"tfind" across unavailable-stack frames.
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "opcode/i386.h"
22 #include "arch-utils.h"
23 #include "command.h"
24 #include "dummy-frame.h"
25 #include "dwarf2-frame.h"
26 #include "doublest.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "gdbtypes.h"
34 #include "objfiles.h"
35 #include "osabi.h"
36 #include "regcache.h"
37 #include "reggroups.h"
38 #include "regset.h"
39 #include "symfile.h"
40 #include "symtab.h"
41 #include "target.h"
42 #include "value.h"
43 #include "dis-asm.h"
44 #include "disasm.h"
45 #include "remote.h"
46 #include "exceptions.h"
47 #include "gdb_assert.h"
48 #include <string.h>
49
50 #include "i386-tdep.h"
51 #include "i387-tdep.h"
52 #include "i386-xstate.h"
53
54 #include "record.h"
55 #include "record-full.h"
56 #include <stdint.h>
57
58 #include "features/i386/i386.c"
59 #include "features/i386/i386-avx.c"
60 #include "features/i386/i386-mpx.c"
61 #include "features/i386/i386-mmx.c"
62
63 #include "ax.h"
64 #include "ax-gdb.h"
65
66 #include "stap-probe.h"
67 #include "user-regs.h"
68 #include "cli/cli-utils.h"
69 #include "expression.h"
70 #include "parser-defs.h"
71 #include <ctype.h>
72
73 /* Register names. */
74
75 static const char *i386_register_names[] =
76 {
77 "eax", "ecx", "edx", "ebx",
78 "esp", "ebp", "esi", "edi",
79 "eip", "eflags", "cs", "ss",
80 "ds", "es", "fs", "gs",
81 "st0", "st1", "st2", "st3",
82 "st4", "st5", "st6", "st7",
83 "fctrl", "fstat", "ftag", "fiseg",
84 "fioff", "foseg", "fooff", "fop",
85 "xmm0", "xmm1", "xmm2", "xmm3",
86 "xmm4", "xmm5", "xmm6", "xmm7",
87 "mxcsr"
88 };
89
90 static const char *i386_ymm_names[] =
91 {
92 "ymm0", "ymm1", "ymm2", "ymm3",
93 "ymm4", "ymm5", "ymm6", "ymm7",
94 };
95
96 static const char *i386_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 };
101
102 static const char *i386_mpx_names[] =
103 {
104 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
105 };
106
107 /* Register names for MPX pseudo-registers. */
108
109 static const char *i386_bnd_names[] =
110 {
111 "bnd0", "bnd1", "bnd2", "bnd3"
112 };
113
114 /* Register names for MMX pseudo-registers. */
115
116 static const char *i386_mmx_names[] =
117 {
118 "mm0", "mm1", "mm2", "mm3",
119 "mm4", "mm5", "mm6", "mm7"
120 };
121
122 /* Register names for byte pseudo-registers. */
123
124 static const char *i386_byte_names[] =
125 {
126 "al", "cl", "dl", "bl",
127 "ah", "ch", "dh", "bh"
128 };
129
130 /* Register names for word pseudo-registers. */
131
132 static const char *i386_word_names[] =
133 {
134 "ax", "cx", "dx", "bx",
135 "", "bp", "si", "di"
136 };
137
138 /* MMX register? */
139
140 static int
141 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
142 {
143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
144 int mm0_regnum = tdep->mm0_regnum;
145
146 if (mm0_regnum < 0)
147 return 0;
148
149 regnum -= mm0_regnum;
150 return regnum >= 0 && regnum < tdep->num_mmx_regs;
151 }
152
153 /* Byte register? */
154
155 int
156 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159
160 regnum -= tdep->al_regnum;
161 return regnum >= 0 && regnum < tdep->num_byte_regs;
162 }
163
164 /* Word register? */
165
166 int
167 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
168 {
169 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
170
171 regnum -= tdep->ax_regnum;
172 return regnum >= 0 && regnum < tdep->num_word_regs;
173 }
174
175 /* Dword register? */
176
177 int
178 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
179 {
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181 int eax_regnum = tdep->eax_regnum;
182
183 if (eax_regnum < 0)
184 return 0;
185
186 regnum -= eax_regnum;
187 return regnum >= 0 && regnum < tdep->num_dword_regs;
188 }
189
190 static int
191 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
192 {
193 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
194 int ymm0h_regnum = tdep->ymm0h_regnum;
195
196 if (ymm0h_regnum < 0)
197 return 0;
198
199 regnum -= ymm0h_regnum;
200 return regnum >= 0 && regnum < tdep->num_ymm_regs;
201 }
202
203 /* AVX register? */
204
205 int
206 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
207 {
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int ymm0_regnum = tdep->ymm0_regnum;
210
211 if (ymm0_regnum < 0)
212 return 0;
213
214 regnum -= ymm0_regnum;
215 return regnum >= 0 && regnum < tdep->num_ymm_regs;
216 }
217
218 /* BND register? */
219
220 int
221 i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
222 {
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int bnd0_regnum = tdep->bnd0_regnum;
225
226 if (bnd0_regnum < 0)
227 return 0;
228
229 regnum -= bnd0_regnum;
230 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
231 }
232
233 /* SSE register? */
234
235 int
236 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
237 {
238 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
239 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
240
241 if (num_xmm_regs == 0)
242 return 0;
243
244 regnum -= I387_XMM0_REGNUM (tdep);
245 return regnum >= 0 && regnum < num_xmm_regs;
246 }
247
248 static int
249 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
250 {
251 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
252
253 if (I387_NUM_XMM_REGS (tdep) == 0)
254 return 0;
255
256 return (regnum == I387_MXCSR_REGNUM (tdep));
257 }
258
259 /* FP register? */
260
261 int
262 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
263 {
264 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
265
266 if (I387_ST0_REGNUM (tdep) < 0)
267 return 0;
268
269 return (I387_ST0_REGNUM (tdep) <= regnum
270 && regnum < I387_FCTRL_REGNUM (tdep));
271 }
272
273 int
274 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
275 {
276 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
277
278 if (I387_ST0_REGNUM (tdep) < 0)
279 return 0;
280
281 return (I387_FCTRL_REGNUM (tdep) <= regnum
282 && regnum < I387_XMM0_REGNUM (tdep));
283 }
284
285 /* BNDr (raw) register? */
286
287 static int
288 i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
289 {
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291
292 if (I387_BND0R_REGNUM (tdep) < 0)
293 return 0;
294
295 regnum -= tdep->bnd0r_regnum;
296 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
297 }
298
299 /* BND control register? */
300
301 static int
302 i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
303 {
304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
305
306 if (I387_BNDCFGU_REGNUM (tdep) < 0)
307 return 0;
308
309 regnum -= I387_BNDCFGU_REGNUM (tdep);
310 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
311 }
312
313 /* Return the name of register REGNUM, or the empty string if it is
314 an anonymous register. */
315
316 static const char *
317 i386_register_name (struct gdbarch *gdbarch, int regnum)
318 {
319 /* Hide the upper YMM registers. */
320 if (i386_ymmh_regnum_p (gdbarch, regnum))
321 return "";
322
323 return tdesc_register_name (gdbarch, regnum);
324 }
325
326 /* Return the name of register REGNUM. */
327
328 const char *
329 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
330 {
331 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
332 if (i386_bnd_regnum_p (gdbarch, regnum))
333 return i386_bnd_names[regnum - tdep->bnd0_regnum];
334 if (i386_mmx_regnum_p (gdbarch, regnum))
335 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
336 else if (i386_ymm_regnum_p (gdbarch, regnum))
337 return i386_ymm_names[regnum - tdep->ymm0_regnum];
338 else if (i386_byte_regnum_p (gdbarch, regnum))
339 return i386_byte_names[regnum - tdep->al_regnum];
340 else if (i386_word_regnum_p (gdbarch, regnum))
341 return i386_word_names[regnum - tdep->ax_regnum];
342
343 internal_error (__FILE__, __LINE__, _("invalid regnum"));
344 }
345
346 /* Convert a dbx register number REG to the appropriate register
347 number used by GDB. */
348
349 static int
350 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
351 {
352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
353
354 /* This implements what GCC calls the "default" register map
355 (dbx_register_map[]). */
356
357 if (reg >= 0 && reg <= 7)
358 {
359 /* General-purpose registers. The debug info calls %ebp
360 register 4, and %esp register 5. */
361 if (reg == 4)
362 return 5;
363 else if (reg == 5)
364 return 4;
365 else return reg;
366 }
367 else if (reg >= 12 && reg <= 19)
368 {
369 /* Floating-point registers. */
370 return reg - 12 + I387_ST0_REGNUM (tdep);
371 }
372 else if (reg >= 21 && reg <= 28)
373 {
374 /* SSE registers. */
375 int ymm0_regnum = tdep->ymm0_regnum;
376
377 if (ymm0_regnum >= 0
378 && i386_xmm_regnum_p (gdbarch, reg))
379 return reg - 21 + ymm0_regnum;
380 else
381 return reg - 21 + I387_XMM0_REGNUM (tdep);
382 }
383 else if (reg >= 29 && reg <= 36)
384 {
385 /* MMX registers. */
386 return reg - 29 + I387_MM0_REGNUM (tdep);
387 }
388
389 /* This will hopefully provoke a warning. */
390 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
391 }
392
393 /* Convert SVR4 register number REG to the appropriate register number
394 used by GDB. */
395
396 static int
397 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
398 {
399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
400
401 /* This implements the GCC register map that tries to be compatible
402 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
403
404 /* The SVR4 register numbering includes %eip and %eflags, and
405 numbers the floating point registers differently. */
406 if (reg >= 0 && reg <= 9)
407 {
408 /* General-purpose registers. */
409 return reg;
410 }
411 else if (reg >= 11 && reg <= 18)
412 {
413 /* Floating-point registers. */
414 return reg - 11 + I387_ST0_REGNUM (tdep);
415 }
416 else if (reg >= 21 && reg <= 36)
417 {
418 /* The SSE and MMX registers have the same numbers as with dbx. */
419 return i386_dbx_reg_to_regnum (gdbarch, reg);
420 }
421
422 switch (reg)
423 {
424 case 37: return I387_FCTRL_REGNUM (tdep);
425 case 38: return I387_FSTAT_REGNUM (tdep);
426 case 39: return I387_MXCSR_REGNUM (tdep);
427 case 40: return I386_ES_REGNUM;
428 case 41: return I386_CS_REGNUM;
429 case 42: return I386_SS_REGNUM;
430 case 43: return I386_DS_REGNUM;
431 case 44: return I386_FS_REGNUM;
432 case 45: return I386_GS_REGNUM;
433 }
434
435 /* This will hopefully provoke a warning. */
436 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
437 }
438
439 \f
440
441 /* This is the variable that is set with "set disassembly-flavor", and
442 its legitimate values. */
443 static const char att_flavor[] = "att";
444 static const char intel_flavor[] = "intel";
445 static const char *const valid_flavors[] =
446 {
447 att_flavor,
448 intel_flavor,
449 NULL
450 };
451 static const char *disassembly_flavor = att_flavor;
452 \f
453
454 /* Use the program counter to determine the contents and size of a
455 breakpoint instruction. Return a pointer to a string of bytes that
456 encode a breakpoint instruction, store the length of the string in
457 *LEN and optionally adjust *PC to point to the correct memory
458 location for inserting the breakpoint.
459
460 On the i386 we have a single breakpoint that fits in a single byte
461 and can be inserted anywhere.
462
463 This function is 64-bit safe. */
464
465 static const gdb_byte *
466 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
467 {
468 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
469
470 *len = sizeof (break_insn);
471 return break_insn;
472 }
473 \f
474 /* Displaced instruction handling. */
475
476 /* Skip the legacy instruction prefixes in INSN.
477 Not all prefixes are valid for any particular insn
478 but we needn't care, the insn will fault if it's invalid.
479 The result is a pointer to the first opcode byte,
480 or NULL if we run off the end of the buffer. */
481
482 static gdb_byte *
483 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
484 {
485 gdb_byte *end = insn + max_len;
486
487 while (insn < end)
488 {
489 switch (*insn)
490 {
491 case DATA_PREFIX_OPCODE:
492 case ADDR_PREFIX_OPCODE:
493 case CS_PREFIX_OPCODE:
494 case DS_PREFIX_OPCODE:
495 case ES_PREFIX_OPCODE:
496 case FS_PREFIX_OPCODE:
497 case GS_PREFIX_OPCODE:
498 case SS_PREFIX_OPCODE:
499 case LOCK_PREFIX_OPCODE:
500 case REPE_PREFIX_OPCODE:
501 case REPNE_PREFIX_OPCODE:
502 ++insn;
503 continue;
504 default:
505 return insn;
506 }
507 }
508
509 return NULL;
510 }
511
512 static int
513 i386_absolute_jmp_p (const gdb_byte *insn)
514 {
515 /* jmp far (absolute address in operand). */
516 if (insn[0] == 0xea)
517 return 1;
518
519 if (insn[0] == 0xff)
520 {
521 /* jump near, absolute indirect (/4). */
522 if ((insn[1] & 0x38) == 0x20)
523 return 1;
524
525 /* jump far, absolute indirect (/5). */
526 if ((insn[1] & 0x38) == 0x28)
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 i386_absolute_call_p (const gdb_byte *insn)
535 {
536 /* call far, absolute. */
537 if (insn[0] == 0x9a)
538 return 1;
539
540 if (insn[0] == 0xff)
541 {
542 /* Call near, absolute indirect (/2). */
543 if ((insn[1] & 0x38) == 0x10)
544 return 1;
545
546 /* Call far, absolute indirect (/3). */
547 if ((insn[1] & 0x38) == 0x18)
548 return 1;
549 }
550
551 return 0;
552 }
553
554 static int
555 i386_ret_p (const gdb_byte *insn)
556 {
557 switch (insn[0])
558 {
559 case 0xc2: /* ret near, pop N bytes. */
560 case 0xc3: /* ret near */
561 case 0xca: /* ret far, pop N bytes. */
562 case 0xcb: /* ret far */
563 case 0xcf: /* iret */
564 return 1;
565
566 default:
567 return 0;
568 }
569 }
570
571 static int
572 i386_call_p (const gdb_byte *insn)
573 {
574 if (i386_absolute_call_p (insn))
575 return 1;
576
577 /* call near, relative. */
578 if (insn[0] == 0xe8)
579 return 1;
580
581 return 0;
582 }
583
584 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
585 length in bytes. Otherwise, return zero. */
586
587 static int
588 i386_syscall_p (const gdb_byte *insn, int *lengthp)
589 {
590 /* Is it 'int $0x80'? */
591 if ((insn[0] == 0xcd && insn[1] == 0x80)
592 /* Or is it 'sysenter'? */
593 || (insn[0] == 0x0f && insn[1] == 0x34)
594 /* Or is it 'syscall'? */
595 || (insn[0] == 0x0f && insn[1] == 0x05))
596 {
597 *lengthp = 2;
598 return 1;
599 }
600
601 return 0;
602 }
603
604 /* Some kernels may run one past a syscall insn, so we have to cope.
605 Otherwise this is just simple_displaced_step_copy_insn. */
606
607 struct displaced_step_closure *
608 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
609 CORE_ADDR from, CORE_ADDR to,
610 struct regcache *regs)
611 {
612 size_t len = gdbarch_max_insn_length (gdbarch);
613 gdb_byte *buf = xmalloc (len);
614
615 read_memory (from, buf, len);
616
617 /* GDB may get control back after the insn after the syscall.
618 Presumably this is a kernel bug.
619 If this is a syscall, make sure there's a nop afterwards. */
620 {
621 int syscall_length;
622 gdb_byte *insn;
623
624 insn = i386_skip_prefixes (buf, len);
625 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
626 insn[syscall_length] = NOP_OPCODE;
627 }
628
629 write_memory (to, buf, len);
630
631 if (debug_displaced)
632 {
633 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
634 paddress (gdbarch, from), paddress (gdbarch, to));
635 displaced_step_dump_bytes (gdb_stdlog, buf, len);
636 }
637
638 return (struct displaced_step_closure *) buf;
639 }
640
641 /* Fix up the state of registers and memory after having single-stepped
642 a displaced instruction. */
643
644 void
645 i386_displaced_step_fixup (struct gdbarch *gdbarch,
646 struct displaced_step_closure *closure,
647 CORE_ADDR from, CORE_ADDR to,
648 struct regcache *regs)
649 {
650 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
651
652 /* The offset we applied to the instruction's address.
653 This could well be negative (when viewed as a signed 32-bit
654 value), but ULONGEST won't reflect that, so take care when
655 applying it. */
656 ULONGEST insn_offset = to - from;
657
658 /* Since we use simple_displaced_step_copy_insn, our closure is a
659 copy of the instruction. */
660 gdb_byte *insn = (gdb_byte *) closure;
661 /* The start of the insn, needed in case we see some prefixes. */
662 gdb_byte *insn_start = insn;
663
664 if (debug_displaced)
665 fprintf_unfiltered (gdb_stdlog,
666 "displaced: fixup (%s, %s), "
667 "insn = 0x%02x 0x%02x ...\n",
668 paddress (gdbarch, from), paddress (gdbarch, to),
669 insn[0], insn[1]);
670
671 /* The list of issues to contend with here is taken from
672 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
673 Yay for Free Software! */
674
675 /* Relocate the %eip, if necessary. */
676
677 /* The instruction recognizers we use assume any leading prefixes
678 have been skipped. */
679 {
680 /* This is the size of the buffer in closure. */
681 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
682 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
683 /* If there are too many prefixes, just ignore the insn.
684 It will fault when run. */
685 if (opcode != NULL)
686 insn = opcode;
687 }
688
689 /* Except in the case of absolute or indirect jump or call
690 instructions, or a return instruction, the new eip is relative to
691 the displaced instruction; make it relative. Well, signal
692 handler returns don't need relocation either, but we use the
693 value of %eip to recognize those; see below. */
694 if (! i386_absolute_jmp_p (insn)
695 && ! i386_absolute_call_p (insn)
696 && ! i386_ret_p (insn))
697 {
698 ULONGEST orig_eip;
699 int insn_len;
700
701 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
702
703 /* A signal trampoline system call changes the %eip, resuming
704 execution of the main program after the signal handler has
705 returned. That makes them like 'return' instructions; we
706 shouldn't relocate %eip.
707
708 But most system calls don't, and we do need to relocate %eip.
709
710 Our heuristic for distinguishing these cases: if stepping
711 over the system call instruction left control directly after
712 the instruction, the we relocate --- control almost certainly
713 doesn't belong in the displaced copy. Otherwise, we assume
714 the instruction has put control where it belongs, and leave
715 it unrelocated. Goodness help us if there are PC-relative
716 system calls. */
717 if (i386_syscall_p (insn, &insn_len)
718 && orig_eip != to + (insn - insn_start) + insn_len
719 /* GDB can get control back after the insn after the syscall.
720 Presumably this is a kernel bug.
721 i386_displaced_step_copy_insn ensures its a nop,
722 we add one to the length for it. */
723 && orig_eip != to + (insn - insn_start) + insn_len + 1)
724 {
725 if (debug_displaced)
726 fprintf_unfiltered (gdb_stdlog,
727 "displaced: syscall changed %%eip; "
728 "not relocating\n");
729 }
730 else
731 {
732 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
733
734 /* If we just stepped over a breakpoint insn, we don't backup
735 the pc on purpose; this is to match behaviour without
736 stepping. */
737
738 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
739
740 if (debug_displaced)
741 fprintf_unfiltered (gdb_stdlog,
742 "displaced: "
743 "relocated %%eip from %s to %s\n",
744 paddress (gdbarch, orig_eip),
745 paddress (gdbarch, eip));
746 }
747 }
748
749 /* If the instruction was PUSHFL, then the TF bit will be set in the
750 pushed value, and should be cleared. We'll leave this for later,
751 since GDB already messes up the TF flag when stepping over a
752 pushfl. */
753
754 /* If the instruction was a call, the return address now atop the
755 stack is the address following the copied instruction. We need
756 to make it the address following the original instruction. */
757 if (i386_call_p (insn))
758 {
759 ULONGEST esp;
760 ULONGEST retaddr;
761 const ULONGEST retaddr_len = 4;
762
763 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
764 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
765 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
766 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
767
768 if (debug_displaced)
769 fprintf_unfiltered (gdb_stdlog,
770 "displaced: relocated return addr at %s to %s\n",
771 paddress (gdbarch, esp),
772 paddress (gdbarch, retaddr));
773 }
774 }
775
776 static void
777 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
778 {
779 target_write_memory (*to, buf, len);
780 *to += len;
781 }
782
783 static void
784 i386_relocate_instruction (struct gdbarch *gdbarch,
785 CORE_ADDR *to, CORE_ADDR oldloc)
786 {
787 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
788 gdb_byte buf[I386_MAX_INSN_LEN];
789 int offset = 0, rel32, newrel;
790 int insn_length;
791 gdb_byte *insn = buf;
792
793 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
794
795 insn_length = gdb_buffered_insn_length (gdbarch, insn,
796 I386_MAX_INSN_LEN, oldloc);
797
798 /* Get past the prefixes. */
799 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
800
801 /* Adjust calls with 32-bit relative addresses as push/jump, with
802 the address pushed being the location where the original call in
803 the user program would return to. */
804 if (insn[0] == 0xe8)
805 {
806 gdb_byte push_buf[16];
807 unsigned int ret_addr;
808
809 /* Where "ret" in the original code will return to. */
810 ret_addr = oldloc + insn_length;
811 push_buf[0] = 0x68; /* pushq $... */
812 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
813 /* Push the push. */
814 append_insns (to, 5, push_buf);
815
816 /* Convert the relative call to a relative jump. */
817 insn[0] = 0xe9;
818
819 /* Adjust the destination offset. */
820 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
821 newrel = (oldloc - *to) + rel32;
822 store_signed_integer (insn + 1, 4, byte_order, newrel);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog,
826 "Adjusted insn rel32=%s at %s to"
827 " rel32=%s at %s\n",
828 hex_string (rel32), paddress (gdbarch, oldloc),
829 hex_string (newrel), paddress (gdbarch, *to));
830
831 /* Write the adjusted jump into its displaced location. */
832 append_insns (to, 5, insn);
833 return;
834 }
835
836 /* Adjust jumps with 32-bit relative addresses. Calls are already
837 handled above. */
838 if (insn[0] == 0xe9)
839 offset = 1;
840 /* Adjust conditional jumps. */
841 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
842 offset = 2;
843
844 if (offset)
845 {
846 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
847 newrel = (oldloc - *to) + rel32;
848 store_signed_integer (insn + offset, 4, byte_order, newrel);
849 if (debug_displaced)
850 fprintf_unfiltered (gdb_stdlog,
851 "Adjusted insn rel32=%s at %s to"
852 " rel32=%s at %s\n",
853 hex_string (rel32), paddress (gdbarch, oldloc),
854 hex_string (newrel), paddress (gdbarch, *to));
855 }
856
857 /* Write the adjusted instructions into their displaced
858 location. */
859 append_insns (to, insn_length, buf);
860 }
861
862 \f
863 #ifdef I386_REGNO_TO_SYMMETRY
864 #error "The Sequent Symmetry is no longer supported."
865 #endif
866
867 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
868 and %esp "belong" to the calling function. Therefore these
869 registers should be saved if they're going to be modified. */
870
871 /* The maximum number of saved registers. This should include all
872 registers mentioned above, and %eip. */
873 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
874
875 struct i386_frame_cache
876 {
877 /* Base address. */
878 CORE_ADDR base;
879 int base_p;
880 LONGEST sp_offset;
881 CORE_ADDR pc;
882
883 /* Saved registers. */
884 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
885 CORE_ADDR saved_sp;
886 int saved_sp_reg;
887 int pc_in_eax;
888
889 /* Stack space reserved for local variables. */
890 long locals;
891 };
892
893 /* Allocate and initialize a frame cache. */
894
895 static struct i386_frame_cache *
896 i386_alloc_frame_cache (void)
897 {
898 struct i386_frame_cache *cache;
899 int i;
900
901 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
902
903 /* Base address. */
904 cache->base_p = 0;
905 cache->base = 0;
906 cache->sp_offset = -4;
907 cache->pc = 0;
908
909 /* Saved registers. We initialize these to -1 since zero is a valid
910 offset (that's where %ebp is supposed to be stored). */
911 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
912 cache->saved_regs[i] = -1;
913 cache->saved_sp = 0;
914 cache->saved_sp_reg = -1;
915 cache->pc_in_eax = 0;
916
917 /* Frameless until proven otherwise. */
918 cache->locals = -1;
919
920 return cache;
921 }
922
923 /* If the instruction at PC is a jump, return the address of its
924 target. Otherwise, return PC. */
925
926 static CORE_ADDR
927 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
928 {
929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
930 gdb_byte op;
931 long delta = 0;
932 int data16 = 0;
933
934 if (target_read_code (pc, &op, 1))
935 return pc;
936
937 if (op == 0x66)
938 {
939 data16 = 1;
940
941 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
942 }
943
944 switch (op)
945 {
946 case 0xe9:
947 /* Relative jump: if data16 == 0, disp32, else disp16. */
948 if (data16)
949 {
950 delta = read_memory_integer (pc + 2, 2, byte_order);
951
952 /* Include the size of the jmp instruction (including the
953 0x66 prefix). */
954 delta += 4;
955 }
956 else
957 {
958 delta = read_memory_integer (pc + 1, 4, byte_order);
959
960 /* Include the size of the jmp instruction. */
961 delta += 5;
962 }
963 break;
964 case 0xeb:
965 /* Relative jump, disp8 (ignore data16). */
966 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
967
968 delta += data16 + 2;
969 break;
970 }
971
972 return pc + delta;
973 }
974
975 /* Check whether PC points at a prologue for a function returning a
976 structure or union. If so, it updates CACHE and returns the
977 address of the first instruction after the code sequence that
978 removes the "hidden" argument from the stack or CURRENT_PC,
979 whichever is smaller. Otherwise, return PC. */
980
981 static CORE_ADDR
982 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
983 struct i386_frame_cache *cache)
984 {
985 /* Functions that return a structure or union start with:
986
987 popl %eax 0x58
988 xchgl %eax, (%esp) 0x87 0x04 0x24
989 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
990
991 (the System V compiler puts out the second `xchg' instruction,
992 and the assembler doesn't try to optimize it, so the 'sib' form
993 gets generated). This sequence is used to get the address of the
994 return buffer for a function that returns a structure. */
995 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
996 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
997 gdb_byte buf[4];
998 gdb_byte op;
999
1000 if (current_pc <= pc)
1001 return pc;
1002
1003 if (target_read_code (pc, &op, 1))
1004 return pc;
1005
1006 if (op != 0x58) /* popl %eax */
1007 return pc;
1008
1009 if (target_read_code (pc + 1, buf, 4))
1010 return pc;
1011
1012 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1013 return pc;
1014
1015 if (current_pc == pc)
1016 {
1017 cache->sp_offset += 4;
1018 return current_pc;
1019 }
1020
1021 if (current_pc == pc + 1)
1022 {
1023 cache->pc_in_eax = 1;
1024 return current_pc;
1025 }
1026
1027 if (buf[1] == proto1[1])
1028 return pc + 4;
1029 else
1030 return pc + 5;
1031 }
1032
1033 static CORE_ADDR
1034 i386_skip_probe (CORE_ADDR pc)
1035 {
1036 /* A function may start with
1037
1038 pushl constant
1039 call _probe
1040 addl $4, %esp
1041
1042 followed by
1043
1044 pushl %ebp
1045
1046 etc. */
1047 gdb_byte buf[8];
1048 gdb_byte op;
1049
1050 if (target_read_code (pc, &op, 1))
1051 return pc;
1052
1053 if (op == 0x68 || op == 0x6a)
1054 {
1055 int delta;
1056
1057 /* Skip past the `pushl' instruction; it has either a one-byte or a
1058 four-byte operand, depending on the opcode. */
1059 if (op == 0x68)
1060 delta = 5;
1061 else
1062 delta = 2;
1063
1064 /* Read the following 8 bytes, which should be `call _probe' (6
1065 bytes) followed by `addl $4,%esp' (2 bytes). */
1066 read_memory (pc + delta, buf, sizeof (buf));
1067 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
1068 pc += delta + sizeof (buf);
1069 }
1070
1071 return pc;
1072 }
1073
1074 /* GCC 4.1 and later, can put code in the prologue to realign the
1075 stack pointer. Check whether PC points to such code, and update
1076 CACHE accordingly. Return the first instruction after the code
1077 sequence or CURRENT_PC, whichever is smaller. If we don't
1078 recognize the code, return PC. */
1079
1080 static CORE_ADDR
1081 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1082 struct i386_frame_cache *cache)
1083 {
1084 /* There are 2 code sequences to re-align stack before the frame
1085 gets set up:
1086
1087 1. Use a caller-saved saved register:
1088
1089 leal 4(%esp), %reg
1090 andl $-XXX, %esp
1091 pushl -4(%reg)
1092
1093 2. Use a callee-saved saved register:
1094
1095 pushl %reg
1096 leal 8(%esp), %reg
1097 andl $-XXX, %esp
1098 pushl -4(%reg)
1099
1100 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1101
1102 0x83 0xe4 0xf0 andl $-16, %esp
1103 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1104 */
1105
1106 gdb_byte buf[14];
1107 int reg;
1108 int offset, offset_and;
1109 static int regnums[8] = {
1110 I386_EAX_REGNUM, /* %eax */
1111 I386_ECX_REGNUM, /* %ecx */
1112 I386_EDX_REGNUM, /* %edx */
1113 I386_EBX_REGNUM, /* %ebx */
1114 I386_ESP_REGNUM, /* %esp */
1115 I386_EBP_REGNUM, /* %ebp */
1116 I386_ESI_REGNUM, /* %esi */
1117 I386_EDI_REGNUM /* %edi */
1118 };
1119
1120 if (target_read_code (pc, buf, sizeof buf))
1121 return pc;
1122
1123 /* Check caller-saved saved register. The first instruction has
1124 to be "leal 4(%esp), %reg". */
1125 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1126 {
1127 /* MOD must be binary 10 and R/M must be binary 100. */
1128 if ((buf[1] & 0xc7) != 0x44)
1129 return pc;
1130
1131 /* REG has register number. */
1132 reg = (buf[1] >> 3) & 7;
1133 offset = 4;
1134 }
1135 else
1136 {
1137 /* Check callee-saved saved register. The first instruction
1138 has to be "pushl %reg". */
1139 if ((buf[0] & 0xf8) != 0x50)
1140 return pc;
1141
1142 /* Get register. */
1143 reg = buf[0] & 0x7;
1144
1145 /* The next instruction has to be "leal 8(%esp), %reg". */
1146 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1147 return pc;
1148
1149 /* MOD must be binary 10 and R/M must be binary 100. */
1150 if ((buf[2] & 0xc7) != 0x44)
1151 return pc;
1152
1153 /* REG has register number. Registers in pushl and leal have to
1154 be the same. */
1155 if (reg != ((buf[2] >> 3) & 7))
1156 return pc;
1157
1158 offset = 5;
1159 }
1160
1161 /* Rigister can't be %esp nor %ebp. */
1162 if (reg == 4 || reg == 5)
1163 return pc;
1164
1165 /* The next instruction has to be "andl $-XXX, %esp". */
1166 if (buf[offset + 1] != 0xe4
1167 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1168 return pc;
1169
1170 offset_and = offset;
1171 offset += buf[offset] == 0x81 ? 6 : 3;
1172
1173 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1174 0xfc. REG must be binary 110 and MOD must be binary 01. */
1175 if (buf[offset] != 0xff
1176 || buf[offset + 2] != 0xfc
1177 || (buf[offset + 1] & 0xf8) != 0x70)
1178 return pc;
1179
1180 /* R/M has register. Registers in leal and pushl have to be the
1181 same. */
1182 if (reg != (buf[offset + 1] & 7))
1183 return pc;
1184
1185 if (current_pc > pc + offset_and)
1186 cache->saved_sp_reg = regnums[reg];
1187
1188 return min (pc + offset + 3, current_pc);
1189 }
1190
1191 /* Maximum instruction length we need to handle. */
1192 #define I386_MAX_MATCHED_INSN_LEN 6
1193
1194 /* Instruction description. */
1195 struct i386_insn
1196 {
1197 size_t len;
1198 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1199 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1200 };
1201
1202 /* Return whether instruction at PC matches PATTERN. */
1203
1204 static int
1205 i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
1206 {
1207 gdb_byte op;
1208
1209 if (target_read_code (pc, &op, 1))
1210 return 0;
1211
1212 if ((op & pattern.mask[0]) == pattern.insn[0])
1213 {
1214 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1215 int insn_matched = 1;
1216 size_t i;
1217
1218 gdb_assert (pattern.len > 1);
1219 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
1220
1221 if (target_read_code (pc + 1, buf, pattern.len - 1))
1222 return 0;
1223
1224 for (i = 1; i < pattern.len; i++)
1225 {
1226 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1227 insn_matched = 0;
1228 }
1229 return insn_matched;
1230 }
1231 return 0;
1232 }
1233
1234 /* Search for the instruction at PC in the list INSN_PATTERNS. Return
1235 the first instruction description that matches. Otherwise, return
1236 NULL. */
1237
1238 static struct i386_insn *
1239 i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1240 {
1241 struct i386_insn *pattern;
1242
1243 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1244 {
1245 if (i386_match_pattern (pc, *pattern))
1246 return pattern;
1247 }
1248
1249 return NULL;
1250 }
1251
1252 /* Return whether PC points inside a sequence of instructions that
1253 matches INSN_PATTERNS. */
1254
1255 static int
1256 i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1257 {
1258 CORE_ADDR current_pc;
1259 int ix, i;
1260 struct i386_insn *insn;
1261
1262 insn = i386_match_insn (pc, insn_patterns);
1263 if (insn == NULL)
1264 return 0;
1265
1266 current_pc = pc;
1267 ix = insn - insn_patterns;
1268 for (i = ix - 1; i >= 0; i--)
1269 {
1270 current_pc -= insn_patterns[i].len;
1271
1272 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1273 return 0;
1274 }
1275
1276 current_pc = pc + insn->len;
1277 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1278 {
1279 if (!i386_match_pattern (current_pc, *insn))
1280 return 0;
1281
1282 current_pc += insn->len;
1283 }
1284
1285 return 1;
1286 }
1287
1288 /* Some special instructions that might be migrated by GCC into the
1289 part of the prologue that sets up the new stack frame. Because the
1290 stack frame hasn't been setup yet, no registers have been saved
1291 yet, and only the scratch registers %eax, %ecx and %edx can be
1292 touched. */
1293
1294 struct i386_insn i386_frame_setup_skip_insns[] =
1295 {
1296 /* Check for `movb imm8, r' and `movl imm32, r'.
1297
1298 ??? Should we handle 16-bit operand-sizes here? */
1299
1300 /* `movb imm8, %al' and `movb imm8, %ah' */
1301 /* `movb imm8, %cl' and `movb imm8, %ch' */
1302 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1303 /* `movb imm8, %dl' and `movb imm8, %dh' */
1304 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1306 { 5, { 0xb8 }, { 0xfe } },
1307 /* `movl imm32, %edx' */
1308 { 5, { 0xba }, { 0xff } },
1309
1310 /* Check for `mov imm32, r32'. Note that there is an alternative
1311 encoding for `mov m32, %eax'.
1312
1313 ??? Should we handle SIB adressing here?
1314 ??? Should we handle 16-bit operand-sizes here? */
1315
1316 /* `movl m32, %eax' */
1317 { 5, { 0xa1 }, { 0xff } },
1318 /* `movl m32, %eax' and `mov; m32, %ecx' */
1319 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1320 /* `movl m32, %edx' */
1321 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1322
1323 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1324 Because of the symmetry, there are actually two ways to encode
1325 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1326 opcode bytes 0x31 and 0x33 for `xorl'. */
1327
1328 /* `subl %eax, %eax' */
1329 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1330 /* `subl %ecx, %ecx' */
1331 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1332 /* `subl %edx, %edx' */
1333 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1334 /* `xorl %eax, %eax' */
1335 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1336 /* `xorl %ecx, %ecx' */
1337 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1338 /* `xorl %edx, %edx' */
1339 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1340 { 0 }
1341 };
1342
1343
1344 /* Check whether PC points to a no-op instruction. */
1345 static CORE_ADDR
1346 i386_skip_noop (CORE_ADDR pc)
1347 {
1348 gdb_byte op;
1349 int check = 1;
1350
1351 if (target_read_code (pc, &op, 1))
1352 return pc;
1353
1354 while (check)
1355 {
1356 check = 0;
1357 /* Ignore `nop' instruction. */
1358 if (op == 0x90)
1359 {
1360 pc += 1;
1361 if (target_read_code (pc, &op, 1))
1362 return pc;
1363 check = 1;
1364 }
1365 /* Ignore no-op instruction `mov %edi, %edi'.
1366 Microsoft system dlls often start with
1367 a `mov %edi,%edi' instruction.
1368 The 5 bytes before the function start are
1369 filled with `nop' instructions.
1370 This pattern can be used for hot-patching:
1371 The `mov %edi, %edi' instruction can be replaced by a
1372 near jump to the location of the 5 `nop' instructions
1373 which can be replaced by a 32-bit jump to anywhere
1374 in the 32-bit address space. */
1375
1376 else if (op == 0x8b)
1377 {
1378 if (target_read_code (pc + 1, &op, 1))
1379 return pc;
1380
1381 if (op == 0xff)
1382 {
1383 pc += 2;
1384 if (target_read_code (pc, &op, 1))
1385 return pc;
1386
1387 check = 1;
1388 }
1389 }
1390 }
1391 return pc;
1392 }
1393
1394 /* Check whether PC points at a code that sets up a new stack frame.
1395 If so, it updates CACHE and returns the address of the first
1396 instruction after the sequence that sets up the frame or LIMIT,
1397 whichever is smaller. If we don't recognize the code, return PC. */
1398
1399 static CORE_ADDR
1400 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1401 CORE_ADDR pc, CORE_ADDR limit,
1402 struct i386_frame_cache *cache)
1403 {
1404 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1405 struct i386_insn *insn;
1406 gdb_byte op;
1407 int skip = 0;
1408
1409 if (limit <= pc)
1410 return limit;
1411
1412 if (target_read_code (pc, &op, 1))
1413 return pc;
1414
1415 if (op == 0x55) /* pushl %ebp */
1416 {
1417 /* Take into account that we've executed the `pushl %ebp' that
1418 starts this instruction sequence. */
1419 cache->saved_regs[I386_EBP_REGNUM] = 0;
1420 cache->sp_offset += 4;
1421 pc++;
1422
1423 /* If that's all, return now. */
1424 if (limit <= pc)
1425 return limit;
1426
1427 /* Check for some special instructions that might be migrated by
1428 GCC into the prologue and skip them. At this point in the
1429 prologue, code should only touch the scratch registers %eax,
1430 %ecx and %edx, so while the number of posibilities is sheer,
1431 it is limited.
1432
1433 Make sure we only skip these instructions if we later see the
1434 `movl %esp, %ebp' that actually sets up the frame. */
1435 while (pc + skip < limit)
1436 {
1437 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1438 if (insn == NULL)
1439 break;
1440
1441 skip += insn->len;
1442 }
1443
1444 /* If that's all, return now. */
1445 if (limit <= pc + skip)
1446 return limit;
1447
1448 if (target_read_code (pc + skip, &op, 1))
1449 return pc + skip;
1450
1451 /* The i386 prologue looks like
1452
1453 push %ebp
1454 mov %esp,%ebp
1455 sub $0x10,%esp
1456
1457 and a different prologue can be generated for atom.
1458
1459 push %ebp
1460 lea (%esp),%ebp
1461 lea -0x10(%esp),%esp
1462
1463 We handle both of them here. */
1464
1465 switch (op)
1466 {
1467 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1468 case 0x8b:
1469 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1470 != 0xec)
1471 return pc;
1472 pc += (skip + 2);
1473 break;
1474 case 0x89:
1475 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
1476 != 0xe5)
1477 return pc;
1478 pc += (skip + 2);
1479 break;
1480 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
1481 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
1482 != 0x242c)
1483 return pc;
1484 pc += (skip + 3);
1485 break;
1486 default:
1487 return pc;
1488 }
1489
1490 /* OK, we actually have a frame. We just don't know how large
1491 it is yet. Set its size to zero. We'll adjust it if
1492 necessary. We also now commit to skipping the special
1493 instructions mentioned before. */
1494 cache->locals = 0;
1495
1496 /* If that's all, return now. */
1497 if (limit <= pc)
1498 return limit;
1499
1500 /* Check for stack adjustment
1501
1502 subl $XXX, %esp
1503 or
1504 lea -XXX(%esp),%esp
1505
1506 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1507 reg, so we don't have to worry about a data16 prefix. */
1508 if (target_read_code (pc, &op, 1))
1509 return pc;
1510 if (op == 0x83)
1511 {
1512 /* `subl' with 8-bit immediate. */
1513 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1514 /* Some instruction starting with 0x83 other than `subl'. */
1515 return pc;
1516
1517 /* `subl' with signed 8-bit immediate (though it wouldn't
1518 make sense to be negative). */
1519 cache->locals = read_code_integer (pc + 2, 1, byte_order);
1520 return pc + 3;
1521 }
1522 else if (op == 0x81)
1523 {
1524 /* Maybe it is `subl' with a 32-bit immediate. */
1525 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1526 /* Some instruction starting with 0x81 other than `subl'. */
1527 return pc;
1528
1529 /* It is `subl' with a 32-bit immediate. */
1530 cache->locals = read_code_integer (pc + 2, 4, byte_order);
1531 return pc + 6;
1532 }
1533 else if (op == 0x8d)
1534 {
1535 /* The ModR/M byte is 0x64. */
1536 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
1537 return pc;
1538 /* 'lea' with 8-bit displacement. */
1539 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
1540 return pc + 4;
1541 }
1542 else
1543 {
1544 /* Some instruction other than `subl' nor 'lea'. */
1545 return pc;
1546 }
1547 }
1548 else if (op == 0xc8) /* enter */
1549 {
1550 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
1551 return pc + 4;
1552 }
1553
1554 return pc;
1555 }
1556
1557 /* Check whether PC points at code that saves registers on the stack.
1558 If so, it updates CACHE and returns the address of the first
1559 instruction after the register saves or CURRENT_PC, whichever is
1560 smaller. Otherwise, return PC. */
1561
1562 static CORE_ADDR
1563 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1564 struct i386_frame_cache *cache)
1565 {
1566 CORE_ADDR offset = 0;
1567 gdb_byte op;
1568 int i;
1569
1570 if (cache->locals > 0)
1571 offset -= cache->locals;
1572 for (i = 0; i < 8 && pc < current_pc; i++)
1573 {
1574 if (target_read_code (pc, &op, 1))
1575 return pc;
1576 if (op < 0x50 || op > 0x57)
1577 break;
1578
1579 offset -= 4;
1580 cache->saved_regs[op - 0x50] = offset;
1581 cache->sp_offset += 4;
1582 pc++;
1583 }
1584
1585 return pc;
1586 }
1587
1588 /* Do a full analysis of the prologue at PC and update CACHE
1589 accordingly. Bail out early if CURRENT_PC is reached. Return the
1590 address where the analysis stopped.
1591
1592 We handle these cases:
1593
1594 The startup sequence can be at the start of the function, or the
1595 function can start with a branch to startup code at the end.
1596
1597 %ebp can be set up with either the 'enter' instruction, or "pushl
1598 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1599 once used in the System V compiler).
1600
1601 Local space is allocated just below the saved %ebp by either the
1602 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1603 16-bit unsigned argument for space to allocate, and the 'addl'
1604 instruction could have either a signed byte, or 32-bit immediate.
1605
1606 Next, the registers used by this function are pushed. With the
1607 System V compiler they will always be in the order: %edi, %esi,
1608 %ebx (and sometimes a harmless bug causes it to also save but not
1609 restore %eax); however, the code below is willing to see the pushes
1610 in any order, and will handle up to 8 of them.
1611
1612 If the setup sequence is at the end of the function, then the next
1613 instruction will be a branch back to the start. */
1614
1615 static CORE_ADDR
1616 i386_analyze_prologue (struct gdbarch *gdbarch,
1617 CORE_ADDR pc, CORE_ADDR current_pc,
1618 struct i386_frame_cache *cache)
1619 {
1620 pc = i386_skip_noop (pc);
1621 pc = i386_follow_jump (gdbarch, pc);
1622 pc = i386_analyze_struct_return (pc, current_pc, cache);
1623 pc = i386_skip_probe (pc);
1624 pc = i386_analyze_stack_align (pc, current_pc, cache);
1625 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1626 return i386_analyze_register_saves (pc, current_pc, cache);
1627 }
1628
1629 /* Return PC of first real instruction. */
1630
1631 static CORE_ADDR
1632 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1633 {
1634 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1635
1636 static gdb_byte pic_pat[6] =
1637 {
1638 0xe8, 0, 0, 0, 0, /* call 0x0 */
1639 0x5b, /* popl %ebx */
1640 };
1641 struct i386_frame_cache cache;
1642 CORE_ADDR pc;
1643 gdb_byte op;
1644 int i;
1645 CORE_ADDR func_addr;
1646
1647 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1648 {
1649 CORE_ADDR post_prologue_pc
1650 = skip_prologue_using_sal (gdbarch, func_addr);
1651 struct symtab *s = find_pc_symtab (func_addr);
1652
1653 /* Clang always emits a line note before the prologue and another
1654 one after. We trust clang to emit usable line notes. */
1655 if (post_prologue_pc
1656 && (s != NULL
1657 && s->producer != NULL
1658 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1659 return max (start_pc, post_prologue_pc);
1660 }
1661
1662 cache.locals = -1;
1663 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1664 if (cache.locals < 0)
1665 return start_pc;
1666
1667 /* Found valid frame setup. */
1668
1669 /* The native cc on SVR4 in -K PIC mode inserts the following code
1670 to get the address of the global offset table (GOT) into register
1671 %ebx:
1672
1673 call 0x0
1674 popl %ebx
1675 movl %ebx,x(%ebp) (optional)
1676 addl y,%ebx
1677
1678 This code is with the rest of the prologue (at the end of the
1679 function), so we have to skip it to get to the first real
1680 instruction at the start of the function. */
1681
1682 for (i = 0; i < 6; i++)
1683 {
1684 if (target_read_code (pc + i, &op, 1))
1685 return pc;
1686
1687 if (pic_pat[i] != op)
1688 break;
1689 }
1690 if (i == 6)
1691 {
1692 int delta = 6;
1693
1694 if (target_read_code (pc + delta, &op, 1))
1695 return pc;
1696
1697 if (op == 0x89) /* movl %ebx, x(%ebp) */
1698 {
1699 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
1700
1701 if (op == 0x5d) /* One byte offset from %ebp. */
1702 delta += 3;
1703 else if (op == 0x9d) /* Four byte offset from %ebp. */
1704 delta += 6;
1705 else /* Unexpected instruction. */
1706 delta = 0;
1707
1708 if (target_read_code (pc + delta, &op, 1))
1709 return pc;
1710 }
1711
1712 /* addl y,%ebx */
1713 if (delta > 0 && op == 0x81
1714 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
1715 == 0xc3)
1716 {
1717 pc += delta + 6;
1718 }
1719 }
1720
1721 /* If the function starts with a branch (to startup code at the end)
1722 the last instruction should bring us back to the first
1723 instruction of the real code. */
1724 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1725 pc = i386_follow_jump (gdbarch, pc);
1726
1727 return pc;
1728 }
1729
1730 /* Check that the code pointed to by PC corresponds to a call to
1731 __main, skip it if so. Return PC otherwise. */
1732
1733 CORE_ADDR
1734 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1735 {
1736 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1737 gdb_byte op;
1738
1739 if (target_read_code (pc, &op, 1))
1740 return pc;
1741 if (op == 0xe8)
1742 {
1743 gdb_byte buf[4];
1744
1745 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
1746 {
1747 /* Make sure address is computed correctly as a 32bit
1748 integer even if CORE_ADDR is 64 bit wide. */
1749 struct bound_minimal_symbol s;
1750 CORE_ADDR call_dest;
1751
1752 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1753 call_dest = call_dest & 0xffffffffU;
1754 s = lookup_minimal_symbol_by_pc (call_dest);
1755 if (s.minsym != NULL
1756 && SYMBOL_LINKAGE_NAME (s.minsym) != NULL
1757 && strcmp (SYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
1758 pc += 5;
1759 }
1760 }
1761
1762 return pc;
1763 }
1764
1765 /* This function is 64-bit safe. */
1766
1767 static CORE_ADDR
1768 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1769 {
1770 gdb_byte buf[8];
1771
1772 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1773 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1774 }
1775 \f
1776
1777 /* Normal frames. */
1778
1779 static void
1780 i386_frame_cache_1 (struct frame_info *this_frame,
1781 struct i386_frame_cache *cache)
1782 {
1783 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1784 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1785 gdb_byte buf[4];
1786 int i;
1787
1788 cache->pc = get_frame_func (this_frame);
1789
1790 /* In principle, for normal frames, %ebp holds the frame pointer,
1791 which holds the base address for the current stack frame.
1792 However, for functions that don't need it, the frame pointer is
1793 optional. For these "frameless" functions the frame pointer is
1794 actually the frame pointer of the calling frame. Signal
1795 trampolines are just a special case of a "frameless" function.
1796 They (usually) share their frame pointer with the frame that was
1797 in progress when the signal occurred. */
1798
1799 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1800 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1801 if (cache->base == 0)
1802 {
1803 cache->base_p = 1;
1804 return;
1805 }
1806
1807 /* For normal frames, %eip is stored at 4(%ebp). */
1808 cache->saved_regs[I386_EIP_REGNUM] = 4;
1809
1810 if (cache->pc != 0)
1811 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1812 cache);
1813
1814 if (cache->locals < 0)
1815 {
1816 /* We didn't find a valid frame, which means that CACHE->base
1817 currently holds the frame pointer for our calling frame. If
1818 we're at the start of a function, or somewhere half-way its
1819 prologue, the function's frame probably hasn't been fully
1820 setup yet. Try to reconstruct the base address for the stack
1821 frame by looking at the stack pointer. For truly "frameless"
1822 functions this might work too. */
1823
1824 if (cache->saved_sp_reg != -1)
1825 {
1826 /* Saved stack pointer has been saved. */
1827 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1828 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1829
1830 /* We're halfway aligning the stack. */
1831 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1832 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1833
1834 /* This will be added back below. */
1835 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1836 }
1837 else if (cache->pc != 0
1838 || target_read_code (get_frame_pc (this_frame), buf, 1))
1839 {
1840 /* We're in a known function, but did not find a frame
1841 setup. Assume that the function does not use %ebp.
1842 Alternatively, we may have jumped to an invalid
1843 address; in that case there is definitely no new
1844 frame in %ebp. */
1845 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1846 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1847 + cache->sp_offset;
1848 }
1849 else
1850 /* We're in an unknown function. We could not find the start
1851 of the function to analyze the prologue; our best option is
1852 to assume a typical frame layout with the caller's %ebp
1853 saved. */
1854 cache->saved_regs[I386_EBP_REGNUM] = 0;
1855 }
1856
1857 if (cache->saved_sp_reg != -1)
1858 {
1859 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1860 register may be unavailable). */
1861 if (cache->saved_sp == 0
1862 && deprecated_frame_register_read (this_frame,
1863 cache->saved_sp_reg, buf))
1864 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1865 }
1866 /* Now that we have the base address for the stack frame we can
1867 calculate the value of %esp in the calling frame. */
1868 else if (cache->saved_sp == 0)
1869 cache->saved_sp = cache->base + 8;
1870
1871 /* Adjust all the saved registers such that they contain addresses
1872 instead of offsets. */
1873 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1874 if (cache->saved_regs[i] != -1)
1875 cache->saved_regs[i] += cache->base;
1876
1877 cache->base_p = 1;
1878 }
1879
1880 static struct i386_frame_cache *
1881 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1882 {
1883 volatile struct gdb_exception ex;
1884 struct i386_frame_cache *cache;
1885
1886 if (*this_cache)
1887 return *this_cache;
1888
1889 cache = i386_alloc_frame_cache ();
1890 *this_cache = cache;
1891
1892 TRY_CATCH (ex, RETURN_MASK_ERROR)
1893 {
1894 i386_frame_cache_1 (this_frame, cache);
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static void
1903 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1904 struct frame_id *this_id)
1905 {
1906 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1907
1908 if (!cache->base_p)
1909 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
1910 else if (cache->base == 0)
1911 {
1912 /* This marks the outermost frame. */
1913 }
1914 else
1915 {
1916 /* See the end of i386_push_dummy_call. */
1917 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1918 }
1919 }
1920
1921 static enum unwind_stop_reason
1922 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1923 void **this_cache)
1924 {
1925 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1926
1927 if (!cache->base_p)
1928 return UNWIND_UNAVAILABLE;
1929
1930 /* This marks the outermost frame. */
1931 if (cache->base == 0)
1932 return UNWIND_OUTERMOST;
1933
1934 return UNWIND_NO_REASON;
1935 }
1936
1937 static struct value *
1938 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1939 int regnum)
1940 {
1941 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1942
1943 gdb_assert (regnum >= 0);
1944
1945 /* The System V ABI says that:
1946
1947 "The flags register contains the system flags, such as the
1948 direction flag and the carry flag. The direction flag must be
1949 set to the forward (that is, zero) direction before entry and
1950 upon exit from a function. Other user flags have no specified
1951 role in the standard calling sequence and are not preserved."
1952
1953 To guarantee the "upon exit" part of that statement we fake a
1954 saved flags register that has its direction flag cleared.
1955
1956 Note that GCC doesn't seem to rely on the fact that the direction
1957 flag is cleared after a function return; it always explicitly
1958 clears the flag before operations where it matters.
1959
1960 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1961 right thing to do. The way we fake the flags register here makes
1962 it impossible to change it. */
1963
1964 if (regnum == I386_EFLAGS_REGNUM)
1965 {
1966 ULONGEST val;
1967
1968 val = get_frame_register_unsigned (this_frame, regnum);
1969 val &= ~(1 << 10);
1970 return frame_unwind_got_constant (this_frame, regnum, val);
1971 }
1972
1973 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1974 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1975
1976 if (regnum == I386_ESP_REGNUM
1977 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
1978 {
1979 /* If the SP has been saved, but we don't know where, then this
1980 means that SAVED_SP_REG register was found unavailable back
1981 when we built the cache. */
1982 if (cache->saved_sp == 0)
1983 return frame_unwind_got_register (this_frame, regnum,
1984 cache->saved_sp_reg);
1985 else
1986 return frame_unwind_got_constant (this_frame, regnum,
1987 cache->saved_sp);
1988 }
1989
1990 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1991 return frame_unwind_got_memory (this_frame, regnum,
1992 cache->saved_regs[regnum]);
1993
1994 return frame_unwind_got_register (this_frame, regnum, regnum);
1995 }
1996
1997 static const struct frame_unwind i386_frame_unwind =
1998 {
1999 NORMAL_FRAME,
2000 i386_frame_unwind_stop_reason,
2001 i386_frame_this_id,
2002 i386_frame_prev_register,
2003 NULL,
2004 default_frame_sniffer
2005 };
2006
2007 /* Normal frames, but in a function epilogue. */
2008
2009 /* The epilogue is defined here as the 'ret' instruction, which will
2010 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2011 the function's stack frame. */
2012
2013 static int
2014 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2015 {
2016 gdb_byte insn;
2017 struct symtab *symtab;
2018
2019 symtab = find_pc_symtab (pc);
2020 if (symtab && symtab->epilogue_unwind_valid)
2021 return 0;
2022
2023 if (target_read_memory (pc, &insn, 1))
2024 return 0; /* Can't read memory at pc. */
2025
2026 if (insn != 0xc3) /* 'ret' instruction. */
2027 return 0;
2028
2029 return 1;
2030 }
2031
2032 static int
2033 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2034 struct frame_info *this_frame,
2035 void **this_prologue_cache)
2036 {
2037 if (frame_relative_level (this_frame) == 0)
2038 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2039 get_frame_pc (this_frame));
2040 else
2041 return 0;
2042 }
2043
2044 static struct i386_frame_cache *
2045 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2046 {
2047 volatile struct gdb_exception ex;
2048 struct i386_frame_cache *cache;
2049 CORE_ADDR sp;
2050
2051 if (*this_cache)
2052 return *this_cache;
2053
2054 cache = i386_alloc_frame_cache ();
2055 *this_cache = cache;
2056
2057 TRY_CATCH (ex, RETURN_MASK_ERROR)
2058 {
2059 cache->pc = get_frame_func (this_frame);
2060
2061 /* At this point the stack looks as if we just entered the
2062 function, with the return address at the top of the
2063 stack. */
2064 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2065 cache->base = sp + cache->sp_offset;
2066 cache->saved_sp = cache->base + 8;
2067 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
2068
2069 cache->base_p = 1;
2070 }
2071 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2072 throw_exception (ex);
2073
2074 return cache;
2075 }
2076
2077 static enum unwind_stop_reason
2078 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2079 void **this_cache)
2080 {
2081 struct i386_frame_cache *cache =
2082 i386_epilogue_frame_cache (this_frame, this_cache);
2083
2084 if (!cache->base_p)
2085 return UNWIND_UNAVAILABLE;
2086
2087 return UNWIND_NO_REASON;
2088 }
2089
2090 static void
2091 i386_epilogue_frame_this_id (struct frame_info *this_frame,
2092 void **this_cache,
2093 struct frame_id *this_id)
2094 {
2095 struct i386_frame_cache *cache =
2096 i386_epilogue_frame_cache (this_frame, this_cache);
2097
2098 if (!cache->base_p)
2099 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2100 else
2101 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2102 }
2103
2104 static struct value *
2105 i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2106 void **this_cache, int regnum)
2107 {
2108 /* Make sure we've initialized the cache. */
2109 i386_epilogue_frame_cache (this_frame, this_cache);
2110
2111 return i386_frame_prev_register (this_frame, this_cache, regnum);
2112 }
2113
2114 static const struct frame_unwind i386_epilogue_frame_unwind =
2115 {
2116 NORMAL_FRAME,
2117 i386_epilogue_frame_unwind_stop_reason,
2118 i386_epilogue_frame_this_id,
2119 i386_epilogue_frame_prev_register,
2120 NULL,
2121 i386_epilogue_frame_sniffer
2122 };
2123 \f
2124
2125 /* Stack-based trampolines. */
2126
2127 /* These trampolines are used on cross x86 targets, when taking the
2128 address of a nested function. When executing these trampolines,
2129 no stack frame is set up, so we are in a similar situation as in
2130 epilogues and i386_epilogue_frame_this_id can be re-used. */
2131
2132 /* Static chain passed in register. */
2133
2134 struct i386_insn i386_tramp_chain_in_reg_insns[] =
2135 {
2136 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2137 { 5, { 0xb8 }, { 0xfe } },
2138
2139 /* `jmp imm32' */
2140 { 5, { 0xe9 }, { 0xff } },
2141
2142 {0}
2143 };
2144
2145 /* Static chain passed on stack (when regparm=3). */
2146
2147 struct i386_insn i386_tramp_chain_on_stack_insns[] =
2148 {
2149 /* `push imm32' */
2150 { 5, { 0x68 }, { 0xff } },
2151
2152 /* `jmp imm32' */
2153 { 5, { 0xe9 }, { 0xff } },
2154
2155 {0}
2156 };
2157
2158 /* Return whether PC points inside a stack trampoline. */
2159
2160 static int
2161 i386_in_stack_tramp_p (CORE_ADDR pc)
2162 {
2163 gdb_byte insn;
2164 const char *name;
2165
2166 /* A stack trampoline is detected if no name is associated
2167 to the current pc and if it points inside a trampoline
2168 sequence. */
2169
2170 find_pc_partial_function (pc, &name, NULL, NULL);
2171 if (name)
2172 return 0;
2173
2174 if (target_read_memory (pc, &insn, 1))
2175 return 0;
2176
2177 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2178 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2179 return 0;
2180
2181 return 1;
2182 }
2183
2184 static int
2185 i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
2186 struct frame_info *this_frame,
2187 void **this_cache)
2188 {
2189 if (frame_relative_level (this_frame) == 0)
2190 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
2191 else
2192 return 0;
2193 }
2194
2195 static const struct frame_unwind i386_stack_tramp_frame_unwind =
2196 {
2197 NORMAL_FRAME,
2198 i386_epilogue_frame_unwind_stop_reason,
2199 i386_epilogue_frame_this_id,
2200 i386_epilogue_frame_prev_register,
2201 NULL,
2202 i386_stack_tramp_frame_sniffer
2203 };
2204 \f
2205 /* Generate a bytecode expression to get the value of the saved PC. */
2206
2207 static void
2208 i386_gen_return_address (struct gdbarch *gdbarch,
2209 struct agent_expr *ax, struct axs_value *value,
2210 CORE_ADDR scope)
2211 {
2212 /* The following sequence assumes the traditional use of the base
2213 register. */
2214 ax_reg (ax, I386_EBP_REGNUM);
2215 ax_const_l (ax, 4);
2216 ax_simple (ax, aop_add);
2217 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2218 value->kind = axs_lvalue_memory;
2219 }
2220 \f
2221
2222 /* Signal trampolines. */
2223
2224 static struct i386_frame_cache *
2225 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2226 {
2227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2230 volatile struct gdb_exception ex;
2231 struct i386_frame_cache *cache;
2232 CORE_ADDR addr;
2233 gdb_byte buf[4];
2234
2235 if (*this_cache)
2236 return *this_cache;
2237
2238 cache = i386_alloc_frame_cache ();
2239
2240 TRY_CATCH (ex, RETURN_MASK_ERROR)
2241 {
2242 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2243 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
2244
2245 addr = tdep->sigcontext_addr (this_frame);
2246 if (tdep->sc_reg_offset)
2247 {
2248 int i;
2249
2250 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2251
2252 for (i = 0; i < tdep->sc_num_regs; i++)
2253 if (tdep->sc_reg_offset[i] != -1)
2254 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2255 }
2256 else
2257 {
2258 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2259 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2260 }
2261
2262 cache->base_p = 1;
2263 }
2264 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2265 throw_exception (ex);
2266
2267 *this_cache = cache;
2268 return cache;
2269 }
2270
2271 static enum unwind_stop_reason
2272 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2273 void **this_cache)
2274 {
2275 struct i386_frame_cache *cache =
2276 i386_sigtramp_frame_cache (this_frame, this_cache);
2277
2278 if (!cache->base_p)
2279 return UNWIND_UNAVAILABLE;
2280
2281 return UNWIND_NO_REASON;
2282 }
2283
2284 static void
2285 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2286 struct frame_id *this_id)
2287 {
2288 struct i386_frame_cache *cache =
2289 i386_sigtramp_frame_cache (this_frame, this_cache);
2290
2291 if (!cache->base_p)
2292 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2293 else
2294 {
2295 /* See the end of i386_push_dummy_call. */
2296 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2297 }
2298 }
2299
2300 static struct value *
2301 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2302 void **this_cache, int regnum)
2303 {
2304 /* Make sure we've initialized the cache. */
2305 i386_sigtramp_frame_cache (this_frame, this_cache);
2306
2307 return i386_frame_prev_register (this_frame, this_cache, regnum);
2308 }
2309
2310 static int
2311 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2312 struct frame_info *this_frame,
2313 void **this_prologue_cache)
2314 {
2315 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2316
2317 /* We shouldn't even bother if we don't have a sigcontext_addr
2318 handler. */
2319 if (tdep->sigcontext_addr == NULL)
2320 return 0;
2321
2322 if (tdep->sigtramp_p != NULL)
2323 {
2324 if (tdep->sigtramp_p (this_frame))
2325 return 1;
2326 }
2327
2328 if (tdep->sigtramp_start != 0)
2329 {
2330 CORE_ADDR pc = get_frame_pc (this_frame);
2331
2332 gdb_assert (tdep->sigtramp_end != 0);
2333 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 static const struct frame_unwind i386_sigtramp_frame_unwind =
2341 {
2342 SIGTRAMP_FRAME,
2343 i386_sigtramp_frame_unwind_stop_reason,
2344 i386_sigtramp_frame_this_id,
2345 i386_sigtramp_frame_prev_register,
2346 NULL,
2347 i386_sigtramp_frame_sniffer
2348 };
2349 \f
2350
2351 static CORE_ADDR
2352 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2353 {
2354 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2355
2356 return cache->base;
2357 }
2358
2359 static const struct frame_base i386_frame_base =
2360 {
2361 &i386_frame_unwind,
2362 i386_frame_base_address,
2363 i386_frame_base_address,
2364 i386_frame_base_address
2365 };
2366
2367 static struct frame_id
2368 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2369 {
2370 CORE_ADDR fp;
2371
2372 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2373
2374 /* See the end of i386_push_dummy_call. */
2375 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2376 }
2377
2378 /* _Decimal128 function return values need 16-byte alignment on the
2379 stack. */
2380
2381 static CORE_ADDR
2382 i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2383 {
2384 return sp & -(CORE_ADDR)16;
2385 }
2386 \f
2387
2388 /* Figure out where the longjmp will land. Slurp the args out of the
2389 stack. We expect the first arg to be a pointer to the jmp_buf
2390 structure from which we extract the address that we will land at.
2391 This address is copied into PC. This routine returns non-zero on
2392 success. */
2393
2394 static int
2395 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2396 {
2397 gdb_byte buf[4];
2398 CORE_ADDR sp, jb_addr;
2399 struct gdbarch *gdbarch = get_frame_arch (frame);
2400 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2401 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2402
2403 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2404 longjmp will land. */
2405 if (jb_pc_offset == -1)
2406 return 0;
2407
2408 get_frame_register (frame, I386_ESP_REGNUM, buf);
2409 sp = extract_unsigned_integer (buf, 4, byte_order);
2410 if (target_read_memory (sp + 4, buf, 4))
2411 return 0;
2412
2413 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2414 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2415 return 0;
2416
2417 *pc = extract_unsigned_integer (buf, 4, byte_order);
2418 return 1;
2419 }
2420 \f
2421
2422 /* Check whether TYPE must be 16-byte-aligned when passed as a
2423 function argument. 16-byte vectors, _Decimal128 and structures or
2424 unions containing such types must be 16-byte-aligned; other
2425 arguments are 4-byte-aligned. */
2426
2427 static int
2428 i386_16_byte_align_p (struct type *type)
2429 {
2430 type = check_typedef (type);
2431 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2432 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2433 && TYPE_LENGTH (type) == 16)
2434 return 1;
2435 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2436 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2437 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2438 || TYPE_CODE (type) == TYPE_CODE_UNION)
2439 {
2440 int i;
2441 for (i = 0; i < TYPE_NFIELDS (type); i++)
2442 {
2443 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2444 return 1;
2445 }
2446 }
2447 return 0;
2448 }
2449
2450 /* Implementation for set_gdbarch_push_dummy_code. */
2451
2452 static CORE_ADDR
2453 i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2454 struct value **args, int nargs, struct type *value_type,
2455 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2456 struct regcache *regcache)
2457 {
2458 /* Use 0xcc breakpoint - 1 byte. */
2459 *bp_addr = sp - 1;
2460 *real_pc = funaddr;
2461
2462 /* Keep the stack aligned. */
2463 return sp - 16;
2464 }
2465
2466 static CORE_ADDR
2467 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2468 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2469 struct value **args, CORE_ADDR sp, int struct_return,
2470 CORE_ADDR struct_addr)
2471 {
2472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2473 gdb_byte buf[4];
2474 int i;
2475 int write_pass;
2476 int args_space = 0;
2477
2478 /* Determine the total space required for arguments and struct
2479 return address in a first pass (allowing for 16-byte-aligned
2480 arguments), then push arguments in a second pass. */
2481
2482 for (write_pass = 0; write_pass < 2; write_pass++)
2483 {
2484 int args_space_used = 0;
2485
2486 if (struct_return)
2487 {
2488 if (write_pass)
2489 {
2490 /* Push value address. */
2491 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2492 write_memory (sp, buf, 4);
2493 args_space_used += 4;
2494 }
2495 else
2496 args_space += 4;
2497 }
2498
2499 for (i = 0; i < nargs; i++)
2500 {
2501 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2502
2503 if (write_pass)
2504 {
2505 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2506 args_space_used = align_up (args_space_used, 16);
2507
2508 write_memory (sp + args_space_used,
2509 value_contents_all (args[i]), len);
2510 /* The System V ABI says that:
2511
2512 "An argument's size is increased, if necessary, to make it a
2513 multiple of [32-bit] words. This may require tail padding,
2514 depending on the size of the argument."
2515
2516 This makes sure the stack stays word-aligned. */
2517 args_space_used += align_up (len, 4);
2518 }
2519 else
2520 {
2521 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2522 args_space = align_up (args_space, 16);
2523 args_space += align_up (len, 4);
2524 }
2525 }
2526
2527 if (!write_pass)
2528 {
2529 sp -= args_space;
2530
2531 /* The original System V ABI only requires word alignment,
2532 but modern incarnations need 16-byte alignment in order
2533 to support SSE. Since wasting a few bytes here isn't
2534 harmful we unconditionally enforce 16-byte alignment. */
2535 sp &= ~0xf;
2536 }
2537 }
2538
2539 /* Store return address. */
2540 sp -= 4;
2541 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2542 write_memory (sp, buf, 4);
2543
2544 /* Finally, update the stack pointer... */
2545 store_unsigned_integer (buf, 4, byte_order, sp);
2546 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2547
2548 /* ...and fake a frame pointer. */
2549 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2550
2551 /* MarkK wrote: This "+ 8" is all over the place:
2552 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2553 i386_dummy_id). It's there, since all frame unwinders for
2554 a given target have to agree (within a certain margin) on the
2555 definition of the stack address of a frame. Otherwise frame id
2556 comparison might not work correctly. Since DWARF2/GCC uses the
2557 stack address *before* the function call as a frame's CFA. On
2558 the i386, when %ebp is used as a frame pointer, the offset
2559 between the contents %ebp and the CFA as defined by GCC. */
2560 return sp + 8;
2561 }
2562
2563 /* These registers are used for returning integers (and on some
2564 targets also for returning `struct' and `union' values when their
2565 size and alignment match an integer type). */
2566 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2567 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2568
2569 /* Read, for architecture GDBARCH, a function return value of TYPE
2570 from REGCACHE, and copy that into VALBUF. */
2571
2572 static void
2573 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2574 struct regcache *regcache, gdb_byte *valbuf)
2575 {
2576 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2577 int len = TYPE_LENGTH (type);
2578 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2579
2580 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2581 {
2582 if (tdep->st0_regnum < 0)
2583 {
2584 warning (_("Cannot find floating-point return value."));
2585 memset (valbuf, 0, len);
2586 return;
2587 }
2588
2589 /* Floating-point return values can be found in %st(0). Convert
2590 its contents to the desired type. This is probably not
2591 exactly how it would happen on the target itself, but it is
2592 the best we can do. */
2593 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2594 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2595 }
2596 else
2597 {
2598 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2599 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2600
2601 if (len <= low_size)
2602 {
2603 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2604 memcpy (valbuf, buf, len);
2605 }
2606 else if (len <= (low_size + high_size))
2607 {
2608 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2609 memcpy (valbuf, buf, low_size);
2610 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2611 memcpy (valbuf + low_size, buf, len - low_size);
2612 }
2613 else
2614 internal_error (__FILE__, __LINE__,
2615 _("Cannot extract return value of %d bytes long."),
2616 len);
2617 }
2618 }
2619
2620 /* Write, for architecture GDBARCH, a function return value of TYPE
2621 from VALBUF into REGCACHE. */
2622
2623 static void
2624 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2625 struct regcache *regcache, const gdb_byte *valbuf)
2626 {
2627 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2628 int len = TYPE_LENGTH (type);
2629
2630 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2631 {
2632 ULONGEST fstat;
2633 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2634
2635 if (tdep->st0_regnum < 0)
2636 {
2637 warning (_("Cannot set floating-point return value."));
2638 return;
2639 }
2640
2641 /* Returning floating-point values is a bit tricky. Apart from
2642 storing the return value in %st(0), we have to simulate the
2643 state of the FPU at function return point. */
2644
2645 /* Convert the value found in VALBUF to the extended
2646 floating-point format used by the FPU. This is probably
2647 not exactly how it would happen on the target itself, but
2648 it is the best we can do. */
2649 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2650 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2651
2652 /* Set the top of the floating-point register stack to 7. The
2653 actual value doesn't really matter, but 7 is what a normal
2654 function return would end up with if the program started out
2655 with a freshly initialized FPU. */
2656 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2657 fstat |= (7 << 11);
2658 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2659
2660 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2661 the floating-point register stack to 7, the appropriate value
2662 for the tag word is 0x3fff. */
2663 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2664 }
2665 else
2666 {
2667 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2668 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2669
2670 if (len <= low_size)
2671 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2672 else if (len <= (low_size + high_size))
2673 {
2674 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2675 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2676 len - low_size, valbuf + low_size);
2677 }
2678 else
2679 internal_error (__FILE__, __LINE__,
2680 _("Cannot store return value of %d bytes long."), len);
2681 }
2682 }
2683 \f
2684
2685 /* This is the variable that is set with "set struct-convention", and
2686 its legitimate values. */
2687 static const char default_struct_convention[] = "default";
2688 static const char pcc_struct_convention[] = "pcc";
2689 static const char reg_struct_convention[] = "reg";
2690 static const char *const valid_conventions[] =
2691 {
2692 default_struct_convention,
2693 pcc_struct_convention,
2694 reg_struct_convention,
2695 NULL
2696 };
2697 static const char *struct_convention = default_struct_convention;
2698
2699 /* Return non-zero if TYPE, which is assumed to be a structure,
2700 a union type, or an array type, should be returned in registers
2701 for architecture GDBARCH. */
2702
2703 static int
2704 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2705 {
2706 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2707 enum type_code code = TYPE_CODE (type);
2708 int len = TYPE_LENGTH (type);
2709
2710 gdb_assert (code == TYPE_CODE_STRUCT
2711 || code == TYPE_CODE_UNION
2712 || code == TYPE_CODE_ARRAY);
2713
2714 if (struct_convention == pcc_struct_convention
2715 || (struct_convention == default_struct_convention
2716 && tdep->struct_return == pcc_struct_return))
2717 return 0;
2718
2719 /* Structures consisting of a single `float', `double' or 'long
2720 double' member are returned in %st(0). */
2721 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2722 {
2723 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2724 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2725 return (len == 4 || len == 8 || len == 12);
2726 }
2727
2728 return (len == 1 || len == 2 || len == 4 || len == 8);
2729 }
2730
2731 /* Determine, for architecture GDBARCH, how a return value of TYPE
2732 should be returned. If it is supposed to be returned in registers,
2733 and READBUF is non-zero, read the appropriate value from REGCACHE,
2734 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2735 from WRITEBUF into REGCACHE. */
2736
2737 static enum return_value_convention
2738 i386_return_value (struct gdbarch *gdbarch, struct value *function,
2739 struct type *type, struct regcache *regcache,
2740 gdb_byte *readbuf, const gdb_byte *writebuf)
2741 {
2742 enum type_code code = TYPE_CODE (type);
2743
2744 if (((code == TYPE_CODE_STRUCT
2745 || code == TYPE_CODE_UNION
2746 || code == TYPE_CODE_ARRAY)
2747 && !i386_reg_struct_return_p (gdbarch, type))
2748 /* Complex double and long double uses the struct return covention. */
2749 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2750 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
2751 /* 128-bit decimal float uses the struct return convention. */
2752 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2753 {
2754 /* The System V ABI says that:
2755
2756 "A function that returns a structure or union also sets %eax
2757 to the value of the original address of the caller's area
2758 before it returns. Thus when the caller receives control
2759 again, the address of the returned object resides in register
2760 %eax and can be used to access the object."
2761
2762 So the ABI guarantees that we can always find the return
2763 value just after the function has returned. */
2764
2765 /* Note that the ABI doesn't mention functions returning arrays,
2766 which is something possible in certain languages such as Ada.
2767 In this case, the value is returned as if it was wrapped in
2768 a record, so the convention applied to records also applies
2769 to arrays. */
2770
2771 if (readbuf)
2772 {
2773 ULONGEST addr;
2774
2775 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2776 read_memory (addr, readbuf, TYPE_LENGTH (type));
2777 }
2778
2779 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2780 }
2781
2782 /* This special case is for structures consisting of a single
2783 `float', `double' or 'long double' member. These structures are
2784 returned in %st(0). For these structures, we call ourselves
2785 recursively, changing TYPE into the type of the first member of
2786 the structure. Since that should work for all structures that
2787 have only one member, we don't bother to check the member's type
2788 here. */
2789 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2790 {
2791 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2792 return i386_return_value (gdbarch, function, type, regcache,
2793 readbuf, writebuf);
2794 }
2795
2796 if (readbuf)
2797 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2798 if (writebuf)
2799 i386_store_return_value (gdbarch, type, regcache, writebuf);
2800
2801 return RETURN_VALUE_REGISTER_CONVENTION;
2802 }
2803 \f
2804
2805 struct type *
2806 i387_ext_type (struct gdbarch *gdbarch)
2807 {
2808 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2809
2810 if (!tdep->i387_ext_type)
2811 {
2812 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2813 gdb_assert (tdep->i387_ext_type != NULL);
2814 }
2815
2816 return tdep->i387_ext_type;
2817 }
2818
2819 /* Construct type for pseudo BND registers. We can't use
2820 tdesc_find_type since a complement of one value has to be used
2821 to describe the upper bound. */
2822
2823 static struct type *
2824 i386_bnd_type (struct gdbarch *gdbarch)
2825 {
2826 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2827
2828
2829 if (!tdep->i386_bnd_type)
2830 {
2831 struct type *t, *bound_t;
2832 const struct builtin_type *bt = builtin_type (gdbarch);
2833
2834 /* The type we're building is described bellow: */
2835 #if 0
2836 struct __bound128
2837 {
2838 void *lbound;
2839 void *ubound; /* One complement of raw ubound field. */
2840 };
2841 #endif
2842
2843 t = arch_composite_type (gdbarch,
2844 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
2845
2846 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
2847 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
2848
2849 TYPE_NAME (t) = "builtin_type_bound128";
2850 tdep->i386_bnd_type = t;
2851 }
2852
2853 return tdep->i386_bnd_type;
2854 }
2855
2856 /* Construct vector type for pseudo YMM registers. We can't use
2857 tdesc_find_type since YMM isn't described in target description. */
2858
2859 static struct type *
2860 i386_ymm_type (struct gdbarch *gdbarch)
2861 {
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863
2864 if (!tdep->i386_ymm_type)
2865 {
2866 const struct builtin_type *bt = builtin_type (gdbarch);
2867
2868 /* The type we're building is this: */
2869 #if 0
2870 union __gdb_builtin_type_vec256i
2871 {
2872 int128_t uint128[2];
2873 int64_t v2_int64[4];
2874 int32_t v4_int32[8];
2875 int16_t v8_int16[16];
2876 int8_t v16_int8[32];
2877 double v2_double[4];
2878 float v4_float[8];
2879 };
2880 #endif
2881
2882 struct type *t;
2883
2884 t = arch_composite_type (gdbarch,
2885 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2886 append_composite_type_field (t, "v8_float",
2887 init_vector_type (bt->builtin_float, 8));
2888 append_composite_type_field (t, "v4_double",
2889 init_vector_type (bt->builtin_double, 4));
2890 append_composite_type_field (t, "v32_int8",
2891 init_vector_type (bt->builtin_int8, 32));
2892 append_composite_type_field (t, "v16_int16",
2893 init_vector_type (bt->builtin_int16, 16));
2894 append_composite_type_field (t, "v8_int32",
2895 init_vector_type (bt->builtin_int32, 8));
2896 append_composite_type_field (t, "v4_int64",
2897 init_vector_type (bt->builtin_int64, 4));
2898 append_composite_type_field (t, "v2_int128",
2899 init_vector_type (bt->builtin_int128, 2));
2900
2901 TYPE_VECTOR (t) = 1;
2902 TYPE_NAME (t) = "builtin_type_vec256i";
2903 tdep->i386_ymm_type = t;
2904 }
2905
2906 return tdep->i386_ymm_type;
2907 }
2908
2909 /* Construct vector type for MMX registers. */
2910 static struct type *
2911 i386_mmx_type (struct gdbarch *gdbarch)
2912 {
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914
2915 if (!tdep->i386_mmx_type)
2916 {
2917 const struct builtin_type *bt = builtin_type (gdbarch);
2918
2919 /* The type we're building is this: */
2920 #if 0
2921 union __gdb_builtin_type_vec64i
2922 {
2923 int64_t uint64;
2924 int32_t v2_int32[2];
2925 int16_t v4_int16[4];
2926 int8_t v8_int8[8];
2927 };
2928 #endif
2929
2930 struct type *t;
2931
2932 t = arch_composite_type (gdbarch,
2933 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2934
2935 append_composite_type_field (t, "uint64", bt->builtin_int64);
2936 append_composite_type_field (t, "v2_int32",
2937 init_vector_type (bt->builtin_int32, 2));
2938 append_composite_type_field (t, "v4_int16",
2939 init_vector_type (bt->builtin_int16, 4));
2940 append_composite_type_field (t, "v8_int8",
2941 init_vector_type (bt->builtin_int8, 8));
2942
2943 TYPE_VECTOR (t) = 1;
2944 TYPE_NAME (t) = "builtin_type_vec64i";
2945 tdep->i386_mmx_type = t;
2946 }
2947
2948 return tdep->i386_mmx_type;
2949 }
2950
2951 /* Return the GDB type object for the "standard" data type of data in
2952 register REGNUM. */
2953
2954 struct type *
2955 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2956 {
2957 if (i386_bnd_regnum_p (gdbarch, regnum))
2958 return i386_bnd_type (gdbarch);
2959 if (i386_mmx_regnum_p (gdbarch, regnum))
2960 return i386_mmx_type (gdbarch);
2961 else if (i386_ymm_regnum_p (gdbarch, regnum))
2962 return i386_ymm_type (gdbarch);
2963 else
2964 {
2965 const struct builtin_type *bt = builtin_type (gdbarch);
2966 if (i386_byte_regnum_p (gdbarch, regnum))
2967 return bt->builtin_int8;
2968 else if (i386_word_regnum_p (gdbarch, regnum))
2969 return bt->builtin_int16;
2970 else if (i386_dword_regnum_p (gdbarch, regnum))
2971 return bt->builtin_int32;
2972 }
2973
2974 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2975 }
2976
2977 /* Map a cooked register onto a raw register or memory. For the i386,
2978 the MMX registers need to be mapped onto floating point registers. */
2979
2980 static int
2981 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2982 {
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2984 int mmxreg, fpreg;
2985 ULONGEST fstat;
2986 int tos;
2987
2988 mmxreg = regnum - tdep->mm0_regnum;
2989 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2990 tos = (fstat >> 11) & 0x7;
2991 fpreg = (mmxreg + tos) % 8;
2992
2993 return (I387_ST0_REGNUM (tdep) + fpreg);
2994 }
2995
2996 /* A helper function for us by i386_pseudo_register_read_value and
2997 amd64_pseudo_register_read_value. It does all the work but reads
2998 the data into an already-allocated value. */
2999
3000 void
3001 i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3002 struct regcache *regcache,
3003 int regnum,
3004 struct value *result_value)
3005 {
3006 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3007 enum register_status status;
3008 gdb_byte *buf = value_contents_raw (result_value);
3009
3010 if (i386_mmx_regnum_p (gdbarch, regnum))
3011 {
3012 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3013
3014 /* Extract (always little endian). */
3015 status = regcache_raw_read (regcache, fpnum, raw_buf);
3016 if (status != REG_VALID)
3017 mark_value_bytes_unavailable (result_value, 0,
3018 TYPE_LENGTH (value_type (result_value)));
3019 else
3020 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
3021 }
3022 else
3023 {
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025 if (i386_bnd_regnum_p (gdbarch, regnum))
3026 {
3027 regnum -= tdep->bnd0_regnum;
3028
3029 /* Extract (always little endian). Read lower 128bits. */
3030 status = regcache_raw_read (regcache,
3031 I387_BND0R_REGNUM (tdep) + regnum,
3032 raw_buf);
3033 if (status != REG_VALID)
3034 mark_value_bytes_unavailable (result_value, 0, 16);
3035 else
3036 {
3037 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3038 LONGEST upper, lower;
3039 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3040
3041 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3042 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3043 upper = ~upper;
3044
3045 memcpy (buf, &lower, size);
3046 memcpy (buf + size, &upper, size);
3047 }
3048 }
3049 else if (i386_ymm_regnum_p (gdbarch, regnum))
3050 {
3051 regnum -= tdep->ymm0_regnum;
3052
3053 /* Extract (always little endian). Read lower 128bits. */
3054 status = regcache_raw_read (regcache,
3055 I387_XMM0_REGNUM (tdep) + regnum,
3056 raw_buf);
3057 if (status != REG_VALID)
3058 mark_value_bytes_unavailable (result_value, 0, 16);
3059 else
3060 memcpy (buf, raw_buf, 16);
3061 /* Read upper 128bits. */
3062 status = regcache_raw_read (regcache,
3063 tdep->ymm0h_regnum + regnum,
3064 raw_buf);
3065 if (status != REG_VALID)
3066 mark_value_bytes_unavailable (result_value, 16, 32);
3067 else
3068 memcpy (buf + 16, raw_buf, 16);
3069 }
3070 else if (i386_word_regnum_p (gdbarch, regnum))
3071 {
3072 int gpnum = regnum - tdep->ax_regnum;
3073
3074 /* Extract (always little endian). */
3075 status = regcache_raw_read (regcache, gpnum, raw_buf);
3076 if (status != REG_VALID)
3077 mark_value_bytes_unavailable (result_value, 0,
3078 TYPE_LENGTH (value_type (result_value)));
3079 else
3080 memcpy (buf, raw_buf, 2);
3081 }
3082 else if (i386_byte_regnum_p (gdbarch, regnum))
3083 {
3084 /* Check byte pseudo registers last since this function will
3085 be called from amd64_pseudo_register_read, which handles
3086 byte pseudo registers differently. */
3087 int gpnum = regnum - tdep->al_regnum;
3088
3089 /* Extract (always little endian). We read both lower and
3090 upper registers. */
3091 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3092 if (status != REG_VALID)
3093 mark_value_bytes_unavailable (result_value, 0,
3094 TYPE_LENGTH (value_type (result_value)));
3095 else if (gpnum >= 4)
3096 memcpy (buf, raw_buf + 1, 1);
3097 else
3098 memcpy (buf, raw_buf, 1);
3099 }
3100 else
3101 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3102 }
3103 }
3104
3105 static struct value *
3106 i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3107 struct regcache *regcache,
3108 int regnum)
3109 {
3110 struct value *result;
3111
3112 result = allocate_value (register_type (gdbarch, regnum));
3113 VALUE_LVAL (result) = lval_register;
3114 VALUE_REGNUM (result) = regnum;
3115
3116 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
3117
3118 return result;
3119 }
3120
3121 void
3122 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
3123 int regnum, const gdb_byte *buf)
3124 {
3125 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3126
3127 if (i386_mmx_regnum_p (gdbarch, regnum))
3128 {
3129 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3130
3131 /* Read ... */
3132 regcache_raw_read (regcache, fpnum, raw_buf);
3133 /* ... Modify ... (always little endian). */
3134 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
3135 /* ... Write. */
3136 regcache_raw_write (regcache, fpnum, raw_buf);
3137 }
3138 else
3139 {
3140 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3141
3142 if (i386_bnd_regnum_p (gdbarch, regnum))
3143 {
3144 ULONGEST upper, lower;
3145 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3146 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3147
3148 /* New values from input value. */
3149 regnum -= tdep->bnd0_regnum;
3150 lower = extract_unsigned_integer (buf, size, byte_order);
3151 upper = extract_unsigned_integer (buf + size, size, byte_order);
3152
3153 /* Fetching register buffer. */
3154 regcache_raw_read (regcache,
3155 I387_BND0R_REGNUM (tdep) + regnum,
3156 raw_buf);
3157
3158 upper = ~upper;
3159
3160 /* Set register bits. */
3161 memcpy (raw_buf, &lower, 8);
3162 memcpy (raw_buf + 8, &upper, 8);
3163
3164
3165 regcache_raw_write (regcache,
3166 I387_BND0R_REGNUM (tdep) + regnum,
3167 raw_buf);
3168 }
3169 else if (i386_ymm_regnum_p (gdbarch, regnum))
3170 {
3171 regnum -= tdep->ymm0_regnum;
3172
3173 /* ... Write lower 128bits. */
3174 regcache_raw_write (regcache,
3175 I387_XMM0_REGNUM (tdep) + regnum,
3176 buf);
3177 /* ... Write upper 128bits. */
3178 regcache_raw_write (regcache,
3179 tdep->ymm0h_regnum + regnum,
3180 buf + 16);
3181 }
3182 else if (i386_word_regnum_p (gdbarch, regnum))
3183 {
3184 int gpnum = regnum - tdep->ax_regnum;
3185
3186 /* Read ... */
3187 regcache_raw_read (regcache, gpnum, raw_buf);
3188 /* ... Modify ... (always little endian). */
3189 memcpy (raw_buf, buf, 2);
3190 /* ... Write. */
3191 regcache_raw_write (regcache, gpnum, raw_buf);
3192 }
3193 else if (i386_byte_regnum_p (gdbarch, regnum))
3194 {
3195 /* Check byte pseudo registers last since this function will
3196 be called from amd64_pseudo_register_read, which handles
3197 byte pseudo registers differently. */
3198 int gpnum = regnum - tdep->al_regnum;
3199
3200 /* Read ... We read both lower and upper registers. */
3201 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3202 /* ... Modify ... (always little endian). */
3203 if (gpnum >= 4)
3204 memcpy (raw_buf + 1, buf, 1);
3205 else
3206 memcpy (raw_buf, buf, 1);
3207 /* ... Write. */
3208 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3209 }
3210 else
3211 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3212 }
3213 }
3214 \f
3215
3216 /* Return the register number of the register allocated by GCC after
3217 REGNUM, or -1 if there is no such register. */
3218
3219 static int
3220 i386_next_regnum (int regnum)
3221 {
3222 /* GCC allocates the registers in the order:
3223
3224 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3225
3226 Since storing a variable in %esp doesn't make any sense we return
3227 -1 for %ebp and for %esp itself. */
3228 static int next_regnum[] =
3229 {
3230 I386_EDX_REGNUM, /* Slot for %eax. */
3231 I386_EBX_REGNUM, /* Slot for %ecx. */
3232 I386_ECX_REGNUM, /* Slot for %edx. */
3233 I386_ESI_REGNUM, /* Slot for %ebx. */
3234 -1, -1, /* Slots for %esp and %ebp. */
3235 I386_EDI_REGNUM, /* Slot for %esi. */
3236 I386_EBP_REGNUM /* Slot for %edi. */
3237 };
3238
3239 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
3240 return next_regnum[regnum];
3241
3242 return -1;
3243 }
3244
3245 /* Return nonzero if a value of type TYPE stored in register REGNUM
3246 needs any special handling. */
3247
3248 static int
3249 i386_convert_register_p (struct gdbarch *gdbarch,
3250 int regnum, struct type *type)
3251 {
3252 int len = TYPE_LENGTH (type);
3253
3254 /* Values may be spread across multiple registers. Most debugging
3255 formats aren't expressive enough to specify the locations, so
3256 some heuristics is involved. Right now we only handle types that
3257 have a length that is a multiple of the word size, since GCC
3258 doesn't seem to put any other types into registers. */
3259 if (len > 4 && len % 4 == 0)
3260 {
3261 int last_regnum = regnum;
3262
3263 while (len > 4)
3264 {
3265 last_regnum = i386_next_regnum (last_regnum);
3266 len -= 4;
3267 }
3268
3269 if (last_regnum != -1)
3270 return 1;
3271 }
3272
3273 return i387_convert_register_p (gdbarch, regnum, type);
3274 }
3275
3276 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
3277 return its contents in TO. */
3278
3279 static int
3280 i386_register_to_value (struct frame_info *frame, int regnum,
3281 struct type *type, gdb_byte *to,
3282 int *optimizedp, int *unavailablep)
3283 {
3284 struct gdbarch *gdbarch = get_frame_arch (frame);
3285 int len = TYPE_LENGTH (type);
3286
3287 if (i386_fp_regnum_p (gdbarch, regnum))
3288 return i387_register_to_value (frame, regnum, type, to,
3289 optimizedp, unavailablep);
3290
3291 /* Read a value spread across multiple registers. */
3292
3293 gdb_assert (len > 4 && len % 4 == 0);
3294
3295 while (len > 0)
3296 {
3297 gdb_assert (regnum != -1);
3298 gdb_assert (register_size (gdbarch, regnum) == 4);
3299
3300 if (!get_frame_register_bytes (frame, regnum, 0,
3301 register_size (gdbarch, regnum),
3302 to, optimizedp, unavailablep))
3303 return 0;
3304
3305 regnum = i386_next_regnum (regnum);
3306 len -= 4;
3307 to += 4;
3308 }
3309
3310 *optimizedp = *unavailablep = 0;
3311 return 1;
3312 }
3313
3314 /* Write the contents FROM of a value of type TYPE into register
3315 REGNUM in frame FRAME. */
3316
3317 static void
3318 i386_value_to_register (struct frame_info *frame, int regnum,
3319 struct type *type, const gdb_byte *from)
3320 {
3321 int len = TYPE_LENGTH (type);
3322
3323 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
3324 {
3325 i387_value_to_register (frame, regnum, type, from);
3326 return;
3327 }
3328
3329 /* Write a value spread across multiple registers. */
3330
3331 gdb_assert (len > 4 && len % 4 == 0);
3332
3333 while (len > 0)
3334 {
3335 gdb_assert (regnum != -1);
3336 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
3337
3338 put_frame_register (frame, regnum, from);
3339 regnum = i386_next_regnum (regnum);
3340 len -= 4;
3341 from += 4;
3342 }
3343 }
3344 \f
3345 /* Supply register REGNUM from the buffer specified by GREGS and LEN
3346 in the general-purpose register set REGSET to register cache
3347 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3348
3349 void
3350 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3351 int regnum, const void *gregs, size_t len)
3352 {
3353 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3354 const gdb_byte *regs = gregs;
3355 int i;
3356
3357 gdb_assert (len == tdep->sizeof_gregset);
3358
3359 for (i = 0; i < tdep->gregset_num_regs; i++)
3360 {
3361 if ((regnum == i || regnum == -1)
3362 && tdep->gregset_reg_offset[i] != -1)
3363 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3364 }
3365 }
3366
3367 /* Collect register REGNUM from the register cache REGCACHE and store
3368 it in the buffer specified by GREGS and LEN as described by the
3369 general-purpose register set REGSET. If REGNUM is -1, do this for
3370 all registers in REGSET. */
3371
3372 void
3373 i386_collect_gregset (const struct regset *regset,
3374 const struct regcache *regcache,
3375 int regnum, void *gregs, size_t len)
3376 {
3377 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3378 gdb_byte *regs = gregs;
3379 int i;
3380
3381 gdb_assert (len == tdep->sizeof_gregset);
3382
3383 for (i = 0; i < tdep->gregset_num_regs; i++)
3384 {
3385 if ((regnum == i || regnum == -1)
3386 && tdep->gregset_reg_offset[i] != -1)
3387 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3388 }
3389 }
3390
3391 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3392 in the floating-point register set REGSET to register cache
3393 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3394
3395 static void
3396 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3397 int regnum, const void *fpregs, size_t len)
3398 {
3399 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3400
3401 if (len == I387_SIZEOF_FXSAVE)
3402 {
3403 i387_supply_fxsave (regcache, regnum, fpregs);
3404 return;
3405 }
3406
3407 gdb_assert (len == tdep->sizeof_fpregset);
3408 i387_supply_fsave (regcache, regnum, fpregs);
3409 }
3410
3411 /* Collect register REGNUM from the register cache REGCACHE and store
3412 it in the buffer specified by FPREGS and LEN as described by the
3413 floating-point register set REGSET. If REGNUM is -1, do this for
3414 all registers in REGSET. */
3415
3416 static void
3417 i386_collect_fpregset (const struct regset *regset,
3418 const struct regcache *regcache,
3419 int regnum, void *fpregs, size_t len)
3420 {
3421 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
3422
3423 if (len == I387_SIZEOF_FXSAVE)
3424 {
3425 i387_collect_fxsave (regcache, regnum, fpregs);
3426 return;
3427 }
3428
3429 gdb_assert (len == tdep->sizeof_fpregset);
3430 i387_collect_fsave (regcache, regnum, fpregs);
3431 }
3432
3433 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3434
3435 static void
3436 i386_supply_xstateregset (const struct regset *regset,
3437 struct regcache *regcache, int regnum,
3438 const void *xstateregs, size_t len)
3439 {
3440 i387_supply_xsave (regcache, regnum, xstateregs);
3441 }
3442
3443 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3444
3445 static void
3446 i386_collect_xstateregset (const struct regset *regset,
3447 const struct regcache *regcache,
3448 int regnum, void *xstateregs, size_t len)
3449 {
3450 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3451 }
3452
3453 /* Return the appropriate register set for the core section identified
3454 by SECT_NAME and SECT_SIZE. */
3455
3456 const struct regset *
3457 i386_regset_from_core_section (struct gdbarch *gdbarch,
3458 const char *sect_name, size_t sect_size)
3459 {
3460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3461
3462 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3463 {
3464 if (tdep->gregset == NULL)
3465 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3466 i386_collect_gregset);
3467 return tdep->gregset;
3468 }
3469
3470 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3471 || (strcmp (sect_name, ".reg-xfp") == 0
3472 && sect_size == I387_SIZEOF_FXSAVE))
3473 {
3474 if (tdep->fpregset == NULL)
3475 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3476 i386_collect_fpregset);
3477 return tdep->fpregset;
3478 }
3479
3480 if (strcmp (sect_name, ".reg-xstate") == 0)
3481 {
3482 if (tdep->xstateregset == NULL)
3483 tdep->xstateregset = regset_alloc (gdbarch,
3484 i386_supply_xstateregset,
3485 i386_collect_xstateregset);
3486
3487 return tdep->xstateregset;
3488 }
3489
3490 return NULL;
3491 }
3492 \f
3493
3494 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3495
3496 CORE_ADDR
3497 i386_pe_skip_trampoline_code (struct frame_info *frame,
3498 CORE_ADDR pc, char *name)
3499 {
3500 struct gdbarch *gdbarch = get_frame_arch (frame);
3501 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3502
3503 /* jmp *(dest) */
3504 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3505 {
3506 unsigned long indirect =
3507 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3508 struct minimal_symbol *indsym =
3509 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
3510 const char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3511
3512 if (symname)
3513 {
3514 if (strncmp (symname, "__imp_", 6) == 0
3515 || strncmp (symname, "_imp_", 5) == 0)
3516 return name ? 1 :
3517 read_memory_unsigned_integer (indirect, 4, byte_order);
3518 }
3519 }
3520 return 0; /* Not a trampoline. */
3521 }
3522 \f
3523
3524 /* Return whether the THIS_FRAME corresponds to a sigtramp
3525 routine. */
3526
3527 int
3528 i386_sigtramp_p (struct frame_info *this_frame)
3529 {
3530 CORE_ADDR pc = get_frame_pc (this_frame);
3531 const char *name;
3532
3533 find_pc_partial_function (pc, &name, NULL, NULL);
3534 return (name && strcmp ("_sigtramp", name) == 0);
3535 }
3536 \f
3537
3538 /* We have two flavours of disassembly. The machinery on this page
3539 deals with switching between those. */
3540
3541 static int
3542 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3543 {
3544 gdb_assert (disassembly_flavor == att_flavor
3545 || disassembly_flavor == intel_flavor);
3546
3547 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3548 constified, cast to prevent a compiler warning. */
3549 info->disassembler_options = (char *) disassembly_flavor;
3550
3551 return print_insn_i386 (pc, info);
3552 }
3553 \f
3554
3555 /* There are a few i386 architecture variants that differ only
3556 slightly from the generic i386 target. For now, we don't give them
3557 their own source file, but include them here. As a consequence,
3558 they'll always be included. */
3559
3560 /* System V Release 4 (SVR4). */
3561
3562 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3563 routine. */
3564
3565 static int
3566 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3567 {
3568 CORE_ADDR pc = get_frame_pc (this_frame);
3569 const char *name;
3570
3571 /* The origin of these symbols is currently unknown. */
3572 find_pc_partial_function (pc, &name, NULL, NULL);
3573 return (name && (strcmp ("_sigreturn", name) == 0
3574 || strcmp ("sigvechandler", name) == 0));
3575 }
3576
3577 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3578 address of the associated sigcontext (ucontext) structure. */
3579
3580 static CORE_ADDR
3581 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3582 {
3583 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3584 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3585 gdb_byte buf[4];
3586 CORE_ADDR sp;
3587
3588 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3589 sp = extract_unsigned_integer (buf, 4, byte_order);
3590
3591 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3592 }
3593
3594 \f
3595
3596 /* Implementation of `gdbarch_stap_is_single_operand', as defined in
3597 gdbarch.h. */
3598
3599 int
3600 i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3601 {
3602 return (*s == '$' /* Literal number. */
3603 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3604 || (*s == '(' && s[1] == '%') /* Register indirection. */
3605 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3606 }
3607
3608 /* Implementation of `gdbarch_stap_parse_special_token', as defined in
3609 gdbarch.h. */
3610
3611 int
3612 i386_stap_parse_special_token (struct gdbarch *gdbarch,
3613 struct stap_parse_info *p)
3614 {
3615 /* In order to parse special tokens, we use a state-machine that go
3616 through every known token and try to get a match. */
3617 enum
3618 {
3619 TRIPLET,
3620 THREE_ARG_DISPLACEMENT,
3621 DONE
3622 } current_state;
3623
3624 current_state = TRIPLET;
3625
3626 /* The special tokens to be parsed here are:
3627
3628 - `register base + (register index * size) + offset', as represented
3629 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
3630
3631 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
3632 `*(-8 + 3 - 1 + (void *) $eax)'. */
3633
3634 while (current_state != DONE)
3635 {
3636 const char *s = p->arg;
3637
3638 switch (current_state)
3639 {
3640 case TRIPLET:
3641 {
3642 if (isdigit (*s) || *s == '-' || *s == '+')
3643 {
3644 int got_minus[3];
3645 int i;
3646 long displacements[3];
3647 const char *start;
3648 char *regname;
3649 int len;
3650 struct stoken str;
3651 char *endp;
3652
3653 got_minus[0] = 0;
3654 if (*s == '+')
3655 ++s;
3656 else if (*s == '-')
3657 {
3658 ++s;
3659 got_minus[0] = 1;
3660 }
3661
3662 displacements[0] = strtol (s, &endp, 10);
3663 s = endp;
3664
3665 if (*s != '+' && *s != '-')
3666 {
3667 /* We are not dealing with a triplet. */
3668 break;
3669 }
3670
3671 got_minus[1] = 0;
3672 if (*s == '+')
3673 ++s;
3674 else
3675 {
3676 ++s;
3677 got_minus[1] = 1;
3678 }
3679
3680 displacements[1] = strtol (s, &endp, 10);
3681 s = endp;
3682
3683 if (*s != '+' && *s != '-')
3684 {
3685 /* We are not dealing with a triplet. */
3686 break;
3687 }
3688
3689 got_minus[2] = 0;
3690 if (*s == '+')
3691 ++s;
3692 else
3693 {
3694 ++s;
3695 got_minus[2] = 1;
3696 }
3697
3698 displacements[2] = strtol (s, &endp, 10);
3699 s = endp;
3700
3701 if (*s != '(' || s[1] != '%')
3702 break;
3703
3704 s += 2;
3705 start = s;
3706
3707 while (isalnum (*s))
3708 ++s;
3709
3710 if (*s++ != ')')
3711 break;
3712
3713 len = s - start;
3714 regname = alloca (len + 1);
3715
3716 strncpy (regname, start, len);
3717 regname[len] = '\0';
3718
3719 if (user_reg_map_name_to_regnum (gdbarch,
3720 regname, len) == -1)
3721 error (_("Invalid register name `%s' "
3722 "on expression `%s'."),
3723 regname, p->saved_arg);
3724
3725 for (i = 0; i < 3; i++)
3726 {
3727 write_exp_elt_opcode (OP_LONG);
3728 write_exp_elt_type
3729 (builtin_type (gdbarch)->builtin_long);
3730 write_exp_elt_longcst (displacements[i]);
3731 write_exp_elt_opcode (OP_LONG);
3732 if (got_minus[i])
3733 write_exp_elt_opcode (UNOP_NEG);
3734 }
3735
3736 write_exp_elt_opcode (OP_REGISTER);
3737 str.ptr = regname;
3738 str.length = len;
3739 write_exp_string (str);
3740 write_exp_elt_opcode (OP_REGISTER);
3741
3742 write_exp_elt_opcode (UNOP_CAST);
3743 write_exp_elt_type (builtin_type (gdbarch)->builtin_data_ptr);
3744 write_exp_elt_opcode (UNOP_CAST);
3745
3746 write_exp_elt_opcode (BINOP_ADD);
3747 write_exp_elt_opcode (BINOP_ADD);
3748 write_exp_elt_opcode (BINOP_ADD);
3749
3750 write_exp_elt_opcode (UNOP_CAST);
3751 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3752 write_exp_elt_opcode (UNOP_CAST);
3753
3754 write_exp_elt_opcode (UNOP_IND);
3755
3756 p->arg = s;
3757
3758 return 1;
3759 }
3760 break;
3761 }
3762 case THREE_ARG_DISPLACEMENT:
3763 {
3764 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
3765 {
3766 int offset_minus = 0;
3767 long offset = 0;
3768 int size_minus = 0;
3769 long size = 0;
3770 const char *start;
3771 char *base;
3772 int len_base;
3773 char *index;
3774 int len_index;
3775 struct stoken base_token, index_token;
3776
3777 if (*s == '+')
3778 ++s;
3779 else if (*s == '-')
3780 {
3781 ++s;
3782 offset_minus = 1;
3783 }
3784
3785 if (offset_minus && !isdigit (*s))
3786 break;
3787
3788 if (isdigit (*s))
3789 {
3790 char *endp;
3791
3792 offset = strtol (s, &endp, 10);
3793 s = endp;
3794 }
3795
3796 if (*s != '(' || s[1] != '%')
3797 break;
3798
3799 s += 2;
3800 start = s;
3801
3802 while (isalnum (*s))
3803 ++s;
3804
3805 if (*s != ',' || s[1] != '%')
3806 break;
3807
3808 len_base = s - start;
3809 base = alloca (len_base + 1);
3810 strncpy (base, start, len_base);
3811 base[len_base] = '\0';
3812
3813 if (user_reg_map_name_to_regnum (gdbarch,
3814 base, len_base) == -1)
3815 error (_("Invalid register name `%s' "
3816 "on expression `%s'."),
3817 base, p->saved_arg);
3818
3819 s += 2;
3820 start = s;
3821
3822 while (isalnum (*s))
3823 ++s;
3824
3825 len_index = s - start;
3826 index = alloca (len_index + 1);
3827 strncpy (index, start, len_index);
3828 index[len_index] = '\0';
3829
3830 if (user_reg_map_name_to_regnum (gdbarch,
3831 index, len_index) == -1)
3832 error (_("Invalid register name `%s' "
3833 "on expression `%s'."),
3834 index, p->saved_arg);
3835
3836 if (*s != ',' && *s != ')')
3837 break;
3838
3839 if (*s == ',')
3840 {
3841 char *endp;
3842
3843 ++s;
3844 if (*s == '+')
3845 ++s;
3846 else if (*s == '-')
3847 {
3848 ++s;
3849 size_minus = 1;
3850 }
3851
3852 size = strtol (s, &endp, 10);
3853 s = endp;
3854
3855 if (*s != ')')
3856 break;
3857 }
3858
3859 ++s;
3860
3861 if (offset)
3862 {
3863 write_exp_elt_opcode (OP_LONG);
3864 write_exp_elt_type
3865 (builtin_type (gdbarch)->builtin_long);
3866 write_exp_elt_longcst (offset);
3867 write_exp_elt_opcode (OP_LONG);
3868 if (offset_minus)
3869 write_exp_elt_opcode (UNOP_NEG);
3870 }
3871
3872 write_exp_elt_opcode (OP_REGISTER);
3873 base_token.ptr = base;
3874 base_token.length = len_base;
3875 write_exp_string (base_token);
3876 write_exp_elt_opcode (OP_REGISTER);
3877
3878 if (offset)
3879 write_exp_elt_opcode (BINOP_ADD);
3880
3881 write_exp_elt_opcode (OP_REGISTER);
3882 index_token.ptr = index;
3883 index_token.length = len_index;
3884 write_exp_string (index_token);
3885 write_exp_elt_opcode (OP_REGISTER);
3886
3887 if (size)
3888 {
3889 write_exp_elt_opcode (OP_LONG);
3890 write_exp_elt_type
3891 (builtin_type (gdbarch)->builtin_long);
3892 write_exp_elt_longcst (size);
3893 write_exp_elt_opcode (OP_LONG);
3894 if (size_minus)
3895 write_exp_elt_opcode (UNOP_NEG);
3896 write_exp_elt_opcode (BINOP_MUL);
3897 }
3898
3899 write_exp_elt_opcode (BINOP_ADD);
3900
3901 write_exp_elt_opcode (UNOP_CAST);
3902 write_exp_elt_type (lookup_pointer_type (p->arg_type));
3903 write_exp_elt_opcode (UNOP_CAST);
3904
3905 write_exp_elt_opcode (UNOP_IND);
3906
3907 p->arg = s;
3908
3909 return 1;
3910 }
3911 break;
3912 }
3913 }
3914
3915 /* Advancing to the next state. */
3916 ++current_state;
3917 }
3918
3919 return 0;
3920 }
3921
3922 \f
3923
3924 /* Generic ELF. */
3925
3926 void
3927 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3928 {
3929 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3930 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3931
3932 /* Registering SystemTap handlers. */
3933 set_gdbarch_stap_integer_prefix (gdbarch, "$");
3934 set_gdbarch_stap_register_prefix (gdbarch, "%");
3935 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
3936 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
3937 set_gdbarch_stap_is_single_operand (gdbarch,
3938 i386_stap_is_single_operand);
3939 set_gdbarch_stap_parse_special_token (gdbarch,
3940 i386_stap_parse_special_token);
3941 }
3942
3943 /* System V Release 4 (SVR4). */
3944
3945 void
3946 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3947 {
3948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3949
3950 /* System V Release 4 uses ELF. */
3951 i386_elf_init_abi (info, gdbarch);
3952
3953 /* System V Release 4 has shared libraries. */
3954 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3955
3956 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3957 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3958 tdep->sc_pc_offset = 36 + 14 * 4;
3959 tdep->sc_sp_offset = 36 + 17 * 4;
3960
3961 tdep->jb_pc_offset = 20;
3962 }
3963
3964 /* DJGPP. */
3965
3966 static void
3967 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3968 {
3969 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3970
3971 /* DJGPP doesn't have any special frames for signal handlers. */
3972 tdep->sigtramp_p = NULL;
3973
3974 tdep->jb_pc_offset = 36;
3975
3976 /* DJGPP does not support the SSE registers. */
3977 if (! tdesc_has_registers (info.target_desc))
3978 tdep->tdesc = tdesc_i386_mmx;
3979
3980 /* Native compiler is GCC, which uses the SVR4 register numbering
3981 even in COFF and STABS. See the comment in i386_gdbarch_init,
3982 before the calls to set_gdbarch_stab_reg_to_regnum and
3983 set_gdbarch_sdb_reg_to_regnum. */
3984 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3985 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3986
3987 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3988 }
3989 \f
3990
3991 /* i386 register groups. In addition to the normal groups, add "mmx"
3992 and "sse". */
3993
3994 static struct reggroup *i386_sse_reggroup;
3995 static struct reggroup *i386_mmx_reggroup;
3996
3997 static void
3998 i386_init_reggroups (void)
3999 {
4000 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4001 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4002 }
4003
4004 static void
4005 i386_add_reggroups (struct gdbarch *gdbarch)
4006 {
4007 reggroup_add (gdbarch, i386_sse_reggroup);
4008 reggroup_add (gdbarch, i386_mmx_reggroup);
4009 reggroup_add (gdbarch, general_reggroup);
4010 reggroup_add (gdbarch, float_reggroup);
4011 reggroup_add (gdbarch, all_reggroup);
4012 reggroup_add (gdbarch, save_reggroup);
4013 reggroup_add (gdbarch, restore_reggroup);
4014 reggroup_add (gdbarch, vector_reggroup);
4015 reggroup_add (gdbarch, system_reggroup);
4016 }
4017
4018 int
4019 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4020 struct reggroup *group)
4021 {
4022 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4023 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
4024 ymm_regnum_p, ymmh_regnum_p, bndr_regnum_p, bnd_regnum_p,
4025 mpx_ctrl_regnum_p;
4026
4027 /* Don't include pseudo registers, except for MMX, in any register
4028 groups. */
4029 if (i386_byte_regnum_p (gdbarch, regnum))
4030 return 0;
4031
4032 if (i386_word_regnum_p (gdbarch, regnum))
4033 return 0;
4034
4035 if (i386_dword_regnum_p (gdbarch, regnum))
4036 return 0;
4037
4038 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
4039 if (group == i386_mmx_reggroup)
4040 return mmx_regnum_p;
4041
4042 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
4043 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
4044 if (group == i386_sse_reggroup)
4045 return xmm_regnum_p || mxcsr_regnum_p;
4046
4047 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
4048 if (group == vector_reggroup)
4049 return (mmx_regnum_p
4050 || ymm_regnum_p
4051 || mxcsr_regnum_p
4052 || (xmm_regnum_p
4053 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
4054 == I386_XSTATE_SSE_MASK)));
4055
4056 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4057 || i386_fpc_regnum_p (gdbarch, regnum));
4058 if (group == float_reggroup)
4059 return fp_regnum_p;
4060
4061 /* For "info reg all", don't include upper YMM registers nor XMM
4062 registers when AVX is supported. */
4063 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
4064 if (group == all_reggroup
4065 && ((xmm_regnum_p
4066 && (tdep->xcr0 & I386_XSTATE_AVX))
4067 || ymmh_regnum_p))
4068 return 0;
4069
4070 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4071 if (group == all_reggroup
4072 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4073 return bnd_regnum_p;
4074
4075 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4076 if (group == all_reggroup
4077 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4078 return 0;
4079
4080 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4081 if (group == all_reggroup
4082 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4083 return mpx_ctrl_regnum_p;
4084
4085 if (group == general_reggroup)
4086 return (!fp_regnum_p
4087 && !mmx_regnum_p
4088 && !mxcsr_regnum_p
4089 && !xmm_regnum_p
4090 && !ymm_regnum_p
4091 && !ymmh_regnum_p
4092 && !bndr_regnum_p
4093 && !bnd_regnum_p
4094 && !mpx_ctrl_regnum_p);
4095
4096 return default_register_reggroup_p (gdbarch, regnum, group);
4097 }
4098 \f
4099
4100 /* Get the ARGIth function argument for the current function. */
4101
4102 static CORE_ADDR
4103 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4104 struct type *type)
4105 {
4106 struct gdbarch *gdbarch = get_frame_arch (frame);
4107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4108 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
4109 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
4110 }
4111
4112 static void
4113 i386_skip_permanent_breakpoint (struct regcache *regcache)
4114 {
4115 CORE_ADDR current_pc = regcache_read_pc (regcache);
4116
4117 /* On i386, breakpoint is exactly 1 byte long, so we just
4118 adjust the PC in the regcache. */
4119 current_pc += 1;
4120 regcache_write_pc (regcache, current_pc);
4121 }
4122
4123
4124 #define PREFIX_REPZ 0x01
4125 #define PREFIX_REPNZ 0x02
4126 #define PREFIX_LOCK 0x04
4127 #define PREFIX_DATA 0x08
4128 #define PREFIX_ADDR 0x10
4129
4130 /* operand size */
4131 enum
4132 {
4133 OT_BYTE = 0,
4134 OT_WORD,
4135 OT_LONG,
4136 OT_QUAD,
4137 OT_DQUAD,
4138 };
4139
4140 /* i386 arith/logic operations */
4141 enum
4142 {
4143 OP_ADDL,
4144 OP_ORL,
4145 OP_ADCL,
4146 OP_SBBL,
4147 OP_ANDL,
4148 OP_SUBL,
4149 OP_XORL,
4150 OP_CMPL,
4151 };
4152
4153 struct i386_record_s
4154 {
4155 struct gdbarch *gdbarch;
4156 struct regcache *regcache;
4157 CORE_ADDR orig_addr;
4158 CORE_ADDR addr;
4159 int aflag;
4160 int dflag;
4161 int override;
4162 uint8_t modrm;
4163 uint8_t mod, reg, rm;
4164 int ot;
4165 uint8_t rex_x;
4166 uint8_t rex_b;
4167 int rip_offset;
4168 int popl_esp_hack;
4169 const int *regmap;
4170 };
4171
4172 /* Parse the "modrm" part of the memory address irp->addr points at.
4173 Returns -1 if something goes wrong, 0 otherwise. */
4174
4175 static int
4176 i386_record_modrm (struct i386_record_s *irp)
4177 {
4178 struct gdbarch *gdbarch = irp->gdbarch;
4179
4180 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4181 return -1;
4182
4183 irp->addr++;
4184 irp->mod = (irp->modrm >> 6) & 3;
4185 irp->reg = (irp->modrm >> 3) & 7;
4186 irp->rm = irp->modrm & 7;
4187
4188 return 0;
4189 }
4190
4191 /* Extract the memory address that the current instruction writes to,
4192 and return it in *ADDR. Return -1 if something goes wrong. */
4193
4194 static int
4195 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
4196 {
4197 struct gdbarch *gdbarch = irp->gdbarch;
4198 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4199 gdb_byte buf[4];
4200 ULONGEST offset64;
4201
4202 *addr = 0;
4203 if (irp->aflag)
4204 {
4205 /* 32 bits */
4206 int havesib = 0;
4207 uint8_t scale = 0;
4208 uint8_t byte;
4209 uint8_t index = 0;
4210 uint8_t base = irp->rm;
4211
4212 if (base == 4)
4213 {
4214 havesib = 1;
4215 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4216 return -1;
4217 irp->addr++;
4218 scale = (byte >> 6) & 3;
4219 index = ((byte >> 3) & 7) | irp->rex_x;
4220 base = (byte & 7);
4221 }
4222 base |= irp->rex_b;
4223
4224 switch (irp->mod)
4225 {
4226 case 0:
4227 if ((base & 7) == 5)
4228 {
4229 base = 0xff;
4230 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4231 return -1;
4232 irp->addr += 4;
4233 *addr = extract_signed_integer (buf, 4, byte_order);
4234 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4235 *addr += irp->addr + irp->rip_offset;
4236 }
4237 break;
4238 case 1:
4239 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4240 return -1;
4241 irp->addr++;
4242 *addr = (int8_t) buf[0];
4243 break;
4244 case 2:
4245 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4246 return -1;
4247 *addr = extract_signed_integer (buf, 4, byte_order);
4248 irp->addr += 4;
4249 break;
4250 }
4251
4252 offset64 = 0;
4253 if (base != 0xff)
4254 {
4255 if (base == 4 && irp->popl_esp_hack)
4256 *addr += irp->popl_esp_hack;
4257 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
4258 &offset64);
4259 }
4260 if (irp->aflag == 2)
4261 {
4262 *addr += offset64;
4263 }
4264 else
4265 *addr = (uint32_t) (offset64 + *addr);
4266
4267 if (havesib && (index != 4 || scale != 0))
4268 {
4269 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
4270 &offset64);
4271 if (irp->aflag == 2)
4272 *addr += offset64 << scale;
4273 else
4274 *addr = (uint32_t) (*addr + (offset64 << scale));
4275 }
4276 }
4277 else
4278 {
4279 /* 16 bits */
4280 switch (irp->mod)
4281 {
4282 case 0:
4283 if (irp->rm == 6)
4284 {
4285 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4286 return -1;
4287 irp->addr += 2;
4288 *addr = extract_signed_integer (buf, 2, byte_order);
4289 irp->rm = 0;
4290 goto no_rm;
4291 }
4292 break;
4293 case 1:
4294 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4295 return -1;
4296 irp->addr++;
4297 *addr = (int8_t) buf[0];
4298 break;
4299 case 2:
4300 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4301 return -1;
4302 irp->addr += 2;
4303 *addr = extract_signed_integer (buf, 2, byte_order);
4304 break;
4305 }
4306
4307 switch (irp->rm)
4308 {
4309 case 0:
4310 regcache_raw_read_unsigned (irp->regcache,
4311 irp->regmap[X86_RECORD_REBX_REGNUM],
4312 &offset64);
4313 *addr = (uint32_t) (*addr + offset64);
4314 regcache_raw_read_unsigned (irp->regcache,
4315 irp->regmap[X86_RECORD_RESI_REGNUM],
4316 &offset64);
4317 *addr = (uint32_t) (*addr + offset64);
4318 break;
4319 case 1:
4320 regcache_raw_read_unsigned (irp->regcache,
4321 irp->regmap[X86_RECORD_REBX_REGNUM],
4322 &offset64);
4323 *addr = (uint32_t) (*addr + offset64);
4324 regcache_raw_read_unsigned (irp->regcache,
4325 irp->regmap[X86_RECORD_REDI_REGNUM],
4326 &offset64);
4327 *addr = (uint32_t) (*addr + offset64);
4328 break;
4329 case 2:
4330 regcache_raw_read_unsigned (irp->regcache,
4331 irp->regmap[X86_RECORD_REBP_REGNUM],
4332 &offset64);
4333 *addr = (uint32_t) (*addr + offset64);
4334 regcache_raw_read_unsigned (irp->regcache,
4335 irp->regmap[X86_RECORD_RESI_REGNUM],
4336 &offset64);
4337 *addr = (uint32_t) (*addr + offset64);
4338 break;
4339 case 3:
4340 regcache_raw_read_unsigned (irp->regcache,
4341 irp->regmap[X86_RECORD_REBP_REGNUM],
4342 &offset64);
4343 *addr = (uint32_t) (*addr + offset64);
4344 regcache_raw_read_unsigned (irp->regcache,
4345 irp->regmap[X86_RECORD_REDI_REGNUM],
4346 &offset64);
4347 *addr = (uint32_t) (*addr + offset64);
4348 break;
4349 case 4:
4350 regcache_raw_read_unsigned (irp->regcache,
4351 irp->regmap[X86_RECORD_RESI_REGNUM],
4352 &offset64);
4353 *addr = (uint32_t) (*addr + offset64);
4354 break;
4355 case 5:
4356 regcache_raw_read_unsigned (irp->regcache,
4357 irp->regmap[X86_RECORD_REDI_REGNUM],
4358 &offset64);
4359 *addr = (uint32_t) (*addr + offset64);
4360 break;
4361 case 6:
4362 regcache_raw_read_unsigned (irp->regcache,
4363 irp->regmap[X86_RECORD_REBP_REGNUM],
4364 &offset64);
4365 *addr = (uint32_t) (*addr + offset64);
4366 break;
4367 case 7:
4368 regcache_raw_read_unsigned (irp->regcache,
4369 irp->regmap[X86_RECORD_REBX_REGNUM],
4370 &offset64);
4371 *addr = (uint32_t) (*addr + offset64);
4372 break;
4373 }
4374 *addr &= 0xffff;
4375 }
4376
4377 no_rm:
4378 return 0;
4379 }
4380
4381 /* Record the address and contents of the memory that will be changed
4382 by the current instruction. Return -1 if something goes wrong, 0
4383 otherwise. */
4384
4385 static int
4386 i386_record_lea_modrm (struct i386_record_s *irp)
4387 {
4388 struct gdbarch *gdbarch = irp->gdbarch;
4389 uint64_t addr;
4390
4391 if (irp->override >= 0)
4392 {
4393 if (record_full_memory_query)
4394 {
4395 int q;
4396
4397 target_terminal_ours ();
4398 q = yquery (_("\
4399 Process record ignores the memory change of instruction at address %s\n\
4400 because it can't get the value of the segment register.\n\
4401 Do you want to stop the program?"),
4402 paddress (gdbarch, irp->orig_addr));
4403 target_terminal_inferior ();
4404 if (q)
4405 return -1;
4406 }
4407
4408 return 0;
4409 }
4410
4411 if (i386_record_lea_modrm_addr (irp, &addr))
4412 return -1;
4413
4414 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
4415 return -1;
4416
4417 return 0;
4418 }
4419
4420 /* Record the effects of a push operation. Return -1 if something
4421 goes wrong, 0 otherwise. */
4422
4423 static int
4424 i386_record_push (struct i386_record_s *irp, int size)
4425 {
4426 ULONGEST addr;
4427
4428 if (record_full_arch_list_add_reg (irp->regcache,
4429 irp->regmap[X86_RECORD_RESP_REGNUM]))
4430 return -1;
4431 regcache_raw_read_unsigned (irp->regcache,
4432 irp->regmap[X86_RECORD_RESP_REGNUM],
4433 &addr);
4434 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
4435 return -1;
4436
4437 return 0;
4438 }
4439
4440
4441 /* Defines contents to record. */
4442 #define I386_SAVE_FPU_REGS 0xfffd
4443 #define I386_SAVE_FPU_ENV 0xfffe
4444 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4445
4446 /* Record the values of the floating point registers which will be
4447 changed by the current instruction. Returns -1 if something is
4448 wrong, 0 otherwise. */
4449
4450 static int i386_record_floats (struct gdbarch *gdbarch,
4451 struct i386_record_s *ir,
4452 uint32_t iregnum)
4453 {
4454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4455 int i;
4456
4457 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4458 happen. Currently we store st0-st7 registers, but we need not store all
4459 registers all the time, in future we use ftag register and record only
4460 those who are not marked as an empty. */
4461
4462 if (I386_SAVE_FPU_REGS == iregnum)
4463 {
4464 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4465 {
4466 if (record_full_arch_list_add_reg (ir->regcache, i))
4467 return -1;
4468 }
4469 }
4470 else if (I386_SAVE_FPU_ENV == iregnum)
4471 {
4472 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4473 {
4474 if (record_full_arch_list_add_reg (ir->regcache, i))
4475 return -1;
4476 }
4477 }
4478 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4479 {
4480 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4481 {
4482 if (record_full_arch_list_add_reg (ir->regcache, i))
4483 return -1;
4484 }
4485 }
4486 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4487 (iregnum <= I387_FOP_REGNUM (tdep)))
4488 {
4489 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
4490 return -1;
4491 }
4492 else
4493 {
4494 /* Parameter error. */
4495 return -1;
4496 }
4497 if(I386_SAVE_FPU_ENV != iregnum)
4498 {
4499 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4500 {
4501 if (record_full_arch_list_add_reg (ir->regcache, i))
4502 return -1;
4503 }
4504 }
4505 return 0;
4506 }
4507
4508 /* Parse the current instruction, and record the values of the
4509 registers and memory that will be changed by the current
4510 instruction. Returns -1 if something goes wrong, 0 otherwise. */
4511
4512 #define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4513 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
4514
4515 int
4516 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4517 CORE_ADDR input_addr)
4518 {
4519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4520 int prefixes = 0;
4521 int regnum = 0;
4522 uint32_t opcode;
4523 uint8_t opcode8;
4524 ULONGEST addr;
4525 gdb_byte buf[MAX_REGISTER_SIZE];
4526 struct i386_record_s ir;
4527 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4528 uint8_t rex_w = -1;
4529 uint8_t rex_r = 0;
4530
4531 memset (&ir, 0, sizeof (struct i386_record_s));
4532 ir.regcache = regcache;
4533 ir.addr = input_addr;
4534 ir.orig_addr = input_addr;
4535 ir.aflag = 1;
4536 ir.dflag = 1;
4537 ir.override = -1;
4538 ir.popl_esp_hack = 0;
4539 ir.regmap = tdep->record_regmap;
4540 ir.gdbarch = gdbarch;
4541
4542 if (record_debug > 1)
4543 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
4544 "addr = %s\n",
4545 paddress (gdbarch, ir.addr));
4546
4547 /* prefixes */
4548 while (1)
4549 {
4550 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4551 return -1;
4552 ir.addr++;
4553 switch (opcode8) /* Instruction prefixes */
4554 {
4555 case REPE_PREFIX_OPCODE:
4556 prefixes |= PREFIX_REPZ;
4557 break;
4558 case REPNE_PREFIX_OPCODE:
4559 prefixes |= PREFIX_REPNZ;
4560 break;
4561 case LOCK_PREFIX_OPCODE:
4562 prefixes |= PREFIX_LOCK;
4563 break;
4564 case CS_PREFIX_OPCODE:
4565 ir.override = X86_RECORD_CS_REGNUM;
4566 break;
4567 case SS_PREFIX_OPCODE:
4568 ir.override = X86_RECORD_SS_REGNUM;
4569 break;
4570 case DS_PREFIX_OPCODE:
4571 ir.override = X86_RECORD_DS_REGNUM;
4572 break;
4573 case ES_PREFIX_OPCODE:
4574 ir.override = X86_RECORD_ES_REGNUM;
4575 break;
4576 case FS_PREFIX_OPCODE:
4577 ir.override = X86_RECORD_FS_REGNUM;
4578 break;
4579 case GS_PREFIX_OPCODE:
4580 ir.override = X86_RECORD_GS_REGNUM;
4581 break;
4582 case DATA_PREFIX_OPCODE:
4583 prefixes |= PREFIX_DATA;
4584 break;
4585 case ADDR_PREFIX_OPCODE:
4586 prefixes |= PREFIX_ADDR;
4587 break;
4588 case 0x40: /* i386 inc %eax */
4589 case 0x41: /* i386 inc %ecx */
4590 case 0x42: /* i386 inc %edx */
4591 case 0x43: /* i386 inc %ebx */
4592 case 0x44: /* i386 inc %esp */
4593 case 0x45: /* i386 inc %ebp */
4594 case 0x46: /* i386 inc %esi */
4595 case 0x47: /* i386 inc %edi */
4596 case 0x48: /* i386 dec %eax */
4597 case 0x49: /* i386 dec %ecx */
4598 case 0x4a: /* i386 dec %edx */
4599 case 0x4b: /* i386 dec %ebx */
4600 case 0x4c: /* i386 dec %esp */
4601 case 0x4d: /* i386 dec %ebp */
4602 case 0x4e: /* i386 dec %esi */
4603 case 0x4f: /* i386 dec %edi */
4604 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
4605 {
4606 /* REX */
4607 rex_w = (opcode8 >> 3) & 1;
4608 rex_r = (opcode8 & 0x4) << 1;
4609 ir.rex_x = (opcode8 & 0x2) << 2;
4610 ir.rex_b = (opcode8 & 0x1) << 3;
4611 }
4612 else /* 32 bit target */
4613 goto out_prefixes;
4614 break;
4615 default:
4616 goto out_prefixes;
4617 break;
4618 }
4619 }
4620 out_prefixes:
4621 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
4622 {
4623 ir.dflag = 2;
4624 }
4625 else
4626 {
4627 if (prefixes & PREFIX_DATA)
4628 ir.dflag ^= 1;
4629 }
4630 if (prefixes & PREFIX_ADDR)
4631 ir.aflag ^= 1;
4632 else if (ir.regmap[X86_RECORD_R8_REGNUM])
4633 ir.aflag = 2;
4634
4635 /* Now check op code. */
4636 opcode = (uint32_t) opcode8;
4637 reswitch:
4638 switch (opcode)
4639 {
4640 case 0x0f:
4641 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4642 return -1;
4643 ir.addr++;
4644 opcode = (uint32_t) opcode8 | 0x0f00;
4645 goto reswitch;
4646 break;
4647
4648 case 0x00: /* arith & logic */
4649 case 0x01:
4650 case 0x02:
4651 case 0x03:
4652 case 0x04:
4653 case 0x05:
4654 case 0x08:
4655 case 0x09:
4656 case 0x0a:
4657 case 0x0b:
4658 case 0x0c:
4659 case 0x0d:
4660 case 0x10:
4661 case 0x11:
4662 case 0x12:
4663 case 0x13:
4664 case 0x14:
4665 case 0x15:
4666 case 0x18:
4667 case 0x19:
4668 case 0x1a:
4669 case 0x1b:
4670 case 0x1c:
4671 case 0x1d:
4672 case 0x20:
4673 case 0x21:
4674 case 0x22:
4675 case 0x23:
4676 case 0x24:
4677 case 0x25:
4678 case 0x28:
4679 case 0x29:
4680 case 0x2a:
4681 case 0x2b:
4682 case 0x2c:
4683 case 0x2d:
4684 case 0x30:
4685 case 0x31:
4686 case 0x32:
4687 case 0x33:
4688 case 0x34:
4689 case 0x35:
4690 case 0x38:
4691 case 0x39:
4692 case 0x3a:
4693 case 0x3b:
4694 case 0x3c:
4695 case 0x3d:
4696 if (((opcode >> 3) & 7) != OP_CMPL)
4697 {
4698 if ((opcode & 1) == 0)
4699 ir.ot = OT_BYTE;
4700 else
4701 ir.ot = ir.dflag + OT_WORD;
4702
4703 switch ((opcode >> 1) & 3)
4704 {
4705 case 0: /* OP Ev, Gv */
4706 if (i386_record_modrm (&ir))
4707 return -1;
4708 if (ir.mod != 3)
4709 {
4710 if (i386_record_lea_modrm (&ir))
4711 return -1;
4712 }
4713 else
4714 {
4715 ir.rm |= ir.rex_b;
4716 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4717 ir.rm &= 0x3;
4718 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4719 }
4720 break;
4721 case 1: /* OP Gv, Ev */
4722 if (i386_record_modrm (&ir))
4723 return -1;
4724 ir.reg |= rex_r;
4725 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4726 ir.reg &= 0x3;
4727 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4728 break;
4729 case 2: /* OP A, Iv */
4730 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4731 break;
4732 }
4733 }
4734 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4735 break;
4736
4737 case 0x80: /* GRP1 */
4738 case 0x81:
4739 case 0x82:
4740 case 0x83:
4741 if (i386_record_modrm (&ir))
4742 return -1;
4743
4744 if (ir.reg != OP_CMPL)
4745 {
4746 if ((opcode & 1) == 0)
4747 ir.ot = OT_BYTE;
4748 else
4749 ir.ot = ir.dflag + OT_WORD;
4750
4751 if (ir.mod != 3)
4752 {
4753 if (opcode == 0x83)
4754 ir.rip_offset = 1;
4755 else
4756 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4757 if (i386_record_lea_modrm (&ir))
4758 return -1;
4759 }
4760 else
4761 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4762 }
4763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4764 break;
4765
4766 case 0x40: /* inc */
4767 case 0x41:
4768 case 0x42:
4769 case 0x43:
4770 case 0x44:
4771 case 0x45:
4772 case 0x46:
4773 case 0x47:
4774
4775 case 0x48: /* dec */
4776 case 0x49:
4777 case 0x4a:
4778 case 0x4b:
4779 case 0x4c:
4780 case 0x4d:
4781 case 0x4e:
4782 case 0x4f:
4783
4784 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
4785 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4786 break;
4787
4788 case 0xf6: /* GRP3 */
4789 case 0xf7:
4790 if ((opcode & 1) == 0)
4791 ir.ot = OT_BYTE;
4792 else
4793 ir.ot = ir.dflag + OT_WORD;
4794 if (i386_record_modrm (&ir))
4795 return -1;
4796
4797 if (ir.mod != 3 && ir.reg == 0)
4798 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4799
4800 switch (ir.reg)
4801 {
4802 case 0: /* test */
4803 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4804 break;
4805 case 2: /* not */
4806 case 3: /* neg */
4807 if (ir.mod != 3)
4808 {
4809 if (i386_record_lea_modrm (&ir))
4810 return -1;
4811 }
4812 else
4813 {
4814 ir.rm |= ir.rex_b;
4815 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4816 ir.rm &= 0x3;
4817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4818 }
4819 if (ir.reg == 3) /* neg */
4820 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4821 break;
4822 case 4: /* mul */
4823 case 5: /* imul */
4824 case 6: /* div */
4825 case 7: /* idiv */
4826 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4827 if (ir.ot != OT_BYTE)
4828 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4830 break;
4831 default:
4832 ir.addr -= 2;
4833 opcode = opcode << 8 | ir.modrm;
4834 goto no_support;
4835 break;
4836 }
4837 break;
4838
4839 case 0xfe: /* GRP4 */
4840 case 0xff: /* GRP5 */
4841 if (i386_record_modrm (&ir))
4842 return -1;
4843 if (ir.reg >= 2 && opcode == 0xfe)
4844 {
4845 ir.addr -= 2;
4846 opcode = opcode << 8 | ir.modrm;
4847 goto no_support;
4848 }
4849 switch (ir.reg)
4850 {
4851 case 0: /* inc */
4852 case 1: /* dec */
4853 if ((opcode & 1) == 0)
4854 ir.ot = OT_BYTE;
4855 else
4856 ir.ot = ir.dflag + OT_WORD;
4857 if (ir.mod != 3)
4858 {
4859 if (i386_record_lea_modrm (&ir))
4860 return -1;
4861 }
4862 else
4863 {
4864 ir.rm |= ir.rex_b;
4865 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4866 ir.rm &= 0x3;
4867 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4868 }
4869 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4870 break;
4871 case 2: /* call */
4872 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4873 ir.dflag = 2;
4874 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4875 return -1;
4876 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4877 break;
4878 case 3: /* lcall */
4879 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4880 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4881 return -1;
4882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4883 break;
4884 case 4: /* jmp */
4885 case 5: /* ljmp */
4886 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4887 break;
4888 case 6: /* push */
4889 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4890 ir.dflag = 2;
4891 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4892 return -1;
4893 break;
4894 default:
4895 ir.addr -= 2;
4896 opcode = opcode << 8 | ir.modrm;
4897 goto no_support;
4898 break;
4899 }
4900 break;
4901
4902 case 0x84: /* test */
4903 case 0x85:
4904 case 0xa8:
4905 case 0xa9:
4906 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4907 break;
4908
4909 case 0x98: /* CWDE/CBW */
4910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4911 break;
4912
4913 case 0x99: /* CDQ/CWD */
4914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4915 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4916 break;
4917
4918 case 0x0faf: /* imul */
4919 case 0x69:
4920 case 0x6b:
4921 ir.ot = ir.dflag + OT_WORD;
4922 if (i386_record_modrm (&ir))
4923 return -1;
4924 if (opcode == 0x69)
4925 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4926 else if (opcode == 0x6b)
4927 ir.rip_offset = 1;
4928 ir.reg |= rex_r;
4929 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4930 ir.reg &= 0x3;
4931 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4932 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4933 break;
4934
4935 case 0x0fc0: /* xadd */
4936 case 0x0fc1:
4937 if ((opcode & 1) == 0)
4938 ir.ot = OT_BYTE;
4939 else
4940 ir.ot = ir.dflag + OT_WORD;
4941 if (i386_record_modrm (&ir))
4942 return -1;
4943 ir.reg |= rex_r;
4944 if (ir.mod == 3)
4945 {
4946 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4947 ir.reg &= 0x3;
4948 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4949 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4950 ir.rm &= 0x3;
4951 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
4952 }
4953 else
4954 {
4955 if (i386_record_lea_modrm (&ir))
4956 return -1;
4957 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4958 ir.reg &= 0x3;
4959 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4960 }
4961 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4962 break;
4963
4964 case 0x0fb0: /* cmpxchg */
4965 case 0x0fb1:
4966 if ((opcode & 1) == 0)
4967 ir.ot = OT_BYTE;
4968 else
4969 ir.ot = ir.dflag + OT_WORD;
4970 if (i386_record_modrm (&ir))
4971 return -1;
4972 if (ir.mod == 3)
4973 {
4974 ir.reg |= rex_r;
4975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4976 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4977 ir.reg &= 0x3;
4978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
4979 }
4980 else
4981 {
4982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4983 if (i386_record_lea_modrm (&ir))
4984 return -1;
4985 }
4986 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4987 break;
4988
4989 case 0x0fc7: /* cmpxchg8b */
4990 if (i386_record_modrm (&ir))
4991 return -1;
4992 if (ir.mod == 3)
4993 {
4994 ir.addr -= 2;
4995 opcode = opcode << 8 | ir.modrm;
4996 goto no_support;
4997 }
4998 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5000 if (i386_record_lea_modrm (&ir))
5001 return -1;
5002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5003 break;
5004
5005 case 0x50: /* push */
5006 case 0x51:
5007 case 0x52:
5008 case 0x53:
5009 case 0x54:
5010 case 0x55:
5011 case 0x56:
5012 case 0x57:
5013 case 0x68:
5014 case 0x6a:
5015 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5016 ir.dflag = 2;
5017 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5018 return -1;
5019 break;
5020
5021 case 0x06: /* push es */
5022 case 0x0e: /* push cs */
5023 case 0x16: /* push ss */
5024 case 0x1e: /* push ds */
5025 if (ir.regmap[X86_RECORD_R8_REGNUM])
5026 {
5027 ir.addr -= 1;
5028 goto no_support;
5029 }
5030 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5031 return -1;
5032 break;
5033
5034 case 0x0fa0: /* push fs */
5035 case 0x0fa8: /* push gs */
5036 if (ir.regmap[X86_RECORD_R8_REGNUM])
5037 {
5038 ir.addr -= 2;
5039 goto no_support;
5040 }
5041 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5042 return -1;
5043 break;
5044
5045 case 0x60: /* pusha */
5046 if (ir.regmap[X86_RECORD_R8_REGNUM])
5047 {
5048 ir.addr -= 1;
5049 goto no_support;
5050 }
5051 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
5052 return -1;
5053 break;
5054
5055 case 0x58: /* pop */
5056 case 0x59:
5057 case 0x5a:
5058 case 0x5b:
5059 case 0x5c:
5060 case 0x5d:
5061 case 0x5e:
5062 case 0x5f:
5063 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5064 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5065 break;
5066
5067 case 0x61: /* popa */
5068 if (ir.regmap[X86_RECORD_R8_REGNUM])
5069 {
5070 ir.addr -= 1;
5071 goto no_support;
5072 }
5073 for (regnum = X86_RECORD_REAX_REGNUM;
5074 regnum <= X86_RECORD_REDI_REGNUM;
5075 regnum++)
5076 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5077 break;
5078
5079 case 0x8f: /* pop */
5080 if (ir.regmap[X86_RECORD_R8_REGNUM])
5081 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5082 else
5083 ir.ot = ir.dflag + OT_WORD;
5084 if (i386_record_modrm (&ir))
5085 return -1;
5086 if (ir.mod == 3)
5087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5088 else
5089 {
5090 ir.popl_esp_hack = 1 << ir.ot;
5091 if (i386_record_lea_modrm (&ir))
5092 return -1;
5093 }
5094 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5095 break;
5096
5097 case 0xc8: /* enter */
5098 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5099 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5100 ir.dflag = 2;
5101 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5102 return -1;
5103 break;
5104
5105 case 0xc9: /* leave */
5106 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5107 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
5108 break;
5109
5110 case 0x07: /* pop es */
5111 if (ir.regmap[X86_RECORD_R8_REGNUM])
5112 {
5113 ir.addr -= 1;
5114 goto no_support;
5115 }
5116 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5117 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5118 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5119 break;
5120
5121 case 0x17: /* pop ss */
5122 if (ir.regmap[X86_RECORD_R8_REGNUM])
5123 {
5124 ir.addr -= 1;
5125 goto no_support;
5126 }
5127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5128 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5130 break;
5131
5132 case 0x1f: /* pop ds */
5133 if (ir.regmap[X86_RECORD_R8_REGNUM])
5134 {
5135 ir.addr -= 1;
5136 goto no_support;
5137 }
5138 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5140 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5141 break;
5142
5143 case 0x0fa1: /* pop fs */
5144 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5145 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5146 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5147 break;
5148
5149 case 0x0fa9: /* pop gs */
5150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5152 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5153 break;
5154
5155 case 0x88: /* mov */
5156 case 0x89:
5157 case 0xc6:
5158 case 0xc7:
5159 if ((opcode & 1) == 0)
5160 ir.ot = OT_BYTE;
5161 else
5162 ir.ot = ir.dflag + OT_WORD;
5163
5164 if (i386_record_modrm (&ir))
5165 return -1;
5166
5167 if (ir.mod != 3)
5168 {
5169 if (opcode == 0xc6 || opcode == 0xc7)
5170 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5171 if (i386_record_lea_modrm (&ir))
5172 return -1;
5173 }
5174 else
5175 {
5176 if (opcode == 0xc6 || opcode == 0xc7)
5177 ir.rm |= ir.rex_b;
5178 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5179 ir.rm &= 0x3;
5180 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5181 }
5182 break;
5183
5184 case 0x8a: /* mov */
5185 case 0x8b:
5186 if ((opcode & 1) == 0)
5187 ir.ot = OT_BYTE;
5188 else
5189 ir.ot = ir.dflag + OT_WORD;
5190 if (i386_record_modrm (&ir))
5191 return -1;
5192 ir.reg |= rex_r;
5193 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5194 ir.reg &= 0x3;
5195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5196 break;
5197
5198 case 0x8c: /* mov seg */
5199 if (i386_record_modrm (&ir))
5200 return -1;
5201 if (ir.reg > 5)
5202 {
5203 ir.addr -= 2;
5204 opcode = opcode << 8 | ir.modrm;
5205 goto no_support;
5206 }
5207
5208 if (ir.mod == 3)
5209 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5210 else
5211 {
5212 ir.ot = OT_WORD;
5213 if (i386_record_lea_modrm (&ir))
5214 return -1;
5215 }
5216 break;
5217
5218 case 0x8e: /* mov seg */
5219 if (i386_record_modrm (&ir))
5220 return -1;
5221 switch (ir.reg)
5222 {
5223 case 0:
5224 regnum = X86_RECORD_ES_REGNUM;
5225 break;
5226 case 2:
5227 regnum = X86_RECORD_SS_REGNUM;
5228 break;
5229 case 3:
5230 regnum = X86_RECORD_DS_REGNUM;
5231 break;
5232 case 4:
5233 regnum = X86_RECORD_FS_REGNUM;
5234 break;
5235 case 5:
5236 regnum = X86_RECORD_GS_REGNUM;
5237 break;
5238 default:
5239 ir.addr -= 2;
5240 opcode = opcode << 8 | ir.modrm;
5241 goto no_support;
5242 break;
5243 }
5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5246 break;
5247
5248 case 0x0fb6: /* movzbS */
5249 case 0x0fb7: /* movzwS */
5250 case 0x0fbe: /* movsbS */
5251 case 0x0fbf: /* movswS */
5252 if (i386_record_modrm (&ir))
5253 return -1;
5254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5255 break;
5256
5257 case 0x8d: /* lea */
5258 if (i386_record_modrm (&ir))
5259 return -1;
5260 if (ir.mod == 3)
5261 {
5262 ir.addr -= 2;
5263 opcode = opcode << 8 | ir.modrm;
5264 goto no_support;
5265 }
5266 ir.ot = ir.dflag;
5267 ir.reg |= rex_r;
5268 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5269 ir.reg &= 0x3;
5270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5271 break;
5272
5273 case 0xa0: /* mov EAX */
5274 case 0xa1:
5275
5276 case 0xd7: /* xlat */
5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5278 break;
5279
5280 case 0xa2: /* mov EAX */
5281 case 0xa3:
5282 if (ir.override >= 0)
5283 {
5284 if (record_full_memory_query)
5285 {
5286 int q;
5287
5288 target_terminal_ours ();
5289 q = yquery (_("\
5290 Process record ignores the memory change of instruction at address %s\n\
5291 because it can't get the value of the segment register.\n\
5292 Do you want to stop the program?"),
5293 paddress (gdbarch, ir.orig_addr));
5294 target_terminal_inferior ();
5295 if (q)
5296 return -1;
5297 }
5298 }
5299 else
5300 {
5301 if ((opcode & 1) == 0)
5302 ir.ot = OT_BYTE;
5303 else
5304 ir.ot = ir.dflag + OT_WORD;
5305 if (ir.aflag == 2)
5306 {
5307 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5308 return -1;
5309 ir.addr += 8;
5310 addr = extract_unsigned_integer (buf, 8, byte_order);
5311 }
5312 else if (ir.aflag)
5313 {
5314 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5315 return -1;
5316 ir.addr += 4;
5317 addr = extract_unsigned_integer (buf, 4, byte_order);
5318 }
5319 else
5320 {
5321 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5322 return -1;
5323 ir.addr += 2;
5324 addr = extract_unsigned_integer (buf, 2, byte_order);
5325 }
5326 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5327 return -1;
5328 }
5329 break;
5330
5331 case 0xb0: /* mov R, Ib */
5332 case 0xb1:
5333 case 0xb2:
5334 case 0xb3:
5335 case 0xb4:
5336 case 0xb5:
5337 case 0xb6:
5338 case 0xb7:
5339 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5340 ? ((opcode & 0x7) | ir.rex_b)
5341 : ((opcode & 0x7) & 0x3));
5342 break;
5343
5344 case 0xb8: /* mov R, Iv */
5345 case 0xb9:
5346 case 0xba:
5347 case 0xbb:
5348 case 0xbc:
5349 case 0xbd:
5350 case 0xbe:
5351 case 0xbf:
5352 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
5353 break;
5354
5355 case 0x91: /* xchg R, EAX */
5356 case 0x92:
5357 case 0x93:
5358 case 0x94:
5359 case 0x95:
5360 case 0x96:
5361 case 0x97:
5362 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5363 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
5364 break;
5365
5366 case 0x86: /* xchg Ev, Gv */
5367 case 0x87:
5368 if ((opcode & 1) == 0)
5369 ir.ot = OT_BYTE;
5370 else
5371 ir.ot = ir.dflag + OT_WORD;
5372 if (i386_record_modrm (&ir))
5373 return -1;
5374 if (ir.mod == 3)
5375 {
5376 ir.rm |= ir.rex_b;
5377 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5378 ir.rm &= 0x3;
5379 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5380 }
5381 else
5382 {
5383 if (i386_record_lea_modrm (&ir))
5384 return -1;
5385 }
5386 ir.reg |= rex_r;
5387 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5388 ir.reg &= 0x3;
5389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5390 break;
5391
5392 case 0xc4: /* les Gv */
5393 case 0xc5: /* lds Gv */
5394 if (ir.regmap[X86_RECORD_R8_REGNUM])
5395 {
5396 ir.addr -= 1;
5397 goto no_support;
5398 }
5399 /* FALLTHROUGH */
5400 case 0x0fb2: /* lss Gv */
5401 case 0x0fb4: /* lfs Gv */
5402 case 0x0fb5: /* lgs Gv */
5403 if (i386_record_modrm (&ir))
5404 return -1;
5405 if (ir.mod == 3)
5406 {
5407 if (opcode > 0xff)
5408 ir.addr -= 3;
5409 else
5410 ir.addr -= 2;
5411 opcode = opcode << 8 | ir.modrm;
5412 goto no_support;
5413 }
5414 switch (opcode)
5415 {
5416 case 0xc4: /* les Gv */
5417 regnum = X86_RECORD_ES_REGNUM;
5418 break;
5419 case 0xc5: /* lds Gv */
5420 regnum = X86_RECORD_DS_REGNUM;
5421 break;
5422 case 0x0fb2: /* lss Gv */
5423 regnum = X86_RECORD_SS_REGNUM;
5424 break;
5425 case 0x0fb4: /* lfs Gv */
5426 regnum = X86_RECORD_FS_REGNUM;
5427 break;
5428 case 0x0fb5: /* lgs Gv */
5429 regnum = X86_RECORD_GS_REGNUM;
5430 break;
5431 }
5432 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5434 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5435 break;
5436
5437 case 0xc0: /* shifts */
5438 case 0xc1:
5439 case 0xd0:
5440 case 0xd1:
5441 case 0xd2:
5442 case 0xd3:
5443 if ((opcode & 1) == 0)
5444 ir.ot = OT_BYTE;
5445 else
5446 ir.ot = ir.dflag + OT_WORD;
5447 if (i386_record_modrm (&ir))
5448 return -1;
5449 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5450 {
5451 if (i386_record_lea_modrm (&ir))
5452 return -1;
5453 }
5454 else
5455 {
5456 ir.rm |= ir.rex_b;
5457 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5458 ir.rm &= 0x3;
5459 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
5460 }
5461 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5462 break;
5463
5464 case 0x0fa4:
5465 case 0x0fa5:
5466 case 0x0fac:
5467 case 0x0fad:
5468 if (i386_record_modrm (&ir))
5469 return -1;
5470 if (ir.mod == 3)
5471 {
5472 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
5473 return -1;
5474 }
5475 else
5476 {
5477 if (i386_record_lea_modrm (&ir))
5478 return -1;
5479 }
5480 break;
5481
5482 case 0xd8: /* Floats. */
5483 case 0xd9:
5484 case 0xda:
5485 case 0xdb:
5486 case 0xdc:
5487 case 0xdd:
5488 case 0xde:
5489 case 0xdf:
5490 if (i386_record_modrm (&ir))
5491 return -1;
5492 ir.reg |= ((opcode & 7) << 3);
5493 if (ir.mod != 3)
5494 {
5495 /* Memory. */
5496 uint64_t addr64;
5497
5498 if (i386_record_lea_modrm_addr (&ir, &addr64))
5499 return -1;
5500 switch (ir.reg)
5501 {
5502 case 0x02:
5503 case 0x12:
5504 case 0x22:
5505 case 0x32:
5506 /* For fcom, ficom nothing to do. */
5507 break;
5508 case 0x03:
5509 case 0x13:
5510 case 0x23:
5511 case 0x33:
5512 /* For fcomp, ficomp pop FPU stack, store all. */
5513 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5514 return -1;
5515 break;
5516 case 0x00:
5517 case 0x01:
5518 case 0x04:
5519 case 0x05:
5520 case 0x06:
5521 case 0x07:
5522 case 0x10:
5523 case 0x11:
5524 case 0x14:
5525 case 0x15:
5526 case 0x16:
5527 case 0x17:
5528 case 0x20:
5529 case 0x21:
5530 case 0x24:
5531 case 0x25:
5532 case 0x26:
5533 case 0x27:
5534 case 0x30:
5535 case 0x31:
5536 case 0x34:
5537 case 0x35:
5538 case 0x36:
5539 case 0x37:
5540 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5541 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5542 of code, always affects st(0) register. */
5543 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5544 return -1;
5545 break;
5546 case 0x08:
5547 case 0x0a:
5548 case 0x0b:
5549 case 0x18:
5550 case 0x19:
5551 case 0x1a:
5552 case 0x1b:
5553 case 0x1d:
5554 case 0x28:
5555 case 0x29:
5556 case 0x2a:
5557 case 0x2b:
5558 case 0x38:
5559 case 0x39:
5560 case 0x3a:
5561 case 0x3b:
5562 case 0x3c:
5563 case 0x3d:
5564 switch (ir.reg & 7)
5565 {
5566 case 0:
5567 /* Handling fld, fild. */
5568 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5569 return -1;
5570 break;
5571 case 1:
5572 switch (ir.reg >> 4)
5573 {
5574 case 0:
5575 if (record_full_arch_list_add_mem (addr64, 4))
5576 return -1;
5577 break;
5578 case 2:
5579 if (record_full_arch_list_add_mem (addr64, 8))
5580 return -1;
5581 break;
5582 case 3:
5583 break;
5584 default:
5585 if (record_full_arch_list_add_mem (addr64, 2))
5586 return -1;
5587 break;
5588 }
5589 break;
5590 default:
5591 switch (ir.reg >> 4)
5592 {
5593 case 0:
5594 if (record_full_arch_list_add_mem (addr64, 4))
5595 return -1;
5596 if (3 == (ir.reg & 7))
5597 {
5598 /* For fstp m32fp. */
5599 if (i386_record_floats (gdbarch, &ir,
5600 I386_SAVE_FPU_REGS))
5601 return -1;
5602 }
5603 break;
5604 case 1:
5605 if (record_full_arch_list_add_mem (addr64, 4))
5606 return -1;
5607 if ((3 == (ir.reg & 7))
5608 || (5 == (ir.reg & 7))
5609 || (7 == (ir.reg & 7)))
5610 {
5611 /* For fstp insn. */
5612 if (i386_record_floats (gdbarch, &ir,
5613 I386_SAVE_FPU_REGS))
5614 return -1;
5615 }
5616 break;
5617 case 2:
5618 if (record_full_arch_list_add_mem (addr64, 8))
5619 return -1;
5620 if (3 == (ir.reg & 7))
5621 {
5622 /* For fstp m64fp. */
5623 if (i386_record_floats (gdbarch, &ir,
5624 I386_SAVE_FPU_REGS))
5625 return -1;
5626 }
5627 break;
5628 case 3:
5629 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
5630 {
5631 /* For fistp, fbld, fild, fbstp. */
5632 if (i386_record_floats (gdbarch, &ir,
5633 I386_SAVE_FPU_REGS))
5634 return -1;
5635 }
5636 /* Fall through */
5637 default:
5638 if (record_full_arch_list_add_mem (addr64, 2))
5639 return -1;
5640 break;
5641 }
5642 break;
5643 }
5644 break;
5645 case 0x0c:
5646 /* Insn fldenv. */
5647 if (i386_record_floats (gdbarch, &ir,
5648 I386_SAVE_FPU_ENV_REG_STACK))
5649 return -1;
5650 break;
5651 case 0x0d:
5652 /* Insn fldcw. */
5653 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
5654 return -1;
5655 break;
5656 case 0x2c:
5657 /* Insn frstor. */
5658 if (i386_record_floats (gdbarch, &ir,
5659 I386_SAVE_FPU_ENV_REG_STACK))
5660 return -1;
5661 break;
5662 case 0x0e:
5663 if (ir.dflag)
5664 {
5665 if (record_full_arch_list_add_mem (addr64, 28))
5666 return -1;
5667 }
5668 else
5669 {
5670 if (record_full_arch_list_add_mem (addr64, 14))
5671 return -1;
5672 }
5673 break;
5674 case 0x0f:
5675 case 0x2f:
5676 if (record_full_arch_list_add_mem (addr64, 2))
5677 return -1;
5678 /* Insn fstp, fbstp. */
5679 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5680 return -1;
5681 break;
5682 case 0x1f:
5683 case 0x3e:
5684 if (record_full_arch_list_add_mem (addr64, 10))
5685 return -1;
5686 break;
5687 case 0x2e:
5688 if (ir.dflag)
5689 {
5690 if (record_full_arch_list_add_mem (addr64, 28))
5691 return -1;
5692 addr64 += 28;
5693 }
5694 else
5695 {
5696 if (record_full_arch_list_add_mem (addr64, 14))
5697 return -1;
5698 addr64 += 14;
5699 }
5700 if (record_full_arch_list_add_mem (addr64, 80))
5701 return -1;
5702 /* Insn fsave. */
5703 if (i386_record_floats (gdbarch, &ir,
5704 I386_SAVE_FPU_ENV_REG_STACK))
5705 return -1;
5706 break;
5707 case 0x3f:
5708 if (record_full_arch_list_add_mem (addr64, 8))
5709 return -1;
5710 /* Insn fistp. */
5711 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5712 return -1;
5713 break;
5714 default:
5715 ir.addr -= 2;
5716 opcode = opcode << 8 | ir.modrm;
5717 goto no_support;
5718 break;
5719 }
5720 }
5721 /* Opcode is an extension of modR/M byte. */
5722 else
5723 {
5724 switch (opcode)
5725 {
5726 case 0xd8:
5727 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5728 return -1;
5729 break;
5730 case 0xd9:
5731 if (0x0c == (ir.modrm >> 4))
5732 {
5733 if ((ir.modrm & 0x0f) <= 7)
5734 {
5735 if (i386_record_floats (gdbarch, &ir,
5736 I386_SAVE_FPU_REGS))
5737 return -1;
5738 }
5739 else
5740 {
5741 if (i386_record_floats (gdbarch, &ir,
5742 I387_ST0_REGNUM (tdep)))
5743 return -1;
5744 /* If only st(0) is changing, then we have already
5745 recorded. */
5746 if ((ir.modrm & 0x0f) - 0x08)
5747 {
5748 if (i386_record_floats (gdbarch, &ir,
5749 I387_ST0_REGNUM (tdep) +
5750 ((ir.modrm & 0x0f) - 0x08)))
5751 return -1;
5752 }
5753 }
5754 }
5755 else
5756 {
5757 switch (ir.modrm)
5758 {
5759 case 0xe0:
5760 case 0xe1:
5761 case 0xf0:
5762 case 0xf5:
5763 case 0xf8:
5764 case 0xfa:
5765 case 0xfc:
5766 case 0xfe:
5767 case 0xff:
5768 if (i386_record_floats (gdbarch, &ir,
5769 I387_ST0_REGNUM (tdep)))
5770 return -1;
5771 break;
5772 case 0xf1:
5773 case 0xf2:
5774 case 0xf3:
5775 case 0xf4:
5776 case 0xf6:
5777 case 0xf7:
5778 case 0xe8:
5779 case 0xe9:
5780 case 0xea:
5781 case 0xeb:
5782 case 0xec:
5783 case 0xed:
5784 case 0xee:
5785 case 0xf9:
5786 case 0xfb:
5787 if (i386_record_floats (gdbarch, &ir,
5788 I386_SAVE_FPU_REGS))
5789 return -1;
5790 break;
5791 case 0xfd:
5792 if (i386_record_floats (gdbarch, &ir,
5793 I387_ST0_REGNUM (tdep)))
5794 return -1;
5795 if (i386_record_floats (gdbarch, &ir,
5796 I387_ST0_REGNUM (tdep) + 1))
5797 return -1;
5798 break;
5799 }
5800 }
5801 break;
5802 case 0xda:
5803 if (0xe9 == ir.modrm)
5804 {
5805 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5806 return -1;
5807 }
5808 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5809 {
5810 if (i386_record_floats (gdbarch, &ir,
5811 I387_ST0_REGNUM (tdep)))
5812 return -1;
5813 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5814 {
5815 if (i386_record_floats (gdbarch, &ir,
5816 I387_ST0_REGNUM (tdep) +
5817 (ir.modrm & 0x0f)))
5818 return -1;
5819 }
5820 else if ((ir.modrm & 0x0f) - 0x08)
5821 {
5822 if (i386_record_floats (gdbarch, &ir,
5823 I387_ST0_REGNUM (tdep) +
5824 ((ir.modrm & 0x0f) - 0x08)))
5825 return -1;
5826 }
5827 }
5828 break;
5829 case 0xdb:
5830 if (0xe3 == ir.modrm)
5831 {
5832 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5833 return -1;
5834 }
5835 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5836 {
5837 if (i386_record_floats (gdbarch, &ir,
5838 I387_ST0_REGNUM (tdep)))
5839 return -1;
5840 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5841 {
5842 if (i386_record_floats (gdbarch, &ir,
5843 I387_ST0_REGNUM (tdep) +
5844 (ir.modrm & 0x0f)))
5845 return -1;
5846 }
5847 else if ((ir.modrm & 0x0f) - 0x08)
5848 {
5849 if (i386_record_floats (gdbarch, &ir,
5850 I387_ST0_REGNUM (tdep) +
5851 ((ir.modrm & 0x0f) - 0x08)))
5852 return -1;
5853 }
5854 }
5855 break;
5856 case 0xdc:
5857 if ((0x0c == ir.modrm >> 4)
5858 || (0x0d == ir.modrm >> 4)
5859 || (0x0f == ir.modrm >> 4))
5860 {
5861 if ((ir.modrm & 0x0f) <= 7)
5862 {
5863 if (i386_record_floats (gdbarch, &ir,
5864 I387_ST0_REGNUM (tdep) +
5865 (ir.modrm & 0x0f)))
5866 return -1;
5867 }
5868 else
5869 {
5870 if (i386_record_floats (gdbarch, &ir,
5871 I387_ST0_REGNUM (tdep) +
5872 ((ir.modrm & 0x0f) - 0x08)))
5873 return -1;
5874 }
5875 }
5876 break;
5877 case 0xdd:
5878 if (0x0c == ir.modrm >> 4)
5879 {
5880 if (i386_record_floats (gdbarch, &ir,
5881 I387_FTAG_REGNUM (tdep)))
5882 return -1;
5883 }
5884 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5885 {
5886 if ((ir.modrm & 0x0f) <= 7)
5887 {
5888 if (i386_record_floats (gdbarch, &ir,
5889 I387_ST0_REGNUM (tdep) +
5890 (ir.modrm & 0x0f)))
5891 return -1;
5892 }
5893 else
5894 {
5895 if (i386_record_floats (gdbarch, &ir,
5896 I386_SAVE_FPU_REGS))
5897 return -1;
5898 }
5899 }
5900 break;
5901 case 0xde:
5902 if ((0x0c == ir.modrm >> 4)
5903 || (0x0e == ir.modrm >> 4)
5904 || (0x0f == ir.modrm >> 4)
5905 || (0xd9 == ir.modrm))
5906 {
5907 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5908 return -1;
5909 }
5910 break;
5911 case 0xdf:
5912 if (0xe0 == ir.modrm)
5913 {
5914 if (record_full_arch_list_add_reg (ir.regcache,
5915 I386_EAX_REGNUM))
5916 return -1;
5917 }
5918 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5919 {
5920 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5921 return -1;
5922 }
5923 break;
5924 }
5925 }
5926 break;
5927 /* string ops */
5928 case 0xa4: /* movsS */
5929 case 0xa5:
5930 case 0xaa: /* stosS */
5931 case 0xab:
5932 case 0x6c: /* insS */
5933 case 0x6d:
5934 regcache_raw_read_unsigned (ir.regcache,
5935 ir.regmap[X86_RECORD_RECX_REGNUM],
5936 &addr);
5937 if (addr)
5938 {
5939 ULONGEST es, ds;
5940
5941 if ((opcode & 1) == 0)
5942 ir.ot = OT_BYTE;
5943 else
5944 ir.ot = ir.dflag + OT_WORD;
5945 regcache_raw_read_unsigned (ir.regcache,
5946 ir.regmap[X86_RECORD_REDI_REGNUM],
5947 &addr);
5948
5949 regcache_raw_read_unsigned (ir.regcache,
5950 ir.regmap[X86_RECORD_ES_REGNUM],
5951 &es);
5952 regcache_raw_read_unsigned (ir.regcache,
5953 ir.regmap[X86_RECORD_DS_REGNUM],
5954 &ds);
5955 if (ir.aflag && (es != ds))
5956 {
5957 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5958 if (record_full_memory_query)
5959 {
5960 int q;
5961
5962 target_terminal_ours ();
5963 q = yquery (_("\
5964 Process record ignores the memory change of instruction at address %s\n\
5965 because it can't get the value of the segment register.\n\
5966 Do you want to stop the program?"),
5967 paddress (gdbarch, ir.orig_addr));
5968 target_terminal_inferior ();
5969 if (q)
5970 return -1;
5971 }
5972 }
5973 else
5974 {
5975 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
5976 return -1;
5977 }
5978
5979 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5981 if (opcode == 0xa4 || opcode == 0xa5)
5982 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5983 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5984 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5985 }
5986 break;
5987
5988 case 0xa6: /* cmpsS */
5989 case 0xa7:
5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5991 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5992 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5993 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5994 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0xac: /* lodsS */
5998 case 0xad:
5999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6000 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6001 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6002 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6004 break;
6005
6006 case 0xae: /* scasS */
6007 case 0xaf:
6008 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6009 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6010 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6012 break;
6013
6014 case 0x6e: /* outsS */
6015 case 0x6f:
6016 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6017 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
6018 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6019 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6020 break;
6021
6022 case 0xe4: /* port I/O */
6023 case 0xe5:
6024 case 0xec:
6025 case 0xed:
6026 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6027 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6028 break;
6029
6030 case 0xe6:
6031 case 0xe7:
6032 case 0xee:
6033 case 0xef:
6034 break;
6035
6036 /* control */
6037 case 0xc2: /* ret im */
6038 case 0xc3: /* ret */
6039 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6040 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6041 break;
6042
6043 case 0xca: /* lret im */
6044 case 0xcb: /* lret */
6045 case 0xcf: /* iret */
6046 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6047 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6048 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6049 break;
6050
6051 case 0xe8: /* call im */
6052 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6053 ir.dflag = 2;
6054 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6055 return -1;
6056 break;
6057
6058 case 0x9a: /* lcall im */
6059 if (ir.regmap[X86_RECORD_R8_REGNUM])
6060 {
6061 ir.addr -= 1;
6062 goto no_support;
6063 }
6064 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6065 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6066 return -1;
6067 break;
6068
6069 case 0xe9: /* jmp im */
6070 case 0xea: /* ljmp im */
6071 case 0xeb: /* jmp Jb */
6072 case 0x70: /* jcc Jb */
6073 case 0x71:
6074 case 0x72:
6075 case 0x73:
6076 case 0x74:
6077 case 0x75:
6078 case 0x76:
6079 case 0x77:
6080 case 0x78:
6081 case 0x79:
6082 case 0x7a:
6083 case 0x7b:
6084 case 0x7c:
6085 case 0x7d:
6086 case 0x7e:
6087 case 0x7f:
6088 case 0x0f80: /* jcc Jv */
6089 case 0x0f81:
6090 case 0x0f82:
6091 case 0x0f83:
6092 case 0x0f84:
6093 case 0x0f85:
6094 case 0x0f86:
6095 case 0x0f87:
6096 case 0x0f88:
6097 case 0x0f89:
6098 case 0x0f8a:
6099 case 0x0f8b:
6100 case 0x0f8c:
6101 case 0x0f8d:
6102 case 0x0f8e:
6103 case 0x0f8f:
6104 break;
6105
6106 case 0x0f90: /* setcc Gv */
6107 case 0x0f91:
6108 case 0x0f92:
6109 case 0x0f93:
6110 case 0x0f94:
6111 case 0x0f95:
6112 case 0x0f96:
6113 case 0x0f97:
6114 case 0x0f98:
6115 case 0x0f99:
6116 case 0x0f9a:
6117 case 0x0f9b:
6118 case 0x0f9c:
6119 case 0x0f9d:
6120 case 0x0f9e:
6121 case 0x0f9f:
6122 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6123 ir.ot = OT_BYTE;
6124 if (i386_record_modrm (&ir))
6125 return -1;
6126 if (ir.mod == 3)
6127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6128 : (ir.rm & 0x3));
6129 else
6130 {
6131 if (i386_record_lea_modrm (&ir))
6132 return -1;
6133 }
6134 break;
6135
6136 case 0x0f40: /* cmov Gv, Ev */
6137 case 0x0f41:
6138 case 0x0f42:
6139 case 0x0f43:
6140 case 0x0f44:
6141 case 0x0f45:
6142 case 0x0f46:
6143 case 0x0f47:
6144 case 0x0f48:
6145 case 0x0f49:
6146 case 0x0f4a:
6147 case 0x0f4b:
6148 case 0x0f4c:
6149 case 0x0f4d:
6150 case 0x0f4e:
6151 case 0x0f4f:
6152 if (i386_record_modrm (&ir))
6153 return -1;
6154 ir.reg |= rex_r;
6155 if (ir.dflag == OT_BYTE)
6156 ir.reg &= 0x3;
6157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
6158 break;
6159
6160 /* flags */
6161 case 0x9c: /* pushf */
6162 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6163 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6164 ir.dflag = 2;
6165 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6166 return -1;
6167 break;
6168
6169 case 0x9d: /* popf */
6170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6172 break;
6173
6174 case 0x9e: /* sahf */
6175 if (ir.regmap[X86_RECORD_R8_REGNUM])
6176 {
6177 ir.addr -= 1;
6178 goto no_support;
6179 }
6180 /* FALLTHROUGH */
6181 case 0xf5: /* cmc */
6182 case 0xf8: /* clc */
6183 case 0xf9: /* stc */
6184 case 0xfc: /* cld */
6185 case 0xfd: /* std */
6186 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6187 break;
6188
6189 case 0x9f: /* lahf */
6190 if (ir.regmap[X86_RECORD_R8_REGNUM])
6191 {
6192 ir.addr -= 1;
6193 goto no_support;
6194 }
6195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6196 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6197 break;
6198
6199 /* bit operations */
6200 case 0x0fba: /* bt/bts/btr/btc Gv, im */
6201 ir.ot = ir.dflag + OT_WORD;
6202 if (i386_record_modrm (&ir))
6203 return -1;
6204 if (ir.reg < 4)
6205 {
6206 ir.addr -= 2;
6207 opcode = opcode << 8 | ir.modrm;
6208 goto no_support;
6209 }
6210 if (ir.reg != 4)
6211 {
6212 if (ir.mod == 3)
6213 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6214 else
6215 {
6216 if (i386_record_lea_modrm (&ir))
6217 return -1;
6218 }
6219 }
6220 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6221 break;
6222
6223 case 0x0fa3: /* bt Gv, Ev */
6224 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6225 break;
6226
6227 case 0x0fab: /* bts */
6228 case 0x0fb3: /* btr */
6229 case 0x0fbb: /* btc */
6230 ir.ot = ir.dflag + OT_WORD;
6231 if (i386_record_modrm (&ir))
6232 return -1;
6233 if (ir.mod == 3)
6234 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6235 else
6236 {
6237 uint64_t addr64;
6238 if (i386_record_lea_modrm_addr (&ir, &addr64))
6239 return -1;
6240 regcache_raw_read_unsigned (ir.regcache,
6241 ir.regmap[ir.reg | rex_r],
6242 &addr);
6243 switch (ir.dflag)
6244 {
6245 case 0:
6246 addr64 += ((int16_t) addr >> 4) << 4;
6247 break;
6248 case 1:
6249 addr64 += ((int32_t) addr >> 5) << 5;
6250 break;
6251 case 2:
6252 addr64 += ((int64_t) addr >> 6) << 6;
6253 break;
6254 }
6255 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
6256 return -1;
6257 if (i386_record_lea_modrm (&ir))
6258 return -1;
6259 }
6260 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6261 break;
6262
6263 case 0x0fbc: /* bsf */
6264 case 0x0fbd: /* bsr */
6265 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6266 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6267 break;
6268
6269 /* bcd */
6270 case 0x27: /* daa */
6271 case 0x2f: /* das */
6272 case 0x37: /* aaa */
6273 case 0x3f: /* aas */
6274 case 0xd4: /* aam */
6275 case 0xd5: /* aad */
6276 if (ir.regmap[X86_RECORD_R8_REGNUM])
6277 {
6278 ir.addr -= 1;
6279 goto no_support;
6280 }
6281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6282 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6283 break;
6284
6285 /* misc */
6286 case 0x90: /* nop */
6287 if (prefixes & PREFIX_LOCK)
6288 {
6289 ir.addr -= 1;
6290 goto no_support;
6291 }
6292 break;
6293
6294 case 0x9b: /* fwait */
6295 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6296 return -1;
6297 opcode = (uint32_t) opcode8;
6298 ir.addr++;
6299 goto reswitch;
6300 break;
6301
6302 /* XXX */
6303 case 0xcc: /* int3 */
6304 printf_unfiltered (_("Process record does not support instruction "
6305 "int3.\n"));
6306 ir.addr -= 1;
6307 goto no_support;
6308 break;
6309
6310 /* XXX */
6311 case 0xcd: /* int */
6312 {
6313 int ret;
6314 uint8_t interrupt;
6315 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6316 return -1;
6317 ir.addr++;
6318 if (interrupt != 0x80
6319 || tdep->i386_intx80_record == NULL)
6320 {
6321 printf_unfiltered (_("Process record does not support "
6322 "instruction int 0x%02x.\n"),
6323 interrupt);
6324 ir.addr -= 2;
6325 goto no_support;
6326 }
6327 ret = tdep->i386_intx80_record (ir.regcache);
6328 if (ret)
6329 return ret;
6330 }
6331 break;
6332
6333 /* XXX */
6334 case 0xce: /* into */
6335 printf_unfiltered (_("Process record does not support "
6336 "instruction into.\n"));
6337 ir.addr -= 1;
6338 goto no_support;
6339 break;
6340
6341 case 0xfa: /* cli */
6342 case 0xfb: /* sti */
6343 break;
6344
6345 case 0x62: /* bound */
6346 printf_unfiltered (_("Process record does not support "
6347 "instruction bound.\n"));
6348 ir.addr -= 1;
6349 goto no_support;
6350 break;
6351
6352 case 0x0fc8: /* bswap reg */
6353 case 0x0fc9:
6354 case 0x0fca:
6355 case 0x0fcb:
6356 case 0x0fcc:
6357 case 0x0fcd:
6358 case 0x0fce:
6359 case 0x0fcf:
6360 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
6361 break;
6362
6363 case 0xd6: /* salc */
6364 if (ir.regmap[X86_RECORD_R8_REGNUM])
6365 {
6366 ir.addr -= 1;
6367 goto no_support;
6368 }
6369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6371 break;
6372
6373 case 0xe0: /* loopnz */
6374 case 0xe1: /* loopz */
6375 case 0xe2: /* loop */
6376 case 0xe3: /* jecxz */
6377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6378 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6379 break;
6380
6381 case 0x0f30: /* wrmsr */
6382 printf_unfiltered (_("Process record does not support "
6383 "instruction wrmsr.\n"));
6384 ir.addr -= 2;
6385 goto no_support;
6386 break;
6387
6388 case 0x0f32: /* rdmsr */
6389 printf_unfiltered (_("Process record does not support "
6390 "instruction rdmsr.\n"));
6391 ir.addr -= 2;
6392 goto no_support;
6393 break;
6394
6395 case 0x0f31: /* rdtsc */
6396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6397 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6398 break;
6399
6400 case 0x0f34: /* sysenter */
6401 {
6402 int ret;
6403 if (ir.regmap[X86_RECORD_R8_REGNUM])
6404 {
6405 ir.addr -= 2;
6406 goto no_support;
6407 }
6408 if (tdep->i386_sysenter_record == NULL)
6409 {
6410 printf_unfiltered (_("Process record does not support "
6411 "instruction sysenter.\n"));
6412 ir.addr -= 2;
6413 goto no_support;
6414 }
6415 ret = tdep->i386_sysenter_record (ir.regcache);
6416 if (ret)
6417 return ret;
6418 }
6419 break;
6420
6421 case 0x0f35: /* sysexit */
6422 printf_unfiltered (_("Process record does not support "
6423 "instruction sysexit.\n"));
6424 ir.addr -= 2;
6425 goto no_support;
6426 break;
6427
6428 case 0x0f05: /* syscall */
6429 {
6430 int ret;
6431 if (tdep->i386_syscall_record == NULL)
6432 {
6433 printf_unfiltered (_("Process record does not support "
6434 "instruction syscall.\n"));
6435 ir.addr -= 2;
6436 goto no_support;
6437 }
6438 ret = tdep->i386_syscall_record (ir.regcache);
6439 if (ret)
6440 return ret;
6441 }
6442 break;
6443
6444 case 0x0f07: /* sysret */
6445 printf_unfiltered (_("Process record does not support "
6446 "instruction sysret.\n"));
6447 ir.addr -= 2;
6448 goto no_support;
6449 break;
6450
6451 case 0x0fa2: /* cpuid */
6452 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6456 break;
6457
6458 case 0xf4: /* hlt */
6459 printf_unfiltered (_("Process record does not support "
6460 "instruction hlt.\n"));
6461 ir.addr -= 1;
6462 goto no_support;
6463 break;
6464
6465 case 0x0f00:
6466 if (i386_record_modrm (&ir))
6467 return -1;
6468 switch (ir.reg)
6469 {
6470 case 0: /* sldt */
6471 case 1: /* str */
6472 if (ir.mod == 3)
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6474 else
6475 {
6476 ir.ot = OT_WORD;
6477 if (i386_record_lea_modrm (&ir))
6478 return -1;
6479 }
6480 break;
6481 case 2: /* lldt */
6482 case 3: /* ltr */
6483 break;
6484 case 4: /* verr */
6485 case 5: /* verw */
6486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6487 break;
6488 default:
6489 ir.addr -= 3;
6490 opcode = opcode << 8 | ir.modrm;
6491 goto no_support;
6492 break;
6493 }
6494 break;
6495
6496 case 0x0f01:
6497 if (i386_record_modrm (&ir))
6498 return -1;
6499 switch (ir.reg)
6500 {
6501 case 0: /* sgdt */
6502 {
6503 uint64_t addr64;
6504
6505 if (ir.mod == 3)
6506 {
6507 ir.addr -= 3;
6508 opcode = opcode << 8 | ir.modrm;
6509 goto no_support;
6510 }
6511 if (ir.override >= 0)
6512 {
6513 if (record_full_memory_query)
6514 {
6515 int q;
6516
6517 target_terminal_ours ();
6518 q = yquery (_("\
6519 Process record ignores the memory change of instruction at address %s\n\
6520 because it can't get the value of the segment register.\n\
6521 Do you want to stop the program?"),
6522 paddress (gdbarch, ir.orig_addr));
6523 target_terminal_inferior ();
6524 if (q)
6525 return -1;
6526 }
6527 }
6528 else
6529 {
6530 if (i386_record_lea_modrm_addr (&ir, &addr64))
6531 return -1;
6532 if (record_full_arch_list_add_mem (addr64, 2))
6533 return -1;
6534 addr64 += 2;
6535 if (ir.regmap[X86_RECORD_R8_REGNUM])
6536 {
6537 if (record_full_arch_list_add_mem (addr64, 8))
6538 return -1;
6539 }
6540 else
6541 {
6542 if (record_full_arch_list_add_mem (addr64, 4))
6543 return -1;
6544 }
6545 }
6546 }
6547 break;
6548 case 1:
6549 if (ir.mod == 3)
6550 {
6551 switch (ir.rm)
6552 {
6553 case 0: /* monitor */
6554 break;
6555 case 1: /* mwait */
6556 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6557 break;
6558 default:
6559 ir.addr -= 3;
6560 opcode = opcode << 8 | ir.modrm;
6561 goto no_support;
6562 break;
6563 }
6564 }
6565 else
6566 {
6567 /* sidt */
6568 if (ir.override >= 0)
6569 {
6570 if (record_full_memory_query)
6571 {
6572 int q;
6573
6574 target_terminal_ours ();
6575 q = yquery (_("\
6576 Process record ignores the memory change of instruction at address %s\n\
6577 because it can't get the value of the segment register.\n\
6578 Do you want to stop the program?"),
6579 paddress (gdbarch, ir.orig_addr));
6580 target_terminal_inferior ();
6581 if (q)
6582 return -1;
6583 }
6584 }
6585 else
6586 {
6587 uint64_t addr64;
6588
6589 if (i386_record_lea_modrm_addr (&ir, &addr64))
6590 return -1;
6591 if (record_full_arch_list_add_mem (addr64, 2))
6592 return -1;
6593 addr64 += 2;
6594 if (ir.regmap[X86_RECORD_R8_REGNUM])
6595 {
6596 if (record_full_arch_list_add_mem (addr64, 8))
6597 return -1;
6598 }
6599 else
6600 {
6601 if (record_full_arch_list_add_mem (addr64, 4))
6602 return -1;
6603 }
6604 }
6605 }
6606 break;
6607 case 2: /* lgdt */
6608 if (ir.mod == 3)
6609 {
6610 /* xgetbv */
6611 if (ir.rm == 0)
6612 {
6613 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6614 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6615 break;
6616 }
6617 /* xsetbv */
6618 else if (ir.rm == 1)
6619 break;
6620 }
6621 case 3: /* lidt */
6622 if (ir.mod == 3)
6623 {
6624 ir.addr -= 3;
6625 opcode = opcode << 8 | ir.modrm;
6626 goto no_support;
6627 }
6628 break;
6629 case 4: /* smsw */
6630 if (ir.mod == 3)
6631 {
6632 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
6633 return -1;
6634 }
6635 else
6636 {
6637 ir.ot = OT_WORD;
6638 if (i386_record_lea_modrm (&ir))
6639 return -1;
6640 }
6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6642 break;
6643 case 6: /* lmsw */
6644 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6645 break;
6646 case 7: /* invlpg */
6647 if (ir.mod == 3)
6648 {
6649 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
6651 else
6652 {
6653 ir.addr -= 3;
6654 opcode = opcode << 8 | ir.modrm;
6655 goto no_support;
6656 }
6657 }
6658 else
6659 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6660 break;
6661 default:
6662 ir.addr -= 3;
6663 opcode = opcode << 8 | ir.modrm;
6664 goto no_support;
6665 break;
6666 }
6667 break;
6668
6669 case 0x0f08: /* invd */
6670 case 0x0f09: /* wbinvd */
6671 break;
6672
6673 case 0x63: /* arpl */
6674 if (i386_record_modrm (&ir))
6675 return -1;
6676 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
6677 {
6678 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
6679 ? (ir.reg | rex_r) : ir.rm);
6680 }
6681 else
6682 {
6683 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
6684 if (i386_record_lea_modrm (&ir))
6685 return -1;
6686 }
6687 if (!ir.regmap[X86_RECORD_R8_REGNUM])
6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6689 break;
6690
6691 case 0x0f02: /* lar */
6692 case 0x0f03: /* lsl */
6693 if (i386_record_modrm (&ir))
6694 return -1;
6695 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6697 break;
6698
6699 case 0x0f18:
6700 if (i386_record_modrm (&ir))
6701 return -1;
6702 if (ir.mod == 3 && ir.reg == 3)
6703 {
6704 ir.addr -= 3;
6705 opcode = opcode << 8 | ir.modrm;
6706 goto no_support;
6707 }
6708 break;
6709
6710 case 0x0f19:
6711 case 0x0f1a:
6712 case 0x0f1b:
6713 case 0x0f1c:
6714 case 0x0f1d:
6715 case 0x0f1e:
6716 case 0x0f1f:
6717 /* nop (multi byte) */
6718 break;
6719
6720 case 0x0f20: /* mov reg, crN */
6721 case 0x0f22: /* mov crN, reg */
6722 if (i386_record_modrm (&ir))
6723 return -1;
6724 if ((ir.modrm & 0xc0) != 0xc0)
6725 {
6726 ir.addr -= 3;
6727 opcode = opcode << 8 | ir.modrm;
6728 goto no_support;
6729 }
6730 switch (ir.reg)
6731 {
6732 case 0:
6733 case 2:
6734 case 3:
6735 case 4:
6736 case 8:
6737 if (opcode & 2)
6738 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6739 else
6740 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6741 break;
6742 default:
6743 ir.addr -= 3;
6744 opcode = opcode << 8 | ir.modrm;
6745 goto no_support;
6746 break;
6747 }
6748 break;
6749
6750 case 0x0f21: /* mov reg, drN */
6751 case 0x0f23: /* mov drN, reg */
6752 if (i386_record_modrm (&ir))
6753 return -1;
6754 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6755 || ir.reg == 5 || ir.reg >= 8)
6756 {
6757 ir.addr -= 3;
6758 opcode = opcode << 8 | ir.modrm;
6759 goto no_support;
6760 }
6761 if (opcode & 2)
6762 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6763 else
6764 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6765 break;
6766
6767 case 0x0f06: /* clts */
6768 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6769 break;
6770
6771 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6772
6773 case 0x0f0d: /* 3DNow! prefetch */
6774 break;
6775
6776 case 0x0f0e: /* 3DNow! femms */
6777 case 0x0f77: /* emms */
6778 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6779 goto no_support;
6780 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6781 break;
6782
6783 case 0x0f0f: /* 3DNow! data */
6784 if (i386_record_modrm (&ir))
6785 return -1;
6786 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6787 return -1;
6788 ir.addr++;
6789 switch (opcode8)
6790 {
6791 case 0x0c: /* 3DNow! pi2fw */
6792 case 0x0d: /* 3DNow! pi2fd */
6793 case 0x1c: /* 3DNow! pf2iw */
6794 case 0x1d: /* 3DNow! pf2id */
6795 case 0x8a: /* 3DNow! pfnacc */
6796 case 0x8e: /* 3DNow! pfpnacc */
6797 case 0x90: /* 3DNow! pfcmpge */
6798 case 0x94: /* 3DNow! pfmin */
6799 case 0x96: /* 3DNow! pfrcp */
6800 case 0x97: /* 3DNow! pfrsqrt */
6801 case 0x9a: /* 3DNow! pfsub */
6802 case 0x9e: /* 3DNow! pfadd */
6803 case 0xa0: /* 3DNow! pfcmpgt */
6804 case 0xa4: /* 3DNow! pfmax */
6805 case 0xa6: /* 3DNow! pfrcpit1 */
6806 case 0xa7: /* 3DNow! pfrsqit1 */
6807 case 0xaa: /* 3DNow! pfsubr */
6808 case 0xae: /* 3DNow! pfacc */
6809 case 0xb0: /* 3DNow! pfcmpeq */
6810 case 0xb4: /* 3DNow! pfmul */
6811 case 0xb6: /* 3DNow! pfrcpit2 */
6812 case 0xb7: /* 3DNow! pmulhrw */
6813 case 0xbb: /* 3DNow! pswapd */
6814 case 0xbf: /* 3DNow! pavgusb */
6815 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6816 goto no_support_3dnow_data;
6817 record_full_arch_list_add_reg (ir.regcache, ir.reg);
6818 break;
6819
6820 default:
6821 no_support_3dnow_data:
6822 opcode = (opcode << 8) | opcode8;
6823 goto no_support;
6824 break;
6825 }
6826 break;
6827
6828 case 0x0faa: /* rsm */
6829 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6830 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6831 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6835 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6836 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6837 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6838 break;
6839
6840 case 0x0fae:
6841 if (i386_record_modrm (&ir))
6842 return -1;
6843 switch(ir.reg)
6844 {
6845 case 0: /* fxsave */
6846 {
6847 uint64_t tmpu64;
6848
6849 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6850 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6851 return -1;
6852 if (record_full_arch_list_add_mem (tmpu64, 512))
6853 return -1;
6854 }
6855 break;
6856
6857 case 1: /* fxrstor */
6858 {
6859 int i;
6860
6861 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6862
6863 for (i = I387_MM0_REGNUM (tdep);
6864 i386_mmx_regnum_p (gdbarch, i); i++)
6865 record_full_arch_list_add_reg (ir.regcache, i);
6866
6867 for (i = I387_XMM0_REGNUM (tdep);
6868 i386_xmm_regnum_p (gdbarch, i); i++)
6869 record_full_arch_list_add_reg (ir.regcache, i);
6870
6871 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6872 record_full_arch_list_add_reg (ir.regcache,
6873 I387_MXCSR_REGNUM(tdep));
6874
6875 for (i = I387_ST0_REGNUM (tdep);
6876 i386_fp_regnum_p (gdbarch, i); i++)
6877 record_full_arch_list_add_reg (ir.regcache, i);
6878
6879 for (i = I387_FCTRL_REGNUM (tdep);
6880 i386_fpc_regnum_p (gdbarch, i); i++)
6881 record_full_arch_list_add_reg (ir.regcache, i);
6882 }
6883 break;
6884
6885 case 2: /* ldmxcsr */
6886 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6887 goto no_support;
6888 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6889 break;
6890
6891 case 3: /* stmxcsr */
6892 ir.ot = OT_LONG;
6893 if (i386_record_lea_modrm (&ir))
6894 return -1;
6895 break;
6896
6897 case 5: /* lfence */
6898 case 6: /* mfence */
6899 case 7: /* sfence clflush */
6900 break;
6901
6902 default:
6903 opcode = (opcode << 8) | ir.modrm;
6904 goto no_support;
6905 break;
6906 }
6907 break;
6908
6909 case 0x0fc3: /* movnti */
6910 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6911 if (i386_record_modrm (&ir))
6912 return -1;
6913 if (ir.mod == 3)
6914 goto no_support;
6915 ir.reg |= rex_r;
6916 if (i386_record_lea_modrm (&ir))
6917 return -1;
6918 break;
6919
6920 /* Add prefix to opcode. */
6921 case 0x0f10:
6922 case 0x0f11:
6923 case 0x0f12:
6924 case 0x0f13:
6925 case 0x0f14:
6926 case 0x0f15:
6927 case 0x0f16:
6928 case 0x0f17:
6929 case 0x0f28:
6930 case 0x0f29:
6931 case 0x0f2a:
6932 case 0x0f2b:
6933 case 0x0f2c:
6934 case 0x0f2d:
6935 case 0x0f2e:
6936 case 0x0f2f:
6937 case 0x0f38:
6938 case 0x0f39:
6939 case 0x0f3a:
6940 case 0x0f50:
6941 case 0x0f51:
6942 case 0x0f52:
6943 case 0x0f53:
6944 case 0x0f54:
6945 case 0x0f55:
6946 case 0x0f56:
6947 case 0x0f57:
6948 case 0x0f58:
6949 case 0x0f59:
6950 case 0x0f5a:
6951 case 0x0f5b:
6952 case 0x0f5c:
6953 case 0x0f5d:
6954 case 0x0f5e:
6955 case 0x0f5f:
6956 case 0x0f60:
6957 case 0x0f61:
6958 case 0x0f62:
6959 case 0x0f63:
6960 case 0x0f64:
6961 case 0x0f65:
6962 case 0x0f66:
6963 case 0x0f67:
6964 case 0x0f68:
6965 case 0x0f69:
6966 case 0x0f6a:
6967 case 0x0f6b:
6968 case 0x0f6c:
6969 case 0x0f6d:
6970 case 0x0f6e:
6971 case 0x0f6f:
6972 case 0x0f70:
6973 case 0x0f71:
6974 case 0x0f72:
6975 case 0x0f73:
6976 case 0x0f74:
6977 case 0x0f75:
6978 case 0x0f76:
6979 case 0x0f7c:
6980 case 0x0f7d:
6981 case 0x0f7e:
6982 case 0x0f7f:
6983 case 0x0fb8:
6984 case 0x0fc2:
6985 case 0x0fc4:
6986 case 0x0fc5:
6987 case 0x0fc6:
6988 case 0x0fd0:
6989 case 0x0fd1:
6990 case 0x0fd2:
6991 case 0x0fd3:
6992 case 0x0fd4:
6993 case 0x0fd5:
6994 case 0x0fd6:
6995 case 0x0fd7:
6996 case 0x0fd8:
6997 case 0x0fd9:
6998 case 0x0fda:
6999 case 0x0fdb:
7000 case 0x0fdc:
7001 case 0x0fdd:
7002 case 0x0fde:
7003 case 0x0fdf:
7004 case 0x0fe0:
7005 case 0x0fe1:
7006 case 0x0fe2:
7007 case 0x0fe3:
7008 case 0x0fe4:
7009 case 0x0fe5:
7010 case 0x0fe6:
7011 case 0x0fe7:
7012 case 0x0fe8:
7013 case 0x0fe9:
7014 case 0x0fea:
7015 case 0x0feb:
7016 case 0x0fec:
7017 case 0x0fed:
7018 case 0x0fee:
7019 case 0x0fef:
7020 case 0x0ff0:
7021 case 0x0ff1:
7022 case 0x0ff2:
7023 case 0x0ff3:
7024 case 0x0ff4:
7025 case 0x0ff5:
7026 case 0x0ff6:
7027 case 0x0ff7:
7028 case 0x0ff8:
7029 case 0x0ff9:
7030 case 0x0ffa:
7031 case 0x0ffb:
7032 case 0x0ffc:
7033 case 0x0ffd:
7034 case 0x0ffe:
7035 switch (prefixes)
7036 {
7037 case PREFIX_REPNZ:
7038 opcode |= 0xf20000;
7039 break;
7040 case PREFIX_DATA:
7041 opcode |= 0x660000;
7042 break;
7043 case PREFIX_REPZ:
7044 opcode |= 0xf30000;
7045 break;
7046 }
7047 reswitch_prefix_add:
7048 switch (opcode)
7049 {
7050 case 0x0f38:
7051 case 0x660f38:
7052 case 0xf20f38:
7053 case 0x0f3a:
7054 case 0x660f3a:
7055 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7056 return -1;
7057 ir.addr++;
7058 opcode = (uint32_t) opcode8 | opcode << 8;
7059 goto reswitch_prefix_add;
7060 break;
7061
7062 case 0x0f10: /* movups */
7063 case 0x660f10: /* movupd */
7064 case 0xf30f10: /* movss */
7065 case 0xf20f10: /* movsd */
7066 case 0x0f12: /* movlps */
7067 case 0x660f12: /* movlpd */
7068 case 0xf30f12: /* movsldup */
7069 case 0xf20f12: /* movddup */
7070 case 0x0f14: /* unpcklps */
7071 case 0x660f14: /* unpcklpd */
7072 case 0x0f15: /* unpckhps */
7073 case 0x660f15: /* unpckhpd */
7074 case 0x0f16: /* movhps */
7075 case 0x660f16: /* movhpd */
7076 case 0xf30f16: /* movshdup */
7077 case 0x0f28: /* movaps */
7078 case 0x660f28: /* movapd */
7079 case 0x0f2a: /* cvtpi2ps */
7080 case 0x660f2a: /* cvtpi2pd */
7081 case 0xf30f2a: /* cvtsi2ss */
7082 case 0xf20f2a: /* cvtsi2sd */
7083 case 0x0f2c: /* cvttps2pi */
7084 case 0x660f2c: /* cvttpd2pi */
7085 case 0x0f2d: /* cvtps2pi */
7086 case 0x660f2d: /* cvtpd2pi */
7087 case 0x660f3800: /* pshufb */
7088 case 0x660f3801: /* phaddw */
7089 case 0x660f3802: /* phaddd */
7090 case 0x660f3803: /* phaddsw */
7091 case 0x660f3804: /* pmaddubsw */
7092 case 0x660f3805: /* phsubw */
7093 case 0x660f3806: /* phsubd */
7094 case 0x660f3807: /* phsubsw */
7095 case 0x660f3808: /* psignb */
7096 case 0x660f3809: /* psignw */
7097 case 0x660f380a: /* psignd */
7098 case 0x660f380b: /* pmulhrsw */
7099 case 0x660f3810: /* pblendvb */
7100 case 0x660f3814: /* blendvps */
7101 case 0x660f3815: /* blendvpd */
7102 case 0x660f381c: /* pabsb */
7103 case 0x660f381d: /* pabsw */
7104 case 0x660f381e: /* pabsd */
7105 case 0x660f3820: /* pmovsxbw */
7106 case 0x660f3821: /* pmovsxbd */
7107 case 0x660f3822: /* pmovsxbq */
7108 case 0x660f3823: /* pmovsxwd */
7109 case 0x660f3824: /* pmovsxwq */
7110 case 0x660f3825: /* pmovsxdq */
7111 case 0x660f3828: /* pmuldq */
7112 case 0x660f3829: /* pcmpeqq */
7113 case 0x660f382a: /* movntdqa */
7114 case 0x660f3a08: /* roundps */
7115 case 0x660f3a09: /* roundpd */
7116 case 0x660f3a0a: /* roundss */
7117 case 0x660f3a0b: /* roundsd */
7118 case 0x660f3a0c: /* blendps */
7119 case 0x660f3a0d: /* blendpd */
7120 case 0x660f3a0e: /* pblendw */
7121 case 0x660f3a0f: /* palignr */
7122 case 0x660f3a20: /* pinsrb */
7123 case 0x660f3a21: /* insertps */
7124 case 0x660f3a22: /* pinsrd pinsrq */
7125 case 0x660f3a40: /* dpps */
7126 case 0x660f3a41: /* dppd */
7127 case 0x660f3a42: /* mpsadbw */
7128 case 0x660f3a60: /* pcmpestrm */
7129 case 0x660f3a61: /* pcmpestri */
7130 case 0x660f3a62: /* pcmpistrm */
7131 case 0x660f3a63: /* pcmpistri */
7132 case 0x0f51: /* sqrtps */
7133 case 0x660f51: /* sqrtpd */
7134 case 0xf20f51: /* sqrtsd */
7135 case 0xf30f51: /* sqrtss */
7136 case 0x0f52: /* rsqrtps */
7137 case 0xf30f52: /* rsqrtss */
7138 case 0x0f53: /* rcpps */
7139 case 0xf30f53: /* rcpss */
7140 case 0x0f54: /* andps */
7141 case 0x660f54: /* andpd */
7142 case 0x0f55: /* andnps */
7143 case 0x660f55: /* andnpd */
7144 case 0x0f56: /* orps */
7145 case 0x660f56: /* orpd */
7146 case 0x0f57: /* xorps */
7147 case 0x660f57: /* xorpd */
7148 case 0x0f58: /* addps */
7149 case 0x660f58: /* addpd */
7150 case 0xf20f58: /* addsd */
7151 case 0xf30f58: /* addss */
7152 case 0x0f59: /* mulps */
7153 case 0x660f59: /* mulpd */
7154 case 0xf20f59: /* mulsd */
7155 case 0xf30f59: /* mulss */
7156 case 0x0f5a: /* cvtps2pd */
7157 case 0x660f5a: /* cvtpd2ps */
7158 case 0xf20f5a: /* cvtsd2ss */
7159 case 0xf30f5a: /* cvtss2sd */
7160 case 0x0f5b: /* cvtdq2ps */
7161 case 0x660f5b: /* cvtps2dq */
7162 case 0xf30f5b: /* cvttps2dq */
7163 case 0x0f5c: /* subps */
7164 case 0x660f5c: /* subpd */
7165 case 0xf20f5c: /* subsd */
7166 case 0xf30f5c: /* subss */
7167 case 0x0f5d: /* minps */
7168 case 0x660f5d: /* minpd */
7169 case 0xf20f5d: /* minsd */
7170 case 0xf30f5d: /* minss */
7171 case 0x0f5e: /* divps */
7172 case 0x660f5e: /* divpd */
7173 case 0xf20f5e: /* divsd */
7174 case 0xf30f5e: /* divss */
7175 case 0x0f5f: /* maxps */
7176 case 0x660f5f: /* maxpd */
7177 case 0xf20f5f: /* maxsd */
7178 case 0xf30f5f: /* maxss */
7179 case 0x660f60: /* punpcklbw */
7180 case 0x660f61: /* punpcklwd */
7181 case 0x660f62: /* punpckldq */
7182 case 0x660f63: /* packsswb */
7183 case 0x660f64: /* pcmpgtb */
7184 case 0x660f65: /* pcmpgtw */
7185 case 0x660f66: /* pcmpgtd */
7186 case 0x660f67: /* packuswb */
7187 case 0x660f68: /* punpckhbw */
7188 case 0x660f69: /* punpckhwd */
7189 case 0x660f6a: /* punpckhdq */
7190 case 0x660f6b: /* packssdw */
7191 case 0x660f6c: /* punpcklqdq */
7192 case 0x660f6d: /* punpckhqdq */
7193 case 0x660f6e: /* movd */
7194 case 0x660f6f: /* movdqa */
7195 case 0xf30f6f: /* movdqu */
7196 case 0x660f70: /* pshufd */
7197 case 0xf20f70: /* pshuflw */
7198 case 0xf30f70: /* pshufhw */
7199 case 0x660f74: /* pcmpeqb */
7200 case 0x660f75: /* pcmpeqw */
7201 case 0x660f76: /* pcmpeqd */
7202 case 0x660f7c: /* haddpd */
7203 case 0xf20f7c: /* haddps */
7204 case 0x660f7d: /* hsubpd */
7205 case 0xf20f7d: /* hsubps */
7206 case 0xf30f7e: /* movq */
7207 case 0x0fc2: /* cmpps */
7208 case 0x660fc2: /* cmppd */
7209 case 0xf20fc2: /* cmpsd */
7210 case 0xf30fc2: /* cmpss */
7211 case 0x660fc4: /* pinsrw */
7212 case 0x0fc6: /* shufps */
7213 case 0x660fc6: /* shufpd */
7214 case 0x660fd0: /* addsubpd */
7215 case 0xf20fd0: /* addsubps */
7216 case 0x660fd1: /* psrlw */
7217 case 0x660fd2: /* psrld */
7218 case 0x660fd3: /* psrlq */
7219 case 0x660fd4: /* paddq */
7220 case 0x660fd5: /* pmullw */
7221 case 0xf30fd6: /* movq2dq */
7222 case 0x660fd8: /* psubusb */
7223 case 0x660fd9: /* psubusw */
7224 case 0x660fda: /* pminub */
7225 case 0x660fdb: /* pand */
7226 case 0x660fdc: /* paddusb */
7227 case 0x660fdd: /* paddusw */
7228 case 0x660fde: /* pmaxub */
7229 case 0x660fdf: /* pandn */
7230 case 0x660fe0: /* pavgb */
7231 case 0x660fe1: /* psraw */
7232 case 0x660fe2: /* psrad */
7233 case 0x660fe3: /* pavgw */
7234 case 0x660fe4: /* pmulhuw */
7235 case 0x660fe5: /* pmulhw */
7236 case 0x660fe6: /* cvttpd2dq */
7237 case 0xf20fe6: /* cvtpd2dq */
7238 case 0xf30fe6: /* cvtdq2pd */
7239 case 0x660fe8: /* psubsb */
7240 case 0x660fe9: /* psubsw */
7241 case 0x660fea: /* pminsw */
7242 case 0x660feb: /* por */
7243 case 0x660fec: /* paddsb */
7244 case 0x660fed: /* paddsw */
7245 case 0x660fee: /* pmaxsw */
7246 case 0x660fef: /* pxor */
7247 case 0xf20ff0: /* lddqu */
7248 case 0x660ff1: /* psllw */
7249 case 0x660ff2: /* pslld */
7250 case 0x660ff3: /* psllq */
7251 case 0x660ff4: /* pmuludq */
7252 case 0x660ff5: /* pmaddwd */
7253 case 0x660ff6: /* psadbw */
7254 case 0x660ff8: /* psubb */
7255 case 0x660ff9: /* psubw */
7256 case 0x660ffa: /* psubd */
7257 case 0x660ffb: /* psubq */
7258 case 0x660ffc: /* paddb */
7259 case 0x660ffd: /* paddw */
7260 case 0x660ffe: /* paddd */
7261 if (i386_record_modrm (&ir))
7262 return -1;
7263 ir.reg |= rex_r;
7264 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
7265 goto no_support;
7266 record_full_arch_list_add_reg (ir.regcache,
7267 I387_XMM0_REGNUM (tdep) + ir.reg);
7268 if ((opcode & 0xfffffffc) == 0x660f3a60)
7269 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7270 break;
7271
7272 case 0x0f11: /* movups */
7273 case 0x660f11: /* movupd */
7274 case 0xf30f11: /* movss */
7275 case 0xf20f11: /* movsd */
7276 case 0x0f13: /* movlps */
7277 case 0x660f13: /* movlpd */
7278 case 0x0f17: /* movhps */
7279 case 0x660f17: /* movhpd */
7280 case 0x0f29: /* movaps */
7281 case 0x660f29: /* movapd */
7282 case 0x660f3a14: /* pextrb */
7283 case 0x660f3a15: /* pextrw */
7284 case 0x660f3a16: /* pextrd pextrq */
7285 case 0x660f3a17: /* extractps */
7286 case 0x660f7f: /* movdqa */
7287 case 0xf30f7f: /* movdqu */
7288 if (i386_record_modrm (&ir))
7289 return -1;
7290 if (ir.mod == 3)
7291 {
7292 if (opcode == 0x0f13 || opcode == 0x660f13
7293 || opcode == 0x0f17 || opcode == 0x660f17)
7294 goto no_support;
7295 ir.rm |= ir.rex_b;
7296 if (!i386_xmm_regnum_p (gdbarch,
7297 I387_XMM0_REGNUM (tdep) + ir.rm))
7298 goto no_support;
7299 record_full_arch_list_add_reg (ir.regcache,
7300 I387_XMM0_REGNUM (tdep) + ir.rm);
7301 }
7302 else
7303 {
7304 switch (opcode)
7305 {
7306 case 0x660f3a14:
7307 ir.ot = OT_BYTE;
7308 break;
7309 case 0x660f3a15:
7310 ir.ot = OT_WORD;
7311 break;
7312 case 0x660f3a16:
7313 ir.ot = OT_LONG;
7314 break;
7315 case 0x660f3a17:
7316 ir.ot = OT_QUAD;
7317 break;
7318 default:
7319 ir.ot = OT_DQUAD;
7320 break;
7321 }
7322 if (i386_record_lea_modrm (&ir))
7323 return -1;
7324 }
7325 break;
7326
7327 case 0x0f2b: /* movntps */
7328 case 0x660f2b: /* movntpd */
7329 case 0x0fe7: /* movntq */
7330 case 0x660fe7: /* movntdq */
7331 if (ir.mod == 3)
7332 goto no_support;
7333 if (opcode == 0x0fe7)
7334 ir.ot = OT_QUAD;
7335 else
7336 ir.ot = OT_DQUAD;
7337 if (i386_record_lea_modrm (&ir))
7338 return -1;
7339 break;
7340
7341 case 0xf30f2c: /* cvttss2si */
7342 case 0xf20f2c: /* cvttsd2si */
7343 case 0xf30f2d: /* cvtss2si */
7344 case 0xf20f2d: /* cvtsd2si */
7345 case 0xf20f38f0: /* crc32 */
7346 case 0xf20f38f1: /* crc32 */
7347 case 0x0f50: /* movmskps */
7348 case 0x660f50: /* movmskpd */
7349 case 0x0fc5: /* pextrw */
7350 case 0x660fc5: /* pextrw */
7351 case 0x0fd7: /* pmovmskb */
7352 case 0x660fd7: /* pmovmskb */
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7354 break;
7355
7356 case 0x0f3800: /* pshufb */
7357 case 0x0f3801: /* phaddw */
7358 case 0x0f3802: /* phaddd */
7359 case 0x0f3803: /* phaddsw */
7360 case 0x0f3804: /* pmaddubsw */
7361 case 0x0f3805: /* phsubw */
7362 case 0x0f3806: /* phsubd */
7363 case 0x0f3807: /* phsubsw */
7364 case 0x0f3808: /* psignb */
7365 case 0x0f3809: /* psignw */
7366 case 0x0f380a: /* psignd */
7367 case 0x0f380b: /* pmulhrsw */
7368 case 0x0f381c: /* pabsb */
7369 case 0x0f381d: /* pabsw */
7370 case 0x0f381e: /* pabsd */
7371 case 0x0f382b: /* packusdw */
7372 case 0x0f3830: /* pmovzxbw */
7373 case 0x0f3831: /* pmovzxbd */
7374 case 0x0f3832: /* pmovzxbq */
7375 case 0x0f3833: /* pmovzxwd */
7376 case 0x0f3834: /* pmovzxwq */
7377 case 0x0f3835: /* pmovzxdq */
7378 case 0x0f3837: /* pcmpgtq */
7379 case 0x0f3838: /* pminsb */
7380 case 0x0f3839: /* pminsd */
7381 case 0x0f383a: /* pminuw */
7382 case 0x0f383b: /* pminud */
7383 case 0x0f383c: /* pmaxsb */
7384 case 0x0f383d: /* pmaxsd */
7385 case 0x0f383e: /* pmaxuw */
7386 case 0x0f383f: /* pmaxud */
7387 case 0x0f3840: /* pmulld */
7388 case 0x0f3841: /* phminposuw */
7389 case 0x0f3a0f: /* palignr */
7390 case 0x0f60: /* punpcklbw */
7391 case 0x0f61: /* punpcklwd */
7392 case 0x0f62: /* punpckldq */
7393 case 0x0f63: /* packsswb */
7394 case 0x0f64: /* pcmpgtb */
7395 case 0x0f65: /* pcmpgtw */
7396 case 0x0f66: /* pcmpgtd */
7397 case 0x0f67: /* packuswb */
7398 case 0x0f68: /* punpckhbw */
7399 case 0x0f69: /* punpckhwd */
7400 case 0x0f6a: /* punpckhdq */
7401 case 0x0f6b: /* packssdw */
7402 case 0x0f6e: /* movd */
7403 case 0x0f6f: /* movq */
7404 case 0x0f70: /* pshufw */
7405 case 0x0f74: /* pcmpeqb */
7406 case 0x0f75: /* pcmpeqw */
7407 case 0x0f76: /* pcmpeqd */
7408 case 0x0fc4: /* pinsrw */
7409 case 0x0fd1: /* psrlw */
7410 case 0x0fd2: /* psrld */
7411 case 0x0fd3: /* psrlq */
7412 case 0x0fd4: /* paddq */
7413 case 0x0fd5: /* pmullw */
7414 case 0xf20fd6: /* movdq2q */
7415 case 0x0fd8: /* psubusb */
7416 case 0x0fd9: /* psubusw */
7417 case 0x0fda: /* pminub */
7418 case 0x0fdb: /* pand */
7419 case 0x0fdc: /* paddusb */
7420 case 0x0fdd: /* paddusw */
7421 case 0x0fde: /* pmaxub */
7422 case 0x0fdf: /* pandn */
7423 case 0x0fe0: /* pavgb */
7424 case 0x0fe1: /* psraw */
7425 case 0x0fe2: /* psrad */
7426 case 0x0fe3: /* pavgw */
7427 case 0x0fe4: /* pmulhuw */
7428 case 0x0fe5: /* pmulhw */
7429 case 0x0fe8: /* psubsb */
7430 case 0x0fe9: /* psubsw */
7431 case 0x0fea: /* pminsw */
7432 case 0x0feb: /* por */
7433 case 0x0fec: /* paddsb */
7434 case 0x0fed: /* paddsw */
7435 case 0x0fee: /* pmaxsw */
7436 case 0x0fef: /* pxor */
7437 case 0x0ff1: /* psllw */
7438 case 0x0ff2: /* pslld */
7439 case 0x0ff3: /* psllq */
7440 case 0x0ff4: /* pmuludq */
7441 case 0x0ff5: /* pmaddwd */
7442 case 0x0ff6: /* psadbw */
7443 case 0x0ff8: /* psubb */
7444 case 0x0ff9: /* psubw */
7445 case 0x0ffa: /* psubd */
7446 case 0x0ffb: /* psubq */
7447 case 0x0ffc: /* paddb */
7448 case 0x0ffd: /* paddw */
7449 case 0x0ffe: /* paddd */
7450 if (i386_record_modrm (&ir))
7451 return -1;
7452 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7453 goto no_support;
7454 record_full_arch_list_add_reg (ir.regcache,
7455 I387_MM0_REGNUM (tdep) + ir.reg);
7456 break;
7457
7458 case 0x0f71: /* psllw */
7459 case 0x0f72: /* pslld */
7460 case 0x0f73: /* psllq */
7461 if (i386_record_modrm (&ir))
7462 return -1;
7463 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7464 goto no_support;
7465 record_full_arch_list_add_reg (ir.regcache,
7466 I387_MM0_REGNUM (tdep) + ir.rm);
7467 break;
7468
7469 case 0x660f71: /* psllw */
7470 case 0x660f72: /* pslld */
7471 case 0x660f73: /* psllq */
7472 if (i386_record_modrm (&ir))
7473 return -1;
7474 ir.rm |= ir.rex_b;
7475 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
7476 goto no_support;
7477 record_full_arch_list_add_reg (ir.regcache,
7478 I387_XMM0_REGNUM (tdep) + ir.rm);
7479 break;
7480
7481 case 0x0f7e: /* movd */
7482 case 0x660f7e: /* movd */
7483 if (i386_record_modrm (&ir))
7484 return -1;
7485 if (ir.mod == 3)
7486 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7487 else
7488 {
7489 if (ir.dflag == 2)
7490 ir.ot = OT_QUAD;
7491 else
7492 ir.ot = OT_LONG;
7493 if (i386_record_lea_modrm (&ir))
7494 return -1;
7495 }
7496 break;
7497
7498 case 0x0f7f: /* movq */
7499 if (i386_record_modrm (&ir))
7500 return -1;
7501 if (ir.mod == 3)
7502 {
7503 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7504 goto no_support;
7505 record_full_arch_list_add_reg (ir.regcache,
7506 I387_MM0_REGNUM (tdep) + ir.rm);
7507 }
7508 else
7509 {
7510 ir.ot = OT_QUAD;
7511 if (i386_record_lea_modrm (&ir))
7512 return -1;
7513 }
7514 break;
7515
7516 case 0xf30fb8: /* popcnt */
7517 if (i386_record_modrm (&ir))
7518 return -1;
7519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7521 break;
7522
7523 case 0x660fd6: /* movq */
7524 if (i386_record_modrm (&ir))
7525 return -1;
7526 if (ir.mod == 3)
7527 {
7528 ir.rm |= ir.rex_b;
7529 if (!i386_xmm_regnum_p (gdbarch,
7530 I387_XMM0_REGNUM (tdep) + ir.rm))
7531 goto no_support;
7532 record_full_arch_list_add_reg (ir.regcache,
7533 I387_XMM0_REGNUM (tdep) + ir.rm);
7534 }
7535 else
7536 {
7537 ir.ot = OT_QUAD;
7538 if (i386_record_lea_modrm (&ir))
7539 return -1;
7540 }
7541 break;
7542
7543 case 0x660f3817: /* ptest */
7544 case 0x0f2e: /* ucomiss */
7545 case 0x660f2e: /* ucomisd */
7546 case 0x0f2f: /* comiss */
7547 case 0x660f2f: /* comisd */
7548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7549 break;
7550
7551 case 0x0ff7: /* maskmovq */
7552 regcache_raw_read_unsigned (ir.regcache,
7553 ir.regmap[X86_RECORD_REDI_REGNUM],
7554 &addr);
7555 if (record_full_arch_list_add_mem (addr, 64))
7556 return -1;
7557 break;
7558
7559 case 0x660ff7: /* maskmovdqu */
7560 regcache_raw_read_unsigned (ir.regcache,
7561 ir.regmap[X86_RECORD_REDI_REGNUM],
7562 &addr);
7563 if (record_full_arch_list_add_mem (addr, 128))
7564 return -1;
7565 break;
7566
7567 default:
7568 goto no_support;
7569 break;
7570 }
7571 break;
7572
7573 default:
7574 goto no_support;
7575 break;
7576 }
7577
7578 /* In the future, maybe still need to deal with need_dasm. */
7579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7580 if (record_full_arch_list_add_end ())
7581 return -1;
7582
7583 return 0;
7584
7585 no_support:
7586 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7587 "at address %s.\n"),
7588 (unsigned int) (opcode),
7589 paddress (gdbarch, ir.orig_addr));
7590 return -1;
7591 }
7592
7593 static const int i386_record_regmap[] =
7594 {
7595 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
7596 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
7597 0, 0, 0, 0, 0, 0, 0, 0,
7598 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
7599 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
7600 };
7601
7602 /* Check that the given address appears suitable for a fast
7603 tracepoint, which on x86-64 means that we need an instruction of at
7604 least 5 bytes, so that we can overwrite it with a 4-byte-offset
7605 jump and not have to worry about program jumps to an address in the
7606 middle of the tracepoint jump. On x86, it may be possible to use
7607 4-byte jumps with a 2-byte offset to a trampoline located in the
7608 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7609 of instruction to replace, and 0 if not, plus an explanatory
7610 string. */
7611
7612 static int
7613 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
7614 CORE_ADDR addr, int *isize, char **msg)
7615 {
7616 int len, jumplen;
7617 static struct ui_file *gdb_null = NULL;
7618
7619 /* Ask the target for the minimum instruction length supported. */
7620 jumplen = target_get_min_fast_tracepoint_insn_len ();
7621
7622 if (jumplen < 0)
7623 {
7624 /* If the target does not support the get_min_fast_tracepoint_insn_len
7625 operation, assume that fast tracepoints will always be implemented
7626 using 4-byte relative jumps on both x86 and x86-64. */
7627 jumplen = 5;
7628 }
7629 else if (jumplen == 0)
7630 {
7631 /* If the target does support get_min_fast_tracepoint_insn_len but
7632 returns zero, then the IPA has not loaded yet. In this case,
7633 we optimistically assume that truncated 2-byte relative jumps
7634 will be available on x86, and compensate later if this assumption
7635 turns out to be incorrect. On x86-64 architectures, 4-byte relative
7636 jumps will always be used. */
7637 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
7638 }
7639
7640 /* Dummy file descriptor for the disassembler. */
7641 if (!gdb_null)
7642 gdb_null = ui_file_new ();
7643
7644 /* Check for fit. */
7645 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
7646 if (isize)
7647 *isize = len;
7648
7649 if (len < jumplen)
7650 {
7651 /* Return a bit of target-specific detail to add to the caller's
7652 generic failure message. */
7653 if (msg)
7654 *msg = xstrprintf (_("; instruction is only %d bytes long, "
7655 "need at least %d bytes for the jump"),
7656 len, jumplen);
7657 return 0;
7658 }
7659 else
7660 {
7661 if (msg)
7662 *msg = NULL;
7663 return 1;
7664 }
7665 }
7666
7667 static int
7668 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
7669 struct tdesc_arch_data *tdesc_data)
7670 {
7671 const struct target_desc *tdesc = tdep->tdesc;
7672 const struct tdesc_feature *feature_core;
7673 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx;
7674 int i, num_regs, valid_p;
7675
7676 if (! tdesc_has_registers (tdesc))
7677 return 0;
7678
7679 /* Get core registers. */
7680 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
7681 if (feature_core == NULL)
7682 return 0;
7683
7684 /* Get SSE registers. */
7685 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
7686
7687 /* Try AVX registers. */
7688 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
7689
7690 /* Try MPX registers. */
7691 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
7692
7693 valid_p = 1;
7694
7695 /* The XCR0 bits. */
7696 if (feature_avx)
7697 {
7698 /* AVX register description requires SSE register description. */
7699 if (!feature_sse)
7700 return 0;
7701
7702 tdep->xcr0 = I386_XSTATE_AVX_MASK;
7703
7704 /* It may have been set by OSABI initialization function. */
7705 if (tdep->num_ymm_regs == 0)
7706 {
7707 tdep->ymmh_register_names = i386_ymmh_names;
7708 tdep->num_ymm_regs = 8;
7709 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7710 }
7711
7712 for (i = 0; i < tdep->num_ymm_regs; i++)
7713 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7714 tdep->ymm0h_regnum + i,
7715 tdep->ymmh_register_names[i]);
7716 }
7717 else if (feature_sse)
7718 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7719 else
7720 {
7721 tdep->xcr0 = I386_XSTATE_X87_MASK;
7722 tdep->num_xmm_regs = 0;
7723 }
7724
7725 num_regs = tdep->num_core_regs;
7726 for (i = 0; i < num_regs; i++)
7727 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7728 tdep->register_names[i]);
7729
7730 if (feature_sse)
7731 {
7732 /* Need to include %mxcsr, so add one. */
7733 num_regs += tdep->num_xmm_regs + 1;
7734 for (; i < num_regs; i++)
7735 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7736 tdep->register_names[i]);
7737 }
7738
7739 if (feature_mpx)
7740 {
7741 tdep->xcr0 = I386_XSTATE_MPX_MASK;
7742
7743 if (tdep->bnd0r_regnum < 0)
7744 {
7745 tdep->mpx_register_names = i386_mpx_names;
7746 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
7747 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
7748 }
7749
7750 for (i = 0; i < I387_NUM_MPX_REGS; i++)
7751 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
7752 I387_BND0R_REGNUM (tdep) + i,
7753 tdep->mpx_register_names[i]);
7754 }
7755
7756 return valid_p;
7757 }
7758
7759 \f
7760 static struct gdbarch *
7761 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7762 {
7763 struct gdbarch_tdep *tdep;
7764 struct gdbarch *gdbarch;
7765 struct tdesc_arch_data *tdesc_data;
7766 const struct target_desc *tdesc;
7767 int mm0_regnum;
7768 int ymm0_regnum;
7769 int bnd0_regnum;
7770 int num_bnd_cooked;
7771
7772 /* If there is already a candidate, use it. */
7773 arches = gdbarch_list_lookup_by_info (arches, &info);
7774 if (arches != NULL)
7775 return arches->gdbarch;
7776
7777 /* Allocate space for the new architecture. */
7778 tdep = XCALLOC (1, struct gdbarch_tdep);
7779 gdbarch = gdbarch_alloc (&info, tdep);
7780
7781 /* General-purpose registers. */
7782 tdep->gregset = NULL;
7783 tdep->gregset_reg_offset = NULL;
7784 tdep->gregset_num_regs = I386_NUM_GREGS;
7785 tdep->sizeof_gregset = 0;
7786
7787 /* Floating-point registers. */
7788 tdep->fpregset = NULL;
7789 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7790
7791 tdep->xstateregset = NULL;
7792
7793 /* The default settings include the FPU registers, the MMX registers
7794 and the SSE registers. This can be overridden for a specific ABI
7795 by adjusting the members `st0_regnum', `mm0_regnum' and
7796 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7797 will show up in the output of "info all-registers". */
7798
7799 tdep->st0_regnum = I386_ST0_REGNUM;
7800
7801 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7802 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7803
7804 tdep->jb_pc_offset = -1;
7805 tdep->struct_return = pcc_struct_return;
7806 tdep->sigtramp_start = 0;
7807 tdep->sigtramp_end = 0;
7808 tdep->sigtramp_p = i386_sigtramp_p;
7809 tdep->sigcontext_addr = NULL;
7810 tdep->sc_reg_offset = NULL;
7811 tdep->sc_pc_offset = -1;
7812 tdep->sc_sp_offset = -1;
7813
7814 tdep->xsave_xcr0_offset = -1;
7815
7816 tdep->record_regmap = i386_record_regmap;
7817
7818 set_gdbarch_long_long_align_bit (gdbarch, 32);
7819
7820 /* The format used for `long double' on almost all i386 targets is
7821 the i387 extended floating-point format. In fact, of all targets
7822 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7823 on having a `long double' that's not `long' at all. */
7824 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7825
7826 /* Although the i387 extended floating-point has only 80 significant
7827 bits, a `long double' actually takes up 96, probably to enforce
7828 alignment. */
7829 set_gdbarch_long_double_bit (gdbarch, 96);
7830
7831 /* Register numbers of various important registers. */
7832 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7833 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7834 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7835 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7836
7837 /* NOTE: kettenis/20040418: GCC does have two possible register
7838 numbering schemes on the i386: dbx and SVR4. These schemes
7839 differ in how they number %ebp, %esp, %eflags, and the
7840 floating-point registers, and are implemented by the arrays
7841 dbx_register_map[] and svr4_dbx_register_map in
7842 gcc/config/i386.c. GCC also defines a third numbering scheme in
7843 gcc/config/i386.c, which it designates as the "default" register
7844 map used in 64bit mode. This last register numbering scheme is
7845 implemented in dbx64_register_map, and is used for AMD64; see
7846 amd64-tdep.c.
7847
7848 Currently, each GCC i386 target always uses the same register
7849 numbering scheme across all its supported debugging formats
7850 i.e. SDB (COFF), stabs and DWARF 2. This is because
7851 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7852 DBX_REGISTER_NUMBER macro which is defined by each target's
7853 respective config header in a manner independent of the requested
7854 output debugging format.
7855
7856 This does not match the arrangement below, which presumes that
7857 the SDB and stabs numbering schemes differ from the DWARF and
7858 DWARF 2 ones. The reason for this arrangement is that it is
7859 likely to get the numbering scheme for the target's
7860 default/native debug format right. For targets where GCC is the
7861 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7862 targets where the native toolchain uses a different numbering
7863 scheme for a particular debug format (stabs-in-ELF on Solaris)
7864 the defaults below will have to be overridden, like
7865 i386_elf_init_abi() does. */
7866
7867 /* Use the dbx register numbering scheme for stabs and COFF. */
7868 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7869 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7870
7871 /* Use the SVR4 register numbering scheme for DWARF 2. */
7872 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7873
7874 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7875 be in use on any of the supported i386 targets. */
7876
7877 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7878
7879 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7880
7881 /* Call dummy code. */
7882 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
7883 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7884 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7885 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7886
7887 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7888 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7889 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7890
7891 set_gdbarch_return_value (gdbarch, i386_return_value);
7892
7893 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7894
7895 /* Stack grows downward. */
7896 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7897
7898 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7899 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7900 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7901
7902 set_gdbarch_frame_args_skip (gdbarch, 8);
7903
7904 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7905
7906 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7907
7908 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7909
7910 /* Add the i386 register groups. */
7911 i386_add_reggroups (gdbarch);
7912 tdep->register_reggroup_p = i386_register_reggroup_p;
7913
7914 /* Helper for function argument information. */
7915 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7916
7917 /* Hook the function epilogue frame unwinder. This unwinder is
7918 appended to the list first, so that it supercedes the DWARF
7919 unwinder in function epilogues (where the DWARF unwinder
7920 currently fails). */
7921 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7922
7923 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7924 to the list before the prologue-based unwinders, so that DWARF
7925 CFI info will be used if it is available. */
7926 dwarf2_append_unwinders (gdbarch);
7927
7928 frame_base_set_default (gdbarch, &i386_frame_base);
7929
7930 /* Pseudo registers may be changed by amd64_init_abi. */
7931 set_gdbarch_pseudo_register_read_value (gdbarch,
7932 i386_pseudo_register_read_value);
7933 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7934
7935 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7936 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7937
7938 /* Override the normal target description method to make the AVX
7939 upper halves anonymous. */
7940 set_gdbarch_register_name (gdbarch, i386_register_name);
7941
7942 /* Even though the default ABI only includes general-purpose registers,
7943 floating-point registers and the SSE registers, we have to leave a
7944 gap for the upper AVX registers and the MPX registers. */
7945 set_gdbarch_num_regs (gdbarch, I386_MPX_NUM_REGS);
7946
7947 /* Get the x86 target description from INFO. */
7948 tdesc = info.target_desc;
7949 if (! tdesc_has_registers (tdesc))
7950 tdesc = tdesc_i386;
7951 tdep->tdesc = tdesc;
7952
7953 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7954 tdep->register_names = i386_register_names;
7955
7956 /* No upper YMM registers. */
7957 tdep->ymmh_register_names = NULL;
7958 tdep->ymm0h_regnum = -1;
7959
7960 tdep->num_byte_regs = 8;
7961 tdep->num_word_regs = 8;
7962 tdep->num_dword_regs = 0;
7963 tdep->num_mmx_regs = 8;
7964 tdep->num_ymm_regs = 0;
7965
7966 /* No MPX registers. */
7967 tdep->bnd0r_regnum = -1;
7968 tdep->bndcfgu_regnum = -1;
7969
7970 tdesc_data = tdesc_data_alloc ();
7971
7972 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7973
7974 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
7975
7976 /* Hook in ABI-specific overrides, if they have been registered. */
7977 info.tdep_info = (void *) tdesc_data;
7978 gdbarch_init_osabi (info, gdbarch);
7979
7980 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7981 {
7982 tdesc_data_cleanup (tdesc_data);
7983 xfree (tdep);
7984 gdbarch_free (gdbarch);
7985 return NULL;
7986 }
7987
7988 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
7989
7990 /* Wire in pseudo registers. Number of pseudo registers may be
7991 changed. */
7992 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7993 + tdep->num_word_regs
7994 + tdep->num_dword_regs
7995 + tdep->num_mmx_regs
7996 + tdep->num_ymm_regs
7997 + num_bnd_cooked));
7998
7999 /* Target description may be changed. */
8000 tdesc = tdep->tdesc;
8001
8002 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8003
8004 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8005 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8006
8007 /* Make %al the first pseudo-register. */
8008 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8009 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8010
8011 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
8012 if (tdep->num_dword_regs)
8013 {
8014 /* Support dword pseudo-register if it hasn't been disabled. */
8015 tdep->eax_regnum = ymm0_regnum;
8016 ymm0_regnum += tdep->num_dword_regs;
8017 }
8018 else
8019 tdep->eax_regnum = -1;
8020
8021 mm0_regnum = ymm0_regnum;
8022 if (tdep->num_ymm_regs)
8023 {
8024 /* Support YMM pseudo-register if it is available. */
8025 tdep->ymm0_regnum = ymm0_regnum;
8026 mm0_regnum += tdep->num_ymm_regs;
8027 }
8028 else
8029 tdep->ymm0_regnum = -1;
8030
8031 bnd0_regnum = mm0_regnum;
8032 if (tdep->num_mmx_regs != 0)
8033 {
8034 /* Support MMX pseudo-register if MMX hasn't been disabled. */
8035 tdep->mm0_regnum = mm0_regnum;
8036 bnd0_regnum += tdep->num_mmx_regs;
8037 }
8038 else
8039 tdep->mm0_regnum = -1;
8040
8041 if (tdep->bnd0r_regnum > 0)
8042 tdep->bnd0_regnum = bnd0_regnum;
8043 else
8044 tdep-> bnd0_regnum = -1;
8045
8046 /* Hook in the legacy prologue-based unwinders last (fallback). */
8047 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
8048 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8049 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
8050
8051 /* If we have a register mapping, enable the generic core file
8052 support, unless it has already been enabled. */
8053 if (tdep->gregset_reg_offset
8054 && !gdbarch_regset_from_core_section_p (gdbarch))
8055 set_gdbarch_regset_from_core_section (gdbarch,
8056 i386_regset_from_core_section);
8057
8058 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8059 i386_skip_permanent_breakpoint);
8060
8061 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8062 i386_fast_tracepoint_valid_at);
8063
8064 return gdbarch;
8065 }
8066
8067 static enum gdb_osabi
8068 i386_coff_osabi_sniffer (bfd *abfd)
8069 {
8070 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8071 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8072 return GDB_OSABI_GO32;
8073
8074 return GDB_OSABI_UNKNOWN;
8075 }
8076 \f
8077
8078 /* Provide a prototype to silence -Wmissing-prototypes. */
8079 void _initialize_i386_tdep (void);
8080
8081 void
8082 _initialize_i386_tdep (void)
8083 {
8084 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8085
8086 /* Add the variable that controls the disassembly flavor. */
8087 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8088 &disassembly_flavor, _("\
8089 Set the disassembly flavor."), _("\
8090 Show the disassembly flavor."), _("\
8091 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8092 NULL,
8093 NULL, /* FIXME: i18n: */
8094 &setlist, &showlist);
8095
8096 /* Add the variable that controls the convention for returning
8097 structs. */
8098 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8099 &struct_convention, _("\
8100 Set the convention for returning small structs."), _("\
8101 Show the convention for returning small structs."), _("\
8102 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8103 is \"default\"."),
8104 NULL,
8105 NULL, /* FIXME: i18n: */
8106 &setlist, &showlist);
8107
8108 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8109 i386_coff_osabi_sniffer);
8110
8111 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8112 i386_svr4_init_abi);
8113 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8114 i386_go32_init_abi);
8115
8116 /* Initialize the i386-specific register groups. */
8117 i386_init_reggroups ();
8118
8119 /* Initialize the standard target descriptions. */
8120 initialize_tdesc_i386 ();
8121 initialize_tdesc_i386_mmx ();
8122 initialize_tdesc_i386_avx ();
8123 initialize_tdesc_i386_mpx ();
8124
8125 /* Tell remote stub that we support XML target description. */
8126 register_remote_support_xml ("i386");
8127 }