gdb/
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
5 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "arch-utils.h"
25 #include "command.h"
26 #include "dummy-frame.h"
27 #include "dwarf2-frame.h"
28 #include "doublest.h"
29 #include "frame.h"
30 #include "frame-base.h"
31 #include "frame-unwind.h"
32 #include "inferior.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "gdbtypes.h"
36 #include "objfiles.h"
37 #include "osabi.h"
38 #include "regcache.h"
39 #include "reggroups.h"
40 #include "regset.h"
41 #include "symfile.h"
42 #include "symtab.h"
43 #include "target.h"
44 #include "value.h"
45 #include "dis-asm.h"
46 #include "disasm.h"
47 #include "remote.h"
48 #include "exceptions.h"
49 #include "gdb_assert.h"
50 #include "gdb_string.h"
51
52 #include "i386-tdep.h"
53 #include "i387-tdep.h"
54 #include "i386-xstate.h"
55
56 #include "record.h"
57 #include <stdint.h>
58
59 #include "features/i386/i386.c"
60 #include "features/i386/i386-avx.c"
61 #include "features/i386/i386-mmx.c"
62
63 /* Register names. */
64
65 static const char *i386_register_names[] =
66 {
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78 };
79
80 static const char *i386_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 };
85
86 static const char *i386_ymmh_names[] =
87 {
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90 };
91
92 /* Register names for MMX pseudo-registers. */
93
94 static const char *i386_mmx_names[] =
95 {
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98 };
99
100 /* Register names for byte pseudo-registers. */
101
102 static const char *i386_byte_names[] =
103 {
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106 };
107
108 /* Register names for word pseudo-registers. */
109
110 static const char *i386_word_names[] =
111 {
112 "ax", "cx", "dx", "bx",
113 "", "bp", "si", "di"
114 };
115
116 /* MMX register? */
117
118 static int
119 i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
120 {
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
123
124 if (mm0_regnum < 0)
125 return 0;
126
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129 }
130
131 /* Byte register? */
132
133 int
134 i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135 {
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140 }
141
142 /* Word register? */
143
144 int
145 i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146 {
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151 }
152
153 /* Dword register? */
154
155 int
156 i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157 {
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
166 }
167
168 static int
169 i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170 {
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179 }
180
181 /* AVX register? */
182
183 int
184 i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185 {
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194 }
195
196 /* SSE register? */
197
198 int
199 i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
200 {
201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
203
204 if (num_xmm_regs == 0)
205 return 0;
206
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
209 }
210
211 static int
212 i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
213 {
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 if (I387_NUM_XMM_REGS (tdep) == 0)
217 return 0;
218
219 return (regnum == I387_MXCSR_REGNUM (tdep));
220 }
221
222 /* FP register? */
223
224 int
225 i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
226 {
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
230 return 0;
231
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
234 }
235
236 int
237 i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
238 {
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
242 return 0;
243
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
246 }
247
248 /* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251 static const char *
252 i386_register_name (struct gdbarch *gdbarch, int regnum)
253 {
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259 }
260
261 /* Return the name of register REGNUM. */
262
263 const char *
264 i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
265 {
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
277 }
278
279 /* Convert a dbx register number REG to the appropriate register
280 number used by GDB. */
281
282 static int
283 i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
284 {
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
290 if (reg >= 0 && reg <= 7)
291 {
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
303 return reg - 12 + I387_ST0_REGNUM (tdep);
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
319 return reg - 29 + I387_MM0_REGNUM (tdep);
320 }
321
322 /* This will hopefully provoke a warning. */
323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
324 }
325
326 /* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
328
329 static int
330 i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
331 {
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
341 /* General-purpose registers. */
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
347 return reg - 11 + I387_ST0_REGNUM (tdep);
348 }
349 else if (reg >= 21 && reg <= 36)
350 {
351 /* The SSE and MMX registers have the same numbers as with dbx. */
352 return i386_dbx_reg_to_regnum (gdbarch, reg);
353 }
354
355 switch (reg)
356 {
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
368 /* This will hopefully provoke a warning. */
369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
370 }
371
372 \f
373
374 /* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
376 static const char att_flavor[] = "att";
377 static const char intel_flavor[] = "intel";
378 static const char *valid_flavors[] =
379 {
380 att_flavor,
381 intel_flavor,
382 NULL
383 };
384 static const char *disassembly_flavor = att_flavor;
385 \f
386
387 /* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
392
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
395
396 This function is 64-bit safe. */
397
398 static const gdb_byte *
399 i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
400 {
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
403 *len = sizeof (break_insn);
404 return break_insn;
405 }
406 \f
407 /* Displaced instruction handling. */
408
409 /* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415 static gdb_byte *
416 i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417 {
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443 }
444
445 static int
446 i386_absolute_jmp_p (const gdb_byte *insn)
447 {
448 /* jmp far (absolute address in operand). */
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
454 /* jump near, absolute indirect (/4). */
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
458 /* jump far, absolute indirect (/5). */
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464 }
465
466 static int
467 i386_absolute_call_p (const gdb_byte *insn)
468 {
469 /* call far, absolute. */
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
475 /* Call near, absolute indirect (/2). */
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
479 /* Call far, absolute indirect (/3). */
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485 }
486
487 static int
488 i386_ret_p (const gdb_byte *insn)
489 {
490 switch (insn[0])
491 {
492 case 0xc2: /* ret near, pop N bytes. */
493 case 0xc3: /* ret near */
494 case 0xca: /* ret far, pop N bytes. */
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502 }
503
504 static int
505 i386_call_p (const gdb_byte *insn)
506 {
507 if (i386_absolute_call_p (insn))
508 return 1;
509
510 /* call near, relative. */
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515 }
516
517 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
519
520 static int
521 i386_syscall_p (const gdb_byte *insn, int *lengthp)
522 {
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530 }
531
532 /* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535 struct displaced_step_closure *
536 i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539 {
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567 }
568
569 /* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
571
572 void
573 i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577 {
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
594 "displaced: fixup (%s, %s), "
595 "insn = 0x%02x 0x%02x ...\n",
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
627 int insn_len;
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
701 }
702 }
703
704 static void
705 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706 {
707 target_write_memory (*to, buf, len);
708 *to += len;
709 }
710
711 static void
712 i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714 {
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
739 push_buf[0] = 0x68; /* pushq $... */
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
776 store_signed_integer (insn + offset, 4, byte_order, newrel);
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788 }
789
790 \f
791 #ifdef I386_REGNO_TO_SYMMETRY
792 #error "The Sequent Symmetry is no longer supported."
793 #endif
794
795 /* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
798
799 /* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
801 #define I386_NUM_SAVED_REGS I386_NUM_GREGS
802
803 struct i386_frame_cache
804 {
805 /* Base address. */
806 CORE_ADDR base;
807 int base_p;
808 LONGEST sp_offset;
809 CORE_ADDR pc;
810
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
813 CORE_ADDR saved_sp;
814 int saved_sp_reg;
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819 };
820
821 /* Allocate and initialize a frame cache. */
822
823 static struct i386_frame_cache *
824 i386_alloc_frame_cache (void)
825 {
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
832 cache->base_p = 0;
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
841 cache->saved_sp = 0;
842 cache->saved_sp_reg = -1;
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849 }
850
851 /* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
853
854 static CORE_ADDR
855 i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
856 {
857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
858 gdb_byte op;
859 long delta = 0;
860 int data16 = 0;
861
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
865 if (op == 0x66)
866 {
867 data16 = 1;
868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
869 }
870
871 switch (op)
872 {
873 case 0xe9:
874 /* Relative jump: if data16 == 0, disp32, else disp16. */
875 if (data16)
876 {
877 delta = read_memory_integer (pc + 2, 2, byte_order);
878
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
881 delta += 4;
882 }
883 else
884 {
885 delta = read_memory_integer (pc + 1, 4, byte_order);
886
887 /* Include the size of the jmp instruction. */
888 delta += 5;
889 }
890 break;
891 case 0xeb:
892 /* Relative jump, disp8 (ignore data16). */
893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
894
895 delta += data16 + 2;
896 break;
897 }
898
899 return pc + delta;
900 }
901
902 /* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
907
908 static CORE_ADDR
909 i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
911 {
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
926
927 if (current_pc <= pc)
928 return pc;
929
930 if (target_read_memory (pc, &op, 1))
931 return pc;
932
933 if (op != 0x58) /* popl %eax */
934 return pc;
935
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
941
942 if (current_pc == pc)
943 {
944 cache->sp_offset += 4;
945 return current_pc;
946 }
947
948 if (current_pc == pc + 1)
949 {
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958 }
959
960 static CORE_ADDR
961 i386_skip_probe (CORE_ADDR pc)
962 {
963 /* A function may start with
964
965 pushl constant
966 call _probe
967 addl $4, %esp
968
969 followed by
970
971 pushl %ebp
972
973 etc. */
974 gdb_byte buf[8];
975 gdb_byte op;
976
977 if (target_read_memory (pc, &op, 1))
978 return pc;
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
983
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
986 if (op == 0x68)
987 delta = 5;
988 else
989 delta = 2;
990
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
995 pc += delta + sizeof (buf);
996 }
997
998 return pc;
999 }
1000
1001 /* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007 static CORE_ADDR
1008 i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010 {
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
1045 };
1046
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
1110 return pc;
1111
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
1114
1115 return min (pc + offset + 3, current_pc);
1116 }
1117
1118 /* Maximum instruction length we need to handle. */
1119 #define I386_MAX_MATCHED_INSN_LEN 6
1120
1121 /* Instruction description. */
1122 struct i386_insn
1123 {
1124 size_t len;
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
1127 };
1128
1129 /* Search for the instruction at PC in the list SKIP_INSNS. Return
1130 the first instruction description that matches. Otherwise, return
1131 NULL. */
1132
1133 static struct i386_insn *
1134 i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1135 {
1136 struct i386_insn *insn;
1137 gdb_byte op;
1138
1139 if (target_read_memory (pc, &op, 1))
1140 return NULL;
1141
1142 for (insn = skip_insns; insn->len > 0; insn++)
1143 {
1144 if ((op & insn->mask[0]) == insn->insn[0])
1145 {
1146 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1147 int insn_matched = 1;
1148 size_t i;
1149
1150 gdb_assert (insn->len > 1);
1151 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
1152
1153 if (target_read_memory (pc + 1, buf, insn->len - 1))
1154 return NULL;
1155
1156 for (i = 1; i < insn->len; i++)
1157 {
1158 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
1159 insn_matched = 0;
1160 }
1161
1162 if (insn_matched)
1163 return insn;
1164 }
1165 }
1166
1167 return NULL;
1168 }
1169
1170 /* Some special instructions that might be migrated by GCC into the
1171 part of the prologue that sets up the new stack frame. Because the
1172 stack frame hasn't been setup yet, no registers have been saved
1173 yet, and only the scratch registers %eax, %ecx and %edx can be
1174 touched. */
1175
1176 struct i386_insn i386_frame_setup_skip_insns[] =
1177 {
1178 /* Check for `movb imm8, r' and `movl imm32, r'.
1179
1180 ??? Should we handle 16-bit operand-sizes here? */
1181
1182 /* `movb imm8, %al' and `movb imm8, %ah' */
1183 /* `movb imm8, %cl' and `movb imm8, %ch' */
1184 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1185 /* `movb imm8, %dl' and `movb imm8, %dh' */
1186 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1187 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1188 { 5, { 0xb8 }, { 0xfe } },
1189 /* `movl imm32, %edx' */
1190 { 5, { 0xba }, { 0xff } },
1191
1192 /* Check for `mov imm32, r32'. Note that there is an alternative
1193 encoding for `mov m32, %eax'.
1194
1195 ??? Should we handle SIB adressing here?
1196 ??? Should we handle 16-bit operand-sizes here? */
1197
1198 /* `movl m32, %eax' */
1199 { 5, { 0xa1 }, { 0xff } },
1200 /* `movl m32, %eax' and `mov; m32, %ecx' */
1201 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1202 /* `movl m32, %edx' */
1203 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1204
1205 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1206 Because of the symmetry, there are actually two ways to encode
1207 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1208 opcode bytes 0x31 and 0x33 for `xorl'. */
1209
1210 /* `subl %eax, %eax' */
1211 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1212 /* `subl %ecx, %ecx' */
1213 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1214 /* `subl %edx, %edx' */
1215 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1216 /* `xorl %eax, %eax' */
1217 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1218 /* `xorl %ecx, %ecx' */
1219 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1220 /* `xorl %edx, %edx' */
1221 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1222 { 0 }
1223 };
1224
1225
1226 /* Check whether PC points to a no-op instruction. */
1227 static CORE_ADDR
1228 i386_skip_noop (CORE_ADDR pc)
1229 {
1230 gdb_byte op;
1231 int check = 1;
1232
1233 if (target_read_memory (pc, &op, 1))
1234 return pc;
1235
1236 while (check)
1237 {
1238 check = 0;
1239 /* Ignore `nop' instruction. */
1240 if (op == 0x90)
1241 {
1242 pc += 1;
1243 if (target_read_memory (pc, &op, 1))
1244 return pc;
1245 check = 1;
1246 }
1247 /* Ignore no-op instruction `mov %edi, %edi'.
1248 Microsoft system dlls often start with
1249 a `mov %edi,%edi' instruction.
1250 The 5 bytes before the function start are
1251 filled with `nop' instructions.
1252 This pattern can be used for hot-patching:
1253 The `mov %edi, %edi' instruction can be replaced by a
1254 near jump to the location of the 5 `nop' instructions
1255 which can be replaced by a 32-bit jump to anywhere
1256 in the 32-bit address space. */
1257
1258 else if (op == 0x8b)
1259 {
1260 if (target_read_memory (pc + 1, &op, 1))
1261 return pc;
1262
1263 if (op == 0xff)
1264 {
1265 pc += 2;
1266 if (target_read_memory (pc, &op, 1))
1267 return pc;
1268
1269 check = 1;
1270 }
1271 }
1272 }
1273 return pc;
1274 }
1275
1276 /* Check whether PC points at a code that sets up a new stack frame.
1277 If so, it updates CACHE and returns the address of the first
1278 instruction after the sequence that sets up the frame or LIMIT,
1279 whichever is smaller. If we don't recognize the code, return PC. */
1280
1281 static CORE_ADDR
1282 i386_analyze_frame_setup (struct gdbarch *gdbarch,
1283 CORE_ADDR pc, CORE_ADDR limit,
1284 struct i386_frame_cache *cache)
1285 {
1286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1287 struct i386_insn *insn;
1288 gdb_byte op;
1289 int skip = 0;
1290
1291 if (limit <= pc)
1292 return limit;
1293
1294 if (target_read_memory (pc, &op, 1))
1295 return pc;
1296
1297 if (op == 0x55) /* pushl %ebp */
1298 {
1299 /* Take into account that we've executed the `pushl %ebp' that
1300 starts this instruction sequence. */
1301 cache->saved_regs[I386_EBP_REGNUM] = 0;
1302 cache->sp_offset += 4;
1303 pc++;
1304
1305 /* If that's all, return now. */
1306 if (limit <= pc)
1307 return limit;
1308
1309 /* Check for some special instructions that might be migrated by
1310 GCC into the prologue and skip them. At this point in the
1311 prologue, code should only touch the scratch registers %eax,
1312 %ecx and %edx, so while the number of posibilities is sheer,
1313 it is limited.
1314
1315 Make sure we only skip these instructions if we later see the
1316 `movl %esp, %ebp' that actually sets up the frame. */
1317 while (pc + skip < limit)
1318 {
1319 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1320 if (insn == NULL)
1321 break;
1322
1323 skip += insn->len;
1324 }
1325
1326 /* If that's all, return now. */
1327 if (limit <= pc + skip)
1328 return limit;
1329
1330 if (target_read_memory (pc + skip, &op, 1))
1331 return pc + skip;
1332
1333 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
1334 switch (op)
1335 {
1336 case 0x8b:
1337 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1338 != 0xec)
1339 return pc;
1340 break;
1341 case 0x89:
1342 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1343 != 0xe5)
1344 return pc;
1345 break;
1346 default:
1347 return pc;
1348 }
1349
1350 /* OK, we actually have a frame. We just don't know how large
1351 it is yet. Set its size to zero. We'll adjust it if
1352 necessary. We also now commit to skipping the special
1353 instructions mentioned before. */
1354 cache->locals = 0;
1355 pc += (skip + 2);
1356
1357 /* If that's all, return now. */
1358 if (limit <= pc)
1359 return limit;
1360
1361 /* Check for stack adjustment
1362
1363 subl $XXX, %esp
1364
1365 NOTE: You can't subtract a 16-bit immediate from a 32-bit
1366 reg, so we don't have to worry about a data16 prefix. */
1367 if (target_read_memory (pc, &op, 1))
1368 return pc;
1369 if (op == 0x83)
1370 {
1371 /* `subl' with 8-bit immediate. */
1372 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1373 /* Some instruction starting with 0x83 other than `subl'. */
1374 return pc;
1375
1376 /* `subl' with signed 8-bit immediate (though it wouldn't
1377 make sense to be negative). */
1378 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
1379 return pc + 3;
1380 }
1381 else if (op == 0x81)
1382 {
1383 /* Maybe it is `subl' with a 32-bit immediate. */
1384 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
1385 /* Some instruction starting with 0x81 other than `subl'. */
1386 return pc;
1387
1388 /* It is `subl' with a 32-bit immediate. */
1389 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
1390 return pc + 6;
1391 }
1392 else
1393 {
1394 /* Some instruction other than `subl'. */
1395 return pc;
1396 }
1397 }
1398 else if (op == 0xc8) /* enter */
1399 {
1400 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
1401 return pc + 4;
1402 }
1403
1404 return pc;
1405 }
1406
1407 /* Check whether PC points at code that saves registers on the stack.
1408 If so, it updates CACHE and returns the address of the first
1409 instruction after the register saves or CURRENT_PC, whichever is
1410 smaller. Otherwise, return PC. */
1411
1412 static CORE_ADDR
1413 i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1414 struct i386_frame_cache *cache)
1415 {
1416 CORE_ADDR offset = 0;
1417 gdb_byte op;
1418 int i;
1419
1420 if (cache->locals > 0)
1421 offset -= cache->locals;
1422 for (i = 0; i < 8 && pc < current_pc; i++)
1423 {
1424 if (target_read_memory (pc, &op, 1))
1425 return pc;
1426 if (op < 0x50 || op > 0x57)
1427 break;
1428
1429 offset -= 4;
1430 cache->saved_regs[op - 0x50] = offset;
1431 cache->sp_offset += 4;
1432 pc++;
1433 }
1434
1435 return pc;
1436 }
1437
1438 /* Do a full analysis of the prologue at PC and update CACHE
1439 accordingly. Bail out early if CURRENT_PC is reached. Return the
1440 address where the analysis stopped.
1441
1442 We handle these cases:
1443
1444 The startup sequence can be at the start of the function, or the
1445 function can start with a branch to startup code at the end.
1446
1447 %ebp can be set up with either the 'enter' instruction, or "pushl
1448 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1449 once used in the System V compiler).
1450
1451 Local space is allocated just below the saved %ebp by either the
1452 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1453 16-bit unsigned argument for space to allocate, and the 'addl'
1454 instruction could have either a signed byte, or 32-bit immediate.
1455
1456 Next, the registers used by this function are pushed. With the
1457 System V compiler they will always be in the order: %edi, %esi,
1458 %ebx (and sometimes a harmless bug causes it to also save but not
1459 restore %eax); however, the code below is willing to see the pushes
1460 in any order, and will handle up to 8 of them.
1461
1462 If the setup sequence is at the end of the function, then the next
1463 instruction will be a branch back to the start. */
1464
1465 static CORE_ADDR
1466 i386_analyze_prologue (struct gdbarch *gdbarch,
1467 CORE_ADDR pc, CORE_ADDR current_pc,
1468 struct i386_frame_cache *cache)
1469 {
1470 pc = i386_skip_noop (pc);
1471 pc = i386_follow_jump (gdbarch, pc);
1472 pc = i386_analyze_struct_return (pc, current_pc, cache);
1473 pc = i386_skip_probe (pc);
1474 pc = i386_analyze_stack_align (pc, current_pc, cache);
1475 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
1476 return i386_analyze_register_saves (pc, current_pc, cache);
1477 }
1478
1479 /* Return PC of first real instruction. */
1480
1481 static CORE_ADDR
1482 i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1483 {
1484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1485
1486 static gdb_byte pic_pat[6] =
1487 {
1488 0xe8, 0, 0, 0, 0, /* call 0x0 */
1489 0x5b, /* popl %ebx */
1490 };
1491 struct i386_frame_cache cache;
1492 CORE_ADDR pc;
1493 gdb_byte op;
1494 int i;
1495
1496 cache.locals = -1;
1497 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
1498 if (cache.locals < 0)
1499 return start_pc;
1500
1501 /* Found valid frame setup. */
1502
1503 /* The native cc on SVR4 in -K PIC mode inserts the following code
1504 to get the address of the global offset table (GOT) into register
1505 %ebx:
1506
1507 call 0x0
1508 popl %ebx
1509 movl %ebx,x(%ebp) (optional)
1510 addl y,%ebx
1511
1512 This code is with the rest of the prologue (at the end of the
1513 function), so we have to skip it to get to the first real
1514 instruction at the start of the function. */
1515
1516 for (i = 0; i < 6; i++)
1517 {
1518 if (target_read_memory (pc + i, &op, 1))
1519 return pc;
1520
1521 if (pic_pat[i] != op)
1522 break;
1523 }
1524 if (i == 6)
1525 {
1526 int delta = 6;
1527
1528 if (target_read_memory (pc + delta, &op, 1))
1529 return pc;
1530
1531 if (op == 0x89) /* movl %ebx, x(%ebp) */
1532 {
1533 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
1534
1535 if (op == 0x5d) /* One byte offset from %ebp. */
1536 delta += 3;
1537 else if (op == 0x9d) /* Four byte offset from %ebp. */
1538 delta += 6;
1539 else /* Unexpected instruction. */
1540 delta = 0;
1541
1542 if (target_read_memory (pc + delta, &op, 1))
1543 return pc;
1544 }
1545
1546 /* addl y,%ebx */
1547 if (delta > 0 && op == 0x81
1548 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1549 == 0xc3)
1550 {
1551 pc += delta + 6;
1552 }
1553 }
1554
1555 /* If the function starts with a branch (to startup code at the end)
1556 the last instruction should bring us back to the first
1557 instruction of the real code. */
1558 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1559 pc = i386_follow_jump (gdbarch, pc);
1560
1561 return pc;
1562 }
1563
1564 /* Check that the code pointed to by PC corresponds to a call to
1565 __main, skip it if so. Return PC otherwise. */
1566
1567 CORE_ADDR
1568 i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1569 {
1570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1571 gdb_byte op;
1572
1573 if (target_read_memory (pc, &op, 1))
1574 return pc;
1575 if (op == 0xe8)
1576 {
1577 gdb_byte buf[4];
1578
1579 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1580 {
1581 /* Make sure address is computed correctly as a 32bit
1582 integer even if CORE_ADDR is 64 bit wide. */
1583 struct minimal_symbol *s;
1584 CORE_ADDR call_dest;
1585
1586 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
1587 call_dest = call_dest & 0xffffffffU;
1588 s = lookup_minimal_symbol_by_pc (call_dest);
1589 if (s != NULL
1590 && SYMBOL_LINKAGE_NAME (s) != NULL
1591 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1592 pc += 5;
1593 }
1594 }
1595
1596 return pc;
1597 }
1598
1599 /* This function is 64-bit safe. */
1600
1601 static CORE_ADDR
1602 i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1603 {
1604 gdb_byte buf[8];
1605
1606 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1607 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1608 }
1609 \f
1610
1611 /* Normal frames. */
1612
1613 static void
1614 i386_frame_cache_1 (struct frame_info *this_frame,
1615 struct i386_frame_cache *cache)
1616 {
1617 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1619 gdb_byte buf[4];
1620 int i;
1621
1622 cache->pc = get_frame_func (this_frame);
1623
1624 /* In principle, for normal frames, %ebp holds the frame pointer,
1625 which holds the base address for the current stack frame.
1626 However, for functions that don't need it, the frame pointer is
1627 optional. For these "frameless" functions the frame pointer is
1628 actually the frame pointer of the calling frame. Signal
1629 trampolines are just a special case of a "frameless" function.
1630 They (usually) share their frame pointer with the frame that was
1631 in progress when the signal occurred. */
1632
1633 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
1634 cache->base = extract_unsigned_integer (buf, 4, byte_order);
1635 if (cache->base == 0)
1636 return;
1637
1638 /* For normal frames, %eip is stored at 4(%ebp). */
1639 cache->saved_regs[I386_EIP_REGNUM] = 4;
1640
1641 if (cache->pc != 0)
1642 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1643 cache);
1644
1645 if (cache->locals < 0)
1646 {
1647 /* We didn't find a valid frame, which means that CACHE->base
1648 currently holds the frame pointer for our calling frame. If
1649 we're at the start of a function, or somewhere half-way its
1650 prologue, the function's frame probably hasn't been fully
1651 setup yet. Try to reconstruct the base address for the stack
1652 frame by looking at the stack pointer. For truly "frameless"
1653 functions this might work too. */
1654
1655 if (cache->saved_sp_reg != -1)
1656 {
1657 /* Saved stack pointer has been saved. */
1658 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1659 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1660
1661 /* We're halfway aligning the stack. */
1662 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1663 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1664
1665 /* This will be added back below. */
1666 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1667 }
1668 else if (cache->pc != 0
1669 || target_read_memory (get_frame_pc (this_frame), buf, 1))
1670 {
1671 /* We're in a known function, but did not find a frame
1672 setup. Assume that the function does not use %ebp.
1673 Alternatively, we may have jumped to an invalid
1674 address; in that case there is definitely no new
1675 frame in %ebp. */
1676 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1677 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1678 + cache->sp_offset;
1679 }
1680 else
1681 /* We're in an unknown function. We could not find the start
1682 of the function to analyze the prologue; our best option is
1683 to assume a typical frame layout with the caller's %ebp
1684 saved. */
1685 cache->saved_regs[I386_EBP_REGNUM] = 0;
1686 }
1687
1688 if (cache->saved_sp_reg != -1)
1689 {
1690 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1691 register may be unavailable). */
1692 if (cache->saved_sp == 0
1693 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1694 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1695 }
1696 /* Now that we have the base address for the stack frame we can
1697 calculate the value of %esp in the calling frame. */
1698 else if (cache->saved_sp == 0)
1699 cache->saved_sp = cache->base + 8;
1700
1701 /* Adjust all the saved registers such that they contain addresses
1702 instead of offsets. */
1703 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1704 if (cache->saved_regs[i] != -1)
1705 cache->saved_regs[i] += cache->base;
1706
1707 cache->base_p = 1;
1708 }
1709
1710 static struct i386_frame_cache *
1711 i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1712 {
1713 volatile struct gdb_exception ex;
1714 struct i386_frame_cache *cache;
1715
1716 if (*this_cache)
1717 return *this_cache;
1718
1719 cache = i386_alloc_frame_cache ();
1720 *this_cache = cache;
1721
1722 TRY_CATCH (ex, RETURN_MASK_ERROR)
1723 {
1724 i386_frame_cache_1 (this_frame, cache);
1725 }
1726 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1727 throw_exception (ex);
1728
1729 return cache;
1730 }
1731
1732 static void
1733 i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
1734 struct frame_id *this_id)
1735 {
1736 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1737
1738 /* This marks the outermost frame. */
1739 if (cache->base == 0)
1740 return;
1741
1742 /* See the end of i386_push_dummy_call. */
1743 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1744 }
1745
1746 static enum unwind_stop_reason
1747 i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1748 void **this_cache)
1749 {
1750 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1751
1752 if (!cache->base_p)
1753 return UNWIND_UNAVAILABLE;
1754
1755 /* This marks the outermost frame. */
1756 if (cache->base == 0)
1757 return UNWIND_OUTERMOST;
1758
1759 return UNWIND_NO_REASON;
1760 }
1761
1762 static struct value *
1763 i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1764 int regnum)
1765 {
1766 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1767
1768 gdb_assert (regnum >= 0);
1769
1770 /* The System V ABI says that:
1771
1772 "The flags register contains the system flags, such as the
1773 direction flag and the carry flag. The direction flag must be
1774 set to the forward (that is, zero) direction before entry and
1775 upon exit from a function. Other user flags have no specified
1776 role in the standard calling sequence and are not preserved."
1777
1778 To guarantee the "upon exit" part of that statement we fake a
1779 saved flags register that has its direction flag cleared.
1780
1781 Note that GCC doesn't seem to rely on the fact that the direction
1782 flag is cleared after a function return; it always explicitly
1783 clears the flag before operations where it matters.
1784
1785 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1786 right thing to do. The way we fake the flags register here makes
1787 it impossible to change it. */
1788
1789 if (regnum == I386_EFLAGS_REGNUM)
1790 {
1791 ULONGEST val;
1792
1793 val = get_frame_register_unsigned (this_frame, regnum);
1794 val &= ~(1 << 10);
1795 return frame_unwind_got_constant (this_frame, regnum, val);
1796 }
1797
1798 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
1799 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
1800
1801 if (regnum == I386_ESP_REGNUM)
1802 {
1803 /* If the SP has been saved, but we don't know where, then this
1804 means that SAVED_SP_REG register was found unavailable back
1805 when we built the cache. */
1806 if (cache->saved_sp == 0 && cache->saved_sp_reg != -1)
1807 return frame_unwind_got_register (this_frame, regnum,
1808 cache->saved_sp_reg);
1809 else
1810 return frame_unwind_got_constant (this_frame, regnum,
1811 cache->saved_sp);
1812 }
1813
1814 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1815 return frame_unwind_got_memory (this_frame, regnum,
1816 cache->saved_regs[regnum]);
1817
1818 return frame_unwind_got_register (this_frame, regnum, regnum);
1819 }
1820
1821 static const struct frame_unwind i386_frame_unwind =
1822 {
1823 NORMAL_FRAME,
1824 i386_frame_unwind_stop_reason,
1825 i386_frame_this_id,
1826 i386_frame_prev_register,
1827 NULL,
1828 default_frame_sniffer
1829 };
1830
1831 /* Normal frames, but in a function epilogue. */
1832
1833 /* The epilogue is defined here as the 'ret' instruction, which will
1834 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1835 the function's stack frame. */
1836
1837 static int
1838 i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1839 {
1840 gdb_byte insn;
1841
1842 if (target_read_memory (pc, &insn, 1))
1843 return 0; /* Can't read memory at pc. */
1844
1845 if (insn != 0xc3) /* 'ret' instruction. */
1846 return 0;
1847
1848 return 1;
1849 }
1850
1851 static int
1852 i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1853 struct frame_info *this_frame,
1854 void **this_prologue_cache)
1855 {
1856 if (frame_relative_level (this_frame) == 0)
1857 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1858 get_frame_pc (this_frame));
1859 else
1860 return 0;
1861 }
1862
1863 static struct i386_frame_cache *
1864 i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1865 {
1866 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1868 volatile struct gdb_exception ex;
1869 struct i386_frame_cache *cache;
1870 gdb_byte buf[4];
1871
1872 if (*this_cache)
1873 return *this_cache;
1874
1875 cache = i386_alloc_frame_cache ();
1876 *this_cache = cache;
1877
1878 TRY_CATCH (ex, RETURN_MASK_ERROR)
1879 {
1880 /* Cache base will be %esp plus cache->sp_offset (-4). */
1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1882 cache->base = extract_unsigned_integer (buf, 4,
1883 byte_order) + cache->sp_offset;
1884
1885 /* Cache pc will be the frame func. */
1886 cache->pc = get_frame_pc (this_frame);
1887
1888 /* The saved %esp will be at cache->base plus 8. */
1889 cache->saved_sp = cache->base + 8;
1890
1891 /* The saved %eip will be at cache->base plus 4. */
1892 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
1893
1894 cache->base_p = 1;
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
1898
1899 return cache;
1900 }
1901
1902 static enum unwind_stop_reason
1903 i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1904 void **this_cache)
1905 {
1906 struct i386_frame_cache *cache
1907 = i386_epilogue_frame_cache (this_frame, this_cache);
1908
1909 if (!cache->base_p)
1910 return UNWIND_UNAVAILABLE;
1911
1912 return UNWIND_NO_REASON;
1913 }
1914
1915 static void
1916 i386_epilogue_frame_this_id (struct frame_info *this_frame,
1917 void **this_cache,
1918 struct frame_id *this_id)
1919 {
1920 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1921 this_cache);
1922
1923 if (!cache->base_p)
1924 return;
1925
1926 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1927 }
1928
1929 static const struct frame_unwind i386_epilogue_frame_unwind =
1930 {
1931 NORMAL_FRAME,
1932 i386_epilogue_frame_unwind_stop_reason,
1933 i386_epilogue_frame_this_id,
1934 i386_frame_prev_register,
1935 NULL,
1936 i386_epilogue_frame_sniffer
1937 };
1938 \f
1939
1940 /* Signal trampolines. */
1941
1942 static struct i386_frame_cache *
1943 i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
1944 {
1945 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1948 volatile struct gdb_exception ex;
1949 struct i386_frame_cache *cache;
1950 CORE_ADDR addr;
1951 gdb_byte buf[4];
1952
1953 if (*this_cache)
1954 return *this_cache;
1955
1956 cache = i386_alloc_frame_cache ();
1957
1958 TRY_CATCH (ex, RETURN_MASK_ERROR)
1959 {
1960 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1961 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
1962
1963 addr = tdep->sigcontext_addr (this_frame);
1964 if (tdep->sc_reg_offset)
1965 {
1966 int i;
1967
1968 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1969
1970 for (i = 0; i < tdep->sc_num_regs; i++)
1971 if (tdep->sc_reg_offset[i] != -1)
1972 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1973 }
1974 else
1975 {
1976 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1977 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1978 }
1979
1980 cache->base_p = 1;
1981 }
1982 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1983 throw_exception (ex);
1984
1985 *this_cache = cache;
1986 return cache;
1987 }
1988
1989 static enum unwind_stop_reason
1990 i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
1991 void **this_cache)
1992 {
1993 struct i386_frame_cache *cache =
1994 i386_sigtramp_frame_cache (this_frame, this_cache);
1995
1996 if (!cache->base_p)
1997 return UNWIND_UNAVAILABLE;
1998
1999 return UNWIND_NO_REASON;
2000 }
2001
2002 static void
2003 i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
2004 struct frame_id *this_id)
2005 {
2006 struct i386_frame_cache *cache =
2007 i386_sigtramp_frame_cache (this_frame, this_cache);
2008
2009 if (!cache->base_p)
2010 return;
2011
2012 /* See the end of i386_push_dummy_call. */
2013 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2014 }
2015
2016 static struct value *
2017 i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2018 void **this_cache, int regnum)
2019 {
2020 /* Make sure we've initialized the cache. */
2021 i386_sigtramp_frame_cache (this_frame, this_cache);
2022
2023 return i386_frame_prev_register (this_frame, this_cache, regnum);
2024 }
2025
2026 static int
2027 i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2028 struct frame_info *this_frame,
2029 void **this_prologue_cache)
2030 {
2031 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2032
2033 /* We shouldn't even bother if we don't have a sigcontext_addr
2034 handler. */
2035 if (tdep->sigcontext_addr == NULL)
2036 return 0;
2037
2038 if (tdep->sigtramp_p != NULL)
2039 {
2040 if (tdep->sigtramp_p (this_frame))
2041 return 1;
2042 }
2043
2044 if (tdep->sigtramp_start != 0)
2045 {
2046 CORE_ADDR pc = get_frame_pc (this_frame);
2047
2048 gdb_assert (tdep->sigtramp_end != 0);
2049 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2050 return 1;
2051 }
2052
2053 return 0;
2054 }
2055
2056 static const struct frame_unwind i386_sigtramp_frame_unwind =
2057 {
2058 SIGTRAMP_FRAME,
2059 i386_sigtramp_frame_unwind_stop_reason,
2060 i386_sigtramp_frame_this_id,
2061 i386_sigtramp_frame_prev_register,
2062 NULL,
2063 i386_sigtramp_frame_sniffer
2064 };
2065 \f
2066
2067 static CORE_ADDR
2068 i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
2069 {
2070 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2071
2072 return cache->base;
2073 }
2074
2075 static const struct frame_base i386_frame_base =
2076 {
2077 &i386_frame_unwind,
2078 i386_frame_base_address,
2079 i386_frame_base_address,
2080 i386_frame_base_address
2081 };
2082
2083 static struct frame_id
2084 i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2085 {
2086 CORE_ADDR fp;
2087
2088 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
2089
2090 /* See the end of i386_push_dummy_call. */
2091 return frame_id_build (fp + 8, get_frame_pc (this_frame));
2092 }
2093 \f
2094
2095 /* Figure out where the longjmp will land. Slurp the args out of the
2096 stack. We expect the first arg to be a pointer to the jmp_buf
2097 structure from which we extract the address that we will land at.
2098 This address is copied into PC. This routine returns non-zero on
2099 success. */
2100
2101 static int
2102 i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2103 {
2104 gdb_byte buf[4];
2105 CORE_ADDR sp, jb_addr;
2106 struct gdbarch *gdbarch = get_frame_arch (frame);
2107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2108 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2109
2110 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2111 longjmp will land. */
2112 if (jb_pc_offset == -1)
2113 return 0;
2114
2115 get_frame_register (frame, I386_ESP_REGNUM, buf);
2116 sp = extract_unsigned_integer (buf, 4, byte_order);
2117 if (target_read_memory (sp + 4, buf, 4))
2118 return 0;
2119
2120 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
2121 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
2122 return 0;
2123
2124 *pc = extract_unsigned_integer (buf, 4, byte_order);
2125 return 1;
2126 }
2127 \f
2128
2129 /* Check whether TYPE must be 16-byte-aligned when passed as a
2130 function argument. 16-byte vectors, _Decimal128 and structures or
2131 unions containing such types must be 16-byte-aligned; other
2132 arguments are 4-byte-aligned. */
2133
2134 static int
2135 i386_16_byte_align_p (struct type *type)
2136 {
2137 type = check_typedef (type);
2138 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2139 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2140 && TYPE_LENGTH (type) == 16)
2141 return 1;
2142 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2143 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2144 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2145 || TYPE_CODE (type) == TYPE_CODE_UNION)
2146 {
2147 int i;
2148 for (i = 0; i < TYPE_NFIELDS (type); i++)
2149 {
2150 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2151 return 1;
2152 }
2153 }
2154 return 0;
2155 }
2156
2157 static CORE_ADDR
2158 i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2159 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2160 struct value **args, CORE_ADDR sp, int struct_return,
2161 CORE_ADDR struct_addr)
2162 {
2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2164 gdb_byte buf[4];
2165 int i;
2166 int write_pass;
2167 int args_space = 0;
2168
2169 /* Determine the total space required for arguments and struct
2170 return address in a first pass (allowing for 16-byte-aligned
2171 arguments), then push arguments in a second pass. */
2172
2173 for (write_pass = 0; write_pass < 2; write_pass++)
2174 {
2175 int args_space_used = 0;
2176 int have_16_byte_aligned_arg = 0;
2177
2178 if (struct_return)
2179 {
2180 if (write_pass)
2181 {
2182 /* Push value address. */
2183 store_unsigned_integer (buf, 4, byte_order, struct_addr);
2184 write_memory (sp, buf, 4);
2185 args_space_used += 4;
2186 }
2187 else
2188 args_space += 4;
2189 }
2190
2191 for (i = 0; i < nargs; i++)
2192 {
2193 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
2194
2195 if (write_pass)
2196 {
2197 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2198 args_space_used = align_up (args_space_used, 16);
2199
2200 write_memory (sp + args_space_used,
2201 value_contents_all (args[i]), len);
2202 /* The System V ABI says that:
2203
2204 "An argument's size is increased, if necessary, to make it a
2205 multiple of [32-bit] words. This may require tail padding,
2206 depending on the size of the argument."
2207
2208 This makes sure the stack stays word-aligned. */
2209 args_space_used += align_up (len, 4);
2210 }
2211 else
2212 {
2213 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2214 {
2215 args_space = align_up (args_space, 16);
2216 have_16_byte_aligned_arg = 1;
2217 }
2218 args_space += align_up (len, 4);
2219 }
2220 }
2221
2222 if (!write_pass)
2223 {
2224 if (have_16_byte_aligned_arg)
2225 args_space = align_up (args_space, 16);
2226 sp -= args_space;
2227 }
2228 }
2229
2230 /* Store return address. */
2231 sp -= 4;
2232 store_unsigned_integer (buf, 4, byte_order, bp_addr);
2233 write_memory (sp, buf, 4);
2234
2235 /* Finally, update the stack pointer... */
2236 store_unsigned_integer (buf, 4, byte_order, sp);
2237 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2238
2239 /* ...and fake a frame pointer. */
2240 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2241
2242 /* MarkK wrote: This "+ 8" is all over the place:
2243 (i386_frame_this_id, i386_sigtramp_frame_this_id,
2244 i386_dummy_id). It's there, since all frame unwinders for
2245 a given target have to agree (within a certain margin) on the
2246 definition of the stack address of a frame. Otherwise frame id
2247 comparison might not work correctly. Since DWARF2/GCC uses the
2248 stack address *before* the function call as a frame's CFA. On
2249 the i386, when %ebp is used as a frame pointer, the offset
2250 between the contents %ebp and the CFA as defined by GCC. */
2251 return sp + 8;
2252 }
2253
2254 /* These registers are used for returning integers (and on some
2255 targets also for returning `struct' and `union' values when their
2256 size and alignment match an integer type). */
2257 #define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2258 #define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
2259
2260 /* Read, for architecture GDBARCH, a function return value of TYPE
2261 from REGCACHE, and copy that into VALBUF. */
2262
2263 static void
2264 i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
2265 struct regcache *regcache, gdb_byte *valbuf)
2266 {
2267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2268 int len = TYPE_LENGTH (type);
2269 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2270
2271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2272 {
2273 if (tdep->st0_regnum < 0)
2274 {
2275 warning (_("Cannot find floating-point return value."));
2276 memset (valbuf, 0, len);
2277 return;
2278 }
2279
2280 /* Floating-point return values can be found in %st(0). Convert
2281 its contents to the desired type. This is probably not
2282 exactly how it would happen on the target itself, but it is
2283 the best we can do. */
2284 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
2285 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
2286 }
2287 else
2288 {
2289 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2290 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2291
2292 if (len <= low_size)
2293 {
2294 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2295 memcpy (valbuf, buf, len);
2296 }
2297 else if (len <= (low_size + high_size))
2298 {
2299 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
2300 memcpy (valbuf, buf, low_size);
2301 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
2302 memcpy (valbuf + low_size, buf, len - low_size);
2303 }
2304 else
2305 internal_error (__FILE__, __LINE__,
2306 _("Cannot extract return value of %d bytes long."),
2307 len);
2308 }
2309 }
2310
2311 /* Write, for architecture GDBARCH, a function return value of TYPE
2312 from VALBUF into REGCACHE. */
2313
2314 static void
2315 i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
2316 struct regcache *regcache, const gdb_byte *valbuf)
2317 {
2318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2319 int len = TYPE_LENGTH (type);
2320
2321 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2322 {
2323 ULONGEST fstat;
2324 gdb_byte buf[I386_MAX_REGISTER_SIZE];
2325
2326 if (tdep->st0_regnum < 0)
2327 {
2328 warning (_("Cannot set floating-point return value."));
2329 return;
2330 }
2331
2332 /* Returning floating-point values is a bit tricky. Apart from
2333 storing the return value in %st(0), we have to simulate the
2334 state of the FPU at function return point. */
2335
2336 /* Convert the value found in VALBUF to the extended
2337 floating-point format used by the FPU. This is probably
2338 not exactly how it would happen on the target itself, but
2339 it is the best we can do. */
2340 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
2341 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
2342
2343 /* Set the top of the floating-point register stack to 7. The
2344 actual value doesn't really matter, but 7 is what a normal
2345 function return would end up with if the program started out
2346 with a freshly initialized FPU. */
2347 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2348 fstat |= (7 << 11);
2349 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
2350
2351 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2352 the floating-point register stack to 7, the appropriate value
2353 for the tag word is 0x3fff. */
2354 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
2355 }
2356 else
2357 {
2358 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2359 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
2360
2361 if (len <= low_size)
2362 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
2363 else if (len <= (low_size + high_size))
2364 {
2365 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2366 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
2367 len - low_size, valbuf + low_size);
2368 }
2369 else
2370 internal_error (__FILE__, __LINE__,
2371 _("Cannot store return value of %d bytes long."), len);
2372 }
2373 }
2374 \f
2375
2376 /* This is the variable that is set with "set struct-convention", and
2377 its legitimate values. */
2378 static const char default_struct_convention[] = "default";
2379 static const char pcc_struct_convention[] = "pcc";
2380 static const char reg_struct_convention[] = "reg";
2381 static const char *valid_conventions[] =
2382 {
2383 default_struct_convention,
2384 pcc_struct_convention,
2385 reg_struct_convention,
2386 NULL
2387 };
2388 static const char *struct_convention = default_struct_convention;
2389
2390 /* Return non-zero if TYPE, which is assumed to be a structure,
2391 a union type, or an array type, should be returned in registers
2392 for architecture GDBARCH. */
2393
2394 static int
2395 i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
2396 {
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2398 enum type_code code = TYPE_CODE (type);
2399 int len = TYPE_LENGTH (type);
2400
2401 gdb_assert (code == TYPE_CODE_STRUCT
2402 || code == TYPE_CODE_UNION
2403 || code == TYPE_CODE_ARRAY);
2404
2405 if (struct_convention == pcc_struct_convention
2406 || (struct_convention == default_struct_convention
2407 && tdep->struct_return == pcc_struct_return))
2408 return 0;
2409
2410 /* Structures consisting of a single `float', `double' or 'long
2411 double' member are returned in %st(0). */
2412 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2413 {
2414 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2415 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2416 return (len == 4 || len == 8 || len == 12);
2417 }
2418
2419 return (len == 1 || len == 2 || len == 4 || len == 8);
2420 }
2421
2422 /* Determine, for architecture GDBARCH, how a return value of TYPE
2423 should be returned. If it is supposed to be returned in registers,
2424 and READBUF is non-zero, read the appropriate value from REGCACHE,
2425 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2426 from WRITEBUF into REGCACHE. */
2427
2428 static enum return_value_convention
2429 i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2430 struct type *type, struct regcache *regcache,
2431 gdb_byte *readbuf, const gdb_byte *writebuf)
2432 {
2433 enum type_code code = TYPE_CODE (type);
2434
2435 if (((code == TYPE_CODE_STRUCT
2436 || code == TYPE_CODE_UNION
2437 || code == TYPE_CODE_ARRAY)
2438 && !i386_reg_struct_return_p (gdbarch, type))
2439 /* 128-bit decimal float uses the struct return convention. */
2440 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
2441 {
2442 /* The System V ABI says that:
2443
2444 "A function that returns a structure or union also sets %eax
2445 to the value of the original address of the caller's area
2446 before it returns. Thus when the caller receives control
2447 again, the address of the returned object resides in register
2448 %eax and can be used to access the object."
2449
2450 So the ABI guarantees that we can always find the return
2451 value just after the function has returned. */
2452
2453 /* Note that the ABI doesn't mention functions returning arrays,
2454 which is something possible in certain languages such as Ada.
2455 In this case, the value is returned as if it was wrapped in
2456 a record, so the convention applied to records also applies
2457 to arrays. */
2458
2459 if (readbuf)
2460 {
2461 ULONGEST addr;
2462
2463 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2464 read_memory (addr, readbuf, TYPE_LENGTH (type));
2465 }
2466
2467 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2468 }
2469
2470 /* This special case is for structures consisting of a single
2471 `float', `double' or 'long double' member. These structures are
2472 returned in %st(0). For these structures, we call ourselves
2473 recursively, changing TYPE into the type of the first member of
2474 the structure. Since that should work for all structures that
2475 have only one member, we don't bother to check the member's type
2476 here. */
2477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2478 {
2479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2480 return i386_return_value (gdbarch, func_type, type, regcache,
2481 readbuf, writebuf);
2482 }
2483
2484 if (readbuf)
2485 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2486 if (writebuf)
2487 i386_store_return_value (gdbarch, type, regcache, writebuf);
2488
2489 return RETURN_VALUE_REGISTER_CONVENTION;
2490 }
2491 \f
2492
2493 struct type *
2494 i387_ext_type (struct gdbarch *gdbarch)
2495 {
2496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2497
2498 if (!tdep->i387_ext_type)
2499 {
2500 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2501 gdb_assert (tdep->i387_ext_type != NULL);
2502 }
2503
2504 return tdep->i387_ext_type;
2505 }
2506
2507 /* Construct vector type for pseudo YMM registers. We can't use
2508 tdesc_find_type since YMM isn't described in target description. */
2509
2510 static struct type *
2511 i386_ymm_type (struct gdbarch *gdbarch)
2512 {
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (!tdep->i386_ymm_type)
2516 {
2517 const struct builtin_type *bt = builtin_type (gdbarch);
2518
2519 /* The type we're building is this: */
2520 #if 0
2521 union __gdb_builtin_type_vec256i
2522 {
2523 int128_t uint128[2];
2524 int64_t v2_int64[4];
2525 int32_t v4_int32[8];
2526 int16_t v8_int16[16];
2527 int8_t v16_int8[32];
2528 double v2_double[4];
2529 float v4_float[8];
2530 };
2531 #endif
2532
2533 struct type *t;
2534
2535 t = arch_composite_type (gdbarch,
2536 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2537 append_composite_type_field (t, "v8_float",
2538 init_vector_type (bt->builtin_float, 8));
2539 append_composite_type_field (t, "v4_double",
2540 init_vector_type (bt->builtin_double, 4));
2541 append_composite_type_field (t, "v32_int8",
2542 init_vector_type (bt->builtin_int8, 32));
2543 append_composite_type_field (t, "v16_int16",
2544 init_vector_type (bt->builtin_int16, 16));
2545 append_composite_type_field (t, "v8_int32",
2546 init_vector_type (bt->builtin_int32, 8));
2547 append_composite_type_field (t, "v4_int64",
2548 init_vector_type (bt->builtin_int64, 4));
2549 append_composite_type_field (t, "v2_int128",
2550 init_vector_type (bt->builtin_int128, 2));
2551
2552 TYPE_VECTOR (t) = 1;
2553 TYPE_NAME (t) = "builtin_type_vec256i";
2554 tdep->i386_ymm_type = t;
2555 }
2556
2557 return tdep->i386_ymm_type;
2558 }
2559
2560 /* Construct vector type for MMX registers. */
2561 static struct type *
2562 i386_mmx_type (struct gdbarch *gdbarch)
2563 {
2564 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2565
2566 if (!tdep->i386_mmx_type)
2567 {
2568 const struct builtin_type *bt = builtin_type (gdbarch);
2569
2570 /* The type we're building is this: */
2571 #if 0
2572 union __gdb_builtin_type_vec64i
2573 {
2574 int64_t uint64;
2575 int32_t v2_int32[2];
2576 int16_t v4_int16[4];
2577 int8_t v8_int8[8];
2578 };
2579 #endif
2580
2581 struct type *t;
2582
2583 t = arch_composite_type (gdbarch,
2584 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
2585
2586 append_composite_type_field (t, "uint64", bt->builtin_int64);
2587 append_composite_type_field (t, "v2_int32",
2588 init_vector_type (bt->builtin_int32, 2));
2589 append_composite_type_field (t, "v4_int16",
2590 init_vector_type (bt->builtin_int16, 4));
2591 append_composite_type_field (t, "v8_int8",
2592 init_vector_type (bt->builtin_int8, 8));
2593
2594 TYPE_VECTOR (t) = 1;
2595 TYPE_NAME (t) = "builtin_type_vec64i";
2596 tdep->i386_mmx_type = t;
2597 }
2598
2599 return tdep->i386_mmx_type;
2600 }
2601
2602 /* Return the GDB type object for the "standard" data type of data in
2603 register REGNUM. */
2604
2605 static struct type *
2606 i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2607 {
2608 if (i386_mmx_regnum_p (gdbarch, regnum))
2609 return i386_mmx_type (gdbarch);
2610 else if (i386_ymm_regnum_p (gdbarch, regnum))
2611 return i386_ymm_type (gdbarch);
2612 else
2613 {
2614 const struct builtin_type *bt = builtin_type (gdbarch);
2615 if (i386_byte_regnum_p (gdbarch, regnum))
2616 return bt->builtin_int8;
2617 else if (i386_word_regnum_p (gdbarch, regnum))
2618 return bt->builtin_int16;
2619 else if (i386_dword_regnum_p (gdbarch, regnum))
2620 return bt->builtin_int32;
2621 }
2622
2623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2624 }
2625
2626 /* Map a cooked register onto a raw register or memory. For the i386,
2627 the MMX registers need to be mapped onto floating point registers. */
2628
2629 static int
2630 i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
2631 {
2632 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2633 int mmxreg, fpreg;
2634 ULONGEST fstat;
2635 int tos;
2636
2637 mmxreg = regnum - tdep->mm0_regnum;
2638 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
2639 tos = (fstat >> 11) & 0x7;
2640 fpreg = (mmxreg + tos) % 8;
2641
2642 return (I387_ST0_REGNUM (tdep) + fpreg);
2643 }
2644
2645 enum register_status
2646 i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2647 int regnum, gdb_byte *buf)
2648 {
2649 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2650 enum register_status status;
2651
2652 if (i386_mmx_regnum_p (gdbarch, regnum))
2653 {
2654 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2655
2656 /* Extract (always little endian). */
2657 status = regcache_raw_read (regcache, fpnum, raw_buf);
2658 if (status != REG_VALID)
2659 return status;
2660 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
2661 }
2662 else
2663 {
2664 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2665
2666 if (i386_ymm_regnum_p (gdbarch, regnum))
2667 {
2668 regnum -= tdep->ymm0_regnum;
2669
2670 /* Extract (always little endian). Read lower 128bits. */
2671 status = regcache_raw_read (regcache,
2672 I387_XMM0_REGNUM (tdep) + regnum,
2673 raw_buf);
2674 if (status != REG_VALID)
2675 return status;
2676 memcpy (buf, raw_buf, 16);
2677 /* Read upper 128bits. */
2678 status = regcache_raw_read (regcache,
2679 tdep->ymm0h_regnum + regnum,
2680 raw_buf);
2681 if (status != REG_VALID)
2682 return status;
2683 memcpy (buf + 16, raw_buf, 16);
2684 }
2685 else if (i386_word_regnum_p (gdbarch, regnum))
2686 {
2687 int gpnum = regnum - tdep->ax_regnum;
2688
2689 /* Extract (always little endian). */
2690 status = regcache_raw_read (regcache, gpnum, raw_buf);
2691 if (status != REG_VALID)
2692 return status;
2693 memcpy (buf, raw_buf, 2);
2694 }
2695 else if (i386_byte_regnum_p (gdbarch, regnum))
2696 {
2697 /* Check byte pseudo registers last since this function will
2698 be called from amd64_pseudo_register_read, which handles
2699 byte pseudo registers differently. */
2700 int gpnum = regnum - tdep->al_regnum;
2701
2702 /* Extract (always little endian). We read both lower and
2703 upper registers. */
2704 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2705 if (status != REG_VALID)
2706 return status;
2707 if (gpnum >= 4)
2708 memcpy (buf, raw_buf + 1, 1);
2709 else
2710 memcpy (buf, raw_buf, 1);
2711 }
2712 else
2713 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2714 }
2715
2716 return REG_VALID;
2717 }
2718
2719 void
2720 i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2721 int regnum, const gdb_byte *buf)
2722 {
2723 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2724
2725 if (i386_mmx_regnum_p (gdbarch, regnum))
2726 {
2727 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2728
2729 /* Read ... */
2730 regcache_raw_read (regcache, fpnum, raw_buf);
2731 /* ... Modify ... (always little endian). */
2732 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
2733 /* ... Write. */
2734 regcache_raw_write (regcache, fpnum, raw_buf);
2735 }
2736 else
2737 {
2738 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2739
2740 if (i386_ymm_regnum_p (gdbarch, regnum))
2741 {
2742 regnum -= tdep->ymm0_regnum;
2743
2744 /* ... Write lower 128bits. */
2745 regcache_raw_write (regcache,
2746 I387_XMM0_REGNUM (tdep) + regnum,
2747 buf);
2748 /* ... Write upper 128bits. */
2749 regcache_raw_write (regcache,
2750 tdep->ymm0h_regnum + regnum,
2751 buf + 16);
2752 }
2753 else if (i386_word_regnum_p (gdbarch, regnum))
2754 {
2755 int gpnum = regnum - tdep->ax_regnum;
2756
2757 /* Read ... */
2758 regcache_raw_read (regcache, gpnum, raw_buf);
2759 /* ... Modify ... (always little endian). */
2760 memcpy (raw_buf, buf, 2);
2761 /* ... Write. */
2762 regcache_raw_write (regcache, gpnum, raw_buf);
2763 }
2764 else if (i386_byte_regnum_p (gdbarch, regnum))
2765 {
2766 /* Check byte pseudo registers last since this function will
2767 be called from amd64_pseudo_register_read, which handles
2768 byte pseudo registers differently. */
2769 int gpnum = regnum - tdep->al_regnum;
2770
2771 /* Read ... We read both lower and upper registers. */
2772 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2773 /* ... Modify ... (always little endian). */
2774 if (gpnum >= 4)
2775 memcpy (raw_buf + 1, buf, 1);
2776 else
2777 memcpy (raw_buf, buf, 1);
2778 /* ... Write. */
2779 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2780 }
2781 else
2782 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2783 }
2784 }
2785 \f
2786
2787 /* Return the register number of the register allocated by GCC after
2788 REGNUM, or -1 if there is no such register. */
2789
2790 static int
2791 i386_next_regnum (int regnum)
2792 {
2793 /* GCC allocates the registers in the order:
2794
2795 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2796
2797 Since storing a variable in %esp doesn't make any sense we return
2798 -1 for %ebp and for %esp itself. */
2799 static int next_regnum[] =
2800 {
2801 I386_EDX_REGNUM, /* Slot for %eax. */
2802 I386_EBX_REGNUM, /* Slot for %ecx. */
2803 I386_ECX_REGNUM, /* Slot for %edx. */
2804 I386_ESI_REGNUM, /* Slot for %ebx. */
2805 -1, -1, /* Slots for %esp and %ebp. */
2806 I386_EDI_REGNUM, /* Slot for %esi. */
2807 I386_EBP_REGNUM /* Slot for %edi. */
2808 };
2809
2810 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
2811 return next_regnum[regnum];
2812
2813 return -1;
2814 }
2815
2816 /* Return nonzero if a value of type TYPE stored in register REGNUM
2817 needs any special handling. */
2818
2819 static int
2820 i386_convert_register_p (struct gdbarch *gdbarch,
2821 int regnum, struct type *type)
2822 {
2823 int len = TYPE_LENGTH (type);
2824
2825 /* Values may be spread across multiple registers. Most debugging
2826 formats aren't expressive enough to specify the locations, so
2827 some heuristics is involved. Right now we only handle types that
2828 have a length that is a multiple of the word size, since GCC
2829 doesn't seem to put any other types into registers. */
2830 if (len > 4 && len % 4 == 0)
2831 {
2832 int last_regnum = regnum;
2833
2834 while (len > 4)
2835 {
2836 last_regnum = i386_next_regnum (last_regnum);
2837 len -= 4;
2838 }
2839
2840 if (last_regnum != -1)
2841 return 1;
2842 }
2843
2844 return i387_convert_register_p (gdbarch, regnum, type);
2845 }
2846
2847 /* Read a value of type TYPE from register REGNUM in frame FRAME, and
2848 return its contents in TO. */
2849
2850 static int
2851 i386_register_to_value (struct frame_info *frame, int regnum,
2852 struct type *type, gdb_byte *to,
2853 int *optimizedp, int *unavailablep)
2854 {
2855 struct gdbarch *gdbarch = get_frame_arch (frame);
2856 int len = TYPE_LENGTH (type);
2857
2858 if (i386_fp_regnum_p (gdbarch, regnum))
2859 return i387_register_to_value (frame, regnum, type, to,
2860 optimizedp, unavailablep);
2861
2862 /* Read a value spread across multiple registers. */
2863
2864 gdb_assert (len > 4 && len % 4 == 0);
2865
2866 while (len > 0)
2867 {
2868 gdb_assert (regnum != -1);
2869 gdb_assert (register_size (gdbarch, regnum) == 4);
2870
2871 if (!get_frame_register_bytes (frame, regnum, 0,
2872 register_size (gdbarch, regnum),
2873 to, optimizedp, unavailablep))
2874 return 0;
2875
2876 regnum = i386_next_regnum (regnum);
2877 len -= 4;
2878 to += 4;
2879 }
2880
2881 *optimizedp = *unavailablep = 0;
2882 return 1;
2883 }
2884
2885 /* Write the contents FROM of a value of type TYPE into register
2886 REGNUM in frame FRAME. */
2887
2888 static void
2889 i386_value_to_register (struct frame_info *frame, int regnum,
2890 struct type *type, const gdb_byte *from)
2891 {
2892 int len = TYPE_LENGTH (type);
2893
2894 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
2895 {
2896 i387_value_to_register (frame, regnum, type, from);
2897 return;
2898 }
2899
2900 /* Write a value spread across multiple registers. */
2901
2902 gdb_assert (len > 4 && len % 4 == 0);
2903
2904 while (len > 0)
2905 {
2906 gdb_assert (regnum != -1);
2907 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
2908
2909 put_frame_register (frame, regnum, from);
2910 regnum = i386_next_regnum (regnum);
2911 len -= 4;
2912 from += 4;
2913 }
2914 }
2915 \f
2916 /* Supply register REGNUM from the buffer specified by GREGS and LEN
2917 in the general-purpose register set REGSET to register cache
2918 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2919
2920 void
2921 i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2922 int regnum, const void *gregs, size_t len)
2923 {
2924 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2925 const gdb_byte *regs = gregs;
2926 int i;
2927
2928 gdb_assert (len == tdep->sizeof_gregset);
2929
2930 for (i = 0; i < tdep->gregset_num_regs; i++)
2931 {
2932 if ((regnum == i || regnum == -1)
2933 && tdep->gregset_reg_offset[i] != -1)
2934 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2935 }
2936 }
2937
2938 /* Collect register REGNUM from the register cache REGCACHE and store
2939 it in the buffer specified by GREGS and LEN as described by the
2940 general-purpose register set REGSET. If REGNUM is -1, do this for
2941 all registers in REGSET. */
2942
2943 void
2944 i386_collect_gregset (const struct regset *regset,
2945 const struct regcache *regcache,
2946 int regnum, void *gregs, size_t len)
2947 {
2948 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2949 gdb_byte *regs = gregs;
2950 int i;
2951
2952 gdb_assert (len == tdep->sizeof_gregset);
2953
2954 for (i = 0; i < tdep->gregset_num_regs; i++)
2955 {
2956 if ((regnum == i || regnum == -1)
2957 && tdep->gregset_reg_offset[i] != -1)
2958 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2959 }
2960 }
2961
2962 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2963 in the floating-point register set REGSET to register cache
2964 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2965
2966 static void
2967 i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2968 int regnum, const void *fpregs, size_t len)
2969 {
2970 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2971
2972 if (len == I387_SIZEOF_FXSAVE)
2973 {
2974 i387_supply_fxsave (regcache, regnum, fpregs);
2975 return;
2976 }
2977
2978 gdb_assert (len == tdep->sizeof_fpregset);
2979 i387_supply_fsave (regcache, regnum, fpregs);
2980 }
2981
2982 /* Collect register REGNUM from the register cache REGCACHE and store
2983 it in the buffer specified by FPREGS and LEN as described by the
2984 floating-point register set REGSET. If REGNUM is -1, do this for
2985 all registers in REGSET. */
2986
2987 static void
2988 i386_collect_fpregset (const struct regset *regset,
2989 const struct regcache *regcache,
2990 int regnum, void *fpregs, size_t len)
2991 {
2992 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2993
2994 if (len == I387_SIZEOF_FXSAVE)
2995 {
2996 i387_collect_fxsave (regcache, regnum, fpregs);
2997 return;
2998 }
2999
3000 gdb_assert (len == tdep->sizeof_fpregset);
3001 i387_collect_fsave (regcache, regnum, fpregs);
3002 }
3003
3004 /* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3005
3006 static void
3007 i386_supply_xstateregset (const struct regset *regset,
3008 struct regcache *regcache, int regnum,
3009 const void *xstateregs, size_t len)
3010 {
3011 i387_supply_xsave (regcache, regnum, xstateregs);
3012 }
3013
3014 /* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3015
3016 static void
3017 i386_collect_xstateregset (const struct regset *regset,
3018 const struct regcache *regcache,
3019 int regnum, void *xstateregs, size_t len)
3020 {
3021 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3022 }
3023
3024 /* Return the appropriate register set for the core section identified
3025 by SECT_NAME and SECT_SIZE. */
3026
3027 const struct regset *
3028 i386_regset_from_core_section (struct gdbarch *gdbarch,
3029 const char *sect_name, size_t sect_size)
3030 {
3031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3032
3033 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3034 {
3035 if (tdep->gregset == NULL)
3036 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3037 i386_collect_gregset);
3038 return tdep->gregset;
3039 }
3040
3041 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3042 || (strcmp (sect_name, ".reg-xfp") == 0
3043 && sect_size == I387_SIZEOF_FXSAVE))
3044 {
3045 if (tdep->fpregset == NULL)
3046 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3047 i386_collect_fpregset);
3048 return tdep->fpregset;
3049 }
3050
3051 if (strcmp (sect_name, ".reg-xstate") == 0)
3052 {
3053 if (tdep->xstateregset == NULL)
3054 tdep->xstateregset = regset_alloc (gdbarch,
3055 i386_supply_xstateregset,
3056 i386_collect_xstateregset);
3057
3058 return tdep->xstateregset;
3059 }
3060
3061 return NULL;
3062 }
3063 \f
3064
3065 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
3066
3067 CORE_ADDR
3068 i386_pe_skip_trampoline_code (struct frame_info *frame,
3069 CORE_ADDR pc, char *name)
3070 {
3071 struct gdbarch *gdbarch = get_frame_arch (frame);
3072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3073
3074 /* jmp *(dest) */
3075 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
3076 {
3077 unsigned long indirect =
3078 read_memory_unsigned_integer (pc + 2, 4, byte_order);
3079 struct minimal_symbol *indsym =
3080 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
3081 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
3082
3083 if (symname)
3084 {
3085 if (strncmp (symname, "__imp_", 6) == 0
3086 || strncmp (symname, "_imp_", 5) == 0)
3087 return name ? 1 :
3088 read_memory_unsigned_integer (indirect, 4, byte_order);
3089 }
3090 }
3091 return 0; /* Not a trampoline. */
3092 }
3093 \f
3094
3095 /* Return whether the THIS_FRAME corresponds to a sigtramp
3096 routine. */
3097
3098 int
3099 i386_sigtramp_p (struct frame_info *this_frame)
3100 {
3101 CORE_ADDR pc = get_frame_pc (this_frame);
3102 char *name;
3103
3104 find_pc_partial_function (pc, &name, NULL, NULL);
3105 return (name && strcmp ("_sigtramp", name) == 0);
3106 }
3107 \f
3108
3109 /* We have two flavours of disassembly. The machinery on this page
3110 deals with switching between those. */
3111
3112 static int
3113 i386_print_insn (bfd_vma pc, struct disassemble_info *info)
3114 {
3115 gdb_assert (disassembly_flavor == att_flavor
3116 || disassembly_flavor == intel_flavor);
3117
3118 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3119 constified, cast to prevent a compiler warning. */
3120 info->disassembler_options = (char *) disassembly_flavor;
3121
3122 return print_insn_i386 (pc, info);
3123 }
3124 \f
3125
3126 /* There are a few i386 architecture variants that differ only
3127 slightly from the generic i386 target. For now, we don't give them
3128 their own source file, but include them here. As a consequence,
3129 they'll always be included. */
3130
3131 /* System V Release 4 (SVR4). */
3132
3133 /* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3134 routine. */
3135
3136 static int
3137 i386_svr4_sigtramp_p (struct frame_info *this_frame)
3138 {
3139 CORE_ADDR pc = get_frame_pc (this_frame);
3140 char *name;
3141
3142 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3143 currently unknown. */
3144 find_pc_partial_function (pc, &name, NULL, NULL);
3145 return (name && (strcmp ("_sigreturn", name) == 0
3146 || strcmp ("_sigacthandler", name) == 0
3147 || strcmp ("sigvechandler", name) == 0));
3148 }
3149
3150 /* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3151 address of the associated sigcontext (ucontext) structure. */
3152
3153 static CORE_ADDR
3154 i386_svr4_sigcontext_addr (struct frame_info *this_frame)
3155 {
3156 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3158 gdb_byte buf[4];
3159 CORE_ADDR sp;
3160
3161 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
3162 sp = extract_unsigned_integer (buf, 4, byte_order);
3163
3164 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
3165 }
3166 \f
3167
3168 /* Generic ELF. */
3169
3170 void
3171 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3172 {
3173 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3174 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3175 }
3176
3177 /* System V Release 4 (SVR4). */
3178
3179 void
3180 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 /* System V Release 4 uses ELF. */
3185 i386_elf_init_abi (info, gdbarch);
3186
3187 /* System V Release 4 has shared libraries. */
3188 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3189
3190 tdep->sigtramp_p = i386_svr4_sigtramp_p;
3191 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
3192 tdep->sc_pc_offset = 36 + 14 * 4;
3193 tdep->sc_sp_offset = 36 + 17 * 4;
3194
3195 tdep->jb_pc_offset = 20;
3196 }
3197
3198 /* DJGPP. */
3199
3200 static void
3201 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3202 {
3203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3204
3205 /* DJGPP doesn't have any special frames for signal handlers. */
3206 tdep->sigtramp_p = NULL;
3207
3208 tdep->jb_pc_offset = 36;
3209
3210 /* DJGPP does not support the SSE registers. */
3211 if (! tdesc_has_registers (info.target_desc))
3212 tdep->tdesc = tdesc_i386_mmx;
3213
3214 /* Native compiler is GCC, which uses the SVR4 register numbering
3215 even in COFF and STABS. See the comment in i386_gdbarch_init,
3216 before the calls to set_gdbarch_stab_reg_to_regnum and
3217 set_gdbarch_sdb_reg_to_regnum. */
3218 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3219 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3220
3221 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3222 }
3223 \f
3224
3225 /* i386 register groups. In addition to the normal groups, add "mmx"
3226 and "sse". */
3227
3228 static struct reggroup *i386_sse_reggroup;
3229 static struct reggroup *i386_mmx_reggroup;
3230
3231 static void
3232 i386_init_reggroups (void)
3233 {
3234 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3235 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3236 }
3237
3238 static void
3239 i386_add_reggroups (struct gdbarch *gdbarch)
3240 {
3241 reggroup_add (gdbarch, i386_sse_reggroup);
3242 reggroup_add (gdbarch, i386_mmx_reggroup);
3243 reggroup_add (gdbarch, general_reggroup);
3244 reggroup_add (gdbarch, float_reggroup);
3245 reggroup_add (gdbarch, all_reggroup);
3246 reggroup_add (gdbarch, save_reggroup);
3247 reggroup_add (gdbarch, restore_reggroup);
3248 reggroup_add (gdbarch, vector_reggroup);
3249 reggroup_add (gdbarch, system_reggroup);
3250 }
3251
3252 int
3253 i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3254 struct reggroup *group)
3255 {
3256 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3257 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3258 ymm_regnum_p, ymmh_regnum_p;
3259
3260 /* Don't include pseudo registers, except for MMX, in any register
3261 groups. */
3262 if (i386_byte_regnum_p (gdbarch, regnum))
3263 return 0;
3264
3265 if (i386_word_regnum_p (gdbarch, regnum))
3266 return 0;
3267
3268 if (i386_dword_regnum_p (gdbarch, regnum))
3269 return 0;
3270
3271 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
3272 if (group == i386_mmx_reggroup)
3273 return mmx_regnum_p;
3274
3275 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3276 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
3277 if (group == i386_sse_reggroup)
3278 return xmm_regnum_p || mxcsr_regnum_p;
3279
3280 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
3281 if (group == vector_reggroup)
3282 return (mmx_regnum_p
3283 || ymm_regnum_p
3284 || mxcsr_regnum_p
3285 || (xmm_regnum_p
3286 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3287 == I386_XSTATE_SSE_MASK)));
3288
3289 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3290 || i386_fpc_regnum_p (gdbarch, regnum));
3291 if (group == float_reggroup)
3292 return fp_regnum_p;
3293
3294 /* For "info reg all", don't include upper YMM registers nor XMM
3295 registers when AVX is supported. */
3296 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3297 if (group == all_reggroup
3298 && ((xmm_regnum_p
3299 && (tdep->xcr0 & I386_XSTATE_AVX))
3300 || ymmh_regnum_p))
3301 return 0;
3302
3303 if (group == general_reggroup)
3304 return (!fp_regnum_p
3305 && !mmx_regnum_p
3306 && !mxcsr_regnum_p
3307 && !xmm_regnum_p
3308 && !ymm_regnum_p
3309 && !ymmh_regnum_p);
3310
3311 return default_register_reggroup_p (gdbarch, regnum, group);
3312 }
3313 \f
3314
3315 /* Get the ARGIth function argument for the current function. */
3316
3317 static CORE_ADDR
3318 i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3319 struct type *type)
3320 {
3321 struct gdbarch *gdbarch = get_frame_arch (frame);
3322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3323 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
3324 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
3325 }
3326
3327 static void
3328 i386_skip_permanent_breakpoint (struct regcache *regcache)
3329 {
3330 CORE_ADDR current_pc = regcache_read_pc (regcache);
3331
3332 /* On i386, breakpoint is exactly 1 byte long, so we just
3333 adjust the PC in the regcache. */
3334 current_pc += 1;
3335 regcache_write_pc (regcache, current_pc);
3336 }
3337
3338
3339 #define PREFIX_REPZ 0x01
3340 #define PREFIX_REPNZ 0x02
3341 #define PREFIX_LOCK 0x04
3342 #define PREFIX_DATA 0x08
3343 #define PREFIX_ADDR 0x10
3344
3345 /* operand size */
3346 enum
3347 {
3348 OT_BYTE = 0,
3349 OT_WORD,
3350 OT_LONG,
3351 OT_QUAD,
3352 OT_DQUAD,
3353 };
3354
3355 /* i386 arith/logic operations */
3356 enum
3357 {
3358 OP_ADDL,
3359 OP_ORL,
3360 OP_ADCL,
3361 OP_SBBL,
3362 OP_ANDL,
3363 OP_SUBL,
3364 OP_XORL,
3365 OP_CMPL,
3366 };
3367
3368 struct i386_record_s
3369 {
3370 struct gdbarch *gdbarch;
3371 struct regcache *regcache;
3372 CORE_ADDR orig_addr;
3373 CORE_ADDR addr;
3374 int aflag;
3375 int dflag;
3376 int override;
3377 uint8_t modrm;
3378 uint8_t mod, reg, rm;
3379 int ot;
3380 uint8_t rex_x;
3381 uint8_t rex_b;
3382 int rip_offset;
3383 int popl_esp_hack;
3384 const int *regmap;
3385 };
3386
3387 /* Parse "modrm" part in current memory address that irp->addr point to
3388 Return -1 if something wrong. */
3389
3390 static int
3391 i386_record_modrm (struct i386_record_s *irp)
3392 {
3393 struct gdbarch *gdbarch = irp->gdbarch;
3394
3395 if (target_read_memory (irp->addr, &irp->modrm, 1))
3396 {
3397 if (record_debug)
3398 printf_unfiltered (_("Process record: error reading memory at "
3399 "addr %s len = 1.\n"),
3400 paddress (gdbarch, irp->addr));
3401 return -1;
3402 }
3403 irp->addr++;
3404 irp->mod = (irp->modrm >> 6) & 3;
3405 irp->reg = (irp->modrm >> 3) & 7;
3406 irp->rm = irp->modrm & 7;
3407
3408 return 0;
3409 }
3410
3411 /* Get the memory address that current instruction write to and set it to
3412 the argument "addr".
3413 Return -1 if something wrong. */
3414
3415 static int
3416 i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
3417 {
3418 struct gdbarch *gdbarch = irp->gdbarch;
3419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3420 gdb_byte buf[4];
3421 ULONGEST offset64;
3422
3423 *addr = 0;
3424 if (irp->aflag)
3425 {
3426 /* 32 bits */
3427 int havesib = 0;
3428 uint8_t scale = 0;
3429 uint8_t byte;
3430 uint8_t index = 0;
3431 uint8_t base = irp->rm;
3432
3433 if (base == 4)
3434 {
3435 havesib = 1;
3436 if (target_read_memory (irp->addr, &byte, 1))
3437 {
3438 if (record_debug)
3439 printf_unfiltered (_("Process record: error reading memory "
3440 "at addr %s len = 1.\n"),
3441 paddress (gdbarch, irp->addr));
3442 return -1;
3443 }
3444 irp->addr++;
3445 scale = (byte >> 6) & 3;
3446 index = ((byte >> 3) & 7) | irp->rex_x;
3447 base = (byte & 7);
3448 }
3449 base |= irp->rex_b;
3450
3451 switch (irp->mod)
3452 {
3453 case 0:
3454 if ((base & 7) == 5)
3455 {
3456 base = 0xff;
3457 if (target_read_memory (irp->addr, buf, 4))
3458 {
3459 if (record_debug)
3460 printf_unfiltered (_("Process record: error reading "
3461 "memory at addr %s len = 4.\n"),
3462 paddress (gdbarch, irp->addr));
3463 return -1;
3464 }
3465 irp->addr += 4;
3466 *addr = extract_signed_integer (buf, 4, byte_order);
3467 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3468 *addr += irp->addr + irp->rip_offset;
3469 }
3470 break;
3471 case 1:
3472 if (target_read_memory (irp->addr, buf, 1))
3473 {
3474 if (record_debug)
3475 printf_unfiltered (_("Process record: error reading memory "
3476 "at addr %s len = 1.\n"),
3477 paddress (gdbarch, irp->addr));
3478 return -1;
3479 }
3480 irp->addr++;
3481 *addr = (int8_t) buf[0];
3482 break;
3483 case 2:
3484 if (target_read_memory (irp->addr, buf, 4))
3485 {
3486 if (record_debug)
3487 printf_unfiltered (_("Process record: error reading memory "
3488 "at addr %s len = 4.\n"),
3489 paddress (gdbarch, irp->addr));
3490 return -1;
3491 }
3492 *addr = extract_signed_integer (buf, 4, byte_order);
3493 irp->addr += 4;
3494 break;
3495 }
3496
3497 offset64 = 0;
3498 if (base != 0xff)
3499 {
3500 if (base == 4 && irp->popl_esp_hack)
3501 *addr += irp->popl_esp_hack;
3502 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
3503 &offset64);
3504 }
3505 if (irp->aflag == 2)
3506 {
3507 *addr += offset64;
3508 }
3509 else
3510 *addr = (uint32_t) (offset64 + *addr);
3511
3512 if (havesib && (index != 4 || scale != 0))
3513 {
3514 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
3515 &offset64);
3516 if (irp->aflag == 2)
3517 *addr += offset64 << scale;
3518 else
3519 *addr = (uint32_t) (*addr + (offset64 << scale));
3520 }
3521 }
3522 else
3523 {
3524 /* 16 bits */
3525 switch (irp->mod)
3526 {
3527 case 0:
3528 if (irp->rm == 6)
3529 {
3530 if (target_read_memory (irp->addr, buf, 2))
3531 {
3532 if (record_debug)
3533 printf_unfiltered (_("Process record: error reading "
3534 "memory at addr %s len = 2.\n"),
3535 paddress (gdbarch, irp->addr));
3536 return -1;
3537 }
3538 irp->addr += 2;
3539 *addr = extract_signed_integer (buf, 2, byte_order);
3540 irp->rm = 0;
3541 goto no_rm;
3542 }
3543 break;
3544 case 1:
3545 if (target_read_memory (irp->addr, buf, 1))
3546 {
3547 if (record_debug)
3548 printf_unfiltered (_("Process record: error reading memory "
3549 "at addr %s len = 1.\n"),
3550 paddress (gdbarch, irp->addr));
3551 return -1;
3552 }
3553 irp->addr++;
3554 *addr = (int8_t) buf[0];
3555 break;
3556 case 2:
3557 if (target_read_memory (irp->addr, buf, 2))
3558 {
3559 if (record_debug)
3560 printf_unfiltered (_("Process record: error reading memory "
3561 "at addr %s len = 2.\n"),
3562 paddress (gdbarch, irp->addr));
3563 return -1;
3564 }
3565 irp->addr += 2;
3566 *addr = extract_signed_integer (buf, 2, byte_order);
3567 break;
3568 }
3569
3570 switch (irp->rm)
3571 {
3572 case 0:
3573 regcache_raw_read_unsigned (irp->regcache,
3574 irp->regmap[X86_RECORD_REBX_REGNUM],
3575 &offset64);
3576 *addr = (uint32_t) (*addr + offset64);
3577 regcache_raw_read_unsigned (irp->regcache,
3578 irp->regmap[X86_RECORD_RESI_REGNUM],
3579 &offset64);
3580 *addr = (uint32_t) (*addr + offset64);
3581 break;
3582 case 1:
3583 regcache_raw_read_unsigned (irp->regcache,
3584 irp->regmap[X86_RECORD_REBX_REGNUM],
3585 &offset64);
3586 *addr = (uint32_t) (*addr + offset64);
3587 regcache_raw_read_unsigned (irp->regcache,
3588 irp->regmap[X86_RECORD_REDI_REGNUM],
3589 &offset64);
3590 *addr = (uint32_t) (*addr + offset64);
3591 break;
3592 case 2:
3593 regcache_raw_read_unsigned (irp->regcache,
3594 irp->regmap[X86_RECORD_REBP_REGNUM],
3595 &offset64);
3596 *addr = (uint32_t) (*addr + offset64);
3597 regcache_raw_read_unsigned (irp->regcache,
3598 irp->regmap[X86_RECORD_RESI_REGNUM],
3599 &offset64);
3600 *addr = (uint32_t) (*addr + offset64);
3601 break;
3602 case 3:
3603 regcache_raw_read_unsigned (irp->regcache,
3604 irp->regmap[X86_RECORD_REBP_REGNUM],
3605 &offset64);
3606 *addr = (uint32_t) (*addr + offset64);
3607 regcache_raw_read_unsigned (irp->regcache,
3608 irp->regmap[X86_RECORD_REDI_REGNUM],
3609 &offset64);
3610 *addr = (uint32_t) (*addr + offset64);
3611 break;
3612 case 4:
3613 regcache_raw_read_unsigned (irp->regcache,
3614 irp->regmap[X86_RECORD_RESI_REGNUM],
3615 &offset64);
3616 *addr = (uint32_t) (*addr + offset64);
3617 break;
3618 case 5:
3619 regcache_raw_read_unsigned (irp->regcache,
3620 irp->regmap[X86_RECORD_REDI_REGNUM],
3621 &offset64);
3622 *addr = (uint32_t) (*addr + offset64);
3623 break;
3624 case 6:
3625 regcache_raw_read_unsigned (irp->regcache,
3626 irp->regmap[X86_RECORD_REBP_REGNUM],
3627 &offset64);
3628 *addr = (uint32_t) (*addr + offset64);
3629 break;
3630 case 7:
3631 regcache_raw_read_unsigned (irp->regcache,
3632 irp->regmap[X86_RECORD_REBX_REGNUM],
3633 &offset64);
3634 *addr = (uint32_t) (*addr + offset64);
3635 break;
3636 }
3637 *addr &= 0xffff;
3638 }
3639
3640 no_rm:
3641 return 0;
3642 }
3643
3644 /* Record the value of the memory that willbe changed in current instruction
3645 to "record_arch_list".
3646 Return -1 if something wrong. */
3647
3648 static int
3649 i386_record_lea_modrm (struct i386_record_s *irp)
3650 {
3651 struct gdbarch *gdbarch = irp->gdbarch;
3652 uint64_t addr;
3653
3654 if (irp->override >= 0)
3655 {
3656 if (record_memory_query)
3657 {
3658 int q;
3659
3660 target_terminal_ours ();
3661 q = yquery (_("\
3662 Process record ignores the memory change of instruction at address %s\n\
3663 because it can't get the value of the segment register.\n\
3664 Do you want to stop the program?"),
3665 paddress (gdbarch, irp->orig_addr));
3666 target_terminal_inferior ();
3667 if (q)
3668 return -1;
3669 }
3670
3671 return 0;
3672 }
3673
3674 if (i386_record_lea_modrm_addr (irp, &addr))
3675 return -1;
3676
3677 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3678 return -1;
3679
3680 return 0;
3681 }
3682
3683 /* Record the push operation to "record_arch_list".
3684 Return -1 if something wrong. */
3685
3686 static int
3687 i386_record_push (struct i386_record_s *irp, int size)
3688 {
3689 ULONGEST addr;
3690
3691 if (record_arch_list_add_reg (irp->regcache,
3692 irp->regmap[X86_RECORD_RESP_REGNUM]))
3693 return -1;
3694 regcache_raw_read_unsigned (irp->regcache,
3695 irp->regmap[X86_RECORD_RESP_REGNUM],
3696 &addr);
3697 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
3698 return -1;
3699
3700 return 0;
3701 }
3702
3703
3704 /* Defines contents to record. */
3705 #define I386_SAVE_FPU_REGS 0xfffd
3706 #define I386_SAVE_FPU_ENV 0xfffe
3707 #define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3708
3709 /* Record the value of floating point registers which will be changed
3710 by the current instruction to "record_arch_list". Return -1 if
3711 something is wrong. */
3712
3713 static int i386_record_floats (struct gdbarch *gdbarch,
3714 struct i386_record_s *ir,
3715 uint32_t iregnum)
3716 {
3717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3718 int i;
3719
3720 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3721 happen. Currently we store st0-st7 registers, but we need not store all
3722 registers all the time, in future we use ftag register and record only
3723 those who are not marked as an empty. */
3724
3725 if (I386_SAVE_FPU_REGS == iregnum)
3726 {
3727 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3728 {
3729 if (record_arch_list_add_reg (ir->regcache, i))
3730 return -1;
3731 }
3732 }
3733 else if (I386_SAVE_FPU_ENV == iregnum)
3734 {
3735 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3736 {
3737 if (record_arch_list_add_reg (ir->regcache, i))
3738 return -1;
3739 }
3740 }
3741 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3742 {
3743 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3744 {
3745 if (record_arch_list_add_reg (ir->regcache, i))
3746 return -1;
3747 }
3748 }
3749 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3750 (iregnum <= I387_FOP_REGNUM (tdep)))
3751 {
3752 if (record_arch_list_add_reg (ir->regcache,iregnum))
3753 return -1;
3754 }
3755 else
3756 {
3757 /* Parameter error. */
3758 return -1;
3759 }
3760 if(I386_SAVE_FPU_ENV != iregnum)
3761 {
3762 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3763 {
3764 if (record_arch_list_add_reg (ir->regcache, i))
3765 return -1;
3766 }
3767 }
3768 return 0;
3769 }
3770
3771 /* Parse the current instruction and record the values of the registers and
3772 memory that will be changed in current instruction to "record_arch_list".
3773 Return -1 if something wrong. */
3774
3775 #define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3776 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3777
3778 int
3779 i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
3780 CORE_ADDR input_addr)
3781 {
3782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3783 int prefixes = 0;
3784 int regnum = 0;
3785 uint32_t opcode;
3786 uint8_t opcode8;
3787 ULONGEST addr;
3788 gdb_byte buf[MAX_REGISTER_SIZE];
3789 struct i386_record_s ir;
3790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3791 int rex = 0;
3792 uint8_t rex_w = -1;
3793 uint8_t rex_r = 0;
3794
3795 memset (&ir, 0, sizeof (struct i386_record_s));
3796 ir.regcache = regcache;
3797 ir.addr = input_addr;
3798 ir.orig_addr = input_addr;
3799 ir.aflag = 1;
3800 ir.dflag = 1;
3801 ir.override = -1;
3802 ir.popl_esp_hack = 0;
3803 ir.regmap = tdep->record_regmap;
3804 ir.gdbarch = gdbarch;
3805
3806 if (record_debug > 1)
3807 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
3808 "addr = %s\n",
3809 paddress (gdbarch, ir.addr));
3810
3811 /* prefixes */
3812 while (1)
3813 {
3814 if (target_read_memory (ir.addr, &opcode8, 1))
3815 {
3816 if (record_debug)
3817 printf_unfiltered (_("Process record: error reading memory at "
3818 "addr %s len = 1.\n"),
3819 paddress (gdbarch, ir.addr));
3820 return -1;
3821 }
3822 ir.addr++;
3823 switch (opcode8) /* Instruction prefixes */
3824 {
3825 case REPE_PREFIX_OPCODE:
3826 prefixes |= PREFIX_REPZ;
3827 break;
3828 case REPNE_PREFIX_OPCODE:
3829 prefixes |= PREFIX_REPNZ;
3830 break;
3831 case LOCK_PREFIX_OPCODE:
3832 prefixes |= PREFIX_LOCK;
3833 break;
3834 case CS_PREFIX_OPCODE:
3835 ir.override = X86_RECORD_CS_REGNUM;
3836 break;
3837 case SS_PREFIX_OPCODE:
3838 ir.override = X86_RECORD_SS_REGNUM;
3839 break;
3840 case DS_PREFIX_OPCODE:
3841 ir.override = X86_RECORD_DS_REGNUM;
3842 break;
3843 case ES_PREFIX_OPCODE:
3844 ir.override = X86_RECORD_ES_REGNUM;
3845 break;
3846 case FS_PREFIX_OPCODE:
3847 ir.override = X86_RECORD_FS_REGNUM;
3848 break;
3849 case GS_PREFIX_OPCODE:
3850 ir.override = X86_RECORD_GS_REGNUM;
3851 break;
3852 case DATA_PREFIX_OPCODE:
3853 prefixes |= PREFIX_DATA;
3854 break;
3855 case ADDR_PREFIX_OPCODE:
3856 prefixes |= PREFIX_ADDR;
3857 break;
3858 case 0x40: /* i386 inc %eax */
3859 case 0x41: /* i386 inc %ecx */
3860 case 0x42: /* i386 inc %edx */
3861 case 0x43: /* i386 inc %ebx */
3862 case 0x44: /* i386 inc %esp */
3863 case 0x45: /* i386 inc %ebp */
3864 case 0x46: /* i386 inc %esi */
3865 case 0x47: /* i386 inc %edi */
3866 case 0x48: /* i386 dec %eax */
3867 case 0x49: /* i386 dec %ecx */
3868 case 0x4a: /* i386 dec %edx */
3869 case 0x4b: /* i386 dec %ebx */
3870 case 0x4c: /* i386 dec %esp */
3871 case 0x4d: /* i386 dec %ebp */
3872 case 0x4e: /* i386 dec %esi */
3873 case 0x4f: /* i386 dec %edi */
3874 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
3875 {
3876 /* REX */
3877 rex = 1;
3878 rex_w = (opcode8 >> 3) & 1;
3879 rex_r = (opcode8 & 0x4) << 1;
3880 ir.rex_x = (opcode8 & 0x2) << 2;
3881 ir.rex_b = (opcode8 & 0x1) << 3;
3882 }
3883 else /* 32 bit target */
3884 goto out_prefixes;
3885 break;
3886 default:
3887 goto out_prefixes;
3888 break;
3889 }
3890 }
3891 out_prefixes:
3892 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3893 {
3894 ir.dflag = 2;
3895 }
3896 else
3897 {
3898 if (prefixes & PREFIX_DATA)
3899 ir.dflag ^= 1;
3900 }
3901 if (prefixes & PREFIX_ADDR)
3902 ir.aflag ^= 1;
3903 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3904 ir.aflag = 2;
3905
3906 /* Now check op code. */
3907 opcode = (uint32_t) opcode8;
3908 reswitch:
3909 switch (opcode)
3910 {
3911 case 0x0f:
3912 if (target_read_memory (ir.addr, &opcode8, 1))
3913 {
3914 if (record_debug)
3915 printf_unfiltered (_("Process record: error reading memory at "
3916 "addr %s len = 1.\n"),
3917 paddress (gdbarch, ir.addr));
3918 return -1;
3919 }
3920 ir.addr++;
3921 opcode = (uint32_t) opcode8 | 0x0f00;
3922 goto reswitch;
3923 break;
3924
3925 case 0x00: /* arith & logic */
3926 case 0x01:
3927 case 0x02:
3928 case 0x03:
3929 case 0x04:
3930 case 0x05:
3931 case 0x08:
3932 case 0x09:
3933 case 0x0a:
3934 case 0x0b:
3935 case 0x0c:
3936 case 0x0d:
3937 case 0x10:
3938 case 0x11:
3939 case 0x12:
3940 case 0x13:
3941 case 0x14:
3942 case 0x15:
3943 case 0x18:
3944 case 0x19:
3945 case 0x1a:
3946 case 0x1b:
3947 case 0x1c:
3948 case 0x1d:
3949 case 0x20:
3950 case 0x21:
3951 case 0x22:
3952 case 0x23:
3953 case 0x24:
3954 case 0x25:
3955 case 0x28:
3956 case 0x29:
3957 case 0x2a:
3958 case 0x2b:
3959 case 0x2c:
3960 case 0x2d:
3961 case 0x30:
3962 case 0x31:
3963 case 0x32:
3964 case 0x33:
3965 case 0x34:
3966 case 0x35:
3967 case 0x38:
3968 case 0x39:
3969 case 0x3a:
3970 case 0x3b:
3971 case 0x3c:
3972 case 0x3d:
3973 if (((opcode >> 3) & 7) != OP_CMPL)
3974 {
3975 if ((opcode & 1) == 0)
3976 ir.ot = OT_BYTE;
3977 else
3978 ir.ot = ir.dflag + OT_WORD;
3979
3980 switch ((opcode >> 1) & 3)
3981 {
3982 case 0: /* OP Ev, Gv */
3983 if (i386_record_modrm (&ir))
3984 return -1;
3985 if (ir.mod != 3)
3986 {
3987 if (i386_record_lea_modrm (&ir))
3988 return -1;
3989 }
3990 else
3991 {
3992 ir.rm |= ir.rex_b;
3993 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
3994 ir.rm &= 0x3;
3995 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
3996 }
3997 break;
3998 case 1: /* OP Gv, Ev */
3999 if (i386_record_modrm (&ir))
4000 return -1;
4001 ir.reg |= rex_r;
4002 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4003 ir.reg &= 0x3;
4004 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4005 break;
4006 case 2: /* OP A, Iv */
4007 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4008 break;
4009 }
4010 }
4011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4012 break;
4013
4014 case 0x80: /* GRP1 */
4015 case 0x81:
4016 case 0x82:
4017 case 0x83:
4018 if (i386_record_modrm (&ir))
4019 return -1;
4020
4021 if (ir.reg != OP_CMPL)
4022 {
4023 if ((opcode & 1) == 0)
4024 ir.ot = OT_BYTE;
4025 else
4026 ir.ot = ir.dflag + OT_WORD;
4027
4028 if (ir.mod != 3)
4029 {
4030 if (opcode == 0x83)
4031 ir.rip_offset = 1;
4032 else
4033 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4034 if (i386_record_lea_modrm (&ir))
4035 return -1;
4036 }
4037 else
4038 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4039 }
4040 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4041 break;
4042
4043 case 0x40: /* inc */
4044 case 0x41:
4045 case 0x42:
4046 case 0x43:
4047 case 0x44:
4048 case 0x45:
4049 case 0x46:
4050 case 0x47:
4051
4052 case 0x48: /* dec */
4053 case 0x49:
4054 case 0x4a:
4055 case 0x4b:
4056 case 0x4c:
4057 case 0x4d:
4058 case 0x4e:
4059 case 0x4f:
4060
4061 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4062 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4063 break;
4064
4065 case 0xf6: /* GRP3 */
4066 case 0xf7:
4067 if ((opcode & 1) == 0)
4068 ir.ot = OT_BYTE;
4069 else
4070 ir.ot = ir.dflag + OT_WORD;
4071 if (i386_record_modrm (&ir))
4072 return -1;
4073
4074 if (ir.mod != 3 && ir.reg == 0)
4075 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4076
4077 switch (ir.reg)
4078 {
4079 case 0: /* test */
4080 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4081 break;
4082 case 2: /* not */
4083 case 3: /* neg */
4084 if (ir.mod != 3)
4085 {
4086 if (i386_record_lea_modrm (&ir))
4087 return -1;
4088 }
4089 else
4090 {
4091 ir.rm |= ir.rex_b;
4092 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4093 ir.rm &= 0x3;
4094 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4095 }
4096 if (ir.reg == 3) /* neg */
4097 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4098 break;
4099 case 4: /* mul */
4100 case 5: /* imul */
4101 case 6: /* div */
4102 case 7: /* idiv */
4103 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4104 if (ir.ot != OT_BYTE)
4105 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4106 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4107 break;
4108 default:
4109 ir.addr -= 2;
4110 opcode = opcode << 8 | ir.modrm;
4111 goto no_support;
4112 break;
4113 }
4114 break;
4115
4116 case 0xfe: /* GRP4 */
4117 case 0xff: /* GRP5 */
4118 if (i386_record_modrm (&ir))
4119 return -1;
4120 if (ir.reg >= 2 && opcode == 0xfe)
4121 {
4122 ir.addr -= 2;
4123 opcode = opcode << 8 | ir.modrm;
4124 goto no_support;
4125 }
4126 switch (ir.reg)
4127 {
4128 case 0: /* inc */
4129 case 1: /* dec */
4130 if ((opcode & 1) == 0)
4131 ir.ot = OT_BYTE;
4132 else
4133 ir.ot = ir.dflag + OT_WORD;
4134 if (ir.mod != 3)
4135 {
4136 if (i386_record_lea_modrm (&ir))
4137 return -1;
4138 }
4139 else
4140 {
4141 ir.rm |= ir.rex_b;
4142 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4143 ir.rm &= 0x3;
4144 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4145 }
4146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4147 break;
4148 case 2: /* call */
4149 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4150 ir.dflag = 2;
4151 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4152 return -1;
4153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4154 break;
4155 case 3: /* lcall */
4156 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4157 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4158 return -1;
4159 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4160 break;
4161 case 4: /* jmp */
4162 case 5: /* ljmp */
4163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4164 break;
4165 case 6: /* push */
4166 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4167 ir.dflag = 2;
4168 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4169 return -1;
4170 break;
4171 default:
4172 ir.addr -= 2;
4173 opcode = opcode << 8 | ir.modrm;
4174 goto no_support;
4175 break;
4176 }
4177 break;
4178
4179 case 0x84: /* test */
4180 case 0x85:
4181 case 0xa8:
4182 case 0xa9:
4183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4184 break;
4185
4186 case 0x98: /* CWDE/CBW */
4187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4188 break;
4189
4190 case 0x99: /* CDQ/CWD */
4191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4193 break;
4194
4195 case 0x0faf: /* imul */
4196 case 0x69:
4197 case 0x6b:
4198 ir.ot = ir.dflag + OT_WORD;
4199 if (i386_record_modrm (&ir))
4200 return -1;
4201 if (opcode == 0x69)
4202 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4203 else if (opcode == 0x6b)
4204 ir.rip_offset = 1;
4205 ir.reg |= rex_r;
4206 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4207 ir.reg &= 0x3;
4208 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4210 break;
4211
4212 case 0x0fc0: /* xadd */
4213 case 0x0fc1:
4214 if ((opcode & 1) == 0)
4215 ir.ot = OT_BYTE;
4216 else
4217 ir.ot = ir.dflag + OT_WORD;
4218 if (i386_record_modrm (&ir))
4219 return -1;
4220 ir.reg |= rex_r;
4221 if (ir.mod == 3)
4222 {
4223 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4224 ir.reg &= 0x3;
4225 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4226 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4227 ir.rm &= 0x3;
4228 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4229 }
4230 else
4231 {
4232 if (i386_record_lea_modrm (&ir))
4233 return -1;
4234 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4235 ir.reg &= 0x3;
4236 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4237 }
4238 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4239 break;
4240
4241 case 0x0fb0: /* cmpxchg */
4242 case 0x0fb1:
4243 if ((opcode & 1) == 0)
4244 ir.ot = OT_BYTE;
4245 else
4246 ir.ot = ir.dflag + OT_WORD;
4247 if (i386_record_modrm (&ir))
4248 return -1;
4249 if (ir.mod == 3)
4250 {
4251 ir.reg |= rex_r;
4252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4253 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4254 ir.reg &= 0x3;
4255 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4256 }
4257 else
4258 {
4259 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4260 if (i386_record_lea_modrm (&ir))
4261 return -1;
4262 }
4263 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4264 break;
4265
4266 case 0x0fc7: /* cmpxchg8b */
4267 if (i386_record_modrm (&ir))
4268 return -1;
4269 if (ir.mod == 3)
4270 {
4271 ir.addr -= 2;
4272 opcode = opcode << 8 | ir.modrm;
4273 goto no_support;
4274 }
4275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4277 if (i386_record_lea_modrm (&ir))
4278 return -1;
4279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4280 break;
4281
4282 case 0x50: /* push */
4283 case 0x51:
4284 case 0x52:
4285 case 0x53:
4286 case 0x54:
4287 case 0x55:
4288 case 0x56:
4289 case 0x57:
4290 case 0x68:
4291 case 0x6a:
4292 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4293 ir.dflag = 2;
4294 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4295 return -1;
4296 break;
4297
4298 case 0x06: /* push es */
4299 case 0x0e: /* push cs */
4300 case 0x16: /* push ss */
4301 case 0x1e: /* push ds */
4302 if (ir.regmap[X86_RECORD_R8_REGNUM])
4303 {
4304 ir.addr -= 1;
4305 goto no_support;
4306 }
4307 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4308 return -1;
4309 break;
4310
4311 case 0x0fa0: /* push fs */
4312 case 0x0fa8: /* push gs */
4313 if (ir.regmap[X86_RECORD_R8_REGNUM])
4314 {
4315 ir.addr -= 2;
4316 goto no_support;
4317 }
4318 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4319 return -1;
4320 break;
4321
4322 case 0x60: /* pusha */
4323 if (ir.regmap[X86_RECORD_R8_REGNUM])
4324 {
4325 ir.addr -= 1;
4326 goto no_support;
4327 }
4328 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
4329 return -1;
4330 break;
4331
4332 case 0x58: /* pop */
4333 case 0x59:
4334 case 0x5a:
4335 case 0x5b:
4336 case 0x5c:
4337 case 0x5d:
4338 case 0x5e:
4339 case 0x5f:
4340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4341 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4342 break;
4343
4344 case 0x61: /* popa */
4345 if (ir.regmap[X86_RECORD_R8_REGNUM])
4346 {
4347 ir.addr -= 1;
4348 goto no_support;
4349 }
4350 for (regnum = X86_RECORD_REAX_REGNUM;
4351 regnum <= X86_RECORD_REDI_REGNUM;
4352 regnum++)
4353 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4354 break;
4355
4356 case 0x8f: /* pop */
4357 if (ir.regmap[X86_RECORD_R8_REGNUM])
4358 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4359 else
4360 ir.ot = ir.dflag + OT_WORD;
4361 if (i386_record_modrm (&ir))
4362 return -1;
4363 if (ir.mod == 3)
4364 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
4365 else
4366 {
4367 ir.popl_esp_hack = 1 << ir.ot;
4368 if (i386_record_lea_modrm (&ir))
4369 return -1;
4370 }
4371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4372 break;
4373
4374 case 0xc8: /* enter */
4375 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4376 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4377 ir.dflag = 2;
4378 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4379 return -1;
4380 break;
4381
4382 case 0xc9: /* leave */
4383 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4384 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4385 break;
4386
4387 case 0x07: /* pop es */
4388 if (ir.regmap[X86_RECORD_R8_REGNUM])
4389 {
4390 ir.addr -= 1;
4391 goto no_support;
4392 }
4393 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4395 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4396 break;
4397
4398 case 0x17: /* pop ss */
4399 if (ir.regmap[X86_RECORD_R8_REGNUM])
4400 {
4401 ir.addr -= 1;
4402 goto no_support;
4403 }
4404 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4405 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4407 break;
4408
4409 case 0x1f: /* pop ds */
4410 if (ir.regmap[X86_RECORD_R8_REGNUM])
4411 {
4412 ir.addr -= 1;
4413 goto no_support;
4414 }
4415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4418 break;
4419
4420 case 0x0fa1: /* pop fs */
4421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4422 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4424 break;
4425
4426 case 0x0fa9: /* pop gs */
4427 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4430 break;
4431
4432 case 0x88: /* mov */
4433 case 0x89:
4434 case 0xc6:
4435 case 0xc7:
4436 if ((opcode & 1) == 0)
4437 ir.ot = OT_BYTE;
4438 else
4439 ir.ot = ir.dflag + OT_WORD;
4440
4441 if (i386_record_modrm (&ir))
4442 return -1;
4443
4444 if (ir.mod != 3)
4445 {
4446 if (opcode == 0xc6 || opcode == 0xc7)
4447 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4448 if (i386_record_lea_modrm (&ir))
4449 return -1;
4450 }
4451 else
4452 {
4453 if (opcode == 0xc6 || opcode == 0xc7)
4454 ir.rm |= ir.rex_b;
4455 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4456 ir.rm &= 0x3;
4457 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4458 }
4459 break;
4460
4461 case 0x8a: /* mov */
4462 case 0x8b:
4463 if ((opcode & 1) == 0)
4464 ir.ot = OT_BYTE;
4465 else
4466 ir.ot = ir.dflag + OT_WORD;
4467 if (i386_record_modrm (&ir))
4468 return -1;
4469 ir.reg |= rex_r;
4470 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4471 ir.reg &= 0x3;
4472 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4473 break;
4474
4475 case 0x8c: /* mov seg */
4476 if (i386_record_modrm (&ir))
4477 return -1;
4478 if (ir.reg > 5)
4479 {
4480 ir.addr -= 2;
4481 opcode = opcode << 8 | ir.modrm;
4482 goto no_support;
4483 }
4484
4485 if (ir.mod == 3)
4486 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4487 else
4488 {
4489 ir.ot = OT_WORD;
4490 if (i386_record_lea_modrm (&ir))
4491 return -1;
4492 }
4493 break;
4494
4495 case 0x8e: /* mov seg */
4496 if (i386_record_modrm (&ir))
4497 return -1;
4498 switch (ir.reg)
4499 {
4500 case 0:
4501 regnum = X86_RECORD_ES_REGNUM;
4502 break;
4503 case 2:
4504 regnum = X86_RECORD_SS_REGNUM;
4505 break;
4506 case 3:
4507 regnum = X86_RECORD_DS_REGNUM;
4508 break;
4509 case 4:
4510 regnum = X86_RECORD_FS_REGNUM;
4511 break;
4512 case 5:
4513 regnum = X86_RECORD_GS_REGNUM;
4514 break;
4515 default:
4516 ir.addr -= 2;
4517 opcode = opcode << 8 | ir.modrm;
4518 goto no_support;
4519 break;
4520 }
4521 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4522 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4523 break;
4524
4525 case 0x0fb6: /* movzbS */
4526 case 0x0fb7: /* movzwS */
4527 case 0x0fbe: /* movsbS */
4528 case 0x0fbf: /* movswS */
4529 if (i386_record_modrm (&ir))
4530 return -1;
4531 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4532 break;
4533
4534 case 0x8d: /* lea */
4535 if (i386_record_modrm (&ir))
4536 return -1;
4537 if (ir.mod == 3)
4538 {
4539 ir.addr -= 2;
4540 opcode = opcode << 8 | ir.modrm;
4541 goto no_support;
4542 }
4543 ir.ot = ir.dflag;
4544 ir.reg |= rex_r;
4545 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4546 ir.reg &= 0x3;
4547 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4548 break;
4549
4550 case 0xa0: /* mov EAX */
4551 case 0xa1:
4552
4553 case 0xd7: /* xlat */
4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4555 break;
4556
4557 case 0xa2: /* mov EAX */
4558 case 0xa3:
4559 if (ir.override >= 0)
4560 {
4561 if (record_memory_query)
4562 {
4563 int q;
4564
4565 target_terminal_ours ();
4566 q = yquery (_("\
4567 Process record ignores the memory change of instruction at address %s\n\
4568 because it can't get the value of the segment register.\n\
4569 Do you want to stop the program?"),
4570 paddress (gdbarch, ir.orig_addr));
4571 target_terminal_inferior ();
4572 if (q)
4573 return -1;
4574 }
4575 }
4576 else
4577 {
4578 if ((opcode & 1) == 0)
4579 ir.ot = OT_BYTE;
4580 else
4581 ir.ot = ir.dflag + OT_WORD;
4582 if (ir.aflag == 2)
4583 {
4584 if (target_read_memory (ir.addr, buf, 8))
4585 {
4586 if (record_debug)
4587 printf_unfiltered (_("Process record: error reading "
4588 "memory at addr 0x%s len = 8.\n"),
4589 paddress (gdbarch, ir.addr));
4590 return -1;
4591 }
4592 ir.addr += 8;
4593 addr = extract_unsigned_integer (buf, 8, byte_order);
4594 }
4595 else if (ir.aflag)
4596 {
4597 if (target_read_memory (ir.addr, buf, 4))
4598 {
4599 if (record_debug)
4600 printf_unfiltered (_("Process record: error reading "
4601 "memory at addr 0x%s len = 4.\n"),
4602 paddress (gdbarch, ir.addr));
4603 return -1;
4604 }
4605 ir.addr += 4;
4606 addr = extract_unsigned_integer (buf, 4, byte_order);
4607 }
4608 else
4609 {
4610 if (target_read_memory (ir.addr, buf, 2))
4611 {
4612 if (record_debug)
4613 printf_unfiltered (_("Process record: error reading "
4614 "memory at addr 0x%s len = 2.\n"),
4615 paddress (gdbarch, ir.addr));
4616 return -1;
4617 }
4618 ir.addr += 2;
4619 addr = extract_unsigned_integer (buf, 2, byte_order);
4620 }
4621 if (record_arch_list_add_mem (addr, 1 << ir.ot))
4622 return -1;
4623 }
4624 break;
4625
4626 case 0xb0: /* mov R, Ib */
4627 case 0xb1:
4628 case 0xb2:
4629 case 0xb3:
4630 case 0xb4:
4631 case 0xb5:
4632 case 0xb6:
4633 case 0xb7:
4634 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4635 ? ((opcode & 0x7) | ir.rex_b)
4636 : ((opcode & 0x7) & 0x3));
4637 break;
4638
4639 case 0xb8: /* mov R, Iv */
4640 case 0xb9:
4641 case 0xba:
4642 case 0xbb:
4643 case 0xbc:
4644 case 0xbd:
4645 case 0xbe:
4646 case 0xbf:
4647 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
4648 break;
4649
4650 case 0x91: /* xchg R, EAX */
4651 case 0x92:
4652 case 0x93:
4653 case 0x94:
4654 case 0x95:
4655 case 0x96:
4656 case 0x97:
4657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4658 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
4659 break;
4660
4661 case 0x86: /* xchg Ev, Gv */
4662 case 0x87:
4663 if ((opcode & 1) == 0)
4664 ir.ot = OT_BYTE;
4665 else
4666 ir.ot = ir.dflag + OT_WORD;
4667 if (i386_record_modrm (&ir))
4668 return -1;
4669 if (ir.mod == 3)
4670 {
4671 ir.rm |= ir.rex_b;
4672 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4673 ir.rm &= 0x3;
4674 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4675 }
4676 else
4677 {
4678 if (i386_record_lea_modrm (&ir))
4679 return -1;
4680 }
4681 ir.reg |= rex_r;
4682 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4683 ir.reg &= 0x3;
4684 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4685 break;
4686
4687 case 0xc4: /* les Gv */
4688 case 0xc5: /* lds Gv */
4689 if (ir.regmap[X86_RECORD_R8_REGNUM])
4690 {
4691 ir.addr -= 1;
4692 goto no_support;
4693 }
4694 /* FALLTHROUGH */
4695 case 0x0fb2: /* lss Gv */
4696 case 0x0fb4: /* lfs Gv */
4697 case 0x0fb5: /* lgs Gv */
4698 if (i386_record_modrm (&ir))
4699 return -1;
4700 if (ir.mod == 3)
4701 {
4702 if (opcode > 0xff)
4703 ir.addr -= 3;
4704 else
4705 ir.addr -= 2;
4706 opcode = opcode << 8 | ir.modrm;
4707 goto no_support;
4708 }
4709 switch (opcode)
4710 {
4711 case 0xc4: /* les Gv */
4712 regnum = X86_RECORD_ES_REGNUM;
4713 break;
4714 case 0xc5: /* lds Gv */
4715 regnum = X86_RECORD_DS_REGNUM;
4716 break;
4717 case 0x0fb2: /* lss Gv */
4718 regnum = X86_RECORD_SS_REGNUM;
4719 break;
4720 case 0x0fb4: /* lfs Gv */
4721 regnum = X86_RECORD_FS_REGNUM;
4722 break;
4723 case 0x0fb5: /* lgs Gv */
4724 regnum = X86_RECORD_GS_REGNUM;
4725 break;
4726 }
4727 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
4728 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4729 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4730 break;
4731
4732 case 0xc0: /* shifts */
4733 case 0xc1:
4734 case 0xd0:
4735 case 0xd1:
4736 case 0xd2:
4737 case 0xd3:
4738 if ((opcode & 1) == 0)
4739 ir.ot = OT_BYTE;
4740 else
4741 ir.ot = ir.dflag + OT_WORD;
4742 if (i386_record_modrm (&ir))
4743 return -1;
4744 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4745 {
4746 if (i386_record_lea_modrm (&ir))
4747 return -1;
4748 }
4749 else
4750 {
4751 ir.rm |= ir.rex_b;
4752 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4753 ir.rm &= 0x3;
4754 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4755 }
4756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4757 break;
4758
4759 case 0x0fa4:
4760 case 0x0fa5:
4761 case 0x0fac:
4762 case 0x0fad:
4763 if (i386_record_modrm (&ir))
4764 return -1;
4765 if (ir.mod == 3)
4766 {
4767 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4768 return -1;
4769 }
4770 else
4771 {
4772 if (i386_record_lea_modrm (&ir))
4773 return -1;
4774 }
4775 break;
4776
4777 case 0xd8: /* Floats. */
4778 case 0xd9:
4779 case 0xda:
4780 case 0xdb:
4781 case 0xdc:
4782 case 0xdd:
4783 case 0xde:
4784 case 0xdf:
4785 if (i386_record_modrm (&ir))
4786 return -1;
4787 ir.reg |= ((opcode & 7) << 3);
4788 if (ir.mod != 3)
4789 {
4790 /* Memory. */
4791 uint64_t addr64;
4792
4793 if (i386_record_lea_modrm_addr (&ir, &addr64))
4794 return -1;
4795 switch (ir.reg)
4796 {
4797 case 0x02:
4798 case 0x12:
4799 case 0x22:
4800 case 0x32:
4801 /* For fcom, ficom nothing to do. */
4802 break;
4803 case 0x03:
4804 case 0x13:
4805 case 0x23:
4806 case 0x33:
4807 /* For fcomp, ficomp pop FPU stack, store all. */
4808 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4809 return -1;
4810 break;
4811 case 0x00:
4812 case 0x01:
4813 case 0x04:
4814 case 0x05:
4815 case 0x06:
4816 case 0x07:
4817 case 0x10:
4818 case 0x11:
4819 case 0x14:
4820 case 0x15:
4821 case 0x16:
4822 case 0x17:
4823 case 0x20:
4824 case 0x21:
4825 case 0x24:
4826 case 0x25:
4827 case 0x26:
4828 case 0x27:
4829 case 0x30:
4830 case 0x31:
4831 case 0x34:
4832 case 0x35:
4833 case 0x36:
4834 case 0x37:
4835 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4836 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4837 of code, always affects st(0) register. */
4838 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4839 return -1;
4840 break;
4841 case 0x08:
4842 case 0x0a:
4843 case 0x0b:
4844 case 0x18:
4845 case 0x19:
4846 case 0x1a:
4847 case 0x1b:
4848 case 0x1d:
4849 case 0x28:
4850 case 0x29:
4851 case 0x2a:
4852 case 0x2b:
4853 case 0x38:
4854 case 0x39:
4855 case 0x3a:
4856 case 0x3b:
4857 case 0x3c:
4858 case 0x3d:
4859 switch (ir.reg & 7)
4860 {
4861 case 0:
4862 /* Handling fld, fild. */
4863 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4864 return -1;
4865 break;
4866 case 1:
4867 switch (ir.reg >> 4)
4868 {
4869 case 0:
4870 if (record_arch_list_add_mem (addr64, 4))
4871 return -1;
4872 break;
4873 case 2:
4874 if (record_arch_list_add_mem (addr64, 8))
4875 return -1;
4876 break;
4877 case 3:
4878 break;
4879 default:
4880 if (record_arch_list_add_mem (addr64, 2))
4881 return -1;
4882 break;
4883 }
4884 break;
4885 default:
4886 switch (ir.reg >> 4)
4887 {
4888 case 0:
4889 if (record_arch_list_add_mem (addr64, 4))
4890 return -1;
4891 if (3 == (ir.reg & 7))
4892 {
4893 /* For fstp m32fp. */
4894 if (i386_record_floats (gdbarch, &ir,
4895 I386_SAVE_FPU_REGS))
4896 return -1;
4897 }
4898 break;
4899 case 1:
4900 if (record_arch_list_add_mem (addr64, 4))
4901 return -1;
4902 if ((3 == (ir.reg & 7))
4903 || (5 == (ir.reg & 7))
4904 || (7 == (ir.reg & 7)))
4905 {
4906 /* For fstp insn. */
4907 if (i386_record_floats (gdbarch, &ir,
4908 I386_SAVE_FPU_REGS))
4909 return -1;
4910 }
4911 break;
4912 case 2:
4913 if (record_arch_list_add_mem (addr64, 8))
4914 return -1;
4915 if (3 == (ir.reg & 7))
4916 {
4917 /* For fstp m64fp. */
4918 if (i386_record_floats (gdbarch, &ir,
4919 I386_SAVE_FPU_REGS))
4920 return -1;
4921 }
4922 break;
4923 case 3:
4924 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4925 {
4926 /* For fistp, fbld, fild, fbstp. */
4927 if (i386_record_floats (gdbarch, &ir,
4928 I386_SAVE_FPU_REGS))
4929 return -1;
4930 }
4931 /* Fall through */
4932 default:
4933 if (record_arch_list_add_mem (addr64, 2))
4934 return -1;
4935 break;
4936 }
4937 break;
4938 }
4939 break;
4940 case 0x0c:
4941 /* Insn fldenv. */
4942 if (i386_record_floats (gdbarch, &ir,
4943 I386_SAVE_FPU_ENV_REG_STACK))
4944 return -1;
4945 break;
4946 case 0x0d:
4947 /* Insn fldcw. */
4948 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4949 return -1;
4950 break;
4951 case 0x2c:
4952 /* Insn frstor. */
4953 if (i386_record_floats (gdbarch, &ir,
4954 I386_SAVE_FPU_ENV_REG_STACK))
4955 return -1;
4956 break;
4957 case 0x0e:
4958 if (ir.dflag)
4959 {
4960 if (record_arch_list_add_mem (addr64, 28))
4961 return -1;
4962 }
4963 else
4964 {
4965 if (record_arch_list_add_mem (addr64, 14))
4966 return -1;
4967 }
4968 break;
4969 case 0x0f:
4970 case 0x2f:
4971 if (record_arch_list_add_mem (addr64, 2))
4972 return -1;
4973 /* Insn fstp, fbstp. */
4974 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4975 return -1;
4976 break;
4977 case 0x1f:
4978 case 0x3e:
4979 if (record_arch_list_add_mem (addr64, 10))
4980 return -1;
4981 break;
4982 case 0x2e:
4983 if (ir.dflag)
4984 {
4985 if (record_arch_list_add_mem (addr64, 28))
4986 return -1;
4987 addr64 += 28;
4988 }
4989 else
4990 {
4991 if (record_arch_list_add_mem (addr64, 14))
4992 return -1;
4993 addr64 += 14;
4994 }
4995 if (record_arch_list_add_mem (addr64, 80))
4996 return -1;
4997 /* Insn fsave. */
4998 if (i386_record_floats (gdbarch, &ir,
4999 I386_SAVE_FPU_ENV_REG_STACK))
5000 return -1;
5001 break;
5002 case 0x3f:
5003 if (record_arch_list_add_mem (addr64, 8))
5004 return -1;
5005 /* Insn fistp. */
5006 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5007 return -1;
5008 break;
5009 default:
5010 ir.addr -= 2;
5011 opcode = opcode << 8 | ir.modrm;
5012 goto no_support;
5013 break;
5014 }
5015 }
5016 /* Opcode is an extension of modR/M byte. */
5017 else
5018 {
5019 switch (opcode)
5020 {
5021 case 0xd8:
5022 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5023 return -1;
5024 break;
5025 case 0xd9:
5026 if (0x0c == (ir.modrm >> 4))
5027 {
5028 if ((ir.modrm & 0x0f) <= 7)
5029 {
5030 if (i386_record_floats (gdbarch, &ir,
5031 I386_SAVE_FPU_REGS))
5032 return -1;
5033 }
5034 else
5035 {
5036 if (i386_record_floats (gdbarch, &ir,
5037 I387_ST0_REGNUM (tdep)))
5038 return -1;
5039 /* If only st(0) is changing, then we have already
5040 recorded. */
5041 if ((ir.modrm & 0x0f) - 0x08)
5042 {
5043 if (i386_record_floats (gdbarch, &ir,
5044 I387_ST0_REGNUM (tdep) +
5045 ((ir.modrm & 0x0f) - 0x08)))
5046 return -1;
5047 }
5048 }
5049 }
5050 else
5051 {
5052 switch (ir.modrm)
5053 {
5054 case 0xe0:
5055 case 0xe1:
5056 case 0xf0:
5057 case 0xf5:
5058 case 0xf8:
5059 case 0xfa:
5060 case 0xfc:
5061 case 0xfe:
5062 case 0xff:
5063 if (i386_record_floats (gdbarch, &ir,
5064 I387_ST0_REGNUM (tdep)))
5065 return -1;
5066 break;
5067 case 0xf1:
5068 case 0xf2:
5069 case 0xf3:
5070 case 0xf4:
5071 case 0xf6:
5072 case 0xf7:
5073 case 0xe8:
5074 case 0xe9:
5075 case 0xea:
5076 case 0xeb:
5077 case 0xec:
5078 case 0xed:
5079 case 0xee:
5080 case 0xf9:
5081 case 0xfb:
5082 if (i386_record_floats (gdbarch, &ir,
5083 I386_SAVE_FPU_REGS))
5084 return -1;
5085 break;
5086 case 0xfd:
5087 if (i386_record_floats (gdbarch, &ir,
5088 I387_ST0_REGNUM (tdep)))
5089 return -1;
5090 if (i386_record_floats (gdbarch, &ir,
5091 I387_ST0_REGNUM (tdep) + 1))
5092 return -1;
5093 break;
5094 }
5095 }
5096 break;
5097 case 0xda:
5098 if (0xe9 == ir.modrm)
5099 {
5100 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5101 return -1;
5102 }
5103 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5104 {
5105 if (i386_record_floats (gdbarch, &ir,
5106 I387_ST0_REGNUM (tdep)))
5107 return -1;
5108 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5109 {
5110 if (i386_record_floats (gdbarch, &ir,
5111 I387_ST0_REGNUM (tdep) +
5112 (ir.modrm & 0x0f)))
5113 return -1;
5114 }
5115 else if ((ir.modrm & 0x0f) - 0x08)
5116 {
5117 if (i386_record_floats (gdbarch, &ir,
5118 I387_ST0_REGNUM (tdep) +
5119 ((ir.modrm & 0x0f) - 0x08)))
5120 return -1;
5121 }
5122 }
5123 break;
5124 case 0xdb:
5125 if (0xe3 == ir.modrm)
5126 {
5127 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5128 return -1;
5129 }
5130 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5131 {
5132 if (i386_record_floats (gdbarch, &ir,
5133 I387_ST0_REGNUM (tdep)))
5134 return -1;
5135 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5136 {
5137 if (i386_record_floats (gdbarch, &ir,
5138 I387_ST0_REGNUM (tdep) +
5139 (ir.modrm & 0x0f)))
5140 return -1;
5141 }
5142 else if ((ir.modrm & 0x0f) - 0x08)
5143 {
5144 if (i386_record_floats (gdbarch, &ir,
5145 I387_ST0_REGNUM (tdep) +
5146 ((ir.modrm & 0x0f) - 0x08)))
5147 return -1;
5148 }
5149 }
5150 break;
5151 case 0xdc:
5152 if ((0x0c == ir.modrm >> 4)
5153 || (0x0d == ir.modrm >> 4)
5154 || (0x0f == ir.modrm >> 4))
5155 {
5156 if ((ir.modrm & 0x0f) <= 7)
5157 {
5158 if (i386_record_floats (gdbarch, &ir,
5159 I387_ST0_REGNUM (tdep) +
5160 (ir.modrm & 0x0f)))
5161 return -1;
5162 }
5163 else
5164 {
5165 if (i386_record_floats (gdbarch, &ir,
5166 I387_ST0_REGNUM (tdep) +
5167 ((ir.modrm & 0x0f) - 0x08)))
5168 return -1;
5169 }
5170 }
5171 break;
5172 case 0xdd:
5173 if (0x0c == ir.modrm >> 4)
5174 {
5175 if (i386_record_floats (gdbarch, &ir,
5176 I387_FTAG_REGNUM (tdep)))
5177 return -1;
5178 }
5179 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5180 {
5181 if ((ir.modrm & 0x0f) <= 7)
5182 {
5183 if (i386_record_floats (gdbarch, &ir,
5184 I387_ST0_REGNUM (tdep) +
5185 (ir.modrm & 0x0f)))
5186 return -1;
5187 }
5188 else
5189 {
5190 if (i386_record_floats (gdbarch, &ir,
5191 I386_SAVE_FPU_REGS))
5192 return -1;
5193 }
5194 }
5195 break;
5196 case 0xde:
5197 if ((0x0c == ir.modrm >> 4)
5198 || (0x0e == ir.modrm >> 4)
5199 || (0x0f == ir.modrm >> 4)
5200 || (0xd9 == ir.modrm))
5201 {
5202 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5203 return -1;
5204 }
5205 break;
5206 case 0xdf:
5207 if (0xe0 == ir.modrm)
5208 {
5209 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5210 return -1;
5211 }
5212 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5213 {
5214 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5215 return -1;
5216 }
5217 break;
5218 }
5219 }
5220 break;
5221 /* string ops */
5222 case 0xa4: /* movsS */
5223 case 0xa5:
5224 case 0xaa: /* stosS */
5225 case 0xab:
5226 case 0x6c: /* insS */
5227 case 0x6d:
5228 regcache_raw_read_unsigned (ir.regcache,
5229 ir.regmap[X86_RECORD_RECX_REGNUM],
5230 &addr);
5231 if (addr)
5232 {
5233 ULONGEST es, ds;
5234
5235 if ((opcode & 1) == 0)
5236 ir.ot = OT_BYTE;
5237 else
5238 ir.ot = ir.dflag + OT_WORD;
5239 regcache_raw_read_unsigned (ir.regcache,
5240 ir.regmap[X86_RECORD_REDI_REGNUM],
5241 &addr);
5242
5243 regcache_raw_read_unsigned (ir.regcache,
5244 ir.regmap[X86_RECORD_ES_REGNUM],
5245 &es);
5246 regcache_raw_read_unsigned (ir.regcache,
5247 ir.regmap[X86_RECORD_DS_REGNUM],
5248 &ds);
5249 if (ir.aflag && (es != ds))
5250 {
5251 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
5252 if (record_memory_query)
5253 {
5254 int q;
5255
5256 target_terminal_ours ();
5257 q = yquery (_("\
5258 Process record ignores the memory change of instruction at address %s\n\
5259 because it can't get the value of the segment register.\n\
5260 Do you want to stop the program?"),
5261 paddress (gdbarch, ir.orig_addr));
5262 target_terminal_inferior ();
5263 if (q)
5264 return -1;
5265 }
5266 }
5267 else
5268 {
5269 if (record_arch_list_add_mem (addr, 1 << ir.ot))
5270 return -1;
5271 }
5272
5273 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5275 if (opcode == 0xa4 || opcode == 0xa5)
5276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 }
5280 break;
5281
5282 case 0xa6: /* cmpsS */
5283 case 0xa7:
5284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5286 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5287 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5288 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5289 break;
5290
5291 case 0xac: /* lodsS */
5292 case 0xad:
5293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5295 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5296 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5298 break;
5299
5300 case 0xae: /* scasS */
5301 case 0xaf:
5302 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5303 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5306 break;
5307
5308 case 0x6e: /* outsS */
5309 case 0x6f:
5310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5311 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5314 break;
5315
5316 case 0xe4: /* port I/O */
5317 case 0xe5:
5318 case 0xec:
5319 case 0xed:
5320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5322 break;
5323
5324 case 0xe6:
5325 case 0xe7:
5326 case 0xee:
5327 case 0xef:
5328 break;
5329
5330 /* control */
5331 case 0xc2: /* ret im */
5332 case 0xc3: /* ret */
5333 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336
5337 case 0xca: /* lret im */
5338 case 0xcb: /* lret */
5339 case 0xcf: /* iret */
5340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5342 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5343 break;
5344
5345 case 0xe8: /* call im */
5346 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5347 ir.dflag = 2;
5348 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5349 return -1;
5350 break;
5351
5352 case 0x9a: /* lcall im */
5353 if (ir.regmap[X86_RECORD_R8_REGNUM])
5354 {
5355 ir.addr -= 1;
5356 goto no_support;
5357 }
5358 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5359 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5360 return -1;
5361 break;
5362
5363 case 0xe9: /* jmp im */
5364 case 0xea: /* ljmp im */
5365 case 0xeb: /* jmp Jb */
5366 case 0x70: /* jcc Jb */
5367 case 0x71:
5368 case 0x72:
5369 case 0x73:
5370 case 0x74:
5371 case 0x75:
5372 case 0x76:
5373 case 0x77:
5374 case 0x78:
5375 case 0x79:
5376 case 0x7a:
5377 case 0x7b:
5378 case 0x7c:
5379 case 0x7d:
5380 case 0x7e:
5381 case 0x7f:
5382 case 0x0f80: /* jcc Jv */
5383 case 0x0f81:
5384 case 0x0f82:
5385 case 0x0f83:
5386 case 0x0f84:
5387 case 0x0f85:
5388 case 0x0f86:
5389 case 0x0f87:
5390 case 0x0f88:
5391 case 0x0f89:
5392 case 0x0f8a:
5393 case 0x0f8b:
5394 case 0x0f8c:
5395 case 0x0f8d:
5396 case 0x0f8e:
5397 case 0x0f8f:
5398 break;
5399
5400 case 0x0f90: /* setcc Gv */
5401 case 0x0f91:
5402 case 0x0f92:
5403 case 0x0f93:
5404 case 0x0f94:
5405 case 0x0f95:
5406 case 0x0f96:
5407 case 0x0f97:
5408 case 0x0f98:
5409 case 0x0f99:
5410 case 0x0f9a:
5411 case 0x0f9b:
5412 case 0x0f9c:
5413 case 0x0f9d:
5414 case 0x0f9e:
5415 case 0x0f9f:
5416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5417 ir.ot = OT_BYTE;
5418 if (i386_record_modrm (&ir))
5419 return -1;
5420 if (ir.mod == 3)
5421 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5422 : (ir.rm & 0x3));
5423 else
5424 {
5425 if (i386_record_lea_modrm (&ir))
5426 return -1;
5427 }
5428 break;
5429
5430 case 0x0f40: /* cmov Gv, Ev */
5431 case 0x0f41:
5432 case 0x0f42:
5433 case 0x0f43:
5434 case 0x0f44:
5435 case 0x0f45:
5436 case 0x0f46:
5437 case 0x0f47:
5438 case 0x0f48:
5439 case 0x0f49:
5440 case 0x0f4a:
5441 case 0x0f4b:
5442 case 0x0f4c:
5443 case 0x0f4d:
5444 case 0x0f4e:
5445 case 0x0f4f:
5446 if (i386_record_modrm (&ir))
5447 return -1;
5448 ir.reg |= rex_r;
5449 if (ir.dflag == OT_BYTE)
5450 ir.reg &= 0x3;
5451 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
5452 break;
5453
5454 /* flags */
5455 case 0x9c: /* pushf */
5456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5457 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5458 ir.dflag = 2;
5459 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5460 return -1;
5461 break;
5462
5463 case 0x9d: /* popf */
5464 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5466 break;
5467
5468 case 0x9e: /* sahf */
5469 if (ir.regmap[X86_RECORD_R8_REGNUM])
5470 {
5471 ir.addr -= 1;
5472 goto no_support;
5473 }
5474 /* FALLTHROUGH */
5475 case 0xf5: /* cmc */
5476 case 0xf8: /* clc */
5477 case 0xf9: /* stc */
5478 case 0xfc: /* cld */
5479 case 0xfd: /* std */
5480 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5481 break;
5482
5483 case 0x9f: /* lahf */
5484 if (ir.regmap[X86_RECORD_R8_REGNUM])
5485 {
5486 ir.addr -= 1;
5487 goto no_support;
5488 }
5489 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5490 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5491 break;
5492
5493 /* bit operations */
5494 case 0x0fba: /* bt/bts/btr/btc Gv, im */
5495 ir.ot = ir.dflag + OT_WORD;
5496 if (i386_record_modrm (&ir))
5497 return -1;
5498 if (ir.reg < 4)
5499 {
5500 ir.addr -= 2;
5501 opcode = opcode << 8 | ir.modrm;
5502 goto no_support;
5503 }
5504 if (ir.reg != 4)
5505 {
5506 if (ir.mod == 3)
5507 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5508 else
5509 {
5510 if (i386_record_lea_modrm (&ir))
5511 return -1;
5512 }
5513 }
5514 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5515 break;
5516
5517 case 0x0fa3: /* bt Gv, Ev */
5518 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5519 break;
5520
5521 case 0x0fab: /* bts */
5522 case 0x0fb3: /* btr */
5523 case 0x0fbb: /* btc */
5524 ir.ot = ir.dflag + OT_WORD;
5525 if (i386_record_modrm (&ir))
5526 return -1;
5527 if (ir.mod == 3)
5528 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5529 else
5530 {
5531 uint64_t addr64;
5532 if (i386_record_lea_modrm_addr (&ir, &addr64))
5533 return -1;
5534 regcache_raw_read_unsigned (ir.regcache,
5535 ir.regmap[ir.reg | rex_r],
5536 &addr);
5537 switch (ir.dflag)
5538 {
5539 case 0:
5540 addr64 += ((int16_t) addr >> 4) << 4;
5541 break;
5542 case 1:
5543 addr64 += ((int32_t) addr >> 5) << 5;
5544 break;
5545 case 2:
5546 addr64 += ((int64_t) addr >> 6) << 6;
5547 break;
5548 }
5549 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
5550 return -1;
5551 if (i386_record_lea_modrm (&ir))
5552 return -1;
5553 }
5554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5555 break;
5556
5557 case 0x0fbc: /* bsf */
5558 case 0x0fbd: /* bsr */
5559 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5561 break;
5562
5563 /* bcd */
5564 case 0x27: /* daa */
5565 case 0x2f: /* das */
5566 case 0x37: /* aaa */
5567 case 0x3f: /* aas */
5568 case 0xd4: /* aam */
5569 case 0xd5: /* aad */
5570 if (ir.regmap[X86_RECORD_R8_REGNUM])
5571 {
5572 ir.addr -= 1;
5573 goto no_support;
5574 }
5575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5576 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5577 break;
5578
5579 /* misc */
5580 case 0x90: /* nop */
5581 if (prefixes & PREFIX_LOCK)
5582 {
5583 ir.addr -= 1;
5584 goto no_support;
5585 }
5586 break;
5587
5588 case 0x9b: /* fwait */
5589 if (target_read_memory (ir.addr, &opcode8, 1))
5590 {
5591 if (record_debug)
5592 printf_unfiltered (_("Process record: error reading memory at "
5593 "addr 0x%s len = 1.\n"),
5594 paddress (gdbarch, ir.addr));
5595 return -1;
5596 }
5597 opcode = (uint32_t) opcode8;
5598 ir.addr++;
5599 goto reswitch;
5600 break;
5601
5602 /* XXX */
5603 case 0xcc: /* int3 */
5604 printf_unfiltered (_("Process record does not support instruction "
5605 "int3.\n"));
5606 ir.addr -= 1;
5607 goto no_support;
5608 break;
5609
5610 /* XXX */
5611 case 0xcd: /* int */
5612 {
5613 int ret;
5614 uint8_t interrupt;
5615 if (target_read_memory (ir.addr, &interrupt, 1))
5616 {
5617 if (record_debug)
5618 printf_unfiltered (_("Process record: error reading memory "
5619 "at addr %s len = 1.\n"),
5620 paddress (gdbarch, ir.addr));
5621 return -1;
5622 }
5623 ir.addr++;
5624 if (interrupt != 0x80
5625 || tdep->i386_intx80_record == NULL)
5626 {
5627 printf_unfiltered (_("Process record does not support "
5628 "instruction int 0x%02x.\n"),
5629 interrupt);
5630 ir.addr -= 2;
5631 goto no_support;
5632 }
5633 ret = tdep->i386_intx80_record (ir.regcache);
5634 if (ret)
5635 return ret;
5636 }
5637 break;
5638
5639 /* XXX */
5640 case 0xce: /* into */
5641 printf_unfiltered (_("Process record does not support "
5642 "instruction into.\n"));
5643 ir.addr -= 1;
5644 goto no_support;
5645 break;
5646
5647 case 0xfa: /* cli */
5648 case 0xfb: /* sti */
5649 break;
5650
5651 case 0x62: /* bound */
5652 printf_unfiltered (_("Process record does not support "
5653 "instruction bound.\n"));
5654 ir.addr -= 1;
5655 goto no_support;
5656 break;
5657
5658 case 0x0fc8: /* bswap reg */
5659 case 0x0fc9:
5660 case 0x0fca:
5661 case 0x0fcb:
5662 case 0x0fcc:
5663 case 0x0fcd:
5664 case 0x0fce:
5665 case 0x0fcf:
5666 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
5667 break;
5668
5669 case 0xd6: /* salc */
5670 if (ir.regmap[X86_RECORD_R8_REGNUM])
5671 {
5672 ir.addr -= 1;
5673 goto no_support;
5674 }
5675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5677 break;
5678
5679 case 0xe0: /* loopnz */
5680 case 0xe1: /* loopz */
5681 case 0xe2: /* loop */
5682 case 0xe3: /* jecxz */
5683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5685 break;
5686
5687 case 0x0f30: /* wrmsr */
5688 printf_unfiltered (_("Process record does not support "
5689 "instruction wrmsr.\n"));
5690 ir.addr -= 2;
5691 goto no_support;
5692 break;
5693
5694 case 0x0f32: /* rdmsr */
5695 printf_unfiltered (_("Process record does not support "
5696 "instruction rdmsr.\n"));
5697 ir.addr -= 2;
5698 goto no_support;
5699 break;
5700
5701 case 0x0f31: /* rdtsc */
5702 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5703 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5704 break;
5705
5706 case 0x0f34: /* sysenter */
5707 {
5708 int ret;
5709 if (ir.regmap[X86_RECORD_R8_REGNUM])
5710 {
5711 ir.addr -= 2;
5712 goto no_support;
5713 }
5714 if (tdep->i386_sysenter_record == NULL)
5715 {
5716 printf_unfiltered (_("Process record does not support "
5717 "instruction sysenter.\n"));
5718 ir.addr -= 2;
5719 goto no_support;
5720 }
5721 ret = tdep->i386_sysenter_record (ir.regcache);
5722 if (ret)
5723 return ret;
5724 }
5725 break;
5726
5727 case 0x0f35: /* sysexit */
5728 printf_unfiltered (_("Process record does not support "
5729 "instruction sysexit.\n"));
5730 ir.addr -= 2;
5731 goto no_support;
5732 break;
5733
5734 case 0x0f05: /* syscall */
5735 {
5736 int ret;
5737 if (tdep->i386_syscall_record == NULL)
5738 {
5739 printf_unfiltered (_("Process record does not support "
5740 "instruction syscall.\n"));
5741 ir.addr -= 2;
5742 goto no_support;
5743 }
5744 ret = tdep->i386_syscall_record (ir.regcache);
5745 if (ret)
5746 return ret;
5747 }
5748 break;
5749
5750 case 0x0f07: /* sysret */
5751 printf_unfiltered (_("Process record does not support "
5752 "instruction sysret.\n"));
5753 ir.addr -= 2;
5754 goto no_support;
5755 break;
5756
5757 case 0x0fa2: /* cpuid */
5758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5760 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
5762 break;
5763
5764 case 0xf4: /* hlt */
5765 printf_unfiltered (_("Process record does not support "
5766 "instruction hlt.\n"));
5767 ir.addr -= 1;
5768 goto no_support;
5769 break;
5770
5771 case 0x0f00:
5772 if (i386_record_modrm (&ir))
5773 return -1;
5774 switch (ir.reg)
5775 {
5776 case 0: /* sldt */
5777 case 1: /* str */
5778 if (ir.mod == 3)
5779 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5780 else
5781 {
5782 ir.ot = OT_WORD;
5783 if (i386_record_lea_modrm (&ir))
5784 return -1;
5785 }
5786 break;
5787 case 2: /* lldt */
5788 case 3: /* ltr */
5789 break;
5790 case 4: /* verr */
5791 case 5: /* verw */
5792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5793 break;
5794 default:
5795 ir.addr -= 3;
5796 opcode = opcode << 8 | ir.modrm;
5797 goto no_support;
5798 break;
5799 }
5800 break;
5801
5802 case 0x0f01:
5803 if (i386_record_modrm (&ir))
5804 return -1;
5805 switch (ir.reg)
5806 {
5807 case 0: /* sgdt */
5808 {
5809 uint64_t addr64;
5810
5811 if (ir.mod == 3)
5812 {
5813 ir.addr -= 3;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 }
5817 if (ir.override >= 0)
5818 {
5819 if (record_memory_query)
5820 {
5821 int q;
5822
5823 target_terminal_ours ();
5824 q = yquery (_("\
5825 Process record ignores the memory change of instruction at address %s\n\
5826 because it can't get the value of the segment register.\n\
5827 Do you want to stop the program?"),
5828 paddress (gdbarch, ir.orig_addr));
5829 target_terminal_inferior ();
5830 if (q)
5831 return -1;
5832 }
5833 }
5834 else
5835 {
5836 if (i386_record_lea_modrm_addr (&ir, &addr64))
5837 return -1;
5838 if (record_arch_list_add_mem (addr64, 2))
5839 return -1;
5840 addr64 += 2;
5841 if (ir.regmap[X86_RECORD_R8_REGNUM])
5842 {
5843 if (record_arch_list_add_mem (addr64, 8))
5844 return -1;
5845 }
5846 else
5847 {
5848 if (record_arch_list_add_mem (addr64, 4))
5849 return -1;
5850 }
5851 }
5852 }
5853 break;
5854 case 1:
5855 if (ir.mod == 3)
5856 {
5857 switch (ir.rm)
5858 {
5859 case 0: /* monitor */
5860 break;
5861 case 1: /* mwait */
5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5863 break;
5864 default:
5865 ir.addr -= 3;
5866 opcode = opcode << 8 | ir.modrm;
5867 goto no_support;
5868 break;
5869 }
5870 }
5871 else
5872 {
5873 /* sidt */
5874 if (ir.override >= 0)
5875 {
5876 if (record_memory_query)
5877 {
5878 int q;
5879
5880 target_terminal_ours ();
5881 q = yquery (_("\
5882 Process record ignores the memory change of instruction at address %s\n\
5883 because it can't get the value of the segment register.\n\
5884 Do you want to stop the program?"),
5885 paddress (gdbarch, ir.orig_addr));
5886 target_terminal_inferior ();
5887 if (q)
5888 return -1;
5889 }
5890 }
5891 else
5892 {
5893 uint64_t addr64;
5894
5895 if (i386_record_lea_modrm_addr (&ir, &addr64))
5896 return -1;
5897 if (record_arch_list_add_mem (addr64, 2))
5898 return -1;
5899 addr64 += 2;
5900 if (ir.regmap[X86_RECORD_R8_REGNUM])
5901 {
5902 if (record_arch_list_add_mem (addr64, 8))
5903 return -1;
5904 }
5905 else
5906 {
5907 if (record_arch_list_add_mem (addr64, 4))
5908 return -1;
5909 }
5910 }
5911 }
5912 break;
5913 case 2: /* lgdt */
5914 if (ir.mod == 3)
5915 {
5916 /* xgetbv */
5917 if (ir.rm == 0)
5918 {
5919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5921 break;
5922 }
5923 /* xsetbv */
5924 else if (ir.rm == 1)
5925 break;
5926 }
5927 case 3: /* lidt */
5928 if (ir.mod == 3)
5929 {
5930 ir.addr -= 3;
5931 opcode = opcode << 8 | ir.modrm;
5932 goto no_support;
5933 }
5934 break;
5935 case 4: /* smsw */
5936 if (ir.mod == 3)
5937 {
5938 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
5939 return -1;
5940 }
5941 else
5942 {
5943 ir.ot = OT_WORD;
5944 if (i386_record_lea_modrm (&ir))
5945 return -1;
5946 }
5947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5948 break;
5949 case 6: /* lmsw */
5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5951 break;
5952 case 7: /* invlpg */
5953 if (ir.mod == 3)
5954 {
5955 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5957 else
5958 {
5959 ir.addr -= 3;
5960 opcode = opcode << 8 | ir.modrm;
5961 goto no_support;
5962 }
5963 }
5964 else
5965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 break;
5967 default:
5968 ir.addr -= 3;
5969 opcode = opcode << 8 | ir.modrm;
5970 goto no_support;
5971 break;
5972 }
5973 break;
5974
5975 case 0x0f08: /* invd */
5976 case 0x0f09: /* wbinvd */
5977 break;
5978
5979 case 0x63: /* arpl */
5980 if (i386_record_modrm (&ir))
5981 return -1;
5982 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5983 {
5984 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5985 ? (ir.reg | rex_r) : ir.rm);
5986 }
5987 else
5988 {
5989 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5990 if (i386_record_lea_modrm (&ir))
5991 return -1;
5992 }
5993 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5995 break;
5996
5997 case 0x0f02: /* lar */
5998 case 0x0f03: /* lsl */
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6003 break;
6004
6005 case 0x0f18:
6006 if (i386_record_modrm (&ir))
6007 return -1;
6008 if (ir.mod == 3 && ir.reg == 3)
6009 {
6010 ir.addr -= 3;
6011 opcode = opcode << 8 | ir.modrm;
6012 goto no_support;
6013 }
6014 break;
6015
6016 case 0x0f19:
6017 case 0x0f1a:
6018 case 0x0f1b:
6019 case 0x0f1c:
6020 case 0x0f1d:
6021 case 0x0f1e:
6022 case 0x0f1f:
6023 /* nop (multi byte) */
6024 break;
6025
6026 case 0x0f20: /* mov reg, crN */
6027 case 0x0f22: /* mov crN, reg */
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if ((ir.modrm & 0xc0) != 0xc0)
6031 {
6032 ir.addr -= 3;
6033 opcode = opcode << 8 | ir.modrm;
6034 goto no_support;
6035 }
6036 switch (ir.reg)
6037 {
6038 case 0:
6039 case 2:
6040 case 3:
6041 case 4:
6042 case 8:
6043 if (opcode & 2)
6044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6045 else
6046 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6047 break;
6048 default:
6049 ir.addr -= 3;
6050 opcode = opcode << 8 | ir.modrm;
6051 goto no_support;
6052 break;
6053 }
6054 break;
6055
6056 case 0x0f21: /* mov reg, drN */
6057 case 0x0f23: /* mov drN, reg */
6058 if (i386_record_modrm (&ir))
6059 return -1;
6060 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6061 || ir.reg == 5 || ir.reg >= 8)
6062 {
6063 ir.addr -= 3;
6064 opcode = opcode << 8 | ir.modrm;
6065 goto no_support;
6066 }
6067 if (opcode & 2)
6068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6069 else
6070 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6071 break;
6072
6073 case 0x0f06: /* clts */
6074 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6075 break;
6076
6077 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6078
6079 case 0x0f0d: /* 3DNow! prefetch */
6080 break;
6081
6082 case 0x0f0e: /* 3DNow! femms */
6083 case 0x0f77: /* emms */
6084 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6085 goto no_support;
6086 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6087 break;
6088
6089 case 0x0f0f: /* 3DNow! data */
6090 if (i386_record_modrm (&ir))
6091 return -1;
6092 if (target_read_memory (ir.addr, &opcode8, 1))
6093 {
6094 printf_unfiltered (_("Process record: error reading memory at "
6095 "addr %s len = 1.\n"),
6096 paddress (gdbarch, ir.addr));
6097 return -1;
6098 }
6099 ir.addr++;
6100 switch (opcode8)
6101 {
6102 case 0x0c: /* 3DNow! pi2fw */
6103 case 0x0d: /* 3DNow! pi2fd */
6104 case 0x1c: /* 3DNow! pf2iw */
6105 case 0x1d: /* 3DNow! pf2id */
6106 case 0x8a: /* 3DNow! pfnacc */
6107 case 0x8e: /* 3DNow! pfpnacc */
6108 case 0x90: /* 3DNow! pfcmpge */
6109 case 0x94: /* 3DNow! pfmin */
6110 case 0x96: /* 3DNow! pfrcp */
6111 case 0x97: /* 3DNow! pfrsqrt */
6112 case 0x9a: /* 3DNow! pfsub */
6113 case 0x9e: /* 3DNow! pfadd */
6114 case 0xa0: /* 3DNow! pfcmpgt */
6115 case 0xa4: /* 3DNow! pfmax */
6116 case 0xa6: /* 3DNow! pfrcpit1 */
6117 case 0xa7: /* 3DNow! pfrsqit1 */
6118 case 0xaa: /* 3DNow! pfsubr */
6119 case 0xae: /* 3DNow! pfacc */
6120 case 0xb0: /* 3DNow! pfcmpeq */
6121 case 0xb4: /* 3DNow! pfmul */
6122 case 0xb6: /* 3DNow! pfrcpit2 */
6123 case 0xb7: /* 3DNow! pmulhrw */
6124 case 0xbb: /* 3DNow! pswapd */
6125 case 0xbf: /* 3DNow! pavgusb */
6126 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6127 goto no_support_3dnow_data;
6128 record_arch_list_add_reg (ir.regcache, ir.reg);
6129 break;
6130
6131 default:
6132 no_support_3dnow_data:
6133 opcode = (opcode << 8) | opcode8;
6134 goto no_support;
6135 break;
6136 }
6137 break;
6138
6139 case 0x0faa: /* rsm */
6140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6141 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6148 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6149 break;
6150
6151 case 0x0fae:
6152 if (i386_record_modrm (&ir))
6153 return -1;
6154 switch(ir.reg)
6155 {
6156 case 0: /* fxsave */
6157 {
6158 uint64_t tmpu64;
6159
6160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6161 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6162 return -1;
6163 if (record_arch_list_add_mem (tmpu64, 512))
6164 return -1;
6165 }
6166 break;
6167
6168 case 1: /* fxrstor */
6169 {
6170 int i;
6171
6172 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6173
6174 for (i = I387_MM0_REGNUM (tdep);
6175 i386_mmx_regnum_p (gdbarch, i); i++)
6176 record_arch_list_add_reg (ir.regcache, i);
6177
6178 for (i = I387_XMM0_REGNUM (tdep);
6179 i386_xmm_regnum_p (gdbarch, i); i++)
6180 record_arch_list_add_reg (ir.regcache, i);
6181
6182 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6183 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6184
6185 for (i = I387_ST0_REGNUM (tdep);
6186 i386_fp_regnum_p (gdbarch, i); i++)
6187 record_arch_list_add_reg (ir.regcache, i);
6188
6189 for (i = I387_FCTRL_REGNUM (tdep);
6190 i386_fpc_regnum_p (gdbarch, i); i++)
6191 record_arch_list_add_reg (ir.regcache, i);
6192 }
6193 break;
6194
6195 case 2: /* ldmxcsr */
6196 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6197 goto no_support;
6198 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6199 break;
6200
6201 case 3: /* stmxcsr */
6202 ir.ot = OT_LONG;
6203 if (i386_record_lea_modrm (&ir))
6204 return -1;
6205 break;
6206
6207 case 5: /* lfence */
6208 case 6: /* mfence */
6209 case 7: /* sfence clflush */
6210 break;
6211
6212 default:
6213 opcode = (opcode << 8) | ir.modrm;
6214 goto no_support;
6215 break;
6216 }
6217 break;
6218
6219 case 0x0fc3: /* movnti */
6220 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6221 if (i386_record_modrm (&ir))
6222 return -1;
6223 if (ir.mod == 3)
6224 goto no_support;
6225 ir.reg |= rex_r;
6226 if (i386_record_lea_modrm (&ir))
6227 return -1;
6228 break;
6229
6230 /* Add prefix to opcode. */
6231 case 0x0f10:
6232 case 0x0f11:
6233 case 0x0f12:
6234 case 0x0f13:
6235 case 0x0f14:
6236 case 0x0f15:
6237 case 0x0f16:
6238 case 0x0f17:
6239 case 0x0f28:
6240 case 0x0f29:
6241 case 0x0f2a:
6242 case 0x0f2b:
6243 case 0x0f2c:
6244 case 0x0f2d:
6245 case 0x0f2e:
6246 case 0x0f2f:
6247 case 0x0f38:
6248 case 0x0f39:
6249 case 0x0f3a:
6250 case 0x0f50:
6251 case 0x0f51:
6252 case 0x0f52:
6253 case 0x0f53:
6254 case 0x0f54:
6255 case 0x0f55:
6256 case 0x0f56:
6257 case 0x0f57:
6258 case 0x0f58:
6259 case 0x0f59:
6260 case 0x0f5a:
6261 case 0x0f5b:
6262 case 0x0f5c:
6263 case 0x0f5d:
6264 case 0x0f5e:
6265 case 0x0f5f:
6266 case 0x0f60:
6267 case 0x0f61:
6268 case 0x0f62:
6269 case 0x0f63:
6270 case 0x0f64:
6271 case 0x0f65:
6272 case 0x0f66:
6273 case 0x0f67:
6274 case 0x0f68:
6275 case 0x0f69:
6276 case 0x0f6a:
6277 case 0x0f6b:
6278 case 0x0f6c:
6279 case 0x0f6d:
6280 case 0x0f6e:
6281 case 0x0f6f:
6282 case 0x0f70:
6283 case 0x0f71:
6284 case 0x0f72:
6285 case 0x0f73:
6286 case 0x0f74:
6287 case 0x0f75:
6288 case 0x0f76:
6289 case 0x0f7c:
6290 case 0x0f7d:
6291 case 0x0f7e:
6292 case 0x0f7f:
6293 case 0x0fb8:
6294 case 0x0fc2:
6295 case 0x0fc4:
6296 case 0x0fc5:
6297 case 0x0fc6:
6298 case 0x0fd0:
6299 case 0x0fd1:
6300 case 0x0fd2:
6301 case 0x0fd3:
6302 case 0x0fd4:
6303 case 0x0fd5:
6304 case 0x0fd6:
6305 case 0x0fd7:
6306 case 0x0fd8:
6307 case 0x0fd9:
6308 case 0x0fda:
6309 case 0x0fdb:
6310 case 0x0fdc:
6311 case 0x0fdd:
6312 case 0x0fde:
6313 case 0x0fdf:
6314 case 0x0fe0:
6315 case 0x0fe1:
6316 case 0x0fe2:
6317 case 0x0fe3:
6318 case 0x0fe4:
6319 case 0x0fe5:
6320 case 0x0fe6:
6321 case 0x0fe7:
6322 case 0x0fe8:
6323 case 0x0fe9:
6324 case 0x0fea:
6325 case 0x0feb:
6326 case 0x0fec:
6327 case 0x0fed:
6328 case 0x0fee:
6329 case 0x0fef:
6330 case 0x0ff0:
6331 case 0x0ff1:
6332 case 0x0ff2:
6333 case 0x0ff3:
6334 case 0x0ff4:
6335 case 0x0ff5:
6336 case 0x0ff6:
6337 case 0x0ff7:
6338 case 0x0ff8:
6339 case 0x0ff9:
6340 case 0x0ffa:
6341 case 0x0ffb:
6342 case 0x0ffc:
6343 case 0x0ffd:
6344 case 0x0ffe:
6345 switch (prefixes)
6346 {
6347 case PREFIX_REPNZ:
6348 opcode |= 0xf20000;
6349 break;
6350 case PREFIX_DATA:
6351 opcode |= 0x660000;
6352 break;
6353 case PREFIX_REPZ:
6354 opcode |= 0xf30000;
6355 break;
6356 }
6357 reswitch_prefix_add:
6358 switch (opcode)
6359 {
6360 case 0x0f38:
6361 case 0x660f38:
6362 case 0xf20f38:
6363 case 0x0f3a:
6364 case 0x660f3a:
6365 if (target_read_memory (ir.addr, &opcode8, 1))
6366 {
6367 printf_unfiltered (_("Process record: error reading memory at "
6368 "addr %s len = 1.\n"),
6369 paddress (gdbarch, ir.addr));
6370 return -1;
6371 }
6372 ir.addr++;
6373 opcode = (uint32_t) opcode8 | opcode << 8;
6374 goto reswitch_prefix_add;
6375 break;
6376
6377 case 0x0f10: /* movups */
6378 case 0x660f10: /* movupd */
6379 case 0xf30f10: /* movss */
6380 case 0xf20f10: /* movsd */
6381 case 0x0f12: /* movlps */
6382 case 0x660f12: /* movlpd */
6383 case 0xf30f12: /* movsldup */
6384 case 0xf20f12: /* movddup */
6385 case 0x0f14: /* unpcklps */
6386 case 0x660f14: /* unpcklpd */
6387 case 0x0f15: /* unpckhps */
6388 case 0x660f15: /* unpckhpd */
6389 case 0x0f16: /* movhps */
6390 case 0x660f16: /* movhpd */
6391 case 0xf30f16: /* movshdup */
6392 case 0x0f28: /* movaps */
6393 case 0x660f28: /* movapd */
6394 case 0x0f2a: /* cvtpi2ps */
6395 case 0x660f2a: /* cvtpi2pd */
6396 case 0xf30f2a: /* cvtsi2ss */
6397 case 0xf20f2a: /* cvtsi2sd */
6398 case 0x0f2c: /* cvttps2pi */
6399 case 0x660f2c: /* cvttpd2pi */
6400 case 0x0f2d: /* cvtps2pi */
6401 case 0x660f2d: /* cvtpd2pi */
6402 case 0x660f3800: /* pshufb */
6403 case 0x660f3801: /* phaddw */
6404 case 0x660f3802: /* phaddd */
6405 case 0x660f3803: /* phaddsw */
6406 case 0x660f3804: /* pmaddubsw */
6407 case 0x660f3805: /* phsubw */
6408 case 0x660f3806: /* phsubd */
6409 case 0x660f3807: /* phsubsw */
6410 case 0x660f3808: /* psignb */
6411 case 0x660f3809: /* psignw */
6412 case 0x660f380a: /* psignd */
6413 case 0x660f380b: /* pmulhrsw */
6414 case 0x660f3810: /* pblendvb */
6415 case 0x660f3814: /* blendvps */
6416 case 0x660f3815: /* blendvpd */
6417 case 0x660f381c: /* pabsb */
6418 case 0x660f381d: /* pabsw */
6419 case 0x660f381e: /* pabsd */
6420 case 0x660f3820: /* pmovsxbw */
6421 case 0x660f3821: /* pmovsxbd */
6422 case 0x660f3822: /* pmovsxbq */
6423 case 0x660f3823: /* pmovsxwd */
6424 case 0x660f3824: /* pmovsxwq */
6425 case 0x660f3825: /* pmovsxdq */
6426 case 0x660f3828: /* pmuldq */
6427 case 0x660f3829: /* pcmpeqq */
6428 case 0x660f382a: /* movntdqa */
6429 case 0x660f3a08: /* roundps */
6430 case 0x660f3a09: /* roundpd */
6431 case 0x660f3a0a: /* roundss */
6432 case 0x660f3a0b: /* roundsd */
6433 case 0x660f3a0c: /* blendps */
6434 case 0x660f3a0d: /* blendpd */
6435 case 0x660f3a0e: /* pblendw */
6436 case 0x660f3a0f: /* palignr */
6437 case 0x660f3a20: /* pinsrb */
6438 case 0x660f3a21: /* insertps */
6439 case 0x660f3a22: /* pinsrd pinsrq */
6440 case 0x660f3a40: /* dpps */
6441 case 0x660f3a41: /* dppd */
6442 case 0x660f3a42: /* mpsadbw */
6443 case 0x660f3a60: /* pcmpestrm */
6444 case 0x660f3a61: /* pcmpestri */
6445 case 0x660f3a62: /* pcmpistrm */
6446 case 0x660f3a63: /* pcmpistri */
6447 case 0x0f51: /* sqrtps */
6448 case 0x660f51: /* sqrtpd */
6449 case 0xf20f51: /* sqrtsd */
6450 case 0xf30f51: /* sqrtss */
6451 case 0x0f52: /* rsqrtps */
6452 case 0xf30f52: /* rsqrtss */
6453 case 0x0f53: /* rcpps */
6454 case 0xf30f53: /* rcpss */
6455 case 0x0f54: /* andps */
6456 case 0x660f54: /* andpd */
6457 case 0x0f55: /* andnps */
6458 case 0x660f55: /* andnpd */
6459 case 0x0f56: /* orps */
6460 case 0x660f56: /* orpd */
6461 case 0x0f57: /* xorps */
6462 case 0x660f57: /* xorpd */
6463 case 0x0f58: /* addps */
6464 case 0x660f58: /* addpd */
6465 case 0xf20f58: /* addsd */
6466 case 0xf30f58: /* addss */
6467 case 0x0f59: /* mulps */
6468 case 0x660f59: /* mulpd */
6469 case 0xf20f59: /* mulsd */
6470 case 0xf30f59: /* mulss */
6471 case 0x0f5a: /* cvtps2pd */
6472 case 0x660f5a: /* cvtpd2ps */
6473 case 0xf20f5a: /* cvtsd2ss */
6474 case 0xf30f5a: /* cvtss2sd */
6475 case 0x0f5b: /* cvtdq2ps */
6476 case 0x660f5b: /* cvtps2dq */
6477 case 0xf30f5b: /* cvttps2dq */
6478 case 0x0f5c: /* subps */
6479 case 0x660f5c: /* subpd */
6480 case 0xf20f5c: /* subsd */
6481 case 0xf30f5c: /* subss */
6482 case 0x0f5d: /* minps */
6483 case 0x660f5d: /* minpd */
6484 case 0xf20f5d: /* minsd */
6485 case 0xf30f5d: /* minss */
6486 case 0x0f5e: /* divps */
6487 case 0x660f5e: /* divpd */
6488 case 0xf20f5e: /* divsd */
6489 case 0xf30f5e: /* divss */
6490 case 0x0f5f: /* maxps */
6491 case 0x660f5f: /* maxpd */
6492 case 0xf20f5f: /* maxsd */
6493 case 0xf30f5f: /* maxss */
6494 case 0x660f60: /* punpcklbw */
6495 case 0x660f61: /* punpcklwd */
6496 case 0x660f62: /* punpckldq */
6497 case 0x660f63: /* packsswb */
6498 case 0x660f64: /* pcmpgtb */
6499 case 0x660f65: /* pcmpgtw */
6500 case 0x660f66: /* pcmpgtd */
6501 case 0x660f67: /* packuswb */
6502 case 0x660f68: /* punpckhbw */
6503 case 0x660f69: /* punpckhwd */
6504 case 0x660f6a: /* punpckhdq */
6505 case 0x660f6b: /* packssdw */
6506 case 0x660f6c: /* punpcklqdq */
6507 case 0x660f6d: /* punpckhqdq */
6508 case 0x660f6e: /* movd */
6509 case 0x660f6f: /* movdqa */
6510 case 0xf30f6f: /* movdqu */
6511 case 0x660f70: /* pshufd */
6512 case 0xf20f70: /* pshuflw */
6513 case 0xf30f70: /* pshufhw */
6514 case 0x660f74: /* pcmpeqb */
6515 case 0x660f75: /* pcmpeqw */
6516 case 0x660f76: /* pcmpeqd */
6517 case 0x660f7c: /* haddpd */
6518 case 0xf20f7c: /* haddps */
6519 case 0x660f7d: /* hsubpd */
6520 case 0xf20f7d: /* hsubps */
6521 case 0xf30f7e: /* movq */
6522 case 0x0fc2: /* cmpps */
6523 case 0x660fc2: /* cmppd */
6524 case 0xf20fc2: /* cmpsd */
6525 case 0xf30fc2: /* cmpss */
6526 case 0x660fc4: /* pinsrw */
6527 case 0x0fc6: /* shufps */
6528 case 0x660fc6: /* shufpd */
6529 case 0x660fd0: /* addsubpd */
6530 case 0xf20fd0: /* addsubps */
6531 case 0x660fd1: /* psrlw */
6532 case 0x660fd2: /* psrld */
6533 case 0x660fd3: /* psrlq */
6534 case 0x660fd4: /* paddq */
6535 case 0x660fd5: /* pmullw */
6536 case 0xf30fd6: /* movq2dq */
6537 case 0x660fd8: /* psubusb */
6538 case 0x660fd9: /* psubusw */
6539 case 0x660fda: /* pminub */
6540 case 0x660fdb: /* pand */
6541 case 0x660fdc: /* paddusb */
6542 case 0x660fdd: /* paddusw */
6543 case 0x660fde: /* pmaxub */
6544 case 0x660fdf: /* pandn */
6545 case 0x660fe0: /* pavgb */
6546 case 0x660fe1: /* psraw */
6547 case 0x660fe2: /* psrad */
6548 case 0x660fe3: /* pavgw */
6549 case 0x660fe4: /* pmulhuw */
6550 case 0x660fe5: /* pmulhw */
6551 case 0x660fe6: /* cvttpd2dq */
6552 case 0xf20fe6: /* cvtpd2dq */
6553 case 0xf30fe6: /* cvtdq2pd */
6554 case 0x660fe8: /* psubsb */
6555 case 0x660fe9: /* psubsw */
6556 case 0x660fea: /* pminsw */
6557 case 0x660feb: /* por */
6558 case 0x660fec: /* paddsb */
6559 case 0x660fed: /* paddsw */
6560 case 0x660fee: /* pmaxsw */
6561 case 0x660fef: /* pxor */
6562 case 0xf20ff0: /* lddqu */
6563 case 0x660ff1: /* psllw */
6564 case 0x660ff2: /* pslld */
6565 case 0x660ff3: /* psllq */
6566 case 0x660ff4: /* pmuludq */
6567 case 0x660ff5: /* pmaddwd */
6568 case 0x660ff6: /* psadbw */
6569 case 0x660ff8: /* psubb */
6570 case 0x660ff9: /* psubw */
6571 case 0x660ffa: /* psubd */
6572 case 0x660ffb: /* psubq */
6573 case 0x660ffc: /* paddb */
6574 case 0x660ffd: /* paddw */
6575 case 0x660ffe: /* paddd */
6576 if (i386_record_modrm (&ir))
6577 return -1;
6578 ir.reg |= rex_r;
6579 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
6580 goto no_support;
6581 record_arch_list_add_reg (ir.regcache,
6582 I387_XMM0_REGNUM (tdep) + ir.reg);
6583 if ((opcode & 0xfffffffc) == 0x660f3a60)
6584 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 break;
6586
6587 case 0x0f11: /* movups */
6588 case 0x660f11: /* movupd */
6589 case 0xf30f11: /* movss */
6590 case 0xf20f11: /* movsd */
6591 case 0x0f13: /* movlps */
6592 case 0x660f13: /* movlpd */
6593 case 0x0f17: /* movhps */
6594 case 0x660f17: /* movhpd */
6595 case 0x0f29: /* movaps */
6596 case 0x660f29: /* movapd */
6597 case 0x660f3a14: /* pextrb */
6598 case 0x660f3a15: /* pextrw */
6599 case 0x660f3a16: /* pextrd pextrq */
6600 case 0x660f3a17: /* extractps */
6601 case 0x660f7f: /* movdqa */
6602 case 0xf30f7f: /* movdqu */
6603 if (i386_record_modrm (&ir))
6604 return -1;
6605 if (ir.mod == 3)
6606 {
6607 if (opcode == 0x0f13 || opcode == 0x660f13
6608 || opcode == 0x0f17 || opcode == 0x660f17)
6609 goto no_support;
6610 ir.rm |= ir.rex_b;
6611 if (!i386_xmm_regnum_p (gdbarch,
6612 I387_XMM0_REGNUM (tdep) + ir.rm))
6613 goto no_support;
6614 record_arch_list_add_reg (ir.regcache,
6615 I387_XMM0_REGNUM (tdep) + ir.rm);
6616 }
6617 else
6618 {
6619 switch (opcode)
6620 {
6621 case 0x660f3a14:
6622 ir.ot = OT_BYTE;
6623 break;
6624 case 0x660f3a15:
6625 ir.ot = OT_WORD;
6626 break;
6627 case 0x660f3a16:
6628 ir.ot = OT_LONG;
6629 break;
6630 case 0x660f3a17:
6631 ir.ot = OT_QUAD;
6632 break;
6633 default:
6634 ir.ot = OT_DQUAD;
6635 break;
6636 }
6637 if (i386_record_lea_modrm (&ir))
6638 return -1;
6639 }
6640 break;
6641
6642 case 0x0f2b: /* movntps */
6643 case 0x660f2b: /* movntpd */
6644 case 0x0fe7: /* movntq */
6645 case 0x660fe7: /* movntdq */
6646 if (ir.mod == 3)
6647 goto no_support;
6648 if (opcode == 0x0fe7)
6649 ir.ot = OT_QUAD;
6650 else
6651 ir.ot = OT_DQUAD;
6652 if (i386_record_lea_modrm (&ir))
6653 return -1;
6654 break;
6655
6656 case 0xf30f2c: /* cvttss2si */
6657 case 0xf20f2c: /* cvttsd2si */
6658 case 0xf30f2d: /* cvtss2si */
6659 case 0xf20f2d: /* cvtsd2si */
6660 case 0xf20f38f0: /* crc32 */
6661 case 0xf20f38f1: /* crc32 */
6662 case 0x0f50: /* movmskps */
6663 case 0x660f50: /* movmskpd */
6664 case 0x0fc5: /* pextrw */
6665 case 0x660fc5: /* pextrw */
6666 case 0x0fd7: /* pmovmskb */
6667 case 0x660fd7: /* pmovmskb */
6668 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6669 break;
6670
6671 case 0x0f3800: /* pshufb */
6672 case 0x0f3801: /* phaddw */
6673 case 0x0f3802: /* phaddd */
6674 case 0x0f3803: /* phaddsw */
6675 case 0x0f3804: /* pmaddubsw */
6676 case 0x0f3805: /* phsubw */
6677 case 0x0f3806: /* phsubd */
6678 case 0x0f3807: /* phsubsw */
6679 case 0x0f3808: /* psignb */
6680 case 0x0f3809: /* psignw */
6681 case 0x0f380a: /* psignd */
6682 case 0x0f380b: /* pmulhrsw */
6683 case 0x0f381c: /* pabsb */
6684 case 0x0f381d: /* pabsw */
6685 case 0x0f381e: /* pabsd */
6686 case 0x0f382b: /* packusdw */
6687 case 0x0f3830: /* pmovzxbw */
6688 case 0x0f3831: /* pmovzxbd */
6689 case 0x0f3832: /* pmovzxbq */
6690 case 0x0f3833: /* pmovzxwd */
6691 case 0x0f3834: /* pmovzxwq */
6692 case 0x0f3835: /* pmovzxdq */
6693 case 0x0f3837: /* pcmpgtq */
6694 case 0x0f3838: /* pminsb */
6695 case 0x0f3839: /* pminsd */
6696 case 0x0f383a: /* pminuw */
6697 case 0x0f383b: /* pminud */
6698 case 0x0f383c: /* pmaxsb */
6699 case 0x0f383d: /* pmaxsd */
6700 case 0x0f383e: /* pmaxuw */
6701 case 0x0f383f: /* pmaxud */
6702 case 0x0f3840: /* pmulld */
6703 case 0x0f3841: /* phminposuw */
6704 case 0x0f3a0f: /* palignr */
6705 case 0x0f60: /* punpcklbw */
6706 case 0x0f61: /* punpcklwd */
6707 case 0x0f62: /* punpckldq */
6708 case 0x0f63: /* packsswb */
6709 case 0x0f64: /* pcmpgtb */
6710 case 0x0f65: /* pcmpgtw */
6711 case 0x0f66: /* pcmpgtd */
6712 case 0x0f67: /* packuswb */
6713 case 0x0f68: /* punpckhbw */
6714 case 0x0f69: /* punpckhwd */
6715 case 0x0f6a: /* punpckhdq */
6716 case 0x0f6b: /* packssdw */
6717 case 0x0f6e: /* movd */
6718 case 0x0f6f: /* movq */
6719 case 0x0f70: /* pshufw */
6720 case 0x0f74: /* pcmpeqb */
6721 case 0x0f75: /* pcmpeqw */
6722 case 0x0f76: /* pcmpeqd */
6723 case 0x0fc4: /* pinsrw */
6724 case 0x0fd1: /* psrlw */
6725 case 0x0fd2: /* psrld */
6726 case 0x0fd3: /* psrlq */
6727 case 0x0fd4: /* paddq */
6728 case 0x0fd5: /* pmullw */
6729 case 0xf20fd6: /* movdq2q */
6730 case 0x0fd8: /* psubusb */
6731 case 0x0fd9: /* psubusw */
6732 case 0x0fda: /* pminub */
6733 case 0x0fdb: /* pand */
6734 case 0x0fdc: /* paddusb */
6735 case 0x0fdd: /* paddusw */
6736 case 0x0fde: /* pmaxub */
6737 case 0x0fdf: /* pandn */
6738 case 0x0fe0: /* pavgb */
6739 case 0x0fe1: /* psraw */
6740 case 0x0fe2: /* psrad */
6741 case 0x0fe3: /* pavgw */
6742 case 0x0fe4: /* pmulhuw */
6743 case 0x0fe5: /* pmulhw */
6744 case 0x0fe8: /* psubsb */
6745 case 0x0fe9: /* psubsw */
6746 case 0x0fea: /* pminsw */
6747 case 0x0feb: /* por */
6748 case 0x0fec: /* paddsb */
6749 case 0x0fed: /* paddsw */
6750 case 0x0fee: /* pmaxsw */
6751 case 0x0fef: /* pxor */
6752 case 0x0ff1: /* psllw */
6753 case 0x0ff2: /* pslld */
6754 case 0x0ff3: /* psllq */
6755 case 0x0ff4: /* pmuludq */
6756 case 0x0ff5: /* pmaddwd */
6757 case 0x0ff6: /* psadbw */
6758 case 0x0ff8: /* psubb */
6759 case 0x0ff9: /* psubw */
6760 case 0x0ffa: /* psubd */
6761 case 0x0ffb: /* psubq */
6762 case 0x0ffc: /* paddb */
6763 case 0x0ffd: /* paddw */
6764 case 0x0ffe: /* paddd */
6765 if (i386_record_modrm (&ir))
6766 return -1;
6767 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6768 goto no_support;
6769 record_arch_list_add_reg (ir.regcache,
6770 I387_MM0_REGNUM (tdep) + ir.reg);
6771 break;
6772
6773 case 0x0f71: /* psllw */
6774 case 0x0f72: /* pslld */
6775 case 0x0f73: /* psllq */
6776 if (i386_record_modrm (&ir))
6777 return -1;
6778 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6779 goto no_support;
6780 record_arch_list_add_reg (ir.regcache,
6781 I387_MM0_REGNUM (tdep) + ir.rm);
6782 break;
6783
6784 case 0x660f71: /* psllw */
6785 case 0x660f72: /* pslld */
6786 case 0x660f73: /* psllq */
6787 if (i386_record_modrm (&ir))
6788 return -1;
6789 ir.rm |= ir.rex_b;
6790 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
6791 goto no_support;
6792 record_arch_list_add_reg (ir.regcache,
6793 I387_XMM0_REGNUM (tdep) + ir.rm);
6794 break;
6795
6796 case 0x0f7e: /* movd */
6797 case 0x660f7e: /* movd */
6798 if (i386_record_modrm (&ir))
6799 return -1;
6800 if (ir.mod == 3)
6801 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6802 else
6803 {
6804 if (ir.dflag == 2)
6805 ir.ot = OT_QUAD;
6806 else
6807 ir.ot = OT_LONG;
6808 if (i386_record_lea_modrm (&ir))
6809 return -1;
6810 }
6811 break;
6812
6813 case 0x0f7f: /* movq */
6814 if (i386_record_modrm (&ir))
6815 return -1;
6816 if (ir.mod == 3)
6817 {
6818 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6819 goto no_support;
6820 record_arch_list_add_reg (ir.regcache,
6821 I387_MM0_REGNUM (tdep) + ir.rm);
6822 }
6823 else
6824 {
6825 ir.ot = OT_QUAD;
6826 if (i386_record_lea_modrm (&ir))
6827 return -1;
6828 }
6829 break;
6830
6831 case 0xf30fb8: /* popcnt */
6832 if (i386_record_modrm (&ir))
6833 return -1;
6834 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6836 break;
6837
6838 case 0x660fd6: /* movq */
6839 if (i386_record_modrm (&ir))
6840 return -1;
6841 if (ir.mod == 3)
6842 {
6843 ir.rm |= ir.rex_b;
6844 if (!i386_xmm_regnum_p (gdbarch,
6845 I387_XMM0_REGNUM (tdep) + ir.rm))
6846 goto no_support;
6847 record_arch_list_add_reg (ir.regcache,
6848 I387_XMM0_REGNUM (tdep) + ir.rm);
6849 }
6850 else
6851 {
6852 ir.ot = OT_QUAD;
6853 if (i386_record_lea_modrm (&ir))
6854 return -1;
6855 }
6856 break;
6857
6858 case 0x660f3817: /* ptest */
6859 case 0x0f2e: /* ucomiss */
6860 case 0x660f2e: /* ucomisd */
6861 case 0x0f2f: /* comiss */
6862 case 0x660f2f: /* comisd */
6863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6864 break;
6865
6866 case 0x0ff7: /* maskmovq */
6867 regcache_raw_read_unsigned (ir.regcache,
6868 ir.regmap[X86_RECORD_REDI_REGNUM],
6869 &addr);
6870 if (record_arch_list_add_mem (addr, 64))
6871 return -1;
6872 break;
6873
6874 case 0x660ff7: /* maskmovdqu */
6875 regcache_raw_read_unsigned (ir.regcache,
6876 ir.regmap[X86_RECORD_REDI_REGNUM],
6877 &addr);
6878 if (record_arch_list_add_mem (addr, 128))
6879 return -1;
6880 break;
6881
6882 default:
6883 goto no_support;
6884 break;
6885 }
6886 break;
6887
6888 default:
6889 goto no_support;
6890 break;
6891 }
6892
6893 /* In the future, maybe still need to deal with need_dasm. */
6894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
6895 if (record_arch_list_add_end ())
6896 return -1;
6897
6898 return 0;
6899
6900 no_support:
6901 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6902 "at address %s.\n"),
6903 (unsigned int) (opcode),
6904 paddress (gdbarch, ir.orig_addr));
6905 return -1;
6906 }
6907
6908 static const int i386_record_regmap[] =
6909 {
6910 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6911 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6912 0, 0, 0, 0, 0, 0, 0, 0,
6913 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6914 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6915 };
6916
6917 /* Check that the given address appears suitable for a fast
6918 tracepoint, which on x86 means that we need an instruction of at
6919 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6920 jump and not have to worry about program jumps to an address in the
6921 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6922 of instruction to replace, and 0 if not, plus an explanatory
6923 string. */
6924
6925 static int
6926 i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6927 CORE_ADDR addr, int *isize, char **msg)
6928 {
6929 int len, jumplen;
6930 static struct ui_file *gdb_null = NULL;
6931
6932 /* This is based on the target agent using a 4-byte relative jump.
6933 Alternate future possibilities include 8-byte offset for x86-84,
6934 or 3-byte jumps if the program has trampoline space close by. */
6935 jumplen = 5;
6936
6937 /* Dummy file descriptor for the disassembler. */
6938 if (!gdb_null)
6939 gdb_null = ui_file_new ();
6940
6941 /* Check for fit. */
6942 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6943 if (len < jumplen)
6944 {
6945 /* Return a bit of target-specific detail to add to the caller's
6946 generic failure message. */
6947 if (msg)
6948 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6949 "need at least %d bytes for the jump"),
6950 len, jumplen);
6951 return 0;
6952 }
6953
6954 if (isize)
6955 *isize = len;
6956 if (msg)
6957 *msg = NULL;
6958 return 1;
6959 }
6960
6961 static int
6962 i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6963 struct tdesc_arch_data *tdesc_data)
6964 {
6965 const struct target_desc *tdesc = tdep->tdesc;
6966 const struct tdesc_feature *feature_core;
6967 const struct tdesc_feature *feature_sse, *feature_avx;
6968 int i, num_regs, valid_p;
6969
6970 if (! tdesc_has_registers (tdesc))
6971 return 0;
6972
6973 /* Get core registers. */
6974 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
6975 if (feature_core == NULL)
6976 return 0;
6977
6978 /* Get SSE registers. */
6979 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
6980
6981 /* Try AVX registers. */
6982 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6983
6984 valid_p = 1;
6985
6986 /* The XCR0 bits. */
6987 if (feature_avx)
6988 {
6989 /* AVX register description requires SSE register description. */
6990 if (!feature_sse)
6991 return 0;
6992
6993 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6994
6995 /* It may have been set by OSABI initialization function. */
6996 if (tdep->num_ymm_regs == 0)
6997 {
6998 tdep->ymmh_register_names = i386_ymmh_names;
6999 tdep->num_ymm_regs = 8;
7000 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7001 }
7002
7003 for (i = 0; i < tdep->num_ymm_regs; i++)
7004 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7005 tdep->ymm0h_regnum + i,
7006 tdep->ymmh_register_names[i]);
7007 }
7008 else if (feature_sse)
7009 tdep->xcr0 = I386_XSTATE_SSE_MASK;
7010 else
7011 {
7012 tdep->xcr0 = I386_XSTATE_X87_MASK;
7013 tdep->num_xmm_regs = 0;
7014 }
7015
7016 num_regs = tdep->num_core_regs;
7017 for (i = 0; i < num_regs; i++)
7018 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7019 tdep->register_names[i]);
7020
7021 if (feature_sse)
7022 {
7023 /* Need to include %mxcsr, so add one. */
7024 num_regs += tdep->num_xmm_regs + 1;
7025 for (; i < num_regs; i++)
7026 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7027 tdep->register_names[i]);
7028 }
7029
7030 return valid_p;
7031 }
7032
7033 \f
7034 static struct gdbarch *
7035 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7036 {
7037 struct gdbarch_tdep *tdep;
7038 struct gdbarch *gdbarch;
7039 struct tdesc_arch_data *tdesc_data;
7040 const struct target_desc *tdesc;
7041 int mm0_regnum;
7042 int ymm0_regnum;
7043
7044 /* If there is already a candidate, use it. */
7045 arches = gdbarch_list_lookup_by_info (arches, &info);
7046 if (arches != NULL)
7047 return arches->gdbarch;
7048
7049 /* Allocate space for the new architecture. */
7050 tdep = XCALLOC (1, struct gdbarch_tdep);
7051 gdbarch = gdbarch_alloc (&info, tdep);
7052
7053 /* General-purpose registers. */
7054 tdep->gregset = NULL;
7055 tdep->gregset_reg_offset = NULL;
7056 tdep->gregset_num_regs = I386_NUM_GREGS;
7057 tdep->sizeof_gregset = 0;
7058
7059 /* Floating-point registers. */
7060 tdep->fpregset = NULL;
7061 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7062
7063 tdep->xstateregset = NULL;
7064
7065 /* The default settings include the FPU registers, the MMX registers
7066 and the SSE registers. This can be overridden for a specific ABI
7067 by adjusting the members `st0_regnum', `mm0_regnum' and
7068 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
7069 will show up in the output of "info all-registers". */
7070
7071 tdep->st0_regnum = I386_ST0_REGNUM;
7072
7073 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7074 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7075
7076 tdep->jb_pc_offset = -1;
7077 tdep->struct_return = pcc_struct_return;
7078 tdep->sigtramp_start = 0;
7079 tdep->sigtramp_end = 0;
7080 tdep->sigtramp_p = i386_sigtramp_p;
7081 tdep->sigcontext_addr = NULL;
7082 tdep->sc_reg_offset = NULL;
7083 tdep->sc_pc_offset = -1;
7084 tdep->sc_sp_offset = -1;
7085
7086 tdep->xsave_xcr0_offset = -1;
7087
7088 tdep->record_regmap = i386_record_regmap;
7089
7090 /* The format used for `long double' on almost all i386 targets is
7091 the i387 extended floating-point format. In fact, of all targets
7092 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7093 on having a `long double' that's not `long' at all. */
7094 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7095
7096 /* Although the i387 extended floating-point has only 80 significant
7097 bits, a `long double' actually takes up 96, probably to enforce
7098 alignment. */
7099 set_gdbarch_long_double_bit (gdbarch, 96);
7100
7101 /* Register numbers of various important registers. */
7102 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7103 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7104 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7105 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7106
7107 /* NOTE: kettenis/20040418: GCC does have two possible register
7108 numbering schemes on the i386: dbx and SVR4. These schemes
7109 differ in how they number %ebp, %esp, %eflags, and the
7110 floating-point registers, and are implemented by the arrays
7111 dbx_register_map[] and svr4_dbx_register_map in
7112 gcc/config/i386.c. GCC also defines a third numbering scheme in
7113 gcc/config/i386.c, which it designates as the "default" register
7114 map used in 64bit mode. This last register numbering scheme is
7115 implemented in dbx64_register_map, and is used for AMD64; see
7116 amd64-tdep.c.
7117
7118 Currently, each GCC i386 target always uses the same register
7119 numbering scheme across all its supported debugging formats
7120 i.e. SDB (COFF), stabs and DWARF 2. This is because
7121 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7122 DBX_REGISTER_NUMBER macro which is defined by each target's
7123 respective config header in a manner independent of the requested
7124 output debugging format.
7125
7126 This does not match the arrangement below, which presumes that
7127 the SDB and stabs numbering schemes differ from the DWARF and
7128 DWARF 2 ones. The reason for this arrangement is that it is
7129 likely to get the numbering scheme for the target's
7130 default/native debug format right. For targets where GCC is the
7131 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7132 targets where the native toolchain uses a different numbering
7133 scheme for a particular debug format (stabs-in-ELF on Solaris)
7134 the defaults below will have to be overridden, like
7135 i386_elf_init_abi() does. */
7136
7137 /* Use the dbx register numbering scheme for stabs and COFF. */
7138 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7139 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7140
7141 /* Use the SVR4 register numbering scheme for DWARF 2. */
7142 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7143
7144 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7145 be in use on any of the supported i386 targets. */
7146
7147 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7148
7149 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7150
7151 /* Call dummy code. */
7152 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7153
7154 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7155 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7156 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7157
7158 set_gdbarch_return_value (gdbarch, i386_return_value);
7159
7160 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7161
7162 /* Stack grows downward. */
7163 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7164
7165 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7166 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7167 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7168
7169 set_gdbarch_frame_args_skip (gdbarch, 8);
7170
7171 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7172
7173 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7174
7175 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7176
7177 /* Add the i386 register groups. */
7178 i386_add_reggroups (gdbarch);
7179 tdep->register_reggroup_p = i386_register_reggroup_p;
7180
7181 /* Helper for function argument information. */
7182 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7183
7184 /* Hook the function epilogue frame unwinder. This unwinder is
7185 appended to the list first, so that it supercedes the Dwarf
7186 unwinder in function epilogues (where the Dwarf unwinder
7187 currently fails). */
7188 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7189
7190 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7191 to the list before the prologue-based unwinders, so that Dwarf
7192 CFI info will be used if it is available. */
7193 dwarf2_append_unwinders (gdbarch);
7194
7195 frame_base_set_default (gdbarch, &i386_frame_base);
7196
7197 /* Pseudo registers may be changed by amd64_init_abi. */
7198 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7199 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7200
7201 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7202 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7203
7204 /* Override the normal target description method to make the AVX
7205 upper halves anonymous. */
7206 set_gdbarch_register_name (gdbarch, i386_register_name);
7207
7208 /* Even though the default ABI only includes general-purpose registers,
7209 floating-point registers and the SSE registers, we have to leave a
7210 gap for the upper AVX registers. */
7211 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
7212
7213 /* Get the x86 target description from INFO. */
7214 tdesc = info.target_desc;
7215 if (! tdesc_has_registers (tdesc))
7216 tdesc = tdesc_i386;
7217 tdep->tdesc = tdesc;
7218
7219 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7220 tdep->register_names = i386_register_names;
7221
7222 /* No upper YMM registers. */
7223 tdep->ymmh_register_names = NULL;
7224 tdep->ymm0h_regnum = -1;
7225
7226 tdep->num_byte_regs = 8;
7227 tdep->num_word_regs = 8;
7228 tdep->num_dword_regs = 0;
7229 tdep->num_mmx_regs = 8;
7230 tdep->num_ymm_regs = 0;
7231
7232 tdesc_data = tdesc_data_alloc ();
7233
7234 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7235
7236 /* Hook in ABI-specific overrides, if they have been registered. */
7237 info.tdep_info = (void *) tdesc_data;
7238 gdbarch_init_osabi (info, gdbarch);
7239
7240 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7241 {
7242 tdesc_data_cleanup (tdesc_data);
7243 xfree (tdep);
7244 gdbarch_free (gdbarch);
7245 return NULL;
7246 }
7247
7248 /* Wire in pseudo registers. Number of pseudo registers may be
7249 changed. */
7250 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7251 + tdep->num_word_regs
7252 + tdep->num_dword_regs
7253 + tdep->num_mmx_regs
7254 + tdep->num_ymm_regs));
7255
7256 /* Target description may be changed. */
7257 tdesc = tdep->tdesc;
7258
7259 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7260
7261 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7262 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7263
7264 /* Make %al the first pseudo-register. */
7265 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7266 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7267
7268 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
7269 if (tdep->num_dword_regs)
7270 {
7271 /* Support dword pseudo-register if it hasn't been disabled. */
7272 tdep->eax_regnum = ymm0_regnum;
7273 ymm0_regnum += tdep->num_dword_regs;
7274 }
7275 else
7276 tdep->eax_regnum = -1;
7277
7278 mm0_regnum = ymm0_regnum;
7279 if (tdep->num_ymm_regs)
7280 {
7281 /* Support YMM pseudo-register if it is available. */
7282 tdep->ymm0_regnum = ymm0_regnum;
7283 mm0_regnum += tdep->num_ymm_regs;
7284 }
7285 else
7286 tdep->ymm0_regnum = -1;
7287
7288 if (tdep->num_mmx_regs != 0)
7289 {
7290 /* Support MMX pseudo-register if MMX hasn't been disabled. */
7291 tdep->mm0_regnum = mm0_regnum;
7292 }
7293 else
7294 tdep->mm0_regnum = -1;
7295
7296 /* Hook in the legacy prologue-based unwinders last (fallback). */
7297 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7298 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
7299
7300 /* If we have a register mapping, enable the generic core file
7301 support, unless it has already been enabled. */
7302 if (tdep->gregset_reg_offset
7303 && !gdbarch_regset_from_core_section_p (gdbarch))
7304 set_gdbarch_regset_from_core_section (gdbarch,
7305 i386_regset_from_core_section);
7306
7307 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7308 i386_skip_permanent_breakpoint);
7309
7310 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7311 i386_fast_tracepoint_valid_at);
7312
7313 return gdbarch;
7314 }
7315
7316 static enum gdb_osabi
7317 i386_coff_osabi_sniffer (bfd *abfd)
7318 {
7319 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7320 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
7321 return GDB_OSABI_GO32;
7322
7323 return GDB_OSABI_UNKNOWN;
7324 }
7325 \f
7326
7327 /* Provide a prototype to silence -Wmissing-prototypes. */
7328 void _initialize_i386_tdep (void);
7329
7330 void
7331 _initialize_i386_tdep (void)
7332 {
7333 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7334
7335 /* Add the variable that controls the disassembly flavor. */
7336 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7337 &disassembly_flavor, _("\
7338 Set the disassembly flavor."), _("\
7339 Show the disassembly flavor."), _("\
7340 The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7341 NULL,
7342 NULL, /* FIXME: i18n: */
7343 &setlist, &showlist);
7344
7345 /* Add the variable that controls the convention for returning
7346 structs. */
7347 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7348 &struct_convention, _("\
7349 Set the convention for returning small structs."), _("\
7350 Show the convention for returning small structs."), _("\
7351 Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7352 is \"default\"."),
7353 NULL,
7354 NULL, /* FIXME: i18n: */
7355 &setlist, &showlist);
7356
7357 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7358 i386_coff_osabi_sniffer);
7359
7360 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
7361 i386_svr4_init_abi);
7362 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
7363 i386_go32_init_abi);
7364
7365 /* Initialize the i386-specific register groups. */
7366 i386_init_reggroups ();
7367
7368 /* Initialize the standard target descriptions. */
7369 initialize_tdesc_i386 ();
7370 initialize_tdesc_i386_mmx ();
7371 initialize_tdesc_i386_avx ();
7372
7373 /* Tell remote stub that we support XML target description. */
7374 register_remote_support_xml ("i386");
7375 }