarch;
7596 struct tdesc_arch_data *tdesc_data;
7597 const struct target_desc *tdesc;
7598 int mm0_regnum;
7599 int ymm0_regnum;
7600
7601 /* If there is already a candidate, use it. */
7602 arches = gdbarch_list_lookup_by_info (arches, &info);
7603 if (arches != NULL)
7604 return arches->gdbarch;
7605
7606 /* Allocate space for the new architecture. */
7607 tdep = XCALLOC (1, struct gdbarch_tdep);
7608 gdbarch = gdbarch_alloc (&info, tdep);
7609
7610 /* General-purpose registers. */
7611 tdep->gregset = NULL;
7612 tdep->gregset_reg_offset = NULL;
7613 tdep->gregset_num_regs = I386_NUM_GREGS;
7614 tdep->sizeof_gregset = 0;
7615
7616 /* Floating-point registers. */
7617 tdep->fpregset = NULL;
7618 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7619
7620 tdep->xstateregset = NULL;
7621
7622 /* The default settings include the FPU registers, the MMX registers
7623 and the SSE registers. This can be overridden for a specific ABI
7624 by adjusting the members `st0_regnum', `mm0_regnum' and
7625 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7626 will show up in the output of "info all-registers". */
7627
7628 tdep->st0_regnum = I386_ST0_REGNUM;
7629
7630 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7631 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7632
7633 tdep->jb_pc_offset = -1;
7634 tdep->struct_return = pcc_struct_return;
7635 tdep->sigtramp_start = 0;
7636 tdep->sigtramp_end = 0;
7637 tdep->sigtramp_p = i386_sigtramp_p;
7638 tdep->sigcontext_addr = NULL;
7639 tdep->sc_reg_offset = NULL;
7640 tdep->sc_pc_offset = -1;
7641 tdep->sc_sp_offset = -1;
7642
7643 tdep->xsave_xcr0_offset = -1;
7644
7645 tdep->record_regmap = i386_record_regmap;
7646
7647 set_gdbarch_long_long_align_bit (gdbarch, 32);
7648
7649 /* The format used for `long double' on almost all i386 targets is
7650 the i387 extended floating-point format. In fact, of all targets
7651 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7652 on having a `long double' that's not `long' at all. */
7653 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7654
7655 /* Although the i387 extended floating-point has only 80 significant
7656 bits, a `long double' actually takes up 96, probably to enforce
7657 alignment. */
7658 set_gdbarch_long_double_bit (gdbarch, 96);
7659
7660 /* Register numbers of various important registers. */
7661 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7662 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7663 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7664 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7665
7666 /* NOTE: kettenis/20040418: GCC does have two possible register
7667 numbering schemes on the i386: dbx and SVR4. These schemes
7668 differ in how they number %ebp, %esp, %eflags, and the
7669 floating-point registers, and are implemented by the arrays
7670 dbx_register_map[] and svr4_dbx_register_map in
7671 gcc/config/i386.c. GCC also defines a third numbering scheme in
7672 gcc/config/i386.c, which it designates as the "default" register
7673 map used in 64bit mode. This last register numbering scheme is
7674 implemented in dbx64_register_map, and is used for AMD64; see
7675 amd64-tdep.c.
7676
7677 Currently, each GCC i386 target always uses the same register
7678 numbering scheme across all its supported debugging formats
7679 i.e. SDB (COFF), stabs and DWARF 2. This is because
7680 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7681 DBX_REGISTER_NUMBER macro which is defined by each target's
7682 respective config header in a manner independent of the requested
7683 output debugging format.
7684
7685 This does not match the arrangement below, which presumes that
7686 the SDB and stabs numbering schemes differ from the DWARF and
7687 DWARF 2 ones. The reason for this arrangement is that it is
7688 likely to get the numbering scheme for the target's
7689 default/native debug format right. For targets where GCC is the
7690 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7691 targets where the native toolchain uses a different numbering
7692 scheme for a particular debug format (stabs-in-ELF on Solaris)
7693 the defaults below will have to be overridden, like
7694 i386_elf_init_abi() does. */
7695
7696 /* Use the dbx register numbering scheme for stabs and COFF. */
7697 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7698 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7699
7700 /* Use the SVR4 register numbering scheme for DWARF 2. */
7701 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7702
7703 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7704 be in use on any of the supported i386 targets. */
7705
7706 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7707
7708 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7709
7710 /* Call dummy code. */
7711 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7712 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7713
7714 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7715 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7716 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7717
7718 set_gdbarch_return_value (gdbarch, i386_return_value);
7719
7720 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7721
7722 /* Stack grows downward. */
7723 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7724
7725 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7726 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7727 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7728
7729 set_gdbarch_frame_args_skip (gdbarch, 8);
7730
7731 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7732
7733 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7734
7735 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7736
7737 /* Add the i386 register groups. */
7738 i386_add_reggroups (gdbarch);
7739 tdep->register_reggroup_p = i386_register_reggroup_p;
7740
7741 /* Helper for function argument information. */
7742 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7743
7744 /* Hook the function epilogue frame unwinder. This unwinder is
7745 appended to the list first, so that it supercedes the DWARF
7746 unwinder in function epilogues (where the DWARF unwinder
7747 currently fails). */
7748 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7749
7750 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7751 to the list before the prologue-based unwinders, so that DWARF
7752 CFI info will be used if it is available. */
7753 dwarf2_append_unwinders (gdbarch);
7754
7755 frame_base_set_default (gdbarch, &i386_frame_base);
7756
7757 /* Pseudo registers may be changed by amd64_init_abi. */
7758 set_gdbarch_pseudo_register_read_value (gdbarch,
7759 i386_pseudo_register_read_value);
7760 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7761
7762 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7763 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7764
7765 /* Override the normal target description method to make the AVX
7766 upper halves anonymous. */
7767 set_gdbarch_register_name (gdbarch, i386_register_name);
7768
7769 /* Even though the default ABI only includes general-purpose registers,
7770 floating-point registers and the SSE registers, we have to leave a
7771 gap for the upper AVX registers. */
7772 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7773
7774 /* Get the x86 target description from INFO. */
7775 tdesc = info.target_desc;
7776 if (! tdesc_has_registers (tdesc))
7777 tdesc = tdesc_i386;
7778 tdep->tdesc = tdesc;
7779
7780 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7781 tdep->register_names = i386_register_names;
7782
7783 /* No upper YMM registers. */
7784 tdep->ymmh_register_names = NULL;
7785 tdep->ymm0h_regnum = -1;
7786
7787 tdep->num_byte_regs = 8;
7788 tdep->num_word_regs = 8;
7789 tdep->num_dword_regs = 0;
7790 tdep->num_mmx_regs = 8;
7791 tdep->num_ymm_regs = 0;
7792
7793 tdesc_data = tdesc_data_alloc ();
7794
7795 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7796
7797 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7798
7799 /* Hook in ABI-specific overrides, if they have been registered. */
7800 info.tdep_info = (void *) tdesc_data;
7801 gdbarch_init_osabi (info, gdbarch);
7802
7803 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7804 {
7805 tdesc_data_cleanup (tdesc_data);
7806 xfree (tdep);
7807 gdbarch_free (gdbarch);
7808 return NULL;
7809 }
7810
7811 /* Wire in pseudo registers. Number of pseudo registers may be
7812 changed. */
7813 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7814 + tdep->num_word_regs
7815 + tdep->num_dword_regs
7816 + tdep->num_mmx_regs
7817 + tdep->num_ymm_regs));
7818
7819 /* Target description may be changed. */
7820 tdesc = tdep->tdesc;
7821
7822 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7823
7824 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7825 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7826
7827 /* Make %al the first pseudo-register. */
7828 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7829 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7830
7831 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7832 if (tdep->num_dword_regs)
7833 {
7834 /* Support dword pseudo-register if it hasn't been disabled. */
7835 tdep->eax_regnum = ymm0_regnum;
7836 ymm0_regnum += tdep->num_dword_regs;
7837 }
7838 else
7839 tdep->eax_regnum = -1;
7840
7841 mm0_regnum = ymm0_regnum;
7842 if (tdep->num_ymm_regs)
7843 {
7844 /* Support YMM pseudo-register if it is available. */
7845 tdep->ymm0_regnum = ymm0_regnum;
7846 mm0_regnum += tdep->num_ymm_regs;
7847 }
7848 else
7849 tdep->ymm0_regnum = -1;
7850
7851 if (tdep->num_mmx_regs != 0)
7852 {
7853 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7854 tdep->mm0_regnum = mm0_regnum;
7855 }
7856 else
7857 tdep->mm0_regnum = -1;
7858
7859 /* Hook in the legacy prologue-based unwinders last (fallback). */
7860 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
7861 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7862 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7863
7864 /* If we have a register mapping, enable the generic core file
7865 support, unless it has already been enabled. */
7866 if (tdep->gregset_reg_offset
7867 && !gdbarch_regset_from_core_section_p (gdbarch))
7868 set_gdbarch_regset_from_core_section (gdbarch,
7869 i386_regset_from_core_section);
7870
7871 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7872 i386_skip_permanent_breakpoint);
7873
7874 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7875 i386_fast_tracepoint_valid_at);
7876
7877 return gdbarch;
7878 }
7879
7880 static enum gdb_osabi
7881 i386_coff_osabi_sniffer (bfd *abfd)
7882 {
7883 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7884 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7885 return GDB_OSABI_GO32;
7886
7887 return GDB_OSABI_UNKNOWN;
7888 }
7889 \f
7890
7891 /* Provide a prototype to silence -Wmissing-prototypes. */
7892 void _initialize_i386_tdep (void);
7893
7894 void
7895 _initialize_i386_tdep (void)
7896 {
7897 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7898
7899 /* Add the variable that controls the disassembly flavor. */
7900 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7901 &disassembly_flavor, _("\
7902 Set the disassembly flavor."), _("\
7903 Show the disassembly flavor."), _("\
7904 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7905 NULL,
7906 NULL, /* FIXME: i18n: */
7907 &setlist, &showlist);
7908
7909 /* Add the variable that controls the convention for returning
7910 structs. */
7911 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7912 &struct_convention, _("\
7913 Set the convention for returning small structs."), _("\
7914 Show the convention for returning small structs."), _("\
7915 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7916 is \"default\"."),
7917 NULL,
7918 NULL, /* FIXME: i18n: */
7919 &setlist, &showlist);
7920
7921 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7922 i386_coff_osabi_sniffer);
7923
7924 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7925 i386_svr4_init_abi);
7926 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7927 i386_go32_init_abi);
7928
7929 /* Initialize the i386-specific register groups. */
7930 i386_init_reggroups ();
7931
7932 /* Initialize the standard target descriptions. */
7933 initialize_tdesc_i386 ();
7934 initialize_tdesc_i386_mmx ();
7935 initialize_tdesc_i386_avx ();
7936
7937 /* Tell remote stub that we support XML target description. */
7938 register_remote_support_xml ("i386");
7939 }