2002-08-12 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / i386-tdep.c
1 /* Intel 386 target-dependent stuff.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcore.h"
28 #include "target.h"
29 #include "floatformat.h"
30 #include "symfile.h"
31 #include "symtab.h"
32 #include "gdbcmd.h"
33 #include "command.h"
34 #include "arch-utils.h"
35 #include "regcache.h"
36 #include "doublest.h"
37 #include "value.h"
38 #include "gdb_assert.h"
39
40 #include "i386-tdep.h"
41
42 /* Names of the registers. The first 10 registers match the register
43 numbering scheme used by GCC for stabs and DWARF. */
44 static char *i386_register_names[] =
45 {
46 "eax", "ecx", "edx", "ebx",
47 "esp", "ebp", "esi", "edi",
48 "eip", "eflags", "cs", "ss",
49 "ds", "es", "fs", "gs",
50 "st0", "st1", "st2", "st3",
51 "st4", "st5", "st6", "st7",
52 "fctrl", "fstat", "ftag", "fiseg",
53 "fioff", "foseg", "fooff", "fop",
54 "xmm0", "xmm1", "xmm2", "xmm3",
55 "xmm4", "xmm5", "xmm6", "xmm7",
56 "mxcsr"
57 };
58
59 /* Return the name of register REG. */
60
61 const char *
62 i386_register_name (int reg)
63 {
64 if (reg < 0)
65 return NULL;
66 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
67 return NULL;
68
69 return i386_register_names[reg];
70 }
71
72 /* Convert stabs register number REG to the appropriate register
73 number used by GDB. */
74
75 static int
76 i386_stab_reg_to_regnum (int reg)
77 {
78 /* This implements what GCC calls the "default" register map. */
79 if (reg >= 0 && reg <= 7)
80 {
81 /* General registers. */
82 return reg;
83 }
84 else if (reg >= 12 && reg <= 19)
85 {
86 /* Floating-point registers. */
87 return reg - 12 + FP0_REGNUM;
88 }
89 else if (reg >= 21 && reg <= 28)
90 {
91 /* SSE registers. */
92 return reg - 21 + XMM0_REGNUM;
93 }
94 else if (reg >= 29 && reg <= 36)
95 {
96 /* MMX registers. */
97 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
98 as pseudo-registers? */
99 return reg - 29 + FP0_REGNUM;
100 }
101
102 /* This will hopefully provoke a warning. */
103 return NUM_REGS + NUM_PSEUDO_REGS;
104 }
105
106 /* Convert DWARF register number REG to the appropriate register
107 number used by GDB. */
108
109 static int
110 i386_dwarf_reg_to_regnum (int reg)
111 {
112 /* The DWARF register numbering includes %eip and %eflags, and
113 numbers the floating point registers differently. */
114 if (reg >= 0 && reg <= 9)
115 {
116 /* General registers. */
117 return reg;
118 }
119 else if (reg >= 11 && reg <= 18)
120 {
121 /* Floating-point registers. */
122 return reg - 11 + FP0_REGNUM;
123 }
124 else if (reg >= 21)
125 {
126 /* The SSE and MMX registers have identical numbers as in stabs. */
127 return i386_stab_reg_to_regnum (reg);
128 }
129
130 /* This will hopefully provoke a warning. */
131 return NUM_REGS + NUM_PSEUDO_REGS;
132 }
133 \f
134
135 /* This is the variable that is set with "set disassembly-flavor", and
136 its legitimate values. */
137 static const char att_flavor[] = "att";
138 static const char intel_flavor[] = "intel";
139 static const char *valid_flavors[] =
140 {
141 att_flavor,
142 intel_flavor,
143 NULL
144 };
145 static const char *disassembly_flavor = att_flavor;
146
147 /* Stdio style buffering was used to minimize calls to ptrace, but
148 this buffering did not take into account that the code section
149 being accessed may not be an even number of buffers long (even if
150 the buffer is only sizeof(int) long). In cases where the code
151 section size happened to be a non-integral number of buffers long,
152 attempting to read the last buffer would fail. Simply using
153 target_read_memory and ignoring errors, rather than read_memory, is
154 not the correct solution, since legitimate access errors would then
155 be totally ignored. To properly handle this situation and continue
156 to use buffering would require that this code be able to determine
157 the minimum code section size granularity (not the alignment of the
158 section itself, since the actual failing case that pointed out this
159 problem had a section alignment of 4 but was not a multiple of 4
160 bytes long), on a target by target basis, and then adjust it's
161 buffer size accordingly. This is messy, but potentially feasible.
162 It probably needs the bfd library's help and support. For now, the
163 buffer size is set to 1. (FIXME -fnf) */
164
165 #define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
166 static CORE_ADDR codestream_next_addr;
167 static CORE_ADDR codestream_addr;
168 static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
169 static int codestream_off;
170 static int codestream_cnt;
171
172 #define codestream_tell() (codestream_addr + codestream_off)
173 #define codestream_peek() \
174 (codestream_cnt == 0 ? \
175 codestream_fill(1) : codestream_buf[codestream_off])
176 #define codestream_get() \
177 (codestream_cnt-- == 0 ? \
178 codestream_fill(0) : codestream_buf[codestream_off++])
179
180 static unsigned char
181 codestream_fill (int peek_flag)
182 {
183 codestream_addr = codestream_next_addr;
184 codestream_next_addr += CODESTREAM_BUFSIZ;
185 codestream_off = 0;
186 codestream_cnt = CODESTREAM_BUFSIZ;
187 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
188
189 if (peek_flag)
190 return (codestream_peek ());
191 else
192 return (codestream_get ());
193 }
194
195 static void
196 codestream_seek (CORE_ADDR place)
197 {
198 codestream_next_addr = place / CODESTREAM_BUFSIZ;
199 codestream_next_addr *= CODESTREAM_BUFSIZ;
200 codestream_cnt = 0;
201 codestream_fill (1);
202 while (codestream_tell () != place)
203 codestream_get ();
204 }
205
206 static void
207 codestream_read (unsigned char *buf, int count)
208 {
209 unsigned char *p;
210 int i;
211 p = buf;
212 for (i = 0; i < count; i++)
213 *p++ = codestream_get ();
214 }
215 \f
216
217 /* If the next instruction is a jump, move to its target. */
218
219 static void
220 i386_follow_jump (void)
221 {
222 unsigned char buf[4];
223 long delta;
224
225 int data16;
226 CORE_ADDR pos;
227
228 pos = codestream_tell ();
229
230 data16 = 0;
231 if (codestream_peek () == 0x66)
232 {
233 codestream_get ();
234 data16 = 1;
235 }
236
237 switch (codestream_get ())
238 {
239 case 0xe9:
240 /* Relative jump: if data16 == 0, disp32, else disp16. */
241 if (data16)
242 {
243 codestream_read (buf, 2);
244 delta = extract_signed_integer (buf, 2);
245
246 /* Include the size of the jmp instruction (including the
247 0x66 prefix). */
248 pos += delta + 4;
249 }
250 else
251 {
252 codestream_read (buf, 4);
253 delta = extract_signed_integer (buf, 4);
254
255 pos += delta + 5;
256 }
257 break;
258 case 0xeb:
259 /* Relative jump, disp8 (ignore data16). */
260 codestream_read (buf, 1);
261 /* Sign-extend it. */
262 delta = extract_signed_integer (buf, 1);
263
264 pos += delta + 2;
265 break;
266 }
267 codestream_seek (pos);
268 }
269
270 /* Find & return the amount a local space allocated, and advance the
271 codestream to the first register push (if any).
272
273 If the entry sequence doesn't make sense, return -1, and leave
274 codestream pointer at a random spot. */
275
276 static long
277 i386_get_frame_setup (CORE_ADDR pc)
278 {
279 unsigned char op;
280
281 codestream_seek (pc);
282
283 i386_follow_jump ();
284
285 op = codestream_get ();
286
287 if (op == 0x58) /* popl %eax */
288 {
289 /* This function must start with
290
291 popl %eax 0x58
292 xchgl %eax, (%esp) 0x87 0x04 0x24
293 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
294
295 (the System V compiler puts out the second `xchg'
296 instruction, and the assembler doesn't try to optimize it, so
297 the 'sib' form gets generated). This sequence is used to get
298 the address of the return buffer for a function that returns
299 a structure. */
300 int pos;
301 unsigned char buf[4];
302 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
303 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
304
305 pos = codestream_tell ();
306 codestream_read (buf, 4);
307 if (memcmp (buf, proto1, 3) == 0)
308 pos += 3;
309 else if (memcmp (buf, proto2, 4) == 0)
310 pos += 4;
311
312 codestream_seek (pos);
313 op = codestream_get (); /* Update next opcode. */
314 }
315
316 if (op == 0x68 || op == 0x6a)
317 {
318 /* This function may start with
319
320 pushl constant
321 call _probe
322 addl $4, %esp
323
324 followed by
325
326 pushl %ebp
327
328 etc. */
329 int pos;
330 unsigned char buf[8];
331
332 /* Skip past the `pushl' instruction; it has either a one-byte
333 or a four-byte operand, depending on the opcode. */
334 pos = codestream_tell ();
335 if (op == 0x68)
336 pos += 4;
337 else
338 pos += 1;
339 codestream_seek (pos);
340
341 /* Read the following 8 bytes, which should be "call _probe" (6
342 bytes) followed by "addl $4,%esp" (2 bytes). */
343 codestream_read (buf, sizeof (buf));
344 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
345 pos += sizeof (buf);
346 codestream_seek (pos);
347 op = codestream_get (); /* Update next opcode. */
348 }
349
350 if (op == 0x55) /* pushl %ebp */
351 {
352 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
353 switch (codestream_get ())
354 {
355 case 0x8b:
356 if (codestream_get () != 0xec)
357 return -1;
358 break;
359 case 0x89:
360 if (codestream_get () != 0xe5)
361 return -1;
362 break;
363 default:
364 return -1;
365 }
366 /* Check for stack adjustment
367
368 subl $XXX, %esp
369
370 NOTE: You can't subtract a 16 bit immediate from a 32 bit
371 reg, so we don't have to worry about a data16 prefix. */
372 op = codestream_peek ();
373 if (op == 0x83)
374 {
375 /* `subl' with 8 bit immediate. */
376 codestream_get ();
377 if (codestream_get () != 0xec)
378 /* Some instruction starting with 0x83 other than `subl'. */
379 {
380 codestream_seek (codestream_tell () - 2);
381 return 0;
382 }
383 /* `subl' with signed byte immediate (though it wouldn't
384 make sense to be negative). */
385 return (codestream_get ());
386 }
387 else if (op == 0x81)
388 {
389 char buf[4];
390 /* Maybe it is `subl' with a 32 bit immedediate. */
391 codestream_get ();
392 if (codestream_get () != 0xec)
393 /* Some instruction starting with 0x81 other than `subl'. */
394 {
395 codestream_seek (codestream_tell () - 2);
396 return 0;
397 }
398 /* It is `subl' with a 32 bit immediate. */
399 codestream_read ((unsigned char *) buf, 4);
400 return extract_signed_integer (buf, 4);
401 }
402 else
403 {
404 return 0;
405 }
406 }
407 else if (op == 0xc8)
408 {
409 char buf[2];
410 /* `enter' with 16 bit unsigned immediate. */
411 codestream_read ((unsigned char *) buf, 2);
412 codestream_get (); /* Flush final byte of enter instruction. */
413 return extract_unsigned_integer (buf, 2);
414 }
415 return (-1);
416 }
417
418 /* Signal trampolines don't have a meaningful frame. The frame
419 pointer value we use is actually the frame pointer of the calling
420 frame -- that is, the frame which was in progress when the signal
421 trampoline was entered. GDB mostly treats this frame pointer value
422 as a magic cookie. We detect the case of a signal trampoline by
423 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
424 PC_IN_SIGTRAMP.
425
426 When a signal trampoline is invoked from a frameless function, we
427 essentially have two frameless functions in a row. In this case,
428 we use the same magic cookie for three frames in a row. We detect
429 this case by seeing whether the next frame has
430 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
431 current frame is actually frameless. In this case, we need to get
432 the PC by looking at the SP register value stored in the signal
433 context.
434
435 This should work in most cases except in horrible situations where
436 a signal occurs just as we enter a function but before the frame
437 has been set up. Incidentally, that's just what happens when we
438 call a function from GDB with a signal pending (there's a test in
439 the testsuite that makes this happen). Therefore we pretend that
440 we have a frameless function if we're stopped at the start of a
441 function. */
442
443 /* Return non-zero if we're dealing with a frameless signal, that is,
444 a signal trampoline invoked from a frameless function. */
445
446 static int
447 i386_frameless_signal_p (struct frame_info *frame)
448 {
449 return (frame->next && frame->next->signal_handler_caller
450 && (frameless_look_for_prologue (frame)
451 || frame->pc == get_pc_function_start (frame->pc)));
452 }
453
454 /* Return the chain-pointer for FRAME. In the case of the i386, the
455 frame's nominal address is the address of a 4-byte word containing
456 the calling frame's address. */
457
458 static CORE_ADDR
459 i386_frame_chain (struct frame_info *frame)
460 {
461 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
462 return frame->frame;
463
464 if (frame->signal_handler_caller
465 || i386_frameless_signal_p (frame))
466 return frame->frame;
467
468 if (! inside_entry_file (frame->pc))
469 return read_memory_unsigned_integer (frame->frame, 4);
470
471 return 0;
472 }
473
474 /* Determine whether the function invocation represented by FRAME does
475 not have a from on the stack associated with it. If it does not,
476 return non-zero, otherwise return zero. */
477
478 static int
479 i386_frameless_function_invocation (struct frame_info *frame)
480 {
481 if (frame->signal_handler_caller)
482 return 0;
483
484 return frameless_look_for_prologue (frame);
485 }
486
487 /* Assuming FRAME is for a sigtramp routine, return the saved program
488 counter. */
489
490 static CORE_ADDR
491 i386_sigtramp_saved_pc (struct frame_info *frame)
492 {
493 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
494 CORE_ADDR addr;
495
496 addr = tdep->sigcontext_addr (frame);
497 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
498 }
499
500 /* Assuming FRAME is for a sigtramp routine, return the saved stack
501 pointer. */
502
503 static CORE_ADDR
504 i386_sigtramp_saved_sp (struct frame_info *frame)
505 {
506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
507 CORE_ADDR addr;
508
509 addr = tdep->sigcontext_addr (frame);
510 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
511 }
512
513 /* Return the saved program counter for FRAME. */
514
515 static CORE_ADDR
516 i386_frame_saved_pc (struct frame_info *frame)
517 {
518 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
519 return generic_read_register_dummy (frame->pc, frame->frame,
520 PC_REGNUM);
521
522 if (frame->signal_handler_caller)
523 return i386_sigtramp_saved_pc (frame);
524
525 if (i386_frameless_signal_p (frame))
526 {
527 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
528 return read_memory_unsigned_integer (sp, 4);
529 }
530
531 return read_memory_unsigned_integer (frame->frame + 4, 4);
532 }
533
534 /* Immediately after a function call, return the saved pc. */
535
536 static CORE_ADDR
537 i386_saved_pc_after_call (struct frame_info *frame)
538 {
539 if (frame->signal_handler_caller)
540 return i386_sigtramp_saved_pc (frame);
541
542 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
543 }
544
545 /* Return number of args passed to a frame.
546 Can return -1, meaning no way to tell. */
547
548 static int
549 i386_frame_num_args (struct frame_info *fi)
550 {
551 #if 1
552 return -1;
553 #else
554 /* This loses because not only might the compiler not be popping the
555 args right after the function call, it might be popping args from
556 both this call and a previous one, and we would say there are
557 more args than there really are. */
558
559 int retpc;
560 unsigned char op;
561 struct frame_info *pfi;
562
563 /* On the i386, the instruction following the call could be:
564 popl %ecx - one arg
565 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
566 anything else - zero args. */
567
568 int frameless;
569
570 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
571 if (frameless)
572 /* In the absence of a frame pointer, GDB doesn't get correct
573 values for nameless arguments. Return -1, so it doesn't print
574 any nameless arguments. */
575 return -1;
576
577 pfi = get_prev_frame (fi);
578 if (pfi == 0)
579 {
580 /* NOTE: This can happen if we are looking at the frame for
581 main, because FRAME_CHAIN_VALID won't let us go into start.
582 If we have debugging symbols, that's not really a big deal;
583 it just means it will only show as many arguments to main as
584 are declared. */
585 return -1;
586 }
587 else
588 {
589 retpc = pfi->pc;
590 op = read_memory_integer (retpc, 1);
591 if (op == 0x59) /* pop %ecx */
592 return 1;
593 else if (op == 0x83)
594 {
595 op = read_memory_integer (retpc + 1, 1);
596 if (op == 0xc4)
597 /* addl $<signed imm 8 bits>, %esp */
598 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
599 else
600 return 0;
601 }
602 else if (op == 0x81) /* `add' with 32 bit immediate. */
603 {
604 op = read_memory_integer (retpc + 1, 1);
605 if (op == 0xc4)
606 /* addl $<imm 32>, %esp */
607 return read_memory_integer (retpc + 2, 4) / 4;
608 else
609 return 0;
610 }
611 else
612 {
613 return 0;
614 }
615 }
616 #endif
617 }
618
619 /* Parse the first few instructions the function to see what registers
620 were stored.
621
622 We handle these cases:
623
624 The startup sequence can be at the start of the function, or the
625 function can start with a branch to startup code at the end.
626
627 %ebp can be set up with either the 'enter' instruction, or "pushl
628 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
629 once used in the System V compiler).
630
631 Local space is allocated just below the saved %ebp by either the
632 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
633 bit unsigned argument for space to allocate, and the 'addl'
634 instruction could have either a signed byte, or 32 bit immediate.
635
636 Next, the registers used by this function are pushed. With the
637 System V compiler they will always be in the order: %edi, %esi,
638 %ebx (and sometimes a harmless bug causes it to also save but not
639 restore %eax); however, the code below is willing to see the pushes
640 in any order, and will handle up to 8 of them.
641
642 If the setup sequence is at the end of the function, then the next
643 instruction will be a branch back to the start. */
644
645 static void
646 i386_frame_init_saved_regs (struct frame_info *fip)
647 {
648 long locals = -1;
649 unsigned char op;
650 CORE_ADDR addr;
651 CORE_ADDR pc;
652 int i;
653
654 if (fip->saved_regs)
655 return;
656
657 frame_saved_regs_zalloc (fip);
658
659 pc = get_pc_function_start (fip->pc);
660 if (pc != 0)
661 locals = i386_get_frame_setup (pc);
662
663 if (locals >= 0)
664 {
665 addr = fip->frame - 4 - locals;
666 for (i = 0; i < 8; i++)
667 {
668 op = codestream_get ();
669 if (op < 0x50 || op > 0x57)
670 break;
671 #ifdef I386_REGNO_TO_SYMMETRY
672 /* Dynix uses different internal numbering. Ick. */
673 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
674 #else
675 fip->saved_regs[op - 0x50] = addr;
676 #endif
677 addr -= 4;
678 }
679 }
680
681 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
682 fip->saved_regs[FP_REGNUM] = fip->frame;
683 }
684
685 /* Return PC of first real instruction. */
686
687 static CORE_ADDR
688 i386_skip_prologue (CORE_ADDR pc)
689 {
690 unsigned char op;
691 int i;
692 static unsigned char pic_pat[6] =
693 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
694 0x5b, /* popl %ebx */
695 };
696 CORE_ADDR pos;
697
698 if (i386_get_frame_setup (pc) < 0)
699 return (pc);
700
701 /* Found valid frame setup -- codestream now points to start of push
702 instructions for saving registers. */
703
704 /* Skip over register saves. */
705 for (i = 0; i < 8; i++)
706 {
707 op = codestream_peek ();
708 /* Break if not `pushl' instrunction. */
709 if (op < 0x50 || op > 0x57)
710 break;
711 codestream_get ();
712 }
713
714 /* The native cc on SVR4 in -K PIC mode inserts the following code
715 to get the address of the global offset table (GOT) into register
716 %ebx
717
718 call 0x0
719 popl %ebx
720 movl %ebx,x(%ebp) (optional)
721 addl y,%ebx
722
723 This code is with the rest of the prologue (at the end of the
724 function), so we have to skip it to get to the first real
725 instruction at the start of the function. */
726
727 pos = codestream_tell ();
728 for (i = 0; i < 6; i++)
729 {
730 op = codestream_get ();
731 if (pic_pat[i] != op)
732 break;
733 }
734 if (i == 6)
735 {
736 unsigned char buf[4];
737 long delta = 6;
738
739 op = codestream_get ();
740 if (op == 0x89) /* movl %ebx, x(%ebp) */
741 {
742 op = codestream_get ();
743 if (op == 0x5d) /* One byte offset from %ebp. */
744 {
745 delta += 3;
746 codestream_read (buf, 1);
747 }
748 else if (op == 0x9d) /* Four byte offset from %ebp. */
749 {
750 delta += 6;
751 codestream_read (buf, 4);
752 }
753 else /* Unexpected instruction. */
754 delta = -1;
755 op = codestream_get ();
756 }
757 /* addl y,%ebx */
758 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
759 {
760 pos += delta + 6;
761 }
762 }
763 codestream_seek (pos);
764
765 i386_follow_jump ();
766
767 return (codestream_tell ());
768 }
769
770 /* Use the program counter to determine the contents and size of a
771 breakpoint instruction. Return a pointer to a string of bytes that
772 encode a breakpoint instruction, store the length of the string in
773 *LEN and optionally adjust *PC to point to the correct memory
774 location for inserting the breakpoint.
775
776 On the i386 we have a single breakpoint that fits in a single byte
777 and can be inserted anywhere. */
778
779 static const unsigned char *
780 i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
781 {
782 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
783
784 *len = sizeof (break_insn);
785 return break_insn;
786 }
787
788 /* Push the return address (pointing to the call dummy) onto the stack
789 and return the new value for the stack pointer. */
790
791 static CORE_ADDR
792 i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
793 {
794 char buf[4];
795
796 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
797 write_memory (sp - 4, buf, 4);
798 return sp - 4;
799 }
800
801 static void
802 i386_do_pop_frame (struct frame_info *frame)
803 {
804 CORE_ADDR fp;
805 int regnum;
806 char regbuf[I386_MAX_REGISTER_SIZE];
807
808 fp = FRAME_FP (frame);
809 i386_frame_init_saved_regs (frame);
810
811 for (regnum = 0; regnum < NUM_REGS; regnum++)
812 {
813 CORE_ADDR addr;
814 addr = frame->saved_regs[regnum];
815 if (addr)
816 {
817 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
818 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
819 REGISTER_RAW_SIZE (regnum));
820 }
821 }
822 write_register (FP_REGNUM, read_memory_integer (fp, 4));
823 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
824 write_register (SP_REGNUM, fp + 8);
825 flush_cached_frames ();
826 }
827
828 static void
829 i386_pop_frame (void)
830 {
831 generic_pop_current_frame (i386_do_pop_frame);
832 }
833 \f
834
835 /* Figure out where the longjmp will land. Slurp the args out of the
836 stack. We expect the first arg to be a pointer to the jmp_buf
837 structure from which we extract the address that we will land at.
838 This address is copied into PC. This routine returns true on
839 success. */
840
841 static int
842 i386_get_longjmp_target (CORE_ADDR *pc)
843 {
844 char buf[4];
845 CORE_ADDR sp, jb_addr;
846 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
847
848 /* If JB_PC_OFFSET is -1, we have no way to find out where the
849 longjmp will land. */
850 if (jb_pc_offset == -1)
851 return 0;
852
853 sp = read_register (SP_REGNUM);
854 if (target_read_memory (sp + 4, buf, 4))
855 return 0;
856
857 jb_addr = extract_address (buf, 4);
858 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
859 return 0;
860
861 *pc = extract_address (buf, 4);
862 return 1;
863 }
864 \f
865
866 static CORE_ADDR
867 i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
868 int struct_return, CORE_ADDR struct_addr)
869 {
870 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
871
872 if (struct_return)
873 {
874 char buf[4];
875
876 sp -= 4;
877 store_address (buf, 4, struct_addr);
878 write_memory (sp, buf, 4);
879 }
880
881 return sp;
882 }
883
884 static void
885 i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
886 {
887 /* Do nothing. Everything was already done by i386_push_arguments. */
888 }
889
890 /* These registers are used for returning integers (and on some
891 targets also for returning `struct' and `union' values when their
892 size and alignment match an integer type). */
893 #define LOW_RETURN_REGNUM 0 /* %eax */
894 #define HIGH_RETURN_REGNUM 2 /* %edx */
895
896 /* Extract from an array REGBUF containing the (raw) register state, a
897 function return value of TYPE, and copy that, in virtual format,
898 into VALBUF. */
899
900 static void
901 i386_extract_return_value (struct type *type, struct regcache *regcache,
902 char *valbuf)
903 {
904 int len = TYPE_LENGTH (type);
905 char buf[I386_MAX_REGISTER_SIZE];
906
907 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
908 && TYPE_NFIELDS (type) == 1)
909 {
910 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
911 return;
912 }
913
914 if (TYPE_CODE (type) == TYPE_CODE_FLT)
915 {
916 if (FP0_REGNUM == 0)
917 {
918 warning ("Cannot find floating-point return value.");
919 memset (valbuf, 0, len);
920 return;
921 }
922
923 /* Floating-point return values can be found in %st(0). Convert
924 its contents to the desired type. This is probably not
925 exactly how it would happen on the target itself, but it is
926 the best we can do. */
927 regcache_raw_read (regcache, FP0_REGNUM, buf);
928 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
929 }
930 else
931 {
932 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
933 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
934
935 if (len <= low_size)
936 {
937 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
938 memcpy (valbuf, buf, len);
939 }
940 else if (len <= (low_size + high_size))
941 {
942 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
943 memcpy (valbuf, buf, low_size);
944 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
945 memcpy (valbuf + low_size, buf, len - low_size);
946 }
947 else
948 internal_error (__FILE__, __LINE__,
949 "Cannot extract return value of %d bytes long.", len);
950 }
951 }
952
953 /* Write into the appropriate registers a function return value stored
954 in VALBUF of type TYPE, given in virtual format. */
955
956 static void
957 i386_store_return_value (struct type *type, char *valbuf)
958 {
959 int len = TYPE_LENGTH (type);
960
961 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
962 && TYPE_NFIELDS (type) == 1)
963 {
964 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
965 return;
966 }
967
968 if (TYPE_CODE (type) == TYPE_CODE_FLT)
969 {
970 unsigned int fstat;
971 char buf[FPU_REG_RAW_SIZE];
972
973 if (FP0_REGNUM == 0)
974 {
975 warning ("Cannot set floating-point return value.");
976 return;
977 }
978
979 /* Returning floating-point values is a bit tricky. Apart from
980 storing the return value in %st(0), we have to simulate the
981 state of the FPU at function return point. */
982
983 /* Convert the value found in VALBUF to the extended
984 floating-point format used by the FPU. This is probably
985 not exactly how it would happen on the target itself, but
986 it is the best we can do. */
987 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
988 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
989 FPU_REG_RAW_SIZE);
990
991 /* Set the top of the floating-point register stack to 7. The
992 actual value doesn't really matter, but 7 is what a normal
993 function return would end up with if the program started out
994 with a freshly initialized FPU. */
995 fstat = read_register (FSTAT_REGNUM);
996 fstat |= (7 << 11);
997 write_register (FSTAT_REGNUM, fstat);
998
999 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1000 the floating-point register stack to 7, the appropriate value
1001 for the tag word is 0x3fff. */
1002 write_register (FTAG_REGNUM, 0x3fff);
1003 }
1004 else
1005 {
1006 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1007 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1008
1009 if (len <= low_size)
1010 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1011 else if (len <= (low_size + high_size))
1012 {
1013 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1014 valbuf, low_size);
1015 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1016 valbuf + low_size, len - low_size);
1017 }
1018 else
1019 internal_error (__FILE__, __LINE__,
1020 "Cannot store return value of %d bytes long.", len);
1021 }
1022 }
1023
1024 /* Extract from an array REGBUF containing the (raw) register state
1025 the address in which a function should return its structure value,
1026 as a CORE_ADDR. */
1027
1028 static CORE_ADDR
1029 i386_extract_struct_value_address (struct regcache *regcache)
1030 {
1031 return regcache_raw_read_as_address (regcache, LOW_RETURN_REGNUM);
1032 }
1033 \f
1034
1035 /* This is the variable that is set with "set struct-convention", and
1036 its legitimate values. */
1037 static const char default_struct_convention[] = "default";
1038 static const char pcc_struct_convention[] = "pcc";
1039 static const char reg_struct_convention[] = "reg";
1040 static const char *valid_conventions[] =
1041 {
1042 default_struct_convention,
1043 pcc_struct_convention,
1044 reg_struct_convention,
1045 NULL
1046 };
1047 static const char *struct_convention = default_struct_convention;
1048
1049 static int
1050 i386_use_struct_convention (int gcc_p, struct type *type)
1051 {
1052 enum struct_return struct_return;
1053
1054 if (struct_convention == default_struct_convention)
1055 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1056 else if (struct_convention == pcc_struct_convention)
1057 struct_return = pcc_struct_return;
1058 else
1059 struct_return = reg_struct_return;
1060
1061 return generic_use_struct_convention (struct_return == reg_struct_return,
1062 type);
1063 }
1064 \f
1065
1066 /* Return the GDB type object for the "standard" data type of data in
1067 register REGNUM. Perhaps %esi and %edi should go here, but
1068 potentially they could be used for things other than address. */
1069
1070 static struct type *
1071 i386_register_virtual_type (int regnum)
1072 {
1073 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1074 return lookup_pointer_type (builtin_type_void);
1075
1076 if (IS_FP_REGNUM (regnum))
1077 return builtin_type_i387_ext;
1078
1079 if (IS_SSE_REGNUM (regnum))
1080 return builtin_type_vec128i;
1081
1082 return builtin_type_int;
1083 }
1084
1085 /* Return true iff register REGNUM's virtual format is different from
1086 its raw format. Note that this definition assumes that the host
1087 supports IEEE 32-bit floats, since it doesn't say that SSE
1088 registers need conversion. Even if we can't find a counterexample,
1089 this is still sloppy. */
1090
1091 static int
1092 i386_register_convertible (int regnum)
1093 {
1094 return IS_FP_REGNUM (regnum);
1095 }
1096
1097 /* Convert data from raw format for register REGNUM in buffer FROM to
1098 virtual format with type TYPE in buffer TO. */
1099
1100 static void
1101 i386_register_convert_to_virtual (int regnum, struct type *type,
1102 char *from, char *to)
1103 {
1104 gdb_assert (IS_FP_REGNUM (regnum));
1105
1106 /* We only support floating-point values. */
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
1109 warning ("Cannot convert floating-point register value "
1110 "to non-floating-point type.");
1111 memset (to, 0, TYPE_LENGTH (type));
1112 return;
1113 }
1114
1115 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1116 the extended floating-point format used by the FPU. */
1117 convert_typed_floating (from, builtin_type_i387_ext, to, type);
1118 }
1119
1120 /* Convert data from virtual format with type TYPE in buffer FROM to
1121 raw format for register REGNUM in buffer TO. */
1122
1123 static void
1124 i386_register_convert_to_raw (struct type *type, int regnum,
1125 char *from, char *to)
1126 {
1127 gdb_assert (IS_FP_REGNUM (regnum));
1128
1129 /* We only support floating-point values. */
1130 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1131 {
1132 warning ("Cannot convert non-floating-point type "
1133 "to floating-point register value.");
1134 memset (to, 0, TYPE_LENGTH (type));
1135 return;
1136 }
1137
1138 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1139 to the extended floating-point format used by the FPU. */
1140 convert_typed_floating (from, type, to, builtin_type_i387_ext);
1141 }
1142 \f
1143
1144 #ifdef STATIC_TRANSFORM_NAME
1145 /* SunPRO encodes the static variables. This is not related to C++
1146 mangling, it is done for C too. */
1147
1148 char *
1149 sunpro_static_transform_name (char *name)
1150 {
1151 char *p;
1152 if (IS_STATIC_TRANSFORM_NAME (name))
1153 {
1154 /* For file-local statics there will be a period, a bunch of
1155 junk (the contents of which match a string given in the
1156 N_OPT), a period and the name. For function-local statics
1157 there will be a bunch of junk (which seems to change the
1158 second character from 'A' to 'B'), a period, the name of the
1159 function, and the name. So just skip everything before the
1160 last period. */
1161 p = strrchr (name, '.');
1162 if (p != NULL)
1163 name = p + 1;
1164 }
1165 return name;
1166 }
1167 #endif /* STATIC_TRANSFORM_NAME */
1168 \f
1169
1170 /* Stuff for WIN32 PE style DLL's but is pretty generic really. */
1171
1172 CORE_ADDR
1173 skip_trampoline_code (CORE_ADDR pc, char *name)
1174 {
1175 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
1176 {
1177 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
1178 struct minimal_symbol *indsym =
1179 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
1180 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
1181
1182 if (symname)
1183 {
1184 if (strncmp (symname, "__imp_", 6) == 0
1185 || strncmp (symname, "_imp_", 5) == 0)
1186 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1187 }
1188 }
1189 return 0; /* Not a trampoline. */
1190 }
1191 \f
1192
1193 /* Return non-zero if PC and NAME show that we are in a signal
1194 trampoline. */
1195
1196 static int
1197 i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1198 {
1199 return (name && strcmp ("_sigtramp", name) == 0);
1200 }
1201 \f
1202
1203 /* We have two flavours of disassembly. The machinery on this page
1204 deals with switching between those. */
1205
1206 static int
1207 gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
1208 {
1209 if (disassembly_flavor == att_flavor)
1210 return print_insn_i386_att (memaddr, info);
1211 else if (disassembly_flavor == intel_flavor)
1212 return print_insn_i386_intel (memaddr, info);
1213 /* Never reached -- disassembly_flavour is always either att_flavor
1214 or intel_flavor. */
1215 internal_error (__FILE__, __LINE__, "failed internal consistency check");
1216 }
1217 \f
1218
1219 /* There are a few i386 architecture variants that differ only
1220 slightly from the generic i386 target. For now, we don't give them
1221 their own source file, but include them here. As a consequence,
1222 they'll always be included. */
1223
1224 /* System V Release 4 (SVR4). */
1225
1226 static int
1227 i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
1228 {
1229 return (name && (strcmp ("_sigreturn", name) == 0
1230 || strcmp ("_sigacthandler", name) == 0
1231 || strcmp ("sigvechandler", name) == 0));
1232 }
1233
1234 /* Get address of the pushed ucontext (sigcontext) on the stack for
1235 all three variants of SVR4 sigtramps. */
1236
1237 static CORE_ADDR
1238 i386_svr4_sigcontext_addr (struct frame_info *frame)
1239 {
1240 int sigcontext_offset = -1;
1241 char *name = NULL;
1242
1243 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1244 if (name)
1245 {
1246 if (strcmp (name, "_sigreturn") == 0)
1247 sigcontext_offset = 132;
1248 else if (strcmp (name, "_sigacthandler") == 0)
1249 sigcontext_offset = 80;
1250 else if (strcmp (name, "sigvechandler") == 0)
1251 sigcontext_offset = 120;
1252 }
1253
1254 gdb_assert (sigcontext_offset != -1);
1255
1256 if (frame->next)
1257 return frame->next->frame + sigcontext_offset;
1258 return read_register (SP_REGNUM) + sigcontext_offset;
1259 }
1260 \f
1261
1262 /* DJGPP. */
1263
1264 static int
1265 i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1266 {
1267 /* DJGPP doesn't have any special frames for signal handlers. */
1268 return 0;
1269 }
1270 \f
1271
1272 /* Generic ELF. */
1273
1274 void
1275 i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1276 {
1277 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1278 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1279 }
1280
1281 /* System V Release 4 (SVR4). */
1282
1283 void
1284 i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1285 {
1286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1287
1288 /* System V Release 4 uses ELF. */
1289 i386_elf_init_abi (info, gdbarch);
1290
1291 /* FIXME: kettenis/20020511: Why do we override this function here? */
1292 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1293
1294 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
1295 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1296 tdep->sc_pc_offset = 14 * 4;
1297 tdep->sc_sp_offset = 7 * 4;
1298
1299 tdep->jb_pc_offset = 20;
1300 }
1301
1302 /* DJGPP. */
1303
1304 static void
1305 i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1306 {
1307 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1308
1309 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
1310
1311 tdep->jb_pc_offset = 36;
1312 }
1313
1314 /* NetWare. */
1315
1316 static void
1317 i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1318 {
1319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1320
1321 /* FIXME: kettenis/20020511: Why do we override this function here? */
1322 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1323
1324 tdep->jb_pc_offset = 24;
1325 }
1326 \f
1327
1328 static struct gdbarch *
1329 i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1330 {
1331 struct gdbarch_tdep *tdep;
1332 struct gdbarch *gdbarch;
1333 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1334
1335 /* Try to determine the OS ABI of the object we're loading. */
1336 if (info.abfd != NULL)
1337 osabi = gdbarch_lookup_osabi (info.abfd);
1338
1339 /* Find a candidate among extant architectures. */
1340 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1341 arches != NULL;
1342 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1343 {
1344 /* Make sure the OS ABI selection matches. */
1345 tdep = gdbarch_tdep (arches->gdbarch);
1346 if (tdep && tdep->osabi == osabi)
1347 return arches->gdbarch;
1348 }
1349
1350 /* Allocate space for the new architecture. */
1351 tdep = XMALLOC (struct gdbarch_tdep);
1352 gdbarch = gdbarch_alloc (&info, tdep);
1353
1354 tdep->osabi = osabi;
1355
1356 /* The i386 default settings don't include the SSE registers.
1357 FIXME: kettenis/20020614: They do include the FPU registers for
1358 now, which probably is not quite right. */
1359 tdep->num_xmm_regs = 0;
1360
1361 tdep->jb_pc_offset = -1;
1362 tdep->struct_return = pcc_struct_return;
1363 tdep->sigtramp_start = 0;
1364 tdep->sigtramp_end = 0;
1365 tdep->sigcontext_addr = NULL;
1366 tdep->sc_pc_offset = -1;
1367 tdep->sc_sp_offset = -1;
1368
1369 /* The format used for `long double' on almost all i386 targets is
1370 the i387 extended floating-point format. In fact, of all targets
1371 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1372 on having a `long double' that's not `long' at all. */
1373 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
1374
1375 /* Although the i386 extended floating-point has only 80 significant
1376 bits, a `long double' actually takes up 96, probably to enforce
1377 alignment. */
1378 set_gdbarch_long_double_bit (gdbarch, 96);
1379
1380 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1381 tm-symmetry.h currently override this. Sigh. */
1382 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
1383
1384 set_gdbarch_sp_regnum (gdbarch, 4);
1385 set_gdbarch_fp_regnum (gdbarch, 5);
1386 set_gdbarch_pc_regnum (gdbarch, 8);
1387 set_gdbarch_ps_regnum (gdbarch, 9);
1388 set_gdbarch_fp0_regnum (gdbarch, 16);
1389
1390 /* Use the "default" register numbering scheme for stabs and COFF. */
1391 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1392 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1393
1394 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1395 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1396 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1397
1398 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1399 be in use on any of the supported i386 targets. */
1400
1401 set_gdbarch_register_name (gdbarch, i386_register_name);
1402 set_gdbarch_register_size (gdbarch, 4);
1403 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
1404 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1405 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
1406 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
1407
1408 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
1409
1410 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1411
1412 /* Call dummy code. */
1413 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1414 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1415 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1416 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1417 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1418 set_gdbarch_call_dummy_length (gdbarch, 0);
1419 set_gdbarch_call_dummy_p (gdbarch, 1);
1420 set_gdbarch_call_dummy_words (gdbarch, NULL);
1421 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1422 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1423 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1424
1425 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1426 set_gdbarch_register_convert_to_virtual (gdbarch,
1427 i386_register_convert_to_virtual);
1428 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1429
1430 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1431 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1432
1433 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1434
1435 /* "An argument's size is increased, if necessary, to make it a
1436 multiple of [32-bit] words. This may require tail padding,
1437 depending on the size of the argument" -- from the x86 ABI. */
1438 set_gdbarch_parm_boundary (gdbarch, 32);
1439
1440 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
1441 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1442 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1443 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
1444 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1445 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1446 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
1447 set_gdbarch_extract_struct_value_address (gdbarch,
1448 i386_extract_struct_value_address);
1449 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1450
1451 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
1452 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1453
1454 /* Stack grows downward. */
1455 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1456
1457 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1458 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1459 set_gdbarch_function_start_offset (gdbarch, 0);
1460
1461 /* The following redefines make backtracing through sigtramp work.
1462 They manufacture a fake sigtramp frame and obtain the saved pc in
1463 sigtramp from the sigcontext structure which is pushed by the
1464 kernel on the user stack, along with a pointer to it. */
1465
1466 set_gdbarch_frame_args_skip (gdbarch, 8);
1467 set_gdbarch_frameless_function_invocation (gdbarch,
1468 i386_frameless_function_invocation);
1469 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
1470 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1471 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
1472 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1473 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
1474 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
1475 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
1476 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1477
1478 /* Hook in ABI-specific overrides, if they have been registered. */
1479 gdbarch_init_osabi (info, gdbarch, osabi);
1480
1481 return gdbarch;
1482 }
1483
1484 static enum gdb_osabi
1485 i386_coff_osabi_sniffer (bfd *abfd)
1486 {
1487 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1488 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
1489 return GDB_OSABI_GO32;
1490
1491 return GDB_OSABI_UNKNOWN;
1492 }
1493
1494 static enum gdb_osabi
1495 i386_nlm_osabi_sniffer (bfd *abfd)
1496 {
1497 return GDB_OSABI_NETWARE;
1498 }
1499 \f
1500
1501 /* Provide a prototype to silence -Wmissing-prototypes. */
1502 void _initialize_i386_tdep (void);
1503
1504 void
1505 _initialize_i386_tdep (void)
1506 {
1507 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1508
1509 tm_print_insn = gdb_print_insn_i386;
1510 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1511
1512 /* Add the variable that controls the disassembly flavor. */
1513 {
1514 struct cmd_list_element *new_cmd;
1515
1516 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1517 valid_flavors,
1518 &disassembly_flavor,
1519 "\
1520 Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
1521 and the default value is \"att\".",
1522 &setlist);
1523 add_show_from_set (new_cmd, &showlist);
1524 }
1525
1526 /* Add the variable that controls the convention for returning
1527 structs. */
1528 {
1529 struct cmd_list_element *new_cmd;
1530
1531 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1532 valid_conventions,
1533 &struct_convention, "\
1534 Set the convention for returning small structs, valid values \
1535 are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1536 &setlist);
1537 add_show_from_set (new_cmd, &showlist);
1538 }
1539
1540 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1541 i386_coff_osabi_sniffer);
1542 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1543 i386_nlm_osabi_sniffer);
1544
1545 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1546 i386_svr4_init_abi);
1547 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1548 i386_go32_init_abi);
1549 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1550 i386_nw_init_abi);
1551 }